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ABSTRACT

This article develops formulas for converting Point-To-Point
Relativity kinematic equations in non-rotating coordinates into their
equivalent in rotating coordinates. The formulas are then used to prepare
generaized Point-To-Point Relativity equations in rotating coordinates as
afunction of their non-rotating equivalents.

INTRODUCTION

Point-To-Point Relativity is arevised version of traditional Special Relativity in which
relative motion between observersis analytically defined by the vector distance between
observation points (in contrast with traditional Relativity in which relative motion between
observersisreferenced to relatively trandating coordinate frames). The basic Point-To-Point
concept was originally described in [2] based on the classical assumption of constant velocity
between observers[3 —6]. Using [1] asabase, [2] presented a differential Point-To-Point
approach that allows differential changesin relative velocity between observers. Asin classical
Relativity theory, [1], [2], and [3 — 6] are implicitly based on motion described in non-rotating
inertial coordinates. This article expands on [2], allowing for rotation of coordinate framesin
which differential Point-To-Point Relativity motion is described.

NOTATION

The following general notation isused in this article:

V = Vector parameter having length and direction. Vectorsin thisarticle are classified

as “free vectors’ having no preferred location in coordinate frames in which they
are analytically described.

\lA = Vector V represented as a column matrix with elements equal to the projection of

vector V on coordinate frame A axes. The projection of V on each frame A axis
equals the dot product of V with aunit parallel to (i.e., defining) that frame A axis.



(\_/Ax) = Skew symmetric (or cross-product) form of general A frame vector column yA

0 -Vza Vva
represented by the square matrix | \V za 0 —Vxa | Inwhich Vixa , Vya,
—Vya Vxa 0

V za arethe components of\lA. The matrix product of (\le) with another A

frame vector (e.g. ,V_VA) equals the A frame components of the cross-product of \lA
with the other A frame vector, i.e., (\iAx)V_VA :\_/AxV_VA.

/1 = Vector subscript denoting the vector parameter being observed (measured or
calculated from measurements) at observation point i (i being point a or b).

Observable Event — An event at a position location in space at a particular instant in time
(e.g., alightning strike, explosion, or radar pulse illumination) that can be observed
at aremote spatial location based on electro-magnetic wave propagation (e.g. light
or radar) from the event to the observation point [3 pp. 29 & 36, 4 pp. 515 & 521, 5
pp. 28 & 236-238, 6 pp. 10].

DIFFERENTIAL POINT-TO-POINT RELATIVITY KINEMATIC EQUATIONS

Reference [1, Egs. (41)] derives equations for the differential Relativistic position change of
aremote point in space p observed at points a and b in motion relative to one another as

_ 2
dXp/a=dXpp = Vayp dip+ -1 (dl( o/b-Va/b Yasb ! Vab~ Ya/b dtb)

1-vgy/ ¢
1
dta:?(dtb—dzp/b.\_/a/blcz)
_ 2
dX /b= dXp/a = Vp/a dta + — 1 (de/a-‘_’b/a‘_’b/a/Vab—‘_’b/a dta)

dtp = % (dta— dXp/a-Vpra! 02)
"1_Vab/ c

where dx .. isthedifferential change in position of point p observed at point a, dt, isthe

Zpla
differential time increment elapsed during the d Xpla movement on a clock located at point a,

Vip/a IStheinstantaneous velocity of point b observed at point a, vy, isthe magnitudeof v, ,



isthe speed of light, and similarly for de/b’ dtp, V4 fOr observations at point b. Egs. (1) are

based on the speed of light being the same constant relative to any observer, afundamental
premise of Relativity theory, but also on v,,,, and v, being of equal magnitude v, but

oppositely directed, afundamental premise of Newtonian [7] and Relatively theory [3 — 6]:

g _dXa 8 _OXop B __ .8 B |=\B.| @
Vbla= Vain = Vaio=™ " Vpia  Vab=|Vp/al = [Va/b
dta dtb

The peculiar ,/1- ng / c2 termin (1) is aunique contribution from Relativity Theory that

assures that if point p istravelling at the speed of light, the magnitude of p velocity relative to
observation point a or b will be the same constant c, i.e., from Appendix A:

‘dl(p/a/dta‘ :\/(dl(p/a/dta) '(dl(p/a/dta)

=‘dl(p/b/dtb‘ = \/(dl(p/b/dtb)'(dl(p/b/dtb) =C

3)

Eq. (3) isthe reason that time intervalsin (1) measured at observation pointsa and b (i.e., dtg,
and dty ) are unequal. In contrast, timeintervalsin Newtonian theory are the same ét all

observation points, regardless of whether thereis relative velocity between observers (i.e.,
dta = dtp). From (1) we seethat the Newtonian condition corresponds with the magnitude of

relative velocity between pointsaand b (i.e, |vy,/,| = |V,/4| = vab ) being negligibly small

comparedtoc, i.e, 1-v2 /c? < 1.

