
STRAPDOWN ANALYTICS
Second Edition

PART 1

Paul G. Savage

Published By:

Strapdown Associates, Inc.
Maple Plain, Minnesota

The Material Presented In This Book Was Prepared Exclusively And Independently

By Paul G. Savage. Reproduction Of Any Part Of This Material Without Permission

From The Author Or Strapdown Associates, Inc., Is Prohibited.

Copyright © 2007 Strapdown Associates, Inc.
All Rights Reserved

First Published 2000

ISBN: 0-9717786-0-4
(Vol. 1 of 2 Vol. Set)

i

Foreword

This two volume text provides a detailed comprehensive discourse on the analytics of
strapdown inertial navigation systems (INS’s), the basic technology used on modern day
commercial and military aircraft, guided missiles, surface ships and underwater vehicles.
Based on his first-hand experience in this field, the author has provided a unique service to the
aerospace industry in preparing this technical dissertation on the algorithms implemented in
the strapdown system computer, and the analytics (and software) associated with system
software validation, system test, simulation, performance analysis, and the analytical design
methodology used in deriving the strapdown equations. Included is an in-depth chapter
dealing with Kalman filter theory and its application to the aiding of a strapdown INS.

Strapdown Analytics has been prepared for the reader who may not have had experience in
navigation or Kalman filtering. The analytical material presented is derived from scratch,
showing the developmental steps in rigorous detail, without relying on reference material for
supporting analytics. The book is complicated, yet complete and understandable by
analytically inclined graduate students and practicing engineers. The book can be viewed as
the text for an advanced course one might take following the introductory course taught by the
author, Introduction To Strapdown Inertial Navigation Systems.

This is the second edition of Strapdown Analytics. It contains all material provided in the
first edition including errata corrections uncovered since the original publication in 2000.
This edition contains an additional Chapter 19 which presents three relevant strapdown papers
published by the author since 2000.

ii

About The Author

Paul G. Savage is an internationally recognized expert in the design and test of ring laser
gyro strapdown inertial navigation systems. He is the president of Strapdown Associates, Inc.
(SAI), a Minnesota engineering company he founded in 1980 to further the advancement of
strapdown inertial technology. Since the down-sizing of SAI in 1995, Mr. Savage has
continued to provide inertial navigation consultation services and teach his Introduction To
Strapdown Inertial Navigation Systems course to the aerospace industry. He also serves as a
reviewer for the AIAA Journal of Guidance, Control, and Dynamics.

From 1980 to 1995, SAI, under Mr. Savage’s leadership, provided technical engineering
development and educational support for system configuration definition, flight software
development, system simulation, and testing for strapdown inertial system development
programs for military and commercial aircraft, land vehicles, cruise missiles, and ground and
air-launched tactical missiles. Strapdown Associates has held contracts in these areas with
Naval Weapons Center, Naval Air Development Center, McDonnell Douglas, Honeywell,
Sundstrand, Systron Donner, Texas Instruments, Rockwell International, Aerojet, Contraves,
Bendix, Northrop, General Dynamics, Boeing, Oklahoma City Air Logistics Command /
Tinker Air Force Base, Environmental Research Institute of Michigan, ARINC Research,
Baker Hughes, Alliant Techsytems, Lockheed Martin and United Defense.

From 1963 to 1980, Mr. Savage was employed at Honeywell Avionics Division as Senior
Principal Engineering Fellow where he led engineering design teams and provided technical
consultation to Honeywell engineering managers for system design, analysis, software
development, simulation, and integration/test in the evolutionary development of laser gyro
strapdown inertial navigation systems for military and commercial aircraft. From 1971
through 1975, Mr. Savage was the engineering manager and system design engineer for the
Honeywell LINS-0 strapdown inertial system, the first to prove the readiness of laser gyro
strapdown inertial navigation technology for 1 nautical-mile-per-hour accuracy aircraft
applications as demonstrated during a landmark flight test series at Holloman Air Force Base
in 1975.

Mr. Savage is a graduate from the Massachusetts Institute of Technology where he received
his MS and BS degrees in Aeronautical Engineering in 1960.

iii

Preface

Strapdown inertial navigation is a technology for autonomously determining position
location using a portable system containing strapdown inertial angular rate sensors,
acceleration sensors, and a data processing computer. “Strapdown” refers to the method of
mounting the inertial instruments directly to the user vehicle, rather than on a gimbaled
platform used to isolate the sensors from vehicle rotation in earlier inertial systems. Inertial
navigation systems (often with additional supporting navigation aids - e.g., positioning data
from Global Positioning System (GPS) receivers) are utilized extensively as the basic
navigational element on military and commercial aircraft, guided missiles, surface ships and
underwater vehicles. Advances in inertial sensor and computer technology in the 1970’s made
it possible to achieve accuracies with strapdown systems that equaled earlier gimbaled
technology performance for lower cost and improved reliability. By year 2000, virtually all
inertial navigation systems had become (or were being retrofitted to) the strapdown type (an
exception being ballistic missile guidance systems which continued to use gimbaled
technology).

The title of this book, Strapdown Analytics, has a double meaning. It deals with the
analytics associated with strapdown inertial navigation systems; it is also a detailed tutorial
treatise describing the analytics used at my company, Strapdown Associates, Inc. (SAI or
“Strapdown” for short), over the 20 year period following its inception in 1980. During this
time, SAI developed strapdown inertial navigation application software in both free-inertial
and Kalman-filter-aided configurations for various user groups including validation software,
system test software, simulators, and associated performance analyses. In addition to being
SAI’s president, one of my principal responsibilities at SAI was to prepare the technical
documentation for SAI programs. Since 1981, I have also provided an introductory course to
the general public, Introduction To Strapdown Inertial Navigation Systems, covering the
various strapdown system hardware, software, inertial sensor, and system technological
elements.

While teaching the Strapdown Inertial course, I have been frequently asked for references
covering the course topics in more detail (in addition to the handout material provided to
course attendees). While I have been able to recommend several books covering inertial
sensors and Kalman filtering, I have been at a loss to recommend comprehensive documents
providing a detailed account of the analytical aspects of strapdown inertial navigation systems.
At best, I have referred to some papers that have been published over the years by several
authors in the trade journals and at technical symposiums. For SAI customers, I have
referenced the documentation provided with SAI’s software package deliverables, which
though fairly comprehensive for their particular functions, are not in the form of tutorial text
material, and presume a certain level of basic strapdown analytical background by the reader.

This book represents a detailed comprehensive tutorial account of my knowledge in the

iv PREFACE

analytical aspects of strapdown inertial navigation. This includes not only the algorithms
implemented in the strapdown system computer, but the analytics (and software) associated
with system software validation, system test, simulation, and system performance analysis. It
also implicitly illustrates the analytical design methodology I have used in deriving strapdown
equations. The book was prepared using SAI independently developed technical
documentation and my personal notes as a starting base, and then rewritten for tutorial clarity,
expanded to fill in technical voids in equation derivations, modified for technical parameter
compatibility and cross-referencing between sections, enhanced for analytical improvements
uncovered during book preparation, and expanded to cover important material that I had not
previously documented. Beginning with 1500 pages from assorted SAI documents, I had
hoped to develop a text book with a reasonable page count (e.g., 800 pages). Due to the added
material and ground-rules I set during book preparation (discussed below), the final version
was more than 1500 pages, requiring two volumes.

In preparing this book, I set several goals to achieve what I believe is required of a textbook
for easy reader comprehension. Many of the goals were selected to avoid problems I have
experienced in the past when using analytical text documents. The unfortunate penalty was
increased page count which I decided at the onset to be worth the cost. The goals were as
follows:

• Clearly delineated parameter definitions separated from the main text, including a
parameter index for referencing back to the book location where the parameter was
defined.

• Repeating a parameter definition where needed for clarity in sections that are far
removed from the section in which it was originally defined.

• Deriving equations beginning from basics; avoiding the practice of referencing
supporting equations to other source material. The entire book contains only 40
references, some of which are the basic textbooks I used at college. One of the reasons
for additional supporting documentation has been to substantiate analytical results
obtained. In this book, equations are derived from scratch including supporting
analytics. As such, results are self-verifying without supporting documentation (with
some minor exceptions, in which case supporting documents are referenced; e.g.,
standard gravity models in References 3 and 4). My analytical experience in the
aerospace industry is the principal reference for the analytical derivations provided,
supplemented with theoretical background material provided by textbooks I have
referenced in the book (notably, Reference 6 for Kalman filter theory and Reference 3
for vector/coordinate-frame nomenclature).

• Avoiding reference material that was not used in the book preparation. Exceptions are
the selected background material on attitude integration algorithms referenced in
Chapter 7, an important part of strapdown analytical development history, and
References 16 and 21, fairly recent textbooks on inertial sensors (as of year 2000). I

PREFACE v

decided at the onset that I would not perform a literature search to find additional
background material that readers might find useful. This book is based on my
knowledge base acquired during 39 years of experience in the aerospace industry, i.e.,
the material I have used on a daily basis in performing my engineering assignments.

• Providing equation derivations that show the intermediate steps to avoid having the
reader accept results on faith, or spend valuable time filling in the voids for
verification.

• Developing equations in full closed-form wherever possible without reverting to the
use of linearization approximations (an obvious exception is Kalman filter error state
modeling which is inherently based on linearization techniques). Much of the
analytical results developed in this book are designed for translation into software on a
host computer. Advancements in computer technology make it possible to implement
the added closed-form equation computational burden for virtually no cost penalty.
The important benefit is the elimination of linearization process error and associated
documentation/validation requirements for assuring sufficient accuracy.

• Deriving equations in vector format when possible for more generality, and in this
case, to reduce page count.

This book should be viewed as the text one might use for an advanced course on strapdown
inertial navigation, e.g., the course that might follow my introductory strapdown course. It is
not a simple book, covering some very complicated analytical subjects. Nevertheless, it has
been designed for comprehension by engineering analysts or graduate students having only a
basic working knowledge of vector calculus and matrix operations. Previous background in
inertial navigation or navigation in general is not necessarily required. However, it is helpful.

One final word of caution. Although every effort has been made to eliminate errors in the
book (including careful proofing of five technical draft copies and the final print copy), it is
inevitable that some errors have passed undetected (e.g., typographical errors in the equations
themselves or in the equation number cross-references used liberally throughout the book).
As such, if readers plan to use the book material for important engineering projects, they are
encouraged to re-verify the material by analytical means and simulation.

Good luck.

Paul G. Savage

vi

Acknowledgments

An important part of the writing of any book is the proof reading. In the case of an
analytical text book this is particularly important because of the many possible areas where
errors can go undetected (e.g., incorrect symbol, misplaced or missing bracket, wrong Font,
missing vector notation, flawed equation derivation, assumed analytic characteristic that was
never proven, incoherent explanation, incorrect equation or section numbers in the text and in
cross-referencing). It is virtually impossible for the writer of such a book to find and correct
all of the possible errors. Writers are so familiar with their own work that they are blind to
many of their errors during the proof-reading process. To prevent this problem, another reader
(or several) typically assist in the proofing process.

The proof reader of an analytical text book should have the basic technical ability to
understand the equations presented and their analytical derivations. Ideally, the proof reader
should have had no previous background in the text book material to avoid introducing
inadvertent technical prejudices in the reviewing process. For the proofing process itself, the
ideal proof reader would independently rederive all equations in the book to verify their
accuracy and analytical cross-references, and provide comments to the author regarding
understandability of the written text and equation derivation methods. An important implicit
requirement in this regard is confidence on the part of the author that the proof reader will
perform the task thoroughly and dependably with the same concern that the reader has in the
accuracy of the final result.

For the Strapdown Analytics book, I have been fortunate to have found someone with
superb technical credentials, and who was willing to provide such a dedicated proof-reading
service; my daughter Kelly M. Roscoe. Kelly received Bachelor and Master of Science
Electrical Engineering degrees with honors from the Massachusetts Institute of Technology
(MIT), and has had technical experience in military system design/management at Rockwell
Seal Beach Facility and advanced optical materials process control at Minnesota Mining &
Manufacturing. I have Kelly to thank for the accuracy and understandability of the final
published version of Strapdown Analytics. Without her help, the book in its present form
would not have been possible.

I would also like to express my gratitude to my wife Paula for her encouragement during
the four year period that this book was written, and for her direct assistance in the final
formatting and proofing stages of book preparation. Her understanding and patience when my
thoughts were preoccupied with writing was most appreciated.

Lastly, I would like to express my acknowledgment to the Massachusetts Institute of
Technology for my basic engineering education, Lockheed Missiles & Space Company and
Honeywell, Inc. for exposure as an employee to the general business of inertial navigation, to
employees and customers of my company Strapdown Associates, Inc. (SAI) who made it

ACKNOWLEDGMENTS vii

possible for SAI to exist, to past attendees of SAI’s strapdown inertial navigation course, and
to the technical colleagues I have informally known over the years. Involvement with these
people and associated programs during my career provided invaluable experience and the
environment for developing the technical expertise needed to prepare this book.

Paul G. Savage

viii ACKNOWLEDGMENTS

ix

Contents For Parts 1 And 2

Part 1
__

Foreword i

About The Author ii

Preface iii

Acknowledgments vi

Contents For Parts 1 And 2 ix

Chapter 1 INTRODUCTION 1-1

Chapter 2 TERMINOLOGY 2-1

2.0 OVERVIEW 2-1

2.1 MATHEMATICAL NOTATION 2-2

2.2 COORDINATE FRAME DEFINITIONS 2-5

2.3 PARAMETER DEFINITIONS 2-6

Chapter 3 VECTOR, ATTITUDE AND COORDINATE
FRAME FUNDAMENTALS 3-1

3.0 OVERVIEW 3-1

3.1 VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-1

3.1.1 Vector Product Operators And Transformation Characteristics 3-6

x CONTENTS

3.2 ATTITUDE PARAMETERS 3-15

3.2.1 Direction Cosines 3-15

3.2.1.1 Direction Cosine Matrix From Transformed
Vector Components 3-16

3.2.2 Rotation Vector 3-21

3.2.2.1 Direction Cosine Matrix In Terms Of
Rotation Vector 3-25

3.2.2.2 Rotation Vector In Terms Of Direction Cosines 3-27

3.2.3 Euler Angles 3-31

3.2.3.1 Direction Cosine Matrix In Terms Of
Euler Angle Parameters 3-33

3.2.3.2 Euler Angles In Terms Of Direction Cosines 3-34

3.2.3.3 Method Of Least Work For Treating Euler Rotation
Operations 3-35

3.2.4 Attitude Reference Quaternions And Quaternion
Coordinate Frame Transformations 3-38

3.2.4.1 Quaternion Operations For Attitude Reference
And Vector Transformations 3-44

3.2.4.2 Direction Cosine Matrix In Terms Of Attitude
Quaternion 3-45

3.2.4.3 Attitude Quaternion In Terms Of Direction Cosines 3-46

3.2.4.4 Attitude Quaternion In Terms Of Rotation Vector 3-48

3.2.4.5 Rotation Vector In Terms Of Attitude Quaternion 3-48

3.3 ATTITUDE PARAMETER RATE EQUATIONS 3-49

3.3.1 General Coriolis Relationship Between Vectors
In Rotating Coordinate Frames 3-49

3.3.2 Direction Cosine Matrix Rate Equation 3-52

3.3.3 Euler Angle Rate Equations 3-55

3.3.3.1 Frame B Rotation Rates In Terms Of Euler Rates
And Frame A Rates 3-56

3.3.3.2 Euler Angle Rates In Terms Of Frame B And
Frame A Rates 3-57

3.3.3.3 Method Of Least Work For Euler Rate Equation
Derivation 3-57

PART 1 CONTENTS (PART 2 CONTENTS FOLLOWS) xi

3.3.4 Attitude Quaternion Rate Equation 3-59

3.3.5 Rotation Vector Rate Equation 3-64

3.4 VECTOR RATES OF CHANGE IN ROTATING COORDINATES 3-66

3.5 ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-67

3.5.1 Direction Cosine Matrix Generalized Error Characteristics 3-67

3.5.2 Direction Cosine Matrix Misalignment Error Characteristics 3-76

3.5.3 Direction Cosine Matrix Misalignment Error As A
Function Of Euler Angle Errors 3-86

3.5.4 Vector Error Characteristics 3-94

Chapter 4 CONTINUOUS FORM STRAPDOWN INERTIAL
NAVIGATION EQUATIONS 4-1

4.0 OVERVIEW 4-1

4.1 ATTITUDE RATE EQUATIONS 4-3

4.1.1 Angular Rate Of Local Level Frame L 4-5

4.1.2 Euler Angle Outputs 4-8

4.2 ACCELERATION TRANSFORMATION 4-10

4.3 VELOCITY RATE EQUATION 4-11

4.3.1 Velocity Outputs 4-14

4.4 POSITION DETERMINATION 4-16

4.4.1 Typical Position Rate Equations 4-16

4.4.1.1 Position Direction Cosine Matrix (Frame N To E)
Rate Equations 4-16

4.4.1.2 Altitude Rate Equation 4-19

4.4.1.2.1 Vertical Channel Control 4-20

4.4.2 Position Parameter Equivalencies 4-27

4.4.2.1 Latitude/Longitude From Position (N To E) Direction
Cosine Matrix 4-27

4.4.2.2 Position Vector In Selected Earth Fixed Frame From
Latitude, Longitude, Altitude 4-30

xii CONTENTS

4.4.2.3 Latitude, Longitude, Altitude From Position Vector In
Arbitrary Earth Fixed Coordinate Frame 4-33

4.4.3 Latitude/Longitude Calculated By Direct Integration 4-35

4.5 LOCAL LEVEL COORDINATE FRAME N OPTIONS 4-38

4.6 INITIALIZATION 4-40

4.7 STRAPDOWN INERTIAL NAVIGATION EQUATION SUMMARY 4-42

Chapter 5 EARTH RELATED NAVIGATION PARAMETERS 5-1

5.0 OVERVIEW 5-1

5.1 EARTH SHAPE MODEL 5-1

5.2 ELLIPSOIDAL EARTH REFERENCED NAVIGATION
PARAMETERS 5-4

5.2.1 Magnitudes Of R And Rs 5-6

5.2.2 Polar Coordinate Angle Parameters 5-7

5.2.3 Latitude Angle Parameters 5-8

5.2.4 Radii Of Curvature 5-9

5.3 TRANSPORT RATE 5-18

5.4 GRAVITY MODEL 5-23

5.4.1 Plumb-Bob Gravity 5-25

5.5 SURFACE ALTITUDE RATE TERM ANALYSIS 5-29

5.6 EARTH RELATED NAVIGATION PARAMETER SUMMARY 5-31

Chapter 6 QUASI-STATIONARY INITIALIZATION 6-1

6.0 OVERVIEW 6-1

6.1 ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-1

6.1.1 Coarse Leveling 6-2

6.1.2 Fine Alignment 6-6

6.1.3 Removal Of Residual Tilt Effects At
Fine Alignment Completion 6-9

PART 1 CONTENTS (PART 2 CONTENTS FOLLOWS) xiii

6.2 NAVIGATION FRAME INITIALIZATION
(FRAME N TO FRAME E) 6-14

6.2.1 Initialization Of N Frame By Wander Angle Setting In The
Frame N To E Matrix 6-14

6.2.2 Initialization Of N Frame By Direct B To L Frame Matrix
Modification 6-16

6.3 VELOCITY INITIALIZATION 6-18

6.4 ALTITUDE INITIALIZATION 6-19

Chapter 7 STRAPDOWN INERTIAL NAVIGATION
DIGITAL INTEGRATION ALGORITHMS 7-1

7.0 OVERVIEW 7-1

7.1 ATTITUDE UPDATE ALGORITHMS 7-5

7.1.1 Attitude Direction Cosine Matrix (B To L) Update Algorithms 7-5

7.1.1.1 Body (B) Frame Rotation Update 7-6

7.1.1.1.1 Integrated Rate And Coning Computation
Algorithms 7-10

7.1.1.2 Local Level (L) Frame Rotation Update 7-15

7.1.1.2.1 Integrated Rate Algorithm 7-17

7.1.1.3 Attitude Direction Cosine Matrix (B To L)
Normalization And Orthogonalization Corrections 7-18

7.1.2 Attitude Quaternion (B To L) Update Algorithms 7-24

7.1.2.1 Body (B) Frame Update 7-25

7.1.2.2 Local Level (L) Frame Rotation Update 7-26

7.1.2.3 Attitude Quaternion (B To L) Normalization
Correction 7-28

7.1.2.4 Quaternion To Direction Cosine Matrix Conversion 7-29

7.2 VELOCITY UPDATE ALGORITHMS 7-29

7.2.1 Gravity/Coriolis Velocity Increment Algorithm 7-32

xiv CONTENTS

7.2.2 Integrated Transformed Specific Force Acceleration
Increment Algorithm 7-33

7.2.2.1 Correction For L Frame Rotation During Acceleration
Transformation 7-35

7.2.2.2 Body Frame Integrated Specific Force Acceleration
Increment 7-37

7.2.2.2.1 Exact Velocity Rotation Compensation
Algorithm 7-44

7.2.2.2.2 Integrated Rate, Acceleration And Sculling
Algorithm Forms 7-47

7.3 POSITION UPDATE ALGORITHMS 7-54

7.3.1 Position Updating In General 7-55

7.3.2 Typical Position Updating Algorithm 7-58

7.3.3 High Resolution Position Updating Algorithms 7-59

7.3.3.1 Exact Position Rotation Compensation Algorithm 7-64

7.3.3.2 Computer Algorithms For Scrolling And
Other Integral Terms 7-69

7.4 ALGORITHM AND EXECUTION RATE SELECTION 7-77

7.4.1 Assessment Of Position Integration Algorithm Folding
Effect On Initial Alignment Heading Error 7-84

7.5 STRAPDOWN INERTIAL NAVIGATION SYSTEM
ALGORITHM SUMMARY 7-88

Chapter 8 NAVIGATION SYSTEM COMPONENT
COMPENSATION ALGORITHMS 8-1

8.0 OVERVIEW 8-1

8.1 INERTIAL SENSOR COMPENSATION ALGORITHMS 8-2

8.1.1 Inertial Sensor Error Characteristics
And Compensation Formulas 8-2

8.1.1.1 Angular Rate Sensor Error Characteristics
And Compensation Formulas 8-2

8.1.1.1.1 Sensor And System Level Compensation Coefficient
Evaluation For The Angular Rate Sensors 8-4

PART 1 CONTENTS (PART 2 CONTENTS FOLLOWS) xv

8.1.1.2 Accelerometer Error Characteristics
And Compensation Formulas 8-10

8.1.1.2.1 Sensor And System Level Compensation Coefficient
Evaluation For The Accelerometers 8-13

8.1.1.3 Dealing With Scale Factor Non-Linearities 8-16

8.1.2 Inertial Sensor Integrated Output Compensation Algorithms 8-23

8.1.2.1 Angular Rate Sensor Integrated Output
Compensation Algorithms 8-24

8.1.2.2 Accelerometer Integrated Output
Compensation Algorithms 8-26

8.1.3 Inertial Sensor Quantization Compensation Algorithms 8-29

8.1.3.1 Pulse Count Residual Compensation 8-29

8.1.3.2 Turn-Around Dead-Band Compensation 8-31

8.1.3.3 Pulse Quantization Compensation Algorithm Forms 8-35

8.1.4 Accelerometer Size Effect And Anisoinertia
Compensation Algorithms 8-37

8.1.4.1 Accelerometer Size Effect Compensation Algorithm 8-38

8.1.4.1.1 δυSizeCm Size Effect Algorithm 8-44

8.1.4.1.1.1 δυ′SizeCm Size Effect Term
Algorithm 8-46

8.1.4.1.1.2 ΔδυSizeCm Size Effect Correction
Algorithm 8-50

8.1.4.1.2 δvScul-SizeCm Sculling Size Effect Algorithm 8-52

8.1.4.1.3 δvRot/Scul-SizeCm Size Effect Algorithm 8-58

8.1.4.1.4 Sensor Compensation Applied
To Size Effect Algorithm Terms 8-61

8.1.4.1.5 Size Effect Algorithms Under
Benign Environments 8-64

8.1.4.2 Pendulous Accelerometer Anisoinertia
Compensation Algorithm 8-66

xvi CONTENTS

8.2 INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION
ALGORITHMS 8-67

8.2.1 Inertial Sensor Compensation For Attitude Updating 8-67

8.2.1.1 Coning Increment Compensation Algorithm 8-68

8.2.2 Inertial Sensor Compensation For Velocity Updating 8-73

8.2.2.1 Sculling Increment Compensation Algorithm 8-75

8.2.2.2 Combined Velocity Rotation Compensation
And Sculling Increment Compensation Algorithm 8-88

8.2.3 Inertial Sensor Compensation For Position Updating 8-93

8.2.3.1 Scrolling Increment And Double Integration Term
Compensation Algorithms 8-95

8.3 SENSOR ASSEMBLY ALIGNMENT COMPENSATION 8-99

8.4 STRAPDOWN INERTIAL SENSOR ASSEMBLY COMPENSATION
ALGORITHM SUMMARY 8-101

Chapter 9 SENSOR ASSEMBLY JITTER COMPENSATION 9-1

9.0 OVERVIEW 9-1

9.1 ANALYTICAL DESCRIPTION OF JITTER 9-1

9.2 JITTER RATE/ACCELERATION MEASUREMENT 9-8

9.3 JITTER FILTER INPUTS 9-9

9.4 JITTER REMOVAL 9-10

9.5 NAVIGATION OUTPUT PARAMETERS 9-12

Chapter 10 VIBRATION EFFECTS ANALYSIS 10-1

10.0 OVERVIEW 10-1

10.1 RESPONSE TO DISCRETE SINUSOIDAL
SENSOR VIBRATION INPUTS 10-1

10.1.1 Attitude Motion Response Under Angular Vibration 10-2

10.1.1.1 Attitude Motion Characteristics 10-2

PART 1 CONTENTS (PART 2 CONTENTS FOLLOWS) xvii

10.1.1.2 Attitude Algorithm Response 10-7

10.1.1.2.1 Exact Attitude Algorithm Response 10-9

10.1.1.2.2 INS Attitude Algorithm Response
And Error 10-15

10.1.2 Velocity Response Under Combined Angular
And Linear Vibration 10-23

10.1.2.1 Velocity Motion Characteristics 10-25

10.1.2.2 Velocity Algorithm Response 10-30

10.1.2.2.1 Exact Velocity Algorithm Response 10-32

10.1.2.2.2 INS Velocity Algorithm Response
And Error 10-37

10.1.3 Position Response Under Linear Vibration 10-45

10.1.3.1 Position Motion Characteristics 10-46

10.1.3.2 Position Algorithm Response 10-48

10.1.3.2.1 Exact Position Algorithm Response 10-49

10.1.3.2.2 INS Position Algorithm Response 10-50

10.1.3.2.3 Folding Effects In The Position Algorithms 10-58

10.1.3.2.4 INS Position Algorithm Error Response 10-66

10.1.4 Sensor Error Effects 10-67

10.1.4.1 Individual Sensor Vibration Rectification 10-67

10.1.4.2 Vibration Rectification From Sensor Dynamic Response In
Strapdown Computation Algorithms 10-70

10.1.5 Summary Of Response To Sinusoidal Sensor Vibration Input 10-72

10.2 REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE
ANALYTICS 10-74

10.2.1 Linear System Response To Sinusoidal Inputs 10-74

10.2.2 Linear System Response To Random Inputs 10-82

10.3 RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT 10-90

10.4 RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-99

10.4.1 Attitude/Velocity Response To Random Vibration Input 10-101

10.4.2 Position Algorithm Error Response To Random
System Vibration Input 10-107

xviii CONTENTS

10.5 SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-117

10.5.1 Dynamic Model Response To Linear System Forcing
Function 10-118

10.5.2 Dynamic Model Response To Rotary System Forcing
Function 10-127

10.6 VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-132

10.6.1 Simulation Program For Attitude/Velocity/Position
Vibration Response Analysis 10-132

10.6.2 Development Of The δRSF/Algo(t) Sinusoidal Input Response
For Worst Case Simulation Analysis 10-146

10.6.3 Development Of The δvSF/Scul/SnsDynz
 Sinusoidal And Random

Input Response For Worst Case Simulation Analysis 10-151

Chapter 11 STRAPDOWN ALGORITHM VALIDATION 11-1

11.0 OVERVIEW 11-1

11.1 SPECIALIZED VALIDATION SIMULATIONS 11-1

11.2 GENERAL STRAPDOWN ALGORITHM VALIDATION
SIMULATORS 11-6

11.2.1 Spin-Cone Simulator 11-12

11.2.1.1 Analytical Model 11-12

11.2.1.2 Simulated Strapdown Angular Rate Sensor Outputs 11-15

11.2.1.3 Attitude Direction Cosine And Euler Angle Outputs 11-17

11.2.1.4 Strapdown Attitude Algorithm Error Evaluation 11-18

11.2.2 Spin-Accel Simulator 11-19

11.2.2.1 Analytical Model 11-19

11.2.2.2 Simulated Strapdown Inertial Sensor Outputs 11-25

11.2.2.3 Attitude Reference Frame Rotation Rate Output 11-26

11.2.2.4 Strapdown Algorithm Error Evaluation 11-26

11.2.3 Spin-Rock-Size Simulator 11-27

11.2.3.1 Analytical Model 11-27

11.2.3.2 Simulated Strapdown Inertial Sensor Outputs 11-30

PART 1 CONTENTS (PART 2 CONTENTS FOLLOWS) xix

11.2.3.3 Reference Attitude, Velocity And Position 11-32

11.2.3.4 Strapdown Algorithm Error Evaluation 11-34

11.2.4 Gen Nav Simulator 11-35

11.2.4.1 Position And Velocity Parameters 11-36

11.2.4.1.1 Specified Latitude/Inertial-Longitude/Altitude
And Their Derivatives 11-36

11.2.4.1.2 Inertial Position Range And
Velocity Vectors 11-41

11.2.4.2 Position And Velocity Output Parameters 11-43

11.2.4.3 Simulated Strapdown Inertial Sensor Outputs 11-45

11.2.4.3.1 Simulated Strapdown Angular Rate
Sensor Outputs 11-45

11.2.4.3.1.1 Attitude Matrix Initialization 11-46

11.2.4.3.2 Simulated Strapdown Accelerometer
Outputs 11-46

11.2.4.3.2.1 Integrated I Frame Specific Force
Acceleration Increments 11-46

11.2.4.3.2.2 Body Frame Integrated Specific Force
Acceleration Increments 11-50

11.2.4.4 Roll, Pitch, Heading Attitude Outputs 11-53

Chapter 12 STRAPDOWN INERTIAL NAVIGATION
ERROR EQUATIONS 12-1

12.0 OVERVIEW 12-1

12.1 STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-1

12.1.1 Application Of The Linearization Process 12-9

12.1.2 Navigation Equations For N Frame Error Analysis 12-15

12.1.3 Navigation Equations For E Frame Error Analysis 12-18

12.1.4 Navigation Equations For I Frame Error Analysis 12-21

12.2 NAVIGATION ERROR PARAMETERS 12-27

12.2.1 Angular Error Parameters 12-27

12.2.2 Velocity Error Parameters 12-37

xx CONTENTS

12.2.3 Position Error Parameters 12-44

12.2.4 Gravity And Transport Rate Errors 12-52

12.2.5 Basic Navigation Error Parameter Selection 12-59

12.3 NAVIGATION ERROR PARAMETER DIFFERENTIAL
EQUATIONS 12-61

12.3.1 Procedures For Developing Error Parameter
Differential Equations 12-61

12.3.2 E Frame Defined Error Parameter Differential Equations 12-64

12.3.3 E Frame Defined Error Parameter Differential Equations
Transformed To The N Frame 12-71

12.3.4 N Frame Defined Error Parameter Differential Equations 12-72

12.3.5 Mixed E And N Frame Defined Error Equation Set Written
In The N Frame 12-78

12.3.6 Equivalencies Between E Frame And N Frame Defined Error
Parameter Differential Equations 12-84

12.3.6.1 E Frame Defined Error Parameter Rate Equations
From N Frame Defined Error Parameter Rate
Equations 12-84

12.3.6.2 N Frame Defined Error Parameter Rate Equations
From E Frame Defined Error Parameter Rate
Equations 12-92

12.3.7 I Frame Defined Error Parameter Rate Equations 12-102

12.3.7.1 I Frame Defined Error Parameter Rate Equations
In The I Frame 12-102

12.3.7.2 I Frame Defined Error Parameter Rate Equations
In The N Frame 12-106

12.4 GENERAL STRAPDOWN INERTIAL SENSOR
ERROR MODELS 12-107

12.5 ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION
NOISE MODELING 12-112

12.5.1 Revised Error Rate Equations For E Frame Defined Error
Parameters Projected Onto The N Frame 12-119

12.5.2 Revised Error Rate Equations For N Frame Defined Error
Parameters Projected Onto The N Frame 12-120

12.5.3 Revised Error Rate Equations For Mixed E And N Frame Defined
Error Parameters Projected Onto The N Frame 12-121

PART 1 CONTENTS xxi

12.5.4 Revised Error Rate Equations For I Frame Defined Error
Parameters Projected Onto The N Frame 12-123

12.5.5 Revised Error Rate Equations For I Frame Defined Error
Parameters Projected Onto The I Frame 12-124

12.5.6 Inertial Sensor Error Rate Equations 12-124

12.6 VIBRATION MODELING 12-127

References A-1

Indexes

Subject Index B-1

Coordinate Frame Index C-1

Parameter Index D-1

Part 2
__

Foreword i

Contents For Parts 1 And 2 iii

Chapter 13 ANALYTICAL SOLUTIONS TO THE STRAPDOWN
NAVIGATION ERROR EQUATIONS 13-1

13.0 OVERVIEW 13-1

13.1 USEFUL VECTOR RELATIONSHIPS 13-2

13.2 GENERAL NAVIGATION ERROR EQUATION
CHARACTERISTICS 13-4

13.2.1 Vertical Channel Response 13-6

13.2.2 Horizontal Channel Response 13-12

13.2.3 Long Term Approximate Position Error Solution 13-18

xxii CONTENTS

13.2.4 Strapdown Inertial Sensor Scale-Factor/Misalignment
Error Effects 13-19

13.3 NAVIGATION ERRORS FOR CONSTANT ATTITUDE AND CONSTANT
SENSOR ERRORS 13-29

13.3.1 Short Term Solution At Constant Attitude With Free Inertial
Vertical Channel 13-35

13.3.2 Up To Two Hour Horizontal Solution At Constant Attitude With
Controlled Vertical Channel 13-39

13.4 NAVIGATION ERRORS FOR ROTATING ATTITUDE AND CONSTANT
SENSOR ERRORS 13-46

13.4.1 Constant High Rate Spinning About Non-Rotating Axis 13-47

13.4.1.1 Angular Rate Vector Error Characteristics 13-47

13.4.1.2 Attitude And Acceleration Transformation Error
Characteristics 13-50

13.4.2 High Rate Spinning About Rotating Axis 13-56

13.4.3 Solution For Horizontal Circular Trajectory Profile For Up To Two
Hours With Controlled Vertical Channel 13-67

13.4.4 Solution For Horizontal Circular Trajectory Profile At Schuler
Frequency With Controlled Vertical Channel 13-76

13.5 LONG TERM POSITION ERROR FOR CONSTANT ATTITUDE AND
SENSOR ERRORS 13-79

13.6 NAVIGATION ERROR FROM SENSOR OUTPUT RANDOM NOISE
DURING NAVIGATION 13-91

13.6.1 Horizontal Solution To Random Noise For Up To Two Hours With
Controlled Vertical Channel 13-91

13.6.2 Short Term Solution With Free Inertial Vertical Channel 13-103

Chapter 14 QUASI-STATIONARY INITIALIZATION ERROR
EQUATIONS AND SOLUTIONS 14-1

14.0 OVERVIEW 14-1

14.1 FINE ALIGNMENT ANALYTICAL PROCESS EQUATIONS 14-2

14.2 QUASI-STATIONARY INITIAL ALIGNMENT ERROR
EQUATIONS 14-4

PART 2 CONTENTS (PART 1 CONTENTS PROVIDED PREVIOUSLY) xxiii

14.3 INITIAL ALIGNMENT ERRORS PRODUCED BY CONSTANT INERTIAL
SENSOR ERRORS 14-16

14.4 INITIAL ALIGNMENT ERROR CAUSED BY RAMPING
ACCELEROMETER ERROR 14-27

14.5 CORRELATION BETWEEN SENSOR ERRORS DURING INITIAL
ALIGNMENT AND NAVIGATION 14-30

14.6 INITIAL ALIGNMENT ERROR CAUSED BY RANDOM SENSOR
ERRORS AND DISTURBANCES 14-36

14.6.1 Analytical Problem Definition 14-37

14.6.2 Analytical Covariance Solution Attempts Under Combined
Measurement And Process Noise 14-43

14.6.3 Covariance Solution Under Only Measurement Noise 14-51

14.6.4 Covariance Response With No Measurement Noise 14-55

14.6.4.1 Response To Accelerometer Quantization Noise 14-59

14.6.4.2 Response To Combined Angular Rate Sensor Quantization
And Accelerometer Random Output Noise 14-62

14.6.4.3 Response To Angular Rate Sensor Random Output
Noise 14-69

14.6.4.4 Summary Of Responses To Measurement And Process
Noise 14-72

14.6.5 Combined Solution Versus The Sum Of Individual Solutions For
Multiple Noise Sources 14-73

14.6.5.1 Response To Combined Angular Rate Sensor Random
Output Noise, Quantization Noise And Accelerometer
Random Output Noise 14-74

14.6.5.2 Comparison Between The Sum Of Individual Solutions
And The Combined Solution For Multiple Noise
Sources 14-79

Chapter 15 KALMAN FILTERING TECHNIQUES 15-1

15.0 OVERVIEW 15-1

15.1 KALMAN FILTERING IN GENERAL 15-1

15.1.1 Discrete Form Of Error State Propagation Equations 15-5

xxiv CONTENTS

15.1.2 Kalman Filter Configuration 15-8

15.1.2.1 Kalman Gain Calculation 15-13

15.1.2.1.1 Covariance Matrix Calculation 15-21

15.1.2.1.1.1 Error State Transition Matrix Computation
Algorithm 15-29

15.1.2.1.1.2 Integrated Process Noise Matrix
Algorithm 15-31

15.1.2.1.1.3 Covariance And Estimated Error State
Vector Propagation By Iterative
Algorithm Processing Between Kalman
Update Cycles 15-31

15.1.2.1.1.4 Covariance Matrix Numerical
Conditioning Control 15-42

15.1.2.2 The Observation And The Measurement Equation 15-44

15.1.2.3 Control Vector Selection And Application 15-52

15.1.2.3.1 Navigation Error Reduction By External
Correction 15-59

15.1.2.4 Timing And Synchronization Of The
Observation/Measurement And Kalman Filter
Cycle 15-60

15.1.3 Suboptimal Kalman Filters 15-64

15.1.4 Kalman Filter Software Validation 15-66

15.1.5 Supplementary Topics 15-68

15.1.5.1 The Matrix Inversion Lemma 15-68

15.1.5.2 Alternate Kalman Gain Expression 15-69

15.1.5.3 The Continuous Form Kalman Filter 15-70

15.1.5.3.1 Covariance Propagation/Reset Rate Equation 15-70

15.1.5.3.2 Error State Vector Propagation/Reset Rate
Equation 15-76

15.1.5.4 General Solution To The Continuous Kalman Filter
Covariance Equation 15-80

15.1.5.4.1 General Covariance Response With Zero
Measurement Noise Under Particular Constraint
Conditions 15-83

PART 2 CONTENTS (PART 1 CONTENTS PROVIDED PREVIOUSLY) xxv

15.2 EXAMPLES OF KALMAN FILTERING APPLIED TO STRAPDOWN
INERTIAL NAVIGATION 15-91

15.2.1 Kalman Filtering Applied To The Quasi-Stationary Fine Alignment
Problem 15-91

15.2.1.1 Partitioned Version Of The Quasi-Stationary Fine
Alignment Kalman Filter 15-101

15.2.1.2 Foreground And Kalman Filter Parameter
Initialization 15-110

15.2.2 Kalman Filtering Applied To Dynamic Moving Base INS Initial
Alignment 15-116

15.2.2.1 Moving Base Alignment Using An E Frame
Observation 15-117

15.2.2.2 Moving Base Alignment Using An N Frame
Observation 15-130

15.2.2.3 Velocity Versus Integrated Velocity Matching 15-134

15.2.3 INS Kalman Filter Aiding Using A Body Mounted Velocity
Sensor 15-138

15.2.4 Kalman Filtering Applied To GPS - INS Position Aiding 15-139

Chapter 16 COVARIANCE SIMULATION PROGRAMS 16-1

16.0 OVERVIEW 16-1

16.1 COVARIANCE SIMULATION ANALYTICAL DEFINITION 16-1

16.1.1 Formulation Based On Idealized Control Resets 16-1

16.1.1.1 Suboptimal Kalman Filter Performance Evaluation 16-9

16.1.1.2 Covariance Matrix Initialization 16-10

16.1.1.3 Optimal Kalman Filter Performance Evaluation 16-10

16.1.1.4 Simplified Covariance Analysis Equations 16-15

16.1.2 Formulation Based On Delayed Control Resets 16-17

16.1.2.1 Optimal Kalman Filter Performance Evaluation 16-21

16.1.2.2 Simplified Covariance Analysis Equations 16-24

xxvi CONTENTS

16.2 SUBOPTIMAL COVARIANCE ANALYSIS SIMULATION PROGRAM
CONFIGURATION 16-25

16.2.1 Basic Suboptimal Covariance Simulation Analysis Program
Equations 16-26

16.2.2 Extended Covariance Propagation Cycle 16-28

16.2.3 Specifying Error Models 16-28

16.2.3.1 Process Noise Error Models 16-31

16.2.3.2 Acceleration Squared Error Effects Modeling 16-41

16.2.3.3 Gravity Error Modeling 16-48

16.2.4 Sensitivities And Error Budgets 16-50

16.2.5 Performance Evaluation Output Routines 16-57

16.2.6 General Covariance Simulation Program Structure 16-63

16.2.6.1 Basic Covariance Propagation/Reset Equations 16-63

16.2.6.2 Simplified Covariance Simulation Program
Configurations 16-65

16.2.6.3 Error State Configuration 16-65

16.2.6.4 Estimation/Control Configuration 16-65

16.2.6.5 Covariance Propagation Timing Structure 16-66

16.2.6.6 Kalman Estimation Reset Timing Structure 16-66

16.2.6.7 Error Model Specification 16-67

16.2.6.8 Trajectory Generator Interface 16-67

16.2.6.9 Sensitivity And Error Budget Outputs 16-68

16.2.6.10 Output Routines 16-68

16.2.7 Covariance Simulation Program Use In Suboptimal Kalman Filter
Design And/Or Performance Evaluation 16-69

Chapter 17 TRAJECTORY GENERATORS 17-1

17.0 OVERVIEW 17-1

17.1 TRAJECTORY SHAPING FUNCTION 17-2

17.1.1 Segment Parameter Selection 17-4

17.1.1.1 Specified End-Of-Segment Attitude/Velocity 17-5

PART 2 CONTENTS (PART 1 CONTENTS PROVIDED PREVIOUSLY) xxvii

17.1.1.2 Specified V Frame Average Specific Force
Acceleration 17-6

17.1.1.3 Rotation Vector Defined In The L Frame 17-13

17.1.1.4 Starting Heading And Segment Time To Reach A Specified
Position Location 17-14

17.1.1.5 Turn To A Specified Heading 17-18

17.1.2 Quick-Look Projection 17-22

17.1.2.1 Projected Velocity, Attitude, Time, Angular Rate,
And Specific Force Acceleration 17-23

17.1.2.2 End-Of-Segment Position Quick-Look Projection 17-24

17.1.2.3 Projected Aircraft Axis Attitude, Specific Force Acceleration
And Angular Rate Under Angles Of Attack And
Sideslip 17-28

17.1.2.3.1 Refinement To CAC
V

 For Control Of AC Relative To

V Frame Roll Euler Angle 17-48

17.1.2.3.2 Utilization Of Constraint Formulation To Calculate

CAC
V

 With Zero φCntrl 17-56

17.1.3 End-Of-Segment Data Generation 17-57

17.2 TRAJECTORY REGENERATION FUNCTION 17-60

17.2.1 Segment Junction Smoothing 17-61

17.2.2 Specifying B Frame Attitude 17-72

17.2.3 Trajectory Regeneration 17-76

17.2.3.1 Basic Trajectory Regeneration Operations 17-77

17.2.3.2 Variations From Basic Regenerated Trajectory
Solution 17-85

17.2.3.2.1 Adding Wind Gust Aerodynamic Force
Effects 17-95

17.2.3.2.2 Adding Sensor Assembly Lever Arm
Displacement Effects 17-99

17.2.3.2.3 Adding High Frequency Effects 17-100

17.3 USING A TRAJECTORY GENERATOR IN AIDED STRAPDOWN
INS SIMULATIONS 17-113

17.3.1 Simulating Strapdown INS Sensor Errors 17-115

xxviii CONTENTS

17.3.2 GPS Receiver Simulation For Kalman Aided INS Application 17-117

Chapter 18 STRAPDOWN INERTIAL SYSTEM TESTING 18-1

18.0 OVERVIEW 18-1

18.1 SCHULER PUMP TEST 18-1

18.1.1 Analytical Basis For The Schuler Pump Test 18-3

18.1.2 Classic Schuler Pump Test Solutions 18-14

18.2 STRAPDOWN DRIFT TEST 18-22

18.2.1 Strapdown Drift Test Based On Analytical Platform Rebalance Bias
Measurement 18-23

18.2.2 Strapdown Drift Test Based On INS Heading Measurements 18-34

18.2.3 Calibration Coefficient Updating From Measured Angular Rate
Sensor Bias Errors 18-42

18.3 SYSTEM LEVEL ANGULAR RATE SENSOR RANDOM NOISE
ESTIMATION 18-42

18.3.1 Repeated Alignment Test 18-55

18.3.1.1 Repeated Alignment Test Using Kalman Earth Rate
Estimates 18-55

18.3.1.2 Repeated Alignment Test Using INS Computed True
Heading 18-61

18.3.2 Continuous Alignment Test 18-65

18.3.2.1 Continuous Alignment Test Using Kalman Earth Rate
Estimates 18-66

18.3.2.2 Continuous Alignment Test Using INS Computed True
Heading 18-75

18.4 STRAPDOWN ROTATION TEST 18-77

18.4.1 Rotation Sequence Design/Selection 18-81

18.4.2 Rotation Test Data Collection 18-85

18.4.3 Measurements In Terms Of Sensor Errors 18-86

18.4.4 Sensor Calibration Errors Computed From Measurements 18-100

18.4.5 Sensor Assembly Misalignment Calibration Error
Determination 18-103

PART 2 CONTENTS (PART 1 CONTENTS PROVIDED PREVIOUSLY) xxix

18.4.6 Calibration Coefficient Updating From Measured Calibration
Errors 18-105

18.4.7 Analytical Basis For The Strapdown Rotation Test 18-107

18.4.7.1 Accelerometer Error Model For The Strapdown
Rotation Test 18-110

18.4.7.2 Attitude Error As Function Of Angular Rate Sensor Errors
For The Strapdown Rotation Test 18-112

18.4.7.3 Making The Strapdown Rotation Test Acceleration
Measurement 18-117

18.4.7.3.1 Alternative Strapdown Rotation Test
Measurement Approach 18-124

18.4.7.4 Sensor Assembly Misalignment Calibration Relative To
Test Fixture Mount 18-125

Chapter 19 SUPPLEMENTAL TOPICS 19-1

19.0 OVERVIEW 19-1

19.1 A UNIFIED MATHEMATICAL FRAMEWORK FOR STRAPDOWN
ALGORITHM DESIGN 19-1

19.1.1 Nomenclature For Section 19.1 19-2

19.1.1.1 Symbology 19-2

19.1.1.2 Coordinate Frames 19-2

19.1.1.3 Parameters 19-2

19.1.2 Introduction 19-6

19.1.3 The Unified Mathematical Framework Based On Constant
Angular-Rate/Specific-Force 19-8

19.1.4 The Unified Mathematical Framework Based On General
Motion 19-9

19.1.5 Differential Equations For The Translation And Rotation
Vectors 19-10

19.1.6 Strapdown Algorithm Design Based On The Unified Mathematical
Formulation 19-14

19.1.7 Equivalent Differential Equations Based On Picard Series
Expansion 19-15

19.1.8 Potential Continuous Form High Speed Algorithms 19-18

xxx CONTENTS

19.1.9 Algorithm Accuracy Assessment 19-21

19.1.10 Continuous Form Algorithm Approximation Errors 19-23

19.1.10.1 Algorithm Errors Under Maneuvers 19-23

19.1.10.2 Algorithm Errors Under Vibration 19-25

19.1.11 Digital Algorithm Development 19-29

19.1.12 Simulation Testing For Equation Validation 19-32

19.1.13 Summary 19-32

19.1.14 Appendix To Section 19.1 - Equation Validation 19-33

19.1.14.1 Exact Solution Validation 19-33

19.1.14.2 Picard Solution Validation 19-35

19.1.14.3 Maneuver Induced Error Equation Validation 19-37

19.1.14.4 Vibration Induced Error Equation Validation 19-39

19.1.15 Acknowledgment 19-39

19.2 ANALYTICAL MODELING OF SENSOR QUANTIZATION IN
STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS 19-39

19.2.1 Nomenclature For Section 19.2 19-40

19.2.1.1 Symbology 19-40

19.2.1.2 Coordinate Frames 19-40

19.2.1.3 Parameters 19-40

19.2.2 Introduction 19-44

19.2.3 Sensor Quantization Error Model 19-45

19.2.4 Strapdown Sensor Generic Error Models 19-47

19.2.5 Strapdown Inertial Navigation Differential Equations 19-47

19.2.6 Strapdown Inertial Navigation Differential Error Propagation
Equations 19-48

19.2.7 Error Equation Revisions To Enhance Quantization Noise
Modeling 19-49

19.2.8 Equivalent Discrete Difference Error Equation Forms 19-51

19.2.9 Revisions To Differential Error Propagation Equations For Proper
Quantization Noise Correlation Modeling 19-55

19.2.10 Setting Numerical Values For Quantization Noise Terms 19-56

19.2.11 Application To Two-Speed Computation Algorithms 19-58

PART 2 CONTENTS (PART 1 CONTENTS PROVIDED PREVIOUSLY) xxxi

19.2.12 Numerical Examples 19-59

19.2.13 Validity Limits For Quantization Error As Random Noise 19-62

19.2.14 Compensating For Sensor Pulse Quantization Error 19-63

19.2.15 Appendix To Section 19.2 - Accuracy Equivalency Between
Two-Speed And Single-Speed Algorithms 19-63

19.3 WHAT DO INERTIAL SENSORS MEASURE? 19-66

19.3.1 Introduction 19-67

19.3.2 What Do Gyros Measure? 19-68

19.3.2.1 Angular Rotation 19-68

19.3.2.2 Angular Rotation Rate 19-69

19.3.2.3 Local Non-Rotating Inertial Space 19-70

19.3.2.4 General Non-Rotating Inertial Space 19-71

19.3.2.5 Angular Rate Sensing By Mechanical Gyros 19-72

19.3.2.6 Angular Rate Sensing By Optical Gyros 19-73

19.3.2.7 The Effect Of Gravity Gradient On Gyro Output 19-74

19.3.2.7.1 Gravity Field Shape 19-75

19.3.2.7.2 Spinning-Mass Gyros In A Spherical
Gravity Field 19-75

19.3.2.7.3 MEMS Gyros In A Spherical Gravity Field 19-76

19.3.2.7.4 Optical Gyros In A Spherical Gravity Field 19-77

19.3.2.8 Universal Non-Rotating Inertial Space 19-77

19.3.2.9 Appendix To Section 19.3.2 - Relative Motion Between Two
Moving Masses On A Translating/Rotating Base 19-77

19.3.3 What Do Accelerometers Measure? 19-79

References A-1

Indexes

Subject Index B-1

Coordinate Frame Index C-1

Parameter Index D-1

xxxii CONTENTS

1-1

1 Introduction

Inertial navigation is an autonomous process of computing position location by doubly
integrating the acceleration of a point whose position is to be determined. The fundamental
concept is illustrated in Figure 1-1.

