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ABSTRACT

This article is Part 2 of a three part series describing an improved Strapdown
Rotation Test (SRT) for calibrating the compensation coefficients in a strapdown
inertial measurement unit (IMU). The SRT consists of a set of IMU rotations and
processing routines that enable precision measurements of IMU
gyro/accelerometer misalignment and scale factor -calibration errors, and
accelerometer bias calibration errors, all without precision rotation fixturing. The
improved SRT is compatible with a broad range of IMU types from aircraft
accuracy inertial navigation systems (INSs) to the latest low cost MEMS variety
(Micro-machined Electronic Module System). This Part 2 article derives the Part
1 equations for 1) Data collection during rotation tests, post-test data processing,
2) Determining sensor errors from recorded test data, 3) Calculating errors in
determining sensor errors due to rotation fixture inaccuracy, 4) Calculating errors
in determining sensor errors due to misalignment in mounting the system on the
rotation fixture, 5) Calculating errors in determining sensor errors due
approximations in post-test data analysis equations, and 6) Correcting sensor error
determinations for the effect of gyro bias residuals during the SRT.

FOREWORD

This article is the second in a three part series describing improved strapdown rotation test
(SRT) procedures for calibrating a strapdown inertial measurement unit (IMU) containing an
orthogonal triad of inertial sensors (gyros and accelerometers), digital processor, associated
sensor calibration software, and other computational elements. The improved rotation tests
consist of a series of rotation sequences, each designed to measure one of the following errors in
sensor calibration coefficients: gyro-to-gyro misalignment, accelerometer-to-gyro misalignment,
gyro/accelerometer scale-factor, and accelerometer bias. The first and third articles in the three-
part series cover the following topics:

Part 1: Procedures, Rotation Fixtures, And Accuracy Analysis - Describes the general theory
for the improved rotation tests, rotation test operations, data collection during test, post-




test data processing, rotation test fixture requirements, rotation design for sensor error
determination, and sensor error determination accuracy analysis.

Part 3 - Numerical Examples - Provides numerical examples showing how collected SRT
rotation test data translates sensor errors into data collection measurements, and the
impact of neglecting gyro bias in the SRT sensor error determination process. The results
numerically confirm that rotation sequences designed in Part 1 measure the particular
sensor error for which they were designed.

1.0 INTRODUCTION

A strapdown IMU (inertial measurement unit) contains inertial instruments (gyros and
accelerometers) and associated digital computational electronics for compensating the inertial
sensors. Some IMUs (e.g., inertial navigation systems — INSs) also compute attitude by a gyro
integration process, use the attitude and accelerometer outputs to calculate acceleration in an
angular rate stabilized coordinate frame (similar to the accelerations that would be measured by
accelerometers mounted on a gyro stabilized gimbaled platform), and integrate the stabilized
accelerations to calculate velocity and position. The Strapdown Rotation Test (SRT) is the
method used by many aerospace groups for precision calibrating the misalignments between the
gyros and accelerometers in a strapdown measurement unit (IMU). An SRT consists of a
sequence of rotation sequences designed to excite IMU sensor errors on IMU outputs. SRT
processing uses IMU response measurements to calculate the IMU sensor errors producing them.
The results are then used to recalibrate the IMU sensor compensation coefficients to eliminate
the sensor errors during subsequent IMU usage.

The principle advantage of the SRT is its ability to precision calibrate sensor alignments (to
micro-radian accuracy for an INS) without requiring precision (and expensive) rotation test
fixturing and IMU setup time. Secondarily, the SRT also calibrates inertial sensor scale factors
and accelerometer biases. The original SRT (disclosed in 1977 [1] and updated in 2000 [2, Sect.
18.4] ) was designed primarily for aircraft INS accuracy application, and required an inertial self-
alignment of the IMU attitude (relative to local north and vertical) prior to SRT rotation
sequence execution. SRT improvements since 2000 have eliminated the initial self-alignment
requirement and broadened the IMU applicability range from aircraft accuracy INSs to lower
performance micro-machined electronic systems (MEMS) IMUs. The improved SRT is
described in detail in Part 1 [3] including an error analysis demonstrating its ability to achieve
micro-radian accuracy using one milli-radian accuracy rotation test equipment/procedures. This
Part 2 article analytically derives the improved SRT processing equations and associated error
models used in Part 1 [3]. The analytical developments are presented in detail, emphasizing the
impact of second order effects on results obtained, including the effect of IMU mounting error on
the rotation test fixture and rotation fixture incaccuracy in executing SRT rotations. (The error
analysis in [3] evaluates the impact of neglected second order effects in SRT processing,
demonstrating micro-radian accuracy of the SRT procedure.)

Sections 2.0 and 3.0 of this article describes analytical notation and coordinate frames
utilized throughout. Second 4.0 describes the fundamental SRT analytical concept: Computed



IMU accelerations in an inertially stabilized coordinate frame should be zero for a perfectly
calibrated IMU, thus non-zero IMU stabilized accelerations are measures of IMU sensor error.
This fundamental concept is the basis in Section 4.0 for analytically deriving the SRT
measurement processing equations. Section 5.0 then derives second order models for the Section
4.0 SRT measurement equations. Section 6.0 generates a linearized simplified version of the
Section 5.0 for use in determining sensor errors from SRT measurements. The Section 7.0
subtracts the simplified Section 6.0 SRT measurement model from the general Section 5.0 model
to derive an error model for the SRT sensor error determination process. Section 8.0 provides an
assessment of the effect of neglecting residual gyro bias calibration error in the Section 6.0 SRT
processing equations. If significant, Part 1 [3, Section 4.8] describes a simple method for
mitigating the gyro residual bias impact on SRT accuracy. Appendices A and B describe
gyro/accelerometer error and compensation models used in Sections 4.0 — 6.0, and for the
compensation equations presented in Part 1 [3, Sect. 4.3.1].

2.0 NOTATION
The following general notation was used throughout this article.

V= Vector without specific coordinate frame designation. A vector is a parameter that

has length and direction. Vectors used in the paper are classified as “free vectors”,
hence, have no preferred location in coordinate frames in which they are
analytically described.

ZA = Column matrix with elements equal to the projection of }J on coordinate frame A
axes. The projection of V on each frame A axis equals the dot product of V' with a

unit vector parallel to that coordinate axis.

(ZA x) = Skew symmetric (or cross-product) form of ZA represented by the square

0 —Vza Vw
matrix | ¥ z4 0 — Vx4 | inwhich Vi, Vyy, V74 are the components of
—Vya Vx4 0

KA. The matrix product of (KA ><) with another 4 frame vector equals the cross-

product of ZA with the vector in the 4 frame, 1.e.: (KA ><) ZA = KA X EA .

Cﬁlz — Direction cosine matrix that transforms a vector from its coordinate frame 4,
projection form to its coordinate frame 4; projection form, i.e., V4l = lez vz,

The columns of Cﬁlz are projections on 4; axes of unit vectors parallel to 4, axes.



A .. .
Conversely, the rows of C, ; are projections on 4, axes of unit vectors parallel to

A1 axes. An important property of lez is that it's inverse equals it's transpose.

w;., = Angular rotation rate of generalized coordinate frame A relative to inertially

non-rotating space (I : A subscript).

w;.p = Angular rotation rate of the earth relative to inertially non-rotating space (/: £

subscript).

wg., = Angular rotation rate of generalized coordinate frame A relative to the rotating

carth (£ - A subscript). Note that @;.,=w;.p+®g., and equivalently,

Dp. =@ 4~ P .-

: d o . .
@) a0 _ Derivative of parameter ( ) with respect to time z.
t

~

() = Computed or measured value of parameter ( ) that, in contrast with the idealized
error free value (), contains errors.

3.0 COORDINATE FRAMES

Coordinate frames used in this article can be grouped into two types; Basic and Refined.

3.1 BASIC COORDINATE FRAMES

The primary coordinate frame used in this article is the IMU fixed B frame that is rotated
relative to the earth (and inertial space) during each SRT rotation sequence. Other coordinate
frames related to B are fixed (non-rotating) relative to the earth, most aligned with the B frame at
the start and end of a rotation sequence, one defined to be aligned with north, east, down
coordinates at the test site. Specific definitions for the coordinate frame are as follows:

B = IMU sensor frame that is fixed relative to strapdown inertial sensor input axes, but
that rotates relative to the earth during each rotation sequence of the SRT. The
angular orientation of the B frame relative to sensor axes is arbitrary based on user
or traditional preferences.

MARS = Designation for a “mean-angular-rate-sensor” B frame selection, the orthogonal
frame that best fits around the actual strapdown gyro input axes.

NED = Earth fixed coordinate frame having axes aligned with local north, east, down
directions.



Bsy: = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

B

End

with the B frame at the start of the rotation sequence. Nominally, one of the
By frame axes would be aligned with the local vertical if the IMU being tested

was perfectly mounted on an idealized rotation fixture.

= Coordinate frame that is fixed (non-rotating) relative to the earth and aligned
with the B frame at the end of the rotation sequence.

Bi, sy = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

with the B frame at the start of rotation i in a rotation sequence.

Bj Ena = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

with the B frame at the end of rotation i in a rotation sequence.

3.2 REFINED COORDINATE FRAMES

In addition to the basic coordinate frames described in Section 3.1, the concept of “nominal”
B frame coordinates is used to describe angular motion of an IMU under test having an idealized
(error free) mounting on an idealized rotation-fixture that can execute prescribed rotations
without error. Analogous to the B frame, the nominal B frame (BN ™) rotates relative to the
earth (and inertial space) during rotation segments of each rotation sequence. All other nominal
coordinate frames are fixed (non-rotating) relative to the earth, most defined to be aligned with
BY™ at the start and end of a rotation sequence, one defined to be aligned with north, east, down
coordinates at the test site. Specific definitions for the nominal coordinate frame are as follows:

B"" = Nominal B frame defined as a hypothetical B frame that is nominally mounted

B

B

on a nominal idealized rotation fixture that executes rotations exactly as
prescribed, and which was installed in the test facility exactly as prescribed
relative to local NED coordinates (i.e., so that the orientation of the By, frame is
known without error for any commanded rotation fixture gimbal angles).

Nom — Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

Strt

with the B"°" frame at the start of the rotation sequence. Nominally, one of the
Bg\;‘;;" frame axes (x, y, or z) would be aligned with the local vertical if the

inertial measurement unit (IMU being rotation tested is perfectly mounted on an
idealized rotation fixture.

Nom = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

End

with the B"*" frame at the end of the rotation sequence.



INOS’Z; . = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

with the BN frame at the start of rotation i in a rotation sequence.

ZN%’Z 4 = Coordinate frame that is fixed (non-rotating) relative to the earth and aligned

with the B"*" frame at the end of rotation i in a rotation sequence.

4.0 ANALYTICAL BASIS FOR THE IMPROVED STRAPDOWN ROTATION TEST

The analytical basis for the Strapdown Rotation Test (SRT) derives from the fundamental
identity that for a stationary IMU, the true acceleration relative to the earth is zero:

B B B
a”=agptgup,,=0 (1)
where
QB = True IMU acceleration vector relative to the earth in general B frame coordinates

when the IMU is stationary.

QgF = True specific force acceleration vector relative to the earth (in general B frame

coordinates), the acceleration sensed by the IMU accelerometers.

u gwn = True unit vector downward at the test site (parallel to plumb-bob gravity) in

general B frame coordinates.

g = Plumb-bob gravity magnitude at the test site.

The u gwn vector in (1) can be calculated as

B __.B NED  NED_ T
UDwn = CNED UDwn  Upyn =0 0 1] (2)

where

C%E D = Direction cosine matrix that transforms vectors from NED to B frame

coordinates.

With (2), (1) transformed to the B frame at the start of the rotation sequence becomes

Bswi B By, NED
aPsin = 55" agp+ g CNEp Upym =0 ©)



Equation (3) is valid for any stationary B frame orientation, thus, at the start and end of the
rotation sequence,

Bsurt —( B — aBsrt = B —
aBsvr = (_ Strt)Sm_o aBsm = ( Strt)End_() (4)

where

agt%’ r, aglfg’ = ¢BSut in (3) measured at the start and end of the rotation sequence.

4.1 IMPROVED STRAPDOWN ROTATION TEST MEASUREMENTS

Equations (4) with (3) are the basis for the SRT measurement concept. For a perfect (error

free) IMU and a known Bg,,, frame orientation relative to NED coordinates, ggt%’ " and aB Sg !

in (4) are zero. Therefore, non-zero values for values for ggt%’ " and aB S” ! represent

measurements of IMU and test execution error. The equivalent of (3) and (4) using actual data
(containing errors) would then be

~BStrt _ ~BStrt ° ~Bstt , NED
a " =Ca ae asp T8 CNED Y Dwn )
"BStrt = ~ B Strt £0 "BStrt ~BStrt £0
st 4 Strt 9End ~\4 End

where

~

() = Parameter ( ) containing errors (in contrast with parameter ( ) defined to be error
free).

( ~BStrt
a

) , ( o Bstrt ) — BStrt ot the start and end of the rotation sequence.
- Strt

End -

é o = Compensated accelerometer specific force vector, the output of the Part 1 [3, Eqs.
(2)] accelerometer compensation equations that still contain residual errors (to be
determined by the SRT).

~

Cgs” = Direction cosine matrix that transforms vectors from the B frame to the B g,

frame. The 6§S’V ! matrix is calculated using angular rate outputs the Part 1 [3,

Egs. (2)] gyro compensation equations that still contain residual errors (to be
determined by the SRT).



~Bsyt ~B and

~BStrt ~BStrt
and > a SF°

A A in (5) are due to residual errors in ¢

Non-zero values for 4

~BStrt ~BStrt ~BStrt :
CNEp - Using an error model for g4 ag and 4 Apnd allows the accelerometer and gyro residual

compensation errors to be determined using classical matrix inversion methods.

~Bsyt , NED ~ B strt ~BStrt
From (5) it can be seen that C\7) U, 18 contained in both 4 A and g4 ap,y - To

eliminate this term (and 63 Strt initialization error) from the error determination process, the

Bsut and BStt is ysed for horizontal SRT measurements:

difference between 4 Ao ap

~ BStrt aBStrt ~B

asr B 4sF ©)
Aa ~Bsirt BStrt ZZBSm — (ZIBStrt) _(ZZBSM) — ZZBStrt _ZIBStrt
9nd ~dsor ~\ASF | T\ASF o T ASF g LSF pua
where
~Bswyt  ~BSut _ ~BSwt

, at the start and end of the rotation sequence (subscripts) in
gSFStrt gSFEnd 4sr q ( p )

Bsy¢ coordinates (superscript).

AaB St = Difference between stationary IMU acceleration vectors at the start and end of

the rotation sequence in Bg;, coordinates (used for the horizontal SRT
measurement component).

Note: Eq. (6) in the form shown is somewhat symbolic. To account for IMU micro-movement

and to minimize sensor quantization error effects, ag I:Sm in (6) would actually be calculated as
Strt

an average of CB Sert B agp immediately before the rotation sequence is executed. Similarly,

;B Strt
=SF End

completion of the rotation sequence.

in (6) would be calculated as an average of CB Strt [, Q immediately following

SF

As mentioned previously, an important characteristic of (6) is that because 6gStr T is

generated by an integration process (described subsequently), the ags” * initialization error in

~ B St ~BStt
aped ad ag),

measurement operation. The result is simplification in IMU mounting and rotation fixture
alignment accuracy requirements. (Note: The original SRT [1] was designed for aircraft INS
sensor calibration, and used the INS gyro and accelerometer signals to implement an inertial self-

is cancelled (to first order accuracy) in making the AéB Strtdifference



alignment process for ag&rt initialization. This method is not practical for IMUs having lesser

accuracy inertial sensors — e.g., MEMS based).

The horizontal component of AQB Strt in (6) used for the SRT horizontal measurement as

analytically defined by

Bstrt _ [~ B Strt ~ B Strt ) — [ ~ B Strt ( ~ B Strt )} ( ~ B St ~ B Strt
Aa — =|]— . — 7
ESFEnd LSFSurt) D \uDwn * ) \4sr gpg ~ UsF ) (7

where

H = Designation of a vector’s horizontal component defined as the vector minus its
vertical component.

&gi’; ! = Unit vector downward in Bg;,, frame coordinates (and containing error).

~ B Strt — Bsut ~Bsut ;
(g Do ) Uy dot product operator. When Do 18 represented as a column

matrix, (;, g‘fv” ! )1s the transpose ofy, " S’Z’

I = Identity matrix.

