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ABSTRACT 
 

The analytical structure of modern-day strapdown attitude updating 
algorithms is described for application to current and advanced unaided 
strapdown inertial navigation for aircraft.  Algorithm accuracy requirements are 
presented for compatibility with current and future projected inertial navigation 
system (INS) needs, limited in part, by fundamental uncertainty limits in INS 
gravity modeling and physical sensor-to-sensor alignment calibration.  The 
performance capabilities of current-day strapdown attitude algorithms are 
described, demonstrating accuracy exceeding forecasted future INS requirements.  

 
INTRODUCTION 
 

Strapdown attitude algorithm design originally focused on circumventing limitations in early 
airborne computer technology (in throughput, memory, and fixed-point word-length).   Thus, the 
invention of the two-speed approach [2] in which a basic attitude updating operation is 
performed using a higher-order algorithm, with input from a high-speed simpler lower-order 
algorithm designed to measure the effects of high frequency angular vibration. The two-speed 
approach was first used in 1975 - 1985 for strapdown inertial navigation aircraft application, 
employing a fifth-order “exact” direction cosine attitude updating operation [4], coupled with a 
high-speed two-sample Taylor time-series based algorithm implemented by special-purpose 
digital electronics within the computer I/O (i.e., the original implementation of 

mAlgoδφ in (5) to 

follow).  Since then, computer technology has evolved to a floating-point architecture whereby 
throughput/memory/word-length limitations are no longer an issue, and all computational 
functions reside within the main processor.  The two-speed approach continues to be used today 
for software design flexibility, allowing attitude update rate selection based on output interface 
convenience and accuracy under maneuvering, with the high speed computation portion selected 
for accuracy under vibration. 

 
No longer being constrained by computer limitations, algorithm design has blossomed into a 

competitive technical field for improved accuracy compared to past algorithms under 
hypothesized angular motion, coning being a common vehicle for performance evaluation.  
Given the fundamental accuracy limitation of strapdown inertial sensors, gravity uncertainty, and 
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achievable sensor-to-sensor physical alignment, the new algorithm accuracies are generally 
much higher than needed in practice. 

 
This article describes the analytical structure of modern-day attitude algorithms used in a 

strapdown INS for aircraft.  Algorithm accuracy requirements are derived for compatibility with 
the forecasted needs in advanced future INSs.  The accuracy of existing strapdown attitude 
updating algorithms is then presented, demonstrating their ability to exceed the forecasted 
advanced INS requirements.  

 
THE STRUCTURE OF MODERN-DAY STRAPDOWN ATTITUDE ALGORITHMS 

 
The modern-day strapdown INS attitude updating approach is based on an exact two-speed 

structure of the typical form: 
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where n is the attitude update cycle rate index (e.g., 200 Hz),  is an attitude direction cosine 
matrix at the end of the n cycle,  is a direction cosine matrix representing the change in 
attitude over an n cycle, I is the identity matrix,  is a rotation vector equivalent of , and 

is the cross-product matrix equivalent of  that for arbitrary vector V  satisfies 

.  Continued advances in computer throughput, long-word-length floating-
point arithmetic, and memory capacity allow the series expansions in (1) to be carried out to high 
order (e.g., 15 terms), making (1) virtually error free (save for algorithmic errors in the 
calculation of ).  Rotation vector  in (1) is calculated based on the commonly used 
approximation: 
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where  is angular rate (provided from gyro measurements), is integrated angular rate from 
the start of an n cycle to a general time t within the n cycle,  is integrated angular rate over the 
n cycle, and  is a “coning correction” used to correct  for its variation from .  The (2) 
integral formula approximates an integral of the exact rotation vector rate equation: 
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where  is the magnitude of .  σ σ Note: Rotation vector rate equation (3) was first derived by 
Laning in 1949 [1], and is specifically credited as such by Bortz as his first reference in [3]. 
 

The two-speed architecture represented by (1), is built on the well-known exact solution for 
attitude updating when the  rotation nΔθ axis direction is constant, plus a small correction  
as promoted by Jordan [4].  The new architecture improved the accuracy of the original two-
speed approach in [2] which was based on a truncated second-order Picard expansion for .  
The exact (1) structure allows for any form of attitude that has a closed-form non-singular exact 
equivalency to the  rotation vector.  In addition to the commonly used direction cosine 
approach depicted in (1), an equivalent version based on the more politically correct attitude 
quaternion is also commonly used [Savage, P.G., “Geordie’s Quaternion Decision”, SAI-WBN-
14014, Feb 17, 2016  

nδσ

nB

nσ

http://www.strapdownassociates.com/Geordie's%20Quaternion.pdf].  
Other variations are also possible. 