Although not specifically stated in [1], the derivation of (1) is based on all observations being
made in “non-rotating” inertial coordinates, the basis for both Newtonian and Relativity
kinematic theory. To derive the equivalent to (1) for observationsin rotating coordinates for this
article, we start from the [1] basics and rebuild a revised form that accounts for coordinate frame
rotation. Asin[1], consider observers at points a and b observing the motion of adistant point p,
each observer measuring the motion as the difference between observed p position locations

(“events’) at two successive time points t1 and to (to following tq):
AXpra=Xpya=Xpya  AXpib=Xp,/b~ Xpyb (4)

where Xp/a + Xpyja A€ distance vectors (positions) measured at point a from point ato p at
timesty and tp, AX pla isthe change (linear trandlation) in the point a observed p position vector

over thetq to ty timeinterval, and similarly for Xpy/b+ X poibr AXpyp-



If points a and b have translated during the t1 to to timeinterval, AXpra will differ from
AXp- Observers a and b can account for the relative tranglation when predicting what the
other would observe:

AXppja=AXpra=AXpra  AXapih = AXpp = AXayp ()

where AXpp/a isthe point a prediction of AXpib and similarly for AXapib - Asin (4) we can
also write

AXpja=Xbpja=Yoya  AXab = Xag/b™ Xa/b (6)

KINEMATIC PARAMETERS IN NON-ROTATING AND ROTATING COORDINATE
FRAMES

Egs. (4) — (6) are valid in any non-rotating coordinate frame. Let us now introduce non-
rotating coordinate frames B1 and B defined as parallel to the instantaneous orientation of
rotating coordinate frame B at successive time instants t1 and to. Because B and B» are non-
rotating relative to acommon non-rotating space, the angular orientation of B, relative to By will
be constant. For clarity, Egs. (4) and (6) are now rewritten in B1 and B, coordinates as

Bt _,B1 _(B1 Bt _B1 _ (B1

AXpla=Xpya™Xpja AXpib=Xp,0~ Xpy/b -
B1 _B1 _B1 Br _B1 _(B1

AXpja=Xboia~Y%ja  AXalb = Xazib™ Xau/b
B> _,B2 _ (B2 B> _ B2 _ (B2

AXpla=Xpyia=Xpja AXplb=Xpob~ Xpib -

B _ B2 _ (B2 B _ B2 _ (B2
AXpfa=Xosia™ Xo/a  AXafb=Xasb™ Xafb

where the B and By superscript identifies the coordinate frame on which the vector components
are projected (i.e., as elements of a column matrix).

The components of (7) — (8) observed at point a are related through
Bt _~B1 B2 _B1 _{~B1_ B2 _B1 _¢B2 _(B1 B1_ B2
A)—(p/a_ Bz)—(pzla )—(Dlla_(CBz ! +I)l(p2/a l(pl/a_)—(pz/a l(FJlla-i_(CBz I))—(pzla )

Bt _~B1yB2 _(B1 _({~B1_ B _B1 _B2 _B1 Bl _ B2
Al(b/a_ le(bzla Zbl/a_(CBz I'H)l(bzla X1/a = Xbo/a Zbl/a+(CBz I)l(bzla



where | isthe identity matrix and Cg Bl is adirection cosine matrix that transforms vector
components from their valuesin mertlaJ coordinate frame B> to their valuesin inertial coordinate

frame Bj.

Since non-rotating frames B1 and By are defined as aligned with the rotating B frame at time
instants 1 and 2, we can calculate the change in B frame values of a vector over time instants 1

and 2 as the difference between the B1 and B> projected values. Thus, the equivalent to (7) and
(8) intherotating B frameis:

B2 B1 B _ B2 _(B1
A’ﬂ(p/a_xpzla Xpy/a A;_(b/a_l(bzla Xn/a (10)

where A ;_(i a0 A ;_(E’ Ia are the changes in distance vectors from observation point a to points p

and b as measured at point a in the rotating B frame (superscript) over the t1 to to timeinterval.
We also note that C 512 —1 in(9) represents the changeinthe C El direction cosine matrix from

itsidentity value at t; (when B = B1) toiits Cglz value at to. For the angular rotation over tq to to,