ACCELERATION
VECTOR

VELOCITY
VECTOR

POSITION
VECTOR

dtdt

Figure 1-1 Fundamental Inertial Navigation Concept

Figure 1-1 shows a three-dimensional acceleration vector being integrated once to determine a
three-dimensional velocity vector and again to obtain a three-dimensional position vector. Also
implicitly represented in Figure 1-1 is the requirement to initialize the velocity/position
integrators prior to the start of inertial navigation. In general, the initialization process requires
knowledge of starting velocity and position.

An inertial navigation system (INS) implements the Figure 1-1 concept using a cluster of
accelerometers to sense the acceleration vector components and a digital computer to perform
the integration operations. The direction of the accelerometers (and the associated acceleration
vector) is determined using a cluster of angle or angular rotation sensing instruments (e.g.,
gyros) that are physically mounted in a known geometrical relationship relative to the
accelerometers. To ideally implement Figure 1-1 in the INS, the accelerometers would be
specified to provide measurements of total acceleration (i.e., the second derivative of position).
In general, total acceleration is composed of two fundamental parts: gravity acceleration created
by the gravity field surrounding the INS, and “specific force” acceleration produced by forces
acting on the vehicle containing the INS (which through mechanical linkage, produce forces
within the INS accelerometers). Due to basic limitations of fundamental physics,
accelerometers can only be designed to measure the specific force component of acceleration.
Hence, to determine total acceleration for Figure 1-1, the gravity acceleration must be added to
the accelerometer measurements. The result is the fundamental inertial navigation system
concept depicted in Figure 1-2.

1-2 INTRODUCTION

Figure 1-2 shows the gravity acceleration being calculated as a function of INS computed
position. The gravity calculation is performed within the INS computer. Implied by this
operation is a computerized model of the gravity vector field as a function of position in the
space in which the INS is to be operated. The INS is mounted within a “user vehicle” whose
position is to be calculated by the INS. Thus, by calculating its own position, the INS also
determines the position of the vehicle in which it is mounted. Two classical INS mechanization
approaches have been utilized to generate the specific force acceleration vector from the
accelerometers (i.e., vector components and direction): the “gimbaled” approach and the
“strapdown” approach.

TOTAL
ACCELERATION

VECTOR

VELOCITY
VECTOR

POSITION
VECTOR

GRAVITY
COMPUTATION

ACCELEROMETER
CLUSTER

SPECIFIC
FORCE

ACCELERATION
VECTOR

GRAVITATIONAL
ACCELERATION

VECTOR

dt dt⊕

Figure 1-2 Fundamental Inertial Navigation System Concept

In the gimbaled approach, the accelerometers are mounted to a rigid structure that is
mechanically coupled to the user vehicle by a set of concentric gimbals. The gimbals are
connected to the accelerometer mount, to each other, and to the user vehicle by bearing
assemblies that provide rotational freedom around the bearing axes. The “gimbaled platform”
concept is depicted in Figure 1-3.

In Figure 1-3, three accelerometers (the cube structures) are mounted to the inner platform
with their input sensing axes orthogonal. The inner platform angular orientation is controlled by
electric torque motors mounted around the gimbal bearing axes. The control signals for the
gimbal torque motors are provided by inertial angular rotation sensing instruments (gyros)
mounted to the inner platform (cylindrical structures) with input sensing axes (dashed lines)
orthogonal. By controlling the gyro outputs to be zero through the resulting gimbal torque
motor closed-loop servo action, the inner platform (with its accelerometers) is controlled to
maintain a specified angular orientation. To make the platform rotate at a prescribed angular
rate (selected by the INS computer), the platform gyros are electrically biased by computer
specified platform rotation rates, using biasing elements contained within each gyro. The
platform gyro outputs are proportional to the integrated difference between the angular rotation

INTRODUCTION 1-3

rate dynamically input to the gyros (about their input axes) and the electrically applied gyro bias
inputs. The gimbal torque motor control loops maintain the gyro outputs at zero, hence, the
dynamic angular rate into the gyros (i.e., the inner platform angular rate) is forced to balance the
gyro electrical biasing rate. The net effect is that the inner platform (and the accelerometers) are
controlled to match the INS computer software specified integrated angular rate orientation
profile (known in the INS computer), hence, the angular orientation of the accelerometers
becomes implicitly known in the INS computer. The computer is then able to define the
specific force vector using the accelerometer outputs for the vector component values, and the
known orientation of the inner platform (the “inertial sensor platform”) for the vector direction.

MIDDLE GIMBAL

X-AXIS
ACCELEROMETER

X-AXIS
GYRO

OUTER GIMBAL
AXIS TORQUE

MOTOR

VEHICLE FRAME
ATTACHMENT

STABLE PLATFORM
(INNER GIMBAL)

OUTER GIMBAL

MIDDLE GIMBAL
AXIS TORQUE

MOTOR
Y-AXIS
GYRO

Y-AXIS
ACCELEROMETER

INNER GIMBAL
AXIS TORQUE

MOTOR

Z-AXIS
GYRO

Z-AXIS
ACCELEROMETER

Figure 1-3 Gimbaled Inertial Platform Concept

A complete gimbaled INS consists of the Figure 1-3 “gimbaled platform”, the INS
computer, and associated electronics, all contained within a common chassis. The INS chassis
is then physically connected to the user vehicle using a rigid “INS mount” assembly. Figure
1-4 illustrates the gimbaled platform interfaced to a computer in a gimbaled inertial navigation
system. The navigation computation block in Figure 1-4 performs the Figure 1-2 integration
and gravity computation operations.

In the strapdown approach, the interconnecting gimbal structure of Figure 1-3 is eliminated,
and the inertial sensor platform (containing the inertial sensors) is mounted directly within the
INS chassis (i.e., “strapped down” to the INS and to the user vehicle, thus the name
“strapdown” to describe the technology). To perform the accelerometer orientation
determination function (provided mechanically by the gimbal assembly in Figure 1-3), the

1-4 INTRODUCTION

NAVIGATION
COMPUTATION

GYRO BIAS
RATES

SPECIFIC FORCE
ACCELERATION

VECTOR IN
NAVIGATION

COORDINATES

VELOCITY AND
 POSITION
VECTORS

SYSTEM COMPUTER

ACCELEROMETERS

GYROS

GIMBAL
TORQUERS

STABLE
PLATFORM

Figure 1-4 Gimbaled Inertial Navigation System

strapdown INS calculates the orientation of the strapdown accelerometers by processing a
sensor assembly angular rate vector measured by the strapdown angular rate sensors (i.e., the
so-called “body rate” signals) in the INS computer. (Henceforth, we will use the term “angular
rate sensor” to generically define inertial sensors that sense angular rate. The more commonly
used “gyro” term refers to inertial sensing instruments based on gyroscopic rotating mass
dynamic principles. Modern day strapdown inertial sensors are based primarily on optical or
Coriolis vibrating mass principles, hence, technically should not be called gyros, even though
they measure the same input sensed by classical spinning mass gyroscopes. Spinning mass
gyroscopes are also angular rate sensors, either directly, or in an integral sense). Figure 1-5
illustrates the strapdown INS for comparison with the Figure 1-4 gimbaled INS.

Both the strapdown and gimbaled system concepts in Figures 1-4 and 1-5 provide the same
specific force acceleration vector inputs to the velocity/position integration navigation
computation software in the system computer (i.e., the Figure 1-2 specific force acceleration
vector). In the gimbaled system, the specific force vector is measured directly by the
accelerometers on the gimbaled platform whose orientation (in the form of a “navigation
coordinate frame” attitude) is selected (and controlled) by the navigation computer software.
The resulting specific force vector in navigation coordinates is then processed as in Figure 1-2
to determine velocity and position. In the strapdown system, the specific force acceleration is
first measured by the strapdown accelerometers as a vector in a “strapdown sensor coordinate
frame”, and is then analytically rotated (by the INS computer software) from the strapdown
sensor coordinate frame into the navigation coordinate frame. The result is the specific force
vector in navigation coordinates used in Figure 1-2 for integration into velocity/position. To
perform the coordinate frame rotation operation (called a “vector transformation”), the angular
orientation between the strapdown sensor and navigation coordinate frames must be known in

INTRODUCTION 1-5

the system computer. It is found by a software integration operation using sensor coordinate
frame angular rates measured by the strapdown angular rate sensors, and navigation coordinate
frame angular rates specified by the INS software. The navigation coordinate frame angular
rates are the same signals used in Figure 1-4 to bias the angular rate sensors in the gimbaled
platform. Thus, both the strapdown and gimbaled systems generate the same navigation
coordinate frame version of the specific force vector (for the Figure 1-2 input) and both use the
same navigation frame angular rates in finding (or controlling) the specific force vector
component coordinate frame.

ATTITUDE
COMPUTATION

NAVIGATION
COMPUTATION

NAVIGATION
COORDINATE

FRAME
ROTATION

RATES

SPECIFIC FORCE
ACCELERATION

VECTOR IN
NAVIGATION

COORDINATES

VELOCITY AND
 POSITION
VECTORS

DIRECTION
COSINE
MATRIX

SYSTEM COMPUTER

SPECIFIC FORCE
ACCELERATION

VECTOR IN
STRAPDOWN SENSOR

COORDINATES

STRAPDOWN
SENSOR

ROTATION
RATES

STRAPDOWN
ACCELEROMETERS

STRAPDOWN
ANGULAR RATE

SENSORS

VECTOR
TRANSFORMATION

Figure 1-5 Strapdown Inertial Navigation System

In a general sense, the difference between a strapdown and a gimbaled system can be
considered as a tradeoff between mechanical complexity (for the gimbaled system) versus
computational complexity (for the strapdown system). From a performance standpoint, a
fundamental handicap for the strapdown system is that the strapdown sensors (particularly the
angular rate sensors) are exposed to the full vehicle angular rotation rate, whereas for the
gimbaled system, the inertial sensor platform rate is controlled to be small, independent of
vehicle angular rate. Meeting specified angular rate sensor accuracy requirements under high
dynamic vehicle angular rate inputs (i.e., for the strapdown system) is generally more difficult
to achieve than for the low benign angular rate environment of the sensors in a gimbaled
platform. In fact the basic gimbaled platform concept was originated as a means of shielding
spinning wheel gyros from vehicle angular rates, thereby making it possible to design gyros
that would meet system accuracy requirements. With the advent of the ring laser gyro in the
mid 1970’s (an angular rate sensor based on optical rather than spinning mass dynamic

1-6 INTRODUCTION

principles), it became possible to achieve high accuracy under high angular rates. During the
same time period, advancements in computer technology made it possible to implement the
added strapdown computational burden for virtually no production cost penalty. The merging
of these two technologies initiated the conversion of inertial navigation from original gimbaled
to modern day strapdown technology. With few exceptions, the conversion process was
complete by the year 2000. Today, strapdown inertial navigation and inertial navigation are
synonymous.

The technologies utilized in the design of modern strapdown inertial navigation systems
include inertial sensors (angular rate sensors and accelerometers), electronics (digital and
analog), software, mechanical and thermal design, testing, and associated analytics. This book,
in two parts, deals only with the analytical aspects of strapdown inertial navigation for the
software resident in the navigation computer, software for system testing, and system
performance analysis. For information on strapdown inertial sensors, the reader is referred to
available literature on the subject (e.g., References 16, 21, 31 and 32), and is encouraged to
contact the manufacturers of particular inertial components for further detail. Similarly, the
reader should contact the manufacturers of inertial navigation systems for particulars on
currently available system technologies. The remainder of this Chapter 1 Introduction describes
the analytical material covered in each chapter of the book.

Chapter 2 provides a comprehensive guide to the terminology used throughout the book
including mathematical notation, coordinate frame definitions and parameter definitions. Due to
the diversity of analytical topics covered, it became virtually impossible to adopt a single
meaning for each parameter and coordinate frame used throughout the book. To circumvent
this difficulty, a Parameter Index and Coordinate Frame index is provided in the back of each of
the Part 1 and Part 2 book volumes (in addition to the Subject Index) to facilitate locating
parameter/coordinate frame definitions in the main text. The parameters and coordinate frames
are alphabetically listed in these indexes with the equation number preceding their definition in
the main text. In addition, a listing of mathematical symbols used is provided in Section 2.1 of
Chapter 2, also with the equation number preceding their definition in the main text. To
facilitate the recall of parameter, coordinate frame, and mathematical symbol definitions, they
are separated and indented from each paragraph throughout the book, and repeated in sections
that are far separated from sections in which they were first defined. The overall intent is to
avoid the problem readers have found with many textbooks of forgetting the meaning of a
particular variable and having to spend frustrating time trying to find its definition buried in the
main text.

Chapter 3 provides an introduction to the basic mathematics utilized throughout the book
including vector operations in selected coordinate frames, their analytical conversion process
between coordinate frames, their component rates of change in rotating coordinates, and basic
analytical operations for describing coordinate frame angular orientation (“attitude”). Attitude
parameters discussed are the direction cosine matrix, the rotation vector, Euler angles, and the
attitude reference quaternion, including analytical equivalencies between the parameters, and the
analytics used to describe their rates of change. The concluding section provides a detailed

INTRODUCTION 1-7

discussion on methods for describing attitude and vector error characteristics. For the attitude
error discussion, error angle vectors are derived describing the orientation error in the relative
attitude between two coordinate frames, considering one of the frames as the reference and the
other as having the orientation error. For the velocity error discussion, velocity error equations
are developed as a function of the coordinate frame in which the velocity error is defined and the
coordinate frame in which the error is to be evaluated.

Chapter 4 uses the Chapter 3 analytics to develop the equations that would typically be
implemented in an earth based strapdown inertial navigation system computer for calculating
attitude, velocity and position (as in Figure 1-5). The attitude/velocity/position calculations are
analytically described in the form of time rate differential equations that would be continuously
integrated in the INS computer using suitable digital integration algorithms. For the attitude
determination function, both direction cosine matrix and quaternion forms are presented.
Velocity is defined as INS position rate relative to the earth. The velocity vector rate equation is
developed for integration in a locally level “navigation coordinate frame” (e.g., of the azimuth
wander or free azimuth type, both of which are described), and includes the effect of navigation
coordinate frame and earth’s angular rotation rate relative to non-rotating inertial space. The
attitude rate equations are derived to relate the strapdown sensor coordinate frame to the locally
level navigation frame. Strapdown acceleration transformation operations are included for
converting the accelerometer measured specific force acceleration into its navigation frame
equivalent, the specific force input to the velocity rate equation. The position rate equation is
defined in two parts: altitude rate and the rate of change of a direction cosine matrix relating
navigation coordinates to a specified earth fixed coordinate frame (“position direction cosine
matrix”). Included in the altitude rate equation is a method for controlling vertical error build-
up in velocity and position (“vertical channel divergence”) using an input pressure altitude
signal. Equations are developed for converting the computed attitude/velocity/position data to
equivalent output formats (e.g., roll/pitch/heading Euler angle attitude, north/east/vertical
velocity components, latitude/longitude/altitude position or a position vector from a selected
earth fixed position location to the INS). Equivalency equations are also provided for
converting one form of position representation to another. Chapter 4 includes a brief discussion
on initialization requirements covered in detail in Chapter 6. At the conclusion of Chapter 4, a
summary table is provided listing the principal Chapter 4 equations and the inputs required
from other sections of the book for earth related parameters and initialization operations.

As part of the inertial navigation software, analytical models must be included describing
gravity in the space potentially occupied by the INS and to describe the referencing surface for
position definition (e.g., the surface of the earth including its rotation rate relative to inertial
space). Chapter 5 analytically describes the earth in terms of its classically represented
ellipsoidal reference surface (approximately at mean sea level), and the analytical definition of
earth referenced parameters used in the INS computer (e.g., latitude, longitude, altitude above
the earth reference ellipsoid, the relationship between INS horizontal velocity and the angular
rate of the locally level navigation coordinate frame (called “transport rate”), and radii of
curvature of the earth’s surface used in calculating the transport rate). A section is included in
Chapter 5 summarizing the classical Reference 3 and 4 gravity model used in most inertial

1-8 INTRODUCTION

navigation systems. A navigation coordinate frame version of the gravity model is developed
in Chapter 5 for input to the Chapter 4 velocity rate equation (in a form known as “plumb-bob
gravity” which includes a centripetal acceleration term associated with position relative to the
rotating earth). In all cases, the equations are developed in complete closed-form without
resorting to “first order approximations” prevalent in many navigation analytical documents. It
is the author’s belief that computer technology has now advanced sufficiently (in speed, word
length, and higher order language utilization) that closed-form equations can be implemented
without penalty in an INS computer. Significant advantages thereby accrue in algorithm
performance and in accompanying software validation/documentation processes that need not
address the accuracy of first order approximations. Chapter 5 concludes with a summary table
listing the Chapter 5 equations that would be utilized in a typical INS computer.

In a strapdown INS there are three operations that must be initialized prior to engaging the
inertial navigation “mode”. These are the integration functions used to determine attitude,
velocity and position. Chapter 6 addresses the analytics associated with performing the
attitude/velocity/position integration function initialization operations in the INS computer for
applications when the user vehicle is at a “quasi-stationary” attitude/position orientation (e.g., an
aircraft on the ground with parking brake engaged, but under quasi-stationary attitude/position
motion due to wind gusts, passenger/crew movement, fuel/stores loading). The attitude
initialization process discussed utilizes a closed-loop “Kalman filter” aided integration process
using inputs from the INS accelerometers and angular rate sensors to initialize the attitude
orientation relative to the vertical and true north (“true heading”). The true heading initialization
is achieved by estimating horizontal earth rotation rate components and using the result to
initialize the heading attitude of the INS attitude parameters or the orientation of the navigation
coordinate frame (i.e., the position direction cosine matrix). Chapter 6 also analytically
describes a “Coarse Leveling” process by which an approximate vertical attitude initialization
can be achieved using accelerometer inputs. Coarse Leveling is typically performed before
engaging the previously described vertical/heading initialization process (known as “Fine
Alignment”).

Chapter 7 derives the equivalent digital integration algorithm form of the Chapter 4
differential equations for attitude/velocity/position determination in the strapdown INS
computer. The attitude algorithm development section addresses both direction cosine matrix
and quaternion forms for strapdown sensor attitude relative to the locally level navigation frame,
each separately dealing with updating for strapdown sensor rotation (measured by the angular
rate sensors) and for navigation frame rotation rates. The attitude algorithms are structured
based on three repetition rates (per pass of the associated computation chain); a high speed rate
for high frequency angular rate sensor inputs (e.g., angular vibration), a moderate speed attitude
updating rate for angular rate sensor inputs (including summing of the high speed algorithm
output), and a lower speed attitude updating rate for navigation frame rotation rates. Closed-
form expressions (without approximation) are derived for all but the high speed algorithms.
The high speed algorithm is derived as an approximation to an exact continuous form integral
equation that measures what is known as “coning” effects in the attitude solution.

INTRODUCTION 1-9

The velocity updating algorithms in Chapter 7 are also structured using a multiple speed
architecture; a high rate algorithm to measure high frequency effects and a moderate speed
algorithm to handle the velocity updating operation (including summing of the high speed
algorithm output). Closed-form expressions (without approximation) are derived for all but the
high speed algorithm. The high speed algorithm uses angular rate sensor and accelerometer
inputs in an approximation of an exact continuous integral equation to measure what is known
as “sculling” effects in the acceleration-transformation/velocity-updating operation. The
moderate speed algorithm adds the sculling output from the high speed algorithm to summed
increments of integrated accelerometer specific force output (including what is known as a
“rotation compensation” correction), transforms the result to the navigation frame, adds plumb-
bob gravity, and adds Coriolis acceleration effects (to account for navigation and earth rotation
rate effects) to update the navigation frame velocity components.

Two forms of position updating algorithms are presented in Chapter 7; a classical set
operated at a single repetition rate based on trapezoidal integration of velocity, and a “high
resolution” set based on a multiple speed architecture similar to the attitude/velocity updating
algorithms. For the high resolution approach, a high rate algorithm measures high frequency
effects and a moderate speed algorithm handles the position updating operation (including
summing of the high speed algorithm output). Closed-form expressions (without
approximation) are derived for all but the high speed algorithm. The high speed algorithm uses
angular rate sensor, accelerometer, and sculling algorithm inputs to measure what has been
termed (by the author) “scrolling effects” in the position updating process. The lower speed
algorithm adds the scrolling output from the high speed algorithm to computed increments of
doubly integrated accelerometer specific force output (including a “position rotation
compensation” correction - author coined name), transforms the result to the navigation frame,
adds the position change due to velocity at the start of the update cycle, and uses the resulting
navigation frame “position change increment” to update the position data (altitude and the
position direction cosine matrix). The trapezoidal positioning algorithm computations are
identical to the moderate speed portion of the high resolution algorithms, but with the position
change increment calculated as a trapezoidal integration approximation for integrated navigation
frame velocity.

For the Chapter 7 attitude, velocity and position multiple speed algorithms, the form of the
algorithms is structured so that in situations when sufficient throughput exists (the trend for the
future), the lower speed algorithms can be executed at the higher speed algorithm repetition rate
to simplify the software executive control architecture. A table is provided at the conclusion of
Chapter 7 listing the Chapter 7 and Chapter 5 computation algorithms that would be typically
used in a high performance INS, in their order of execution in the INS computer.

A fundamental problem with all inertial navigation systems is the inability to manufacture
inertial components with the inherent accuracy required to meet system requirements. To
correct for this deficiency, compensation algorithms are included in the INS software for
correcting the sensor outputs for known predictable error effects. Chapter 8 develops analytical
equations for compensating the strapdown inertial sensor outputs. Inertial sensor compensation

1-10 INTRODUCTION

algorithms derive from classical analytical models used in the inertial sensor industry to
characterize a sensor’s output (including errors) as a function of the sensor input (error free). In
contrast, the sensor compensation algorithms used in the INS computer are designed to
translate the sensor outputs (containing error) to the equivalent error free form. Thus, the
compensation algorithms represent the inverse of the inertial sensor analytical model equations.
In many systems, the form of the compensation equations so derived contain linearization
approximations to the exact inverse relations (to conserve on computer throughput). The
approach taken in Chapter 8 is to use the complete inverse form (without approximation) based
on the assumption that modern day computers of today (and certainly in the future) can handle
the workload.

Chapter 8 is divided into four parts; development of the inertial sensor output compensation
algorithms, developing algorithms for correcting the high speed portion of the
attitude/velocity/position algorithms (i.e., coning, sculling, scrolling, integration of inertial
sensor outputs between computation cycles) that may have been calculated using
uncompensated inertial sensor data, compensation for misalignment of the strapdown sensor
assembly relative to the INS mount installation in the user vehicle, and a summary section. The
summary provides a tabulated listing of the compensation equations that might be used in a
high performance INS, tabulated in the order of execution in the INS computer, and showing
their application in conjunction with the Chapter 5 and 7 inertial navigation computation
algorithms. Chapter 8 includes a discussion of methods for compensating quantization error on
the strapdown inertial sensor signals. Also included is the derivation of algorithms for
compensating the effect of physical displacement between the accelerometers in a strapdown
sensor assembly (known as “size effect”) which, under angular rotation, exposes each
accelerometer to a slightly different acceleration vector. Intermediate computation results in the
size effect algorithms are also applied for compensating anisoinertia angular rate sensitive error
effects in pendulous accelerometers.

In some applications (e.g., Synthetic Aperture Radar), it is important that jitter motion of the
strapdown inertial sensor assembly be removed from the computed INS
attitude/velocity/position outputs. Chapter 9 provides a smoothing architecture for achieving
such jitter compensation that avoids introducing dynamic distortion in the smoothed output
signals.

Chapter 10 develops analytical techniques for evaluating the error in the high speed portion of
the attitude/velocity/position algorithms under anticipated sinusoidal and random INS input
vibrations. Strapdown inertial navigation integration algorithms are designed to accurately
account for three-dimensional high frequency angular and linear vibration of the sensor
assembly. Such motion, if not properly accounted for, can lead to systematic
attitude/velocity/position error build-up. The high speed algorithms developed in Chapter 7 to
measure these effects (i.e., coning, sculling and high resolution position updating routines) are
based on approximations to the form of the angular-rate/specific-force profiles during the high
speed update interval. An important part of the algorithm design is their accuracy evaluation
under hypothesized vibration exposures of the strapdown INS in the user vehicle, the subject of

INTRODUCTION 1-11

Chapter 10. Algorithm performance evaluation results, used in design/synthesis iterative
fashion, eventually set the order of the algorithm selected and its required repetition rate in the
INS computer.

Since the sensor assembly is dynamically coupled to the INS mount through the INS
structure (in many cases including mechanical isolators and their imbalances), vibrations input
to the INS mount become dynamically distorted as they translate into the resulting inertial
sensor output vibrations provided to the navigation algorithms. Included in Chapter 10 is a
review of linear dynamic system frequency response analytics and the development of a
simplified analytical model for characterizing the dynamic response of an INS sensor assembly
to input vibration. The sensor assembly dynamic response model is one of the elements
utilized in the Chapter 10 algorithm performance evaluation equations presented. Chapter 10
includes an analysis of folding effect amplification in the position update algorithms induced by
linear vibrations of the sensor assembly. Such effects are generally not present in the
attitude/velocity algorithms because the inertial sensors are generally of the integrating type,
providing their inputs to the navigation computer in the form of pre-integrated angular rate and
acceleration increments. Chapter 10 also provides an analysis of coning/sculling algorithm
error induced by inertial sensor dynamic mismatch. Chapter 10 concludes with an analytical
description of a simple simulation program that can be used to evaluate high speed algorithm
error under user specified INS sinusoidal and random vibration input exposure.

Chapter 11 deals with the validation of strapdown inertial navigation integration algorithms
by computer simulation. It addresses the basic issue of how to analytically generate a “truth
model” set of angular rate and specific force acceleration data representative of the output from
ideal (error free) strapdown inertial sensors (typically in the form of integrated angular rate and
specific force acceleration increments), and how to analytically generate a corresponding “truth
model” attitude/velocity/position profile. Validation of the algorithms then consists of running
the algorithms at their selected repetition rate(s) using the “truth model” sensor inputs, and
comparing the algorithm attitude/velocity/position response to the equivalent “truth model”
attitude/velocity/position profile. In general, two methods can be considered for the truth
model; 1. A digital integration approach in which the truth model integration algorithms are
more accurate than the INS algorithms being validated, and 2. Closed-form analytical equations
representing the exact analytical integration of the angular-rate/specific-force profile. The
problem with the Method 1 approach is the dilemma it presents in demonstrating the accuracy
of a truth model that also contains digital integration algorithm error, allegedly smaller than the
error in the INS digital integration algorithms being tested. Chapter 11 addresses the Method 2
approach, and derives closed-form analytically exact truth models for evaluating classical
groupings of INS algorithms used to execute basic integration operations; 1. Attitude updating
under dynamic conditions, 2. Attitude updating, acceleration transformation, velocity updating
under dynamic conditions, 3. Attitude updating, acceleration transformation, velocity/position
updating under dynamic conditions (including accelerometer size effect separation), 4.
Attitude/velocity/position updating during long term navigation over an ellipsoidal earth model.
Simulation programs for these functions are analytically described in Chapter 11 including the
method of comparing the INS algorithm results with the truth model. A table is provided

1-12 INTRODUCTION

showing which algorithm equations (by Equation number used in the book) are validated with
each simulator. Chapter 11 also includes a discussion of specialized simulators for use in
validating particular algorithm portions.

The overall strapdown INS design process requires supporting analyses to develop and
verify performance specifications for the INS components, particularly the inertial sensors.
This generally entails the use of a strapdown INS error model in the form of time rate
differential equations that describe the error response in INS computed attitude/velocity/position
data. Such error models are also fundamental to the design of Kalman filters (the subject of
Chapter 15) used, in conjunction with other system inputs, for correcting the INS errors.
Chapter 12 provides a detailed description of the analytical process used in deriving strapdown
INS error model equations that represent the INS integration routine response to sensor input
errors (i.e., excluding the effect of algorithm and computer finite word-length error, errors that
are generally negligible in a well designed modern day INS compared to sensor error effects).
Chapter 12 is based on the error form of the Chapter 4 and 5 strapdown INS computation
equations.

An important part of INS error model development is the definition (and selection) of
attitude/velocity/position error parameters used in the error model and their relationship to the
INS computed attitude/velocity/position parameters (or to a hypothetical set of INS navigation
parameters that are analytically related to the INS computed set). Chapter 12 describes several
versions of navigation error parameters that can be considered and the process followed in
selecting one set for a particular application. After describing the general process used in
developing INS error models, Chapter 12 derives error model equations for different error
parameter sets using two approaches; 1. Direct derivation based on the error parameter
definitions, 2. Derivation by conversion of a previously derived error model (based on one set
of error parameters) to an alternative error model based on another error parameter set. The
second method is based on equivalencies between error parameter sets derived in Chapter 12.
Included in Chapter 12 is the analytical modeling of inertial sensor error inputs and modeling of
error effects induced by sensor assembly vibration.

Chapter 13 deals with analytical solutions to the Chapter 12 strapdown INS error model
equations under classical trajectory profiles and inertial sensor error characteristics. Such
analyses are useful for understanding the nature of sensor error propagation into
attitude/velocity/position under particular conditions, and for pencil-and-paper performance
predictions. Chapter 13 begins with a general analytical description of INS error characteristics
including vertical channel response (with gravity model induced exponential
divergence/control), horizontal channel response (Schuler oscillations and long term “earth
loop” effects), and the unique characteristics of strapdown inertial sensor scale-
factor/misalignment error on INS navigation performance under dynamic angular rate
conditions. Chapter 13 then develops closed-form solutions to the Chapter 12 equations under
various simplifying assumptions for the sensor errors and trajectory profile (e.g., constant
sensor errors under high rate spinning about stationary and rotating axes, in horizontal circular

INTRODUCTION 1-13

trajectories (in general and at Schuler frequency), and under long term cruise; random sensor
error effects during short term and 2 hour trajectories).

Chapter 14 addresses the effect of strapdown inertial sensor error on the Chapter 6 quasi-
stationary initial vertical/heading attitude initialization process. The error model for the Chapter
6 Fine Alignment initialization process equations is developed and solved in closed-form for
constant and random output inertial sensor errors, ramping accelerometer error, inertial sensor
quantization errors, and random vibrations. The random and quantization error analysis is
based on solving the general continuous form Kalman filter covariance differential equation
developed in Chapter 15.

The accuracy of all inertial navigation systems is fundamentally limited by instabilities in the
inertial component error characteristics following calibration. Resulting residual inertial sensor
errors produce INS navigation errors that are unacceptable in many applications. To overcome
these deficiencies, “inertial aiding” is commonly utilized in which the INS navigation
parameters (and in some cases, the sensor calibration coefficients) are updated based on
measurements from an alternate source of navigation information available in the user vehicle
(e.g., Global Position System (GPS) receiver provided data). The modern method for applying
the inertial aiding measurement to the INS data is through a Kalman filter, a set of software that
is typically resident in the INS computer. Chapter 15 describes Kalman filtering in general and
how it relates to the aiding of strapdown inertial navigation systems. Included is a detailed
introductory section that develops the basic theory of Kalman filter estimation in general, its
interface/timing/synchronization architecture in the host computer, and procedures for software
validation.

The Kalman filter theory developed in Chapter 15 is at the on-set, based on “optimally”
estimating an “error state vector” representing the error characteristics of the device(s)
providing inputs. This contrasts with classical Kalman filter theory based on estimating a “state
vector” representing parameters in the input devices (e.g., position parameters in an INS). In
inertial navigation applications, the error state vector selected for the Kalman filter is related to
the computed navigation parameters (e.g., the three component attitude error vector described in
Chapter 12 which is related to errors in the nine component attitude direction matrix or the four
component attitude quaternion), but generally does not explicitly represent the errors in the
computed parameters (as in the traditional “extended” Kalman filter approach). Developing the
Kalman filter from scratch based on a general error state vector approach provides a direct
method for arriving at the result used in most Kalman filter applications.

Chapter 15 develops discrete recursive forms of the Kalman filter (suitable for software
implementation) and a general continuous form for performance analysis. Following the
approach outlined in Reference 6, a general solution is developed for the continuous form
Kalman filter. The result is then extended for the singular case of zero “measurement noise”, a
situation encountered in Kalman filters applied to the Chapter 6 inertial navigation system Fine
Alignment process (and used in Chapter 14 to derive closed-form solutions for the Chapter 6
quasi-stationary initial alignment error equations). Chapter 15 provides examples of discrete

1-14 INTRODUCTION

form Kalman filter configurations applied to the Chapter 6 Fine Alignment process, to dynamic
moving base INS initial alignment, to inertial aiding using a generic vehicle mounted velocity
sensor measurement, and for inertial aiding using GPS position range measurements.

Inherent in the structure of Kalman filters is a statistical estimate of the uncertainties in the
computed error state vector, typically represented in the form of an error state uncertainty
“covariance matrix”. The calculations involved in continuously computing the covariance
matrix (it changes as a function of time based on the time profile of the navigation parameters,
system/sensor error characteristics, and Kalman updating history) can also be used in a
performance analysis time domain simulation program for statistically estimating the INS
errors. Chapter 16 addresses the structure of such covariance simulation programs for
application to INS performance assessment and as part of the Kalman filter design process. As
a Kalman filter design aid, the covariance simulation is used to simulate the equivalent
operations performed in the Kalman filter being designed/tested and, from a covariance
standpoint, to evaluate the performance of the INS when aided by the Kalman filter. The aided
INS performance analysis capability permits the user to account for all error effects being
simulated (the so-called “real world” model) when interfaced with a Kalman filter based on an
approximate version of the real world (the so-called “suboptimal” Kalman filter). The Kalman
filter design process consists of using the simulation over a representative set of trajectory
profiles, evaluating aided INS performance, and modifying the Kalman filter dynamic model
(e.g., the number of error state vector elements or the magnitudes of included noise sources) in
iterative fashion until performance satisfies user specified criteria. Included in the Chapter 16
covariance simulation program, is the ability to provide sensitivity outputs that identify the
sensitivity of navigation errors to the error sources, and an “error budget” that shows the
contribution of each error source to the navigation errors, both of which are useful during the
Kalman filter design/iteration process.

Simulation analysis of strapdown inertial navigation systems often require the use of
“trajectory generators”, simulation programs that provide navigation parameter outputs as a
function of time over a user selected trajectory profile. The Chapter 16 covariance simulation
program requires such a trajectory generator input as does the process described in Chapter 15
for validating Kalman filters (and their internal computational elements). Chapter 17 deals with
the design of trajectory generators that provide navigation parameter outputs as well as
strapdown inertial sensor inputs in the form of integrated angular-rate/specific-force-acceleration
increments (integrals between trajectory generator time points). The integrated inertial sensor
increments are identical to the outputs from idealized strapdown inertial sensors (i.e., error free),
with the trajectory generator navigation parameters then representing the output from an
idealized error free strapdown inertial navigation system. Chapter 17 first describes the general
requirements for a trajectory: 1. Trajectory shaping, an interactive process by which the user
creates a trajectory profile to meet a general set of requirements, and 2. Trajectory regeneration
in which the shaped trajectory is “played back” as part of a larger simulation program to
regenerate the navigation/inertial sensor data history. Included must be the inherent
characteristic of the navigation parameter outputs (attitude/velocity/position) and associated

INTRODUCTION 1-15

inertial sensor signals to be consistent with what would be obtained from an ideal integration of
the inertial sensor data into trajectory navigation parameters.

The major portion of Chapter 17 provides a detailed description of a trajectory generator
designed to produce realistic trajectories representative of maneuvering vehicles in the vicinity
of the earth (i.e., aircraft, surface ships, underwater vehicles). Once the trajectory profile is
created, the Chapter 17 trajectory generator provides (as options in the trajectory regeneration
process) the ability to add aerodynamic angle-of-attack/sideslip effects, user vehicle structural
bending effects, high frequency vibrations, and to simulate trajectories of different points in the
same vehicle separated by flexible structure. The Chapter 17 trajectory regeneration function is
structured as the analytical inverse of the Chapter 7 high accuracy strapdown inertial navigation
algorithms (including high resolution position updating). This technique assures that integration
of the trajectory generator inertial sensor signals with the Chapter 7 algorithms will produce the
same navigation solution, the correct response under error free sensor and computer processing
conditions.

Chapter 18 describes five system level tests that can be performed on a strapdown INS to
ascertain the error characteristics of the strapdown inertial sensors; the Schuler Pump Test,
Strapdown Drift Test, Repeated Alignment Test, Continuous Alignment Test and the
Strapdown Rotation Test. Each can be executed in a test laboratory using a rotation fixture to
which the INS is mounted. The Schuler Pump Test is based on amplifying the classic 84
minute sinusoidal Schuler error response characteristic of a strapdown INS (described in
Chapter 12). Analysis of the velocity error response provides the ability to determine
composite angular rate sensor and accelerometer errors that created it. The Strapdown Drift test
is a static test in which the attitude integration software in the INS computer is configured to
constrain the average horizontal transformed specific force acceleration to zero. For a test of
several hours duration, the averages of the constraining signals become accurate measures of
angular rate sensor bias error. The Repeated Alignment Test is a static test in which the Chapter
6 Fine Alignment process is repeated to generate a sample set of horizontal earth rate estimates
at the end of alignment. By analyzing the variance in the end-of-alignment earth rate signals, the
horizontal angular rate sensor random noise is estimated. The Continuous Alignment Test
estimates horizontal angular rate sensor random noise using the time history of horizontal earth
rate estimates taken during a single initial alignment run. The Strapdown Rotation Test consists
of exposing the INS to a series of rotations, and recording its average transformed specific force
acceleration output at static dwell times between rotations. By processing the recorded data, very
accurate measurements can be made of the scale factor error and relative misalignment for all
inertial sensors in the sensor assembly, the accelerometer bias errors, and misalignment of the
sensor assembly relative to the INS mounting fixture. In each case, the test procedure is
described and the analytics developed in detail for the associated data processing algorithms.

Chapter 19 provides three pertinent papers published by the author since the original publication
of this book in 2000. The first paper derives from velocity/position algorithms developed in
Chapter 7 that are designed to be exact under particular trajectory conditions (primarily, constant
strapdown angular rate and specific force over the velocity update interval). Using the exact

1-16 INTRODUCTION

velocity/position updating algorithm structure as a base, high speed routines are derived for
computing the algorithm input under general trajectory conditions. The result is a two speed
velocity/position algorithm structure that directly parallels the two-speed attitude updating
approach described in Chapter 7. The second paper provides an integrated and expanded
treatment of material on sensor quantization error described in several sections of this book. Of
particular interest are new sections rigorously describing how quantization error is properly
modeled to account for different attitude/velocity/position algorithm update rates. The third
paper addresses some fundamental questions on implicit assumptions used throughout the
book regarding inertial sensor measurements. Gyros measure angular rate relative to non-
rotating inertial space. Accelerometers measure specific force which when analytically
combined with gravitational acceleration provide total acceleration for integration into
velocity/position. Specific force has been defined as the acceleration relative to non-rotating
inertial space produced by non-gravitational forces. But what exactly is non-rotating inertial
space? What exactly is total acceleration? Is gravitation an absolute or a relative parameter?
Can specific force be defined without reference to gravity? The third paper in Chapter 19
provides some interesting answers to these and other fundamental inertial sensing questions.

With the exception of this Chapter 1 Introduction, each chapter includes an introductory
Overview section outlining the basic material to be covered. References for all chapters are
provided in the back of each of the Part 1 and 2 book volumes.

2-1

2 Terminology

2.0 OVERVIEW

Due to the diversity and scope of analytical topics treated in this book, coupled with
traditional analytical symbol usage in various areas and the limited number of symbols available
for use, the quest for a common symbol terminology throughout the book has been virtually
impossible to achieve. Unfortunately, symbols in some chapters of the book had to be used in
other chapters with different meanings. In general, however, the symbol definitions in
particular sections and chapters have single meanings that are generally consistent with
common usage (as appropriate). Two basic techniques have been incorporated to provide
clarity in symbol definitions throughout the book and to avoid the common need to search
previous sections and pages for the definition of symbols in current use: 1. Providing liberal
definitions of symbols in each section following equations in which they first appear (including
repeats of important previously provided definitions that are far removed from the current text),
and 2. Providing an alphabetized index for all symbols defined in the book, identifying the
immediately preceding equation, figure or section number (as appropriate) where their
definitions are provided.

This chapter provides an overview of the various analytical symbols used in the book.
Section 2.1 provides a general definition of mathematical notation utilized. A tabular listing is
included in Section 2.1 containing an alphabetized listing of all mathematical notations defined
throughout the book, identifying where their definitions are provided. Section 2.2 defines the
coordinate frames most commonly used throughout the book for describing vector components
and attitude orientations. Section 2.2 also describes the Coordinate Frame Index provided in the
back of the book containing an alphabetized listing of all coordinate frames defined throughout
the book, identifying where their definitions are provided. Section 2.3 describes the Parameter
Index provided in the back of the book containing an alphabetized listing of all analytical
parameters defined throughout the book (exclusive of coordinate frames), identifying where
their definitions are provided. The section, figure and equation numbering convention selected
for the book provides the key for finding the location of analytical definitions identified in the
Section 2.1 - 2.3 alphabetical tabular listings.

Section numbers in the book begin with the chapter number in which the section appears
(e.g., Section 7.1.2.4 is found in Chapter 7 as the fourth subsection of Section 7.1.2, Section
7.1.2 is the second subsection under Section 7.1 and Section 7.1 is the first technical subsection

2-2 TERMINOLOGY

in Chapter 7, following the Section 7.0 Overview). The .0 section designation is reserved for
the overview that appears at the beginning of each chapter (with the exception of Chapter 1
which has no overview).

Figure and table numbers in the book are numbered consecutively beginning with 1 for each
section. Each figure (or table) number begins with the section number where it is presented,
followed by the figure (or table) number (e.g., Figure 3.2.2-1 is the first numbered figure found
in Section 3.2.2; Table 2.1-1 is the first numbered table in Section 2.1).