 
It is to be noted that because direction cosines or any other attitude representation in (1) will 

be exact, errors commonly attributed to attitude updating algorithms (e.g., normalization / 
orthogonalization errors in direction cosines or normalization errors in a quaternion) will be zero, 
hence, need not be of consideration in attitude form selection for (1). (Note: A direction cosine 
(or quaternion) updating operation in (1) will retain exact normalization/orthogonalization 
accuracy, regardless of any error that may exist in the computation of input .)  Additionally, 
having the dominant portion of (1) exact, algorithm software validation is greatly facilitated (by 
comparison with known exact solutions under conditions when the comparatively small  
term is designated to be zero). 

nσ

nδσ

 
The method for computing  in (2) is through an m rate computation (higher than the n 

attitude update rate), including down-summing over an n cycle to form [13]: 
nδσ

nδσ
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In (4), rotation vector mφ  , the equivalent of  in (1), is computed at the m cycle rate,  is 
the integrated angular rate over an m cycle, and M is the number of m cycles in an n cycle.  The 
commonly used equivalent of (4) for real-time digital implementation in a strapdown INS 
computer is 

nσ mΔα
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where 

mAlgoφ , 
mAlgoΔα , 

mAlgoδφ ,  are digital algorithmic equivalents of 
1mAlgo −α mφ , , mΔα

mδφ ,  in (4), ,  are integrated angular rate increment inputs from gyros taken at a 
higher speed l cycle rate (e.g., 2 kHz), L is the number of l cycles in an m cycle, and the s are 
constant coefficients designed to meet specified design criteria.  A 4-sample algorithm has L = 4 
for which there are 6  coefficients (for when .  When  j = k,  in (5) is zero, 
and there is no contribution to 

1m−α jΔα

,j kC

,j kC

kΔα

,j kC

j k≠ j ×Δ Δα α k

mAlgoδφ ).  The general 
mAlgoδφ form in (5) is derived from a 

Taylor time-series expansion for angular rate  [10, Appendix A].  ω
 

The 
mAlgoδφ  algorithm and associated l cycle gyro sampling rate are designed to provide an 

accurate representation of mδφ under both sustained angular vibration and transient maneuvers.  
When multi-axis angular vibrations generate ,  increments that are in phase (e.g., sine 
wave oscillations of the same frequency around two orthogonal gyro input axes), the  
product is zero corresponding to a condition when the sensor assembly is rocking and/or 
spinning about a common axis.  When the Δ ,  increments are out of phase (e.g., a sine 
wave oscillation around one gyro axis coupled with a cosine wave oscillation of the same 
frequency around another gyro axis), the condition is denoted as “coning”, and the combined 
effect in (5) is to generate an average constant 

jΔα

jα Δ

kΔα

kα

m

j k×Δ Δα α

Algoδφ component that builds with time. 

 
DESIGNING THE  COEFFICIENTS ,j kC
 

Four  methods have been used to design the  coefficients for the ,j kC
mAlgoδφ  calculation in 

(5): 1) Taylor Time-Series Expansion - Using the original 
mAlgoδφ formula derivation source 

[10, Appendix A] based on  a truncated Taylor time-series expansion of  angular rate, 2) ω
Taylor Frequency-Series Optimization - Minimizing the steady 

mAlgoδφ error under sustained 

coning vibration by nullifying a truncated Taylor series expansion for 
mm Algoδ δ−φ φ (the error 

in 
mAlgoδφ ) in powers of vibration frequency [5] – [7], [10, Appendix B], 3) Least-Squares 

Optimization - Minimizing the integrated weighted squared magnitude of 
mm Algoδ δ−φ φ  under 

sustained coning vibration over a specified vibration frequency range [10], and 4) 
Uncompressing Frequency-Based Algorithm Coefficients For Maneuver Accuracy – The Song 
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approach [11] of adapting unused coefficients in a vibration-frequency optimized algorithm for 
improved accuracy under maneuvers. In general, the 2) or 3) frequency based approaches have 
more than 100 times smaller error than the 1) Taylor time-series approach under vibration [10, 
Figs. 4 & 5], whereas under maneuvering, the 2) or 3) frequency based approaches have more 
than 100 times larger error than the 1) Taylor time-series approach [10, Table 2]. The 4) Song 
approach retains the accuracy of 2) or 3) under vibration [11, Fig. 2], while improving their 
maneuvering accuracy to match the 1) capability [11, Table 4].  In this writer’s opinion, the [11] 
Song approach is a uniquely significant contribution to strapdown attitude algorithm design. 