C Elz — | can be equated to the equivalent rotation angle vector A8 FB which for small angular
rotation approximates as [8, Sect. 3.5.2]:

Chy—! z(AQFBX) (12)

where the 1B subscript indicates the angular rotation of frame B from inertially non-rotating
frame B to inertially non-rotating frame Bo. Substituting (10) and (11) in (9) then obtains

Bl _ B2 _
Axp/a A;_( +A6?|B><xID Ia AXb/a A;{b/ +A‘9|B><Xb2/a (12

Finally, we let the A changes be infinitesimally small so that xp /a—> xp/a, sz/a* XE/a,

B B B1 B
Axp/a > dxp A;—(p/a_) d;_(p/a’ AXpia = dXp/a A;_fb/a_> dj_fb/a’ and AQ||3 - dQ|B-

Zplar
Then (12) becomes

B B
dXDa=dZ ot A0 X Xpa  Xpa=dZp, +d0px X, (13)

p/a
The same process yields for the point b observed position changes
B B B_ B B B B..B
dxXpp=0Z 5t A9 gXXpy  AXgp=0Z 4+ A0 18X Xa/ (14)
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Similar to (2), we can aso define the relative linear velocity between observation points a
and b,

B
B _ 94X, VB dX o (15)

where in rotating B frame coordinates, VE, 4 Istheinstantaneous velocity of point b observed at

point a, and similarly for V a/p & point b. Dividing the dxb,a and dxa,b expressionsin (13)
and (14) by the corresponding time interval and applying (15) obtains

dx2 dx
D18 =V + A0l X Xp/a dta oy =VZp+doigx Xgy/ dto (16)
dta dtb
_ . -~ dxp dXa/p
Applying the (2) velocity definitions for —2/2 and —=2/2  (16) becomes
dta dtp
dX dXB

=Vo/a=Viya+t 05X x5,/ dta

dta dtp

where VE/ 4 1snow more specifically defined as the instantaneous velocity of point b relative to
point a as measured in a non-rotating coordinate frame that is instantaneously aligned with the
rotating B frame.

The first expression in (17) also shows with (2) that
2 B
V2b=Vola-Vo/a = (Vb/a+d9IBX Xb/a/dta) (Vb/a+d0IBx Xb/a/dta)

(18)
V0 + 2V (dOfx X5a) ! dta+(dBTs % X57a) - (0T X Xa) / (dta)?

where V4 isthe magnitude of V,,, inany B frame rotating through dQlBB relative to non-
rotating inertial space. Similarly, the second expression in (17) shows that

2 _ B B
V2= Ve Vi = (Ve + dOfEx X5ys  ditb) - (V. S+ AT x xEyp  dito) )
B B . .B B . B B . B 2
:Vg/tﬁZYa/b-(deXl‘a/b)/dtb*(dé’lBXZa/b)-(dglaxla/b)/(dtb)

The pertinent results from (2), (13), (14), (15), (17), (18), and (19) summarize as follows



B
SRR y: _dxgp B . B

v = Vop=—V
Yb/a™ dta Xa/b dtp Xal/b Xb/a
B B
E/ _9Zp/a VB, = dZab
—ha dta —a dth
B B B B B B

B B B_ B
Vb/a—Vb/a+d9 EXXbaldta Ve =Vap+dOkx Xay/ dtp

2 _ 2

Vab—Vb/a+2\lb/a-(dQ|BXl<b/a)/dta (delsxxb/a) (delBXXb/a)/(dta)

B B . . B B . .B B . B 2
:Vg/b+2\la/b-(dQ|BXl<a/b)/dtb+(dQ|B><l<a/b)-(deXl(a/b)/(dtb)

Equations (20) can now be substituted into (1) to find differential point-to-point Relativity
conversion equations in rotating coordinates.

CONVERTING TO AND FROM ROTATING COORDINATES

Three types of conversion formulas can be defined, 1) Converting rotating coordinate frame
effects into non-rotating coordinates, 2) Converting rotating coordinate frame effects viewed by
observer a with their equivalent rotating coordinate frame effects viewed by observer b (and the
converse for rotating observer b effects viewed by rotating observer a), and 3) Converting non-
rotating coordinate frame effects into rotating coordinates. The 3) conversion equations are the
simplest and will be presented last. The 1) and 2) conversion equations are complex, but
analytically straight-forward in their derivation. The method of deriving the 1) and 2) formulas
will only be outlined.