Aéf]&” = Horizontal component of AéB Strt in (6).

The LA,B Sirt yector in (7) is from the (2) equivalent in B g, coordinates:

ZDwn
~BStrt _ ~BStt . NED NED
Upo = CNED UDwn  UDwn =0 0 1] (8)

To go with (7) - (8), the vertical components of ag tS;r " and gSZ’ in (5) are calculated as

~BStrt  _2~BStt ~BSyt ~BSwrt  _"BSwt B Strt

AStrt pwn ~ LDwn " LStrt AEnd pywn ~ YDwn " 2End ©)
where

~BStrt ~BStrt — ~ B Strt ~B Strt

ASirt poum® CEnd prom = Downward components of 4 Ao and ¢ in (5).



The éf,f;” and é gggt vectors in (9) are derived from (5) with the general B designation equated

to Bsy¢ and Bg,g , while recognizing that Cﬁ,}%’g gﬁln) —;,gfv’; r:

~BSwt — ~BStrt ~BStrt B Strt — ~BSwt ~ B Strt
st~ ASF gy tg Y Dwn YEnd ~ ASF g tg U Dwn (10)

Substituting (10) into (9) then finds

~Bswt _ ~BStrt ~BStrt ~BStrt  _ ~BStrt [~BSut
St pun = WD OsF g T E  AEndpun~ UDwn \dsrp,)TE (D

It remains to define equations for ags” * in (5) and (6). A key element in the SRT process

calculates (Ang” ! as an integration process using gyro data measurements for input. This enables

the AQZS’F " measurement to include the effect of gyro error, deeming it deterministic during
post-processing calculations. Additionally and importantly (as will be apparent subsequently),

use of a gyro based ag&r ! determination enables the accelerometer alignment error contribution

in Aég&” to be a direct function of relative misalignment between the gyro and accelerometer
input axes, the misalignment factor that impacts IMU navigation accuracy. Finally and also
importantly (as mentioned previously), use of a gyro data computed ags” " in (5) - (6)

eliminates the need for precise alignment of the IMU to the rotation fixture and local vertical
during the SRT. The result is both improved sensor error determination accuracy and reduced
rotation test fixture accuracy/cost requirements.

The computation for (Ajgs” ’ in (7) is based on the exact Cgs” ! direction cosine rate equation

[2, Eq. (4.1-1)], while recognizing that by definition, Cgsm is identity at rotation sequence start:

CgSzrt —J+ CgStrtdt CgSm — CgStrt (Q?B X) _ (Qli%rt x) CgSm (12)

tS trt
in which
B B NED NED . T
;. Sé” CN%T)’ oy o'y =[wecosl 0 — @,sinl] (13)
where
B

w7.p = Angular rate vector of the B frame relative to non-rotating inertial space (/: B

subscript) in B frame coordinates (superscript), the angular rate vector sensed by
the IMU strapdown gyro triad.

10



QJIB .%r , Q]IV%D = Angular rate vector of the earth relative to non-rotating inertial space

(/: E subscript) in Bg;; and NED frame coordinates (superscripts).
w. = Earth’s rotation rate magnitude relative to non-rotating inertial space.
[ = Latitude of the test site.

For the SRT, the (12) and (13) calculations would be performed using actual gyro data (the
output of the Part 1 [3, Egs. (2)] compensation equations that still contain residual errors),

estimated (uncertain) values of Cﬁ%ﬁ , and an assumed ideal alignment of the B frame with the

By frame, i, ((Ajgsm) = Identity :
Strt
ag Strt — [ + ;SeqStrt ag Strt
égSm :C’,\gSm(éfBX)_(éfé?trtx)CAgStrt (14)
b5 =B alf? )P =[wecosl 0 - apsint]”

To summarize, SRT measurements taken for each rotation sequence would be Aégs” r
~BStrt ~BStrt : - :
ASirt Do and , End puon calculated with (6) - (8), (11), and (14) as listed next.

~BStrt _ ~Bsirt ~B
asp ~Cp dgp

ZlBStrt = (ZZBStrt) ZZBStrt = (ZlBStrt)
=SF syt \=SF Strt =SFEnd  \=SF End
~BSwt _ |~ BStrt ~BStrt
Aa = (a —a ) 1 5
—H =SFEnd —SFStrt] g (15)

~Bstt _ ~BSyt . NED NED _ T
Upywn ~CNEDYDwn  YpDwn = [0 0 1]

~Bsyt  _"BSit ~BSm +g ~ Bt :&BSm ~Bsurt )+g
aStrtDOWn —DW” ' _SFStrt aEndDOWn —DW” ' _SFEnd
ABSlVl — I t /.\BSII"Z‘
=1+ dt
Cs ISeqStrt Ca
~Bsirt _ A Bsine [ ~B ~BSwrt | 2 BS
Cg" =Cg M(QIBX —l@ " x|C B> (16)
~B ~Bsyt , NED NED -
Q[égm =C N%B (55 W p = [wecos! 0 — @,sinl]

11



The 6%%3 matrix in (15) would be estimated for each rotation sequence from the approximately

known angular orientation of the IMU mounted on the rotation test at the test site. The ng End

=SF End ’

2’? 1:?; ! terms in (16) would be calculated as the average g o outputs from the Part 1 [3, Egs. (2)]
- irt -

accelerometer compensation equations.

Equations (15) - (16) are applied for each rotation sequence in the SRT to generate a set of

~BSut ~BSut ~BStrt . . )
Aa Ho o At pun® @End Dy measurements. By appropriately structuring the rotation

~BStrt ~BSurt ~ B Strt
a

equations is established as a function of Part 1 [3, Egs. (2)] compensation coefficient error
residuals. Analytical inversion of the equations allows the error residuals to be calculated, then
applied as corrections (calibration) to the Part 1 [3, Egs. (2)] compensation coefficients.

sequences (as in Part 1 [3, Table 1]), a deterministic set of A

5.0 MEASUREMENTS IN TERMS OF SENSOR ERRORS

This section derives second order analytical model equivalents to SRT measurement Eqgs.
(15) - (16) as functions of the sensor and IMU mounting/rotation errors that generate non-zero
values for the (15) stationary acceleration measurements. The results will be used to formulate
simplified linearized models used by the SRT for deducing sensor errors from the (15)
measurements, and to formulate second order error equations for evaluating SRT accuracy in
sensor error determination. To analytically account for uncertainties in rotation fixture
installation at the test site, IMU installation uncertainty on the rotation test fixture, and rotation
fixture inaccuracies in executing prescribed rotations, the Section 3.2 refined coordinate frame
definitions will be applied in the derivation process.

Analytical model derivations begin with the Eq. (1) fundamental SRT truth model principle

that for any B frame orientation, IMU acceleration under stationary conditions is zero. At the
start and end of a particular SRT rotation sequence, (1) becomes

B _ B B _ B _ B B _
ASt = QSFStrz T8 Upyy = 0 AEnd = gSFEnd T8 Upyy = 0 (17)
where

B B B B _ B B .
ASirt> YEnd > Cspg,,> CsFp,y & 0 ASF at the start and end of the rotation sequence,

projected on arbitrary B frame orientation axes.

From (17), ggn 4 and an 4 brojected on By, frame coordinate axes is

12



Bswt —  BStrt Bt —
4 Strt QSFSt T8 Upyn = 0 (18)
Bswt —  BStrt Bsurt — ~BSwrt [, BEnd Bstrt —
LEnd _QSFE d+gqun CBEd =SF En d+gqun 0
With (18), the equivalent truth version of (6) in Section 4.1 is
BSurt = o BStrt _ (BStrt — ~BSwt ,BEnd _ [ BSirt _
AG™I =2 = i = C g CSE g~ LSF e~ © (19)

Then, from (19) and (18), the truth equivalent of (15) is

BSirt — ~BStrt  BEnd _ _ BStrt _ BStrt=( BStrt) —
AT =Cpipy 4 End  LSF sirt 0 Ay =\Ad 0

H
B St B Strt,, BStre _ B Sirt B Strt BSwt BEnd _
aStrtDOWn “Dwn * aSFStrt +g=0 aEndDown “pwn * (CBEnd SFE d) tg=0 0

BS[[ BSyt . NED NED
=D " CNEB “ZDwn UDwn = [0 0 1]

A truth model equivalent of (16) can also be identified for attitude determination

Cg Strt — [ + I Strt dt

"Bsut _ ~Bsut( B B Strt B Surt
Cg™ =Cg™ |\ @.pX| | @1 X|CB

Bsyt _ ~BStrt . .NED NED . T
w7 B = CNgp @I @75 =[wecosl 0 — g,sinl] (21)

BSutrt _ | ~BStrt _
Cpopr (CB )End@t tEnd

To develop (15) and (16) error model equivalents, we now equate the calculated (15) and
(16) parameters (containing errors) to the (20) - (21) true parameters plus calculated parameter
errors:

~Bstt _ CB Strt + 50 Bt ~BStrt _ uB Strt +5n ~ B Strt

CBE d BEnd CBE d UDwn — U Dwn (22)
ZIBEnd :aBEnd +§EZBEnd ngStrt :aBStrt + &BStrt
_SFEnd _SFEnd _SFEnd _SFStr[ _SFStl’t _SFStrt
where
~BStrt ~BEnd ~ BStrt ~BSwrt _— E ~BStrt "BEnd BStrt "BStrt
= Errors in
8CBE d’ da L SE End’ J—SFS U Dwn CBE d’ ASF Epa’ LSF sy Y Dwn
. . . e B B B
Applying (22) in (15) and with (20), substituting zero for Aag”Strt | 4 < tf% o Erfg ’D , then
obtains

13



AZZBSM_ aBStrt ~BEnd _&BSm
= BEnd & =SF Epnd  —SF St

Bsurt 4 o~ BSirt ) BEnd ~BEnd B surt ~ B St
+ —~ +
( CBEna T OCB L, (QSF End " C4SE ppa) T \ESFsue T O g,

B St BEnd _ BStrt ~BStt BEnd 23
CBEnd =SF End —SFStrt 5CBEnd =SF End ( )

Bswt ¢~BEnd ~ B Strt ~BsStrt ¢~BEnd
+ - +
CBEnd da LSF End 5QSFS trt §CBE d da ASF End

~ B St BEnd aBStrt +CBSZrZ Sa ~“BEnd _ <~BSirt ~ B Sirt Sa ~BEnd

_5CBEnd Bstrt =SF End BEnd ®4SF £na ASF g 5CBEd ASE End

~BStrt  _"Bstt ~Bsut +g:(uBStrt+5ABSm) (aBStrt + soBsrt | 4

aStri pwn ~ LDwn " ASF gy =Dwn = OUDwn | \ZSF it~ OLSF sy (24)
~ B Sirt B Sirt BSut o~ BSwt ~BSirt o~ BSirt
= du U Dwn " 2SF sy t+uDW” da R +ou “pwn- §—SFStt
~ B Sirt _ ~Bsut (’\BSlrt ~BEnd )
= +
AEnd pown “=Dwn * CBEnd d =SF End g

B St ~ B Strt ) ( Bsirt 4 o ~BSirt ) BEnd ~BEnd
+ + +
(qun Su Y Dwn BEnd SCB End ) \%SF End 8QSF End g

B St BSwt ¢~ BEnd B St ~Bswt [ BEnd ~ BStrt BSwt , BEnd
= UDwn '(CBEnd S_SF )+qun '(SCBE d SFE d) Ou U Dwn (CBEnd SFEnd) 25)
B St ~BStrt «~BEnd ) ~ B Sirt Byt «~BEnd ~ B Sirt B End )
+ . .
U Dwn (SCBE d da SFE d du U Dyn CBEnd da =SF End 8CBEna? =SF End

— . BSirt Bsut ¢~BEnd B Sirt ( ~ B Sirt B End B Strt ) ~ B Strt B Strt
. +u . + .
~ LDwn (CB End 8—SF End) Upwn -(8Cp End C Bt 2SF pua U o - AsF End

B St ~BStrt &~ BEnd ~ B Strt BStt «~BEnd ~ B Stre BEnd
+ .
U Dwn (5C35d5 Sk gy ) T (CBEnd6 2 SE End 8CBEaz =SF En d)

B sut BSut a Bsut

The remainder of this section develops analytical expressions for the C Brng® YDwn > Asie >

aBSirt "BSurt_,Bsirt " BSurt_,BSwr ~BSit B End ~BsStrt B End ,BStrt
CSF Ena> O%Dwn ASF pna® OUDun  E5F sie> OC B g 98 sp gy 4 0CE 10 CBsy AP g
terms in (23) - (25); substitution in (23) - (25) for AaB Strt | g,g tf;r[t) , and g,g’f% ; followed
wn own

by a summary of results obtained. Included is a derivation of the rotation vector equivalent

(Z)B S” t for 5CB S” ! used in the final AaB Sirt &ggﬁ’; o EZSSZID . error equations.

5.1 Developing The ngf’:; Term
For the CBSM term in (23) - (25):
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Nom Nom
B Strt B

Bswt _ ~BSirt End
C =C C C (26)
B N N B
End "B  BEng  CEnd
Nom

The ¢5 }g\g ! and ngz terms in (26) are nominally identity and can be expressed in terms of

Strt
their rotation vector equivalent based on the rotation vector to direction cosine matrix conversion

formula [2, Eq. (3.2.2.1-8)]

C§:I+Si29(QAx)+1_;—gse(QAx)2 (27)
where

Cé, = Generalized direction cosine matrix that transforms vectors from general

coordinate frame B to general coordinate frame 4.
QA = Rotation vector (in frame 4 coordinates) that would rotate frame 4 into frame B.
6 = Magnitude of QA .

Choosing Bé\;‘;;” and ngg’ as the equivalent of frame 4 in (27), we write

Nom ; Nom 1 Nom 2
Bsyy _ p_ Sasye| Bsyy —CoSasur| B
Cpoy =1+ agplt X |+ Gt X
Strt aS =St 0{2 =5trt
urt Strt
2
Nom Nom
_ B syt 1 B st
_I+(g5m X +E aghlt X |+
(28)
Bgf% B SN o g B%%f 1 —cosagna ngc’}q
Copmg =1 Lppg X |* > Xpng X
O End O End
pNom 1 BN0m 2
=I+| @it x + o x|+
where
Vi n — 3 3 Vi n
aglt s apyy Rotation vector equivalent of C By ° C By *
B 59\20;” B L]S’Vt()? B St go?1
Vi Vi 3 Vi ] ] T
For small g2/ and 0" with CB o, 1dentified as the transpose of C Bong (28)

Strt
approximates as
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Bsut BS BE B

rt o T _ 7 nd n

CBgom =1 Dspr X CBEnd I+ g X (29)
trt

Nom Nom

Substituting (29) into (26), assuming small ggtfir ¢, ggggf , and dropping higher order terms

then obtains for Cgi”g in (23) - (25):

BEnd =Strt B]g,‘l’é”

B{gVom B{gVom B{gVom BéVom B%[O(T Bgom B%fogn
— trt __ trt trt trt n _ trt n
=C Nom L strt x|C Nom +C Nom QEnd o & sirt o QEnd X

B End B End B End

Nom Nom Nom Nom Nom
B B B B B
~ C Strt + C Strt [aE’%ld Xj _ (a Strt X] C Strt

Nom Nom Nom
B B B
CBStrt — [ ( Strt X] C Strt [ [a }fcii’ld Xj

Nom Nom Strt Nom
B End B End B End
Nom Nom Nom Nom Nom Nom Nom
— CBStrt + CBStrt aBEnd X CBEnd CBStrt _ a,BStrt < CBStrt (3 O)
BNom BNom 2 End BNom BNom ZStrt BNom
End End Strt End End

BNom BNom BNom BNom BNom BNom
=C St 4 C Strt oy End |y C Strt | o/ 2Strt w C Strt
pNom pNom 2 End pNom ZStrt pNom
End End End End

Nom - Nom

N N Nom N N
_ CB Strt. n CB Strt. oBEnd _ B Sirt % CB Sirt
B pNom ZFEnd ZStrt B
End End End

BNom Nom

Nom Nom Nom Nom
_ ~Bsut B St B¢ B st
=C T LEnd ~%sirt | CB
End

: Bt  BSurt Bstrt
5.2 Developing The up>™, a SFés? And g SF End Terms
The ggf'vfg term in (23) - (25) can be defined in terms of its equivalent in BV coordinates
as
Nom
Bstrt — ~BSrt By
2DWZ - CBNom ZDWZ (3 1)
Strt