Equation numbers in the book are numbered consecutively beginning with 1 for each
section, and are also enclosed in brackets (e.g., Equation (7.1.2.3-8) is the eighth numbered
equation in Section 7.1.2.3).

Definitions for analytical terms provided throughout the book are preceded by the key word
“where” that immediately follows the equation, figure, or section number in which the
analytical term appears. For example, immediately following Equations (6.1.2-2) in Section
6.1.2 we find the phrase:

“where

uZN
N

 = Unit vector along the N Frame vertical axis (Z), projected on N Frame axes.

K1, K2, K3, K4 = Fine Alignment process estimation feedback control gains.

Etc.”

The uZN
N

, K1, K2, K3, K4, etc. terms appear in Equations (6.1.2-2).

The above described numbering convention allows a simple method for locating the
definition for a particular analytical term. One first locates the term in one of the three
appropriate alphabetical tabular listings described in Sections 2.1 - 2.3 to follow. The tabular
listing identifies the equation, figure, or section number immediately preceding the definition of
the analytical term. One then finds the identified equation, figure, or section number in the text,
finds the “where” word immediately following the number, and then locates the definition for
the analytical term of interest following the “where” word.

2.1 MATHEMATICAL NOTATION

A thorough introduction to the origin, meaning and use of the basic notation utilized
throughout the book is presented in Chapter 3. The principal mathematical notation is similar to
that first introduced in Reference 3, and is as follows:

MATHEMATICAL NOTATION 2-3

Coordinate Frame = Analytical abstraction defined by three consecutively numbered
(or lettered) unit vectors that are mutually perpendicular to one another in the
right hand sense. A coordinate frame can be visualized as a set of three
perpendicular lines (axes) passing through a common point (origin) with the unit
vectors emanating from the origin along the axes. In this book, the physical
position of each coordinate frame’s origin is arbitrary.

V = Vector without specific coordinate frame designation. A vector is a parameter that
has length and direction. The vectors used in this book are classified as “free
vectors”, hence, have no preferred location in coordinate frames in which they are
analytically described.

VA = Column matrix with elements equal to the projection of V on Coordinate Frame
A axes. The projection of V on each Frame A axis equals the dot product of V

with the coordinate Frame A axis unit vector. The elements of VA are also
identified as the components of V in coordinate Frame A.

VA × = Skew symmetric (or cross-product) form of VA represented by the square

matrix

0 - VZA VYA

VZA 0 - VXA

- VYA VXA 0

 in which VXA , VYA , VZA are t h e

components of VA. The matrix product of VA × with another A Frame
vector column matrix equals the cross-product of V with the vector in the A

Frame; i.e., VA × WA = V × W
 A

.

CA2

A1 = Direction cosine matrix that transforms a vector from its Coordinate Frame A2

projection form to its Coordinate Frame A1 projection form.

ωA1A2 = Angular rate of Coordinate Frame A2 relative to Coordinate Frame A1.

When A1 is a non-rotating inertial coordinate frame, ωA1A2 is the angular
rate that would be measured by angular rate sensors mounted on Frame A2.

aSF = Specific force acceleration defined as the acceleration relative to non-rotating
inertial space produced by applied non-gravitational forces. Accelerometers
measure aSF .

t = Time.

 =
d
dt

 = Derivative with respect to time.

≡ Equal by definition.

2-4 TERMINOLOGY

| | = Absolute value of a scalar quantity or the magnitude (“length”) of a vector.

Table 2.1-1 provides a complete listing of the mathematical symbols defined throughout the
book, identifying all book locations where their definitions are provided (by preceding equation
or section number).

Table 2.1-1 Mathematical Symbols

Symbol

Preceding

Equation, Figure,

Or Section No.

Symbol

Preceding

Equation, Figure,

Or Section No.

| | Sect. No. 2.1

d() (5.2.4-7)

∇ (5.1-2)

∂

∂P
(17.1.2.3-32)

∂

∂
(17.1.2.3-32)

Δ (16.2.5-1)

 (4.4.1.2.1-5)

() (4.4.1.2.1-6)

 Sect. No. 2.1

≡ Sect. No. 2.1

=
o (8.1.4.1.2-3)

 (3.5.2-1)

 (7.1.1.3-1)

 (7.1.2.3-1)

 (12.2.1-4)

 (12.3.1-2)

 (15.2.2.1-7)

 (18.2.1-1)

 (18.3-1)

 (18.3.1.2-1)

 (18.4.7-2)

 Sect. No. 3.5

(-) (15.1-4)

(-) (15.1.2-13)

(-) (15.1.2.1.1.4-3)

(-) (15.1.2.3-3)

(-) (15.1.5.3.2-6)

(-) (16.1.1-5)

- (7.1.1.3-3)

- (7.1.2.3-8)

- (7.2-6)

- (7.3.1-5)

(+) (15.1.2.1.1.4-3)

+ (7.1.1.3-3)

+ (7.1.2.3-8)

+ (7.2-6)

+ (7.3.1-5)

(+c) (15.1-4)

(+c) (15.1.2-13)

(+c) (15.1.2.3-3)

(+c) (15.1.5.3.2-1)

(+c) (16.1.1-5)

(+e) (15.1.2-13)

(+e) (15.1.2.3-1)

(+e) (15.1.5.3.2-6)

(+e) (16.1.1-12)

MATHEMATICAL NOTATION 2-5

´ (8.1.2.1-6)

´ (8.1.4.1.4-3)

′ (14.6.1-8)

' (16.2.3.3-2)

" (16.1.1.4-4)

Sign () (3.2.2.2-19)

Sign () (8.1.1.3-11)

Sign () (8.1.3.2-2)

Sign () (10.6.2-9)

Sign () (15.1.2.1.1.4-3)

Sign () (18.4.7.1-3)

Sign (V) (8.1.3.3-6)

* (15.2.1.1-11)

* (16.1.1-12)

* (16.2.3-6)

Step() (8.1.3.2-1)

Step() (18.1.1-3)

T (3.1-12)

T (3.5.1-2)

 (12.3.1-2)

 (12.4-5)

 (13.4.1.1-2)

 (15.1.2-13)

 (15.2.2.1-26)

 (18.2.1-1)

 (18.3-1)

VA ⋅ (3.1.1-11)

VA× (3.1.1-13)

2.2 COORDINATE FRAME DEFINITIONS

A complete alphabetized listing of the coordinate frames defined throughout the book is
provided in the Coordinate Frame Index at the end of each of the book's Part 1 and Part 2
volumes (following the Subject Index), identifying all book locations where their definitions are
provided (by preceding equation, figure or section number).

The following defines the most commonly used coordinate frames:

E Frame = Earth fixed coordinate frame used for position location definition.
Typically defined with one axis parallel to the earth polar axis with the
other axes fixed to the earth and parallel to the equatorial plane.

N Frame = Navigation coordinate frame having its Z axis parallel to the upward
vertical at the local earth surface referenced position location point on the
earth’s surface. Used for integrating acceleration into velocity and for
defining the angular orientation of the local vertical in the E Frame.

L Frame = Locally level coordinate frame parallel to the N Frame but with Z axis
parallel to the downward vertical, and X, Y axes along N Frame Y, X
axes. Used as the reference for describing the strapdown sensor
coordinate frame orientation.

Geo Frame = Locally level geographic coordinate frame defined with its Z axis
upward along the local geodetic vertical, Y axis north (and horizontal)
with X axis east (and horizontal).

2-6 TERMINOLOGY

B Frame = Strapdown inertial sensor coordinates (“body frame”) with axes parallel to
nominal right handed orthogonal sensor input axes. This definition applies
to Chapters 4 - 18. In Chapter 3, the B Frame is an arbitrary coordinate
frame used to describe generalized vector/matrix characteristics.

I Frame = Non-rotating inertial coordinate frame used as a reference for angular
rotation measurements. Particular orientations selected for the I Frame are
discussed in the sections when their orientation is pertinent to analytical
operations.

2.3 PARAMETER DEFINITIONS

The Parameter Index included at the end of each of the book's Part 1 and Part 2 volumes
(following the Subject and Coordinate Frame Indexes) provides a complete alphabetized listing
of the computational parameters defined throughout the book (exclusive of coordinate frames),
identifying all book locations where their definitions are provided (by preceding equation, figure
or section number).

The convention followed in the alphabetization process is to order numerical digits first (in
numerical order with 0 first) and Arabic letters second (in alphabetical order) with upper case
letters preceding lower case letters. There is no discrimination between underlined versus non-
underlined identical characters, or between identical characters of different Font size or physical
position (subscripted, superscripted or normal). When identical characters appear in several
book locations, they are listed in the Parameter Index in order of Equation number first, Figure
number second and Section number last. Grammatical, mathematical and other special
symbols appearing in a particular parameter are treated uniquely in the alphabetization process
for each type. They should not cause difficulty in locating a particular parameter in the
Parameter Index if they are ignored; the parameter of interest with its special symbols will be
found nearby and can easily be identified by a quick visual search.

Complex parameters with superscripts and subscripts are alphabetized considering the main
character(s) first, the subscripted character(s) second and the superscripted character(s) last. For

example, the character aSFXForm

A
 would be alphabetized according to the name aSFXFormA.

The convention for alphabetizing Greek letters in the Parameter Index is according to its
complete Arabic spelling as summarized in Table 2.3-1.

PARAMETER DEFINITIONS 2-7

Table 2.3-1 Greek Symbols Utilized

 GREEK SYMBOL ARABIC SPELLING

Upper Lower Upper Lower
 Case Case Case Case

Not Used α Alpha alpha

Not Used β Beta beta

 Γ γ Gamma gamma

 Δ δ Delta delta

Not Used ε Epsilon epsilon

Not Used ζ Zeta zeta

Not Used η Eta eta

 ϑ or Θ θ Theta theta

Not Used Not Used Iota iota

Not Used κ Kappa kappa

 Λ λ Lambda lambda

Not Used μ Mu mu

Not Used ν Nu nu

Not Used ξ Xi xi

Not Used Not Used Omicron omicron

 Π π Pi pi

Not Used ρ Rho rho

 Σ σ Sigma sigma

Not Used τ Tau tau

Not Used υ Upsilon upsilon

 Φ φ or ϕ Phi phi

Not Used χ Chi chi

 Ψ ψ Psi psi

 Ω ω Omega omega

Thus, according to Table 2.3-1 and the alphabetizing convention described previously, the

parameter ΔαωEBH

L
 would be alphabetized according to the name DeltaalphaomegaEBHL

2-8 TERMINOLOGY

The ⊥ and ∂ symbols in the Parameter Index are alphabetized according to “Perp” (for ⊥)

and “del” (for ∂).

3-1

3

Vector, Attitude And
Coordinate Frame Fundamentals

3.0 OVERVIEW

Strapdown inertial navigation system analysis deals with the description of vector and
attitude orientation parameters, their rates of change and associated error characteristics. In this
chapter we provide a detailed introduction to the origin, meaning and use of the basic analytical
notation applied throughout the book for strapdown system analysis.

Section 3.1 describes the basic concept of a vector, its mathematical description in selected
coordinate frames, and its transformation properties between coordinate frames. Section 3.2
provides an analytical description of four commonly used methods for describing the relative
attitude orientation between two coordinate frames: the direction cosine matrix, the rotation
vector, Euler angles, and the attitude quaternion. Included are analytical methods for converting
one attitude form to another, and methods for transforming vectors between coordinate frames
using direction cosines or the attitude quaternion.

Section 3.3 derives equations that describe the rate of change of the Section 3.2 attitude
orientation parameters. Section 3.4 develops equations for describing the rate of change of
vector components in one coordinate frame in terms of its component rates of change in another
frame when there is an angular rotation rate between the two coordinate frames.

Section 3.5 provides a detailed analytical discussion of the error characteristics associated
with vector and attitude orientation parameters, with particular emphasis on fundamental
definitions for error parameters described in various coordinate frames and their associated
transformation properties between coordinate frames.

3.1 VECTORS AND COORDINATE FRAME TRANSFORMATIONS

Consider an arbitrary vector expressed as the sum of its components projected on the axes of
an arbitrary coordinate frame:

V = VXA uXA + VYA uYA + VZA uZA (3.1-1)

where

V = Arbitrary vector.

3-2 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

A = Arbitrary right handed coordinate frame.

uXA , uYA , uZA = Unit vectors along coordinate Frame A axes X, Y, and Z.

VXA , VYA , VZA = Projections of V on Frame A axes X, Y, and Z defined as the
magnitude (or length) of V multiplied by the cosine of the angles
between V and X, Y or Z.

The same vector V can also be expressed in terms of its projections along the axes of another
arbitrary coordinate frame:

V = VXB uXB + VYB uYB + VZB uZB (3.1-2)

where

B = Another arbitrary right handed orthogonal coordinate frame.

uXB, uYB, uZB = Unit vectors along Frame B axes X, Y, and Z.

VXB, VYB, VZB = Projections of V on Frame B axes X, Y, and Z.

Classical vector algebra (Reference 38, Section 13-3) defines the dot product between two
arbitrary vectors V and W to be:

V ⋅ W = V W cos φ (3.1-3)

where

V, W = Magnitude (or length) of V, W.

φ = Angle between V and W.

An expression for VXA in terms of the V components in Frame B is obtained by equating
Equations (3.1-1) and (3.1-2) and taking the dot product of the result with uXA . Since the
magnitude of uXA is one, we then have with (3.1-3):

VXA = VXB uXA ⋅ uXB + VYB uXA ⋅ uYB + VZB uXA ⋅ uZB (3.1-4)

Performing similar operations for the Y and Z components yields the following for the
Frame A components of V in terms of the Frame B components:

VXA = VXB uXA ⋅ uXB + VYB uXA ⋅ uYB + VZB uXA ⋅ uZB

VYA = VXB uYA ⋅ uXB + VYB uYA ⋅ uYB + VZB uYA ⋅ uZB

VZA = VXB uZA ⋅ uXB + VYB uZA ⋅ uYB + VZB uZA ⋅ uZB

(3.1-5)

VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-3

The Frame B components as a function of the Frame A components are obtained similarly
using dot products with the Frame B unit vectors:

VXB = VXA uXB ⋅ uXA + VYA uXB ⋅ uYA + VZA uXB ⋅ uZA

VYB = VXA uYB ⋅ uXA + VYA uYB ⋅ uYA + VZA uYB ⋅ uZA

VZB = VXA uZB ⋅ uXA + VYA uZB ⋅ uYA + VZA uZB ⋅ uZA

(3.1-6)

The dot product between a coordinate axis unit vector in Frame A and a Frame B coordinate
axis unit vector equals the cosine of the angle between the respective Frame A and Frame B
axes, and is identified as the direction cosine between the respective axes. Equations (3.1-5)
and (3.1-6) can be compressed if we then adopt the following notation for the A and B Frame
unit vector dot products:

CI J ≡ uIA ⋅ uJB = uJB ⋅ uIA (3.1-7)

where

CI J = Direction cosine between axis I of Frame A and axis J of Frame B.

With the above definition, Equations (3.1-5) and (3.1-6) become:

VXA = C11 VXB + C12 VYB + C13 VZB

VYA = C21 VXB + C22 VYB + C23 VZB

VZA = C31 VXB + C32 VYB + C33 VZB

(3.1-8)

VXB = C11 VXA + C21 VYA + C31 VZA

VYB = C12 VXA + C22 VYA + C32 VZA

VZB = C13 VXA + C23 VYA + C33 VZA

(3.1-9)

Equations (3.1-8) and (3.1-9) are now in a form that can be adapted to standard matrix
algebra notation (Reference 37, Chapter 4 - Section 16). We first define the following matrices:

VA ≡

VXA

VYA

VZA

VB ≡

VXB

VYB

VZB

CB
A

 ≡

C11 C12 C13

C21 C22 C23

C31 C32 C33

(3.1-10)

where

CB
A

 = Direction cosine matrix that converts vector components from the Frame B to

the Frame A projection form.

3-4 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

Substituting the Equation (3.1-10) definitions In (3.1-8) and (3.1-9) then yields the following
equivalent matrix expressions:

VA = CB
A

 VB VB = CA
B

 VA (3.1-11)

in which, from Equations (3.1-8) - (3.1-10),

CA
B

 = CB
A T

CB
A

 = CA
B T

(3.1-12)

where

T = Superscript designating matrix transpose.

Equations (3.1-11) are known as “vector transformation” operations. Based on Equations
(3.1-11), we can also refine our definition of a vector expressed as a column matrix, and a
direction cosine matrix for transforming the vector, where:

VA, VB = Column matrix vectors whose elements equal the projections of vector V
on coordinate Frame A and B axes.

CB
A

 = Direction cosine matrix that will transform a column matrix vector from

coordinate Frame B to coordinate Frame A.

Let us now substitute the Equations (3.1-11) VB expression into the VA equation, using

(3.1-12) for CA
B

. The result is:

VA = CB
A

 VB = CB
A

 CA
B

 VA = CB
A

 CB
A T

 VA (3.1-13)

From Equation (3.1-13) it is clear that:

CB
A

 CB
A T

 = I (3.1-14)

where

I = Identity matrix.

Multiplying (3.1-14) by the inverse of CB
A

 then obtains:

CB
A -1

 = CB
A T

(3.1-15)

VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-5

Similar operations applied to the VB expression in Equations (3.1-11) yield the equivalent

relation for the CA
B

 matrix:

CA
B -1

 = CA
B T

(3.1-16)

Equations (3.1-15) and (3.1-16) show that the inverse of a direction cosine matrix equals its
transpose.

Let us now transform one of the Frame B coordinate axis unit vectors into Frame A and

substitute the expression for CB
A

 from (3.1-10):

uJB
A

 = CB
A

 uJB
B

 =

C1J

C2J

C3J

(3.1-17)

where

J = Index of 1, 2 or 3 corresponding to B Frame X, Y or Z axes.

Hence, for the CB
A

 definition in (3.1-10):

CB
A

 = u1B
A

u2B
A

u3B
A (3.1-18)

Equation (3.1-18) shows that the columns of CB
A

 represent coordinate axis unit vectors in

Frame B projected on Frame A axes.

Similarly, the converse operation for the Frame A coordinate axis unit vectors using CA
B

from Equations (3.1-12) yields:

uIA
B

 = CA
B

 uIA
A

 = CB
A T

 uIA
A

 =

CI1

CI2

CI3

(3.1-19)

and

CA
B

 = u1A
B

u2A
B

u3A
B (3.1-20)

3-6 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

where

I = Index of 1, 2 or 3 corresponding to A Frame axis X, Y or Z.

Equation (3.1-20) shows that the columns of CA
B

 represent Frame A coordinate axis unit

vectors projected on Frame B axes.

Now consider yet another arbitrary coordinate frame for which we write the equivalent to
(3.1-11) for VB:

VB = CD
B

 VD (3.1-21)

where

D = Yet another arbitrary right handed coordinate frame.

CD
B

 = Direction cosine matrix that transforms vectors from the D to the B Frame.

Substituting Equation (3.1-21) into the Equations (3.1-11) VA expression yields:

VA = CB
A

 CD
B

 VD (3.1-22)

But,

VA = CD
A

 VD (3.1-23)

where

CD
A

 = Direction cosine matrix that transforms vectors from the D to the A Frame.

Equating (3.1-22) and (3.1-23) shows that:

CD
A

 = CB
A

 CD
B

(3.1-24)

which is the chain rule for direction cosine matrix products.

3.1.1 VECTOR PRODUCT OPERATORS AND
TRANSFORMATION CHARACTERISTICS

Consider two arbitrary vectors with components defined in an arbitrary coordinate Frame A:

V = VXA uXA + VYA uYA + VZA uZA

W = WXA uXA + WYA uYA + WZA uZA
(3.1.1-1)

VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-7

where

V, W = Arbitrary vectors.

uXA , uYA , uZA = Unit vectors along Frame A coordinate axes.

VXA , VYA , VZA = Components of V in Frame A.

WXA , WYA , WZA = Components of W in Frame A.

Repeating Equation (3.1-3), the definition of the dot product between V and W is:

V ⋅ W = V W cos φ (3.1.1-2)

Note from its definition, that the dot product is a scalar quantity.

The definition of the cross-product (Reference 38, Section 13-4) between V and W is:

V × W = n V W sin φ (3.1.1-3)

where

n = Unit vector perpendicular to V and W whose positive direction is defined by the
right hand rule that curls the fingers of the right hand from V into W, with positive
n thereby provided in the thumb pointing direction.

Note from its definition, that the cross product is a vector quantity. Also note that Equations

(3.1.1-2) and (3.1.1-3), the definition for n, and the definition for φ (following Equation (3.1-3))

do no specify whether the angle selected for φ (i.e., between V and W) is greater or less than π
(i.e., there are two ways to measure the angle between V and W; the “short” angular way when

φ is less than π, and the “long” angular way in which φ is 2 π minus the shorter φ). Equations

(3.1.1-2) and (3.1.1-3) are compatible with either definition because cos φ in (3.1.1-2) equals

cos (2 π - φ) , sin φ in (3.1.1-3) equals - sin (2 π - φ) , and the direction of n in (3.1.1-3) (by the
previous n definition) for the “shorter” angular direction “from V into W”, is the negative of
the n vector corresponding to the “longer” angular direction “from V into W”. We suffer no

loss of generality if we consider φ to be less than π which then defines the n vector from the

right hand rule using the shorter angular distance “from V into W”. By this selection, sin φ in
(3.1.1-3) is always positive.

Classical vector algebra and geometry (Reference 38, Sections 13-2 through 13-4) shows
that:

3-8 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

V = VXA
2

 + VYA
2

 + VZA
2

W = WXA
2

 + WYA
2

 + WZA
2

(3.1.1-4)

V ⋅ W = VXA WXA + VYA WYA + VZA WZA (3.1.1-5)

V × W = VYA WZA - VZA WYA uXA

 + VZA WXA - VXA WZA uYA + VXA WYA - VYA WXA uZA
(3.1.1-6)

We also note from Equations (3.1.1-5) and (3.1.1-6) that:

V ⋅ W = W ⋅ V (3.1.1-7)

V × W = - W × V (3.1.1-8)

As in Section 3.1, we now utilize a matrix format to define V and W in Frame A:

VA ≡

VXA

VYA

VZA

WA ≡

WXA

WYA

WZA

(3.1.1-9)

Using the basic rules of matrix algebra (Reference 37, Chapter 4 - Section 16) we see that the
equivalent to dot product Equation (3.1.1-5) is:

VA ⋅ WA ≡ VA T
 WA (3.1.1-10)

or, if we define a dot product operator, Equation (3.1.1-10) is equivalently:

VA ⋅ WA ≡ VA ⋅ WA (3.1.1-11)

where

VA ⋅ = Dot product operator associated with VA.

Comparing Equations (3.1.1-11) and (3.1.1-10) we see that:

VA ⋅ ≡ VA T
(3.1.1-12)

We also can define a cross-product operator for VA such that:

VA× WA ≡ VA × WA (3.1.1-13)

VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-9

where

VA× = Cross product operator associated with VA.

Applying the standard rules for matrix products (Reference 37, Chapter 4 - Section 16), we see
from Equations (3.1.1-6) and (3.1.1-13) that:

VA× ≡

0 - VZA VYA

 VZA 0 - VXA

 - VYA VXA 0

(3.1.1-14)

From Equation (3.1.1-14) we see that VA× is a skew symmetric matrix; the diagonal
elements are zero and the upper right off-diagonal elements equal the negative of the lower left

off-diagonal elements. For this reason, the VA× matrix is sometimes referred to as the skew

symmetric form of VA.

A useful property of the product of skew symmetric and standard vector forms is the
following (as can be verified by individual component substitution and expansion):

V1
A

 × V2
A

 × V3
A

 = V1
A× V2

A× V3
A

 = V1
A× V2

A× V3
A

 = V1
A× V2

A× V3
A

(3.1.1-15)
where

V1
A

, V2
A

, V3
A

 = Arbitrary vectors projected on arbitrary Frame A axes.

It will also be useful to develop an expression for the cross-product operator associated with
the cross-product of two vectors. This is accomplished using from general vector algebra
(Reference 37, Chapter 4 - Section 6), the vector triple cross product identity:

V1 × V2 × V3 = V2 V1 ⋅ V3 - V3 V1 ⋅ V2 (3.1.1-16)

where

V1, V2, V3 = Arbitrary vectors.

By interchanging indices 1 and 2, Equation (3.1.1-16) is equivalently:

V2 × V1 × V3 = V1 V2 ⋅ V3 - V3 V2 ⋅ V1 (3.1.1-17)

By exchanging indices 3 for 1, 1 for 2 and 2 for 3, and applying Equations (3.1.1-7) and
(3.1.1-8), Equation (3.1.1-16) can also be written as:

3-10 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

V1 × V2 × V3 = - V1 V2 ⋅ V3 + V2 V1 ⋅ V3 (3.1.1-18)

We now take the difference between Equations (3.1.1-16) and (3.1.1-17) to obtain, with
(3.1.1-18):

V1 × V2 × V3 - V2 × V1 × V3 = V2 V1 ⋅ V3 - V1 V2 ⋅ V3

 = V1 × V2 × V3

(3.1.1-19)

With (3.1.1-13), Equation (3.1.1-19) becomes after rearrangement in our arbitrary A Frame:

V1
A

 × V2
A

 × V3
A

 = V1
A

 × V2
A

 × V3
A

 - V2
A

 × V1
A

 × V3
A

(3.1.1-20)

or with (3.1.1-15):

V1
A

 × V2
A

 × V3
A

 = V1
A

 × V2
A

 × V3
A

 - V2
A

 × V1
A

 × V3
A

(3.1.1-21)

Since V3
A

 was defined as an arbitrary vector, Equation (3.1.1-21) simplifies to the following

expression for the skew symmetric form of the cross-product between two vectors:

V1
A

 × V2
A

 × = V1
A

 × V2
A

 × - V2
A

 × V1
A

 × (3.1.1-22)

To develop the coordinate frame transformation characteristics of VA ⋅ and VA× , we
reintroduce Equations (3.1-11) from Section 3.1 applied to V and W:

VA = CB
A

 VB VB = CA
B

 VA (3.1.1-23)

WA = CB
A

 WB WB = CA
B

 WA (3.1.1-24)

where

CB
A

, CA
B

 = Direction cosine matrices that transform vectors from arbitrary coordinate

Frame B to arbitrary coordinate Frame A, and from Frame A to Frame B.

Applying (3.1.1-23) to (3.1.1-12) shows that:

VA ⋅ = VA T
 = CB

A
 VB ⋅ = CB

A
 VB T

 = VB T
 CB

A T
(3.1.1-25)

or, with Equations (3.1-12) and (3.1.1-12):

VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-11

VA ⋅ = VB ⋅ CA
B

(3.1.1-26)

Similarly:

VB ⋅ = VA ⋅ CB
A

(3.1.1-27)

Equations (3.1.1-26) and (3.1.1-27) are the dot product operator transformation equivalents to
Equations (3.1.1-23).

Applying Equations (3.1.1-23), (3.1.1-24) and (3.1-15) to Equation (3.1.1-10) also shows
that:

VA ⋅ WA = VA T
 WA = CB

A
 VB T

 CB
A

 WB

 = VB T
 CB

A T
 CB

A
 WB = VB T

 WB
(3.1.1-28)

or, with (3.1.1-10):

VA ⋅ WA = VB ⋅ WB (3.1.1-29)

Hence, the dot product is identical in all coordinate frames (“invariant”).

In order to investigate the transformation characteristics of VA× , we reintroduce Equation
(3.1-20) with (3.1-12) from Section 3.1:

CB
A T

 = u1A
B

u2A
B

u3A
B CB

A
 =

u1A
B T

u2A
B T

u3A
B T

(3.1.1-30)

where

u1A
B

, u2A
B

, u3A
B

 = Unit vectors along A Frames axes 1, 2, 3 (i.e., X, Y, Z) projected on

Frame B axes.

Substituting (3.1.1-30) for CB
A

 in (3.1.1-23) and applying (3.1.1-10) obtains:

VA = CB
A

 VB =

u1A
B T

 VB

u2A
B T

 VB

u3A
B T

 VB

 =

u1A
B

 ⋅ VB

u2A
B

 ⋅ VB

u3A
B

 ⋅ VB

(3.1.1-31)

3-12 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

With (3.1.1-31), the VA× cross-product operator becomes from (3.1.1-14):

VA × = CB
A

 VB × =

0 - u3A
B

 ⋅ VB u2A
B

 ⋅ VB

 u3A
B

 ⋅ VB 0 - u1A
B

 ⋅ VB

 - u2A
B

 ⋅ VB u1A
B

 ⋅ VB 0

(3.1.1-32)

From the definitions of u1A
B

, u2A
B

, u3A
B

, we can write:

u1A
B

 = u2A
B

 × u3A
B

 = - u3A
B

 × u2A
B

u2A
B

 = u3A
B

 × u1A
B

 = - u1A
B

 × u3A
B

u3A
B

 = u1A
B

 × u2A
B

 = - u2A
B

 × u1A
B

u1A
B

 × u1A
B

 = u2A
B

 × u2A
B

 = u3A
B

 × u3A
B

 = 0

(3.1.1-33)

With (3.1.1-33), Equation (3.1.1-32) can be expanded to the following equivalent form:

CB
A

 VB × =

u1A
B

 × u1A
B

 ⋅ VB u2A
B

 × u1A
B

 ⋅ VB u3A
B

 × u1A
B

 ⋅ VB

u1A
B

 × u2A
B

 ⋅ VB u2A
B

 × u2A
B

 ⋅ VB u3A
B

 × u2A
B

 ⋅ VB

u1A
B

 × u3A
B

 ⋅ VB u2A
B

 × u3A
B

 ⋅ VB u3A
B

 × u3A
B

 ⋅ VB

(3.1.1-34)

From general vector algebra (Reference 37, Chapter 4 - Section 6), the mixed vector dot/cross
product identity states that:

V1 × V2 ⋅ V3 = V2 × V3 ⋅ V1 = V3 × V1 ⋅ V2 (3.1.1-35)

where

V1, V2, V3 = Arbitrary vectors.

Applying (3.1.1-35) to (3.1.1-34) then obtains:

VECTORS AND COORDINATE FRAME TRANSFORMATIONS 3-13

CB
A

 VB × =

u1A
B

 ⋅ VB × u1A
B

 u1A
B

 ⋅ VB × u2A
B

 u1A
B

 ⋅ VB × u3A
B

u2A
B

 ⋅ VB × u1A
B

 u2A
B

 ⋅ VB × u2A
B

 u2A
B

 ⋅ VB × u3A
B

u3A
B

 ⋅ VB × u1A
B

 u3A
B

 ⋅ VB × u2A
B

 u3A
B

 ⋅ VB × u3A
B

(3.1.1-36)

or, with (3.1.1-12) and (3.1.1-13):

CB
A

 VB × =

u1A
B T

 VB× u1A
B

 u1A
B T

 VB× u2A
B

 u1A
B T

 VB× u3A
B

u2A
B T

 VB× u1A
B

 u2A
B T

 VB× u2A
B

 u2A
B T

 VB× u3A
B

u3A
B T

 VB× u1A
B

 u3A
B T

 VB× u2A
B

 u3A
B T

 VB× u3A
B

(3.1.1-37)

If we utilize Equations (3.1.1-30) for CB
A

 and CB
A T

 we would find that the matrix product

group CB
A

 VB× CB
A T

 is exactly equal to the right side of Equation (3.1.1-37). We thereby

conclude from (3.1.1-37) that:

CB
A

 VB × = CB
A

 VB× CB
A T

(3.1.1-38)

or with (3.1.1-23):

VA× = CB
A

 VB× CB
A T

(3.1.1-39)

Similar analysis also reveals that:

VB× = CA
B

 VA× CA
B T

(3.1.1-40)

Equations (3.1.1-39) and (3.1.1-40) are the cross product operator transformation
equivalents to Equations (3.1.1-23). The general matrix product form on the right of Equations
(3.1.1-39) and (3.1.1-40) is denoted as a similarity transformation used to transform a dyadic
from one coordinate frame to another. In fact, the formal definition of a dyadic is a parameter
that transforms between coordinate frames with a similarity transformation. Equations
(3.1.1-39) and (3.1.1-40) show that a similarity transformation can be utilized to transform a
cross-product operator from one coordinate frame to its equivalent form in another. We
conclude, therefore, that the cross-product operator is a dyadic.

Equation (3.1.1-39) applied to another arbitrary vector W provides an equivalent vector

cross-product relationship. Multiplying (3.1.1-39) by WA and applying (3.1.1-24) yields:

3-14 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

VA× WA = CB
A

 VB× CB
A T

 WA = CB
A

 VB× WB (3.1.1-41)

or with (3.1.1-13):

VA × WA = CB
A

 VB × WB (3.1.1-42)

Thus, the transform of the cross-product between two vectors equals the cross-product of the
transformed vectors.

Another useful transformation relationship involves the component of an arbitrary vector V
that is perpendicular to some arbitrarily defined unit vector u. The component of V
perpendicular to u equals V minus the component of V along u, hence, in our arbitrary A and B
Frames:

V⊥
A

 = VA - VA ⋅ uA uA (3.1.1-43)

V⊥
B

 = VB - VB ⋅ uB uB (3.1.1-44)

where

V⊥

 = Component of V perpendicular to u.

Let’s now transform (3.1.1-44) into the A Frame (using (3.1.1-23) and (3.1.1-29)) to obtain:

CB
A

 V⊥
B

 = CB
A

 VB - VB ⋅ uB uB = VA - VB ⋅ uB uA

 = VA - VA ⋅ uA uA = V⊥
A (3.1.1-45)

But we also know from (3.1.1-23) that:

V⊥
A = CB

A
 VB

⊥ (3.1.1-46)

Combining (3.1.1-45) and (3.1.1-46) then shows that:

CB
A

 VB

⊥ = CB
A

 V⊥
B (3.1.1-47)

Thus, the same result is obtained if we first find the V component perpendicular to u and then
transform the perpendicular component to another coordinate frame, or if we first transform V
and then find its component perpendicular to u in the new frame.

ATTITUDE PARAMETERS 3-15

3.2 ATTITUDE PARAMETERS

Four commonly used parameters for representing the relative angular orientation between
two coordinate frames are direction cosines (i.e., the elements of the direction cosine matrix),
the rotation vector, Euler angles and the attitude quaternion. Analytical properties of each are
discussed in the following subsections as well as analytical equivalencies between them.

3.2.1 DIRECTION COSINES

The direction cosine matrix is frequently applied in strapdown inertial system analysis to
describe the relative attitude between two coordinate frames. It has the advantage of being
easily used to transform vectors between the two frames. From Sections 3.1 and 3.1.1, the
properties of the direction cosine matrix are as follows:

VA ≡

VXA

VYA

VZA

VB ≡

VXB

VYB

VZB

VA ⋅ ≡ VA T
VB ⋅ ≡ VB T

(3.2.1-1)

VA× ≡

0 - VZA VYA

 VZA 0 - VXA

 - VYA VXA 0

 VB× ≡

0 - VZB VYB

 VZB 0 - VXB

 - VYB VXB 0

CB
A

 ≡

C11 C12 C13

C21 C22 C23

C31 C32 C33

VA = CB
A

 VB VB = CA
B

 VA (3.2.1-2)

CA
B

 = CB
A T

CB
A

 = CA
B T

(3.2.1-3)

CB
A -1

 = CB
A T

CA
B -1

 = CA
B T

(3.2.1-4)

CD
A

 = CB
A

 CD
B

(3.2.1-5)

3-16 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

CB
A

 = u1B
A

u2B
A

u3B
A CA

B
 = u1A

B
u2A

B
u3A

B (3.2.1-6)

VA ⋅ = VB ⋅ CA
B

VB ⋅ = VA ⋅ CB
A

(3.2.1-7)

VA× = CB
A

 VB× CB
A T

VB× = CA
B

 VA× CA
B T

(3.2.1-8)

where

VA, VB = Column matrices whose elements equal the projections of vector V on
coordinate Frame A and B axes.

CB
A

, CA
B

, CD
A

, CD
B

 = Direction cosine matrices that transform vectors from coordinate

Frame B to A, from coordinate Frame A to B, from coordinate
Frame D to A, and from coordinate Frame D to B.

VXA , VYA , VZA = Projections of V on Frame A axes X, Y, and Z.

VXB, VYB, VZB = Projections of V on Frame B axes X, Y, and Z.

CI J = Direction cosine between axis I of Frame A and axis J of Frame B.

u1B
A

, u2B
A

, u3B
A

 = Unit vectors along Frame B axes X, Y, Z (i.e., 1, 2, 3) as projected on

Frame A (superscript) coordinate axes.

u1A
B

, u2A
B

, u3A
B

 = Unit vectors along Frame A axes X, Y, Z (i.e., 1, 2, 3) as projected

on Frame B (superscript) coordinate axes.

3.2.1.1 DIRECTION COSINE MATRIX FROM
TRANSFORMED VECTOR COMPONENTS

Occasionally the components of a vector are known in two coordinate frames and it is
desired to calculate the direction cosine matrix between the two frames from the vector

components. Specifically, the problem we pose in this section is: Given VA1 and VA2, Find

CA2

A1 that satisfies:

VA1 = CA2

A1 VA2 (3.2.1.1-1)

There is no unique solution for CA2

A1 that can be obtained from Equation (3.2.1.1-1) without

imposing an additional constraint. A common form of the constraint is the equivalent to
Equation (3.2.1.1-1) operating on another vector:

ATTITUDE PARAMETERS 3-17

UA1 = CA2

A1 UA2 (3.2.1.1-2)

where

U = Another vector.

We also define a third vector W as the cross-product between U and V . In the A2 Frame:

WA2 ≡ UA2 × VA2 (3.2.1.1-3)

The A2 Frame components of W can be expressed as a function of the A1 Frame components
as:

WA1 = CA2

A1 WA2 (3.2.1.1-4)

We can also calculate WA1 using generalized Equation (3.1.1-42):

WA1 = UA1 × VA1 (3.2.1.1-5)

Given UA1, VA1, UA2 and VA2, Equations (3.2.1.1-1), (3.2.1.1-2) and (3.2.1.1-4) with
(3.2.1.1-3) and (3.2.1.1-5) constitute a deterministic set of simultaneous equations that can now

be solved for CA2

A1. The solution is obtained by first defining the following matrix forms:

DA1 ≡ UA1 VA1 WA1 DA2 ≡ UA2 VA2 WA2 (3.2.1.1-6)

for which Equations (3.2.1.1-1), (3.2.1.1-2) and (3.2.1.1-4) become:

DA1 = CA2

A1 DA 2 (3.2.1.1-7)

The solution to (3.2.1.1-7) for CA2

A1 then is:

CA2

A1 = DA1 DA2 -1
(3.2.1.1-8)

Equation (3.2.1.1-8) is valid provided that DA2 -1
 is non-singular. The non-singularity

condition is that the determinant of DA2 be non-zero. By substituting (3.2.1.1-3) into the

(3.2.1.1-6) DA2 expression and expanding UA2, VA2, WA2 in A2 Frame component form, it is

easily shown that the determinant of DA2 is:

Determinant DA2 = WA2 ⋅ WA2 (3.2.1.1-9)

3-18 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

Thus, the DA2 determinant is non-zero (and DA2 -1
 non-singular) if WA2 is non-zero. From

Equation (3.2.1.1-3) we see that this condition is satisfied if UA2 and VA2 are non-parallel. An

optimum configuration would have UA2 perpendicular to VA2.

Let us now consider another solution approach for CA2

A1 in Equation (3.2.1.1-1) based on a

different constraint relationship. To do this, we employ the “rotation vector” concept (to be
introduced in Section 3.2.2) in which the attitude of coordinate Frame A2 is defined relative to
Frame A1 as the attitude that Frame A1 would assume following a single rotation of Frame A1
around a specified “rotation vector” through an angle equal to the rotation vector magnitude.

Generalized Equation (3.2.2.1-4) defines the equivalency between the CA2

A1 direction cosine

matrix and its associated rotation vector. Let’s see what the solution is for CA2

A1 in Equation

(3.2.1.1-1), if we define a constraint relationship for (3.2.1.1-1) as the requirement that the

magnitude of the rotation vector associated with CA2

A1 be minimum. To embody this constraint,

we begin by substituting generalized Equation (3.2.2.1-4) with (3.2.2.1-6) for CA2

A1 into

(3.2.1.1-1) using (3.1.1-15):

VA1 = VA2 + sin φ uφ
A2 × VA2 + (1 - cos φ) uφ

A2 × uφ
A2 × VA2 (3.2.1.1-10)

where

uφ
A2 = Unit vector along the rotation vector associated with CA2

A1.

φ = Magnitude of the CA2

A1 rotation vector.

The triple cross-product term in (3.2.1.1-10) can be expanded using the Equation (3.1.1-16)
triple vector product identity:

uφ
A2 × uφ

A2 × VA2 = uφ
A2 uφ

A2 ⋅ VA2 - VA2 (3.2.1.1-11)

Substituting (3.2.1.1-11) in (3.2.1.1-10) then yields:

VA1 = sin φ uφ
A2 × VA2 + cos φ VA2 + (1 - cos φ) Vφ uφ

A2 (3.2.1.1-12)

with

Vφ ≡ uφ
A2 ⋅ VA2 (3.2.1.1-13)

ATTITUDE PARAMETERS 3-19

where

Vφ = Component of VA2 along uφ
A2.

If (3.2.1.1-12) is now multiplied by the transpose of VA2, we find after application of
(3.1.1-10), substitution of (3.2.1.1-13) and application of generalized Equation (3.1.1-2) to the

dot product of VA2 with itself, that:

VA2 T
VA1 = sin φ VA2 T

 uφ
A2 × VA2 + cos φ VA2 T

VA2

 + (1 - cos φ) Vφ VA2 T
 uφ

A2

 = sin φ VA2 ⋅ uφ
A2 × VA2 + cos φ VA2 ⋅ VA2

 + (1 - cos φ) Vφ V
A2 ⋅ uφ

A2

 = V2 cos φ + (1 - cos φ) Vφ
2
 = V2 - Vφ

2 cos φ + Vφ
2

(3.2.1.1-14)

or upon rearrangement:

cos φ =
VA2 T

 VA1 - Vφ
2

V2 - Vφ
2

(3.2.1.1-15)

where

V = Magnitude of V (i.e., the magnitude of VA2 or VA1).

Equation (3.2.1.1-15) can now be used to apply our selected constraint of minimizing φ. We

define the minimization problem as finding Vφ that minimizes φ which is equivalent to

maximizing cos φ. The result is readily achieved by equating the derivative of (3.2.1.1-15) to
zero:

d cos φ
dVφ

 =
- 2 V2 - Vφ

2 Vφ + 2 VA2 T
 VA1 - Vφ

2 Vφ

V2 - Vφ
2 2

 =
2 VA2 T

 VA1 - V2 Vφ

V2 - Vφ
2 2

 = 0

(3.2.1.1-16)

from which:

Vφ = 0 For Minimum φ (3.2.1.1-17)

Substituting (3.2.1.1-17) into (3.2.1.1-15) and (3.2.1.1-12) we find:

3-20 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

cos φ =
1

V2
 VA2 T

 VA1 For Minimum φ (3.2.1.1-18)

VA1 = sin φ uφ
A2 × VA2 + cos φ VA2 For Minimum φ (3.2.1.1-19)

Multiplying (3.2.1.1-19) by the VA2 cross-product operator, applying (3.1.1-13) on the right
with the (3.1.1-16) triple vector product identity, and using (3.2.1.1-17) with (3.2.1.1-13) gives:

VA2× VA1 = sin φ VA2 × uφ
A2 × VA2 + cos φ VA2 × VA2

= sin φ VA2 × uφ
A2 × VA2

= sin φ uφ
A2 VA2 ⋅ VA2 - VA2 uφ

A2 ⋅ VA2
(3.2.1.1-20)

= sin φ uφ
A2 V2 For Minimum φ

from which we obtain:

sin φ uφ
A2 =

1

V2
 VA2× VA1 For Minimum φ (3.2.1.1-21)

Equations (3.2.1.1-18) and (3.2.1.1-21) can now be used to construct the CA2

A1 matrix for

minimum φ. First we introduce the following definitions for the vector terms in these
equations:

D ≡
1

V2
 VA2 T

 VA1 E ≡
1

V2
 VA2× VA1 (3.2.1.1-22)

Then we note from (3.2.1.1-21) and (3.2.1.1-22) that:

E× 2
 = sin2φ uφ

A2×
 2

(3.2.1.1-23)

The sin2φ term in (3.2.1.1-23) is expanded using (3.2.1.1-18) and (3.2.1.1-22) as:

sin2φ = 1 - cos2φ = 1 - cos φ 1 + cos φ = 1 - cos φ 1 + D (3.2.1.1-24)

from which (3.2.1.1-23) becomes:

uφ
A2×

 2
 =

1

1 - cos φ 1 + D
 E× 2

(3.2.1.1-25)

ATTITUDE PARAMETERS 3-21

Finally, the solution for CA2

A1 is obtained from generalized Equation (3.2.2.1-4) with (3.2.2.1-6)

by substituting (3.2.1.1-25) and (3.2.1.1-21) for corresponding terms using (3.2.1.1-22) for D
and E:

CA2

A1 = I + E× +
1

1 + D
 E× 2

 For Minimum φ (3.2.1.1-26)

3.2.2 ROTATION VECTOR

Another way of describing the attitude of an arbitrary coordinate Frame B relative to another
arbitrary coordinate Frame A is through the “rotation vector” concept. The “rotation vector”
defines an axis of rotation and magnitude for a rotation about the rotation vector (using the
standard right hand convention for rotation about a vector). Imagine Frame A being rotated
from its starting attitude to a new attitude by rotation about the “rotation vector” through an
angle equal to the rotation vector magnitude. Now call Frame B the new attitude of Frame A.
By this definition of Frame B, an arbitrarily defined rotation vector uniquely defines the attitude
of Frame B relative to the original Frame A attitude. Conversely, for a given Frame B attitude
relative to Frame A, a rotation vector can be defined that is consistent with this attitude. Thus a
rotation vector can be used to define the attitude of Frame B relative to Frame A.

From an analytical standpoint, consider the Frame B coordinate frame I-axis unit vector uIB

(I for coordinate axes X, Y, or Z - See Section 3.1 for definition) and how it looks in Frame A
after it has been rotated from the Frame A attitude around the rotation vector into the Frame B
attitude. For this analysis, let us first define:

φ = φ uφ φ = φ ⋅ φ uφ = φ / φ (3.2.2-1)

where

φ = Magnitude of the rotation vector.

uφ = Unit vector in the rotation vector direction.

φ = Rotation vector.