To convert rotating coordinate frame effects into non-rotating coordinates, maintain the | eft
side of (1) as shown, and substitute the following expressions from (20) on the right side:

d 5'3 jar d XE /b \_/E/ a ‘_’E/b , ng . To convert rotating coordinate frame effects observed by one
observer into rotating coordinates observed by the other observer, substitute the previous
expressions from (20) in both the left and right side of (1).

To convert non-rotating coordinate frame effects into rotating coordinates, maintain the right
side of (1) as shown, and substitute the d xp/a and dl‘%/b expressions from (20) on the | eft.

Having the de/a and dgp/b conversion formulasin (20) defined in the B frame, and the

definition for rotating B frame coordinates previously defined as being instantaneously aligned
with anon-rotating B frame, the B frame subscript notation in the conversion formulas can be
eliminated yielding for the final result:



Cl/l/p/a—'_dgxl(p/a

1
=dX, /= Vo dth+| ————1{(dX /p - Vs Voo V2 — Voo e it
2p/b™ Ya/b Ulb Zp/b-Ya/b Ya/b’ Vab ™ Ya/b Ulb
1/1—V§b/02 ( )

dta:ﬁ(dtb_ dX /- Varn/ 02)
~Vgp!C

d;_(p/b+ dQ><>_<p/b

(21)

_ 2
=dXp/a = Vpra dtat — 1 (de/a-‘_’b/a‘_’b/a/Vab—‘_’b/a dta)
1- Vab/C

dty = ————— (dta—dXpja-Voja/ )

In (21), d@ vector represents that incremental angular rotation of the rotating coordinate frame
relative to non-rotating inertial space.

APPENDIX A

Demonstrating With Point-To-Point Relativity Kinematics That In Non-Rotating Space,
Observers Travelling Relative To Each Other Will Measure The Same Speed For An
Observed Remote Point Travelling At The Speed Of Light

This appendix demonstrates with Point-To-Point Relativity Egs. (1) that in non-rotating
space, when a point p istravelling at a speed of light velocity as observed at point a, the point p
velocity observed at another point b in motion relative to point a, will also be at the speed of
light. The derivation begins by first defining

dx dx
Vop=—22 v a=—P2 (A-1)
dtp dta
where Vola and Voip & velocities of point p determined at observation pointsa and b.

Dividing the dl(p/b and dtp equationsin (1) by dt, obtainswith (A-1) and v, = vgp U, from
(2):



dXpp ot

b 1
=V =V — Vap U,, + —_— 1 (V LU, U, —v U)
Yp/b Yp/a™ Vab Xy Vp/a Yy ¥y~ Vab Yy
dta P dta P ll_vgb/ C2 P

= —V,/4-U,U +;(v .u —Vab)U (A-2)
p/a Ipla‘2v=v \/1—\/?7 Ipla‘=v v
dtp 1 2
—=———1-V,,.U,vap/cC
Ypla-=vVab

dta 1/1—V§b/C2 ( )

The Vola velocity in (A-3) isthen defined as having light speed ¢ so that
Vpra=CYp/a (A-3)

where Up/a isaunit vector in the direction of Vola: Substituting (A-3) in (A-2) obtains

dtp 1 /
Vpib ™, =C|Upa=Ypja-UyUy T I o, 2 2(Hp/a'gv_vab C)Hv

(A-4)
dp__ 1

dta‘m(l—up/a-uvvab/c)

Recognizing that u p/a—Yp/a-Uy Yy in (A-4) is perpendicular to u,, allows application of the
Pythagorian Theorem to obtain for the magnitude squared of Vb dtb [ dta:

2
2
- +(9p/a_9p/a'9v9v)'(Qp/a_gp/a'gvgv)

Voib-Y /b(
P P dta (1_V621b/02)

(gp/a'QV)Z_29p/a-9vvab/c+v§b/c2 2
) e 1= (Upya-Uy) (A-5)

2
2 2
(gp/a'gv) ~2Up/q-UyVab/ CHvgy/c

2 2
2 2 2 2
+:I'_(gp/a'gv) ~Vap/c Jr<9p/a'9v) Vap/c

- (1— vgb/ (:2)

(Continued)



2 2
2U /- Uy Vab/ c+1+(gp/a.gv) v,/ c? (l—gp,a.gvvablc)
= (A-5) Concluded

(1— va,/ c2) B (1— va,/ CZ)

|dentifying the (A-5) result as the square of the dty, / dtg termin (A-4) then shows that

_ 2
Vpib-Ypip=¢ (A-6)

Thus we see from (A-6), that when the magnitude of Vola in (A-3) isthe speed of light, the

magnitude of Volb will also be the speed of light:

[1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]

‘\_/p/b‘ =\Yp/b-Ypib =€ (A-7)
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