Nom *
Strt

or with (29) for ci Surt

Bsint BY | BS _ B BSOr. BSO
rt—| ] — 7 Tt — rt _ T 7
UDwn = 1 QStrt X UDwn = UDpwn QStrt X UDwn (3 2)
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From (18), aBS”’ and agg”’ in (23) - (25) are both —g u uBS‘” so that with (32),

- - =Dwn

Nom Nom Nom
Bsyt _  BStrt _ _ Bgyt Bsy B syt
QSFEnd QSFS;,-; g = aSﬂ‘t Xu (33)

5.3 Developing The §y B S”t , Su gfvtg gg’g’d And §y B S’” _gg’g’ Terms

The Sy DS’” term in (24) - (25) can be defined based on the estimated value ug&” being

Nom
along the nominal vertical, i.e., along ggfxl’ . From (32):

UDwn ~ Y Dwn “UDwn T UDwn U pywn OcStrt ZDwn | OCS

Nom Nom Nom Nom Nom
~B ~B B B B B B B
Su Strt — ~ b Strt Bsut Strt ( Strt Strt s 4y Strt J_ t%rt Xu fé;t (34)

With (34) and (33), the &y, " St a3t and Sup 2 St a5t terms in (24) - (25) then become:

SF End SF Strt
Nom Nom Nom Nom Nom
SABStrt Bstrt  _ SABStrt Bstrt _ —g aBStrt x uBStrt uBStrt aBStrt % uBStrt
U Dyn* —SF End U Dywn * —SF Strt =Strt ZDwn || £2Dwn = Strt ZDwn
35
Bgfom BéVom Bgfom Bgom ( )
trt trt trt trt
=8| Qg o UDwn || Ssire X U Dywn
5.4 Developing The §¢25 5 BEnd  And s¢BSirt BEnd o BSirt  Termg
BEnd End BEnd BStrt =SF End

The 5C BSW ! term in (23) and (25) can be defined in terms of a small angle rotation error

vector equivalent. First recognize from (16) and (21) that at the start of the rotation sequence,

ags” ! and CgS” ! are both identity. Then we can write

agSm - CgStrt Cg (36)
where

B= Implicit B frame imbedded in Cg that differs from the true B frame because of

errors induced in the (16) integration process for 6’§Strt compared with the (21)

17



true integration process for Cgs” t'. Since both 62&” "and CgS” "are initialized at

identity at the start of the rotation sequence, their difference at the end of the

sequence is due to errors in the (16) process 631;5”’ * integrand.

Following the Section 4.2.1 development for cB Slgin in (29), we define C in terms of a small
Strt
rotation vector error as

2
cB z1+(¢3x)+l(¢3x) 37)
B = 2\~
But by definition,
éf,gStrt = agStrt _ CgStrt (38)

Substituting (36) and (37) in (38) then finds for JCB Sert

~ 1
5CgSzrz — CgStrt Cg _ C§Sm — CgStrt (Cg _ 1) ~ CgStrt (QB X)[[ +E(QBX)}

— ~Bsurt Bstrt 1 B | = (gBsut Bstrt 1B

=Cjp ¢ CBS”C 1+2¢ =|¢ X|Cp 1+EQ X (39)

— (¢BSWI X) + l (¢BStrtx)2 CBSt}’t
r 7\ & B
or at the end of the rotation sequence,
1 2
st = ek <)+ (ot |ch @

From (40) and neglecting third order terms, §Cg;” ; da AB E”d in (23) then approximates as

~ B St ~BEnd ~ BStrt BStt ¢~ BEnd BStrt BStrt ~BEnd
§CBEd ba SFEd ¢Enaf ( BEd5 SF En d) ¢End ( Nom5 SFE (41)

From (40) with aB S’” from (33), the 5/\3 Strt nggj" _gg’g ! term in (23) becomes
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2
~BStrt ~BEnd BStrt _ B Sirt ) 1 ( BStrt ) BStrt ~BEnd . BStrt
= X+ — X
5CBEnd CBStrt 4SF Ena {(QEnd 7 QEnd CBEnd CBSm ASF Ena

2
_ BStrt l B Strt B Strt
- |:(£)End X) + 2 (QEnd X)X LSF End
2 Nom Nom Nom
_ B St l B Strt Bsyr _ . Bsut Bsyt
=-& {(QEnd X)+ 2 (QEnd X U pwn & strt ><ZDwn

Nom 1 Nom Nom
—_ B Sirt By LY oBsur _ ,Bsut Bsy
=-& QEnd X |:2Dwn + 2 QEnd X 54t Xu

5.5 ANALYTICAL EQUIVALENTS OF THE glgtf;rlf) , ;ggng : A&ZS’” MEASUREMENTS
WH Wn -

Applying the Section 5.1 - 5.4 results to Egs. (23) - (25) and dropping third order terms

obtains the second order equivalents to Zzg tf% , ;g}fgﬁ) , and A&ZS” ,
wn wn -

~ B St ~ B St ; BStrt Bstrt
For the and measurements we substitute C By from (30), u )

Bt BSurt ~ B Strt ~BSwrt BSut ~BStrt  BStrt
(32), asp Strt and a5k End from (33), 52Dwn from (34), éﬂDwn'QSF End and éwan'QSF Strt

~ B St ~BStrt ¢~ BEnd ~BSwrt ~BEnd ,BStrt
from (35), §C B from (40), §C B da SF o from (41), and §C By Cpon & SF from

(42) into (24) - (25) to obtain the second order equivalents to Elg tf;rz) and &g}fgtD in (15):
wn wn

~Bstt  _ o Bstt  BSurt Bt o7 BStrt ~BStrt &~ BStrt
AStrt prun ~ O Dwn* ESF sy T YDwn S gp g T OUDyy - Sagp e

Nom Nom Nom Nom Nom Nom Nom
=g (agStrt % ugStrt j [(XgSm X uBStrt J + [ugStrt _ chsm % uBSm j S&BSM
=Strt = = = =Dwn =3Strt = '

wn trt Dwn Dwn LSF s
Ne N (43)
+ OCBSt%n % uBSt%n 6ABSzrt
=Strt =Dwn | O4gpg, .

Nom Nom Nom Nom Nom
—u B syt Y Bsirt OLB Strt sy, Bspre B gyt X 1 Bsire
=Dwn -O4gpo. . 8| Lsn <D .
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~BStrt  _ ., BStt BSwrt ¢~BEnd B Sirt ~BStrt ~BEnd , BSirt ~BSwrt  BStrt
A End pyn  LDwn * (CB End 8QSF End) U Dyn - (8C BEnd CBStrt asr End) + 8ﬂDwn “4SF pa

B ~B ~B ~B B ~B ~B B
+u Strt (5 Strt Sa End ) +8 Strt ( Strt Sa End +5C Strt a End )

Dwn - CBEna’ =SF End U Dwn *\“ BEnd =SF End BEnd =SF End

Nom Nom Nom Nom Nom Nom Nom
=y Byt _ aB Strt B syt _ CB Strt 4 aB Strt _ aB Strt | ¢ CB Strt ZZB End
=Dwn =Strt ngg]q ~=End = Strt ngy L SF End

Nom Nom Nom Nom Nom Nom
_ uBStrt _ (XBStrt % uBSm ¢BStrt % uBStrt + l¢BSm _ aBStrt % uBSm
&1 UDwn =Strt ZDwn | VLEnd ZDwn 7t End =Sttt ZDwn

Nom Nom Nom Nom Nom
—g[ By B st j_(uBStrt Bt o, Bsurt j

t _
(03 v XU Dy =Dwn (05 v =ZDwn
Nom Nom Nom Nom
B B B B B ~B
+ (EDEJZI — gt Xupn j | P X (C B?%” Sagp dJ (44)
n
Nom Nom Nom Nom
B st + aBStrt _ aBStrt X CBStrt ZZBEnd
Nom Nom pNom =End =Strt gNom [ CC5p g
BS[ BS End End
+ o rt X U trt .
=Strt =Dwn

2
B Strt l B Strt BSwt ,BEnd
+[(?End X) 3 (?End X) } C BEnd LSF End

N N N N N N
~u Byt _ CB Strt. 5213 End |4, B ) ¢B Strt 4 (xB St _ OCB St % CB Strt. 5213 End
=Dwn Bg,%;" ASFEpg | —Dwn ZEnd = =End =Strt Bg’%]n L SE End

Nom Nom Nom
—oy B sy ¢B Strt ¢ l ¢B Strt _ (xB NNy B sut
EUpwn V¥ End 7t End =Strt =Dwn

Nom Nom Nom Nom
+ OLB Strt 4, Strt ¢B Strt 4 OLB NN Bsy + ¢B Strt ¢ Bsut
=Strt UDwn || &\ ZEna ™ Lsirt =Dwn ~ ZFEnd © =SF Epd

~ Bstrt ; Bstrt ~BSwt ¢~ BEnd
For the Ag measurement we substitute C By from (30), 5C B da SF g from (41),

~BStrt ~BEnd ,BStrt . . .
and §C By Cpor @ SF pnd from (42) into (23) to obtain the second order model equivalent to

AZZS in (15):
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~BStrt _ <~BStrt ~BEnd BSlrl BSer ~“BEnd _ o"BSut ~Bstrt BEnd
Aa 5CBEnd CBStrt —SFEnd BEnd oa SFE d 5QSFS; JCBEnd SFE d

Nom Nom
B Strt BSit' BSurt Byt Byt
81Pend % [”D + ¢End syt | X UDwn

pNom End ZStrt Nom a a
End End SFEnd SFStrt

Nom Nom Nom
+{C Bsi + K Byt _ aBStrt j }CBSM 5ABEnd _ I Bsut

B Surt BStrt ~BEnd
¢End X( BNom da SFEnd

_ Strt B Strt B St ~BEnd ~BStrt
u X + - 45
=8 Upy ¢ C Nom oa SFEnd QSFStrt (45)

Nom Nom Nom Nom
BStre BStrt B St By Bsut _ Bsut Bsyt o~BEnd
-8 ¢End X |:( ¢End st X U Dywn + XEnd X sirt X CBgoLrin oa SFEnd
n

B B ~B
¢ Strt % }S\'[t;f;q Sa End
By ESF End

N N
—g Bt o BSird o ¢BSm aBStrt x ¢pBSrt . BSt(})’t SaBEnd _ oo Bsin
= = ZEnd — ZStrt LZEnd Nom ASEpngd CASF g

Nom
BStrt Bgom By B St <~BEnd
) +o o — o
{( ~ZEnd ZStrt Igfrol;ln oa SFEnd

The 5_? If”d and 5 o Bsir tf terms in (43) - (45) are to second order accuracy from (A-22) and
End

(A-24) in Appendix A.

~BSwt _ Bs. BY
5QSF;m -8 (’IMZ'S + ALinScal + A dsym ASFfsrfgn) u Dw[ff + Apigs
BNom BNom (46)
Strt u Strt

(ﬂLmScal/Mzs + )bAsym ASFSzgn) (0{5; Y Dwn ) + ﬂQua”tStrt + &Rndem

~BEnd

- A , Bina \, BEwd
ASF pnd g(ﬂMzs + ALinScal ¥ A Asym ASFﬁlgn) Upm T /?’Bzas

Nom Nom (47)

BEnd BEnd End
8 (ﬂLinScal/Mis + ﬂvAsym ASnggn)( nc’; XUy j + iQ”amEnd + Landend

Equations (45) — (47) define a second order accuracy analytical equivalent to the (15)
measurements as functions of sensor calibration error, IMU mounting error, and (16) attitude
computation error caused by initialization uncertainty and rotation fixture error in rotation

sequence execution. It remains to derive an equation for attitude error ¢B Strt in (45).
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5.6 MODELING THE ¢B Sirt. ATTITUDE ERROR

This section derives an analytical model for the Qg;j” ! rotation vector in (43), the equivalent

~B Strt ~B Strt

to the 5CB S” ! error in Cgr, computed attitude. The §C 7", error is the result of generating

~

Cgs” " in (16) during the rotation sequence as an integration process with imperfect gyro input

data ((Agf B ), uncertainty in the B g, frame earth rate components (a) oy Bsir "), and rotation fixture

inaccuracy in executing SRT rotations.

We first develop an equivalent for §¢ BSW ! as a function of the integrals of ¢ C Bsirt and

égsw  over the (16) and (21) rotation sequence. Defining 56?2”; as 56%3” *for arbitrary B at
1

the end of a rotation sequence:

5CBStrt aBStrt CgSm 5C§§”;—§CBSM @ t=tFug (48)

From (16) and (21), 5Cgsm in (48) is

5 CB Strt — E,B Strt _ Cg Strt — It ~BSut dt — J’t Cg Strt gy

tStr tCB tStrt (49)
_t  (ABsut _ ~Bsw ~ B sir
_ItStrt(CB " ~Cs ”)d ij 15C vt
for which
56’% Strt = (A:'B}; Strt _ Cg Strt (50)

Substituting ég&” from (16) and é‘%sm from (21) in (50) then obtains

AB ~ ~B ~B ~ B
5C Strt — C§Strt( )_( Strtx) C§Sm CgSM(QI;BX)"' (Qf%rtx)cgﬁrt (51)

@B @r.E
Now define
~B B ~B ~BSwt _ , BSirt BStrt ~BSirt _ ~BStrt ~ BSirt
Ql.’B_ QI.'B+5Q];B w]E Q] 5 +§ CB 4 _CB " +§C " (52)

Substituting (52) in (51) gives
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~Bsut — ABsut[ 2B BSurt o | ~BStrt BSurt( B B Strt BSut
6Cp" = C3 ’«aﬁB )( o X "=\ @ pX) | @ X C g

B BSzt B ~B
[( ]Strt +5 7 )X:|(CBStrt +5CBSM)

Csn
_ | ~BStrt ~ BSirt B ~B
_(CB T Cp )|:(Q1.'B +5Q[.’B X
+ ( ]B%rtx)chtrt

_ CgStrt(QﬁB X)
(33)
CBStrt (5£)f:3 X)_§ f%rtx C Strt+56§Sm (Q?B ><)— ( ?’Strtx)56§Sm
+§6g$trt (52?.‘3)() 5 BStrtX56§Strt
~ CgStrt (5Q?:BX) Sw BStrtX CBSm +5’\BStrt( ?BX) (wBSmX) §CBStrt
As in (40), we incorporate

562 Strt — ( QB Strt X) Cg Strt (54)

Substituting (54) in (53) finds

§CBStrt ~ CBStrt ( Sa o, X) BStrtX CBStrt
+(£)Bsmx) Cgs”z( ) ( WP tx) (¢Bsm x) (Bsir (55)
But from (54) with (21):
5B :(éBSm x) (Bsir +(QBSM ><) (B
(56)

= (éBStrt ><) CgSm + (?Bsm X) [CgStrt (Q?B X) ( ]B%rt ><) CgStrt }

Equating (56) to (55) obtains with rearrangement
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4B Sirt BStrt — ~BStt | B _ | < Bstrt Bsut
(? X)CB =Cp™ |00 pX)~ 0@ *|Cp

_(QBSm X)|:C§Strt (QIIBB X) _ (Q?%rt X) C§Sm}

+ (?BStrt x) C§Sm (QIIBB X) _ (Qﬁ%rt ><) (?BSM x) CZB;Sm
(57)

_ ~Bsut [ 0B B BsSut _ | o0 BStrt Byt
=Cp (5Q1.~B X) CBsu CB (5Q1.-E X]1Cp
_’_(QBStrt ><) (Q?ESM ><) C§Sm _ (Qﬁ%l‘rt ><) (?BStrt ><) CgStrt

~B ~B B
— [(C§SIVI5QI,'B) x} CgSm _ (52)[:%” ><) CgSm + [(z) Strt o Qﬁ_%rt)x} CgSm

Thus,

‘B B ~B ~B B B
QB e _ CBStrtJQ],-B_§Q],-%rt +£) StrtXQl:%rt (58)

The Cgs”’ term in (58) derives from (30) with arbitrary B substituted for Bz,

Bt _ ~BS" BSo _ BS | ABY
rt — 7 e _ 7 7
CB - CBNom T QStrt X CBNom (59)

With (59) and (B-23) to second order accuracy for 5&13. B the Cgs” ’5&13. p term in (58)
becomes with rearrangement

Nom

Bsit B _ By B B
Cg™"6w;.5=C B]\Z;in KLinScal ¥ KMis + K Asym Q2 EBSign | L. pNom T LILE

Nom Nom Nom
B 51t Bsirt Byt B Nom
+(g "G X C L No (KLinscaz+KMis+KAsym QEBSign)QE.BNom

=Strt Nom
y (60)
Nom om
BS ‘ B B BNom BNom

+CB]\Zm (K'LinScal""K'Mis""K'Asym QEBSign) 24 1 XQE'BNO'"
Bgom
trt

+ CBNom (KBias + 5QQuant + 5QRand)

The 5&?%” term in (58) is based on é‘éi%” = i)?_%” — @BSrt. Using (29), @PS is given

by
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Nom Nom Nom Nom Nom Nom
Bsut — ~Bswt Bsor _| 7_| ,BSut Bsut — Bsuyr _ Bt Bt
o =C glom o =\ 1= oy X ||\ @p " = eyt —ogy” Xopy" (61)
trt

~BStrt _ fg\;%n

~Bsirt L . B
;. €Xpression in (16) approximates Wy =@

The estimated earth rate ¢, " . Then with

(61) for wPSe

Nom Nom
~BStrt _ ~BSwt _ _ Bsut _ ,Bsurt B st
0w,y S0 ~QIE =gy X@E (62)

With (60) and (62), (58) becomes

Nom

Bswt _ Bg B B
Q "= CB]\gin K LinScal * KMis * K Asym QEB’Sign QE.BNom wr.