We consider Frame B to be “initially” aligned with Frame A, and then to be rotated around
the rotation vector from its initial attitude into its “final” Frame B attitude. From the previous
definitions, application of the rotation vector to coordinate Frame B then is to rotate each of the

Frame B coordinate i axis unit vectors (uiB) from Frame A about uφ through angle φ into the
“final” Frame B axis orientation. Figure 3.2.2-1 describes the geometry from the viewpoint of
Frame A:

3-22 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

φ

α

sin α

uφ
A

CIRCULAR
ARC

uiB
A

Figure 3.2.2-1 The Geometry From The Viewpoint Of Frame A

From the viewpoint of Frame A as depicted in Figure 3.2.2-1, uiB
A

 traces a circular cone

around uφ
A

 as it is rotated through rotation angle φ from its original Frame A attitude into its

final B Frame attitude. Let us consider this process as a sequence of infinitesimal rotations dφ

around uφ
A

. Each dφ produces duiB
A

, an infinitesimal change in uiB
A

 that is tangent to the φ

circular arc in Figure 3.2.2-1 in the direction shown, whose magnitude equals dφ times the

component of uiB
A

 perpendicular to uφ
A

 (i.e., the circular arc radius). As shown in Figure

3.2.2-1, the circular arc radius equals the sine of the angle between uφ
A

 and uiB
A

. Hence:

 duiB
A

 = dφ sin α (3.2.2-2)

From the (3.1.1-3) definition of the cross-product between two vectors (and the notes

following Equation (3.1.1-3)), the previous magnitude and direction properties of duiB
A

 show

that:

duiB
A

 = dφ uφ
A

 × uiB
A

 (3.2.2-3)

or equivalently, with (3.1.1-13):

d

dφ
 uiB

A
 = uφ

A
 × uiB

A
 = uφ

A× uiB
A

(3.2.2-4)

Recognizing uφ
A

 as constant, successive differentiation of (3.2.2-4) with respect to φ and

substitution of (3.2.2-4) gives:

ATTITUDE PARAMETERS 3-23

d2

dφ2
 uiB

A
 = uφ

A×
d

dφ
 uiB

A
 = uφ

A×
 2

 uiB
A

(3.2.2-5)

d3

dφ3
 uiB

A
 = uφ

A×
 2

d

dφ
 uiB

A
 = uφ

A×
 3

 uiB
A

(3.2.2-6)

Using (3.1.1-15), the general Equation (3.1.1-16) vector triple cross-product identity can be
written as:

V1 × V2 × V3 = V2 V1 ⋅ V3 - V3 V1 ⋅ V2 (3.2.2-7)

For V1 = V2 = V , the cross-product of V with (3.2.2-7) and application of (3.1.1-15) shows
that for arbitrary V and V3:

V× V× 2
 V3 = - V2 V× V3

or

V× 3
 V3 = - V2 V× V3

or

V× 3
 = - V2 V× (3.2.2-8)

where

V = Magnitude of V.

With (3.2.2-8) and uφ
A

 recognized as a unit vector, Equation (3.2.2-6) becomes with

(3.2.2-4):

d3

dφ3
 uiB

A
 = - uφ

A× uiB
A

 = -
d

dφ
 uiB

A
(3.2.2-9)

or

d3

dφ3
 uiB

A
 +

d

dφ
 uiB

A
 = 0 (3.2.2-10)

Equation (3.2.2-10) is a linear homogeneous constant coefficient differential equation with

respect to φ for uiB
A

 whose general solution has the form L eλ φ where:

λ = Characteristic root of (3.2.2-10).

L = Constant dependent on initial conditions.

3-24 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

Substitution of L eλ φ for uiB
A

 in (3.2.2-10) provides the characteristic equation for λ:

λ3
 + λ = 0 (3.2.2-11)

whose solutions are:

λ = 0, ± j (3.2.2-12)

where
j = Imaginary parameter equal to - 1.

The general L eλ φ solution to (3.2.2-10) using the (3.2.2-12) roots has the form:

uiB
A

 = L0 + L1 e j φ + L2 e- j φ (3.2.2-13)

where

L0, L1, L2 = Constant vectors set to fit initial conditions.

Euler’s theorem states that:

e j x = cos x + j sin x (3.2.2-14)

where

x = An arbitrary real number.

Equation (3.2.2-14) is easily proven by substituting the Taylor series expansions for sin x and
cos x in cos x + j sin x and seeing that the result corresponds to the Taylor series expansion for

e j x.

Applying (3.2.2-14) in (3.2.2-13) yields the alternative form for the general uiB
A

 solution:

uiB
A

 = B0 + Bs sin φ + Bc cos φ (3.2.2-15)

where

B0, Bs, Bc = Constant vectors set to fit initial conditions.

The B0, Bs, Bc vectors are determined from (3.2.2-15) and its derivatives as follows. The

derivatives are:

ATTITUDE PARAMETERS 3-25

d

dφ
 uiB

A
 = Bs cos φ - Bc sin φ d2

dφ2
 uiB

A
 = - Bs sin φ - Bc cos φ (3.2.2-16)

At the start of the φ rotation (i.e., at φ = 0), uIB is aligned with A Frame axis i so that:

uiB
A

 = uiA
A

At φ = 0 (3.2.2-17)

Equating (3.2.2-16) to (3.2.2-4) and (3.2.2-5) at φ = 0, setting φ = 0 in Equation (3.2.2-15) and
applying Equation (3.2.2-17) generates three simultaneous equations for B0, Bs, Bc:

uiA
A

 = B0 + Bc uφ
A× uiA

A
 = Bs uφ

A×
 2

 uiA
A

 = - Bc (3.2.2-18)

From (3.2.2-18), the values for B0, Bs, Bc are:

B0 = I + uφ
A×

 2
 uiA

A
Bs = uφ

A× uiA
A

Bc = - uφ
A×

 2
 uiA

A
(3.2.2-19)

Substituting (3.2.2-19) into (3.2.2-15) then provides the desired result for uiB
A

:

uiB
A

 = I + sin φ uφ
A× + (1 - cos φ) uφ

A× uφ
A× uiA

A
(3.2.2-20)

Equation (3.2.2-20) shows how the ith Frame B coordinate axis unit vector is related to the ith

Frame A coordinate axis unit vector as a function of the rotation vector φ.

3.2.2.1 DIRECTION COSINE MATRIX IN TERMS OF ROTATION VECTOR

Equation (3.2.2-20) is the basis for the equivalency equation relating the direction cosine
matrix to the rotation vector. Recall from Equation (3.2.1-6) that:

CB
A

 = u1B
A

u2B
A

u3B
A (3.2.2.1-1)

Substituting (3.2.2-20) into Equation (3.2.2.1-1) yields:

CB
A

 = I + sin φ uφ
A× + (1 - cos φ) uφ

A× uφ
A× u1A

A
 u2A

A
 u3A

A
(3.2.2.1-2)

But note that:

3-26 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

u1A
A

 =
1
0
0

 u2A
A

 =
0
1
0

 u3A
A

 =
0
0
1

(3.2.2.1-3)

Equations (3.2.2.1-3) substituted in (3.2.2.1-2) provides an expression for the direction cosine
matrix as a function of the rotation vector:

CB
A

 = I + sin φ uφ
A× + (1 - cos φ) uφ

A× uφ
A× (3.2.2.1-4)

Equation (3.2.2.1-4) can be generalized further by first taking its transpose and observing
that the transpose of a cross-product operator equals its negative. Applying Equation (3.2.1-3)
then shows that:

CA
B

 = CB
A T

 = I - sin φ uφ
A× + (1 - cos φ) uφ

A× uφ
A× (3.2.2.1-5)

Now let’s transform the rotation vector unit vector from Frame A (uφ
A

) to Frame B (i.e., to

obtain uφ
B

) using Equation (3.2.2.1-5). The result is:

uφ
B

 = uφ
A

(3.2.2.1-6)

Then with Equations (3.2.2-1):

φB
 = φA

(3.2.2.1-7)

Equations (3.2.2.1-6) and (3.2.2.1-7) state the fundamental property of the rotation vector’s
unit vector and the rotation vector itself; each has identical components in Frames A and B.
This should be obvious geometrically from the definition of the rotation vector which obtains
Frame B by rotation of Frame A about the rotation vector. Without loss of generality, we can
therefore, drop the superscript notation from the rotation vector. With this simplification and

application of Equations (3.2.2-1) to (3.2.2.1-4) for uφ as a function of φ and its magnitude, we

obtain the final expression for the direction cosine matrix in terms of the rotation vector:

CB
A

 = I +
sin φ

φ
 φ× +

(1 - cos φ)

φ2
 φ× φ× (3.2.2.1-8)

The trigonometric coefficients in Equation (3.2.2.1-8) can be easily evaluated without
singularities from the following equivalent Taylor series expansion formulas:

ATTITUDE PARAMETERS 3-27

sin φ

φ
 = 1 -

φ2

3 !
 +

φ4

5 !
 -

(1 - cos φ)

φ2
 =

1
2 !

 -
φ2

4 !
 +

φ4

6 !
 - (3.2.2.1-9)

3.2.2.2 ROTATION VECTOR IN TERMS OF DIRECTION COSINES

The converse of Equation (3.2.2.1-8) can be derived by returning to Equations (3.2.2.1-4)

and (3.2.2.1-5), dropping the superscript on uφ
A

 for simplicity (without loss of generality as

discussed in Section 3.2.2.1):

CB
A

 = I + sin φ uφ× + (1 - cos φ) uφ× uφ× (3.2.2.2-1)

CB
A T

 = I - sin φ uφ× + (1 - cos φ) uφ× uφ× (3.2.2.2-2)

Let us define two intermediate matrices G and H as follows:

G ≡
1
2

 CB
A

 - CB
A T

H ≡
1
2

 CB
A

 + CB
A T

(3.2.2.2-3)

Substituting Equations (3.2.2.2-1) and (3.2.2.2-2) into (3.2.2.2-3) obtains:

G = sin φ uφ× (3.2.2.2-4)

H = I + (1 - cos φ) uφ× uφ× (3.2.2.2-5)

Let us now define the components of CB
A

 (as in (3.2.1-1)) and uφ as follows:

uφ =

u1

u2

u3

 CB
A

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

(3.2.2.2-6)

From its definition as a unit vector, we can write for the components of uφ:

u1
2 + u2

2 + u3
2 = 1 (3.2.2.2-7)

Substituting (3.2.2.2-6) into (3.2.2.2-3) through (3.2.2.2-5) and applying (3.2.2.2-7):

3-28 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

G =
1
2

0 C12 - C21 C13 - C31

C21 - C12 0 C23 - C32

C31 - C13 C32 - C23 0

 = sin φ

0 -u3 u2

u3 0 -u1

-u2 u1 0

(3.2.2.2-8)

H =
1
2

2 C11 C12 + C21 C13 + C31

C21 + C12 2 C22 C23 + C32

C31 + C13 C32 + C23 2 C33
(3.2.2.2-9)

=

1 + 1 - cos φ u1
2
 - 1 1 - cos φ u1 u2 1 - cos φ u1 u3

1 - cos φ u2 u1 1 + 1 - cos φ u2
2
 - 1 1 - cos φ u2 u3

1 - cos φ u3 u1 1 - cos φ u3 u2 1 + 1 - cos φ u3
2
 - 1

Summing the square of the uφ component elements in Equation (3.2.2.2-8), applying
(3.2.2.2-7) and taking the square root yields:

sin φ =
1
2

 C32 - C23
 2 + C13 - C31

 2 + C21 - C12
 2 (3.2.2.2-10)

Selecting the positive sign for the square root in Equation (3.2.2.2-10) identifies φ as a

positive rotation between 0 and π (without loss in generality since φ is defined as a magnitude

quantity. The case when φ is greater than π (but less than 2 π) is handled by treating φ as

2 π - φ with uφ defined to be in the opposite direction (i.e., the attitude resulting from a rotation

of φ about uφ is identical to the attitude resulting from a rotation of 2 π - φ about - uφ).

Summing the diagonal elements of Equation (3.2.2.2-9) and applying (3.2.2.2-7) yields:

cos φ =
1
2

 C11 + C22 + C33 - 1 (3.2.2.2-11)

With (3.2.2.2-10) and (3.2.2.2-11) we then obtain for φ:

φ = tan -1
sin φ

cos φ
 = tan -1

C32 - C23
 2 + C13 - C31

 2 + C21 - C12
 2

C11 + C22 + C33 - 1
(3.2.2.2-12)

ATTITUDE PARAMETERS 3-29

The components of φ are determined from one of two forms of the φ expression in

Equations (3.2.2-1), depending on whether φ is greater or less than π/2 (i.e., cos φ is less than
or greater than 0):

φ =
φ

sin φ
 sin φ uφ For cos φ ≥ 0 (3.2.2.2-13)

φ = φ uφ For cos φ < 0 (3.2.2.2-14)

For the Equation (3.2.2.2-13) situation we first write the Taylor series expansion for the ratio

of sin φ over φ as:

f ≡
sin φ

φ
 = 1 -

φ2

3 !
 +

φ4

5 !
 -

φ6

7 !
 + ⋅ ⋅ ⋅ ⋅ (3.2.2.2-15)

The reciprocal of Equation (3.2.2.2-15) for Equation (3.2.2.2-13) is defined as:

F ≡
φ

sin φ
 =

1
f

(3.2.2.2-16)

We then use F from Equations (3.2.2.2-15) and (3.2.2.2-16) in Equation (3.2.2.2-13) with the

components of sin φ uφ from Equation (3.2.2.2-8) to obtain:

For cos φ ≥ 0:

φX =
1
2

 F C32 - C23 φY =
1
2

 F C13 - C31 φZ =
1
2

 F C21 - C12 (3.2.2.2-17)

where

φX, φY, φZ = X, Y, Z components of φ.

Note from the (3.2.2.2-15) definition for f, that f goes to zero at φ = π which would make F
infinite, thereby producing a singularity in the Equation (3.2.2.2-17) set. This is the reason that

Equations (3.2.2.2-17) are restricted to use for cos φ ≥ 0 (i.e., 0 ≤ φ ≤ π / 2).

For the situation when Equation (3.2.2.2-14) applies, we first compute the magnitude of the
uφ components from the diagonal elements in Equation (3.2.2.2-9) and find the maximum of
the three:

3-30 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

For cos φ < 0:

 u1 =
C11 - 1

1 - cos φ
 + 1 u2 =

C22 - 1

1 - cos φ
 + 1 u3 =

C33 - 1

1 - cos φ
 + 1

uMAX = max u1 , u2 , u3 (3.2.2.2-18)

where

uMAX = Largest of | u1|, | u2| and | u3|.

For the maximum magnitude component of uφ from Equations (3.2.2.2-18), we calculate
the sign from the appropriate off-diagonal element of the G matrix in Equation (3.2.2.2-8), and
then compute the remaining elements of uφ from the appropriate off-diagonal elements in
Equation (3.2.2.2-9) using the maximum component with sign (calculated as previously

described). The components of φ are then determined from Equation (3.2.2.2-14) using φ

from Equation (3.2.2.2-12), cos φ from Equation (3.2.2.2-11), and the previously described
computed components of uφ, whence:

For cos φ < 0:

If u1 = uMAX , then:

u1 = u1 Sign C32 - C23 u2 =
1

2 u1

C12 + C21

1 - cos φ
 u3 =

1
2 u1

C13 + C31

1 - cos φ

If u2 = uMAX , then:

u2 = u2 Sign C13 - C31 u3 =
1

2 u2

C23 + C32

1 - cos φ
 u1 =

1
2 u2

C12 + C21

1 - cos φ
(3.2.2.2-19)

If u3 = uMAX , then:

u3 = u3 Sign C21 - C12 u1 =
1

2 u3

C13 + C31

1 - cos φ
 u2 =

1
2 u3

C23 + C32

1 - cos φ

φX = φ u1 φY = φ u2 φZ = φ u3

where

Sign () = +1 if () is ≥ 0, and -1 if () is < 0.

Note in Equations (3.2.2.2-19) that calculation of the second and third uφ components entails
a division by the first. Selecting the first as the maximum of the three assures that the

ATTITUDE PARAMETERS 3-31

singularity of division by zero will not occur in computing the remaining two. Choosing the
maximum also assures that amplification of Cij errors will be minimized in the (3.2.2.2-19) uφ
component calculations. (A classical source of Cij error in strapdown inertial navigation
systems is produced in the computation of the Cij’s using angular rate sensor inputs containing
errors - See Sections 7.1.1.1.1 and 8.1.1.1). Finally, note that Equations (3.2.2.2-18) and

(3.2.2.2-19) require a division by 1 - cos φ which is singular for cos φ = 1. This is the reason

that Equations (3.2.2.2-18) and (3.2.2.2-19) are restricted to use when cos φ < 0 (i.e.,

π / 2 < φ ≤ π).

3.2.3 EULER ANGLES

A classical method for describing the attitude between two coordinate frames is through an
Euler angle rotation sequence. An Euler angle sequence is a set of sequential rotations of a
given coordinate frame around the frame’s coordinate axes that positions it at a new attitude
after the rotation sequence is completed. The final attitude of the displaced coordinate frame
depends on the magnitude and axis of each of the sequential rotations in the selected Euler
sequence. A common Euler angle sequence used to describe the attitude of “aircraft axes”
relative to a locally level coordinate frame (with Z-axis down) consists of a “heading” rotation
about the Z local level coordinate frame axis, followed by a “pitch” rotation about the displaced
Y-axis, followed by a “roll” rotation about the displaced X-axis. The Euler angle sequence:
heading (about Z), pitch (about Y), roll (about X), uniquely defines the attitude of the aircraft
coordinate axes relative to the locally level coordinate frame.

To describe an Euler angle sequence mathematically, we can use the rotation vector concept
described in Section 3.2.2 as applied to each of the selected Euler angle rotations in the selected
sequence. With this approach, let’s develop the analytics for the example aircraft axis Euler
angle sequence discussed in the previous paragraph. First, we define coordinate frames for the
selected Euler sequence where:

Frame A = Initial locally level coordinate frame.

Frame A1 = Frame A after rotating it about axis Z through the heading Euler angle.

Frame A2 = Frame A1 after rotating it about axis Y through the pitch Euler angle.

Frame B = Aircraft axis frame obtained by rotating Frame A2 about the X-axis
through the roll Euler angle.

With the above coordinate frame definitions, we now define three rotation vectors (i.e.,

rotation axis uφ and angle φ as in Section 3.2.2) for each of the Euler angle rotations in the
selected Euler sequence as follows:

3-32 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

uφ = uZA φ = ψ

uφ = uYA 1 φ = θ (3.2.3-1)

uφ = uXA 2 φ = φ

where
uZA, uYA 1, uXA 2 = Unit vectors along the Frame A Z-axis, Frame A1 Y-axis and

Frame A2 X-axis.

ψ, θ, φ = Amplitudes for each of the heading, pitch, roll Euler angle rotations

(including sign). Note that φ is used here as the “roll” Euler angle
(according to typical aircraft axis convention) and as the general rotation
vector angle parameter, hopefully, without confusion.

We should note that in the definition of the rotation vector in Section 3.2.2, the general

rotation vector angle parameter φ is a magnitude type quantity (i.e., plus by definition), with the
rotation vector axis uφ reversing direction to account for negative rotations. In contrast, the

general Euler rotation angle (ψ, θ or φ) can be plus or minus (i.e., it is not a magnitude type
quantity), with the general Euler angle rotation axis (uZA, uYA 1 or uXA 2) depending on the

orientation of Frames A, A1 and A2. However, Equation (3.2.2.1-4) (direction cosines in
terms of the rotation vector) was derived without explicitly requiring the rotation vector to be
positive in sign. Hence, (3.2.2.1-4) is also valid if we allow the rotation angle to contain a sign
(plus or minus). As such, Equation (3.2.2.1-4) can be applied to find the direction cosine
matrices associated with the individual Euler angle rotations, treating the Euler rotation angles
and axes as individual rotation vectors. Based on this finding, let us now calculate the three
direction cosine matrices relating the previously defined coordinate frames using the (3.2.3-1)
rotation vector definitions and Equation (3.2.2.1-4):

CA1
A

 = I + sin ψ uZA
A × + (1 - cos ψ) uZA

A × uZA
A ×

CA2

A1 = I + sin θ uYA 1

A1 × + (1 - cos θ) uYA 1

A1 × uYA 1

A1 × (3.2.3-2)

CB
A2 = I + sin φ uXA 2

A2 × + (1 - cos φ) uXA 2

A2 × uXA 2

A2 ×

with, by their definition:

uZA
A

 =
0
0
1

 uYA 1

A1 =
0
1
0

 uXA 2

A2 =
1
0
0

(3.2.3-3)

Substituting Equations (3.2.3-3) into (3.2.3-2) obtains the more explicit direction cosine set:

ATTITUDE PARAMETERS 3-33

CA1

A
 =

cos ψ - sin ψ 0

sin ψ cos ψ 0

0 0 1

 CA2

A1 =

cos θ 0 sin θ

0 1 0

- sin θ 0 cos θ

CB
A2 =

1 0 0

0 cos φ - sin φ

0 sin φ cos φ

(3.2.3-4)

3.2.3.1 DIRECTION COSINE MATRIX IN TERMS OF
EULER ANGLE PARAMETERS

Equations (3.2.3-4) can be combined to yield the direction cosine matrix relating Frames A
and B through successive application of the Equation (3.2.1-5) direction cosine matrix chain
rule:

CB
A

 = CA1

A
 CA2

A1 CB
A2 (3.2.3.1-1)

Substituting (3.2.3-4) into (3.2.3.1-1) obtains the relationship between the CB
A

 direction cosine

elements (as defined in Equations (3.2.1-1)) and the ψ, θ, φ Euler angles:

C11 = cos θ cos ψ
C12 = - cos φ sin ψ + sin φ sin θ cos ψ
C13 = sin φ sin ψ + cos φ sin θ cos ψ

C21 = cos θ sin ψ
C22 = cos φ cos ψ + sin φ sin θ sin ψ (3.2.3.1-2)

C23 = - sin φ cos ψ + cos φ sin θ sin ψ

C31 = - sin θ
C32 = sin φ cos θ
C33 = cos φ cos θ

3-34 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

3.2.3.2 EULER ANGLES IN TERMS OF DIRECTION COSINES

Equations (3.2.3.1-2) can be inverted to obtain expressions for the Euler angle parameters in

terms of the elements of the CB
A

 direction cosine matrix. For the pitch angle parameter θ, the

inverse solution is given by:

θ = tan -1
sin θ

cos θ
 = tan -1

- C31

C32
2

 + C33
2

(3.2.3.2-1)

Note that the positive square root solution has been selected for θ which bounds θ to never be

greater than π / 2 in magnitude. This is the typical convention for the aircraft Euler angle
sequence under study as an example. Note, however, that the negative square root solution
would be equally valid producing three Euler angles that differ from the first set by the addition

of π.

For the condition when θ ≠ π / 2 (or equivalently, from Equation (3.2.3.1-2), for

 C31 ≠ 1), an inverse solution to Equations (3.2.3.1-2) for ψ and φ is obtainable as:

For C31 ≠ 1 (e.g., for C31 < 0.999):

(3.2.3.2-2)

φ = tan -1
sin φ

cos φ
 = tan -1

C32

C33
ψ = tan -1

sin ψ

cos ψ
 = tan -1

C21

C11

When C31 approaches 1 (i.e., for θ approaching π / 2), Equations (3.2.3.2-2) become

indeterminate because, from Equations (3.2.3.1-2), C11, C21, C32 and C33 all approach zero.

For this situation, we can develop an inverse solution for the ψ and φ Euler angles, but only for
their sum (or difference, depending on orientation). This solution is based on the following
combined forms of Equations (3.2.3.1-2):

C23 - C12 = (1 - C31) sin(ψ - φ)

C13 + C22 = (1 - C31) cos(ψ - φ)
(3.2.3.2-3)

C23 + C12 = - (1 + C31) sin(ψ + φ)

C13 - C22 = - (1 + C31) cos(ψ + φ)

ATTITUDE PARAMETERS 3-35

The top two expressions in (3.2.3.2-3) can be used to find ψ - φ when 1 - C31 is non-zero; the

bottom two expressions can be used to find ψ + φ when 1 + C31 is non-zero. Thus, from

Equations (3.2.3.2-3) we write when C31 ≥ 0.999:

For C31 ≤ - 0.999:

ψ - φ = tan -1
C23 - C12

C13 + C22
(3.2.3.2-4)

For C31 ≥ 0.999:

ψ + φ = π + tan -1
C23 + C12

C13 - C22

It is important to note that Equations (3.2.3.2-4) provide the only possible solution for the

ψ and φ Euler angles under C31 near unity conditions because when C31 is near unity (i.e.,

when θ is near π / 2), the axes for the ψ and φ Euler rotations are collinear (i.e., the A Frame

Z-axis and the A2 Frame X-axis are parallel when θ = π / 2). Under these conditions, ψ
rotations about the A Frame Z-axis or φ rotations about the A2 Frame X-axis have identical
effects on the positioning of Frame B relative to Frame A. Consequently, only the sum (or
difference) solutions as defined in Equations (3.2.3.2-4) can be obtained under these conditions.

3.2.3.3 METHOD OF LEAST WORK FOR TREATING
EULER ROTATION OPERATIONS

Signal flow theory has been used for the analysis of Euler angle sequences as a means for
avoiding the complex matrix operations described in Section 3.2.3. To introduce this technique
(affectionately denoted as “The Method Of Least Work” - attributable to Emery Curtis of
Lockheed Missiles And Space Company in the early 1960’s), we begin by the transformation
of an arbitrary vector V from Frame A to Frame A1 as defined in Section 3.2.3:

VA1 = CA
A1 VA (3.2.3.3-1)

With CA
A1 as the transpose of CA1

A
 in Equations (3.2.3-4) and the vector notation convention

introduced in Section 3.1, Equation (3.2.3.3-1) can be expanded in component form as follows:

VXA 1 = VXA cos ψ + VYA sin ψ

VYA 1 = VYA cos ψ - VXA sin ψ (3.2.3.3-2)

VZA1 = VZA

3-36 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

Equation (3.2.3.3-2) can be represented by the signal flow diagram in Figure 3.2.3.3-1:

ψ

•
VXA

VYA

VZA

VXA 1 = VXA cos ψ + VYA sin ψ

VYA 1 = VYA cos ψ - VXA sin ψ

VZA1 = VZA

Figure 3.2.3.3-1 Z Axis Euler Rotation Signal Flow Diagram

which is interpreted as:

cos ψ

cos ψ

sin ψ

- sin ψ

+

+

+

+

1

•

•

VXA

VYA

VZA

VXA 1

VYA 1

VZA1

⊕

⊕

Figure 3.2.3.3-2 Interpretation Of Z Axis Euler Rotation Signal Flow Diagram

The horizontal lines in Figure 3.2.3.3-1 above and below the crossed lines are treated as

transmission paths with a gain of cos ψ. The crossed lines in Figure 3.2.3.3-1 are treated as

transmission paths with a gain of sin ψ. The dot (.) indicates minus (-) sin ψ. The dot is on the

upward-left-to-downward-right (from left to right) diagonal if the ψ rotation is defined about the
positive Z axis (as in Figure 3.2.3.3-1). For a rotation defined about the negative Z axis, the dot
is on the downward-left-to-upward-right diagonal. The straight path alone in Figure 3.2.3.3-1
has unity gain. The VXA 1, VYA 1, VZA1 components are derived from the diagram by

multiplying the VXA, VYA, VZA components on the left by the gains along all paths to the
VXA 1, VYA 1, VZA1 components on the right, and summing the contributions to

VXA 1, VYA 1 and VZA1. The result is Equations (3.2.3.3-2).

ATTITUDE PARAMETERS 3-37

A similar derivation for the Frame A1 Y axis (θ) rotation and Frame A2 X-axis (φ) rotation
yields:

θ

•

φ

•

VXA 2

VYA 2

VZA2

VXA 2 = VXA 1 cos θ - VZA1 sin θ

VYA 2 = VYA 1

VZA2 = VZA1 cos θ + VXA 1 sin θ

VXA 1

VYA 1

VZA1

VYB = VYA 2 cos φ + VZA2 sin φ

VZB = VZA2 cos φ - VYA 2 sin φ

VXB = VXA2

Figure 3.2.3.3-3 Y And X Axis Euler Rotation Signal Flow Diagrams

The dots in Figure 3.2.3.3-3 are on the diagonals shown because the θ, φ rotations are defined

about the positive Y, X axes. For θ, φ rotations defined about the negative Y, X axes, the dots
would be on the other diagonals.

The heading, pitch, roll Euler sequence used for aircraft attitude referencing is then
represented by the composite of Figures 3.2.3.3-1 and 3.2.3.3-3:

φθ

•

ψ

•

•Local Level
Coordinates
(Z Down)

Aircraft
Coordinates

Frame
A

Frame
B

Frame
A1

Frame
A2

Figure 3.2.3.3-4 Aircraft Euler Angle Sequence Signal Flow Diagram

3-38 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

A vector V expressed in local level coordinates (Frame A) has equivalent components in
aircraft coordinates (Frame B) equal to the Frame A component inputs at the left of Figure
3.2.3.3-4 multiplied by the net gain along each path to the right, with the results summed for
each B Frame axis component. For example, for the YB component:

VYB = VXA cos ψ sin θ sin φ - sin ψ cos φ

 + VYA sin ψ sin θ sin φ + cos ψ cos φ + VZA cos θ sin φ
(3.2.3.3-3)

A similar set can be obtained for the XB and ZB components of V. It should be apparent
that the terms in brackets in Equation (3.2.3.3-3) represent the cosines of the angles between
Frame B coordinate axis Y and Frame A coordinate axes X, Y, and Z (i.e., the CI2 direction
cosines in Equations (3.2.3.1-2)). The above procedure allows one to easily derive an analytical
expression for the direction cosine between any left and right axis by tracing and summing all
gains between the two points. The method is also reversible using the same diagram, for
deriving analytical expressions for vectors on the left expressed in local level coordinates
(Frame A) as a function of vector inputs on the right (in aircraft Frame B coordinates).
Furthermore, a vector expressed in any of the intermediate frames (i.e., Frames A1 or A2) can
be transformed to the A, B, or intermediate frames by inputting the components at the selected
input frame station in the diagram and tracing the input signals to the desired output frame
station. This is truly the method of least work for obtaining these expressions. Moreover, it is
fun.

3.2.4 ATTITUDE REFERENCE QUATERNIONS AND QUATERNION
COORDINATE FRAME TRANSFORMATIONS

The attitude reference quaternion is based on the rotation vector concept described in Section
3.2.2 that defines the attitude between two coordinate frames. The attitude quaternion associated
with the two coordinate frames is defined as a set of four parameters: three of the parameters
(defined as the vector part of the quaternion) equal the components of the rotation vector axis

(uφ) scaled by the sine of half the rotation vector angle φ; the fourth parameter is a scalar

quantity equal to the cosine of half the rotation vector angle φ. To introduce the quaternion
concept, let’s begin the discussion in a somewhat unrelated field: complex numbers (as in
Reference 25, Pages 73-76).

A complex number v is defined as having a real and imaginary part:

v = e + f i (3.2.4-1)

where

e, f = Scalar quantities.

ATTITUDE PARAMETERS 3-39

i = The imaginary number defined as the square root of minus one.

From the definition of i,

i i = -1 (3.2.4-2)

The complex number v can be thought of as a “two-vector” with components e and f in the

complex plane. Now consider another complex plane rotated from the first by an angle ψ
(about an axis perpendicular to the real/imaginary axes). We will now demonstrate that another
complex number u can be defined that can be used as an operator to transform the complex
number v (treated as a vector) into its components along the rotated complex plane axes. Let’s
first define u in general as:

u = a + b i (3.2.4-3)

where

a, b = Scalar quantities.

The product w of u with v is with (3.2.4-2):

w = u v = a + b i e + f i = a e + a f i + b e i + b f i i

 = e a - f b + f a + e b i
(3.2.4-4)

Hence, the effect of the multiplication operation of u on v is to create a new complex number w
with a real component e a - f b and an imaginary component f a + e b .

If the components of u are defined as

a = cos ψ b = - sin ψ (3.2.4-5)

the u v product w in (3.2.4-4) would be:

w = e cos ψ + f sin ψ + f cos ψ - e sin ψ i (3.2.4-6)

Comparing the form of (3.2.4-6) to the X and Y transformation operations in Equation
(3.2.3.3-2), it should be apparent that the u v product vector represents vector v projected along

the axes of a new complex plane rotated by ψ from the original. Thus, u = cos ψ - i sin ψ can

be considered as an operator that transforms vector v into a new coordinate frame rotated by ψ
from the original frame.

Let’s try to extend this concept into the world of three-dimensional vectors. If we now
consider the i parameter to represent a unit vector along the X-axis of a three-dimensional

3-40 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

coordinate frame, we can extend the concept of v to also include the Y and Z axis components
as a “four-vector”:

v = e + f i + g j + h k (3.2.4-7)

where

f, g, h = The conventional components of a vector in an X, Y, Z three-dimensional
orthogonal coordinate frame.

i, j, k = Unit vectors along the coordinate frame axes.

e = A fourth component (a scalar) that would normally be zero if v represented a
typical 3-component vector, but which is carried as a scalar quantity (e.g., in a
fourth dimension) for the present.

The u quantity is similarly expanded.

u = a + b i + c j + d k (3.2.4-8)

where

b, c, d = Vector components of u.

a = Scalar component of u.

We now define the rules of four-vector multiplication by extension of the complex number
concept using a right-handed vector cross-product convention:

i i = - 1 i j = k i k = - j

j i = - k j j = - 1 j k = i (3.2.4-9)

k i = j k j = - i k k = - 1

With these definitions, the product w of u with v is given by:

w = u v = a + b i + c j + d k e + f i + g j + h k

= a e + a f i + a g j + a h k

 + b e i + b f i i + b g i j + b h i k

 + c e j + c f j i + c g j j + c h j k

 + d e k + d f k i + d g k j + d h k k

= a e - b f - c g - d h

 + b e + a f - d g + c h i

 + c e + d f + a g - b h j

 + d e - c f + b g + a h k

(3.2.4-10)

or in “four-vector” matrix form:

w = u v =

e'
f '
g'
h'

 =

a - b - c - d
b a - d c
c d a - b
d - c b a

e
f
g
h

(3.2.4-11)

ATTITUDE PARAMETERS 3-41

with

w ≡ e' + f ' i + g' j + h' k (3.2.4-12)

To complete the analogy it would be ideal at this point if we could now equate the
components of u to a three-dimensional vector transformation operation and demonstrate that
the i, j, k components of w as defined above represent the transformed version of the i, j, k
components of v. Unfortunately, the analogy breaks down to a certain extent and such a simple
relationship for u is not quite possible. However, an equivalent expression for u can be found
that does possess the desired vector transformation property, if we modify the u operation on v
to be defined as:

w = u v u* (3.2.4-13)

with

u* = a - b i - c j - d k (3.2.4-14)

where

u* = Quaternion conjugate of u.

Carrying out the v u* product in Equation (3.2.4-13) using the previously stated rules of
four-vector multiplication yields:

v u* = e + f i + g j + h k a - b i - c j - d k

= a e + b f + c g + d h

 + - b e + a f - d g + c h i

 + - c e + d f + a g - b h j

 + - d e - c f + b g + a h k

 =

a b c d
- b a - d c
- c d a - b
- d - c b a

e
f
g
h

(3.2.4-15)

and for the newly defined w given by (3.2.4-13), we find by using v u* from (3.2.4-15) in
place of v in (3.2.4-11):

w = u v u* =

a - b - c - d
b a - d c
c d a - b
d - c b a

a b c d
- b a - d c
- c d a - b
- d - c b a

e
f
g
h

(3.2.4-16)

=

a2 + b2 + c2 + d2 0 0 0

0 a2 + b2 - c2 - d2 2 b c - a d 2 b d + a c

0 2 b c + a d a2 - b2 + c2 - d2 2 c d - a b

0 2 b d - a c 2 c d + a b a2 - b2 - c2 + d2

e
f
g
h

3-42 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

We now equate the components of u to the previously defined rotation vector parameters. If

the rotation vector angle for the rotation operation is φ and the rotation axis unit vector uφ is
denoted as having i, j, k components of l, m and n, then the four components of u in accordance
with quaternion convention (defined in the first paragraph of this section) are given by:

a = cos
φ
2

b = l sin
φ
2

c = m sin
φ
2

d = n sin
φ
2

(3.2.4-17)

From the uφ expression in Equation (3.2.2-1), we can also write for the components of uφ:

l =
φx

φ
m =

φy

φ
n =

φz

φ
(3.2.4-18)

where

φx, φy, φz = The components of φ.

Thus,

a = cos
 φ
2

b =
φx

φ
 sin

 φ
2

c =
φy

φ
 sin

 φ
2

d =
φz

φ
 sin

 φ
2

(3.2.4-19)

Substituting Equation (3.2.4-19) into (3.2.4-16) yields after application of appropriate
trigonometric identities:

w =

1 0 0 0

0 1 - φy
2+φz

2
1-cos φ

φ2
-
φz

φ
sinφ+φxφy

1-cos φ

φ2

φy

φ
sinφ+φxφz

1-cos φ

φ2

0
φz

φ
sinφ+φxφy

1-cos φ

φ2
1 - φx

2+φz
2

1-cos φ

φ2
-
φx

φ
sinφ+φyφz

1-cos φ

φ2

0 -
φy

φ
sinφ+φxφz

1-cos φ

φ2

φx

φ
sinφ+φyφz

1-cos φ

φ2
1 - φx

2+φy
2

1-cos φ

φ2

e
f
g
h

(3.2.4-20)

The lower right 3 × 3 elements in the (3.2.4-20) square matrix are equivalent to

I +
sin φ

φ
 φ× +

1 - cos φ

φ2
 φ× φ×

which is identical to Equation (3.2.2.1-8) for the direction cosine matrix between two coordinate

frames that are rotated relative to one another by the rotation vector φ. It can be

ATTITUDE PARAMETERS 3-43

concluded that the quaternion operation defined by Equation (3.2.4-13) with (3.2.4-19) for the u
components is equivalent to a vector transformation operation on the three vector components
of v.

We also note that by equating the upper diagonal element in Equations (3.2.4-16) to the
upper diagonal element in (3.2.4-20) (or directly from Equations (3.2.4-19)) that:

a2 + b2 + c2 + d2 = 1 (3.2.4-21)

which is the normality characteristic of the attitude reference quaternion.

It is useful to note, as is easily verified by component expansion and substitution in
Equations (3.2.4-10), that for any arbitrary quaternion:

u u* = a2 + b2 + c2 + d2 (3.2.4-22)

Additionally, as is easily demonstrated by component expansion and substitution in Equations
(3.2.4-10), the following conjugate product rule applies for two arbitrary quaternions u and v:

(u v)* = v* u* (3.2.4-23)

Finally, the following mixed scalar/vector forms of (3.2.4-7) and (3.2.4-8) are sometimes
useful in quaternion analytical operations:

u = a + r v = e + s (3.2.4-24)

in which

r = b i + c j + d k s = f i + g j + h k (3.2.4-25)

where

r, s = Vector parts of the u, v quaternions.

In Equations (3.2.4-24), the r and s terms are treated as normal three component vectors for
typical three component vector operations (e.g., cross product and dot product), but which
follow the quaternion product rules for quaternion type products. Thus, with Equation
(3.2.4-10):

r s = (c h - d g) i + (d f - b h) j + (b g - c f) k - (b f + c g + d h) (3.2.4-26)

From Equations (3.1.1-5) and (3.1.1-6) we see that (3.2.4-26) is equivalently:

r s = r × s - r ⋅ s (3.2.4-27)

3-44 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

Applying (3.2.4-24) and (3.2.4-27) then provides the mixed scalar/vector form of the general
quaternion product:

u v = r × s - r ⋅ s + a s + e r + a e (3.2.4-28)

3.2.4.1 QUATERNION OPERATIONS FOR ATTITUDE REFERENCE
AND VECTOR TRANSFORMATIONS

The previous discussion has introduced the concept of the quaternion and its relationship to
the direction cosine matrix. Following the notation convention introduced in Section 3.1 for the
direction cosine matrix, we can now define the attitude reference quaternion relating arbitrary
coordinate Frame A to arbitrary coordinate Frame B as a four element column array:

qB
A

=

a
b
c
d

(3.2.4.1-1)

in which, as in Section 3.2.4, a is the scalar portion and b, c, d is the vector portion, with the
normalization characteristic of (3.2.4-21) repeated below:

a2 + b2 + c2 + d2 = 1 (3.2.4.1-2)

We also define a general quaternion vector form in both Frame A and Frame B coordinates
as the arrays:

vA ≡

0
VXA

VYA

VZA

 =
0

VA vB ≡

0
VXB

VYB

VZB

 =
0

VB
(3.2.4.1-3)

where

vA, vB = Quaternion equivalents to column matrix vectors VA and VB in Section
3.2.1 (See Equation (3.2.1-1)).

With the above definitions we can now write the following quaternion relations in which it is
understood that the quaternion product rules still apply as defined in Section 3.2.4. From
Equation (3.2.4-13), the conclusion following (3.2.4-20), and the above definitions we have:

vA = qB
A

 vB qB
A*

(3.2.4.1-4)

ATTITUDE PARAMETERS 3-45

Defining another arbitrary coordinate Frame D, we can also write:

vA = qD
A

 vD qD
A*

(3.2.4.1-5)

and

vB = qD
B

 vD qD
B*

(3.2.4.1-6)

Substituting Equation (3.2.4.1-6) into (3.2.4.1-4) then yields:

vA = qB
A

 qD
B

 vD qD
B*

 qB
A*

(3.2.4.1-7)

or with Equation (3.2.4-23):

vA = qB
A

 qD
B

 vD qB
A

 qD
B *

(3.2.4.1-8)

Equating (3.2.4.1-5) and (3.2.4.1-8) then yields the coordinate frame chain rule for attitude
quaternions:

qD
A

 = qB
A

 qD
B

(3.2.4.1-9)

From the definition of the rotation vector between Frames A and B and the property that the
rotation vector has equal components in Frames A and B (See Section 3.2.2.1), it should be
obvious that the rotation vector defining Frame B relative to Frame A is the negative of the

rotation vector defining Frame A relative to Frame B. Applying this logic to the qB
A

 attitude

quaternion, we find from Equations (3.2.4-8), (3.2.4-14), (3.2.4-17) and (3.2.4.1-1) that since

qA
B

 has the negative of the qB
A

 rotation vector, and vise-versa:

qA
B

 = qB
A*

qB
A

 = qA
B *

 (3.2.4.1-10)

Equations (3.2.4.1-10) are analogous to Equations (3.2.1-3) for the equivalent direction cosine
matrices.

3.2.4.2 DIRECTION COSINE MATRIX IN TERMS OF ATTITUDE QUATERNION

The CB
A

 direction cosine matrix corresponding to the equivalent qB
A

 attitude quaternion is

shown by Equations (3.2.4.1-1), (3.2.4.1-3), (3.2.4.1-4), (3.2.4-16), (3.2.4-20), and (3.2.2.1-8)
to be given by:

3-46 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

CB
A

 =

a2 + b2 - c2 - d2 2 b c - a d 2 b d + a c

2 b c + a d a2 - b2 + c2 - d2 2 c d - a b

2 b d - a c 2 c d + a b a2 - b2 - c2 + d2

(3.2.4.2-1)

3.2.4.3 ATTITUDE QUATERNION IN TERMS OF DIRECTION COSINES

Definition of the attitude quaternion parameters (a, b, c, d) in terms of the equivalent direction
cosine matrix elements entails an inversion of Equation (3.2.4.2-1) (as in Reference 36).

For convenience, we first define:

Pa ≡ 4 a2 Pb ≡ 4 b2 Pc ≡ 4 c2 Pd ≡ 4 d2 (3.2.4.3-1)

The trace (sum of the diagonal terms) of the CB
A

 direction matrix is given (from Equations

(3.2.1-1) and (3.2.4.2-1) with (3.2.4.1-2) and (3.2.4.3-1)) by:

Tr = C11 + C22 + C33 = 3 a2 - b2 - c2 - d2

 = 4 a2 - a2 - b2 - c2 - d2 = 4 a2 - 1 = Pa - 1
(3.2.4.3-2)

or
Pa = 1 + Tr (3.2.4.3-3)

where

Tr = Trace of CB
A

.

From Equations (3.2.1-1) and (3.2.4.2-1) with (3.2.4-21):

C11 = a2 + b2 - c2 - d2 = 2 a2 + 2 b2 - a2 - b2 - c2 - d2 = 2 a2 + 2 b2 - 1 (3.2.4.3-4)

or with (3.2.4.3-1) and (3.2.4.3-2),

2 C11 = Pa + Pb - 2 = Pb + Tr - 1 (3.2.4.3-5)

Hence,

Pb = 1 + 2 C11 - Tr (3.2.4.3-6)

Similarly, including (3.2.4.3-6) and (3.2.4.3-3):

ATTITUDE PARAMETERS 3-47

Pa = 1 + Tr Pb = 1 + 2 C11 - Tr

Pc = 1 + 2 C22 - Tr Pd = 1 + 2 C33 - Tr
(3.2.4.3-7)

The off-diagonal elements of Equation (3.2.4.2-1) with (3.2.1-1) show that:

b c =
1
4

 C21 + C12 a d =
1
4

 C21 - C12

b d =
1
4

 C13 + C31 a c =
1
4

 C13 - C31 (3.2.4.3-8)

c d =
1
4

 C32 + C23 a b =
1
4

 C32 - C23

The quaternion elements are now obtained as a function of the direction cosines from
Equations (3.2.4.3-8) by first solving for one of the quaternion elements from the maximum of
Equations (3.2.4.3-7) with (3.2.4.3-1), and then using this maximum to solve for the remaining
three elements from (3.2.4.3-8). Thus:

If Pa = max (Pa, Pb, Pc, Pd), then:

a = 0.5 Pa b =
C32 - C23

4 a
c =

C13 - C31

4 a
 d =

C21 - C12

4 a

If Pb = max (Pa, Pb, Pc, Pd), then:

b = 0.5 Pb c =
C21 + C12

4 b
d =

C13 + C31

4 b
a =

C32 - C23

4 b

If Pc = max (Pa, Pb, Pc, Pd), then: (3.2.4.3-9)

c = 0.5 Pc d =
C32 + C23

4 c
a =

C13 - C31

4 c
b =

C21 + C12

4 c

If Pd = max (Pa, Pb, Pc, Pd), then:

d = 0.5 Pd a =
C21 - C12

4 d
b =

C13 + C31

4 d
c =

C32 + C23

4 d

If a ≤ 0, then:

a = - a b = - b c = - c d = - d

The final step in Equations (3.2.4.3-9) is based on the following rationale. From Equation
(3.2.4.2-1), all direction cosine matrix elements consist of products of quaternion elements.
Therefore, if the sign of all quaternion elements is changed, the solution for the direction cosine
matrix in Equation (3.2.4.2-1) will be unaffected. This is equivalent to selecting the negative
square root solution for the maximum Pi in Equations (3.2.4.3-7) rather than the positive

3-48 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

solution used in the initial setting of the quaternion elements in Equations (3.2.4.3-9). Thus,
there are two valid solutions for the quaternion elements corresponding to a given direction
cosine matrix. The solution selected in the final step of Equations (3.2.4.3-9) is based on

setting the a element positive. From Equations (3.2.4-19), this is equivalent to setting cos φ/2

positive which corresponds to selecting φ/2 < π/2 or φ < π. The solution for negative a

corresponds to φ = φ - 2π which is the rotation vector solution when the rotation to the new
attitude is in the opposite direction about the same unit vector.