 
EVALUATING ATITUDE ALGORITHM ERROR 
 

Because (1) is exact, all attitude representations selected for (1) will have identical error 
because each will be an exact translation of the same  rotation vector input and its associated 
errors.  Thus, the resulting error in (1) will be a translation of the error in the computation of 
rotation vector .  The  error arises from two sources: 

nσ

nσ nσ
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 2) The error in the digital algorithmic summation for 
mAlgoδφ  in (5) compared with the 

continuous integral for mδφ  in (4), i.e., 
mAlgoδ − mδφ φ , thereby measuring the 

effectiveness of the C  coefficients in (5).   ,j k
 

Note :  There is no computational error in the (5) 
mAlgoΔα  summation because, in the absence 

of gyro error, the  inputs from the gyros represent exact integrated-angular-rate-increments.  jΔα
 

Error source 1) dominates under large-angle short-time-duration maneuvers, creating an 
attitude error (measured in μrad per maneuver) that sums with others previously generated 
throughout a given trajectory.  Error source 2) dominates under sustained small amplitude high-
frequency angular coning vibration, generating a sustained average attitude error rate (measured 
in deg/hr), similar to the effect of gyro bias error.  Both effects are evaluated as part of attitude 
algorithm performance analysis.  The numerical attitude algorithm error data provided in [10] 
and [11] (as discussed in the EXISTING ALGORITHM CAPABILITIES section to follow) is 
based on the previous error source definitions. 

 
NEW ATTITUDE ALGORITHM ACCURACY REQUIREMENTS 

 
There is a common misconception that there will be a continuing need for ever-more-

accurate strapdown attitude algorithms for compatibility with emerging future precision gyro 
capabilities.  The fallacy in this argument is that it doesn’t account for the fundamental INS free-
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inertial attitude accuracy limit imposed by INS gravity model uncertainty: 20 μg contributing 20 
μrad (0.0011 deg) to attitude error (through attitude/velocity/position gravity-model 
computational coupling).  For a traditional 1 nmph (nautical mile per hour) INS, gravity model 
uncertainty has only a minor impact in the overall system error budget.  For a higher accuracy 
future strapdown INS (e.g., 0.1 nmph), however, gravity model error becomes a significant error 
budget contributor.  Thus, any forecasted development of INS technology having less than 0.1 
nmph error is unlikely.  It follows that the need for new gyros with higher accuracy than required 
for 0.1 nmph navigation is also unlikely, as is a corresponding requirement for new higher 
accuracy strapdown attitude algorithms.   

 
In a standard strapdown INS, the often referenced 1 nmph position error growth is produced 

by an average attitude computational bias of 0.017 deg/hr (of which 0.01 deg/hr is from gyro 
bias).  This is accompanied by a low frequency bounded “Schuler” oscillation [12] in attitude 
(i.e., one cycle per 84 minute period) on the order of 0.004 deg amplitude [9, Eq. (13.3.2-25) for 
horizontal attitude error Hγ  as function of horizontal gyro bias HIBδω  and Schuler frequency 

, both in rad/sec], generated by 0.01 deg/hr gyro bias, gyro scale-factor error (order of 5 ppm 
– parts per million), accelerometer bias (order of 40 μg), sensor-to-sensor misalignment (order of 
10 μrad), and a negligible portion for computational algorithm error.  Budgeting 1% of the 0.004 
deg for computational process error, the attitude algorithm error allowance becomes 0.00017 
deg/hr and 0.00004 deg.  For a future 0.1 nmph strapdown INS, the algorithm error allowance 
would be an order of magnitude smaller or 0.000017 deg/hr and 0.000004 deg (including 1 μrad 
allowance for sensor-to-sensor misalignment – a physically minimum achievable limit for future 
sensor-assembly technology).  The 0.000017 deg/hr requirement would be targeted against 
algorithm performance under sustained severe angular vibration; the 0.000004 deg requirement 
against performance under a composite of short term (e.g., 2 sec) extreme angular maneuvers 
over a given trajectory. 