BNom

N N N
= =Strt pNom LinScal Mis Asym 32EBSign =g .gNom
(63)

Nom

Nom
B St B B BNom BNom
+ CB A (K'LinScal T KMis + K Asym QEBSign) o - X

Nom E: BNom

Nom Nom Nom
B syt B sirt B Surt B St
xo; g +9¢ X0

Bisire
* CBNom (KBias + 5QQuant + 5QRand) &gyt

Integrating (63) over the rotation sequence yields Qggg’ ’ to second order accuracy for Egs.

(43) - (45);
@B sirt — K ¢;B Strt gy
- tStrt —
. Nom
Bswt _ Byt B g Nom pNom
Q "= CBN;m KLinScal ¥ KMis t K Asym QEBSign QE‘BNom t ;.
Nom Nom Nom
Bsue Bsyy Bsu B pNom
+ [Q 5y X CBNom (KLinSCGl t KMis T K Asym QEBSign) QE.BNom
(64)
Nom Nom
B sy B B gNom g Nom
+ CB Nom (KLinScal + K Mis t K Asym EBSign) @ - X . gNom
Nom Nom Nom
Bsye B sty B st BSut B Strt
+ CBNom (EBias + 5QQuant + 5QRand) ~ gy XQrp Tt Q @1

BStrt _ 4B —
QE;fctirt_Q St @) t=1tEnd
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6.0 MEASUREMENT ERROR MODEL FOR THE IMPROVED SRT

The error model used for SRT determination of IMU calibration coefficient error is a
linearized simplified version of (43) - (45) and (64).

The linearized form of (43) becomes for [ 3Srt —
StrtDwn
Nom
~B St Byt ~BStrt
=y . 65
aStrtpwn  —Dwn “O%pg,., (65)

Dy & TROTE useful form of linearized (44) is based on the invariant property of vector
'wn

~BStrt

dot products making them identical when evaluated in any coordinate frame. Thus , Endp in
wn

(44) approximates as:

Nom Nom Nom
~ B Strt ~ uBStrt CBStrt 5"BEnd = uBEnd 5"BEnd (66)
AEnd pyy  =Dwn * Bgozln ASFppa |~ =Dwn " 9%gpp .
n

The Aé ZS’” measurement model for the improved SRT is a horizontal linearized approximation

Nom
to (45) in which second order terms are deleted. Recognizing that because ggfgf is vertical,

Nom
B . . . . .
u Df‘fg X zﬁg}fg’ is horizontal, hence, the linearized horizontal component of (45) becomes:
Nom Nom
~BStrt B syt BStrt BStrt o~BEnd _ <~BStrt
AQH g Upwn X QEnd + CB%/Oy 5QSFEnd 5QSFS[rt (67)
n

Section 6.1 (to follow) leading to (90) shows that by neglecting second order terms, earth rate

effects, gyro bias, and gyro noise, Qg}fg ’ in (67) can be approximated as

. . BNom
Nom |:KLinScal + Kdsym Slgn(ﬁi” u; £, Sirt 0i

BsStrt _ B§ire 68
Cond ~2Ciim) [ e g [
S 4] I sing; +(1—cos@;)| u; 501 x Kadis Ui DS

By neglecting second order terms and accelerometer noise, the §o52m4 | 54550 terms in (65)

4SF pna” ©LSF sut
- (67) are from (46) and (47):
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Nom
~BStrt Bs, S
52517;” =-& (ﬂLinScal/Mis + A dsym ASFE%n) U+ ABias ()
QSFEnd 8\ ALinScal/ Mis Asym ASESign | Y. Dwn ABias

In summary, the error model equivalents to the (15) measurements are the approximate (65) -
(69) expressions. Consistent with the approximation in these equations and linearization, the

BNom frames can be approximated as B frames with which the equations simplify to the final
form for SRT application:

. ; Bi,Strt
|:K'LinScal T K Asym Slgn(ﬂi):| u; 0i

BStrt _ Bsurt
QEnd ZCBi,Strt . Bi Strt Bi, Stre (70)
i +| Ising;+(1—cos@;)| u; """ x KMis U
~BStrt Bsire Bs
5QSF;M =— 8 (ﬂvLinScal/Mis + ﬂvAsym ASFSrign EDMZZ + iBias
(71)
~“BEnd . BEnd BEnd
~BStrt _ BStrt < B Strt BStrt §7BEnd ~BStrt
A =~gu X @ +(C o -0
4H &UDwn ™ End BEnd “2SF gpa " LSF Sirt H (72)
~Bsut L, BS 5213 Strt ~ Bt ~ yBEnd 5213 End
AStrt pwn  —Dwn ~ TESF ¢y QEnd pown  —Dwn " T ESF pua

The Cgf’; irt and ng’: 2 matrices in (70) and (72) would be calculated for each rotation

sequence using the recursive form

Bsut  _
CBI,Strt
Do i=1Ton
Bsirt — ~Bsut Bi, Sirt 73
CBi+1,Sm Bi, Strt ~ Bi+l, Strt (73)
End Do

CB Strt _ ~BSut
BFEnd Bn+1, Strt

where

n = Total number of rotations in the rotation sequence.
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The Cﬁjﬁ”;trt matrix in (73) can be determined from Part 1 [3, Table 1] for each rotation in

the sequence using (84) (in Section 6.1 to follow), with the general pVo™ orientation specialized

to the starting orientation for the next rotation, and the general the 3, rotation angle during

rotation i in (84), replaced by the total traversal angle @; for that rotation:

2
Bi St _ . Bi, Strt Bi, Strt
CBi+1,Sm =1 +sing; (ﬂi x)+(1—cos ;) (%i xj (74)

BEnd

The upy, ¢ vector in (71) would be calculated as

T
BEnd _ | ~BStrt B St
ZDwrll/z - (CBEnd) 2DWI}; (75)

6.1 DERIVATION OF THE Qg}fg  ERROR MODEL FOR THE SRT

This section derives the (70) simplified formula for Qg}fg * used in the SRT. The derivation
is based on second order Qggg ! equation (64) in which the following rationale is applied to

eliminate terms in QBS” ' as negligible for SRT rotation sequence execution on a two-axis
rotation fixture with a nominal IMU mounting.

Nom

. - B .
The integrated effect of o in @B

of Eq. (64) over an SRT rotation sequence is

N :
bounded, and on the order of o/ " Because the B and BNo™ frames approximately overlap

during the rotation sequence, o ™ will be small, hence, the second and third lines in QBS” r,

Nom Nom

and Q?I‘IS:;” X Qﬁ,‘%ﬁ in the fourth line of QBS’” , will be negligible compared to the first line.

Because each SRT rotation sequence is of short duration (e.g., 10 seconds for rotations plus
10 seconds each for the initial and final acceleration measurements), the integrated effect of

Q';..]gom in the first line of éBStr’ will be generally negligible compared to the integrated effect

BNom

of w . Because the integral of the first line in QBS’” dominates short term change in

= g .pNom

. Nom . . .
QB Strt- " and because the integral of Q§ ,, due to rotation is on the order of , QB Strt- during

BNO

a rotation sequence will be on the order of ( KLinScal T KMis + K Asym QgBSi o n) 7 . Thus, since
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Nom . q1- . . Nom .
o8 and gy, are of the same order of magnitude (e.g., I milli-radian), and since Q][B g 18

Ne ) . . )
small compared to @? 0]7:; , the @Bt % a)f .Sé’ ’ term in the fourth line of ¢BS‘” will be
= g:pNom = =1 =

. . Nom . .
negligible compared to ( KLinScal T KMis + K Asym Q]gBSi gn) Qg gNom 1D the first line.

Assuming that the gyro bias is calibrated to a reasonable accuracy prior to the rotation test,

B
Q Strt

the xp,,, termin can be ignored. Finally, because of the short time interval for a rotation

sequence, the integrated effect of the noise terms in QBSW " will be negligibly small.

Based on the previous rationale, all but the leading
Nom .
B gt B pNom - B St 1
CB o (K'L,'nsca[ + K Mis + K Asym Q EBSign) QE:B Nom t€rm in @7°7% can be neglected, yielding a

simplified (64) result for p75n

Bsuye _ (t pBsut dt
Q It Strt Q

+B Strt Bgor B phom
Q = CBNom (KLinScal T Kpmis T K Asym QEBSign) QE .gNom (76)

BSurt _ 4BS _
Opng =975 @ t=1pug

Equations (76) represent the error in the (16) integration formula for ag&w . It remains to find

an analytical solution for the (76) integral under typical SRT rotation sequence characteristics.

First, we note that QB St in (76) is a linear differential equation whose integral satisfies the

B St
End

angular errors generated during each rotation in a particular rotation sequence:

principle of linear superposition. Thus, ¢ in (76) can be defined as the sum of individual

?g}fgt — ZA??SM (77)
1
where

AQ? Strt. = Integral of QB St for rotation i in the rotation sequence.

Equation (77) applies for any segment of the rotation sequence, hence from (76):
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AGEST = B (e e @B V0B ) (78)
9 = C ,Nom KLinScal * KMis © K Asym 82 EBSign = f.gpNom ;

where

N .th L .
(a)B 0]’\7 j Angular rate vector a)B for the i rotation in the rotation sequence.
—E:gNom BN

We now restrict each rotation in a rotation sequence to be around one of the IMU nominal B

. .. N . .
frame axes. Under this restriction, (a)B 0;? j in (78) will be
—E:BYOM);
Nom Nom
B — B

(EBMmj—ﬂz (79)

where
BNom . Nom . . Lo .
uj = Unit vector along | @ N which is now specialized to lie along a
- “E:BYOM);

. o . N
particular BNo™ frame axis (i.e., along BN°™ frame axis x, y, or z) for the i
rotation in the sequence.

,B ; = Signed magnitude of [QB Nom

Ne
N j defined as the projection of (a)B o ) on
E:BYO™M); -

E:gNom ).
BNom
—l

Substituting (79) in (78) gives

BNom

BY
A¢BSl‘rt _C ‘]S\‘Z% Ki ﬂ I/l (80)

where

Ki = KLinScal T KMist K Asym Sign(ﬁj) (81)

Nom
The C S” ! term in (80) during the i’ rotation can be written as

Nom Nom Nom
B — Byt Bj Sire D)
BNom Nom CBNom ( )
B i,Strt

C
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where

th ..
B,N%'Z; .= gNom frame at the start of the i rotation in the sequence.

Nom
CBl Strt _

Nom = Direction cosine matrix that transforms vectors from their gNom frame value
B

during rotation i to their gNom frame value at the start of rotation i.

Nom

Nom B;
For the constant L_{lB " rotation axis during rotation i, C by S”" " can be written from generalized
Eq. (27) as
Nom Nom
B B
él‘ - ,B ]
Blz:]g;gt_]_i_Sinﬂi T +(l—cos,b’l.) ﬂBNomX ? 03
C BNom - ,B =i 2 =i ( )
i i
v 2
Nom om
—1+s1n,b’£ B ] (l—cosﬂ)[ B x]

where

B; = The integral of 5, from the start of rotation i to a general time in the rotation.

Nom
B; l Strt

Nom
B
B;
B

= Rotation vector equivalent of C

) pgNom . . BNg;"t . .
Since u; is constant, it equals ;%57 hence, (83) is equivalently

BNom N BNom
CBzNStrt I+sm,B u; Bj Strtx +(1 COSﬂ ) u; I, Strix (84)

Substituting (82) with (84) in (80) obtains with rearrangement:
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Nom .
B N Nom
¢BSU’I _ C Sl‘(};l"n I+S1nﬁ (u i,Strt X]"‘(l _COSIB ) u l Stl”t)( K ﬁl ziBl,Sl}’l
Bl Strt
Nom Nom
K uBz Strt 4+ uBl Strtx(’( uBl Strt} Sinﬂi (85)
Nom .
BStrt
CBNom N 2 ﬂi
i,Strt B om pNom
+ i, Strtx [K'i u; i,Strt (] — Cosﬂi)

Recognizing that Bi dt=d f;, (85) can be integrated over the range from f; =0 through the

total angular traversal of f3;. Equating the result to AQ? Strt in (77) then obtains

2 2
Nom pNom Nom pNom
I+ ﬂi 1, Sti’lx K zi i,Strt ei _ ﬂi 1, Stl”tx K ﬂi i,Strt gin ei
B strt ngtogn
AQ7 Pt = " 86
pfs=civ, (86)
i,9trt Nom Nom
+ (ZZEZI,S[}’[ X] Ki ziBi,Strt (1 — COS 91)

where

6, = Signed magnitude of the total angular traversal around rotation axis i.

Equation (86) can be simplified when the properties of x; u B £.Sirt§ in (86) are taken into

BNom .
account. From (81), x;u; &5 is

BNO’" . . BNom BN
K ﬂi i,Strt — [KLinScal + KAsym Slgl’l(ﬂi)} i,Strt K Mis M i,Strt (87)

Nom

Because rotation i is about a single Bi 'St

frame axis (i.e., about x, y, or z), Part 1 [3, Egs. (8) or
. ; plNom . pNom .
(14)] show that [/(Lingcaz + K Asym Sign (ﬂi):|ﬂi LSt in (87) is along ui-Sirt , hence, its cross-

Nom

N
product with u; BiSirt will be zero. Additionally, because rotation i is around a single B; ' Stre

Nom
frame axis, Part 1 [3, Eqgs. (8) or (14)] show that xj ;¢ gf .5t in (87) will have no component
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gNom pNom pNom BN0m pNom .
alOIlg zl l,Sﬂ'l 5 l.e., zl Z,Stl’t . KMZS Zl l,SU"t = 0 . Thus, lLll I, Sﬂ"lx Kl Zl l,St}"l 1n (86) Wlth (87)

simplifies to

Nom Nom Nom Nom Nom
ZBi’ Strtx K Z?i’&rt:%’ i, Strt x ZlBi,StrtX K Mis 2lEz‘,Strz

(88)

Nom Nom Nom Nom Nom
B; B; B: B; B;
— Zi i, Strt |:ﬂi i, Strt . (K‘Mis %i l,StrtJ] — KMis %i i,Strt — — K Mis zi i,Strt
With (87) and (88), (86) becomes:

. Nom
: B; .
¥ [KLinScal T K Asym Sign (,Bl)} 0t (K‘Mis u; ”S””j sin @;
B
AQ? Strt = " Strt

Nom
B! Nom Nom
i,Strt +(u3i,strtXJ (K'Mis M.Bi,StrtJ (I—COS 61)
<3 =1

|:K'LinScal+ K Asym Slgn(ﬁi)} u; i,Strt 0;

B! . Nom Nom
i,Strt _{[ sin g; + (1 — oS 91.) [ﬂfl,Strt XH (KMis 2;Bz,Strt]

(89)

Substituting (89) into (77) then obtains the desired Qg}fg’f expression for (67):

. : pNom
Nom |:KLinScal + K Asym Slgn(ﬁi” u; £, Sirt 0i

BSurt _ Byt
@ nd _%:CBNZm Nom J:l ( NomJ (90)

kSt +{I sinei+(l—cos9,~)£t_¢fgi’5’”x Kohis Uy S

7.0 SRT MEASUREMENT MODEL APPROXIMATION ERRORS

Equations (70) - (72) for SRT sensor error determination are linearized approximations to the
(43) - (45) and (64) second error models based on neglecting second order terms (products of
sensor errors), rotation fixture imperfections in executing rotations, IMU mounting anomalies on
the test fixture (relative to vertical and north), gyro bias variations from initial calibration, and
sensor noise effects. This section analytically defines the inaccuracy induced by these
approximations in determining sensor calibration coefficient errors with the improved SRT. Of

33



particular interest is the impact of initial IMU uncertainty relative to north, the effect of gyro bias
uncertainty, and errors induced by rotation fixture imperfections. These are the primary factors
impacting SRT rotation fixture cost, accuracy, and test setup time/cost. The analysis in this

section will be restricted to errors incurred using the AaB Strtacceleration difference

measurement. The horizontal component of Aé Bsurt ig the primary measurement used by the

SRT in determining the principle sensor calibration error parameters impacting IMU accuracy.