3.2.4.4 ATTITUDE QUATERNION IN TERMS OF ROTATION VECTOR

The Equation (3.2.4.1-1) qB
A

 attitude quaternion elements as a function of the equivalent

rotation vector components are given by (3.2.4-19) repeated below:

a = cos
φ
2

b =
φx

φ
 sin

φ
2

c =
φy

φ
 sin

φ
2

d =
φz

φ
 sin

φ
2

(3.2.4.4-1)

Using the (3.2.4-24) mixed scalar/vector notation, Equations (3.2.4.4-1) with (3.2.2-1) and
(3.2.4.1-1) become the compressed form:

qB
A

 = cos
φ
2

 +
sin φ/2

φ
 φ (3.2.4.4-2)

3.2.4.5 ROTATION VECTOR IN TERMS OF ATTITUDE QUATERNION

The rotation vector corresponding to a given attitude quaternion is obtained as the inverse of

Equations (3.2.4.4-1). To assure that the resulting rotation vector magnitude is less than π, we
apply the last of Equations (3.2.4.3-9) to the quaternion elements:

If a ≤ 0, then:

a = - a b = - b c = - c d = - d
(3.2.4.5-1)

With Equations (3.2.2-1) for the magnitude of φ, we obtain from (3.2.4.4-1):

cos
φ
2

 = a sin
φ
2

 = b2 + c2 + d2 (3.2.4.5-2)

Note that the positive solution has been selected for sin φ/2 to assure a positive rotation vector
magnitude. From Equations (3.2.4.5-2) we find:

ATTITUDE PARAMETERS 3-49

φ
2

 = tan-1
sin φ/2

cos φ/2
 = tan-1

b2 + c2 + d2

a
(3.2.4.5-3)

We then calculate the ratio of sin φ/2 to φ as a Taylor series expansion:

f ≡
sin φ/2

φ
 =

1
2

 1 -
(φ/2)

2

3 !
 +

(φ/2)
4

5 !
 -

(φ/2)
6

7 !
 + ⋅ ⋅ ⋅ ⋅ (3.2.4.5-4)

Finally, f from Equation (3.2.4.5-4) is used in the last three of Equations (3.2.4.4-1) to yield
after rearrangement:

φx = b / f φy = c / f φz = d / f (3.2.4.5-5)

Note, that because of the Equation (3.2.4.5-1) check process which assures that cos φ/2 is

positive, φ is less than π, hence, φ/2 is less than π/2. This assures that f from Equation
(3.2.4.5-4) will never be zero, thereby avoiding a singularity condition for Equations
(3.2.4.5-5).

3.3 ATTITUDE PARAMETER RATE EQUATIONS

Section 3.2 described the parameters that are typically incorporated to describe the angular
attitude orientation between two coordinate frames (the direction cosine matrix, the rotation
vector, Euler angles and the attitude quaternion). In this section we derive equations describing
the rate of change of the Section 3.2 attitude parameters as a function of the angular rates of their
defining coordinate frames. The fundamental basis for the attitude parameter rate equations is
the general Coriolis relationship that describes how a constant vector in one coordinate frame
appears in another coordinate frame that is rotating relative to the first.

3.3.1 GENERAL CORIOLIS RELATIONSHIP BETWEEN VECTORS
IN ROTATING COORDINATE FRAMES

Consider an arbitrary vector VCnstB that is fixed (constant) in an arbitrary coordinate Frame

B. Now, assume that Frame B is rotating relative to arbitrary coordinate Frame A at angular

velocity ωAB. Define the VCnstB and ωAB components in coordinate Frame A as the column

vectors VCnstB
A

 and ωAB
A

 where:

A, B = Arbitrary coordinate frames.

3-50 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

VCnstB
A

 = Arbitrary vector that is constant in the B Frame (subscript) as projected on A

Frame axes (superscript).

ωAB
A

 = Angular rate of Frame B relative to Frame A as projected on Frame A axes.

Further, assume that the angle between VCnstB and ωAB is α. Figure 3.3.1-1 is a view of the
situation from the perspective of Frame A.

α

ωAB
A

VCnstB
A

Component Of VCnstB
A

Perpendicular To ωAB
A

Figure 3.3.1-1 The Situation As Viewed In Frame A

From the viewpoint of Frame A with α less than π (as depicted in Figure 3.3.1-1), VCnstB
A

appears to be rotating around ωAB
A

, thereby producing a VCnstB
A

 rate of change into the plane of

the paper (i.e., perpendicular to ωAB
A

 and VCnstB
A

) equal to the magnitude of the component of

VCnstB
A

 perpendicular to ωAB
A

 times the magnitude of ωAB
A

. The same is true for α greater than

π (and less than 2 π), except that the VCnstB
A

 rate of change direction would be out of the plane

of the paper. From Figure 3.3.1-1, the magnitude of the component of VCnstB
A

 perpendicular to

ωAB
A

 equals the magnitude of VCnstB
A

 multiplied by the magnitude of the sine of the angle

between ωAB
A

 and VCnstB
A

, hence:

 VCnstB
A

 = ωAB
A

 VCnstB
A

 sin α (3.3.1-1)

where

VCnstB
A

 = Time rate of change of VCnstB
A

.

ATTITUDE PARAMETER RATE EQUATIONS 3-51

From the Equation (3.1.1-3) definition of the cross-product between two vectors (and the

notes following (3.1.1-3)), the above magnitude and direction properties of VCnstB
A

 show that:

VCnstB
A

 = ωAB
A

 × VCnstB
A

 (3.3.1-2)

Equation (3.3.1-2) is a fundamental Coriolis relationship defining the rate of change in

coordinate Frame A of the components of a vector VCnstB
A

 that is fixed in coordinate Frame B,

when coordinate Frame B is rotating relative to coordinate Frame A at angular velocity ωAB
A

.

Since the A and B Frames are arbitrary, Equation (3.3.1-2) is equally valid if we interchange A
and B:

VCnstA
B

 = ωBA
B

 × VCnstA
B

 (3.3.1-3)

where

ωBA
B

 = Angular rate of Frame A relative to Frame B as projected on Frame B axes.

VCnstA
B

 = Arbitrary vector that is constant in the A Frame (subscript) as projected on

B Frame axes (superscript).

We also note that the angular rate of Frame A relative to Frame B is the negative of the
angular rate of Frame B relative to Frame A so that:

ωBA
B

 = - ωAB
B

(3.3.1-4)

where

ωAB
B

 = Angular rate of Frame B relative to Frame A as projected on Frame B axes.

With (3.3.1-4), Equation (3.3.1-3) is equivalently:

VCnstA
B

 = - ωAB
B

 × VCnstA
B

 (3.3.1-5)

Equation (3.3.1-5), the complement to Coriolis Equation (3.3.1-2), defines the rate of change in

coordinate Frame B of the components a vector VCnstA
B

 that is fixed in coordinate Frame A,

when coordinate Frame B is rotating relative to coordinate Frame A at angular velocity ωAB
B

.

3-52 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

3.3.2 DIRECTION COSINE MATRIX RATE EQUATION

Equation (3.3.1-5) can be used to derive an equation for the rate of change of the direction

cosine matrix CB
A

 relating general coordinate Frames A and B. As defined in Equations

(3.2.1-6), the columns of CA
B

 (i.e., the transpose of CB
A

) represent unit vectors along Frame A

coordinate axes as projected onto Frame B. Therefore, CB
A

 is given by:

CB
A

 = u1A
B

, u2A
B

, u3A
B

T

(3.3.2-1)

where

uJA
B

 = The column vector whose elements represent the Frame B components of a unit

vector along the Jth Frame A coordinate axis.

Taking the derivative of (3.3.2-1) obtains:

CB
A

 = u1A
B

, u2A
B

, u3A
B

T

(3.3.2-2)

Applying Equation (3.3.1-5):

uJA
B

 = - ωAB
B

 × uJA
B

(3.3.2-3)

where

ωAB
B

 = Angular rate of Frame B relative to Frame A (as projected on Frame B axes).
or

uJA
B

 = - ωAB
B

× uJA
B

(3.3.2-4)

where

ωAB
B

× = Skew symmetric form of ωAB
B

≡

0 - ωABZB ωABYB

ωABZB 0 - ωABXB

- ωABYB ωABXB 0

ωABXB, ωABYB, ωABZB = X, Y, Z components of ωAB
B

.

Substituting Equation (3.3.2-4) into (3.3.2-2) then yields:

ATTITUDE PARAMETER RATE EQUATIONS 3-53

CB
A

 = - ωAB
B

× u1A
B

, u2A
B

, u3A
B

T

 = - u1A
B

, u2A
B

, u3A
B

T

 ωAB
B

×
T

= u1A
B

, u2A
B

, u3A
B

T

 ωAB
B

×
(3.3.2-5)

in which use has been made of the fact that the transpose of a skew symmetric matrix equals
the negative of the matrix. With Equation (3.3.2-1), we finally obtain:

CB
A

 = CB
A

 ωAB
B

× (3.3.2-6)

The rate of change of CB
A

 can also be defined in a more familiar form in terms of the

individual inertial angular rotation rates of Frames A and B (i.e., angular rotation rates relative to
non-rotating inertial space). Using the Equation (3.2.1-5) matrix product chain rule, we first

define CB
A

 as:

CB
A

 = CI
A

 CB
I

(3.3.2-7)

where

I = Non-rotating inertial coordinate frame.

CI
A

, CB
I

 = Direction cosine matrices relating the inertial non-rotating coordinate Frame

I to Frame A and Frame B.

The derivative of (3.3.2-7) is:

CB
A

 = CI
A

 CB
I

 + CI
A

 CB
I

(3.3.2-8)

Using the same procedure leading to Equation (3.3.2-6) allows us to write:

CB
I

 = CB
I

 ωIB
B

× (3.3.2-9)

and

CA
I

 = CA
I

 ωIA
A

× (3.3.2-10)

where

ωIB
B

 = Angular rate of Frame B relative to inertial Frame I (as projected on Frame B
axes).

ω I A
A

 = Angular rate of Frame A relative to inertial Frame I (as projected on Frame A
axes).

3-54 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

ωIA
A

× = Skew symmetric matrix form of ω I A
A

.

ωIB
B

× = Skew symmetric matrix form of ωIB
B

.

Taking the transpose of (3.3.2-10) obtains:

CI
A

 = - ωIA
A

× CI
A

(3.3.2-11)

Substituting Equations (3.3.2-9) and (3.3.2-11) into (3.3.2-8) then yields:

CB
A

 = CI
A

 CB
I

 ωIB
B

× - ωIA
A

× CI
A

 CB
I

(3.3.2-12)

or, upon recombining the matrix elements through Equation (3.3.2-7):

CB
A

 = CB
A

 ωIB
B

× - ωIA
A

× CB
A

(3.3.2-13)

Equation (3.3.2-13) relates the rate of change of the Frame B to Frame A direction cosine
matrix to the inertial rotation rate of Frame B as defined in Frame B axes and the inertial
rotation rate of Frame A as defined in Frame A axes. An important characteristic of Equation
(3.3.2-13) is that the coefficient matrix multiplying the angular rates is a direction cosine matrix,
hence, its components can never exceed one in magnitude. Therefore, assuming that the A and
B Frames are chosen to have finite angular rates, Equation (3.3.2-13) has no singularities for
any attitude of Frame B relative to Frame A.

It is instructive to also examine the component form of Equation (3.3.2-13). Defining the
matrix elements as:

ωIB
B

 ≡

ωXB

ωYB

ωZB

ωIA
A

 ≡

ωXA

ωYA

ωZA

CB
A

 ≡

C11 C12 C13

C21 C22 C23

C31 C32 C33

(3.3.2-14)

we have:

ATTITUDE PARAMETER RATE EQUATIONS 3-55

C11 = C12 ωZB - C13 ωYB + C21 ωZA - C31 ωYA

C12 = C13 ωXB - C11 ωZB + C22 ωZA - C32 ωYA

C13 = C11 ωYB - C12 ωXB + C23 ωZA - C33 ωYA

C21 = C22 ωZB - C23 ωYB + C31 ωXA - C11 ωZA

C22 = C23 ωXB - C21 ωZB + C32 ωXA - C12 ωZA

C23 = C21 ωYB - C22 ωXB + C33 ωXA - C13 ωZA

(3.3.2-15)

C31 = C32 ωZB - C33 ωYB + C11 ωYA - C21 ωXA

C32 = C33 ωXB - C31 ωZB + C12 ωYA - C22 ωXA

C33 = C31 ωYB - C32 ωXB + C13 ωYA - C23 ωXA

3.3.3 EULER ANGLE RATE EQUATIONS

An expression for the rate of change of the Euler angles in an Euler sequence can be
developed as a function of the relative angular rate between the coordinate frames connected by
the Euler sequence. The method is to recognize that the total angular rate vector between the
two coordinate frames is comprised of the vector sum of the individual Euler angle rates treated
as vectors along their respective rotation axes. Hence, for the particular aircraft Euler angle
sequence treated in Section 3.2.3 that defines the attitude of arbitrary coordinate Frames A and
B, we can write:

ωAB = ψ uZA + θ uYA1 + φ uXA2 (3.3.3-1)

in which the contributing terms are as defined in Section 3.2.3.

As in Section 3.3.2, it is convenient to define ωAB as the difference between the individual

Frame A and Frame B angular rotation rates relative to an inertial non-rotating coordinate
Frame I:

ωAB = ωIB - ωIA (3.3.3-2)

Substituting Equation (3.3.3-2) into (3.3.3-1) and projecting the result on Frame B axes using
the (3.2.1-5) chain rule then yields:

ωIB
B

 - CA
B

 ωIA
A

 = ψ CA2

B
 CA1

A2 uZA
A1 + θ CA2

B
 uYA1

A2 + φ uXA2

B
(3.3.3-3)

3-56 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

3.3.3.1 FRAME B ROTATION RATES IN TERMS OF
EULER RATES AND FRAME A RATES

Each unit vector for each Euler rotation in the Euler sequence (See Section 3.2.3) has
identical components in the coordinate frame before and after the Euler rotation about the unit
vector, hence:

uZA
A1 = uZA

A
uYA1

A2 = uYA1

A1 uXA2

B
 = uXA2

A2 (3.3.3.1-1)

We can also write from (3.2.1-3):

CA
B

 = CB
A T

CA2

B
 = CB

A2 T
CA1

A2 = CA2

A1 T

(3.3.3.1-2)

ωIB
B

 ≡

ωXB

ωYB

ωZB

ωIA
A

 ≡

ωXA

ωYA

ωZA

Substituting Equations (3.3.3.1-1) and (3.3.3.1-2) into (3.3.3-3) with the Euler angle
direction cosine matrix component forms provided by Equations (3.2.3-4), yields expressions
for the Frame B angular rate components in terms of the Euler angle rates and Frame A angular
rates:

ωXB = φ - ψ sin θ + ωXA cos θ cos ψ + ωYA cos θ sin ψ - ωZA sin θ

ωYB = θ cos φ + ψ cos θ sin φ + ωXA - cos φ sin ψ + sin φ sin θ cos ψ

+ ωYA cos φ cos ψ + sin φ sin θ sin ψ + ωZA sin φ cos θ (3.3.3.1-3)

ωZB = - θ sin φ + ψ cos θ cos φ + ωXA sin φ sin ψ + cos φ sin θ cos ψ

+ ωYA - sin φ cos ψ + cos φ sin θ sin ψ + ωZA cos φ cos θ

An important characteristic of Equations (3.3.3.1-3) is that the coefficients multiplying the
angular rates are unity or products of sines and cosines, hence, the coefficients can never exceed
one in magnitude. Therefore, assuming that the Euler angle rates and Frame A rates are chosen
to be finite, Equation (3.3.3.1-3) has no singularities for any attitude of Frame B relative to
Frame A.

ATTITUDE PARAMETER RATE EQUATIONS 3-57

3.3.3.2 EULER ANGLE RATES IN TERMS OF FRAME B AND FRAME A RATES

Successive applications of the Equation (3.2.1-5) chain rule shows that:

CA
B

 = CA2

B
 CA1

A2 CA
A1 (3.3.3.2-1)

Multiplying Equation (3.3.3-3) by CB
A2 yields after applying (3.3.3.2-1):

CB
A2 ωIB

B
 - CA1

A2 CA
A1 ωIA

A
 = ψ CA1

A2 uZA
A1 + θ uYA1

A2 + φ CB
A2 uXA2

B
(3.3.3.2-2)

Substituting Equations (3.3.3.1-1) and (3.3.3.1-2) into (3.3.3.2-2) with the Euler angle direction
cosine matrix component forms provided by Equations (3.2.3-4) yields expressions for the
Frame A and B angular rate components in terms of the Euler angle rates:

ωXB - ωXA cos θ cos ψ - ωYA cos θ sin ψ + ωZA sin θ = - ψ sin θ + φ

ωYB cos φ - ωZB sin φ + ωXA sin ψ - ωYA cos ψ = θ (3.3.3.2-3)

ωYB sin φ + ωZB cos φ - ωXA sin θ cos ψ - ωYA sin θ sin ψ - ωZA cos θ = ψ cos θ

Rearrangement and combination of Equations (3.3.3.2-3) then obtains the desired expressions
for the Euler angle rates in terms of the Frame A and B angular rates:

φ = ωXB + ωYB tan θ sin φ + ωZB tan θ cos φ - ωXA sec θ cos ψ - ωYA sec θ sin ψ

θ = ωYB cos φ - ωZB sin φ + ωXA sin ψ - ωYA cos ψ (3.3.3.2-4)

ψ = ωYB sec θ sin φ + ωZB sec θ cos φ - ωXA tan θ cos ψ - ωYA tan θ sin ψ - ωZA

An important characteristic of Equations (3.3.3.2-4) is that the φ and ψ expressions contain

singularities due to sec θ and tan θ terms that are infinite at θ = π/2. This is a manifestation
of the Euler angle singularity situation discussed in Section 3.2.3.2.

3.3.3.3 METHOD OF LEAST WORK FOR EULER RATE EQUATION DERIVATION

An interesting application of the Section 3.2.3.3 “Method Of Least Work” technique is

determination of the ωIB
B

 components from Euler angle rates (normally found through laborious

standard matrix algebraic and component conversion techniques). By introducing

3-58 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

each of the Equation (3.3.3-1) φ, θ, ψ vectors into the Section 3.2.3.3 Euler angle sequence
signal flow diagram at the node points for which their rotation axis is defined, and then tracing

and summing to the right, the components of ωIB
B

 are determined. The φ, θ, ψ quantities are

around X, Y, Z respectively in the intermediate frames in which their Euler angles are defined

(i.e., from Equation (3.3.3-1), ψ around uZA, θ around uYA1, and φ around uXA2). Thus:

φθ

•

ψ

•

•

Frame
A

Frame
B

ωXB

ωYB

ωZB

ωXA

ωYA

ωZA

φ

θ

ψ

Frame
A1

Frame
A2

Figure 3.3.3.3-1 B Frame Rates From Euler Angle Rates Using
The Method Of Least Work

The Figure 3.3.3.3-1 diagram is based on the Euler rotations being about positive X, Y, Z
axes. If any of the rotations are defined to be about negative axes (X, Y or Z), the associated
diagonal dot would be switched to the other diagonal (see explanation following Figures
3.2.3.3-2 and 3.2.3.3-3), and the associated Euler angle rate input would have a negative sign.

Using Figure 3.3.3.3-1, each of Equations (3.3.3.1-3) can be readily obtained. What could
be simpler?

The diagram also works in the inverse direction, provided that the three outputs are calculated
at one coordinate frame location. Thus, each of Equations (3.3.3.2-3) can be obtained from

outputs taken at the Frame A2 nodes. Unfortunately, obtaining φ, θ, ψ directly from the
diagram in terms of the Frame A and B angular rates (i.e., as in Equations (3.3.3.2-4)) is not as
easily achieved without some trickery (left as an exercise).

ATTITUDE PARAMETER RATE EQUATIONS 3-59

3.3.4 ATTITUDE QUATERNION RATE EQUATION

An equation for the rate of change of the qB
A

 attitude quaternion can be derived in terms of the

relative angular rate between coordinate Frame A and B by envisioning the Frame B rotation
rate, from Frame B’s standpoint, as relative to a stationary Frame A. We consider Frame B to
be rotating from orientation 1 to orientation 2, assuming the 1, 2 orientations to be angularly
(and time-wise) very close to one another. Applying these considerations in the Equation
(3.2.4.1-9) quaternion chain rule:

qB2

A
 = qB1

A
 qB2

B1 (3.3.4-1)

where

B1 = Instantaneous orientation of Frame B at some arbitrary time, considered
stationary in the A Frame (i.e., a “benchmark” attitude orientation).

B2 = New orientation of Frame B following its previous Frame B1 attitude,
considering B2 to be close to B1 (in time and attitude).

The change in qB
A

 from the B1 to B2 orientations is:

ΔqB
A

 = qB2

A
 - qB1

A
(3.3.4-2)

where

ΔqB
A

 = Change in qB
A

 as Frame B rotates from attitude B1 to attitude B2.

or, with (3.3.4-1) while recognizing that B1 and B2 are close to one another at the general Frame
B attitude:

ΔqB
A

 = qB1

A
 qB2

B1 - qB1

A
 = qB1

A
 qB2

B1 - q1 ≈ qB
A

 qB2

B1 - q1 (3.3.4-3)

with

q1 ≡

1
0
0
0

(3.3.4-4)

where
q1 = Identity attitude quaternion analogous to the identity matrix for a direction cosine

matrix relating two coincident coordinate frames.

3-60 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

We now define a rotation vector φ associated with qB2

B1. Since B2 and B1 are near each other

angularly, φ will be small in magnitude, allowing Equation (3.2.4.4-2) for qB2

B1 to be

approximated by:

qB2

B1 ≈
1

1
2

 φ
(3.3.4-5)

so that Equation (3.3.4-3) becomes:

ΔqB
A

 ≈
1
2

 qB
A

0

φ
(3.3.4-6)

Dividing Equation (3.3.4-6) by the small time interval for movement of B from B1 to B2 and

letting the time interval go to zero in the limit results in a rate equation for qB
A

:

qB
A

 =
1
2

 qB
A

0

φ
(3.3.4-7)

An expression for the φ term in (3.3.4-7) is obtained from the direction cosine matrix

equivalent to qB2

B1 which, from Equation (3.2.2.1-8) for small φ, is given by:

CB2

B1 ≈ I + φ× (3.3.4-8)

where

I = Identity matrix.

Dividing by the small time interval for movement of B from B1 to B2 and letting the time
interval go to zero in the limit obtains:

CB2

B1 ≈ φ× (3.3.4-9)

Applying general Equation (3.3.2-6) (with B1 substituted for A and B2 for B), we have:

CB2

B1 = CB2
B1 ωB1B2

B2 × (3.3.4-10)

ATTITUDE PARAMETER RATE EQUATIONS 3-61

where

ωB1B2
B2 = Angular rate of Frame B2 relative to Frame B1 as described in Frame B2

axes.

But because we are considering Frame B1 to be stationary relative to Frame A, we can also
write:

ωB1B2
B2 = ωAB2

B2 (3.3.4-11)

where

ωAB2
B2 = Angular rate of Frame B2 relative to Frame A as described in Frame B2 axes.

For the very small time interval being considered for Frame B2 motion from Frame B1, in the
limit as the time interval goes to zero, Frames B1 and B2 become coincident (i.e., equal to

Frame B in general) so that CB2
B1 goes to the identity matrix and ωAB2

B2 goes to ωAB
B

. Hence,

with (3.3.4-11) in (3.3.4-10), we obtain:

CB2

B1 = ωAB
B

× (3.3.4-12)

Equating (3.3.4-9) and (3.3.4-12) shows that for this particular definition for φ:

φ = ωAB
B

(3.3.4-13)

Substituting Equation (3.3.4-13) into (3.3.4-7) then yields the desired form for the general rate

of change of qB
A

 as a function of the relative angular rate between Frames A and B:

qB
A

 =
1
2

 qB
A

 ωAB
B

(3.3.4-14)

in which the following general form applies:

ωAB
B

 ≡
0

ωAB
B (3.3.4-15)

where

ωAB
B

 = Quaternion form of the angular rate vector ωAB
B

.

3-62 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

The rate of change of qB
A

 can also be defined in a more familiar form in terms of the

individual inertial angular rotation rates of Frames A and B (i.e., angular rotation rates relative to
non-rotating inertial space). Using the Equation (3.2.4.1-9) attitude quaternion product chain

rule, we first define qB
A

 as:

qB
A

 = qI
A

 qB
I

(3.3.4-16)

where

I = Non-rotating inertial coordinate frame.

The derivative of (3.3.4-16) is:

qB
A

 = qI
A

 qB
I

 + qI
A

 qB
I

(3.3.4-17)

Applying Equation (3.3.4-14) to the derivative terms in (3.3.4-17) obtains:

qB
I

 =
1
2

 qB
I

 ωIB
B

(3.3.4-18)

and

qA
I

 =
1
2

 qA
I

 ωIA
A

(3.3.4-19)

with

ωIB
B

 ≡
0

ωIB
B (3.3.4-20)

ωIA
A

 ≡
0

ωIA
A (3.3.4-21)

Based on (3.2.4-8), (3.2.4-14) and the general form of Equation (3.3.4-21), the conjugate of

ωIA
A

 is its negative, hence, with Equations (3.2.4-23) and (3.2.4.1-10), the conjugate of

Equation (3.3.4-19) is given by:

qI
A

 = -
1
2

 ωIA
A

 qI
A

(3.3.4-22)

Combining Equations (3.3.4-18) and (3.3.4-22) in (3.3.4-17) yields:

qB
A

 =
1
2

 qI
A

 qB
I

 ωIB
B

 -
1
2

 ωIA
A

 qI
A

 qB
I

(3.3.4-23)

ATTITUDE PARAMETER RATE EQUATIONS 3-63

Finally, we substitute Equation (3.3.4-16) into (3.3.4-23) to obtain the desired expression for
the rate of change of the Frame B to Frame A attitude quaternion as a function of the Frame A
and Frame B rotation rates:

qB
A

 =
1
2

 qB
A

 ωIB
B

 -
1
2

 ωIA
A

 qB
A

(3.3.4-24)

Equation (3.3.4-24) directly parallels the equivalent relationship for the CB
A

 direction cosine

matrix rate given by Equation (3.3.2-13). Note, however, that Equation (3.3.4-24) is a four-
vector equation that must abide by the rules of four-vector multiplication (defined in Section
3.2.4) if it is to be expanded in terms of its components. An important characteristic of
Equation (3.3.4-24) is that the coefficient quaternion multiplying the angular rate quaternions is
the attitude quaternion itself, hence, from Equation (3.2.4.4-1), its components can never exceed
unity in magnitude. Therefore, assuming that the A and B Frames are chosen to have finite
angular rates, Equation (3.3.4-24) has no singularities for any attitude of Frame B relative to
Frame A.

As an exercise, it is instructive to look at the component form of (3.3.4-24). Substituting the
Frame A and B angular rate component definitions from (3.3.2-14) into Equations (3.3.4-20) -
(3.3.4-21), and using Equation (3.2.4.1-1) for the Frame B to A attitude quaternion
components, Equation (3.3.4-24) in classical matrix form becomes:

a

b

c

d

 = 1

2

a - b - c - d

b a - d c

c d a - b

d - c b a

0

ω XB

ω YB

ω ZB

 - 1

2

0 - ω XA - ω YA - ω ZA

ω XA 0 - ω ZA ω YA

ω YA ω ZA 0 - ω XA

ω ZA - ω YA ω XA 0

a

b

c

d

(3.3.4-25)

or

a

b

c

d

 =
1
2

- b - c - d
a - d c
d a - b

- c b a

ωXB

ωYB

ωZB

 -
1
2

- b - c - d
a d - c

- d a b
c - b a

ωXA

ωYA

ωZA

(3.3.4-26)

or equivalently:

a

b

c

d

 = 1

2

0 - ωXB - ωXA - ωYB - ωYA - ωZB - ωZA

 ωXB - ωXA 0 ωZB + ωZA - ωYB + ωYA

ωYB - ωYA - ωZB + ωZA 0 ωXB + ωXA

 ωZB - ωZA ωYB + ωYA - ωXB + ωXA 0

a

b

c

d

(3.3.4-27)

3-64 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

3.3.5 ROTATION VECTOR RATE EQUATION

Quaternion rate Equation (3.3.4-14) can be used to derive a differential equation for the rate

of change of the φ rotation vector describing the relative attitude between arbitrary coordinate

Frames A and B, as a function of the relative angular rotation rate between the two frames. For

simplicity in the derivation, we will refer to the Equation (3.3.4-14) quaternion qB
A

 as “q” and

ωAB
B

 in supporting Equation (3.3.4-15) as “ω” with magnitude “ω”. Furthermore, we will

define the quaternion q as a function of its rotation vector equivalent using the Equation
(3.2.4.4-2) mixed scalar/vector quaternion notation, i.e.:

q = f1 + f2 φ f1 ≡ cos φ/2 f2 ≡
sin φ/2

φ
(3.3.5-1)

Equation (3.3.4-14) with (3.3.4-15) in Section 3.2.4 mixed scalar/vector notation becomes:

q =
1
2

 q ω =
1
2

 f1 ω +
1
2

 f2 φ ω (3.3.5-2)

The φ ω vector product in (3.3.5-2) is provided in Section 3.2.4 by Equation (3.2.4-27):

φ ω = φ × ω - φ ⋅ ω (3.3.5-3)

Differentiation of Equations (3.3.5-1) shows that:

q = f1 + f2 φ + f2 φ

f1 = -
1
2

 sin φ/2 φ = -
1
2

 φ φ f2 (3.3.5-4)

f2 =
1
2

cos φ/2

φ
 φ -

sin φ/2

φ2
 φ =

φ

φ

1
2

 f1 - f2

Combining (3.3.5-4) and equating the result to (3.3.5-2) combined with (3.3.5-3) finds:

q = -
1
2

 φ φ f2 +
φ

φ

1
2

 f1 - f2 φ + f2 φ =
1
2

 f1 ω +
1
2

 f2 φ × ω -
1
2

 f2 φ ⋅ ω (3.3.5-5)

Dividing (3.3.5-5) by f2 and solving for φ:

ATTITUDE PARAMETER RATE EQUATIONS 3-65

φ =
1
2

f1

f2
 ω +

1
2

 φ × ω -
φ

φ

1
2

f1

f2
 - 1 φ +

1
2

 φ φ -
1
2

 φ ⋅ ω (3.3.5-6)

Equation (3.3.5-6)) is now separated into its vector and scalar components:

φ =
1
2

f1
f2

 ω +
1
2

 φ × ω -
φ

φ

1
2

f1
f2

 - 1 φ 1
2

 φ φ =
1
2

 φ ⋅ ω (3.3.5-7)

The scalar equation is equivalently:

φ

φ
 =

1

φ2
 φ ⋅ ω (3.3.5-8)

Substituting (3.3.5-8) into the vector part of (3.3.5-7) yields:

φ =
1
2

f1

f2
 ω +

1
2

 φ × ω -
1

φ2

1
2

f1

f2
 - 1 φ ⋅ ω φ (3.3.5-9)

Using the vector triple product rule (Equation (3.1.1-16)), it is easily demonstrated that:

φ ⋅ ω φ = φ × φ × ω + φ2
 ω (3.3.5-10)

Substituting Equation (3.3.5-10) into (3.3.5-9) obtains:

φ =
1
2

f1
f2

 ω +
1
2

 φ × ω + 1 -
1
2

f1
f2

 ω +
1

φ2
 1 -

1
2

f1
f2

 φ × φ × ω (3.3.5-11)

or, upon combining terms:

φ = ω +
1
2

 φ × ω +
1

φ2
 1 -

1
2

f1
f2

 φ × φ × ω (3.3.5-12)

Using the definitions for f1 and f2 in Equations (3.3.5-1)), it can be shown by trigonometric
manipulation that the bracketed coefficient in (3.3.5-12) is equivalently:

1 -
1
2

f1
f2

 = 1 -
φ sin φ

2 (1 - cos φ)
(3.3.5-13)

Substituting (3.3.5-13) into (3.3.5-12) and reintroducing ωAB
B

 for ω then yields the desired final

expression for φ:

3-66 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

φ = ωAB
B

 +
1
2

 φ × ωAB
B

 +
1

φ2
 1 -

φ sin φ

2 (1 - cos φ)
 φ × φ × ωAB

B
(3.3.5-14)

Equation (3.3.5-14) defines the rate of change of the rotation vector that describes the relative
orientation between coordinate Frames A and B as a function of the Frame B relative to Frame
A angular rate (as defined in Frame B axes).

3.4 VECTOR RATES OF CHANGE IN ROTATING COORDINATES

Consider an arbitrary vector projected on two arbitrary coordinate frames. Equations
(3.2.1-2) show that:

VA = CB
A

 VB (3.4-1)

where

V = Arbitrary vector.

A, B = Arbitrary right handed orthogonal coordinate frames.

VA, VB = Arbitrary vector V projected on coordinate Frame A, B axes.

CB
A

 = Direction cosine matrix that transforms vectors from Frame B to Frame A.

The rate of change of V in Frame A is related to the V rate of change in Frame B by the
derivative of Equation (3.4-1):

V
A

 = CB
A

 V
B
 + CB

A
 VB (3.4-2)

Substituting Equation (3.3.2-6) into (3.4-2) then obtains:

V
A

 = CB
A

 V
B
 + CB

A
 ωAB

B
× VB (3.4-3)

or

V
A

 = CB
A

 V
B
 + ωAB

B
 × VB (3.4-4)

where

ωAB
B

 = Angular rate of Frame B relative to Frame A as projected on Frame B axes.

Equation (3.4-3) can also be expressed in an equivalent form by application of (3.1.1-40) for

the ωAB
B

× term:

VECTOR RATES OF CHANGE IN ROTATING COORDINATES 3-67

V
A

 = CB
A

 V
B
 + CB

A
 CA

B
 ωAB

A
× CA

B T
 VB (3.4-5)

which, with Equations (3.2.1-2) and (3.2.1-3), becomes:

V
A

 = CB
A

 V
B
 + ωAB

A
 × VA (3.4-6)

where

ωAB
A

 = Angular rate of Frame B relative to Frame A as projected on Frame A axes.

3.5 ATTITUDE AND VECTOR ERROR CHARACTERISTICS

The error analysis of strapdown inertial navigation systems entails the investigation of error
characteristics associated with attitude and vector parameters calculated in the navigation
computer. These error effects can arise because of incorrect initialization of data parameters,
approximations in digital integration routines for updating the parameters, software
programming errors, computer finite word length truncation and round-off effects, and errors in
the strapdown inertial sensor data (angular rate sensors and accelerometers) used in calculating
the parameters.

The characterization of attitude and vector parameter error effects begins with the definition
of an idealized error free attitude or vector parameter and its counterpart implemented in the

system computer (hence, containing errors). For this development, the following notation
will be utilized to identify parameters containing errors, where:

 = Indicator of a navigation parameter calculated in the system computer that contains

errors. If the idealized (error free) navigation parameter is () , then the version

is identified as ().

In general, the difference between () and () is a measure of the error in (). This section

describes generalized methods for applying the previous error definition to characterize error
effects associated with attitude and vector parameters.

3.5.1 DIRECTION COSINE MATRIX GENERALIZED ERROR CHARACTERISTICS

Consider a generalized direction cosine matrix in its idealized error free form and in its
system computed form where:

3-68 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

C = Idealized error free direction cosine matrix.

C = C as calculated in the system computer (i.e., containing errors).

We now define C as equal to a variation from C as follows:

C = I + E C (3.5.1-1)

where

E = Matrix containing C errors.

I = Identity matrix.

Since, from Equation (3.2.1-4), the inverse of an idealized direction cosine matrix equals its
transpose, Equation (3.5.1-1) is equivalently:

E = C CT - I (3.5.1-2)

where

T = Superscript designation for transpose.

The E matrix can be decomposed into symmetric and skew symmetric elements using the
identity:

E =
1
2

 E - ET +
1
2

 E + ET = F + G (3.5.1-3)

with

F ≡
1
2

 E - ET G ≡
1
2

 E + ET (3.5.1-4)

We also note that:

FT =
1
2

 ET - E = - F GT =
1
2

 ET + E = G (3.5.1-5)

Equations (3.5.1-5) show that F is a skew symmetric matrix (i.e., F ij = - F ji and F ii = 0) and
that G is a symmetric matrix (i.e., Gij = Gji), where:

Fij, Gij = Elements in row i and column j of F, G.

Based on the previous results, we rewrite Equations (3.5.1-1) - (3.5.1-4) as follows:

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-69

C = I + E C E = C CT - I

ESYM =
1
2

 E + ET ESKSYM =
1
2

 E - ET (3.5.1-6)

E = ESYM + ESKSYM
where

ESYM = Symmetric portion of E.

ESKSYM = Skew symmetric portion of E.

The interpretation of the ESKSYM portion of E can be ascertained by review of Equation

(3.2.2.1-8) for the direction cosine matrix as a function of the rotation vector. If we assume that

the φ rotation vector is small, Equation (3.2.2.1-8) can be approximated to first order by:

CA2

A1 ≈ I + φ× (3.5.1-7)

where

A1, A2 = Arbitrary coordinate frames that are angularly close to one another.

Thus, to first order, a small angle direction cosine matrix has the general form of identity plus a
skew symmetric matrix formed from its small angle rotation vector. The (I + E) term in the

Equations (3.5.1-6) C expression has exactly the same form as Equation (3.5.1-7) when E is
replaced by ESKSYM. We can conclude then that the ESKSYM component of E in Equations

(3.5.1-6) has the equivalent effect of adding a rotation error vector to C with components
defined by the off-diagonal elements of ESKSYM. In other words, if C represents the angular

attitude between two general coordinate Frames A and B, then the effect of ESKSYM on C is to

rotate Frame B relative to Frame A by the small angle rotation vector formed from the

components of ESKSYM. In effect, then, ESKSYM represents misalignment in the C matrix.

In order to investigate the characteristics of the ESYM portion of E, we analyze the product

C C
T

 using C from Equations (3.5.1-6) with E from the last expression in (3.5.1-6):

C C
T

 = I + ESYM + ESKSYM C I + ESYM + ESKSYM C T

= I + ESYM + ESKSYM C CT I + ESYM + ESKSYM
T

= I + ESYM + ESKSYM C C-1 I + ESYM - ESKSYM (3.5.1-8)

= I + ESYM + ESKSYM I + ESYM - ESKSYM

= I + 2 ESYM + second order terms

3-70 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

The Equation (3.5.1-8) development made use of generalized Equations (3.2.1-4) which states
that the transpose of an idealized direction cosine matrix equals its inverse. Dropping the
second order terms in (3.5.1-8) as negligible, then yields for ESYM:

ESYM =
1
2

 C C
T

 - I (3.5.1-9)

Equation (3.5.1-9) can be interpreted by expansion of C:

C
T

 = u1 u2 u3 C =

u1
T

u2
T

u3
T

(3.5.1-10)

where

u1, u2, u3 = Columns of C
T

 (i.e., the rows of C).

Substituting (3.5.1-10) into (3.5.1-9) and applying (3.1.1-12) yields:

ESYM =
1
2

u1
T

 u1 - 1 u1
T

 u2 u1
T

 u3

u2
T

 u1 u2
T

 u2 - 1 u2
T

 u3

u3
T

 u1 u3
T

 u2 u3
T

 u3 - 1
(3.5.1-11)

=
1
2

u1 ⋅ u1 - 1 u1 ⋅ u2 u1 ⋅ u3

u2 ⋅ u1 u2 ⋅ u2 - 1 u2 ⋅ u3

u3 ⋅ u1 u3 ⋅ u2 u3 ⋅ u3 - 1

Equations (3.2.1-6) show that for the idealized direction cosine matrix C, the rows represent
unit vectors along orthogonal reference coordinate frame axes. Hence, the rows of C (treating
the rows as vectors) are unity in magnitude (“normal”) and orthogonal to one another. We will
now show from (3.5.1-11), that ESYM measures the degree of orthogonality and normality

error in C.

The orthogonality error between any two rows of C (with the rows treated as vectors) can be
measured by the dot product between the rows which should be zero if the rows are
perpendicular to one another (see Equation (3.1.1-2)):

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-71

ui ⋅ uj = cos
π
2

 + δOrthij = sin δOrthij ≈ δOrthij (3.5.1-12)

where

ui = Column i of C
T

 (or row i of C).

δOrth ij = Orthogonality error between rows i and j of C.

The normality error for any row of C can be measured by the dot product between the row
and itself (the magnitude squared - See Equation (3.1.1-2)) compared with one, and can be
evaluated based on the definition:

ui = 1 + δNorm i ui (3.5.1-13)

where

ui = Column i of CT (or row i of C) which is unity in magnitude and orthogonal to any
other row of C.

δNorm i = Normality error in ui.

Taking the dot product between (3.5.1-13) and itself and subtracting one shows that:

ui ⋅ ui - 1 = 1 + δNormi
 2

 ui ⋅ ui - 1 = 1 + δNormi
 2

 - 1 ≈ 2 δNormi (3.5.1-14)

Comparing (3.5.1-12) and (3.5.1-14) with (3.5.1-11) we see that:

εij =
1
2

 ui ⋅ uj =
1
2

 δOrthij εii =
1
2

 ui ⋅ ui - 1 = δNormi (3.5.1-15)

where

εij = Element in row i, column j of ESYM.

Thus, from (3.5.1-15), the off-diagonal element in row i, column j of ESYM equals half the

orthogonality error between rows i and j of C, while the ith diagonal element of ESYM equals

the normality error in row i of C.

It is also instructive to analyze the orthogonality/normality characteristics of the C columns.
The procedure is identical to that leading to Equation (3.5.1-15) except that Equations (3.5.1-1)
and (3.5.1-2) would be replaced by:

3-72 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

C = C I + E' E' = CT C - I (3.5.1-16)

where

E' = Alternative definition for the matrix containing C errors.

Then, following the same steps leading to (3.5.1-9), we would find that:

E'SYM =
1
2

 C
T

 C - I (3.5.1-17)

where

E'SYM = Symmetric portion of E'.

Comparing (3.5.1-17) for E'SYM with (3.5.1-9) for ESYM, we see that they are of identical

form but with C replaced by C
T

. We can conclude, therefore, that since ESYM represents the

orthogonality/normality error in the rows of C (as shown in (3.5.1-15)), that E'SYM represents

the orthogonality/normality error in the columns of C.

We also note from Equations (3.5.1-9) and (3.5.1-17) that:

ESYM C =
1
2

 C C
T

 - I C = C
1
2

 C
T

 C - I = C E'SYM (3.5.1-18)

Equation (3.5.1-18) shows that if the rows of C are normal and orthogonal (i.e., ESYM = 0),

then the columns of C will also be normal and orthogonal (i.e., E'SYM = 0).

For the remainder of this section, we shall analyze the dynamic properties of ESYM, E'SYM

and ESKSYM under angular motion of the coordinate frames defining C and C. The analysis is

expedited if we become more specific regarding our definition for C to be the CB
A

 matrix of

Section 3.3.2. Then Equation (3.3.2-13) applies for which:

CB
A

 = CB
A

 ωIB
B

× - ωIA
A

× CB
A

(3.5.1-19)

where

ωIB
B

 = Angular rate of Frame B relative to a non-rotating inertial Frame I (as projected
on Frame B axes).

ωIA
A

 = Angular rate of Frame A relative to inertial Frame I (as projected on Frame A
axes).

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-73

The version of (3.5.1-19) implemented in the strapdown system computer can be represented
as:

CB
A

 = CB
A

 ωIB
B

× - ωIA
A

× CB
A

 + δCBComp

A
(3.5.1-20)

where

δCBComp

A
 = Error rate input to CB

A
 created by approximations in the digital integration

routines used for calculating C, software programming errors, and
computer finite word length truncation/round-off effects.

ωIA
A

, ωIB
B

 = Values for ωIA
A

, ωIB
B

 in the computer executing (3.5.1-20) that may contain

errors compared to the error free ωIA
A

, ωIB
B

 values.

Let us now analyze the rate of change of ESYM (i.e., the orthogonality/normality error in the

rows of CB
A

) under motion characterized by Equations (3.5.1-19) - (3.5.1-20). From Equation

(3.5.1-9) we first write:

ESYM =
1
2

 CB
A

 CB
A T

 - I (3.5.1-21)

whose derivative is:

ESYM =
1
2

 CB
A

 CB
A T

 + CB
A

 CB
A T

(3.5.1-22)

Using the property that the transpose of a cross-product operator equals its negative, the
transpose of (3.5.1-20) for Equation (3.5.1-22) is:

CB
A T

 = - ωIB
B

× CB
A T

 + CB
A T

 ωIA
A

× + δCBComp

A T
(3.5.1-23)

Substituting (3.5.1-20) and (3.5.1-23) into (3.5.1-22) then gives:

2 ESYM = CB
A

 ωIB
B

× - ωIA
A

× CB
A

 + δCBComp

A
 CB

A T

+ CB
A

 - ωIB
B

× CB
A T

 + CB
A T

 ωIA
A

× + δCBComp

A T

= CB
A

 ωIB
B

× CB
A T

 - ωIA
A

× CB
A

 CB
A T

 + δCBComp

A
 CB

A T
(3.5.1-24)

- CB
A

 ωIB
B

× CB
A T

 + CB
A

 CB
A T

 ωIA
A

× + CB
A

 δCBComp

A T

= CB
A

 CB
A T

 ωIA
A

× - ωIA
A

× CB
A

 CB
A T

 + δCBComp

A
 CB

A T
 + CB

A
 δCBComp

A T

3-74 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

or with (3.5.1-21) for the CB
A

 CB
A T

 terms:

ESYM = ESYM ωIA
A

× - ωIA
A

× ESYM +
1
2

 δCBComp

A
 CB

A T
 + CB

A
 δCBComp

A T
(3.5.1-25)

Equation (3.5.1-25) clearly shows that in the absence of computational error (i.e., for

δCBComp

A
 = 0), ESYM will be zero if it is initialized at zero (i.e., if CB

A
 is initialized with zero

orthogonality/normalization error). Thus, we can conclude that ESYM can only be created by

initial CB
A

 orthogonality/normality error or by δCBComp

A
 inputs (due to approximations in the

digital integration routines used for calculating CB
A

, software programming errors, and

computer finite word length truncation/round-off effects), but not from errors in the ωIA
A

, ωIB
B

angular rates applied in the CB
A

 integration operation.

The rate of change of E'SYM (the orthogonality/normality error in the columns of CB
A

) is

obtained similarly beginning with Equation (3.5.1-17). The result is:

E'SYM = E'SYM ωIB
B

× - ωIB
B

× E'SYM +
1
2

 CB
A T

 δCBComp

A
 + δCBComp

A T
 CB

A
(3.5.1-26)

Conclusions from (3.5.1-26) regarding the cause of E'SYM are the same as the discussion
following Equation (3.5.1-25) for the ESYM error.