Sω

 
EXISTING ALGORITHM CAPABILITIES 

 
The computational structure of many current-day strapdown attitude algorithms is 

represented by (1) - (5) shown previously.  Attitude algorithms defined in [4] – [11] and [13] fit 
this structure, being distinguishable from each other by the particular  coefficient numerical 
values used in the (5) coning correction algorithm. 

,j kC

    
To illustrate the accuracy of a traditional algorithm under vibration, consider a worst-case 7.6 

grms linear vibration into a typical isolator-mounted sensor assembly having 50 Hz undamped 
natural linear isolator resonance frequency and 0.125 damping ratio.  For worst-case 2% isolator 
mismatch and 0.5 % center-of-mass offset, [13] shows that 10 deg/hr average sensor assembly coning rate would be produced, i.e., the average value of  in (2).  Fig. 2 of [11] shows that 
for a 4-sample Song extended least-squares frequency-based algorithm operating at a 1 kHz 
high-speed computation rate (in (5), the sample rate), the algorithm error would be 0.000002 
deg/hr, easily satisfying the 0.000017 deg/hr requirement discussed previously.  The error would 
be 10 times smaller using a 5-sample algorithm. 

nδσ

jΔα
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As an example of the maneuvering accuracy provided by existing strapdown attitude 
algorithms, consider the extreme 2 second angular rate maneuver in Fig. 1 of [11].  Table 4 of 
[11] shows that for a 0.005 sec (i.e., 200 Hz) attitude update n cycle rate in (1), the angular error 
generated during the maneuver by a Song-type algorithm would be on the order of 0.001 μrad 
(0.6 ×10

-7
deg).  Ten of such maneuvers over a particular flight would generate a combined error 

on the order of 0.01 μrad (0.6 ×10
-6

deg), negligible compared to the previously defined 
0.000004 deg requirement.  The error could be reduced further by increasing the attitude update 
rate, e.g., doubling the attitude update rate would decrease the error over the maneuver by a 
factor of 16 [8, Eq. (44) for algorithm c]. 

 
The previous examples demonstrate that existing attitude updating algorithms have more 

than enough accuracy for achieving 0.000017 deg/hr average accuracy under vibration and 
0.000004 deg accuracy under maneuvers, more than would ever be required in a future 
strapdown INS.  Thus, higher accuracy touted for new attitude algorithms would have virtually 
no benefit in the overall error budget of a future strapdown INS. 
 
CONCLUSION 
 

Attitude accuracy requirements for forecasted future gyros in unaided inertial navigation 
applications will be on the order of 0.0002 deg under maneuvering and 0.001 deg/hr under 
steady flight.  Higher accuracy would be of no benefit because it would be overshadowed by the 
effect of gravity uncertainty.  Accuracy requirements in aided applications is even less because 
the aiding will compensate gyro errors.  Thus, future gyro development will most likely focus on 
reduced cost or other improvements for the same accuracy.   For compatibility, attitude 
computation algorithm error under maneuvering should be one or two orders of magnitude 
smaller, e.g., 0.00004 to 0.000004 deg under worst case maneuvering and 0.0002 to 0.00002 
deg/hr under worst case vibration.  Current attitude algorithms easily meet these requirements 
and can be extended if needed in future special applications by increasing algorithm update rates 
or the number of gyro samples per update. 

 
On recounting the history of strapdown algorithm development, I am often asked “if that was 

the way the real algorithm writers did it?”  Reflecting on modern-day algorithms compared to 
those in the early strapdown days, my response typically paraphrases what I learned many years 
ago from an experienced old-timer: 

 
 “Most of the original algorithm writers had tricks of their own.  One for instance used 

truncated attitude algorithms and depended on normalization/orthogonalization routines to 
partially compensate the truncation errors.  Another used ultra high-speed updating with 
simpler less sophisticated algorithms.  And there were some who liked different algorithms for 
different applications.  But one good two-speed algorithm with exact attitude updating is all 
you need today if you know how to use it.  Good for navigating anything to where you want it 
to go.” [Savage, P.G., “Blazing Gyros – The Movie”, SAI-WBN-14016, May 25, 2016  

http://www.strapdownassociates.com/Blazing%20Gyros%20-%20The%20Movie.pdf] 
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