The analysis begins with a revised notation version of the (72) SRT linearized error model
for A ~ BStrt .
Q .

N
B Strt — Strt B Sirt B Strt ~BEnd ~ B Strt
Aa =gup X¢ +-C']V oa -da 91)
- ~0End Eolin SFOEnd _SFOStrt

where

0 = Subscript indicating the linearized approximation parameters used in the (70) - (72)
error models.

The linearized accelerometer error terms in (91) are defined from (71) as:

~ B Strt Bstrt Bgftogn
54_151: To=-g (lLinScal + AMis T A Asym ASFSzﬁign) Uppm T iBias
08zt 92)
~BEnd = Bind ), BEnd
é‘QSFgE 4 =& (lLinScal + Amis t ﬂAsym ASFg*Zlgn) qufzz + iBias
n

The ¢§ 5’2 term in (91) is defined similarly, but from the equivalent linearized form of (64), the
- n
basis for (70):

BSot _ B St dt
QO jtStrt ¢
.BStt— BA]Syt(})’;n B BNom
QO "= CBNom (K'LinScal + KMis T K Asym QEBSign) QE'BNom (93)

BStrt — 4B Strt _
¢OE d Q @ = tEnd

The full value (to second order accuracy) equivalent of (91) is from (45):

Nom Nom
~BStrt _ B B 1 . By B ~BEnd ~ B Strt
AC_Z Tt — g |:u Strt u Strt 5 QE;fgt aSt.’S:;rt X ¢ Strt 4 C Strl Sa nd _ 7

Dwn ZDwn ZEnd Nom asp End asp Strt
(%94)
N N
¢B Strt 4 aB St%n aB St%n x B Sm Sa ~BEnd
=< End =Strt Bgo;n ASE End
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Particular full value parameters in (94) can be equated to their approximation equivalents in (92)
—(93) plus approximation error:

~BSyt _ "~BSut ~ B Strt ~BEnd _ o~BEnd ~ B St
da =da +€[5a j oa =da +€[5a J
=SF Sirt _SFOStrt _SFOSZrt =SE End _SFOEnd _SFOEnd (95)

BSut _ 4BStrt ( B Strt)
= +e
QEnd QOEnd QOEnd

and the converse

~ BStrt _ o~ Bsut ~ B St ~BEnd _ o~BEnd ~BEnd
€| da =da —da 6[561 ]—&1 —da
( _SFOSZrZ) =SF Strt _SFOStrt _SFOEnd =SF End _SFOEnd (96)

Bstrt\ — pBStrt _ 5B Strt
e(QOEnd) QEnd ¢

=0End
with
e(?f&”) = z;BSm —QOBSIVI e(ggsm) = jt’Strte(Q(f?Strt)dt
O7)
Bswt| — B St =
e(QOEnd) e(go ”) @ 1=tpu
where

~ B Sirt ~BEnd BStrt) ( ) BSM) = ADDroxi ; :
) o oximation error in the 0
e(éaSFOStrtj’ e(éaSFOEnd]’ e( OEnd s e 0 pp

subscripted (92) - (93) parameters.

Substituting (95) into (94) and neglecting e( ) products with e( ) and a , & terms obtains
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N N
AcAlB Strt _ g Bspt' + uB Sirt. % ¢B Strt _ B Sirt. X ¢B Strt 4 B St(;t Sa ~BEnd _ 5&3 Strt
= - Eena ~ Esir Oena ™ BN,?'” 9SFEna OLSF st

End SFEnd

Nom Nom Nom
Bsut B Bsirt ( B St ) Byt B Surt ( B Sirt )
= + X +e
g <2Dwn U pwn ¢ End ¢0 End aStrt ¢ End ¢0 End
Nom
BSyt | o~BEnd ~BEnd ~BSirt ~BStrt
+C | Sa +e| da —| Sa +e| da (98)
N “ .l
BEnd | SF0Ena LSF 0 g SE 0S4yt SF0 St

Nom Nom Nom
BSirt 4 ( BStrt ) By By By ~BEnd ~ BStrt
+e +o - X|C +e
|:(¢ QOEnd ~End ZStrt pNom §QSF0End da SFOEnd

Nom
B Strt B St B B it ~BEnd
+ K¢ + Lend ~Lsire x1C Nom oa

End End

Nom
B St 4B Strt 4 Bsyt <~BEnd ~BSut
=8Uup X ¢ +C N oa —da
W =0End B EOZin asF O0End =S 0514

Nom Nom
Bsye BStrt Bswrt _ ,BSurt BStre
t8Upyy X|€ ¢ 0End 2 ¢0E ~ Xt ?OEnd

No Nom Nom

Bsu ~BEnd ~BSurt B Surt Byt Bsu B St <~BEnd
+C (é'a j—€(5a ] [¢ +o -a C da

N u o ZEnd =z Strt N u

BEpd SF0 ppg SFosy4) \ ~OEnd " " BYom OLSF g

Substituting (91) in (98) with rearrangement then yields AéB Sirt a5 a function of the neglected

e( ) parameters:
Aa ~BStrt _ = Ag BStrt n e(A BSm) (99)
with
Nom Nom
Bsirt Bt BSirt Bsut _ ,Bsut BSirt
(A 49 ) & LDwn X{e(¢0 End ) (2¢0E QStrt j zjOEnaV:I

No Nom

Bsu ~BEnd ~BStrt B Surt BY, it Bsu B St <~ BEnd
+C (&z j—e(é'a ] [¢ +top ] —o C da

N a a d 2 Strt N «

Bipd SEO Epa SFosye) \~0Ena = —EP d Bipd ESF 0 g

(100)

where

e ( A:B Sir ’) = Approximation error in Ag g Sirtequation (91).
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Analytical expressions for e( B Sf”), el 5225 |, and e| 5225 | in (100) are
Y P QOEnd 5QSF0End 5QSF0SM ( )

obtained similarly. The full value equivalents of 5aB End S0 o Bsirt (,/‘)B Strt in (92) - (93) are
=SFo 0End SFOStrt =0

SaBEnd | soBsi  gBSut iy (46), (47), and (63). Substituting (46), (47), (63), and (92) - (93)
=SF End =SF St~ —

into (96) - (97) obtains 6(5&3 Strt j , e[é‘&B Strt j , and after rearrangement, e(¢g Strt ) for
=SE0 g1y =SE0 g —VEnd

(99). With QB Strt Q]B St in (63) approximated as [Qg Strt e( Qg Strt )}X QIB St ~ Qg Strty Qfsbl” r

the results are

~BStrt Bsut BS rt B‘]S\éoén
- r T
¢ 5QSF0St t =& (/LLinScal/Mis + Adsym ASFSign) aStrt XUpwn | 4Quam‘Strt + &Rndmstrt
v
ey o o
11 n n
5aSF0E y (ﬂLmScal/Mls + ﬂAsym ASFSzgn) aEnd X UDywn + ;tQ”a”fEnd + iRndend
N

e(QOBS’”) j'tSm (zj BStrt)

5 BSirt Z\?;%n g Nom
e QO CBNom KLinScal ¥ KMis t K Asym QEBSlgn Q7.

B{gVom B{g\fom Bgyom B pNom
trt trt trt
e ey X C Nom (K'LinScal + KMis t K Asym Q EBSign) @

E:pNom
N N (102)
B Som B - pivom g Nom g Nom
+CBthi" (K'LinScal"' KMist K Asym QEBSign) o - XQE'BNO'"

B Bs, B Bs,
trt trt trt trt
+ C pNom (KBlas + 5QQuant + §QRand) + QO sy | XQrE

(¢BStrt)_e(¢BStrt) @ t=tpuy

0End

To summarize, AéB Strt in (99) with (100) represents the actual measurement taken during an

~ B St B Strt
a

SRT rotation sequence showing the e ( Aa variation from the approximate Ag

measurement model in (91) - (93) used for IMU sensor calibration coefficient error

determination. The e(¢B Strt ) , e 5;13 Strt ,and e| 54 o Bsmt approximation error terms in
~0End _SFOEnd _SFOStrt

(100) are defined in (101) - (102) as functions of sensor error parameters to be evaluated by the

SRT, sensor error terms that were neglected in the linearization process, initial IMU orientation
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uncertainties, and rotation errors introduced by the rotation fixture in executing SRT rotation
sequences.

8.0 EFFECT OF GYRO BIAS UNCERTAINTY ON SRT ACCURACY

A primary inaccuracy in SRT sensor error determination is caused by neglecting gyro bias in

Nom
. . . ~ . . B
the derivation of (70) for in,féf’ used in the (72) Aggs” ! equation. The effect is CB}Y\;S L KBias

in (102) for e(g} OBStrt)leading to a Qg}fg t error in (72) for AQZS’” . The impact on Aégsm
pom : . : :

epends on the C rofile during a rotation sequence, but also, on the time duration an

depends on th i profile during a rotat q but al the time durat d
B

~BStrt

method for making the SRT acceleration measurements in (7) when calculating Ag ol

This section develops a general equation for analyzing the gyro bias SRT induced error effect
assuming no g-sensitivity in the gyro bias error model. The discussion is grouped into four parts:
1) How gyro bias affects IMU inertial acceleration under stationary conditions, 2) How gyro bias
translates through averaging filters used in making the SRT acceleration measurements, 3) How

the SRT calculation of Aégsm 1s modified by the gyro bias effect on measurement filter outputs,

and 4) The effect of gyro bias on Aé IE_;[S”  when using a simple linear average or average-of-

averages type filter.

8.1 IMPACT OF GYRO BIAS ON STATIONARY ACCELERATION

The analysis begins with stationary acceleration equation (5) and its truth model equivalent
from (3):

~BStrt _ ~Bsut ~B ~Bg§ NED

a " =CB " QSF+g CNEtg U Dywn (103)
B B B NED

aBsit = CgS"" agp + & CNEP Upyn = (104)

Gyro bias errors only effect ag&r  in (103). For gyro bias effect analysis we neglect errors in

~B ~ B St s

agp and Oy » defining:

~BStt _ ~BStrt ~ B St ~BSwt _ ~BSut ~BStt _ ~BStrt ~B _ B
where
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~ B Sirt Bsut

AGyroBias Component of g caused by gyro bias.
;Bsir = Error in ¢35 caused by gyro bias
§CB GyroBias Ca y gy .

Substituting (105) into (103) obtains with (104):

~BStrt — | ~BStrt ~ BStrt aB Bswt ,, NED
4 GyroBias ~ Cp™+ §CBGyroBzav 4sp & CNED UDwn (106)
_ ~Bsut B Bsut , NED ~ BStrt ~ B Strt B
=Cp™ asr+ 8 CNED Upwn + 5CBGyroBias _SF 5CBGyroBias asr
The 5CB Strt error in (106) is by similarity to (39):
BGyroBias
~BStrt ~ ( B strt ) Bstrt 107
5CB GyroBias QG)”” oBias C ( )
where
N - Bt ~BStrt
[ GyroBias = Component of ¢ , the rotation vector equivalent error in §¢ ByroBias
caused by gyro bias.

Equation (104) states that CB St o8 agrtg C]%%’g %fv]g g Sirt 4 gy f)fvtg 0, hence,

afirt =—g up S (108)

Substituting (107) and (108) into (106) then obtains the final form:

~ B Strt — (@B Strt B Strt g8 = Bstrt Bstrt — _ Bstrt Bstrt
AGyroBias — (QGyroBias Cp ~ ZGyroBias Xagp g ¢GyroBzas Y Dwn (109)

The ng;’g Bigs fETM in (109) is the integral of that portion of Q.BS” " in (58) caused by gyro

bias, or with (B-23) from Appendix B for 5&;? I

Bstrt B Strt _ o Bsut BStre BStt . ~BStrt
¢GyroBzas - 5 @;. BGyroBias 5@[_-]5 + ? XOr g = Cg™" Kpigs (110)
where
(Z‘)B St = Portion of (ﬁ.BS’” caused by gyro bias
L GyroBias Z yey ’
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C gs” " = Direction cosine matrix that transforms vectors from the instantaneous IMU B

frame axes into B g, coordinates.

During the first measurement, attitude is stationary atC gs” " = [, thus during the
measurement, ng%t pigs 10 (109) is with (110):
?g}%f?ias - Ittzweaslsmcgsm K Bias 4! = I:MeaslStrt K pias 4 = (1 = tMeastsirt) Kgias (1)
where

t MeasiSte = T1me ¢t at the start of the first stationary SRT measurement.

During the second measurement the attitude is stationary at C];S”t = Cg ;g” o ? thus ¢g§;’g Bias
eas 7 _—

in (109) during the measurement is with (110):

Bswt  _ pBSurt t B st
QGyroBias - ?GyroBiasMeaSZStrt + ijeasZStrt B KBias dt
— ¢Bstr B st t
= . + Kp. . dt 112
=GyroBias ypoq52 51t CBMeas2Strt J.l‘MeasZSm‘ =Bias ( )

— #BSurt B St
= . + t— :
QGyroBzas MeasoSit B Meas2Surt (¢ =t Meas2s1rt) K Bias
in which
Bstre — @B St B strt
4 , = : +A . (113)
_GymBlaSMeaSZStrt _GymBmsMealend =GyroBias Rot
and where

t Meas2St¢ = T1me t at the start of the second (last) stationary measurement.

BMeas2sy: = B frame at the start of measurement 2.

B s — @Bsut
[ GyroBias s gy 2 GyroBias at the end of measurement 1.
BSirt = ; Bt . .
A¢ GyroBias p,, Portion of ¢ GyroBias generated during the sequence rotations.
From (111), the AgB3St term in (113) is

~GyroBias y;,,1
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Bstrt _
AQGyroBiasMeasl = T Meas KBias (114)

where
T Meas = T1me interval for each measurement.

Based on (77) and (110), A¢§§Z§Bias in (113) is given by
- Rot

tiEnd Cg Strt K Bins dt  (115)

A@BSrt — Y A@BSut A@BSurt — [liEnd § BSirt_ gy —
QGyr oBias p,, Z Qi GyroBias Qi GyroBias '[f iStrt QG)”’ oBias '[t iStrt
where
A@BSrt = Portion of ¢gs” ¢ .. generated during rotation i in the rotation sequence.
—LGyroBias ~GyroBias

tiswt» tiend = T1me at the start and end of rotation i.

8.2 STATIONARY ACCELERATION MEASUREMENTS

Acceleration measurements are made with the SRT by applying an averaging filter to the

o Bsit 2B portion of é Bsirt in (103) during the stationary time periods before and after

Cp dgp
executing sequence rotations. The é BSirt measurement is then obtained by adding the (103)

gravity term to the filter output:
~Bsit ,, NED

~BStrt _ (' Meas End ( ) ~Bsit ~B
QMeas_ tMeaSStrt g t’tMeaSEnd CB QSF dt+g CNED szn (116)

. . . . M.
With Normalization Constraint: €as End (t, ) dr=1
! Meas Strt J ! Meas na

where
= Time at the start and end of the é BSut measurement time.