Finally, we analyze ESKSYM, the misalignment error associated with CB
A

, under dynamic
motion. Substituting the E expression in Equations (3.5.1-6) into the ESKSYM expression, and

introducing the more specific CB
A

 for C we see that:

ESKSYM =
1
2

 CB
A

 CB
A T

 - CB
A

 CB
A T

(3.5.1-27)

whose derivative is:

ESKSYM =
1
2

 CB
A

 CB
A T

 + CB
A

 CB
A T

 - CB
A

 CB
A T

 - CB
A

 CB
A T

(3.5.1-28)

The CB
A T

 term in (3.5.1-28) is the transpose of (3.5.1-19):

CB
A T

 = - ωIB
B

× CB
A T

 + CB
A T

 ωIA
A

× (3.5.1-29)

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-75

Substituting (3.5.1-19), (3.5.1-20), (3.5.1-23) and (3.5.1-29) into (3.5.1-28) (multiplied by 2)
then yields:

2 ESKSYM = CB
A

 ωIB
B

× - ωIA
A

× CB
A

 + δCBComp

A
 CB

A T

+ CB
A

 - ωIB
B

× CB
A T

 + CB
A T

 ωIA
A

× - CB
A

 ωIB
B

× - ωIA
A

× CB
A

 CB
A T

- CB
A

 - ωIB
B

× CB
A T

 + CB
A T

 ωIA
A

× + δCBComp

A T

= CB
A

 ωIB
B

 + δωIB
B

 × - ωIA
A

× CB
A

 + δCBComp

A
 CB

A T

+ CB
A

 - ωIB
B

× CB
A T

 + CB
A T

 ωIA
A

 - δωIA
A

 × (3.5.1-30)

- CB
A

 ωIB
B

× - ωIA
A

 - δωIA
A

 × CB
A

 CB
A T

- CB
A

 - ωIB
B

 + δωIB
B

 × CB
A T

 + CB
A T

 ωIA
A

× + δCBComp

A T

= CB
A

 δωIB
B

× CB
A T

 + CB
A

 δωIB
B

× CB
A T

 - CB
A

 CB
A T

 δωIA
A

× - δωIA
A

× CB
A

 CB
A T

+ CB
A

 CB
A T

 - CB
A

 CB
A T

 ωIA
A

× - ωIA
A

× CB
A

 CB
A T

 - CB
A

 CB
A T

+ δCBComp

A
 CB

A T
 - CB

A
 δCBComp

A T

in which

δωIB
B

 ≡ ωIB
B

 - ωIB
B

δωIA
A

 ≡ ωIA
A

 - ωIA
A

(3.5.1-31)

where

δωIB
B

, δωIA
A

 = Errors in ωIB
B

, ωIA
A

.

Equation (3.5.1-30) can be further reduced by approximating CB
A

 as CB
A

 in the δωIB
B

, δωIA
A

terms, substituting (3.5.1-27) in the ωIA
A

 terms, and applying similarity transformation

Equation (3.1.1-38). The final result (divided by 2) then is:

ESKSYM = CB
A

 δωIB
B

 × - δωIA
A

× + ESKSYM ωIA
A

× - ωIA
A

× ESKSYM

 +
1
2

 δCBComp

A
 CB

A T
 - CB

A
 δCBComp

A T (3.5.1-32)

3-76 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

Equation (3.5.1-32) shows that ESKSYM (the misalignment error in CB
A

) is created by initial

CB
A

 misalignment error, by δCBComp

A
 inputs (due to approximations in digital integration

routines for calculating CB
A

, software programming errors, and computer finite word length

truncation/round-off effects), and unlike ESYM and E'SYM, by errors in the ωIA
A

, ωIB
B

 angular

rates used in the CB
A

 integration routine.

3.5.2 DIRECTION COSINE MATRIX MISALIGNMENT ERROR CHARACTERISTICS

Consider a general direction cosine matrix that transforms vectors from a general coordinate
Frame B Frame to general coordinate Frame A. Consider that this direction cosine matrix is
being calculated in the strapdown inertial navigation system computer, hence may contain
errors. We define the error in the direction cosine matrix as:

δCB
A

 ≡ CB
A

 - CB
A

(3.5.2-1)

where

CB
A

 = Direction cosine matrix that transform vectors from the B Frame to the A

Frame.

CB
A

 = CB
A

 as calculated in the system computer.

 = Designator for a system computer calculated quantity, hence, containing error.

The quantity without the designation is by definition error free, hence, CB
A

 is

error free and CB
A

 contains errors.

δCB
A

 = Error in CB
A

.

From Section 3.5.1, the errors contained in CB
A

 can be classified as normalization,

orthogonality and misalignment errors. The normalization and orthogonality errors are created
by initialization error, software computation algorithm error and/or finite word length computer
error. As discussed in Section 3.5.1, normalization and orthogonality errors are not created by

strapdown inertial sensor errors present on the signals used to compute the CB
A

 matrix. In

general, proper software design practice will assure that the normalization/orthogonality errors

in CB
A

 will be negligibly small. Therefore, the CB
A

 error during normal inertial navigation

system operation will be primarily misalignment error. For properly designed software (i.e.,

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-77

with negligible algorithm error, negligible finite computer word-length error, and no

programming error), the remaining CB
A

 misalignment error will be produced by CB
A

initialization error and by errors in the strapdown inertial sensor inputs used in the CB
A

calculation/updating process.

For this section, we will assume that the design of the basic strapdown system has been
performed properly so that the normalization/orthogonality error in software computed direction
cosine matrices is negligibly small. Hence, we will only be dealing with the direction cosine

matrix misalignment errors. As such, the general direction cosine matrices CB
A

 and CB
A

 will

both be considered to be orthogonal and normal, with the δCB
A

 error in CB
A

 only containing the

effects of misalignment. Section 3.5.1 showed that the normalization and orthogonality errors

in a general strapdown software computed direction cosine matrix C are contained in the

symmetrical portion of C. If we assume zero normality/orthogonality error, the symmetric

error portion of C (i.e., ESYM) will be zero, hence with CB
A

 for C in Equation (3.5.1-9):

ESYM =
1
2

 CB
A

 CB
A T

 - I = 0 (3.5.2-2)

or upon rearrangement:

CB
A

 CB
A T

 = I (3.5.2-3)

Equations (3.5.1-6) define the strapdown software computed CB
A

 matrix as a variation from

the correct CB
A

 value:

CB
A

 = I + E CB
A

(3.5.2-4)

Substituting (3.5.2-4) into Equation (3.5.2-3) using the (3.2.1-4) property of the idealized CB
A

that its inverse equals its transpose, then obtains:

CB
A

 CB
A T

 = I = I + E CB
A

 CB
A T

 I + E T = I + E I + E T (3.5.2-5)

or

I + E T = I + E -1 (3.5.2-6)

Equation (3.5.2-6) shows that the transpose of (I + E) in Equation (3.5.2-4) equals its inverse.
This is exactly the characteristic of an idealized direction cosine matrix (see Equation (3.2.1-4)).
We can conclude that under the zero orthogonality/normality condition, (I + E) in (3.5.2-4) can

3-78 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

be treated as a direction cosine matrix containing the misalignment errors in CB
A

. This is the

approach we will take for the remainder of this chapter in treating direction cosine matrix error
characteristics.

Since CB
A

 defines the relative attitude between Frames A and B, we can arbitrarily assign the

misalignment error in CB
A

 to an error in B Frame attitude relative to Frame A, or to an error in
A Frame attitude relative to Frame B. Assuming the latter for the moment, we then write:

CB
A

 = CB
A

(3.5.2-7)

where

A = A Frame attitude assumed to be in error from the correct A Frame attitude.

Using the Equation (3.2.1-5) chain rule, we can also write:

CB
A

 = CA
A

 CB
A

(3.5.2-8)

where

CA
A

 = Direction cosine matrix that would transform vectors from the error free A

Frame attitude to the misaligned A Frame attitude.

Note that Equation (3.5.2-8) is equivalent to the Equation (3.5.2-4) form in which (I + E) has

been replaced by the CA
A

 direction cosine matrix. Substituting (3.5.2-8) into (3.5.2-1) then

yields for the CB
A

 error:

δCB
A

 = CA
A

 CB
A

 - CB
A

 = CA
A

 - I CB
A

(3.5.2-9)

The CA
A

 matrix can also be represented by a rotation error vector. Convention defines this

rotation error vector from the inverse of CA
A

 (i.e., from C
A

A
). Assuming that the A and A

Frames are almost parallel (i.e., only a small angle attitude error in the A Frame attitude),

generalized Equation (3.2.2.1-8) shows that to first order, C
A

A
 can be approximated as:

C
A

A
 ≈ I + α× (3.5.2-10)

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-79

where

α = Rotation error vector associated with C
A

A
.

Taking the transpose of (3.5.2-10), recognizing from (3.1.1-14) that the transpose of a cross-

product operator equals its negative, and applying (3.1-12), then yields for CA
A

:

CA
A

 = I - α× (3.5.2-11)

Substitution of (3.5.2-11) into (3.5.2-8) (recognizing from Equations (3.2.1-4) that the inverse
of an idealized direction cosine matrix equals its transpose) shows after rearrangement, that
Equation (3.5.2-11) is equivalent to:

α× = I - CB
A

 CB
A T

(3.5.2-12)

Substituting (3.5.2-11) into (3.5.2-9) provides an expression for the CB
A

 error as a function of

the C
A

A
 rotation error vector:

δCB
A

 = - α× CB
A

(3.5.2-13)

The previous analysis was based on the assumption that A Frame attitude error was the

source of the error in CB
A

. The analysis can also be performed based on the assumption that B

Frame attitude error is the source of CB
A

 error, i.e.:

CB
A

 = C
B

A
(3.5.2-14)

where

B = B Frame attitude assumed to be in error from the correct B Frame attitude.

Using the Equation (3.2.1-5) chain rule, we write:

CB
A

 = CB
A

 C
B

B
(3.5.2-15)

where

C
B

B
 = Direction cosine matrix that would transform vectors from the B Frame error

attitude to the error free B Frame attitude.

Substituting (3.5.2-15) into (3.5.2-1) then yields for the CB
A

 error:

3-80 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

δCB
A

 = CB
A

 C
B

B
 - CB

A
 = CB

A
 C

B

B
 - I (3.5.2-16)

Defining C
B

B
 in terms of a small rotation error vector obtains:

C
B

B
 ≡ I + β× (3.5.2-17)

where

β = Rotation error vector associated with C
B

B
.

Substituting (3.5.2-17) into (3.5.2-15) then yields after rearrangement:

β× = CB
A T

 CB
A

 - I (3.5.2-18)

Substitution of (3.5.2-17) in (3.5.2-16) provides an expression for the CB
A

 error as a function of

the C
B

B
 rotation error vector:

δCB
A

 = CB
A

 β× (3.5.2-19)

Equation (3.5.2-13) with (3.5.2-12) and Equation (3.5.2-19) with (3.5.2-18) are two equally

valid methods for defining the error in the CB
A

 matrix in terms of the α or β rotation error

vectors. In order to find the relationship between α and β we equate Equations (3.5.2-13) and
(3.5.2-19):

α× CB
A

 = - CB
A

 β× (3.5.2-20)

or, after rearrangement with (3.2.1-3) and (3.2.1-4):

α× = - CB
A

 β× CB
A T

β× = - CA
B

 α× CA
B T

(3.5.2-21)

Applying general Equation (3.2.1-8) with (3.2.1-2) to the α× expression in (3.5.2-21) then
yields:

α× = - CB
A

 β × (3.5.2-22)

or, finally:

α = - CB
A

 β (3.5.2-23)

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-81

The same procedure applied to β× in (3.5.2-21) shows that:

β = - CB
A T

 α (3.5.2-24)

Equations (3.5.2-23) and (3.5.2-24) are alternative forms of Equations (3.5.2-21) which

clearly show that α is the negative of β in Frame A and β is the negative of α viewed in Frame
B. For clarity, then, we define:

αB to A
A

 ≡ α βB to A
B

 ≡ β (3.5.2-25)

and from (3.5.2-23) and (3.5.2-24) with (3.2.1-2):

αB to A
B

 = - βB to A
B

βB to A
A

 = - αB to A
A

(3.5.2-26)

where

αB to A
A

, αB to A
B

 = Rotation error vector associated with the CB
A

 matrix (“B to A”)
considering the A Frame to be misaligned, as projected onto A
Frame, B Frame axes.

βB to A
A

, βB to A
B

 = Rotation error vector associated with the CB
A

 matrix (“B to A”)
considering the B Frame to be misaligned, as projected onto A Frame,
B Frame axes.

A helpful note to keep in mind when applying the above α, β definitions is that the α
misalignment considers the superscripted coordinate frame in the associated direction matrix

(i.e., the A Frame in CB
A

) to be the source of angular error, while the β misalignment considers

the subscripted frame to be the angular error source (the B Frame in CB
A

).

In summary, with (3.5.2-25), (3.5.2-26), (3.2.1-2) and (3.2.1-8), Equations (3.5.2-12),
(3.5.2-13), (3.5.2-18), (3.5.2-19), (3.5.2-23), (3.5.2-24) and (3.5.2-21) become:

αB to A
A

× = I - CB
A

 CB
A T

δCB
A

 = - αB to A
A

× CB
A

(3.5.2-27)

βB to A
B

× = CB
A T

 CB
A

 - I δCB
A

 = CB
A

 βB to A
B

× (3.5.2-28)

αB to A
B

 = CB
A T

 αB to A
A

βB to A
A

 = CB
A

 βB to A
B

(3.5.2-29)

3-82 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

αB to A
B

× = CB
A T

 αB to A
A

× CB
A βB to A

A
× = CB

A
 βB to A

B
× CB

A T
(3.5.2-30)

αB to A
B

 = - βB to A
B

βB to A
A

 = - αB to A
A

(3.5.2-31)

αB to A
A

× = - CB
A

 βB to A
B

× CB
A T

βB to A
B

× = - CB
A T

 αB to A
A

× CB
A

(3.5.2-32)

A similar development can also be performed on the CA
B

 matrix (which is the transpose of

CB
A

 because CB
A

 is assumed in this section to be normal and orthogonal). We then can write:

CA
B

 = CA
B

 C
A

A
 = CA

B
 I + βA to B

A
× (3.5.2-33)

where

βA to B
A

 = Rotation error vector associated with the CA
B

 matrix (“A to B”) considering
Frame A to be misaligned, as projected on Frame A axes.

Upon rearrangement using (3.2.1-3) for the ideal CA
B

 matrix, (3.5.2-33) becomes:

βA to B
A

× = CA
B T

 CA
B

 - I = CB
A

 CB
A T

 - I (3.5.2-34)

Taking the transpose of (3.5.2-34) and recognizing that the transpose of a cross-product
operator equals its negative, then yields:

βA to B
A

× = I - CB
A

 CB
A T

(3.5.2-35)

Comparing Equations (3.5.2-35) and (3.5.2-27) for αB to A
A

× shows that:

βA to B
A

 = αB to A
A

(3.5.2-36)

Hence, the identical angle error vector is obtained by analyzing the error in CB
A

 or CA
B

considering Frame A to be misaligned.

Equation (3.5.2-33) considers Frame A misalignment to be the source of the CA
B

 error. A

similar analysis can be performed considering B Frame misalignment as the CA
B

 error source.

Using (3.5.2-8) and (3.5.2-11) with B substituted for A and A substituted for B shows that:

αA to B
B

 = βB to A
B

(3.5.2-37)

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-83

where

αA to B
B

 = Rotation error vector associated with the CA
B

 matrix considering Frame B to
be misaligned, as projected on Frame B axes.

Thus, the identical angle error vector is obtained by analyzing the error in CB
A

 or CA
B

 considering

Frame B to be misaligned.

Finally, it is instructive to analyze the errors in a generalized CD
A

 direction cosine matrix

formed from the direction cosine matrix product chain rule:

CD
A

 = CB
A

 CD
B

(3.5.2-38)

where

D = Arbitrary coordinate frame.

CD
B

 = Direction cosine matrix that transforms vectors from the D to the B Frame.

CD
A

 = Direction cosine matrix that transforms vectors from the D to the A Frame.

From Equations (3.5.2-27) we can write:

αD to A
A

× = I - CD
A

 CD
A T

(3.5.2-39)

with

CD
A

 = CB
A

 CD
B

(3.5.2-40)

where

CD
A

, CD
B

 = CD
A

, CD
B

 matrices calculated in the system, hence, containing errors.

αD to A
A

 = Rotation error vector associated with CD
A

 (“D to A”) considering the error in

CD
A

 to be produced by A Frame misalignment.

Applying (3.5.2-27) and general Equations (3.2.1-8) allows us to also write:

αD to B
B

× = I - CD
B

 CD
B T

(3.5.2-41)

αD to B
A

× = CB
A

 αD to B
B

× CB
A T

(3.5.2-42)

3-84 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

where

αD to B
B

 = Rotation error vector associated with CD
B

 (“D to B”) considering the error in

CD
B

 to be produced by B Frame misalignment.

Substituting (3.5.2-40) and (3.5.2-38) into (3.5.2-39), applying (3.5.2-41) for αD to B
B

× ,

applying (3.5.2-27) for αB to A
A

× and dropping second order rotation error vector products then

obtains:

αD to A
A

× = I - CB
A

 CD
B

 CD
B T

 CB
A T

= I - CB
A

 CD
B

 CD
B T

 CB
A -1

 CB
A

 CB
A T

= I - CB
A

 I - αD to B
B

× CB
A -1

 I - αB to A
A

×

= I - CB
A

 CB
A -1

 - CB
A

 αD to B
B

× CB
A -1

 I - αB to A
A

× (3.5.2-43)

= I - I - CB
A

 αD to B
B

× CB
A -1

 I - αB to A
A

×

= αB to A
A

× + CB
A

 αD to B
B

× CB
A -1

 - CB
A

 αD to B
B

× CB
A -1

 αB to A
A

×

≈ αB to A
A

× + CB
A

 αD to B
B

 × CB
A T

With (3.5.2-42), Equation (3.5.2-43) becomes:

αD to A
A

× ≈ αD to B
A

× + αB to A
A

× (3.5.2-44)

or equivalently,

αD to A
A

 = αD to B
A

 + αB to A
A

(3.5.2-45)

and with (3.5.2-29), (3.5.2-31), and the general form of Equation (3.5.2-23):

βD to A
D

 = βD to B
D

 + βB to A
D

(3.5.2-46)

Equations (3.5.2-45) and (3.5.2-46) are the rotation error vector equivalents to Equation
(3.5.2-40). They show that the rotation error vector for a direction cosine matrix formed as the
product of two direction cosine matrices equals the sum of the rotation error vectors for the
direction cosine matrices used in forming the product.

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-85

When applying Equations (3.5.2-45) and (3.5.2-46) it is helpful to recall the note following

Equation (3.5.2-26) for the α versus β definitions regarding the direction cosine matrices in
Equation (3.5.2-40). Equation (3.5.2-45) considers superscripted coordinate frames in the
Equation (3.5.2-40) direction cosine matrices to be the source of angular error (i.e., the A

Frame in CD
A

, the A Frame in CB
A

 and the B Frame in CD
B

). In contrast, Equation (3.5.2-46)

considers subscripted coordinate frames in the Equation (3.5.2-40) direction cosine matrices to

be the source of angular error (i.e., the D Frame in CD
A

, the B Frame in CB
A

 and the D Frame in

CD
B

).

For completeness, we summarize the analytical definitions for the angle error parameters in
Equations (3.5.2-45) - (3.5.2-46) and their direction cosine matrix error equivalencies by
applying generalized Equations (3.5.2-27) - (3.5.2-29) and (3.2.1-2) with (3.5.2-40):

αD to B
B

× = I - CD
B

 CD
B T

δCD
B

 = - αD to B
B

× CD
B αD to B

A
 = CB

A
 αD to B

B

αB to A
A

× = I - CB
A

 CB
A T

δCB
A

 = - αB to A
A

× CB
A

CD
A

 = CB
A

 CD
B

(3.5.2-47)

αD to A
A

× = I - CD
A

 CD
A T

δCD
A

 = - αD to A
A

× CD
A

αD to A
A

 = αD to B
A

 + αB to A
A

δCD
A

 = δ CB
A

 CD
B

 = - αD to B
A

 + αB to A
A

 × CB
A

 CD
B

__

βD to B
D

× = CD
B T

 CD
B

 - I δCD
B

 = CD
B

 βD to B
D

×

βB to A
B

× = CB
A T

 CB
A

 - I δCB
A

 = CB
A

 βB to A
B

× βB to A
D

 = CD
B T

 βB to A
B

CD
A

 = CB
A

 CD
B

(3.5.2-48)

βD to A
D

× = CD
A T

 CD
A

 - I δCD
A

 = CD
A

 βD to A
D

×

βD to A
D

 = βD to B
D

 + βB to A
D

δCD
A

 = δ CB
A

 CD
B

 = CB
A

 CD
B

 βD to B
D

 + βB to A
D

 ×

3-86 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

3.5.3 DIRECTION COSINE MATRIX MISALIGNMENT ERROR
AS A FUNCTION OF EULER ANGLE ERRORS

The αB to A , βB to A rotation error vectors of Section 3.5.2 associated with the computed CB
A

direction cosine matrix (i.e., containing misalignment errors) can also be expressed in terms of

errors in the Euler angles describing CB
A

. Recall from Sections 3.2.3 and 3.2.3.1 that the error

free CB
A

 direction cosine matrix can be defined as in Equation (3.2.3.1-1) by:

CB
A

 = CA1

A
 CA2

A1 CB
A2 (3.5.3-1)

where

A Frame = Starting arbitrary coordinate frame.

A1 Frame = Frame A after rotating it about one of the A Frame axes through the
“first” Euler angle rotation.

A2 Frame = Frame A1 after rotating it about one of the A1 Frame axes through the
“second” Euler angle rotation.

B Frame = Ending arbitrary coordinate frame obtained by rotating Frame A2 about
one of the A2 Frame axes through the “third” Euler angle rotation.

CB
A

, CB
A2, CA2

A1, CA1

A
 = Direction cosine matrices that transform vectors from Frame B

to A, from Frame B to A2, from Frame A2 to A1 and from
Frame A1 to A.

In Section 3.2.3 and its subsections, the “first”, “second” and “third” Euler angle rotations
referenced in the above definitions were, respectively, heading about the A Frame Z axis, pitch
about the A1 Frame Y axis, and roll about the A2 Frame X axis. In this section, we keep the
development more general by not explicitly specifying the particular axes for the individual
Euler rotations.

The system calculated form of Equation (3.5.3-1) (i.e., containing errors) is:

CB
A

 = CA1
A

 CA2

A1
 CB

A2
(3.5.3-2)

or equivalently:

CB
A

 = CA2
A

 CB
A2

CA2
A

 = CA1
A

 CA2

A1
(3.5.3-3)

Applying general Equations (3.5.2-40) and (3.5.2-46) to Equations (3.5.3-3) and projecting
onto Frame A axes shows that:

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-87

βB to A
A

 = βA2 to A
A

 + βB to A 2

A
βA2 to A

A
 = βA1 to A

A
 + βA2 to A 1

A
(3.5.3-4)

and in combination:

βB to A
A

 = βA1 to A
A

 + βA2 to A 1

A
 + βB to A 2

A
(3.5.3-5)

where

βB to A
A

 = Rotation error vector associated with CB
A

 (considering the B Frame to be
misaligned) projected on Frame A axes.

βA1 to A
A

 = Rotation error vector associated with CA1
A

 (considering the A1 Frame to be

misaligned) projected on A Frame axes.

βA2 to A 1

A
 = Rotation error vector associated with CA2

A1
 (considering the A2 Frame to be

misaligned) projected on A Frame axes.

βB to A 2

A
 = Rotation error vector associated with CB

A2
 (considering the B Frame to be

misaligned) projected on A Frame axes.

Equation (3.5.3-5) is the rotation error vector equivalent to Equation (3.5.3-2). We now seek
relationships between the terms on the right side of Equation (3.5.3-5) and the errors in the

Euler angle parameters associated with CB
A

. This is achieved by first rewriting Equation

(3.5.3-5) in the following equivalent form using Equation (3.2.1-2) and the (3.2.1-5) chain rule:

βB to A
A

 = βA1 to A
A

 + CA1

A
 βA2 to A 1

A1 + CA1

A
 CA2

A1 βB to A 2

A2 (3.5.3-6)

where

βA2 to A 1

A1 = Rotation error vector associated with CA2

A1
 (considering the A2 Frame to be

misaligned) projected on A1 Frame axes.

βB to A 2

A2 = Rotation error vector associated with CB
A2

 (considering the B Frame to be

misaligned) projected on A2 Frame axes.

Recall from Section 3.2.3 that each of the Euler angle parameters associated with CB
A

 is

defined as an angular rotation about a fixed axis so that in the error free case, the associated

direction cosine matrix (CB
A2, CA2

A1, or CA1

A
) is given by the general Equations (3.2.3-2) form:

C = I + sin ζ uζ× + (1 - cos ζ) uζ× 2
(3.5.3-7)

3-88 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

where

ζ = Generalized Euler rotation (e.g., in Section 3.2.3, ψ, θ or φ associated with CB
A

 as

in Equations (3.2.3-1)).

uζ = Generalized rotation axis unit vector for the ζ Euler rotation (e.g., in Section

3.2.3, uZA
A

, uYA 1

A1 or uXA 2

A2 unit vectors along the A Frame Z-axis, A1 Frame

Y-axis or A2 Frame X-axis as defined by Equations (3.2.3-3)).

C = Generalized direction cosine matrix associated with ζ and uζ (e.g., in Section

3.2.3, CA1

A
, CA2

A1, or CB
A2).

Generalized Equations (3.5.2-28) and (3.5.2-30) show that:

βB to A
B

× = CB
A T

 CB
A

 - I βB to A
A

× = CB
A

 βB to A
B

× CB
A T

(3.5.3-8)

or in combination:

βB to A
A

× = CB
A

 CB
A T

 - I (3.5.3-9)

Generalizing Equation (3.5.3-9) to an arbitrary Euler angle rotation matrix gives:

β× = C CT - I (3.5.3-10)

where

β = Generalized rotation error associated with C (e.g., CA1
A

, CA2

A1
, or CB

A2
 as

represented by βA1 to A
A

, βA2 to A 1

A1 or βB to A 2

A2).

Returning to Equation (3.5.3-7) and defining the error in C to only be caused by error in the

Euler angle ζ (i.e., not in uζ) allows us to write:

C = I + sin ζ uζ× + (1 - cos ζ) uζ× 2
(3.5.3-11)

For simplicity we define:

f1 = sin ζ f2 = 1 - cos ζ

f1 = sin ζ f2 = 1 - cos ζ
(3.5.3-12)

Substituting (3.5.3-7) and (3.5.3-11) with (3.5.3-12) into (3.5.3-10) then yields:

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-89

β× = C CT - I = I + f1 uζ× + f2 uζ× 2
 I + f1 uζ× + f2 uζ× 2 T

 - I

 = I + f1 uζ× + f2 uζ× 2
 I - f1 uζ× + f2 uζ× 2

 - I

= I + f1 - f1 uζ× + f2 + f2 - f1 f1 uζ× 2
 + f1 f2 - f2 f1 uζ× 3

 + f2 f2 uζ× 4
 - I

= f1 - f1 uζ× + f2 + f2 - f1 f1 uζ× 2
 + f1 f2 - f2 f1 uζ× 3

 + f2 f2 uζ× 4

(3.5.3-13)

Alternative expressions for the uζ× 3
, uζ× 4

 terms in (3.5.3-13) can be derived by
application of the (3.1.1-16) general vector triple cross product formula. First we find for
arbitrary V3 using (3.1.1-15):

uζ×
 2

 V3 = uζ × uζ × V3 = uζ uζ ⋅ V3 - V3 uζ ⋅ uζ = - V3 + uζ uζ ⋅ V3 (3.5.3-14)

Then, taking the cross-product of uζ with (3.5.3-14)) we obtain:

uζ×
 3

 V3 = uζ× uζ×
 2

 V3 = uζ× - V3 + uζ uζ ⋅ V3 = - uζ× V3 (3.5.3-15)

Lastly, the cross-product of uζ with (3.5.3-15) gives:

uζ× 4
 V3 = - uζ× 2

 V3 (3.5.3-16)

Since V3 is arbitrary, (3.5.3-15) and (3.5.3-16) are equivalently:

uζ× 3
 = - uζ× uζ× 4

 = - uζ× 2
(3.5.3-17)

Substituting (3.5.3-17) into (3.5.3-13) obtains:

β× = f1 - f1 - f1 f2 + f2 f1 uζ× + f2 + f2 - f1 f1 - f2 f2 uζ× 2
(3.5.3-18)

With (3.5.3-12) the coefficient terms in (3.5.3-18) become:

f1 - f1 - f1 f2 + f2 f1 = sin ζ - sin ζ - sin ζ (1 - cos ζ) + (1 - cos ζ) sin ζ

= sin ζ cos ζ - cos ζ sin ζ = sin (ζ - ζ)
(3.5.3-19)

f2 + f2 - f1 f1 - f2 f2 = (1 - cos ζ) + (1 - cos ζ) - sin ζ sin ζ - (1 - cos ζ) (1 - cos ζ)

 = 1 - cos ζ cos ζ - sin ζ sin ζ = 1 - cos (ζ - ζ)

3-90 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

We define:

δζ ≡ ζ - ζ (3.5.3-20)

where

δζ = Error in the computed Euler angle ζ.

Substituting (3.5.3-19) with (3.5.3-20) into (3.5.3-18), and recognizing that δζ is small, yields

to first order in δζ:

β× = δζ uζ× (3.5.3-21)
or

β = δζ uζ (3.5.3-22)

Applying generalized Equation (3.5.3-22) obtains the desired relationship between the

(βA1 to A
A

, βA2 to A 1

A1 , βB to A 2

A2) errors in (CA1
A

, CA2

A1
, CB

A2
) for Equation (3.5.3-6), and the errors in

the Euler angles associated with CB
A

 around their defining axes. Repeating Equation (3.5.3-6)

for completeness then finds:

βB to A
A

 = βA1 to A
A

 + CA1

A
 βA2 to A 1

A1 + CA1

A
 CA2

A1 βB to A 2

A2 (3.5.3-23)

βA1 to A
A

 = δζ1 uζA
A βA2 to A 1

A1 = δζ2 uζA1

A1 βB to A 2

A2 = δζ3 uζA2

A2 (3.5.3-24)

with

δζ1 ≡ ζ1 - ζ1 δζ2 ≡ ζ2 - ζ2 δζ3 ≡ ζ3 - ζ3 (3.5.3-25)

where

uζA
A

, uζA1

A1 , uζA2

A2 = Unit vectors along one of the Frame A, Frame A1, Frame A2

coordinate axes for the first, second, third Euler rotations in the

Euler angle rotation sequence associated with CB
A

.

ζ1, ζ2, ζ3 = Idealized error free values for the first, second, third Euler rotation angles

around the uζA
A

, uζA1

A1 , uζA2

A2 axes.

ζ1, ζ2, ζ3 = System calculated values for ζ1, ζ2, ζ3 from CB
A

 (i.e., containing errors).

δζ1, δζ2, δζ3 = The errors in ζ1, ζ2, ζ3.

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-91

As an example, we note that for the particular Euler angle sequence described in Section
3.2.3, Equations (3.2.3-2) and (3.2.3-4):

ζ1 = ψ ζ2 = θ ζ3 = φ

uζA
A

 =
0
0
1

 uζA1

A1 =
0
1
0

 uζA2

A2 =
1
0
0

CA1

A
 =

cos ζ1 - sin ζ1 0

sin ζ1 cos ζ1 0

0 0 1

 CA2

A1 =

cos ζ2 0 sin ζ2

0 1 0

- sin ζ2 0 cos ζ2

CB
A2 =

1 0 0

0 cos ζ3 - sin ζ3

0 sin ζ3 cos ζ3

(3.5.3-26)

where

ψ, θ, φ = Heading, pitch, roll Euler angles associated with CB
A

 around the Frame A

Z-axis, Frame A1 Y-axis and Frame A2 X-axis.

Equations (3.5.3-26) represent values for the generalized parameters developed in this section
for only one of many possible Euler angle sequences. Other possible sequences can have
different rotation axes for the Euler angle rotations; some can have two, four or more rotation
axes, depending on the particular problem being analyzed.

Returning to the general problem, Equation (3.5.3-23) and (3.5.3-24) can also be written in
the equivalent form:

βB to A
A

 = δζ1 uζA
A

 + δζ2 uζA1

A
 + δζ3 uζA2

A
(3.5.3-27)

with

uζA1

A
 = CA1

A
 uζA1

A1 uζA2

A
 = CA1

A
 CA2

A1 uζA2

A2 (3.5.3-28)

Equations (3.5.3-27) and (3.5.3-28) written in the B Frame are equivalently:

3-92 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

βB to A
B

 = δζ1 uζA
B

 + δζ2 uζA1

B
 + δζ3 uζA2

B

(3.5.3-29)

uζA
B

 = CA2

B
 CA1

A2 uζA
A1 uζA1

B
 = CA2

B
 uζA1

A2

Because each Euler rotation is a rotation vector, Equation (3.2.2.1-6) shows that the rotation
axis components for a particular Euler angle are identical in the coordinate frames before and
after the Euler rotation. Consequently:

uζA
A1 = uζA

A
uζA1

A2 = uζA1

A1 uζA2

B
 = uζA2

A2 (3.5.3-30)

With (3.5.3-30), Equations (3.5.3-29) become:

βB to A
B

 = δζ1 uζA
B

 + δζ2 uζA1

B
 + δζ3 uζA2

A2 (3.5.3-31)

with

uζA
B

 = CA2

B
 CA1

A2 uζA
A

uζA1

B
 = CA2

B
 uζA1

A1 (3.5.3-32)

From Equations (3.5.2-31), (3.5.3-5) and (3.5.3-23) we also see that:

αB to A
A

 = αA1 to A
A

 + CA1

A
 αA2 to A 1

A1 + CA1

A
 CA2

A1 αB to A 2

A2 (3.5.3-33)

αA1 to A
A

 = - δζ1 uζA
A αA2 to A 1

A1 = - δζ2 uζA1

A1 αB to A 2

A2 = - δζ3 uζA2

A2 (3.5.3-34)

where

αB to A
A

 = Rotation error vector associated with CB
A

 (considering the A Frame to be
misaligned) projected on Frame A axes.

αA1 to A
A

 = Rotation error vector associated with CA1
A

 (considering the A Frame to be

misaligned) projected on Frame A axes.

αA2 to A 1

A1 = Rotation error vector associated with CA2

A1
 (considering the A1 Frame to be

misaligned) projected on Frame A1 axes.

αB to A 2

A2 = Rotation error vector associated with CB
A2

 (considering the A2 Frame to be

misaligned) projected on Frame A2 axes.

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-93

or alternatively:

αB to A
A

 = - δζ1 uζA
A

 - δζ2 uζA1

A
 - δζ3 uζA2

A
(3.5.3-35)

with uζA1

A
 and uζA2

A
 defined in Equations (3.5.3-28).

In the B Frame, from Equations (3.5.2-31) and (3.5.3-31) we also have:

αB to A
B

 = - δζ1 uζA
B

 - δζ2 uζA1

B
 - δζ3 uζA2

A2 (3.5.3-36)

with uζA
B

 and uζA1

B
 defined by Equations (3.5.3-32).

Finally, it is instructive to note that the form of Equations (3.5.3-23) with (3.5.3-24),
Equations (3.5.3-31) with (3.5.3-32), Equations (3.5.3-33) with (3.5.3-34) and Equations
(3.5.3-36) with (3.5.3-32) lend themselves to the Section 3.2.3.3 “Method of Least Work”
diagram technique for analyzing Euler angle defined attitude error characteristics. For example,
for the particular Euler sequence described in Section 3.2.3 (as defined in this section by
Equations (3.5.3-26)) the former equations can be represented by such diagrams as in Figures
3.5.3-1 and 3.5.3-2:

φθ

•

ψ

•

•

Frame
A

Frame
A1

Frame
A2

Frame
B

δψ δθ

δφ
-1αB to A

A
βB to A

A

Figure 3.5.3-1 Orientation Error Vectors In The A Frame
As A Function Of Euler Angle Errors

3-94 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

φθ

•

ψ

•

•

Frame
A

Frame
A1

Frame
A2

Frame
B

δψ
δθ

δφ

-1

βB to A
B

αB to A
B

Figure 3.5.3-2 Orientation Error Vectors In The B Frame
As A Function Of Euler Angle Errors

3.5.4 VECTOR ERROR CHARACTERISTICS

Consider an arbitrary vector with an ideal error free value and a system computed value
containing errors. We define the error in the vector in terms of the coordinate frame in which it
is evaluated and the coordinate frame in which the evaluated vector error is projected:

δVB
A

 ≡ CB
A

 V
B
 - VB (3.5.4-1)

where

A, B = Arbitrary coordinate frames.

CB
A

 = Direction cosine matrix that transforms vectors from the B Frame to the A

Frame.

VB = Arbitrary idealized error free vector projected on coordinate Frame B axes.

V
B
 = System computed value of VB (i.e., containing errors) projected on B Frame

axes.

δVB
A

 = Error in V evaluated in the B Frame (subscript label) and then projected on A

Frame axes (superscript label).

From the (3.5.4-1) definition, we can also project the B Frame evaluated error vector onto B
Frame axes to obtain:

ATTITUDE AND VECTOR ERROR CHARACTERISTICS 3-95

δVB
B

 = V
B
 - VB (3.5.4-2)

Alternatively, we can evaluate the V error in the A Frame and project it onto A Frame axes
as:

δVA
A

 = V
A

 - VA (3.5.4-3)

where

δVA
A

 = Error in V evaluated in the A Frame (subscript label) and then projected on A

Frame axes (superscript label).
But,

V
A

 = CB
A

 V
B

VA = CB
A

 VB (3.5.4-4)

where

CB
A

 = System computed value of CB
A

 (i.e., containing errors).

Following the development approach in Section 3.5.2 (Equations (3.5.2-1) and (3.5.2-27))
we can write:

CB
A

 = CB
A

 + δCB
A

 = CB
A

 - αB to A
A

× CB
A

(3.5.4-5)

where

αB to A
A

 = Rotation error vector associated with the CB
A

 matrix (considering the CB
A

 error
to be A Frame misalignment) as projected onto A Frame axes.

Substituting (3.5.4-4) and (3.5.4-5) into (3.5.4-3) and applying (3.5.4-1) and (3.5.4-2) then
yields:

δVA
A

 = CB
A

 - αB to A
A

× CB
A

 V
B
 - VA

= CB
A

 - αB to A
A

× CB
A

 VB + δVB
B

 - VA

= CB
A

 VB + CB
A

 δVB
B

 - αB to A
A

× CB
A

 VB - αB to A
A

× CB
A

 δVB
B

 - VA (3.5.4-6)

= VA + δVB
A

 - αB to A
A

× VA - αB to A
A

× δVB
A

 - VA

= δVB
A

 - αB to A
A

 × VA - αB to A
A

 × δVB
A

or, after rearrangement and neglecting the αB to A
A

 × δVB
A

 term as second order:

3-96 VECTOR, ATTITUDE AND COORDINATE FRAME FUNDAMENTALS

δVB
A

 = δVA
A

 + αB to A
A

 × VA (3.5.4-7)

Transforming Equation (3.5.4-7) to the B Frame also yields after rearrangement:

δVA
B

 = δVB
B

 - αB to A
B

 × VB (3.5.4-8)

where

αB to A
B

 = Rotation error vector associated with the CB
A

 matrix (considering the CB
A

 error
to be A Frame misalignment) as projected onto B Frame axes.

Finally, we can substitute (3.5.2-31) into Equations (3.5.4-7) and (3.5.4-8) to obtain the
equivalent forms:

δVB
A

 = δVA
A

 - βB to A
A

 × VA (3.5.4-9)

δVA
B

 = δVB
B

 + βB to A
B

 × VB (3.5.4-10)

where

βB to A
A

, βB to A
B

 = Rotation error vector associated with the CB
A

 matrix (considering the

CB
A

 error to be B Frame misalignment) as projected onto A Frame, B
Frame axes.

4-1

4

Continuous Form Strapdown
Inertial Navigation Equations

4.0 OVERVIEW

A strapdown inertial navigation system consists of a computer and an inertial sensor
assembly typically containing three orthogonal strapdown accelerometers and angular rate
sensors. The sensor assembly data is input to the computer which performs five basic
operations:

• Computation of sensor assembly angular attitude orientation using an integration
algorithm operating on the angular rate sensor input data.

• Applying the computed attitude to transform input strapdown accelerometer signals
from sensor axes to navigation coordinates.

• Processing the transformed acceleration data with an integration algorithm to calculate
velocity relative to the earth in the navigation frame (including the addition of
gravitational acceleration effects not measured by the accelerometers).

• Processing the computed velocity with an integration algorithm to calculate position
location in a position reference coordinate system.

• Converting the attitude, velocity and position data to equivalent forms required for
system output.

Chapters 7 and 19 (Section 19.1) provide in-depth derivations of digital computation
algorithms for attitude/velocity/position integration and acceleration transformation. In this
chapter, we will derive an equivalent set of equations for the above operations assuming an
idealized infinitely fast system computer with continuous sensor assembly angular
rate/acceleration inputs. The integration operations will be developed in the form of continuous
differential equations that when integrated in the classical analytical continuous sense, would
provide the attitude, velocity and position data generated digitally in the strapdown system
computer. As such, the differential equations derived in this chapter can be viewed as the
theoretical design goal for the Chapter 7 and 19 (Section 19.1) strapdown system computer
digital algorithms. The Chapter 7 and 19 (Section 19.1) algorithms are designed to achieve the

4-2 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

same numerical result by digital integration as the continuous integration of the differential
equations developed in this chapter.

For a terrestrial (earth) based inertial navigation system, sensor assembly angular attitude
orientation is usually described as an “attitude direction cosine matrix” (or attitude quaternion)
relating sensor assembly axes (the “body” or B Frame) to locally level attitude reference
coordinates (L Frame). Section 4.1 develops the differential equations for the attitude direction
cosine matrix and attitude quaternion rate as a function of input strapdown angular rate sensor
data. A correction term is included in the equations (Section 4.1.1) for angular rotation of the
locally level reference L Frame to remain level (to account for earth’s rotation rate and angular
rotation of the local level relative to the earth due to navigation system horizontal velocity over
the earth). Calculation of the correction term requires knowledge of the direction cosine matrix
between a locally level navigation reference N Frame and an earth fixed reference coordinate E
Frame. The N to E direction cosine matrix also defines the system angular position location in
earth reference coordinates, hence, is sometimes denoted as the “position” direction cosine
matrix. The position direction cosine matrix is calculated by integrating its differential equation
(derived in Section 4.4.1.1) using system computed velocity relative to the earth as input.
Section 4.1.2 describes how the attitude direction cosine matrix is also used to compute roll,
pitch, heading Euler angle outputs.

Sections 4.2 and 4.3 develop the velocity rate differential equation using transformed
strapdown acceleration data as input. The velocity components are computed by integrating the
differential equation in the locally level navigation coordinate N Frame. Section 4.3.1 describes
how the N Frame velocity components can be converted to their equivalent components along
local north, east, vertical axes (or alternatively, along earth referenced E Frame axes) for output.

Section 4.4 develops equations for determining position location relative to the earth.
Sections 4.4.1.1 and 4.4.1.2 show how position in the form of the N to E position direction
cosine matrix and altitude is calculated by an integration operation on N Frame velocity. A
divergent error characteristic can develop in the vertical velocity/altitude integration process
excited principally from accelerometer error input to the altitude rate equation. Section 4.4.1.2.1
discusses control correction terms in the vertical velocity/altitude integration operations that can
be used to reduce vertical velocity/altitude error and prevent vertical channel divergence. Section
4.4.2 develops several analytical equivalencies for converting earth referenced position location
data from one representation form to another (e.g., position direction matrix to
latitude/longitude). Section 4.4.3 derives differential equations as a function of system
computed velocity, that when integrated, provide latitude and longitude position location data
directly. A discussion is included regarding the singularities present in this integration approach
for position determination, in comparison with the Section 4.4.1.1 position direction cosine rate
integration approach which is singularity free.

Section 4.5 provides a general discussion of various options that can be considered for
navigation N Frame azimuth (heading) orientation selection. Section 4.6 discusses the general

OVERVIEW 4-3

initialization requirements for the attitude, velocity and position integration functions in a
strapdown INS, including various methods of implementation.

Section 4.7 provides a tabular reference summary of the salient equations derived in Chapter
4, listed in the order they would be processed in a strapdown INS computer.

The coordinate frames used in this chapter are the B, L, N, Geo, E and I Frames as defined in
Section 2.2, and for more specificity, we expand the earth fixed E Frame definition to define a
particular X, Y, Z axis arrangement where

E = Earth fixed coordinate frame with Y along the earth polar axis, Z, X in the earth
equatorial plane, with Z in the Greenwich England meridian plane.

4.1 ATTITUDE RATE EQUATIONS

The attitude of the B Frame relative to the local level attitude reference Frame L is typically
computed in a strapdown INS, either in the form of a direction cosine matrix or an attitude
quaternion. Euler angles are not generally used as the basic attitude reference form due to their
singularities and more complex attitude rate form (compare Euler angle rate Equations
(3.3.3.2-4) with direction cosine rate Equations (3.3.2-15) and quaternion rate Equations
(3.3.4-26)). Attitude determination consists of integrating the associated attitude rate equations
for the selected attitude parameters. Thus, applying Equations (3.3.2-13) or (3.3.4-24) and the
Section 2.2 coordinate frame definitions, attitude is typically computed by integration of:

CB
L

 = CB
L

 ωIB
B

 × - ωIL
L

× CB
L

(4.1-1)
or

qB
L

 =
1
2

 qB
L

 ωIB
B

 -
1
2

 ωIL
L

 qB
L

(4.1-2)

where

CB
L

, qB
L

 = Direction cosine matrix and attitude quaternion relating coordinate Frames B

and L.

ωIB
B

 = Angular rate of the B Frame relative to inertial space expressed in B Frame axes.

ωIL
L

 = Angular rate of the L Frame relative to inertial space expressed in L Frame
coordinates.

ωIB
B

, ωIL
L

 = Quaternion equivalents to ωIB
B

, ωIL
L

 as indicated below using (3.2.4.1-3).

ωIB
B

 ≡
0

ωIB
B ωIL

L
 ≡

0

ωIL
L (4.1-3)

4-4 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

The ωIB
B

 components would be formed from measurements taken from the strapdown inertial

angular rate sensors. The ωIL
L

 components would be formed from the definition of the L Frame

and its respective angular rate (to be discussed subsequently).