! Meas Strt ? ! Meas End

4358t = Measurement of ;25" obtained with the averaging filter.
=Meas a

g(t, ! Meas g, d) = Averaging filter weighting function, the filter response at ¢, g 02

unit impulse input applied at time ¢ during the measurement period. Typical
averaging filters are a simple linear average and an average of successive

overlapping averages (“average-of-averages”).
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Applying (105) and (107) to (116) for gyro effects analysis, the methodology leading from (103)
to (109) then finds

Normalization Constraint: |,  Meas End g( , )dt =1
! Meas Syt n

~BStrt _ ! Meas Ena ( ) ~ BStrt ) B Strt
LGyroBias yy,us ! Meas sirg S\b>! Measgna) | CB aSF dt+gup

_ (! Meas End BStrt s BStrt ( B ) B S tr y
- ItMeaSSz‘rt g(t’ tMeasE”d) Cg §CBG)/VOBI(ZS &Upwn )T EUD dt (117)

— ! Meas End

~Bsirt ( B )
5 —gu dt
! Meas Stre J (t ! Meas End ) 5CB GyroBias & U pwn

_ fMeasEnd ( ) B Strt B St ( B )
B '[tMeasSm S\b>! Meas gna ¢GyroBzas Cp g Upyyy |t

yBStrt s (tMeas End ( ) B Strt
= X
=8 Upwn ) Meas Sprt U1 Meas End ¢GyroBlaS

where

~BSut — ~B Strt .
A GyroBias = Portion of the 4 /7" measurement produced by gyro bias.

B Strt

Each measurement is taken at constant attitude, hence, ¢ GyroBias

of (110) as

changes from the integral

BStrt Bstrt t Bstrt
QGyroBias ¢GyroBlas MeasStr + t MeasStrt = B K Bias dt

B Surt + B Strt

= . Kp. . dt 118
~GyroBias yy,,.5 B Meas J‘l‘ MeasStrt = Bias (118)

— pBStt Bt _ .
~GyroBias yy,,c51 + CBMeas (t tMeasStrt) KBias

where

Bsirt = Bsirt
[ GyroBias yyg 5o Value of ¢ GyroBias the start of the measurement.

Bsyt _— ~BSwt duri
= uring the measurement.
CB Meas CB g

Substituting (118) into (117) then finds for the impact of gyro bias on ﬁi’; ;
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¢B Strt
~GyroBias MeasStrt

~BStrt . — _B Strt
QGyroBmsMeaS 8 Upywn X N gf;;;s {j;j;:j:;:’:’g(t,tMeasEnd) (t _ lMeasStrt) dti| KBias (119)
=8 ugfj,rf (¢g)§1tngzasMeaSS[r[ + I Meas T Meas Cgfz;s EBias)
in which
Feas = T]\;eas :]\A/;[:cj:gj g(t’tMeasEnd) (t - fMeasStrt) dt (120)
and where

T Meas = Time interval for the measurement (from ¢,,, st 10 L Meas End ).

8.2.1 Making The First Acceleration Measurement

For the first acceleration measurement CB St =] and ¢B strt =0, hence, (119)
Meas ZGyroBias ;.51
becomes
~ BStrt _ B St
QGymBiaSMeasl = 8 F Meas T Meas Y Dy X KBias (121)
where
~ BStrt — ~Bsut

) . taken prior to sequence rotation execution.
=GyroBias yy,,s1  =GyroBias p q

At the end of the measurement (and start of the rotation sequence), (118) shows that

BStrt — @Bt —
] - i = Kpi 122
QGyroBlasMealend QGyroBzasRotSm T Meas K gias (122)

&.2.2 Making The Second Acceleration Measurement

At completion of the rotation sequence (and start of the second measurement), from (113)
and (122),

B strt — @Bt B stre — Bstrt
QGyroBiasRotEnd - ~GyroBias p 154 + AQGy;’oBiasROt =T Meas Kpigs + AQGyroBiasRot (123)

where
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Bstre — pBsurt ; ;
Q GyroBias g, 5y | LGyroBias at rotation sequence completion.

For the second acceleration measurement, ¢gs” ‘. in (123) is ¢B Strt 1.e.
~GyroBias pyipad -

GyroBias Meas?2 Strt ’
¢B Strt

Goropias 8t the start of measurement 2, thus (119) becomes
yroBias

~BStrt _ B Strt B Strt B strt
. = X . + .
QGy roBias Meas?2 & % Dwn (—Gy roBias Meas?2 Strt £ Meas T Meas CB Meas?2 K Bias
— uBSU"t X T Kp: +A¢BSZI"I + F T CBStFt K p: (124)
g Upywn Meas K Bjgs EGyroBias p,, Meas 1 Meas C g, ...~ KBias
_ B Strt B Strt B Strt
=8 Upyn X [AQGyFOBiaSROt + T Meas (I + F Meas CBMeasZ )KBias:|

where

Bt = o Bsin taken at sequence rotation completion.
=GyroBias y;,,.»  —GyroBias ;.

Bsyt  — ~BSirt : : ~ B St
= attitude during the ) measurement.
CBMeasZ CBMeas g QGerBlas Meas?

8.3 CALCULATING THE SRT ACCELERATION DIFFERENCE MEASUREMENT

The SRT measurement used for sensor error determination is A&B St the difference

between acceleration measurements taken at the start and end of the rotation sequence. The
portion caused by gyro bias is the difference between (124) and (121):

A"BStrt _ ~Bsut _ " Bsirt
4 GyroBias =GyroBias ys,,42 QGyroBias Measl
BSirt BSirt (125)
A Pt + (1 + ;
gy | 2y T+ e CR e

= F Meas T Meas KBias

or with rearrangement

A ~ B Sirt B Sirt X

— Bs Bsuyt  _ ]
AGyroBias ~ & UDwn {AQGy;}gBiasRot + T Meas |:] + F Meas (CBM:asz ])}EBiaSJ (126)
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An analytical expression for the A¢g)§;’0’ Bigs . term in (126) can be derived following the
- Rot

procedure that led to (90). Because ¢ gyﬁ’;%ias in (110) is a linear differential equation, its

integral for AQB&Jf;ZBiasR t in (126) satisfies the principle of linear superposition. Thus,
(9

A¢ZG3S’” can be defined as the sum of individual angular errors generated during each
yroBias p .

rotation in a particular rotation sequence:

Bstrt — B strt
AQGyroBiasRm - Z AQGyroBiasRot_i (127)
where
A B St = Portion of A@ZS generated during rotation i
~GyroBias p,,_; ~GyroBias p, )
Equation (110) applies for any segment of the rotation sequence, hence, A¢25’” in (127)
yroBias p,._;
is
. Nom
B Stre _ (‘End; 4 BSirt YEnd;i ~BStrt UEnd;i ~Bsit
AQGyroBiasRot_i - ! Stre; —GyroBiasRot_l- dt = ! Stre; C K Bias dt = J.tStrt CBNom KBias dt
128)
N Nom Nom (
_ ({Endi Bsui Bisir K i dt = CBSm End; BisStrt K i dt
tSt ti Nom Nom —5blas Nom tS[t Nom —Dbias
T B; i,Strt B Bi,Strt i B
where

. .th .
tSut;> tEng; = Time 7 at the start and end of the i~ rotation in the sequence.

th ..
B,N g!t’;t = pNom frame at the start of the i rotation in the sequence.

Nom
CBt Strt  _

Yo = Direction cosine matrix that transforms vectors from their gNom frame value
B

during rotation i to their gNom frame value at the start of rotation i.

Restricting each rotation in a sequence to be around one of the IMU nominal B frame axes,

Nom
CB i,Strt

Sy can be written from generalized equation (27) as
B
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Nom

2
B; . pNom pNom
CBllifiz;t = I +sin 3, [ﬂi l,Strth+(1—cos,Bl.) (ﬁi i, Strtx (129)

where

Nom
ng .5t = Unit vector along the 7 axis of rotation (in B frame axes at the start of rotation 7).

[; = Angular traversal of rotation i from rotation i start to a general time during rotation .

Nom .
Substituting CB’A;E;’; ! from (129) in (127) while recognizing that dr =d f3;/ /3; for the (127)
B

BStrt

integral, then obtains for A¢ GyroBias :
- Rot—i

2
Nom — . N 1 . Nom .
A¢BSM ) — CBSM I +M uBi,ggtx 1_% uBi, Strix ﬁ Ko (130)
~GyroBias p,;_; Blgvgt,’,ft 0; =i 6; =i . . 2 Bias
] i
where

@, = Signed magnitude of total angular traversal around rotation axis i.

,B'i = Rate of change of f; during rotation i (assumed constant).

Substituting (130) into (127) then finds for Aggf;gBmRm in (126)
2
Nom 1-cosg;)( pNom sin g, Nom .
Bs _ B syt ( i B; _ 0i B;'s o
AQGinJtBiaSRot = %CBNém I+ o [ﬂi i,Strt XJ (1 Py ][zi i, Strty — KBias (131)
1,01F i

8.4 EVALUATING F js.,s FOR TWO AVERAGING FILTERS

This section derives F .,y formulas for two commonly used averaging filters; a simple
linear average and an average-of-averages.
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For a linear averaging filter, the ¢ ( b1 Meas g, d) weighting function in (116) equals 1/ T jz04s

. . . .t
which satisfies the (116) normalization constraint: | tAA:e“SE”d (t, ! Meas g, d)
eas Strt

(120), F pgeqs for a simple averaging filter becomes

dt =1. Thus from

1 [MeasE d
F Meas =  Meas " §(t,tMeaSEnd) (l - fMeasStrt) dt
Meas Strt (132)
| I 1
= Z—j.t]\]‘jeasEnd (t - tMeasStrt) dt = E
TMeaS eas Strt

For an average-of-averages filter, the g(t, ! Meas g, d) weighting function in (116) is given by
[2, Sect. 18.4.7.3]:

P (t_ tMeasEnd"'TMeas)

T
If |:0 <(t - fMeasStrt) = Meas} Then: g(t’ tM@aSEnd) -
2 TMeas

(133)
T M. .
If [% <t~ Meassirt) < TMeas} , Then: g(t’ tMeaSEnd) - _TZ—(t_ tMeaSE”d)
Meas

. . . . . . tMe‘as E}’ld _
which also satisfies the (116) normalization constraint: eas s ( U1 Meas g, d) dt=1. To

evaluate F ;.. for an average-of-averages filter, we first convert (116) to an equivalent form
that is more compatible with (133) notation:

1 ! Meas
= End
F Meas T Moas ! Meas gy Meas End ( MeaSStrt)
1 ! Meas E
= S End ( ) ( - ) d.
= it r—t +7T t
T Meas ! Meas Sir¢ Meas End Meas End Meas

(134)
_ 1 ! Meas gng — T Meas/2

= g(t,t )(t—t +Tum. )dt
T Meas tMeaSEnd_ T Meas Meas End Meas End eas

1 ! Meas
End —
T veas t Meas png — T Meas/2 g(t, tMeasEnd) (t ! Meas pna + TMeas) dt

Substituting (133) for g(t’tMeasEnd) in (134) then obtains
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4 ! Meas =T /2 2
— End Meas ( _ )
F Meas 3 ! Meas g —T Meas 4 tMeasEnd *+T Meas dt
Meas
4 ! Meas E
T ('MeasEnd (z - ) (r - + ) dt
T';’v[ ! Meas End —T Meas/2 ! Meas End ! Meas png T T Meas
eas
_ 4 ! Meas Eng —T Meas/2 (Z— ; +7 )2 r (135)
T3 ! Meas End ~ T Meas Meas End Meas
Meas
_L ! Meas gnd (t— fur )2 dt
3 t =T /2 eas End
T Meas Meas End Meas

4 ! Meas End

- I—t ) dt
2 t -T 2 ( Meas End
T Vfeus Meas End ~ T Meas/

For ¢ at the (135) integration limits, the (135) bracketed terms are:

For t =t peas ppg — T Meas / 2
1= tMeasEnd"'TMeas:tMeasEnd_TMeas/z_ tMeasEnd+TMeas:TMeas/2
For t =t poq5 ppg — T Meas

1= U Meas gua * T Meas = Meas pna ~ T Meas ™  Meas prg = T Meas =0 (136)

Fort:tMeasEnd: 1= tMeasEndZO
Fort:tMeasEnd_TMeas/2:

1=t Meas png = I Meas png — T Meas | 27 U Meas ppg = — T Meas / 2

With the (136) terms at the integration limits, the integral terms in (135) become

4 ! Meas gng —T Meas /2

3
2 4 1(r 1
(t_ tMeaSEnd-l_TMeas) dt = 3 _( Measj _t

T?Weas ! Meas End —T Meas T Meas 3 2 6
3
4 ! Meas End 2 4 1 (_TM J 1
S t— ¢ dt =—————| —2eas | =— (137
T?\/Ieas ! Meas End ~ TMeas/Z( MeaSEnd) T?Weas 3 2 6 ( :
2
L tMeaSEnd (t— t )d — 4 l ﬂe@s :_l
T %/[eas ! Meas End ~ T Meas/2 Meas End T %/[eas 2 2 2
Substituting (137) into (135) then finds for the average-of-averages filter:
I 1 1 1
- 4= 138
F Meas 6 6 2 2 ( )
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Curiously, F .. 1n (138) for the average-of-averages filter is the same as Fj;,,, 1n (132) for
the simple linear averaging filter.

APPENDIX A
STRAPDOWN ACCELEROMETER TRIAD ANALYTICAL MODELS

Analytical models are developed in this appendix describing accelerometer triad
uncompensated outputs in terms of specific force acceleration input, accelerometer triad
compensation equations, and associated error models.

A.1 ACCELEROMETER TRIAD OUTPUT MODELS

The output vector from an uncompensated strapdown accelerometer triad can be
characterized as a function of its specific force acceleration input vector by

QSFRGW - (1 + GScal)(GAlgn agpt JQBias + JQSize + 52Am'so + JQQuam + 52Rndm) (A-1)

where

Agpp. = Accelerometer triad uncompensated specific force acceleration output vector.
- aw

agr = Accelerometer triad specific force acceleration input vector.

I = Identity matrix.

Gseql = Accelerometer triad scale factor diagonal error matrix. Nominally, the Gg.4;
matrix is zero. The Gg.,; matrix may include non-linear scale factor effects and
temperature dependency.

G 4ign = Accelerometer triad alignment matrix. Nominally, the G 44, matrix is

identity. The G 44, matrix may include temperature dependency.

oap;,s = Accelerometer triad bias vector. Each element equals the systematic output

from a particular accelerometer under zero specific force acceleration input
conditions. For some accelerometers, dap, . may have temperature and inertial

angular rate sensitivities.

oag;., = Accelerometer triad size effect error vector caused by accelerometers in the

triad not being collocated, hence, not measuring components of identically the
same acceleration vector (See [2, Sect. 8.1.4.1]).
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0a 4,0 = Accelerometer triad anisoinertia error vector caused (in pendulous

accelerometers) by mismatch in the moments of inertia around the input and
pendulum axes (See [2, Sect. 8.1.4.2]).

oa Ouant ~ Accelerometer triad pulse quantization error vector caused by accelerometer

outputs per axis only provided when the cumulative input equals the
accelerometer pulse weight.

O0ap,am = Accelerometer triad random output error vector.

An alternative form of the uncompensated accelerometer triad output model derives from (A-
1) as follows:

D sp = I+ Gscal) (GAzgn agp+0apias T 0a g0t 0d yyiso t 0800t 52Rndm)
=1+ Gseat) Gutign @+ (1 + G5ar) 3@ gias 085120 + @ o 08 puiamt + 3 i)
=agrt |:(I + GScal) GAlgn - I:| asr (A-2)
+(I + Gseat) (5QBias + 0450t 08 ypiso t 080y ans T 52Rndm)
=dspt ﬂAlgn/Scal asp iBias + iLSize + iAniso + 4Quant + iRndm

in which

;ivAlgn/Scal = (I + GScal)GAlgn -1 &Bias = (1 + GScal) 5QBias &Size = (1 + GScal) 5251'26

(A-3)
&Aniso = (1 + GScal) 52Anis0 iQuant = (1 + GScal) §QQuant 4Rnafm = (I + GScal) 59Rndm

A.2 ACCELEROMETER TRIAD COMPENSATION ALGORITHMS

Compensation formulas to correct the (A-1) basic model output are structured based on the
inverse of (A-1) with random noise terms deleted:

' -1
asp = (1+ Lscal) 4SE paw
1 (A-4)
~ = '
asr — LAlgn (QSF “42Bias ~ 2Size ~ 2 Aniso — QQuant)
where
= Compensated accelerometer triad output vector.

asr
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Lscal

LAlgn

9 Bias

ASize

= Accelerometer triad scale factor correction matrix, a diagonal matrix in which

each element adjusts the output scaling to correspond to the actual scaling for the
particular sensor output. Typically modeled by analytical equations containing
premeasured coefficients. Nominally, the [ g.,; matrix is zero. The [ g.,;

matrix may include non-linear scale factor effects and temperature dependency.

= Accelerometer triad alignment correction matrix, typically modeled by a set of
equations with premeasured coefficients. Nominally, the [ 45, matrix is

identity. The [ 4, matrix may include temperature dependency.

= Accelerometer triad bias correction vector with components typically modeled

by analytical equations containing premeasured coefficients. Each element
corrects the output of a particular accelerometer to zero under zero input specific
force acceleration conditions. In some accelerometers, ap,  may have

temperature and angular rate sensitivities.

= Accelerometer triad size effect correction vector that compensates the error

created by accelerometers in the triad not being collocated, hence, not measuring
components of identically the same acceleration vector (See [2, Sect. 8.1.4.1]).

@ yniso = Accelerometer triad anisoinertia correction vector that compensates for an

error effect (in pendulous accelerometers) from mismatch in the moments of
inertia around the input and pendulum axes (See [2, Sect. 8.1.4.2]).

Qouant = Accelerometer triad pulse quantization correction vector for accelerometer

outputs only being provided when the cumulative input equals the pulse weight
per axis. Includes pulse output logic dead-band effect under turn-around
conditions (See [2, Sect. 8.1.3.2]).

Similar to (A-4), a compensation formula can also be structured to correct the (A-2)
alternative accelerometer model output as the inverse of (A-2) with the random errors excluded:

~ -1
agr = (I+ﬂAlgn/Scal) (QSFRaw - &Bias - 41Size - iAm’so - iQuant) (A-5)

where

asr

Compensated alternative accelerometer triad model output.
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A.3 APPLICATION TO A TWO-STAGE COMPENSATION STRUCTURE

In many applications, a two-stage compensation structure is incorporated whereby (A-4) is
used as the first stage compensation to correct accelerometer outputs, followed by (A-5) to

correct residual errors in the (A-4) compensation. With such an approach, the a SFR input in
aw

(A-5) would represent the (A-4) output. Using this method, it is also assumed that the (A-4)
compensation exactly corrects the size effect and anisoinertia errors (as design model
characteristics), but leaves residual errors in the (A-4) output due to inaccuracy in determining
the (A-4) compensation correction terms ( L g/on> LScal> @pjgs> & Ou oy ) @0d accelerometer

changes since determination.

Note: The L gjgn> Lscal> @piqs term coefficients are typically measured for each individual
sensor prior to installation in the IMU sensor assembly, and a Ouant M3Y (or may not) be only
approximately modeled as a design characteristic. Note also that the [ 4,5, matrix can only be

accurately determined after installation in an IMU due to mounting uncertainties.

For a two-stage compensation structure, the alternative (A-2) model and its (A-5)
compensation equation then become including coordinate frame designations:

~B _ B B

asp = asF + ﬂAlgn/Scal aspt 4Bias + iQuant + i“Rndm (A-6)
~B -1(~B

agr = (I+ﬂAlgn/Scal) (QSF - &Bias) (A-7)

where

égF = Specific force acceleration output vector from the first stage (A-4) compensation
equations in B frame coordinates, and containing compensation error residuals
( designation).

ggF = True (error free) specific force acceleration vector in B frame coordinates.

B

é SF = Second stage compensated accelerometer triad output vector (in B frame

coordinates) generated by second stage compensation (A-7) using first stage
compensation (A-4) output as the (A-7) input.

Adlgn/Scal = Accelerometer triad alignment/scale-factor compensation error residual

matrix.

Apius = Accelerometer triad bias compensation error residual vector.

4Qu a = Accelerometer triad output quantization compensation error residual vector.
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Aruam = Accelerometer triad output random noise vector.

A.4 ERROR MODELS FOR THE TWO-STAGE COMPENSATED ACCELEROMETER
TRIAD

An error model for the two-stage compensated accelerometer triad output éngF is defined as

the (A-7) output minus the true specific force acceleration ggF . For clarity, we first rewrite (A-
7) as

~B -1
aSF (1+2Algn/SCal) (aSF /1Bzas) (A-S)

A~

using the  notation to indicate that the error coefficient terms may still contain error. Then the
error in (A-8) defines as

Gon=a. N 8 A-9
Sagr=dgp~ agr = (1+/1Azgn/sca1) aSF Apias )~ 4sF (A-9)

where

~B . ~B . ~B . .
dagy = Error in agp- Error in the agp output from (B-8), i.e., the error in the

compensation estimate for QgF .

Substituting (A-6) for égF finds for the (A-9) output error:

1
B 4 B
5“SF (1+/1Algn/5caz) (asp ﬂBlas) asp

-1
_ ~ B B % B
- (I+;LAlgn/Scal) (QSF + ﬂAlgn/Scal aspt iBias + i’szmt + i’Rndm - iBias) —AagFr
A 3 5 (A-10)
- (1+2Algn/Scal) (1 + ﬂAlgn/Scal) -1 asr

1 ~
+ (1+/1Algn/Scal) (4Bias - iLBias + 4Quam‘ * éRnalm)

An alternate form of (A-10) can be derived by first writing the QgF coefficient in (A-10) in

the equivalent form:
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1

-1 _ -1
(I+2Algn/Scal) (1+/1Algn/Scal)_I:[(1+/’1,Algn/Scal) (1+2Algn/Scal):| -1

-1
-1 R
= |:(]+1Algn/Scal) (1+/1Alg”/Scal_ﬂ’Algn/Scal+lAlgn/Scal):| (A-l l)
-1 -1
- [1+(1+1Algn/Scal) (lAlgn/Scal_ﬂAlgn/Scal ):| -1
With (A-11), (A-10) becomes the alternate form:

~B =1/ -1 B
5QSF = I+(1+2«Algn/Scal) (ﬂA]gn/Sca]—ﬂvAlgn/Scal ) -1 asr
(A-12)

-1 ~
+ (1+1Algn/Scal) (iBias - iBias + i’Quant + i“Rndm)

Equation (A-12) can be simplified by introducing definitions for 57 , Ign/Scal * 52 Bigs CITOTS in

ﬂvAlgn/Scal and LiBjas .

5/1Algn/Scal = ﬂAlgn/Scal - ﬂAlgn/Scal 5&Bias = iBias - i’Bicts (A_13)

With (A-13), (A-12) simplifies to

~B -1 . -1 2
dagp = I+(1+1Algn/Scal) OA Algn/Scal -1 ragr
(A-14)

~ -1 -
+ (1+/1Algn/Scal) (_543,-6,3 + 4Quant + 4Rndm)

A.5 APPLICATION TO THE STRAPDOWN ROTATION TEST

The Strapdown Rotation Test (SRT) is designed to determine the } Algn/ Scal and Z Bins

terms in the (A-8) accelerometer calibration equations (and similarly for the strapdown gyros).
The basic method is to generate SRT input acceleration measurements from an IMU containing
the inertial sensors (gyros/accelerometers) calibrated using estimated values for the calibration
coefficients. For the accelerometers, calibration would consist of (A-4) followed by (A-8).
Based on inertial sensor error models (i.e., (A-10) or (A-14) for the accelerometers), the SRT
processes the IMU output measurements to ascertain residual sensor compensation errors (e.g.,

in ] Algn/Seal and Z Bias for the accelerometers). The results are then used to update the

compensation term coefficients. Two cases can be considered for this process; 1) When
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zAlgn/Scal and ZBias are completely unknown, and 2) When }vAlgn/Scal and ZBias are
approximately known. (Appendix B considers the same cases for the gyros. The remainder of
this appendix considers only the accelerometer calibration portion.)

Case 1 corresponds to a basic application of an SRT to initially determine values for
2 Algn/ Scal and Z Bias " The method is to apply the SRT to an IMU with acceleration

measurements for the SRT calculated using (A-8) for accelerometer compensation, but with
2 Algn/Scal and Z Bins completely unknown (i.e., to be determined by the SRT). Then the error in

the (A-8) output would be given by (A-10) with } Algn/ Scal and Z Bias SCL 1O Zero:

~B _ B
0a g = Adlgn/Scal dsp + ABigs T &Quant + A Rudim (A-15)

SRT processing of the IMU outputs then determines estimates for A 4/4,/5¢q; and Ap,;, based on

(A-15) representing the error in (A-8) accelerometer compensation used in the IMU to generate
SRT input measurements.

Having completed a basic SRT Case 1 type determination of A 4;g/5cq; and Ap; ¢

estimates, Case 2 corresponds to a second application of the SRT for Case 1 determination
accuracy enhancement. Then } Algn/ Scal and Z Bigs (ETMS used in (A-8) would be those

determined from the first SRT application (containing (A-13) defined residual 57 , Ign/Scal *

521 Bias errors), and (A-14) would represent the resulting (A-8) compensation output error. Part
1 [3, Section 5.0] shows that the magnitudes of 57 , Ign/Scal * 521 Bigs 2TC second order relative to
Adign/Scal> Apias (€8 10T A g1gn/Scal s Apjqg On the order of 1 milli-rad or 1 milli-g,

S Algn/Scal 521 Bias will be on the order of 1 micro-rad or 1 micro-g). Thus, to second order

accuracy, (A-14) approximates as
P f R P S R A
dagp = (1 +5/1A1gn/sca1) 1 asp —0Agias T L0uant T 2 Rndm (A-16)

~— <7 B 3
- _51Algn/Scal asr _éztgjas + 4Quant + i’Rndm

The SRT is structured to measure the errors in Algn/ Scal and 2 Bias of (A-8) based on the

(A-15) form for the errors. Note, however, that (A-15) and (A-16) are of exactly the same

designed to determine 7 , Ign/ Scal and 21 Bias CTTOTS based on the (A-15) model can also be used

to determine the —§57 Algn/Scal > —52 Bias residuals in (A-16). Applying the SRT to an IMU
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that has been (A-8) calibrated using Case 1 measured ; , Ign/Seal 21 Bias coefficients, will then

enable determination of the residual—§7 ,; on/Scal —5A Bias CTTOTS in Al on/Seal 04 A Bis®

limited by uncertainty in the SRT rotation fixture accuracy and A Ouant + A Rndm UnCertainties
remaining in (A-16). Adding the Case 2 SRT determined —§) Algn/Scal > —52 Bias coefficient

errors to the Case 1 calibrated ) , Ign/Scal 2 Bias COCticients will complete the recalibration

process.

A.6 APPLICATION TO SRT PROCESS DESIGN

The SRT processing equations are based on a deterministic version of Case 1 error model (A-
15) in the Section A.5 two-stage compensation process, with the 4 4/4,,/50q/ term expanded as

_ B
ﬂAlgn/Scal = AMis T ALinScal t ANonLinScal T ﬂAsym ASFSign (A-17)

_ B
=~ AMis t ALinScal + ﬂvAsym ASFSign

where

Aumis = Accelerometer triad misalignment compensation error residual matrix having
zero diagonal elements.

ALinscal = Accelerometer triad linear scale factor compensation error residual diagonal
matrix.

ANonLinScal = Accelerometer triad non-linear scale factor compensation error residual
diagonal matrix.

Adsym = Accelerometer triad asymmetric scale factor compensation error residual

diagonal matrix.

AgFSi on Diagonal matrix having elements of unity magnitude and sign (plus or

minus) of the a g element signs (plus or minus).

Note in (A-17) that A n,.zinscar has been neglected based on the assumption that non-linear

scale factor error has been adequately modeled in the (A-4) first-stage compensation equations,
leaving negligible residual error. Substituting (A-17) into (A-15) and deleting the i’Qu ant *

Apnam @ indeterminate then obtains the compensated accelerometer model for SRT processing
equation design:
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~B B
dagp = (ﬂMis + ALinScal + A dsym AgFSign) agr+ Apias (A-18)

A.7 APPLICATION TO SRT PROCESS ERROR ANALYSIS

For SRT process error analysis, (A-15) with (A-17) (neglecting A yonrinscar ) 1S used as the

accelerometer error model during stationary measurement periods at the start and end of each
SRT rotation sequence:

~BStrt _ , ) Bsire Bstre -
5£SFSM - (ﬂMzs + ALinScal t ﬂAsym ASFSign) QSFStrt + &Bias + ilQuantSm + iandem (A-19)

~“BEnd _ . . BEnd BEnd
5QSFEnd = (/1Mls + ALinScal + ﬂAsym ASFSign) QSFEnd + iBias + iQW’”End + iRndend (A20)

— . . BEnd BEnd ,BStrt
B ()’M’S + ALinScal T Adsym ASFSign) CBsnt LSFppa * A pias* iQuam End * &Rndend

where

Strt, End = Subscripts indicating parameter values at the start and end of an SRT
rotation sequence.

5& g I:St; ; = 5& gF during the stationary measurement period before initiating an SRT
,

rotation sequence, in By, coordinates (superscript).

~ ~B . . ) .
5a§ ]f”d o da gy during the stationary measurement period after an SRT rotation
Asrp, a

sequence completion, in Bg,; coordinates (superscript).

Bt Bt i -19) — (A- i
Eq. (33) shows that the a SFens® ESE g terms in (A-19) — (A-20) satisfy

Bsirt  _  BStrt _— B g%n B é\%n B {S‘vt%n
CSF e~ CSFom~ 8 {ngn “ st XUpwn j (A-21)
where
Nom
ot = Bgy, frame angular error relative to its nominal orientation ( Bé\;%" ).
B L]S\';(;;n = i ; ; : Nom
u o’ = Unit vector downward in nominal B, coordinates ( B,

Then with (A-21), (A-19) becomes for 5;;5? :
- trt
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- e \( 2 _ gk o
v — . . Vi re __ 7 T
5QSFSIVI =—8 (ﬂleS + ﬁLGScal + ﬂ,Asym ASFSlgI’l) ngn QSI}"I X szn

+ 4Bias + 4Quant Strt + 4Rndm Strt

BNom (A-22)
) Strt + ﬂ

_ Bsrt
=—g (/1Ml's + ALinScal T ﬂAsym ASFSrl‘gn U Dwn 2 Bias

g \( B3 B
. . n 7 7
+g (ﬂMzs + ALinScal T ﬂAsym ASFSign) syt XU pDywn + &Quant Strt + i’Rndm Strt

Substituting for ng”j’ from the transpose of (30) and aggtg t , from (A-21), the ng”i’ aglffg t y
iy - n rt — n

term in (A-20) becomes

Nom Nom Nom Nom Nom Nom
CBEnd agBsmt — _ CBEnd I — (XBStrt _ aBStrt % uBStrt _ (XBStrt % uBStrt
Bsut =SF End g Bgom =FEnd =Strt =Dwn  =Strt =Dwn
trt
Nom Nom Nom Nom Nom Nom Nom
B B B B B B B
- End ,, NED End Strt _ D Strt Strt Strt Strt _
=—8 CBngom U Dwn +8 CBé\]om |:(gEnd LSt jx LYy } + {[g&rt X U Dywn JX:| (A 23)
trt trt

Nom Nom Nom Nom Nom Nom Nom
- _ CBEnd uBStrt _ aBStrt < uBStrt - _ B End BEnd < uBEnd
g =Dwn =FEnd =ZDwn g|lu

With (A-23), (A-20) then becomes for 5&? Ifzd d.
- n

~BEnd Bina \[ BEnd _ oBEnd x ,BEnd
n —
Odgp g~ 8 (ﬂMiS + ALinScal * A dsym ASnggn) UDwn' ~%End <%Dwn

+ &Bias + i’QuantEnd + 4RndenaI

s ) 2 (a2
=—& (ﬂMis + ALinScal T iAsym ASFg'lign) EDW’; + LﬂtBl'as

Bend \[ ,BEnd s, BEnd
+g (ﬂMis + ﬂLinScal + ﬂAsym ASFgl'gn) QEM’;’ Xu nl+ A

Dwn Z=Quant g, 4 + i“Rnalm End

Equations (A-22) and (A-24) are the analytical forms used for SRT process error analysis.
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APPENDIX B
STRAPDOWN GYRO TRIAD ANALYTICAL MODELS
Analytical models are developed in this appendix describing gyro triad uncompensated

outputs in terms of inertial angular rate input, gyro triad compensation equations, and
associated error models.