The component forms of (4.1-1) and (4.1-2) are, from Equations (3.3.2-15) and (3.3.4-26):

C11 = C12 ωZB - C13 ωYB + C21 ωZL - C31 ωYL

C12 = C13 ωXB - C11 ωZB + C22 ωZL - C32 ωYL

C13 = C11 ωYB - C12 ωXB + C23 ωZL - C33 ωYL

C21 = C22 ωZB - C23 ωYB + C31 ωXL - C11 ωZL

C22 = C23 ωXB - C21 ωZB + C32 ωXL - C12 ωZL

C23 = C21 ωYB - C22 ωXB + C33 ωXL - C13 ωZL

(4.1-4)

C31 = C32 ωZB - C33 ωYB + C11 ωYL - C21 ωXL

C32 = C33 ωXB - C31 ωZB + C12 ωYL - C22 ωXL

C33 = C31 ωYB - C32 ωXB + C13 ωYL - C23 ωXL

a =
1
2

 - b ωXB - c ωYB - d ωZB + b ωXL + c ωYL + d ωZL

b =
1
2

 a ωXB - d ωYB + c ωZB - a ωXL - d ωYL + c ωZL

c =
1
2

 d ωXB + a ωYB - b ωZB + d ωXL - a ωYL - b ωZL

d =
1
2

 - c ωXB + b ωYB + a ωZB - c ωXL + b ωYL - a ωZL

(4.1-5)

with

ωIB
B

 ≡

ωXB

ωYB

ωZB

ωIL
L

 ≡

ωXL

ωYL

ωZL
(4.1-6)

CB
L

 ≡

C11 C12 C13

C21 C22 C23

C31 C32 C33

qB
L

 ≡

a
b
c
d

ATTITUDE RATE EQUATIONS 4-5

As an option to integrating direction cosine rate equations for each of the three rows of CB
L

,

the first two rows can be calculated by integration of the first six expressions in (4.1-4), with the
third row then calculated from the first two based on the following expression taken from
application of Equations (3.2.1-3) and (3.2.1-6):

CL
B

 = u1L
B

u2L
B

u3L
B CB

L
 = CL

B T
(4.1-7)

where

u1L
B

, u2L
B

, u3L
B

 = Unit vectors along the L Frame X, Y, Z axes (i.e., 1, 2, 3) projected on

B Frame axes, which from (4.1-7), correspond to the rows of CB
L

.

Hence, from the definition of the (4.1-7) unit vectors we can write:

u3L
B

 = u1L
B

 × u2L
B

(4.1-8)

Equation (4.1-8) can be utilized to calculate the third row of CB
L

 from the first two rows. Using

(4.1-6) and (4.1-7), Equation (4.1-8) in component form is:

C31 = C12 C23 - C13 C22

C32 = C13 C21 - C11 C23

C33 = C11 C22 - C12 C21

(4.1-9)

4.1.1 ANGULAR RATE OF LOCAL LEVEL FRAME L

The inertial angular rate of the local level frame (ωIL
L

) in Equations (4.1-1) - (4.1-3) is the

sum in Frame N coordinates of the angular rates of Frame L relative to Frame N, Frame N
relative to Frame E and Frame E relative to Frame I, with the sum then transformed to Frame L
coordinates. From the Section 2.2 definition of Frames L and N (they are fixed relative to one
another), the relative angular rate between the two is zero, hence:

ωIL
L

 = CN
L

 ωIE
N

 + ωEN
N

(4.1.1-1)

where

ωIE
N

 = Angular rate of the earth E Frame relative to inertial space as projected along N
Frame axes.

4-6 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

ωEN
N

 = Angular rate of the navigation N Frame relative to the E Frame as projected
along N Frame axes.

CN
L

 = Direction cosine matrix that transforms vectors from the N to the L Frame.

with, by the Section 2.2 definition of the L and N Frames:

CN
L

 =
0 1 0
1 0 0
0 0 -1

(4.1.1-2)

The ωIE
N

 term in (4.1.1-1) represents the earth rotation rate vector as seen in local level

navigation coordinates. Using generalized Equations (3.2.1-2) and (3.2.1-3), ωIE
N

 is related to

the equivalent component vector in earth coordinates through CN
E

, the direction cosine matrix

relating local level Frame N and earth coordinate Frame E:

ωIE
N

 = CN
E T

 ωIE
E

 (4.1.1-3)

with from the Section 4.0 definition for Frame E:

ωIE
E

 = 0 ωe 0
 T (4.1.1-4)

where

ωe = Earth angular rotation rate magnitude relative to inertial space.

The transpose (of a row) format in (4.1.1-4) is used merely to reduce the vertical space that
would be required for the normal column matrix format. This approach will be used when
convenient throughout the book.

The ωEN
N

 term in (4.1.1-1) is equal to the sum of its horizontal and vertical components. The

vertical component is a function of the type of local level navigation frame utilized (e.g., wander
azimuth, free azimuth, or North/East geographic, to be discussed in Section 4.5). The

horizontal component of ωEN
N

 is the angular rate that will maintain the N Frame locally level

under horizontal position movement over the earth (i.e., horizontal velocity). This is identical to
the horizontal component of the angular rate of the horizontal velocity vector. In other words, if
the N Frame is rotated at the same horizontal angular rate as the horizontal velocity vector, it will
also remain horizontal (as does the horizontal velocity vector by definition). For a spherical

earth, the magnitude of the horizontal velocity vector angular rate and the ωEN
N

 horizontal

ATTITUDE RATE EQUATIONS 4-7

component (call it ωENH

N
), equals the horizontal component of velocity (call it vH

N
) divided by the

distance from earth’s center to the inertial navigation system (call it R). The direction of ωENH

N

is found using the “right hand rule” by curling the right hand fingers in the direction of vH
N

 over

the surface of the earth (you need a large hand for this) which then places the thumb along

ωENH

N
. Equivalently, ωENH

N
 can be calculated as the cross-product between an upward unit

vector and vH
N

 divided by R, or since the upward velocity component has no component

perpendicular to the upward vector, as the cross-product between the upward unit vector and the
total velocity vector divided by R. The previous effects can be expressed analytically as:

ρN
 ≡ ωEN

N
 =

1
R

 uR
N

 × vN + ρZN uR
N

 (4.1.1-5)

where

ρN
 = Conventional notation for ωEN

N
, also known as “transport rate”, and analytically

defined as the angular rate of Frame N relative to Frame E.

vN = Translational velocity of the navigation frame relative to the earth.

R = Distance from earth’s center to the inertial navigation system.

uR
N

 = Unit vector along the position vector from earth center to the current position.

ρZN = Vertical component of ρN
. Options for calculating ρZN are discussed in

Section 4.5.

For the conventional ellipsoidal earth surface model (see Section 5.1), Equation (4.1.1-5) has
the more general form:

ρN ≡ ωEN
N

 = FC
N

 uZN
N

 × vN + ρZN uZN
N

 (4.1.1-6)

where

FC
N

 = Curvature matrix in the N Frame (3 by 3) that is a function of position location

over the earth, with elements 3, i and i, 3 equal to zero and the remaining
elements symmetrical about the diagonal. For a spherical earth model, the
“remaining” elements are zero off the diagonal and the reciprocal of the radial
distance from earth center to the INS on the diagonal. For an ellipsoidal earth
surface shape model, the “remaining” terms represent the local curvature on the
earth surface projected to the INS altitude (See Equations (5.3-18) for closed-
form expression).

4-8 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

uZN
N

 = Unit vector perpendicular to the surface of the earth, upward along the local

vertical (i.e., along the Z axis of the N Frame as defined in Section 2.2).

The CN
E

 direction cosine matrix is required to transform earth rate from Frame E to Frame N

coordinates in (4.1.1-3), and to compute FC
N

, ρZN in (4.1.1-6). The CN
E

 matrix is also used (as

described in Section 4.4) to describe horizontal position location over the earth. The CN
E

 matrix

is computed by an integration operation on ρN
 transport rate as part of the position

determination process described in Section 4.4.1.1.

The component form of Equation (4.1.1-1) for Equations (4.1-4) and (4.1-5) is obtained by

substitution of (4.1.1-3) and (4.1.1-6) for ωIE
N

 and ωEN
N

, and insertion of the appropriate matrix

and vector definitions from Equations (4.1.1-2), (4.1.1-4) and (4.4.1.1-2):

ωXL = D22 ωe + ρYN

ωYL = D21 ωe + ρXN (4.1.1-7)

ωZL = - D23 ωe - ρZN

4.1.2 EULER ANGLE OUTPUTS

Although not explicitly calculated by integration, Euler angle data is still typically required
from an inertial navigation system for output information. For the case when the basic attitude
parameters (computed by integration) are direction cosines, the Euler angles can be extracted by
application of Equations (3.2.3.2-1), (3.2.3.2-2) and (3.2.3.2-4):

θ = tan -1
- C31

1 - C31
2

For C31 < 0.999: (4.1.2-1)

φ = tan -1
C32

C33
ψ = tan -1

C 21

C11

(Continued)

ATTITUDE RATE EQUATIONS 4-9

For C31 ≤ - 0.999:

ψ - φ = tan -1
C23 - C12

C13 + C22

(4.1.2-1)
(Continued)

For C31 ≥ 0.999

ψ + φ = π + tan -1
C23 + C12

C13 - C22

The previous equations define the Euler angles relating the L and B Frames. For the situation

when C31 ≥ 0.999, the equations shown can be utilized for ψ, φ, with either ψ or φ specified

based on some other criteria (e.g., the value when the C31 ≥ 0.999 region was entered).

Alternatively, both ψ and φ can be frozen at their values when the C31 ≥ 0.999 region was

entered.

For the situation when the attitude quaternion is the basic attitude parameter (computed by
integration), there is no direct way, to the author’s knowledge, for calculating the equivalent
Euler angle parameters directly from the quaternion component elements. The method to be
used, therefore, is to apply Equations (4.1.2-1), with the required direction cosines calculated
from the quaternion elements as in Equation (3.2.4.2-1).

It should be noted that the heading Euler angle ψ in Equations (4.1.2-1) represents the
heading of the B Frame X axis relative to the locally level Frame L. Frame L is sometimes
denoted as “platform coordinates” analogous to sensor coordinates on the gyro stabilized
element of a gimbaled locally level navigation “platform”. Heading is also typically required
relative to true North for output purposes (true North is defined as the horizontal direction
toward the earth’s positive polar rotation axis). To calculate the heading relative to true North

(known as “true heading”), ψ must be corrected for the angle between the L Frame X axis and
true North (known as the wander angle). Because the wander angle is measured as a positive

angle around an upward vertical, but ψ is measured positive around the L Frame downward
vertical Z axis, the correction equation has the form:

ψTrue = ψPlatform - α (4.1.2-2)

where

ψTrue = True heading.

ψPlatform = Platform heading or “ψ” as calculated from Equations (4.1.2-1).

α = Wander angle.

4-10 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

The wander angle is computed from the orientation of the N Frame (or, equivalently, the L
Frame using (4.1.1-2)) relative to earth fixed E Frame coordinates, as defined by Equations
(4.4.2.1-3).

4.2 ACCELERATION TRANSFORMATION

Before the acceleration measurements from the system accelerometers can be integrated into
velocity, the acceleration vector must be transformed from sensor B Frame coordinates to
navigation N Frame coordinates. The transformation of measured linear acceleration from the
B to the N Frame can be accomplished directly using direction cosine matrix or quaternion
attitude parameters by application of Equations (3.2.1-2) or (3.2.4.1-4). Defining the
transformation as a two step process (from Frame B to L, then from Frame L to N) we have:

aSF
L

 = CB
L

 aSF
B

 (4.2-1)
or

aSF
L

 = qB
L
 aSF

B
 qB

L*
(4.2-2)

and then:

aSF
N

 = CL
N

 aSF
L

 (4.2-3)

with CL
N

 as the transpose of CN
L

 defined by Equation (4.1.1-2), and from Equations (3.2.4.1-3):

aSF
B

 =
0

aSF
B aSF

L
 =

0

aSF
L (4.2-4)

where

aSF
B

, aSF
L

 = Specific force acceleration vector in the B and L Frames. The linear

acceleration measured by accelerometers in the B Frame is aSF
B

. The term
“specific force” has been adopted for accelerometer measurements to
indicate that accelerometers measure acceleration generated by applied
contact forces, not including applied gravitational effects. As we shall see,
the total acceleration (that produces velocity change) is calculated in the
system computer as the sum of specific force and gravitational
acceleration.

If a quaternion is being utilized as the basic attitude reference (calculated through integration),
Equation (4.2-1) can be used as an alternative to (4.2-2) if the attitude quaternion is first

ACCELERATION TRANSFORMATION 4-11

converted to its equivalent direction cosine matrix form as in Equation (3.2.4.2-1):

CB
L

 =

a2 + b2 - c2 - d2 2 b c - a d 2 b d + a c

2 b c + a d a2 - b2 + c2 - d2 2 c d - a b

2 b d - a c 2 c d + a b a2 - b2 - c2 + d2

(4.2-5)

The number of individual mathematical operations involved in executing Equations (4.2-5) and
(4.2-1) is slightly more than in executing Equation (4.2-2). However, if one is required to also
generate Euler angle outputs as in Equation (4.1.2-1), then (4.2-1) with (4.2-5) has less net

computations compared with (4.2-2) because many of the CB
L

 elements must still be calculated

using (4.2-5) for the Equations (4.1.2-1) calculation.

4.3 VELOCITY RATE EQUATION

The velocity data in an inertial navigation system is typically computed as an integration of
velocity rate described in the navigation N Frame. The velocity of interest is usually defined as
the time rate of change of position relative to earth fixed coordinates (i.e., the E Frame). In
Frame E then, we define the velocity vector as:

vE ≡ R
E

(4.3-1)

where

vE = Column vector representing the defined velocity vector of interest projected along
earth E Frame axes.

RE = Column vector representing the position vector from earth’s center to the
navigation system as viewed in the E Frame.

The components of v in locally level N Frame navigation coordinates are the values typically
used by the inertial navigation system computer for calculating navigation outputs. These are
related to the E Frame components through:

vN = CE
N

 vE (4.3-2)

The derivative of (4.3-2) is:

v
N

 = CE
N

 vE + CE
N

 v
E

(4.3-3)

The CE
N

 term in (4.3-3) is obtained from the transpose of generalized Equation (3.3.2-6) with

(3.2.1-3):

4-12 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

CE
N

 = ωEN
N

×
T

CE
N

 = - ωEN
N

× CE
N

(4.3-4)

in which it is recognized that the transpose of a cross-product operator equals its negative.

The v
E

 term in (4.3-3) can be developed by first writing (4.3-1) as a function of R
components in a non-rotating inertial coordinate I Frame (defined in Section 2.2). Applying

(3.4-4) for R
E

, we see that (4.3-1) is equivalently:

vE = CI
E

 R
I
 - ωIE

I
× RI (4.3-5)

in which it is recognized that ωIE
I

 is the negative of ωEI
I

. The v
E

 term for Equation (4.3-3) is

obtained from the derivative of (4.3-5):

v
E

 = CI
E

 R
I
 - ωIE

I
× RI - ωIE

I
× R

I
 + CI

E
 R

I
 - ωIE

I
× RI

 = CI
E

 R
I
 - ωIE

I
× R

I
 + CI

E
 R

I
 - ωIE

I
× RI

(4.3-6)

The ωIE
I

 term in the previous expression has been equated to zero due to the constancy of

earth’s rotation rate relative to inertial space. We also know from (3.3.2-6) that:

CI
E

 = CI
E

 ωEI
I

× = - CI
E
 ωIE

I
× (4.3-7)

With (4.3-7), Equation (4.3-6) becomes:

v
E

 = CI
E

 R
I
 - ωIE

I
× R

I
 - ωIE

I
× R

I
 + ωIE

I
× ωIE

I
× RI

 = CI
E

 R
I
 - 2 ωIE

I
× R

I
 + ωIE

I
× ωIE

I
× RI

(4.3-8)

The R
I
 term in (4.3-8) can be related to v through (4.3-5). Multiplication of (4.3-5) by CE

I

and rearrangement yields:

R
I
 = vI + ωIE

I
× RI (4.3-9)

Substitution of (4.3-9) into (4.3-8) obtains:

v
E

 = CI
E

 R
I
 - 2 ωIE

I
× vI + ωIE

I
× RI + ωIE

I
× ωIE

I
× RI

 = CI
E

 R
I
 - ωIE

I
× ωIE

I
× RI - 2 ωIE

I
× vI

(4.3-10)

VELOCITY RATE EQUATION 4-13

The R
I
 term in Equation (4.3-10) is the total inertial acceleration which, as discussed in Section

4.2, can be equated to the sum of specific force (aSF) and gravitational acceleration, the former

representing the acceleration sensed by accelerometers:

R
I
 = gI + aSF

I
 (4.3-11)

where

gI = Gravitational acceleration in I Frame coordinates.

Equation (4.3-10) then becomes:

v
E

 = CI
E

 aSF
I

 + gI - ωIE
I

× ωIE
I

× RI - 2 ωIE
I

× vI (4.3-12)

Equation (4.3-12) can be simplified if we analyze its response under zero velocity (and zero
velocity rate) conditions which finds:

aSF
I

 + gI - ωIE
I

× ωIE
I

× RI = 0 For v = 0 (4.3-13)

or, with (3.1.1-13), for the cross-product vector notation:

aSF
I

 = - gI - ωIE
I

 × ωIE
I

 × RI For v = 0 (4.3-14)

from which we define:

gP
I

 ≡ gI - ωIE
I

 × ωIE
I

 × RI (4.3-15)

From (4.3-14) and (4.3-13) we see that the gP
I

 vector is the negative of the specific force

acceleration when at rest relative to the earth at position vector R from earth’s center. We also
know that a plumb-bob erected at rest will align itself along the net local force vector on its

support pivot. Thus, the direction of gP
I

 is parallel to the line of a plumb-bob at location R in a

vehicle that is stationary relative to the earth. For this reason, gP
I

 is sometimes referred to as

“plumb-bob gravity”. With this definition, Equation (4.3-12) assumes the simpler form:

v
E

 = CI
E

 aSF
I

 + gP
I
 - 2 ωIE

I
 × vI (4.3-16)

where

gP
I

 = Plumb-bob gravity in the I Frame as defined by Equation (4.3-15).

4-14 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

We now substitute (4.3-16) and (4.3-4) into (4.3-3) to obtain for v
N

:

v
N

 = - ωEN
N

× CE
N

 vE + CE
N

 CI
E

 aSF
I

 + gP
I

 - 2 ωIE
I

× vI

= - ωEN
N

× vN + CI
N

 aSF
I

 + gP
I

 - 2 ωIE
I

× vI (4.3-17)

= - ωEN
N

× vN + aSF
N

 + gP
N

 - 2 ωIE
N

× vN

Introducing (3.1.1-13) for the cross-product vector notation in (4.3-17) and combining terms

yields the final expression for v
N

:

v
N

 = aSF
N

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN (4.3-18)

The velocity vector is calculated in the INS computer by integration of Equation (4.3-18) in

the N Frame, using aSF
N

 from (4.2-1) - (4.2-3), ωEN
N

 and ωIE
N

 from Equations (4.1.1-3) and

(4.1.1-6), with gP
N

 from (4.3-15) calculated as will be shown subsequently in Section 5.4.1.

4.3.1 VELOCITY OUTPUTS

The orientation of the N Frame about the local vertical is somewhat arbitrary (as discussed in
Section 4.5), hence, velocity vector components in Frame N have no clear meaning outside the
inertial navigation system. For this reason, the velocity components are usually transformed to
another universally defined coordinate frame for output purposes.

A typical velocity vector output might be along locally level East (X), North (Y), Upward
Vertical (Z) coordinates (denoted here as the Geo Frame). As described in Section 4.4.2.1, the
N Frame is rotated from the Geo Frame by the wander angle about the upward vertical.
Application of Equations (3.2.3-4) shows that the associated direction cosine transformation
matrix is given by:

CN
Geo

 =

cos α -sin α 0

sin α cos α 0

0 0 1

(4.3.1-1)

where

α = Wander angle.

VELOCITY RATE EQUATION 4-15

The velocity vector in the Geo Frame is calculated from:

vGeo = CN
Geo

 vN (4.3.1-2)

Defining:

vN =

vXN

vYN

vZN

vGeo =

vEast

vNorth

vUp

(4.3.1-3)

we then obtain after substituting (4.3.1-1) and (4.3.1-3) in (4.3.1-2):

vEast = vXN cos α - vYN sin α

vNorth = vXN sin α + vYN cos α (4.3.1-4)

vUp = vZN

It is important to note that Equations (4.3.1-4) are singular near the polar locations due to
wander angle singularities (as discussed in Section 4.4.2.1).

To avoid the Equation (4.3.1-4) singularities, an alternative approach is to calculate velocity
components for output in the universally defined earth E Frame using:

vE = CN
E

 vN (4.3.1-5)

Defining:

vE = vXE, vYE, vZE
T (4.3.1-6)

and substituting the CN
E

 component and vN definitions from (4.4.1.1-2) into (4.3.1-6) yields the

component form:

vXE = D11 vXN + D12 vYN + D13 vZN

vYE = D21 vXN + D22 vYN + D23 vZN

vZE = D31 vXN + D32 vYN + D33 vZN

(4.3.1-7)

Note that because the components of CN
E

 are cosines, their magnitude will never exceed unity.

Hence, Equation (4.3.1-7) has no singularities, and can be used to compute the E Frame
velocity vector components for all earth locations.

4-16 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

4.4 POSITION DETERMINATION

Position location can be represented as a linear distance vector from a specified reference
point location. For a terrestrial (earth) based inertial navigation system, position is more
commonly represented as altitude (h) above the earth’s surface coupled with angular position
over the earth’s surface. Angular position over the earth can be described by the third column

of the navigation Frame N to earth Frame E direction cosine matrix (CN
E

) which represents the

projection of a locally vertical unit vector on earth E Frame axes. Alternatively, earth angular
position can be represented by latitude and longitude Euler angles. In general, position location
in any desired analytical form can be computed from another previously determined position
representation. In a typical inertial navigation system, h is calculated by integrating vertical

velocity, and CN
E

 is obtained from an integration operation using ωEN
N

 as input. Other position

parameters are then calculated from the computed CN
E

 and h.

In this section we will derive the equations for calculating CN
E

 and h by integration, and then

develop analytical expressions relating the various position representation forms. The altitude
integration discussion will include methods for dealing with altitude computational instabilities
generated by vertical velocity error (excited principally from accelerometer input error). The

subsection on latitude/longitude extraction from CN
E

 includes calculation of the wander angle

relating N Frame and local geographic Geo Frame horizontal axes. As an exercise, this section
also addresses the alternative of calculating latitude and longitude by integrating
latitude/longitude rate equations. As will be shown, this generally is not preferred due to
singularities at the earth polar regions.

4.4.1 TYPICAL POSITION RATE EQUATIONS

Differential rate equations for the position direction cosine matrix CN
E

 and altitude h are

derived in the following subsections.

4.4.1.1 POSITION DIRECTION COSINE MATRIX (FRAME N TO E)
RATE EQUATIONS

The CN
E

 matrix changes as a function of the angular rotation of Frame N relative to Frame E

as prescribed by the angular transport rate vector ρN
 calculated in Equation (4.1.1-6). The

POSITION DETERMINATION 4-17

associated differential equation for CN
E

 is obtained by general application of Equation (3.3.2-6)

using ρN
 for ωEN

N
 as in (4.1.1-6):

CN
E

= CN
E

 ρN× (4.4.1.1-1)

The component form of Equation (4.4.1.1-1) for integration is obtained by substituting the
following definitions for the matrix and vector components:

ρN
 ≡ ωEN

N
 =

ρXN

ρYN

ρZN

CN
E

 =

D11 D12 D13

D21 D22 D23

D31 D32 D33

(4.4.1.1-2)

The result is:

D11 = D12 ρZN - D13 ρYN

D12 = D13 ρXN - D11 ρZN

D13 = D11 ρYN - D12 ρXN

D21 = D22 ρZN - D23 ρYN

D22 = D23 ρXN - D21 ρZN

D23 = D21 ρYN - D22 ρXN

(4.4.1.1-3)

D31 = D32 ρZN - D33 ρYN

D32 = D33 ρXN - D31 ρZN

D33 = D31 ρYN - D32 ρXN

As with the calculation of the CB
L

 components discussed in Section 4.1, the third row of the

CN
E

 matrix can alternatively be computed from the first two rows using the principle that each

row of CN
E

 represents a unit vector along Frame E axes, hence, the cross product of rows one

and two equals row three. Therefore:

D31 = D12 D23 - D13 D22

D32 = D13 D21 - D11 D23

D33 = D11 D22 - D12 D21

(4.4.1.1-4)

4-18 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

A unit vector along the local vertical (i.e., the Z axis of the N Frame) projected on E Frame

axes (which from Equations (3.2.1-6) equals the third column of CN
E

) uniquely defines the

angular earth surface position location. Equation (3.3.1-2) applied to the third column of CN
E

(using ρ for ωEN) is:

uZN
E

 = ρE
 × uZN

E
(4.4.1.1-5)

where

uZN
E

 = Unit vector along the N Frame Z axis projected on the E Frame (i.e., the third

column of CN
E

).

We can also express ρE
 as the sum of its vertical and horizontal components:

ρE
 = ρH

E
 + ρZN uZN

E
(4.4.1.1-6)

where

H = Designation for horizontal components.

Applying (4.4.1.1-6) to (4.4.1.1-5) shows that:

uZN
E

 = ρH
E

 × uZN
E

(4.4.1.1-7)

From (4.4.1.1-7) we see that the vertical ρN
 component (ρZN) has no effect on the position

determination function and can be arbitrarily selected to enhance overall navigation equation
characteristics.

One of the principal characteristics desired for ρZN and for all components of ρN
, is that they

have no singularities for any local level Frame N location. Since the DIJ elements in Equations

(4.4.1.1-3) can never exceed unity in magnitude (because they are direction cosines), non-

singular behavior for the components of ρN
 assures that Equations (4.4.1.1-3) can be integrated

free of singularities for any Frame N attitude relative to earth Frame E. Section 4.5 discusses

the selection of ρZN to eliminate singularities. The horizontal components of ρN
, represented

by the FC
N

 uZN
N

 × vN term in (4.1.1-6), are inherently free of singularities for finite velocities.

POSITION DETERMINATION 4-19

4.4.1.2 ALTITUDE RATE EQUATION

The equation for altitude rate is obtained from the derivative of the defining equation for
altitude:

hN = h uZN
N

 = RN - RS
N

 = uZN
N

 ⋅ RN - RS
N

(4.4.1.2-1)

where

h = Altitude.

uZN
N

 = Unit vector (in N Frame axes) that is perpendicular (along the upward local

vertical) to the earth surface and is directed through the INS position point. By

the definition of the N Frame, uZN
N

 is along the N Frame vertical axis Z.

hN = Altitude vector.

RN = Position vector from earth center to the INS.

RS
N

 = Position vector from earth center to the earth surface point from which uZN
N

emanates.

The altitude rate is the derivative of h in (4.4.1.2-1):

h = uZN
N

 ⋅ R
N

 - RS
N

(4.4.1.2-2)

in which it is recognized that the rate of change of uZN
N

 is zero because it is defined as a unit

vector along the N Frame vertical axis (hence, its derivative in the N Frame is zero).

We can also write:

RN = CE
N

 RE RS
N

 = CE
N

 RS
E

(4.4.1.2-3)

The derivative of (4.4.1.2-3) is:

R
N

 = CE
N

 R
E

 + CE
N

 RE RS
N

 = CE
N

 RS
E

 + CE
N

 RS
E

(4.4.1.2-4)

The CE
N

 term in (4.4.1.2-4) is given by (4.3-4). Equations (4.3-4) and (4.3-1) inserted in

(4.4.1.2-4) obtains:

R
N

 = CE
N

 vE - ωEN
N

 × CE
N

 RE RS
N

 = CE
N

 RS
E

 - ωEN
N

× CE
N

 RS
E

(4.4.1.2-5)

or

4-20 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

R
N

 = vN - ωEN
N

 × RN RS
N

 = CE
N

 RS
E

 - ωEN
N

 × RS
N

(4.4.1.2-6)

Substituting (4.4.1.2-6) with (4.4.1.2-1) into (4.4.1.2-2) yields:

h = uZN
N

 ⋅ vN - CE
N

 RS
E

 - ωEN
N

 × RN - RS
N

= uZN
N

 ⋅ vN - CE
N

 RS
E

 - h ωEN
N

 × uZN
N

 (4.4.1.2-7)

= uZN
N

 ⋅ vN - uZN
N

 ⋅ CE
N

 RS
E

From the definition of RS as a vector from earth’s center to the local earth surface, changes in

RS
E

 produced by vehicle translation must be horizontal along the earth surface. As such, the

second term in Equation (4.4.1.2-7) is identically zero. This is also demonstrated rigorously in
Section 5.5 of the next chapter. The final equation for altitude rate, therefore, is:

h = uZN
N

 ⋅ vN (4.4.1.2-8)

4.4.1.2.1 Vertical Channel Control

For applications with navigation times exceeding 10 minutes, the vertical position error
generated within a pure inertial navigation system (due primarily to the integrated effect of
accelerometer errors) typically exceeds system accuracy requirements. For operation at positive
altitudes, the inertially computed vertical position error is amplified for extended navigation
times due to a divergent error characteristic that grows exponentially with time. The divergence
effect stems from the gP plumb-bob gravity term in (4.3-18) which is the sum of mass

attraction and earth rate centripetal accelerations (see Equation (4.3-15)). The mass attraction
term is the dominant effect and is a calculated function of position in the navigation computer.
For positive altitudes, the magnitude of mass attraction gravity varies inversely as the square of
distance from earth’s center (see Section 5.4 - Equation (5.4-1)). Consequently, altitude errors
generated in the inertial altitude computation process (i.e., the integration of Equations (4.3-18)
and (4.4.1.2-8)) will directly impact the vertical gravity component magnitude in (4.3-18).
Positive altitude error for example, will produce a smaller than actual gravity magnitude (i.e., a
negative gravity magnitude error), which decreases total acceleration downward, hence,
increases vertical acceleration upward. Increased upward vertical acceleration generates
increased positive upward velocity which in turn generates larger positive altitude error. The
effect increases exponentially with time.

If error analysis finds the vertical position error unacceptable (invariably the case for most
applications with navigation times exceeding 10 minutes), external inputs must be provided to

POSITION DETERMINATION 4-21

eliminate the error in vertical velocity and altitude. One of the classic methods for eliminating
vertical channel error in aircraft inertial navigation systems is through application of the
barometric pressure altitude signal provided as input to the INS from the air data computer (for
an underwater vehicle INS application, the equivalent input would be provided by the pressure
depth transducer signal). The method is to compare the inertial and pressure altitudes, with the
difference used through suitable gains in servo fashion as feedback to the vertical
velocity/altitude integrators. A typical implementation of the approach is defined analytically as
an extension of Equations (4.3-18) and (4.4.1.2-8):

v
N

 = aSF
N

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(4.4.1.2.1-1)

h = vN ⋅ uZN
N

 - evc2 (4.4.1.2.1-2)

∂h = h - hPrsr

evc1 = evc3 + C2 ∂h evc2 = C3 ∂h evc3 = C1 ∂h
(4.4.1.2.1-3)

where
evc1, evc2, evc3 = Vertical channel control signals.

C1, C2, C3 = Vertical channel control gains.

hPrsr = Pressure altitude input signal.

∂h = Altitude error signal.

The evc3 signal (the integral of evc3 in Equations (4.4.1.2.1-3)), is incorporated as an integral

controller to generate a bias offset for vertical accelerometer error present on the aSF
N

 signal

feeding v
N

. Without evc3, the servo characteristics of Equations (4.4.1.2.1-1) - (4.4.1.2.1-3)

would develop an offset in ∂h to balance the vertical accelerometer error (through the C2 gain in
evc1). This can be seen by analyzing the error form (differential) of the vertical component of

Equations (4.4.1.2.1-1) - (4.4.1.2.1-3):

δvZN = δaSFZN - δevc1 + δh = δvZN - δevc2

δevc1 = δevc3 + C2 δh - δhPrsr δevc2 = C3 δh - δhPrsr

 δevc3 = C1 δh - δhPrsr

(4.4.1.2.1-4)

where

δ() = Error in the indicated parameter.

4-22 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

δh, δhPrsr , δvZN, δaSFZN = Inertial altitude error, pressure altitude error, the vertical
component of the velocity error vector (along the Z axis
of the N Frame), and the vertical (ZN) component of the
specific force acceleration error vector (e.g., f rom
accelerometers).

 = Terms that are generally small compared to the other terms, hence, negligible for
the discussion at hand.

We then combine Equations (4.4.1.2.1-4) for the case when the integral controller is absent (i.e.,

C1 = 0). Differentiating δh and substituting δvZN in the result finds (for zero C1):

δh = δaSFZN - δevc1 - δevc2 + = δaSFZN - C2 δh - δhPrsr - C3
d
dt

 δh - δhPrsr +

or

d2

dt2
 δh - δhPrsr + C3

d
dt

 δh - δhPrsr + C2 δh - δhPrsr = δaSFZN -
d2

dt2
 δhPrsr +

(4.4.1.2.1-5)
where

 = Second time derivative of parameter in brackets.

Equation (4.4.1.2.1-5) shows that for stable C2 and C3 gains (and slowly changing δhPrsr),

in the steady state (i.e., when the derivative terms become zero), the C2 δh - δhPrsr term

balances δaSFZN, which forces an offset into δh (in addition to the normal offset in δh equal to

δhPrsr). Let’s consider the case when C1 is non-zero. Double differentiating δh in (4.4.1.2.1-4)

and substituting the derivative of δvZN finds:

δh = δaSFZN - δevc1 - δevc2 + = δaSFZN - δevc3

- C2
d
dt

 δh - δhPrsr - C3
d2

dt2
 δh - δhPrsr +

or

d3

dt3
 δh - δhPrsr + C3

d2

dt2
 δh - δhPrsr + C2

d
dt

 δh - δhPrsr

+ C1 δh - δhPrsr = δaSFZN - δhPrsr +

(4.4.1.2.1-6)

where

() = Third time derivative of parameter in brackets.

POSITION DETERMINATION 4-23

Now in the steady state (and slowly changing δhPrsr), C1 δh - δhPrsr balances δaSFZN, hence,

for steady δaSFZN, the δh altitude error goes to δhPrsr , the expected nominal steady state

condition. Further analysis also shows that with C1 active, the δaSFZN error becomes balanced

by the δevc3 integrator (look at the δvZN expression in (4.4.1.2.1-4) which, when zero in the

steady state, sets δevc1 to δaSFZN. Substituting for δevc1 from (4.4.1.2.1-4) with δh = δhPrsr in

the steady state shows that δevc3 = δaSFZN).

An important characteristic inherent in the structure of Equations (4.4.1.2.1-1) - (4.4.1.2.1-3)

is that under error free conditions (i.e., ∂h = 0), they revert back to the classical forms of
Equations (4.3-18) and (4.4.1.2-8). Hence, the feedback terms in (4.4.1.2.1-1) and
(4.4.1.2.1-2) only operate on the vertical velocity/altitude errors. The true (correct)
velocity/altitude signals are unaffected by the feedback. In some implementations, the inertial

altitude h (used in calculating ∂h) is filtered to match the dynamic characteristics of the hPrsr

input signal, thereby enhancing the nullification of ∂h feedback under zero error conditions.

Proper dynamic characteristics for Equations (4.4.1.2.1-1) - (4.4.1.2.1-3) are typically
designed using classical servo control theory for root placement. For example, the characteristic
roots of differential Equation (4.4.1.2.1-6) are classically obtained (as in Reference 38, Sections
18-8 through 18-11) by evaluating the homogeneous portion; i.e., setting the left side equal to
zero with:

δh - δhPrsr = A eλt (4.4.1.2.1-7)

where

A = Constant.

λ = Characteristic root of the differential equation.

The result is:

λ3
 + C3 λ2

 + C2 λ + C1 A = 0 (4.4.1.2.1-8)

or

λ3
 + C3 λ2

 + C2 λ + C1 = 0 (4.4.1.2.1-9)

Equation (4.4.1.2.1-9) is the characteristic equation for (4.4.1.2.1-6) that characterizes the
dynamic response. If we desire that the dynamic response be characterized by one real root and
one resonant root pair we can write:

4-24 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

λ3
 + C3 λ2

 + C2 λ + C1 = λ +
1

τ
 λ2

 + 2 ζ ωn λ+ ωn
2

= λ3
 +

1

τ
 + 2 ζ ωn λ2

 +
2 ζ ωn

τ
 + ωn

2
 λ +

ωn
2

τ

(4.4.1.2.1-10)

where

τ = Time constant for the real root.

ζ, ωn = Damping ratio and undamped natural frequency for the resonant root pair.

Equating coefficients of like powers of λ in Equation (4.4.1.2.1-10) then yields:

C1 =
ωn

2

τ
C2 =

2 ζ ωn

τ
 + ωn

2
C3 =

1

τ
 + 2 ζ ωn (4.4.1.2.1-11)

The magnitude of the C1, C2, C3 control gains (determined in (4.4.1.2.1-11) by the selected

ζ, ωn and τ) are set large enough to adequately attenuate expected accelerometer errors, but
small enough to avoid introducing high frequency hPrsr error effects into the inertial vertical

velocity/altitude (through ∂h). This tradeoff can be quantified from the Laplace transform
solution to Equations (4.4.1.2.1-4). First we combine (4.4.1.2.1-4) terms and differentiate the

δvZN expression:

δvZN = δaSFZN - δevc1 + = δaSFZN - δevc3 - C2
d
dt

 δh - δhPrsr +

 = δaSFZN - C1 δh - δhPrsr - C2
d
dt

 δh - δhPrsr +

δh = δvZN - δevc2 = δvZN - C3 δh - δhPrsr

(4.4.1.2.1-12)

Then we take the Laplace transform, neglecting the initial condition terms (as decaying to zero):

S2 δVZN(S) = δASFZN(S) - C1 + C2 S δH(S) - δHPrsr(S) +

S δH(S) - δHPrsr(S) = δVZN(S) - S δHPrsr(S) - C3 δH(S) - δHPrsr(S)
(4.4.1.2.1-13)

where

S = Laplace transform parameter.

δH(S) , δVZN(S) , δHPrsr (S) , δASFZN(S) = Laplace transforms of δh, δvZN, δhPrsr ,

and δaSFZN.

POSITION DETERMINATION 4-25

The second expression in (4.4.1.2.1-13) is by rearrangement:

δH(S) - δHPrsr (S) =
1

S + C3
 δVZN(S) - S δHPrsr (S) (4.4.1.2.1-14)

Combining the first expression in (4.4.1.2.1-13) with (4.4.1.2.1-14) finds:

S2 δVZN(S) = δASFZN(S) -
C1 +C2 S

S + C3
 δVZN(S) - S δHPrsr(S) + (4.4.1.2.1-15)

Rearranging:

S2 S + C3 + C1 +C2 S δVZN(S) = S + C3 δASFZN(S) + C1 +C2 S S δHPrsr(S) +

and solving for δVZN(S) gives:

δVZN(S) =
S C2 S + C1

S3 + C3 S2 + C2 S + C1

 δHPrsr(S)

 +
S + C3

S3 + C3 S2 + C2 S + C1

 δASFZN(S) +

(4.4.1.2.1-16)

The solution for δH(S) is found most directly from the Laplace transform of (4.4.1.2.1-6):

S3 + C3 S2 + C2 S + C1 δH(S) - δHPrsr(S) = - S3 δHPrsr(S) + δASFZN(S) +

Solving for δH(S) then yields:

δH(S) =
C3 S2 + C2 S + C1

S3 + C3 S2 + C2 S + C1

 δHPrsr(S)

 +
1

S3 + C3 S2 + C2 S + C1

 δASFZN(S) +

(4.4.1.2.1-17)

Equations (4.4.1.2.1-16) and (4.4.1.2.1-17) describe the vertical velocity and altitude error
Laplace transform response to pressure altitude error and vertical accelerometer component
error. For zero control gains, these equations collapse into the inertial solution in which the
vertical velocity and altitude errors equal the double and triple integral of the vertical acceleration

error rate (i.e., the inverse Laplace transform of
1

S2
 δASFZN(S) and

1

S3
 δASFZN(S),

respectively). For active control gains and constant vertical acceleration error, δASFZN(S) is

4-26 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

zero and there is no vertical channel response to accelerometer error. For very large gains, the

δASFZN(S) error contribution to vertical channel response is attenuated, but the δHPrsr (S) error

couples directly into altitude error, and as the derivative, into vertical velocity error (i.e., the

inverse Laplace transform of S δHPrsr (S)). The vertical channel error response to frequency

content in δHPrsr (S) and δASFZN(S) can be assessed using Section 10.2.1 (Equations

(10.2.1-1) - (10.2.1-4), (10.2.1-14), (10.2.1-17) and (10.2.1-26)) which show that the amplitude

response of a linear system to sinusoidal inputs equals its Laplace transform with j ω substituted
for the Laplace parameter S, where

j = The imaginary parameter that equals the square root of minus one.

ω = Input sinusoid frequency.

Substituting j ω for S in (4.4.1.2.1-16) and (4.4.1.2.1-17), we see that high frequency (ω)

components in δASFZN(S) are naturally attenuated by the dominant
S

S3
 =

1

S2
 term in

(4.4.1.2.1-16) and by
1

S3
 in (4.4.1.2.1-17) (i.e., independent of control gain selection). The low

frequency components in δASFZN(S) are attenuated by
C3

C1
 in (4.4.1.2.1-16) and by

1
C1

 in

(4.4.1.2.1-17). For a strapdown inertial navigation system, low frequency errors in δASFZN(S)

are caused by maneuvering flight conditions that change the accelerometer error magnitudes
(e.g., scale factor errors) and rotate different strapdown accelerometer error components into the

vertical. For the δHPrsr (S) error, we see that high frequency components (i.e., noise) are

attenuated in the (4.4.1.2.1-16) velocity error equation by
S C2 S

S3
 =

C2

S
. Similarly, the

(4.4.1.2.1-17) altitude error response to high frequency δHPrsr (S) error components is

attenuated by
C3 S3

S4
 =

C3

S
. For low frequency errors in δHPrsr (S) , the

S C1

C1
 = S term in the

(4.4.1.2.1-16) velocity error equation couples the derivative of noise directly into the vertical

velocity error, and
C1

C1
 = 1 in (4.4.1.2.1-17) couples the noise directly into the vertical position

error (i.e., both independent of control gain selection except for gains approaching zero for

which δHPrsr (S) coupling goes to zero). Thus, gain selection is based on a tradeoff between

higher control gains to attenuate low frequency accelerometer error effects versus lower control
gains to minimize high frequency pressure altitude noise coupling into the vertical channel.

POSITION DETERMINATION 4-27

4.4.2 POSITION PARAMETER EQUIVALENCIES

The following subsections derive analytical equivalencies between different position location
representations. The E and N Frames used in these Sections are as defined in Sections 2.2 and
4.0.

4.4.2.1 LATITUDE/LONGITUDE FROM POSITION (N TO E)
DIRECTION COSINE MATRIX

Latitude and longitude can be calculated from the CN
E

 direction cosine matrix if we define the

angular relationship between the local level N Frame and earth fixed equatorial E Frame as
illustrated in Figure 4.4.2.1-1 by the Equation (3.2.3-1) Euler sequence:

uφ = uYE φ = L

uφ = uXA 1 φ = - l

uφ = uZA2 φ = α

(4.4.2.1-1)

where:

uφ = Generalized Euler angle rotation axis.

φ = Generalized Euler rotation angle about uφ.

L = Current longitude measured in the equatorial plane, from the intersection of the
equatorial plane with the Greenwich Prime Meridian reference plane as a positive
rotation about the earth polar axis (i.e., the E Frame Y axis).

l = Current latitude measured positive from the equator in the Northern hemisphere.

α = Wander angle between North and the local level N Frame Y axis, measured as a
positive rotation from North about the upward vertical (i.e., about the N Frame Z
axis).

A1 = Coordinate Frame rotated from the earth Frame E by the longitude Euler
angle L.

A2 = Coordinate Frame rotated from the A1 Frame by minus the latitude Euler
angle l.

uYE, uXA 1, uZA2 = Unit vectors along the Frame E Y-axis, Frame A1 X-axis and
Frame A2 Z-axis.

4-28 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

l

Earth
Polar
Axis

Greenwich
Reference
Meridian

Earth
Equatorial

Plane

Current
Position

L

XN

YN

ZN

ZE
XE

YE

North

N Frame
α

E Frame
•

•

Figure 4.4.2.1-1 Latitude, Longitude, Wander Angle Description

Applying the Section 3.2.3.3 Method of Least Work to the previous Euler sequence yields:

•
•

•
l

Navigation
Coordinates
(Frame N)

αL

Earth
Coordinates
(Frame E)

Figure 4.4.2.1-2 Latitude, Longitude, Wander Angle
Method Of Least Work Diagram

Note in Figure 4.4.2.1-2 that the dot (.) is inverted from Figure 3.2.3.3 on the l rotation because
it is defined about the minus X axis (see explanation following Figure 3.2.3.3-3).

We can now easily obtain a set of equations for the direction cosines between the earth Frame

E and the local level navigation Frame N in terms of L, l and α. Using the Section

POSITION DETERMINATION 4-29

3.2.3.3 “Method” and the definition in Equations (4.4.1.1-2) for the CN
E

 direction cosine

elements we obtain:

D11 = cos L cos α - sin L sin l sin α
D12 = - cos L sin α - sin L sin l cos α
D13 = sin L cos l

D21 = cos l sin α
D22 = cos l cos α (4.4.2.1-2)
D23 = sin l

D31 = - sin L cos α - cos L sin l sin α
D32 = sin L sin α - cos L sin l cos α
D33 = cos L cos l

from which the Euler angles are extracted by inversion:

l = tan -1
D23

D21
2

 + D22
2

L = tan -1
D13

D33
 α = tan -1

D21

D22
(4.4.2.1-3)

The plus sign chosen for the square root in the latitude (l) expression in (4.4.2.1-3) corresponds

to selecting latitude to be in the range -
π
2

 ≤ l ≤
π
2

 by definition.

The wander angle α in Equations (4.4.2.1-3) is used to transform horizontal vector data in
Frame N (such as the horizontal N Frame velocity components in Section 4.3.1) to the
equivalent North/East component forms, typically for output purposes. Additionally, heading

angle data referenced to the N Frame (such as ψ in Equations (4.1.2-1) known as “platform
heading”) can be referenced to North by subtracting the wander angle (as in (4.1.2-2)), thereby
obtaining what is known as “true heading”.

It should be noted that longitude L and wander angle α in Equations (4.4.2.1-3) are singular

for latitude l equal to ± π/2 (i.e., at the North and South poles). From Equations (4.4.2.1-2),
D13, D33, D21, and D22 become zero under these conditions making their ratios indeterminate
in Equations (4.4.2.1-3). This is directly analogous to the aircraft pitch Euler angle singularity
condition discussed in Section 3.2.3.2 caused by the A Frame Z axis and B Frame X axis
becoming parallel. In Equations (4.4.2.1-3), the singularity is caused by the E Frame Y axis
and N Frame Z axis becoming parallel. Under this condition, longitude and wander angle are
indistinguishable from one another and the concept of a North/South direction becomes

4-30 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

meaningless (i.e., when at the North pole all directions are South and when at the South pole all
directions are North). From a navigational standpoint, the solution is to use another set of
parameters to define earth surface position and heading reference when in the polar regions
(such as “Grid” coordinates which define position in a horizontal grid coordinate system having
grid lines parallel and perpendicular to the Prime Meridian reference plane).