B.1 GYRO TRIAD OUTPUT MODELS

The output vector from an uncompensated strapdown gyro triad can be characterized as a
function of its inertial angular rate input vector by

Dpow = (1 + FScal)(FAlgn @+ 0@pjst 5QQuant t §QRndm) (B-1)

where
@p,,, = Gyro triad uncompensated inertial angular rate output vector.
@ = Gyro triad inertial angular rate input vector.
I = Identity matrix.

Fscq = Gyro triad scale factor diagonal error matrix. Nominally, the Fg,.,; matrix is
zero. The Fg., matrix may include non-linear scale factor effects and
temperature dependency.

F 4lgn = Gyro triad alignment matrix. Nominally, the F 4., matrix is identity. The

F 4lgn matrix may include temperature dependency.

0wp,,c = Gyro triad bias vector. Each element equals the systematic output from a

particular gyro under zero inertial angular rate input conditions. For some
gyros, 0@p,;,, may have temperature and specific force acceleration

sensitivities.

5QQu e — Qyro triad pulse quantization error vector caused by gyro outputs per axis

only provided when the cumulative input equals the gyro pulse weight.

0@p, ., = Gyro triad random output error vector.

An alternative form of the uncompensated gyro triad output model derives from (B-1) as
follows:
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Opans = 1+ F scat) (Fotign @+ 50145+ 00,0+ 50 p)
=1+ Fscal) Faign @+ (I + F Scal)(5£’3ias + 000 an * 5QRndm)
:Q+[(1+F5cal)FAlgn —1]2) (B-2)
+(1 + Fscat) (5QBias + 0000+ 5QRndm)

= Q+ K'Algn/Scal Q+ EBiaS + EQuan[ + KRndm
in which

K Algn/Scal = (I + FScal)GAlgn —1 KBias = (I + FScal)é‘QBl‘as

(B-3)
Kouant = ([ t FScal ) 5QQuant KRndm = ([ + FScal ) YOy -

B.2 GYRO TRIAD COMPENSATION ALGORITHMS

Compensation formulas to correct the (B-1) basic model output are structured based on the
inverse of (B-1) with random noise terms deleted:

) -1 S | |
o= ([+ KScal) DRaw D= K gign |2 ~ Dpias ~ PQuant (B-4)
where
é) = Compensated gyro triad output vector.

K scar = Gyro triad scale factor correction matrix, a diagonal matrix in which each

element adjusts the output scaling to correspond to the actual scaling for the
particular sensor output. Typically modeled by analytical equations containing
premeasured coefficients. Nominally, the K g.,; matrix is zero. The K g.,;

matrix may include non-linear scale factor effects and temperature dependency.

K 4ign = Gyro triad alignment correction matrix, typically modeled by a set of
equations with premeasured coefficients. Nominally, the K 45, matrix is
identity. The K 4, matrix may include temperature dependency.

Wpi,s = Qyro triad bias correction vector with components typically modeled by

analytical equations containing premeasured coefficients. Each element
corrects the output of a particular gyro to zero under zero input inertial angular
rate conditions. In some gyros, @p, . may have temperature and specific force

acceleration sensitivities.
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Douant =~ Gyro triad pulse quantization correction vector for gyro outputs only being

provided when the cumulative input equals the pulse weight per axis. Includes
pulse output logic dead-band effect under turn-around conditions (See [2, Sect.
8.1.3.2)).

Similar to (B-4), a compensation formula can also be structured to correct the (B-2)
alternative gyro model output as the inverse of (B-2) with the random errors excluded:

~

-1
w= (I+KAlgn/Scal) (QRaw ~ KBias~ EQuant) (B-5)
where

@ = Compensated alternative gyro triad model output.

B.3 APPLICATION TO A TWO-STAGE COMPENSATION STRUCTURE

In many applications, a two-stage compensation structure is incorporated whereby (B-4) is
used as the first stage compensation to correct gyro outputs followed by (B-5) to correct
residual errors in the (B-4) compensation. With such an approach, the @p . input in (B-5)

would represent the (B-4) output. Using this method, it is also assumed that the (B-4)
compensation leaves residual errors in the (B-4) output due to inaccuracy in determining the
(B-4) compensation correction terms (K 405 » K Scal» @pjgs - Doy ant ) @0d gyro changes since

determination.

Note: The K 41055 K Scal » @pjq term coefficients are typically measured for each

individual sensor prior to installation in the IMU sensor assembly, and Douant MY (or may

not) be only approximately modeled as a design characteristic. Note also that the K 40,

matrix can only be accurately determined after installation in an IMU due to mounting
uncertainties.

For a two-stage compensation structure, the alternative (B-2) model and its (B-5)
compensation equation with coordinate frame designation become:

~B B B
@O =O t KAlgn/Scal @t Kpias  Kouant T KRnam (B-6)

~B -1(~B
[ :(1+KAlgn/Scal) (Q _EBias) (B-7)

where
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Z)B = Inertial angular rate output vector from the first stage (B-4) compensation

equations in B frame coordinates, and containing compensation error residuals
( designation).

QB = True (error free) inertial angular rate vector in B frame coordinates.

~B . . .
o = Second stage compensated gyro triad output vector (in B frame coordinates)

generated by second stage compensation (B-7) using first stage compensation
(B-4) output as the (B-7) input.

K Algn/Scal = Gyro triad alignment/scale-factor compensation error residual matrix.

Kpias — Qyro triad bias compensation error residual vector.

Kouant = Gyro triad output quantization compensation error residual vector.

Kpudm = Qyro triad output random noise vector.

B.4 ERROR MODELS FOR THE TWO-STAGE COMPENSATED GYRO TRIAD

An error model for the two-stage compensated gyro triad output Z)B is defined as the (B-7)

output minus the true inertial angular rate QB . For clarity, we first rewrite (B-7) as

~B ~ -1 ~B ~
[ :(I+KAlgn/Scal) (Q _EBias) (B-8)

~

using the  notation to indicate that the error coefficient terms may still contain error. Then
the error in (B-8) defines as

/\B_/\B B ~ -1 ~B ~ B
bo =0 ~—@ :([+KAlgn/Scal) (Q ‘EBl-as)—Q (B-9)

~B . ~B
dw = Erroring .

Substituting (B-6) for é)B finds for the (B-9) output error:
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~

— ~ “li-p « B
6w = I+ K Algn/ Scal @ ~Kpjgs) ¥
(.~ - B, N N ~ \_ B
=\I+K4ign/Scal Q" + K Algn/Scal @ T Kpigs T Kouant + KRndm ~ Kpjgs )~ L

(B-10)

-1
K B
:|:(I+K'Algn/Scal) (1+K‘Algn/Scal)_]}Q
~ -1 R
" (I " KAlgn/Scal) (EBias " KBias + KOQuant + ERndm)

An alternate form of (B-10) can be derived by first writing the QB coefficient in (B-10) in
the equivalent form:

. -1 A -
1+ Ratgnrseat) (1 + K atgnisear) =1 =[(1+KAlgn/Scal) (1+K'Algn/Sca1)} -1

-1
1 R
=|:(]+ K'Algn/Scal) (1+KAlgn/Scal—K'Algn/Scal+K'A1gn/Sca1)i| (B-11)

-1
1/
= [1+(1+ KAlgn/Scal) (KAlgn/Scal—KAlgn/Scal )} -1

With (B-11), (B-10) becomes the alternate form:

-1
-7 B

(B-12)

~B TN
5@ = [1+(1+K'Algn/Scal) (K‘A[gn/Sca]—K'Algn/Scal)}

IS

-1 R
+ <I+ KAlgn/Scal) (EBiaS T KBias + EQuanl + ERndm)
Equation (B-12) can be simplified by introducing definitions for 5y, on/Scal » OK pjgs SITOTS N
K Algn/Scal and Kpios .
5K'Algn/Scal = K Algn/Scal ~ K Algn/Scal 5EBias = Kpias ™~ KBias (B-13)

With (B-13), (B-12) simplifies to

B -1 . -l B
Sw = I+(1+ K'Algn/Scal) OK Algn/Scal —lo
(B-14)

-1 ~
+ <I+ KAlgn/Scal) (_5EBias * EQuant + ERndm)
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B.5 APPLICATION TO THE STRAPDOWN ROTATION TEST

The Strapdown Rotation Test (SRT) is designed to determine the Algn/ Scal term in the

(B-8) gyro calibration equations (and similarly for the strapdown accelerometers. For the
accelerometers, the 2 Bigs CITOT is also included in the determination process. For the SRT

gyro error determination process, the iBias error in (B-8) is considered negligible.) The basic

method is to generate SRT input acceleration measurements from an IMU containing the
inertial sensors (gyros/accelerometers) calibrated using estimated values for the calibration
coefficients. For the gyros, calibration would consist of (B-4) followed by (B-8). Based on
inertial sensor error models (i.e., (B-10) or (B-14) for the gyros), the SRT processes the IMU
output measurements to ascertain residual sensor compensation errors (in - Algn/ Scal for the

gyros). The results are then used to update the compensation term coefficients. Two cases can
be considered for this process; 1) When - Algn/ Scal is completely unknown, and 2) When

KAl on/Scal is approximately known. (Appendix A considers the same cases for the
accelerometers. The remainder of this appendix considers only the gyro calibration portion.)
Case 1 corresponds to a basic application of the SRT to initially determine the value for
KAl on/Scal The method is to apply the SRT to an IMU with acceleration measurements for
the SRT calculated using (B-8) for gyro compensation, but with - Algn/ Scal completely
unknown (i.e., x on/Scal © be determined by the SRT). Then the error in the (B-8) output
would be given by (B-10) with &- Algn/ Scal set to zero (and 2 Bias SCLtOZErO Orto a value

determined by a different method prior to SRT execution):
~B _ B ~
ow = K Algn/Scal @ _5EBias +EQuant+ERndm (B-15)

in which 5& Bins is as defined previously in (B-13). SRT processing of the IMU outputs then
determines an estimate for x 40,/5cq; based on (B-15) representing the error in (B-8) gyro

compensation used in the IMU to generate SRT input measurements, and also assuming that
5& Bins is negligibly small.

Having completed a basic SRT Case 1 type determination of the x 44,,/5cq; €stimate, Case

2 corresponds to a second application of the SRT for Case 1 determination accuracy
enhancement. Then Algn/ Scal in (B-8) would be the value determined from the first SRT

application (containing (B-13) defined residual g Algn/Scal error), & Bins would be set to zero

or to value determined by a different method prior to SRT execution, and (B-14) would
represent the resulting (B-8) compensation output error. Part 1 [3, Section 5.0] shows that the
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magnitude of 5% ,; o/ Scal is second order relative t0 x y/n/Scal (€-8-» 0T K 4ign/Scar ON the
order of 1 milli-rad, 5 Algn/Scal will be on the order of 1 micro-rad). Thus, to second order

accuracy, (B-14) approximates as

~B - -1 B_ o~
ow = {(14‘ 5K‘Algn/Scal) - I} @ =K pius T Kouant T KRndm (B-16)

A B ~
- §KAlgn/Scal @ ~OKpiu T KOuant * K Rndm

The SRT is structured to measure the error in - on/Seal of (B-8) based on the (B-15) form

for the error. Note, however, that (B-15) and (B-16) are of exactly the same form (with
IA(Algn/Scal replaced by _57’;'Algn/Scal ). Thus, the SRT designed to determine ;'Algn/Scal error

based on the (B-15) model can also be used to determine the — 5%, on/ Scal residual in (B-16).

Applymg the SRT to an IMU that has been (B-8) calibrated using Case 1 determined
KAl on/Scal coefficients, will then enable determination of the residual —g%- , Ign/Seal STTOT n

X Algn/Seal? limited by uncertainty in the SRT rotation fixture accuracy and
—5& Bias T Kouant K Rndm uncertainties remaining in (B-16). Adding the Case 2 SRT
determined — 57 , Ign/ Scal coefficient errors to the Case 1 calibrated &, Ign/ Scal coefficients

will complete the recalibration process.

B.6 APPLICATION TO SRT PROCESS DESIGN

The SRT processing equations are based on a deterministic version of Case 1 error model
(B-15) in the Section B.5 two-stage compensation process, with the « 4/¢,,/5cq; term expanded

as

_ B
K Algn/Scal = KMis + KLinScal ¥ K NonLinScal T K Asym QSign (B-17)

- B
= KMis t KLinScal T K Asym QSign
where

Kpis = Qyro triad misalignment compensation error residual matrix having zero

diagonal elements.

KLinscal = Qyro triad linear scale factor compensation error residual diagonal matrix.

K NonLinscal = Qyro triad non-linear scale factor compensation error residual diagonal

matrix.
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Kasym = Gyro triad asymmetric scale factor compensation error residual

diagonal matrix.

Qgi on Diagonal matrix having elements of unity magnitude and sign (plus or

minus) of the QB element signs (plus or minus).

Note in (B-17) that xn,,uzinscq; has been neglected based on the assumption that non-linear

scale factor error has been adequately modeled in the (B-4) first-stage compensation equations,
leaving negligible residual error. Substituting (B-17) into (B-15), deleting the Kouant > K Rndm

as indeterminate, and deleting 5%Bias as negligible, then obtains the compensated gyro model
for SRT processing equation design:

o =(xpis + kL B )P B-18
@ =\KMis T KLinScal T K Asym QSign w (B-13)

B.7 APPLICATION TO SRT PROCESS ERROR ANALYSIS

For SRT process error analysis, (B-15) with (B-17) (neglecting x npnzinscar ) 1S used as the

gyro error model during each SRT rotation sequence. With more specificity for QB , the result

1S

~B _ B B A~
5QI:B = (K'LinScal T KMis T K Asym QIBSign) Wr.p— §EBias + KQuant + K pndm (B-19)

where

Qﬁ. p = True (error free) angular rate of the B frame relative to non-rotating inertial

space (/: B subscript) in B frame coordinates (superscript).

Q?B Sign — Diagonal matrix having elements of unity magnitude and sign (plus or

minus) of the Qf, p €lement signs (plus or minus).

é‘é)f 3= Error in the é)f p output from (B-8), i.e., the error in the compensation

estimate for QJIB B

The Q?_ .p term in (B-19) can be expanded as
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B _ B B _ B Nom Nom
QUB—QQE+QEB—CBMmLJ£ + o p )
(B-20)
_ B Nom Nom Nom
- CBNom Q?E + Q’;.BNom + QgNom:B )

where

Qﬁ. E» Qf%om = Earth rotation rate relative to inertial space (/. E subscript) in B and
BNom frame coordinates (superscripts).

Qg]\gm = B frame rotation rate relative to the earth (£ : B subscript) in 3N frame

coordinates (superscript).

Nom

&g pNom BNo™ frame rotation rate relative to the earth ( £:gNom subscript) in pNo™

frame coordinates (superscript).

B Nom

@ pNom-g B frame rotation rate relative to the Vo™ frame ( gNom : g subscript) in

BNom frame coordinates (superscript).

Based on (27) and (29), the Cg Nopy LET in (B-20) approximates as

B 7 B Nom )
B vom =1 (g x) (B-21)

where

Nom . C . . .
oB = Small rotation vector error within ¢8 Nop BNom frame coordinates
- B

(superscript).

Based on Laning rotation vector theory [2, Ref. 15a], we can also write

. BNom BNom 1 - BNom BNom . BNom . BNom

o =w +—a X @ +-- S oW = B-22
= —BNom..B 2= —BNom_.B —BNom:B =z ( )

Substituting (B-20) with (B-21) and (B-22) into (B-19) then finds for 5&? B
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_ B B
Sw;.p= (’f LinScal T K Mis T K Asym QIBSign) OF B+ Kpigs+ 08D0uan + 0L Rpdm

B Nom a)BNom " B Nom )

- . . B B
= (KLmScal t KMis t K dsym QIBSign) CBNom (QI:E + & .pNom L gNom.g

* KBigs T 5QQuant + 5QRndm

B BNom B Nom B Nom N BNom
= (K'LinScal + KMmis T+ K Asym QIBSign) |:I - (Q X)} @Qr.-E + QE.BNom ta
: (B-23)
* KBigs t 5QQuant + §QRndm

B Nom " B Nom)

B B
~ (K'LinScal + K Mis + K Asym Q]BSign) (Q p.pNom ' LILE

Nom
B

BNomXa)BNom P ]
—E:-BNom —

B
+(K'LinScal T KMis T K Asym Q]BSign) [_ o

T KBijgs T 5QQuam‘ + 5QRndm

Equation (B-23) is the analytical form used for SRT process error analysis.
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