4.4.2.2 POSITION VECTOR IN SELECTED EARTH FIXED FRAME
FROM LATITUDE, LONGITUDE, ALTITUDE

Frequently it is desired to express position as the distance from a specified earth fixed
reference point location to the current position location, expressed as a vector in a selected earth
fixed coordinate frame. For this development, we shall define the selected frame as being
parallel to east, north, up directions at the specified earth fixed reference location point. We
begin the development by first defining:

ΔR = R - RREF (4.4.2.2-1)

where

R = Position vector from earth’s center to the current position location.

RREF = Position vector from earth’s center to the specified reference position location.

ΔR = Position vector from the specified reference position location to the current
position location.

The R and RREF vectors can be further defined by:

R = RS + uZN h RREF = RSREF + uZREF hREF (4.4.2.2-2)

where, as in Figure 5.2-1 of Chapter 5:

RS = Position vector from the center of the earth to the point on the earth surface
reference ellipsoid directly below (above) the current position location (the
“navigation point”). The earth surface “reference ellipsoid” is the zero altitude
reference surface defined for the earth (See the first paragraph in Section 5.1,
Reference 3 - Section 4.5, and Reference 4 - Chapters 3 and 6).

h = Altitude of the navigation point above (below) the earth surface reference ellipsoid.

uZN = Unit vector upward along a line from RS to the navigation point R (i.e., along
the N Frame Z-axis). uZN is equivalent to uUp in Figure 5.2-1.

POSITION DETERMINATION 4-31

RSREF = Position vector from the center of the earth to the point on the earth surface
reference ellipsoid directly below (above) the specified earth fixed reference
location point.

hREF = Altitude of the selected specified earth fixed reference location point above
(below) the earth surface reference ellipsoid.

uZREF = Unit vector upward along a line from RSREF to the specified earth fixed

reference location point RREF. Note from the REF coordinate frame
definition to follow that uZREF lies along the REF Frame Z-axis, hence, the Z
tag in the uZREF subscript.

Equations (4.4.2.2-1) and (4.4.2.2-2) are now specialized to a particular REF coordinate
frame where we define:

REF = Earth fixed coordinate frame with X, Y, Z axes parallel to the local East,
North, Up directions at the specified earth fixed reference location point.

With this definition and the E Frame as defined in Section 4.0, Equations (4.4.2.2-1) and
(4.4.2.2-2) combined with coordinate frame superscript designations become:

ΔRREF = CE
REF

 RS
E

 + uZN
E

 h - RSREF

E
 - uZREF

REF
 hREF (4.4.2.2-3)

where

CE
REF

 = Direction cosine matrix that transforms vectors from the E to the REF Frame.

The individual matrix and vector elements in (4.4.2.2-3) can now be expressed in terms of
navigation parameters. This is easily accomplished from the following Figure 4.4.2.2-1
Method of Least Work diagram obtained by expansion of Figure 4.4.2.1-2 to include the REF
Frame and the uZN, uZREF unit vectors from their above definitions:

•
•

•
l αL

••

LREFlREF

1 uZN
N

uZREF
REF

 1

REF
 Frame

E
 Frame

N
 Frame

Figure 4.4.2.2-1 Coordinate Frame Relationships

4-32 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

where

lREF, LREF = Latitude, longitude of the specified earth fixed reference location point.

Using Figure 4.4.2.2-1 we write for particular terms in Equation (4.4.2.2-3):

uZN
E

 =

uZNXE

uZNYE

uZNZE

 =
cos l sin L
sin l
cos l cos L

uZREF
REF

 =
0
0
1

uZREF
E

 =

uZREFXE

uZREFYE

uZREFZE

 =

sin LREF cos lREF

sinlREF

cos LREF cos lREF

(4.4.2.2-4)

CE
REF

 =

cos LREF 0 - sin LREF

- sin LREF sin lREF cos lREF - cos LREF sin lREF

sin LREF cos lREF sin lREF cos LREF cos lREF

where

uZNXE, uZNYE, uZNZE = X, Y, Z components of uZN
E

.

uZREFXE, uZREFYE, uZREFZE = X, Y, Z components of uZREF
E

.

The remaining terms in Equation (4.4.2.2-3) are from Equations (5.1-9) and (5.1-10) in
Section 5.1 (recognizing uUp as the equivalent to the unit vectors along the Z axes of the N and
REF Frames):

RS
E

 = RS
′

uZNXE

1 - e 2 uZNYE

uZNZE

RS
′
 = R0 / 1 + uZNYE

2
 1 - e 2 - 1

(4.4.2.2-5)

RSREF

E
 = RSREF

′

uZREFXE

1 - e 2 uZREFYE

uZREFZE

RSREF

′
 = R0 / 1 + uZREFYE

2
 1 - e 2 - 1

POSITION DETERMINATION 4-33

where

R0 = Earth’s equatorial radius.

e = Earth surface reference ellipsoid oblateness (ellipticity) coefficient.

Finally, it is also useful to obtain an expression for the CN
REF

 direction cosine matrix for

transforming vector data (such as velocity) from the navigation N Frame (in which it is

calculated) to the selected earth fixed REF coordinate frame. The CN
REF

 matrix is easily

computed using the Equation (3.2.1-5) direction cosine matrix chain rule:

CN
REF

 = CE
REF

 CN
E

(4.4.2.2-6)

with CE
REF

 as calculated in Equations (4.4.2.2-4).

In summary, Equation (4.4.2.2-3) with (4.4.2.2-4) and (4.4.2.2-5) allow calculation of the
position vector from a specified earth fixed reference point to the current position location as a
function of current navigation point latitude, longitude, altitude and the specified reference point
latitude, longitude, altitude. The position vector is calculated in a reference coordinate REF
Frame that is parallel to North, East, Up axes at the specified reference position point. Equation

(4.4.2.2-6) defines the CN
REF

 direction cosine matrix for transforming vector data from the

current navigation point N Frame to the selected reference coordinate Frame REF.

4.4.2.3 LATITUDE, LONGITUDE, ALTITUDE FROM POSITION VECTOR
IN ARBITRARY EARTH FIXED COORDINATE FRAME

For situations when position is represented as a position vector ΔR from a specified reference
position location to the current position location, the corresponding latitude, longitude, altitude
can be derived by first writing the following equivalent form of Equation (4.4.2.2-1):

R = RREF + ΔR (4.4.2.3-1)

Substituting from Equations (4.4.2.2-2) for RREF and specializing to earth E Frame coordinates
then obtains:

RE = RSREF
E

 + uZREF
E

 hREF + CREF
E

 ΔRREF (4.4.2.3-2)

4-34 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

in which the REF Frame is as defined in Section 4.4.2.2. The contributing terms in Equation
(4.4.2.3-2) have been presented in Equations (4.4.2.2-4) and (4.4.2.2-5), recognizing from

generalized Equation (3.2.1-3) that CREF
E

 is the transpose of CE
REF

.

Equation (4.4.2.3-2) with (4.4.2.2-4) and (4.4.2.2-5) allows the position vector from earth’s

center to be determined in E Frame coordinates (RE) from the defined ΔRREF position vector
and the selected reference point latitude, longitude, altitude. Latitude, longitude, altitude of the

current position location is then determined from RE as follows.

First longitude is extracted. From Equations (4.4.2.2-4) and (5.2.2-1) (with uZN for uUp) we
note that:

uZN
E

 =

uZNXE

uZNYE

uZNZE

 =
cos l sin L
sin l
cos l cos L

(4.4.2.3-3)

uZNXE

uZNZE

 =
RXE

RZE
(4.4.2.3-4)

where

RXE, RZE = X, Z components of RE.

From Equation (4.4.2.3-3) we see that longitude can be calculated as:

L = tan -1
uZNXE

uZNZE

(4.4.2.3-5)

Substituting (4.4.2.3-4) into (4.4.2.3-5) then yields the longitude extraction formula:

L = tan -1
RXE

RZE
(4.4.2.3-6)

Extraction of latitude and altitude is performed concurrently through solution of the following
simultaneous equations derived from Equations (5.1-10) and (5.2.1-4), the quadratic solution to
(5.2.1-5), the Y component of (5.2.2-1), and (4.4.2.3-3), with uZN for uUp:

RS
′

 = R0 / 1 + uZNYE
2 1 - e 2 - 1

RS = RS
′

 1 + uZNYE
2 1 - e 4 - 1

(4.4.2.3-7)

(Continued)

POSITION DETERMINATION 4-35

R2 = RE ⋅ RE

h = -
R0

2

RS
′

 +
R0

2

RS
′

2

 + R2 - RS
2

(4.4.2.3-7)
(Continued)

uZNYE = RYE / 1 - e 2 RS
′ + h

l = tan -1
uZNYE

1 - uZNYE

2
(4.4.2.3-8)

where

RYE = Y component of RE.

Note that the positive sign has been selected for the h quadratic solution formula in (4.4.2.3-7)
to correspond with the realistic solution on “this side of the earth” (the negative sign solution
corresponds to a local vertical on the opposite side of the earth).

Equations (4.4.2.3-7) are first solved for altitude h and uZNYE. The uZNYE solution is then

used to determine latitude through Equation (4.4.2.3-8). Due to the complexity of Equations
(4.4.2.3-7) it has not been possible to condense them into a closed-form exact analytic solution
for h and uZNYE. A precise numerical solution is readily achievable, however, by successive

iteration of Equations (4.4.2.3-7) using the uZNYE value obtained during the last iteration. A

starting value of uZNYE = 0 suffices for the iteration process. Three to five iterations is usually

adequate to achieve an altitude h and latitude l solution that meets the most stringent accuracy
requirements. The number of iteration cycles actually used should be based on simulation
analyses.

4.4.3 LATITUDE/LONGITUDE CALCULATED BY DIRECT INTEGRATION

The rate of change of latitude, longitude and wander angle can be written from The Method
of Least Work diagram in Figure 4.4.3-1, obtained from Figure 4.4.2.1-2 by adding the Euler
angle rate terms (See Section 3.3.3.3 for review):

4-36 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

•
•

•
l

Navigation
Coordinates
(Frame N)

αL

Earth
Coordinates
(Frame E)

Geographic
Coordinates
(Frame Geo)

ρXN

ρYN

ρZN

_

α
.

L
.

l
.

ωXGeo

ωYGeo

ωZGeo

Figure 4.4.3-1 Latitude, Longitude, Wander Angle Rate Description

where

ρXN , ρYN , ρZN = N Frame components of the N Frame rotation rate relative to the

earth (E) as defined by the “transport rate” ρN
 in Equations

(4.1.1-6).

ωXGeo, ωYGeo, ωZGeo = Geo (East, North, Up) Frame X, Y, Z components of Geo
Frame angular rate relative to the E Frame.

Figure 4.4.3-1 differs from Figure 3.3.3.3-1 in not containing additional ω angular rate vector

component inputs on the left side of the diagram (i.e., the ωXA , ωYA , ωZA terms in Figure

3.3.3.3-1). In Figure 4.4.3-1 these would represent the angular rate of the E Frame. Since the

ρXN , ρYN , ρZN outputs represent the angular rate of the N Frame relative to the E Frame,

ωXA , ωYA , ωZA components input from the left would represent the angular rate of the E

Frame relative to the E Frame which is clearly zero. Also, note in Figure 4.4.3-1 that the
latitude rate input is negative because the latitude Euler angle is defined as an Euler angle
rotation about the negative X-axis (see discussion following Figure 3.3.3.3-1).

From Figure 4.4.3-1 we can write for the Geo Frame angular rate components:

ωXGeo = - l ωYGeo = L cos l ωZGeo = L sin l (4.4.3-1)

Equations (4.4.3-1) can be rearranged to obtain expressions for latitude, longitude rate as a
function of horizontal Geo Frame angular rate components:

POSITION DETERMINATION 4-37

l = - ωXGeo L = ωYGeo sec l (4.4.3-2)

If Equations (4.4.3-2) are utilized to calculate latitude, longitude, it is usually accompanied by
use of a “geographic” local level navigation N Frame configuration in which the X and Y axes
are controlled to lie East and North (i.e., along Geo axes). To create an N Frame that is aligned

with Geo axes (i.e., “North slaved”), the wander angle α must be initialized at zero, and the

wander angle rate α must be held at zero. From Figure 4.4.3-1 and Equations (4.4.3-1) -
(4.4.3-2) we see that the N Frame Z axis transport rate is given by:

ρZN = ωZGeo + α = L sin l + α = ωYGeo tan l + α (4.4.3-3)

from which:

α = ρZN - ωYGeo tan l (4.4.3-4)

Equation (4.4.3-4) shows that the wander angle rate can be maintained at zero by setting the
N Frame vertical transport rate component to:

ρZN = ωYGeo tan l (4.4.3-5)

For zero initial wander angle, the N Frame horizontal transport rate components then become:

ρXN = ωXGeo ρYN = ωYGeo (4.4.3-6)

For zero wander angle, the ωXGeo, ωYGeo components in (4.4.3-2), (4.4.3-5) and (4.4.3-6) are

the X, Y components of Equations (5.3-17) - (5.3-18) with (5.1-10), (5.2.3-1), (5.2.4-25) and

(5.2.4-37) using (4.4.2.1-2) for D21, D22 and D23 with α = 0:

ωXGeo = -
1
rl

 vYN ωYGeo =
1
rl

 1 + feh cos2l vXN

rl = rls + h rls =
RS

′ 3

R0
2

 1 - e2 (4.4.3-7)

feh =
1 - e 2 - 1

1 + 1 - e 2 - 1 sin2l

1

1 + h / RS
′

RS
′ = R0 / 1 + 1 - e 2 - 1 sin2l

4-38 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

where

vXN, vYN = X, Y components of vN.

Using (4.4.3-7), Equations (4.4.3-2) can be integrated to determine latitude and longitude
directly. Note, however, that the secant latitude term in the longitude rate equation becomes

infinite at the polar regions (l = ± π / 2). As a result, Equations (4.4.3-2) cannot be utilized for
all global positions, which has generally made them unpopular for application in modern day
inertial navigation software implementations.

Equation (4.4.3-5) shows that a similar problem arises in the N Frame vertical component of
transport rate due to the tangent latitude term, which also becomes infinite in the polar regions.

The result is that ωEN
N

 (the formal definition for ρN
) becomes infinite, generating velocity rate

infinities in Equation (4.3-18) and attitude rate infinities in Equations (4.1-1) and (4.1-2) from
Equation (4.1.1-1).

4.5 LOCAL LEVEL COORDINATE FRAME N OPTIONS

By its definition in Section 2.2, navigation coordinate Frame N has the Z axis up and the X,
Y axes horizontal. As discussed in Section 4.4.1.1, the orientation of the X, Y axes around Z is
somewhat arbitrary, and depends on the selection of the vertical component of transport rate

ρZN used in the CN
E

 direction cosine matrix rate Equation (4.4.1.1-1).

An initial choice for ρZN might be to rotate the navigation axes to maintain a parallel

alignment with local North/East geographic axes (i.e., the Geo Frame of Section 2.2). Vector
components calculated in Frame N (such as the Section 4.3.1 velocity) would then automatically
lie along North/East/Vertical axes, a typically desired form for system output. Additionally,
heading data defined by the heading attitude of body Frame B relative to the locally level attitude
reference Frame L (hence, Frame N via Equation (4.1.1-2)) would be referenced to North,
another desirable feature for output. Equations (4.4.3-5) and (4.4.3-6) of Section 4.4.3 show

that the required value of ρZN for a geographic navigation N Frame is given by:

ρZN = ρYN tan l (4.5-1)

Equation (4.5-1) reveals that for a geographic N Frame, a singularity exists near the earth poles

(l = ±90°) in the vertical component of ρN
. Thus, use of such a system must be restricted to

travel away from the poles to avoid introducing large errors in the N Frame rotation rate, which,

LOCAL LEVEL COORDINATE FRAME N OPTIONS 4-39

as discussed in Section 4.4.3, would introduce large errors in the attitude, velocity and position

rate integrations that all utilize ρN
.

If we arbitrarily set ρZN to zero, the N Frame implementation is denoted as a “wander

azimuth” configuration. With a wander azimuth N Frame (ρZN = 0), we see from Equation

(4.4.3-3) that the α wander angle rate of change is zero for a stationary vehicle (i. e., under zero
longitude L rate of change). For this condition, the wander angle remains constant. Under
translational motion relative to the earth (i.e., Easterly movement which changes longitude), the
wander angle (i.e., the azimuth orientation of the N Frame from North) develops a rate of
change, hence the terminology “wander azimuth”.

If ρZN is set equal to the negative of the vertical earth rate component relative to inertial

space, a free azimuth N Frame implementation would result. For a free azimuth N Frame, the
vertical angular rate of the attitude reference coordinate Frame L relative to inertial space (Frame
I) is zero (see Equation (4.1.1-1) with (4.1.1-2)), hence, the terminology “free azimuth”; i.e.,
letting it “run inertially free”.

For either the wander azimuth or free azimuth approach, ρZN is finite by definition for all

earth position locations. Since the horizontal components are also finite (as discussed in Section

4.4.1.1) no singularities exist for ρN
, and the local level navigation frame rotation rate is

completely defined for all earth trajectories. The ρN
 generated singularity conditions (in attitude,

velocity and position rates) associated with the geographic local level N Frame approach is,
thereby, avoided.

The wander azimuth implementation (ρZN = 0) is the method usually selected for strapdown

inertial navigation systems for which Equations (4.4.1.1-3) and (4.1.1-7) assume the simplified
form:

D11 = - D13 ρYN

D12 = D13 ρXN

D13 = D11 ρYN - D12 ρXN
(4.5-2)

D21 = - D23 ρYN

D22 = D23 ρXN

D23 = D21 ρYN - D22 ρXN

(Continued)

4-40 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

D31 = - D33 ρYN

D32 = D33 ρXN

D33 = D31 ρYN - D32 ρXN

(4.5-2)
(Continued)

ωXL = D22 ωe + ρYN

ωYL = D21 ωe + ρXN (4.5-3)

ωZL = - D23 ωe

4.6 INITIALIZATION

The fundamental strapdown inertial navigation computational operation is an integration
process to determine attitude, velocity and position using sensed angular rate (from strapdown
inertial angular rate sensors) and linear specific force acceleration (from strapdown
accelerometers). Before the integration process can be initiated, values must be assigned to the
navigation integration parameters which from Sections 4.1, 4.3, and 4.4 are typically

CB
L

 (or qB
L

), CN
E

, vN, and h. The initialization process is embodied in a set of dynamic equations

that are processed over an initialization period usually referred to as “Initial Alignment”.

For most applications, initialization of position and velocity during Initial Alignment utilizes
position, velocity input data provided from another source of navigational information (an
exception is in the case of quasi-stationary initial alignment discussed in Chapter 6 in which
velocity inputs are not explicitly required, but are assumed to be zero on the average based on
the quasi-stationary environment). The attitude (verticality and heading) initialization process, is
generally required to be accomplished without the benefit of external attitude inputs (also with
some exceptions, e.g., satellite inertial attitude initialization based on stellar sightings). The
general attitude initialization process is typically based on an analytic implementation of the
strapdown attitude update and acceleration transformation operations such as calculated (using
direction cosine attitude parameters) by Equations (4.2-1) and (4.2-3) with (4.1-1) and (4.1.1-1)
repeated below:

CB
L

 = CB
L

 ωIB
B

× - ωIL
L

× CB
L

ωIL
L

 = CN
L

 ωIE
N

 + ωEN
N

aSF
L

 = CB
L

 aSF
B

aSF
N

 = CL
N

 aSF
L

(4.6-1)

INITIALIZATION 4-41

The initialization of attitude as represented by the CB
L

 matrix is accomplished through a

dynamic estimation/control loop, built analytically around Equations (4.6-1), that determines

inaccuracies in CB
L

 through observation of their effects on the N Frame specific force

acceleration vector aSF
N

 calculated from the aSF
B

 transformation operation. Observed effects on

aSF
N

 are filtered and fed back through a dynamic servo loop process to continually correct and

refine the accuracy of CB
L

.

For applications in which the strapdown system being initialized has motion relative to the

earth (“moving base alignment”), the specific force acceleration aSF
B

 can have dynamic

components that amplify the effects of CB
L

 error on aSF
N

. In some of these applications,

intentional maneuvering is performed to accentuate the effect (the so called “transfer alignment”
procedure). In many applications, Initial Alignment is performed at a “quasi-stationary”
condition in which the strapdown inertial system is essentially stationary but may have small
bounded random position and attitude disturbances (such as in a parked airplane in the presence
of wind gusts while undergoing fuel, stores, crew, and passenger loading).

In the quasi-stationary situation, the specific force acceleration vector is essentially vertical,

hence, only amplifies variations in CB
L

 from vertical (i.e., “tilt”). For such a case, the CB
L

heading is determined through observation of how errors in the N Frame earth rate term ωIE
N

affect aSF
N

 through its impact on ωIL
L

, hence CB
L

, in the CB
L

 equation. Observed effects of ωIE
N

 on

aSF
N

 are filtered and fed back as part of the dynamic servo loop Initial Alignment process to

continually correct and refine an estimate for ωIE
N

. Once the horizontal components of ωIE
N

 are

determined to sufficient accuracy, the heading attitude of the N Frame relative to the earth is
established from the knowledge that the horizontal earth rate projection points north. Since the

CN
L

 matrix is a known constant from Equation (4.1.1-2), this also defines the initial heading

attitude of the L Frame.

The previous over-simplified discussion should be viewed only as a very brief introduction
to fundamental initialization requirements and procedures. A detailed analytical description of
quasi-stationary Initial Alignment is presented in Chapter 6. Both quasi-stationary and moving
base Initial Alignment are discussed in further detail in Sections 15.2.1 and 15.2.2 of Chapter
15.

4-42 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

4.7 STRAPDOWN INERTIAL NAVIGATION EQUATION SUMMARY

Table 4.7-1 is a listing of the principal equations from Chapter 4 (including Chapter 5 earth
related parameters and Chapter 6 quasi-stationary initialization) typically utilized in strapdown
inertial navigation system software packages. Table 4.7-1 lists the equation function, input
parameters, output parameters and equation number. Definitions for the input/output
parameters can be found by cross-referencing through the Parameter Index in the back of the
book.

Table 4.7-1 Summary Of Typical Strapdown Inertial Navigation System Equations

EQUATION FUNCTION INPUT OUTPUT EQUATION

Quasi-Stationary Initialization Latitude,
Longitude &

Altitude

CB
L

 (or qB
L

),

vN, CN
E

, h

Chapt. 6

Earth Related Parameters Earth Shape,
Gravity &

Angular Rate
Constants,

vN, CN
E

, h

ρN
 = ωEN

N
,

gP
N

Table 5.6-1

N To L Frame Direction Cosine Matrix (Constant) Definition
CN

L
 = CL

N T (4.1.1-2)

N Frame Earth Rate Vector CN
E

, ωe ωIE
N (4.1.1-3) &

(4.1.1-4)

L Frame Angular Rate Vector ωIE
N

, ωEN
N

,

CN
L

ωIL
L (4.1.1-1)

Acceleration Transformation
aSF
B

, CB
L

, CL
N

aSF
N (4.2-1) &

(4.2-3)

Vertical Channel Control Gains Constants C1, C2, C3 (4.4.1.2.1-11)

Vertical Channel Control Terms C1, C2, C3,
h, hPrsr

evc1, evc2 (4.4.1.2.1-3)

Unit Vector Upward In N Frame (Constant) Definition uZN
N (5.3-18)

STRAPDOWN INERTIAL NAVIGATION EQUATION SUMMARY 4-43

EQUATION FUNCTION INPUT OUTPUT EQUATION

Velocity Differential Equation To Be Integrated
aSF

N
, gP

N
,

ωEN
N

, ωIE
N

,

vN, evc1,

uZN
N

vN (4.4.1.2.1-1)

East, North, Up Velocity Component Outputs vN, α vEast,
vNorth , vUp

(4.3.1-4)

Altitude Differential Equation To Be Integrated vN, uZN
N

,

evc2

h (4.4.1.2.1-2)

Position Direction Cosine Matrix Differential
 Equation To Be Integrated ρN

, CN
E

CN
E (4.4.1.1-1)

Latitude, Longitude Outputs And Wander Angle CN
E l, L, α (4.4.2.1-3)

Attitude Differential Equation To Be Integrated
 (Direction Cosine Matrix Form) ωIB

B
, ωIL

L
,

CB
L

CB
L (4.1-1)

Attitude Differential Equation To Be Integrated
 (Quaternion Form) ωIB

B
, ωIL

L
, qB

L qB
L (4.1-2) &

(4.1-3)

Attitude Quaternion To Attitude Direction Cosine
 Matrix Conversion (For Attitude Quaternion As
 Basic Attitude Form)

qB
L

CB
L (4.2-5)

Roll, Pitch, True Heading Euler Angle Outputs CB
L

, α φ, θ, ψTrue
(4.1.2-1) &

(4.1.2-2)

4-44 CONTINUOUS FORM STRAPDOWN INERTIAL NAVIGATION EQUATIONS

5-1

5 Earth Related Navigation Parameters

5.0 OVERVIEW

In Chapter 4 we used plumb-bob gravity (gP
N

), transport rate (ρN
) and analytical relationships

between CN
E

, h and other position location representations to describe velocity rate (v
N

) and

various position determination approaches. Each of these parameters is related to the analytical
model used to describe gravity and the shape of the earth’s surface. In this chapter, we will
develop analytically exact equations for gravity, earth’s surface shape, and other earth related
terms based on the standard ellipsoidal earth surface shape and gravity model of Reference 4
(also discussed in Reference 3 - Chapter 4). The coordinate frames we will be utilizing in this
chapter will be Frames E, N and Geo (defined in Section 2.2), where the E Frame axes are
specified in particular to be:

E = Earth fixed coordinate frame having its Y axis along the earth’s polar axis with X
and Z axes in the equatorial plane. The E Frame Z Axis is defined to lie along the
intersection of the Greenwich reference meridian plane (contains Greenwich
England) and the equatorial plane.

A table is provided at the end of this chapter listing the salient equations developed in the order
they would be applied in the strapdown INS computer.

5.1 EARTH SHAPE MODEL

For navigational purposes, the shape of the earth’s reference surface is approximated as an
ellipsoid of revolution around the earth polar axis. This imaginary reference ellipsoid is the
surface from which “altitude” is measured and is defined as the ellipsoid that “best fits” a
reference geoid (a surface of constant gravity field potential) selected to approximate mean sea
level. (Note; gravitational acceleration is the gradient of the gravity potential field - See
Reference 3, Section 4.4 for further explanation). When we speak of the altitude of a position
location over the earth, we mean the height above the reference ellipsoid measured along a line
that passes through the position point and is perpendicular to the surface of the reference
ellipsoid below (or above) the position location. By “geodetic vertical”, we mean the direction

5-2 EARTH RELATED NAVIGATION PARAMETERS

of this “line”.

The equation for points on the surface of the earth reference ellipsoid can be described in the
earth fixed E Frame by the surface function:

ξ = RSXE

2
 + RSZE

2
 +

RSYE

2

1 - e 2
 - R0

2
 = 0 (5.1-1)

in which the symmetric axis of the ellipsoid (i.e., earth’s polar axis) is parallel to the E Frame Y
axis, and where:

RS = Distance vector from the center of the ellipsoid to a point on the ellipsoid surface.

RSXE, RSYE, RSZE = X, Y, Z components of RS
E

, the projection of RS on E Frame

axes.

R0 = Semi-major axis of the reference ellipse (i.e., earth’s equatorial radius). The
numerical value from Reference 4 (Table 3.1) is provided in Table 5.6-1 at the
conclusion of this chapter.

e = Ellipticity of the reference ellipse defined as one minus the ratio of the semi-minor
over the semi-major axis (also known as “flattening”). The numerical value from
Reference 4 (Table 3.1) is provided in Table 5.6-1 at the conclusion of this chapter.

ξ = Ellipsoid surface function.

Figure 5.1-l illustrates the geometry involved in which the earth’s ellipticity has been
intentionally exaggerated from its true much smaller value.

Normal To
Surface

Earth
Equatorial

Plane

Earth Polar Axis
(E Frame Y Axis)

uUp

•
R0 RS

Ellipsoid-Of-Revolution
With Ellipticity e

Figure 5.1-1 Earth Surface Analytical Model

EARTH SHAPE MODEL 5-3

Now imagine a unit vector perpendicular to the ellipsoid surface at the RS surface point (i.e.,
along the geodetic vertical). If a particular position location is along the unit vector directly
above (or below) the RS surface point, the unit vector would lie along the Z axis of the Section
2.2 defined N, L and Geo coordinate frames corresponding to that position location. Figure
5.1-1 illustrates such a unit vector labeled uUp, where:

uUp = Unit vector perpendicular to the ellipsoid surface at RS, corresponding to a
position location directly above (or below) RS along uUp.

An analytical expression for uUp can be derived from the property that a vector normal to a

surface function ξ lies along the surface function gradient (Reference 37 - Chapter 5, Section 3),
hence, in the E Frame we can write:

uUp
E

 =
∇ξ

∇ξ
(5.1-2)

where

∇ = E Frame vector gradient operator.

uUp
E

 = uUp projected on E Frame axes.

By definition of the gradient (Reference 37 - Chapter 5, Section 3) applied in the E Frame:

∇ξ =
∂ξ

∂RSXE

 ,
∂ξ

∂RSYE

 ,
∂ξ

∂RSZE

 T

(5.1-3)

With (5.1-1) in Equation (5.1-3) we find:

∇ξ = 2 RSXE, 2
RSYE

1 - e 2
, 2 RSZE

 T

(5.1-4)

 ∇ξ = 2 RSXE

2
 + RSZE

2
 + RSYE

2
 / 1 - e 4 (5.1-5)

For convenience, we define RS
′ (not to be confused with RS, the magnitude of RS, to be

introduced subsequently):

RS
′
 ≡ RSXE

2
 + RSZE

2
 + RSYE

2
 / 1 - e 4 (5.1-6)

where

RS
′ = Modified magnitude of RS.

5-4 EARTH RELATED NAVIGATION PARAMETERS

so that:

 ∇ξ = 2 RS
′ (5.1-7)

Substituting (5.1-4) and (5.1-7) into (5.1-2) obtains for uUp
E

 in terms of RS
E

 components:

uUpXE = RSXE / RS
′

uUpYE = RSYE / 1 - e 2 RS
′

(5.1-8)

uUpZE = RSZE / RS
′

where
uUpXE, uUpYE, uUpZE = E Frame X, Y, Z components of uUp.

or, upon inversion, for RS
E

 in terms of uUp
E

 components:

RSXE = uUpXE RS
′

RSYE = 1 - e 2 uUpYE RS
′

(5.1-9)

RSZE = uUpZE RS
′

The RSYE expression in (5.1-9) can be used to derive an alternate to (5.1-6) for RS
′ . We first

combine (5.1-l) with (5.1-6) squared and expand:

RS
′ 2

 = R0
2
 - RSYE

2
 / 1 - e 2 + RSYE

2
 / 1 - e 4 = R0

2
 + RSYE

2
 / 1 - e 4 1 - 1 - e 2

Substituting RSYE from (5.1-9) and rearranging then gives:

RS
′ = R0 / 1 + uUpYE

2
 1 - e 2 - 1 (5.1-10)

5.2 ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS

As part of the inertial navigation computational process, earth referenced parameters must be
calculated based on the ellipsoidal earth model, under conditions when the navigating vehicle is
at a position above (or below) the earth surface. For an intentionally exaggerated earth ellipticity
(for illustrative purposes), Figure 5.2-1 describes the relative position geometry and the
definition of position variables used in subsequent analytic developments.

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-5

•

Position Location

R

φ

Earth Polar Axis
(E Frame Y Axis)

Equatorial Plane

l

Rs

lφ

h
l∂

uUpuNorth

Local
Horizontal

Figure 5.2-1 Position Relative To Earth In Local Meridian Plane

Figure 5.2-1 describes a position location above the earth surface showing the previously
defined earth surface and normal vectors (RS and uUp), and where:

R = Position vector from the center of the earth to the current actual position location.

uNorth = Unit vector in the horizontal North direction.

h = Altitude above the earth reference ellipsoid measured from earth’s surface along
the earth surface normal unit vector uUp to the current position location.

l = Geodetic latitude defined as the angle from earth’s equatorial plane to uUp (positive
for position locations in the Northern hemisphere).

lφ = Geocentric latitude defined as the angle from earth’s equatorial plane to R (positive
for position locations in the Northern hemisphere).

∂l = Difference between geodetic and geocentric latitudes, known as the “deflection of
the vertical”.

φ = Angle from earth’s positive polar axis (the E Frame Y axis) to R which is also the

complement of lφ. The angle φ lies in the range of zero to π, depending on the
position location.

Not shown in Figure 5.2-1, but also of interest, are radii of curvature of the earth’s surface at
the earth surface position location, both in the plane of the local meridian, and perpendicular to

5-6 EARTH RELATED NAVIGATION PARAMETERS

the local meridian plane. The equivalent radii of curvature at the actual position location (i.e., at
altitude) must also be defined.

5.2.1 MAGNITUDES OF R AND RS

Equations for the magnitudes of R and RS can be derived by first writing from Figure
5.2.1-1:

R = RS + h uUp (5.2.1-1)

The magnitude squared of R is then obtained from (5.2.1-1) as:

R2 = R ⋅ R = RS ⋅ RS + 2 h uUp ⋅ RS + h2

= RS
2

 + h2 + 2 h uUp ⋅ RS
(5.2.1-2)

where

R, RS = Magnitudes of R and RS.

Using Section 5.1 definitions for the E Frame components of RS, the magnitude squared of
RS:

RS
2

 = RSXE

2
 + RSYE

2
 + RSZE

2

which, with (5.1-9) from Section 5.1, becomes:

RS
2

 = R′S
 2
 uUpXE

2
 + uUpYE

2
 1 - e 4 + uUpZE

2

 = R′S
 2

 uUpXE

2
 + uUpYE

2
 + uUpZE

2
 + uUpYE

2
 1 - e 4 - 1

(5.2.1-3)

Since uUp is a unit vector, we then find for RS:

RS = RS
′ 1 + uUpYE

2
 1 - e 4 - 1 (5.2.1-4)

Using (5.1-9) for the E Frame components of RS, the dot product in (5.2.1-2) is:

 uUp ⋅ RS = uUpXE RSXE + uUpYE RSYE + uUpZE RSZE

= RS
′ uUpXE

2
 + uUpYE

2
 1 - e 2 + uUpZE

2

= RS
′ uUpXE

2
 + uUpYE

2
 + uUpZE

2
 + uUpYE

2
 (1 - e) 2 - 1

= RS
′ 1 + uUpYE

2
 (1 - e) 2 - 1

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-7

or with (5.1-10) of Section 5.1 squared:

uUp ⋅ RS = R0
2
 / RS

′

Substituting in (5.2.1-2) obtains the relationship between R and RS:

R2 = RS
2
 + 2 h R0

2
 / RS

′ + h2 (5.2.1-5)

5.2.2 POLAR COORDINATE ANGLE PARAMETERS

The cosine and sine of φ are parameters that will be useful later on, and are derived from
Figure 5.2-1 as follows. First we substitute (5.1-9) into (5.2.1-1) to obtain in the E Frame:

RXE = uUpXE RS
′ + h

RYE = uUpYE 1 - e 2 RS
′ + h (5.2.2-1)

RZE = uUpZE RS
′ + h

From Figure 5.2-1 we then write:

cos φ =
RYE

R
sin φ =

REq

R
 =

RXE
2

 + RZE
2

R
(5.2.2-2)

where

REq = Projection of R on the equatorial plane.

Using (5.2.2-1), the cos φ term in (5.2.2-2) becomes:

cos φ = uUpYE 1 - e 2 RS
′ + h / R (5.2.2-3)

The term under the radical in (5.2.2-2) is with (5.2.2-1):

RXE
2

 + RZE
2

 = uUpXE

2
 + uUpZE

2
 RS

′ + h
 2

 = 1 - uUpYE

2
 RS

′ + h
 2

Hence:

sin φ = 1 - uUpYE

2
 RS

′ + h / R (5.2.2-4)

or equivalently:

5-8 EARTH RELATED NAVIGATION PARAMETERS

sin φ

1 - uUpYE

2
 = RS

′ + h / R (5.2.2-5)

The
sin φ

1 - uUpYE

2
 form in Equation (5.2.2-5) will prove more convenient for later use in

handling singular cases near uZNYE equal to ± 1. This approach will also be used for some of

the other parameters developed in this chapter.

5.2.3 LATITUDE ANGLE PARAMETERS

An expression for geodetic latitude (l) in Figure 5.2-1 can be obtained by inspection. The
sine of l is equal to the projection of the unit vector uUp on the earth polar axis:

sin l = uUpYE (5.2.3-1)

It will also be useful to determine expressions for the sine and cosine of ∂l in Figure 5.2-1,
the difference between l and lφ, which is also the angle between R and uUp. To derive these

expressions, we start with Figure 5.2-1 for ∂l and some basic trigonometric identities:

∂l = l - lφ

sin ∂l = sin l cos lφ - cos l sin lφ (5.2.3-2)

cos ∂l = cos l cos lφ + sin l sin lφ

From Figure 5.2-1, lφ is related to φ through:

lφ = π / 2 - φ (5.2.3-3)

hence,

sin lφ = cos φ cos lφ = sin φ (5.2.3-4)

Substituting (5.2.3-1) with (5.2.3-4) into (5.2.3-2) obtains:

sin ∂l = uUpYE sin φ - 1 - uUpYE

2
 cos φ

cos ∂l = 1 - uUpYE

2
 sin φ + uUpYE cos φ

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-9

We then substitute for sin φ and cos φ from (5.2.2-3) and (5.2.2-4):

sin ∂l = uUpYE 1 - uUpYE

2
 RS

′ + h / R - 1 - uUpYE

2
 uUpYE 1 - e 2 RS

′ + h / R

= uUpYE 1 - uUpYE

2
 1 - 1 - e 2 RS

′ / R

cos ∂l = 1 - uUpYE

2
 RS

′ + h / R + uUpYE

2
 1 - e 2 RS

′ + h / R

= 1 - uUpYE

2
 + uUpYE

2
 1 - e 2 RS

′ + h / R

or, after rearrangement:

sin ∂l

1 - uUpYE

2
 = uUpYE 1 - 1 - e 2 RS

′ / R

cos ∂l = 1 - uUpYE

2
 1 - 1 - e 2 RS

′ + h / R
(5.2.3-5)

The Equation (5.2.3-5)
sin ∂l

1 - uUpYE

2
 form will prove more convenient for later use in

handling singular cases near uZNYE equal to ± 1.

5.2.4 RADII OF CURVATURE

Consider the (4.4.1.1-5) transport rate equation using ωEN
E

 as the transport rate ρE
 (for more

specificity):

uUp
E

 = ωEN
E

 × uUp
E

(5.2.4-1)

where

ωEN
E

 = Angular rate of the N Frame relative to the E Frame in E Frame axes.

Taking the cross-product of (5.2.4-1) with uUp
E

 and applying (3.1.1-16) provides the equivalent

alternate form:

uUp
E

 × uUp
E

 = uUp
E

 × ωEN
E

 × uUp
E

 = ωEN
E

 - uUp
E

 ωEN
E

 ⋅ uUp
E

(5.2.4-2)

5-10 EARTH RELATED NAVIGATION PARAMETERS

Identifying the term on the right as the horizontal component of ωEN
E

 (i.e., ωEN
E

 with the vertical

component removed) then yields:

ωENH

E
 = uUp

E
 × uUp

E
(5.2.4-3)

where

ωENH

E
 = Horizontal component of ωEN

E
.

Over an infinitesimal time interval dt, ωENH

E
 rotates the N Frame relative to the E Frame

through an infinitesimal angle, and uUp
E

 changes accordingly such that:

ωENH

E
 =

dϑENH

E

dt
uUp

E
 =

duUp
E

dt
(5.2.4-4)

where

dϑENH

E
 = Infinitesimal angular rotation vector of the N relative to the E Frame over

time interval dt.

duUp
E

 = Infinitesimal change in uUp
E

 over time interval dt caused by dϑENH

E
.

Substituting (5.2.4-4) in (5.2.4-3) provides the equivalent differential form:

dϑENH

E
 = uUp

E
 × duUp

E
(5.2.4-5)

We will now use (5.2.4-5) to find the radii of curvature associated with dϑENH

E
 and the

corresponding horizontal position movement at the earth’s surface and at the navigation system

altitude. The derivation begins with the vector form of Equation (5.1-8) multiplied by RS
′ :

RS
′

 uUp
E

 = RS
E

 +
1

(1 - e) 2
 - 1 uYE

E
 ⋅ RS

E
 uYE

E
(5.2.4-6)

where

RS
E

 = Position vector from earth’s center to the navigation system earth surface

location (See Figure 5.2-1) in E Frame coordinates.

uYE
E

 = Unit vector along the E Frame Y axis in E Frame coordinates.

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-11

Taking the differential of (5.2.4-6) while recognizing uYE
E

 as constant obtains:

RS
′

 duUp
E

 + uUp
E

 dRS
′

 = dRS
E

 +
1

(1 - e) 2
 - 1 uYE

E
 ⋅ dRS

E
 uYE

E

or upon rearrangement:

RS
′

 duUp
E

 = dRS
E

 +
1

(1 - e) 2
 - 1 uYE

E
 ⋅ dRS

E
 uYE

E
 - dRS

′
 uUp

E
(5.2.4-7)

where

d() = Differential change in () over time interval dt.

Multiplying (5.2.4-5) by RS
′ and substituting (5.2.4-7) for RS

′ duUp
E

 then finds:

RS
′

 dϑENH

E
 = uUp

E
 × dRS

E
 +

1

(1 - e) 2
 - 1 uUp

E
 × uYE

E
 uYE

E
 ⋅ dRS

E
(5.2.4-8)

Equation (5.2.4-8) equates dϑENH

E
 to the associated dRS

E
 earth surface position movement.

Due to the symmetry of the earth surface shape ellipsoid about the earth’s polar axis, it will
prove expeditious to find north and east components of (5.2.4-8) in our quest for radii of

curvature. Toward this end we decompose uYE
E

 in (5.2.4-8) into its north and vertical

components (the east component is zero, i.e., the component of a unit vector along the E Frame
Y axis in Figure 5.1-1 that is normal to the page):

uYE
E

 = uYE
E

 ⋅ uNorth
E

 uNorth
E

 + uYE
E

 ⋅ uUp
E

 uUp
E

(5.2.4-9)

where

uNorth
E

 = Unit vector in the horizontal north direction in E Frame coordinates.

Using (5.2.4-9) and recognizing that the cross-product of uUp
E

 with uNorth
E

 lies west (i.e.,

negative east), the uUp
E

 × uYE
E

 term in (5.2.4-8) becomes:

uUp
E

 × uYE
E

 = uYE
E

 ⋅ uNorth
E

 uUp
E

 × uNorth
E

 = - uYE
E

 ⋅ uNorth
E

 uEast
E

(5.2.4-10)

where

uEast
E

 = Unit vector in the horizontal east direction in E Frame coordinates.

With (5.2.4-9), the uYE
E

 ⋅ dRS
E

 term in (5.2.4-8) is:

5-12 EARTH RELATED NAVIGATION PARAMETERS

uYE
E

 ⋅ dRS
E

 = uYE
E

 ⋅ uNorth
E

 uNorth
E

 ⋅ dRS
E

 + uYE
E

 ⋅ uUp
E

 uUp
E

 ⋅ dRS
E

(5.2.4-11)

We will now formally show that the uUp
E

 ⋅ dRS
E

 term in (5.2.4-11) is zero using Equation

(5.2.1-1) rearranged in E Frame coordinates:

RS
E

 = RE - h uUp
E

(5.2.4-12)

The differential of (5.2.4-12) is:

dRS
E

 = dRE - uUp
E

 dh - h duUp
E

 = dRH
E

 - h duUp
E

(5.2.4-13)

where

dRH
E

 = Horizontal component of dRE (i.e., dRE with the vertical dh component

removed).

Taking the dot product of (5.2.4-13) with uUp
E

:

uUp
E

 ⋅ dRS
E

 = uUp
E

 ⋅ dRH
E

 - h uUp
E

 ⋅ duUp
E

 = - h uUp
E

 ⋅ duUp
E

(5.2.4-14)

But, uUp
E

 ⋅ uUp
E

 = 1, hence, from the differential, uUp
E

 ⋅ duUp
E

 = 0. Therefore, (5.2.4-14) shows

that uUp
E

 ⋅ dRS
E

 is zero and (5.2.4-11) reduces to:

uYE
E

 ⋅ dRS
E

 = uYE
E

 ⋅ uNorth
E

 uNorth
E

 ⋅ dRS
E

(5.2.4-15)

We now substitute (5.2.4-10) and (5.2.4-15) into (5.2.4-8) and apply generalized Equation
(3.1.1-10) to obtain:

RS
′
 dϑENH

E
 = uUp

E × -
1

(1 - e) 2
 - 1 uYE

E
 ⋅ uNorth

E 2
 uEast

E
 uNorth

E T
 dRS

E
(5.2.4-16)

As a final step, the
1

(1 - e) 2
 - 1 uYE

E
 ⋅ uNorth

E 2
 term in (5.2.4-16) can be expressed in terms

of RS
′ , R0 and e by first taking the dot product of (5.2.4-9) with itself and equating the result to 1

(the magnitude of uYE
E

):

uYE
E

 ⋅ uNorth
E 2

 + uYE
E

 ⋅ uUp
E 2

 = 1
or

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-13

uYE
E

 ⋅ uNorth
E 2

 = 1 - uYE
E

 ⋅ uUp
E 2

 = 1 - uUpYE

2

Thus,

1

(1 - e) 2
 - 1 uYE

E
 ⋅ uNorth

E 2
 =

1

(1 - e) 2
 - 1 1 - uUpYE

2

=
1

(1 - e) 2
 1 - uUpYE

2
 + uUpYE

2
 - 1

=
1

(1 - e) 2
 (1 - e) 2 uUpYE

2
 + 1 - uUpYE

2
 - 1

(5.2.4-17)

=
1

(1 - e) 2
 1 + uUpYE

2
 (1 - e) 2 - 1 - 1

Comparing the form of Equation (5.2.4-17) with the reciprocal of Equation (5.1-10) squared
shows that:

1

(1 - e) 2
 - 1 uYE

E
 ⋅ uNorth

E 2
 =

1

(1 - e) 2

R0
2

RS
′ 2

 - 1 (5.2.4-18)

with which Equation (5.2.4-16) becomes:

RS
′ dϑENH

E
 = uUp

E × -
1

(1 - e) 2

R0
2

RS
′ 2

 - 1 uEast
E

 uNorth
E T

 dRS
E

(5.2.4-19)

Equation (5.2.4-19) is now in a form that can be used to define radii of curvature associated

with dϑENH

E
 and the corresponding horizontal earth surface position movement dRS

E
. The radii

of curvature will be defined in terms of north and east components of linear and angular
movement, so we first transform to the geographic Geo Frame for analysis. Multiplying

(5.2.4-19) by CE
Geo

 and expanding:

RS
′ CE

Geo
 dϑENH

E
 = CE

Geo
 uUp

E × -
1

(1 - e) 2

R0
2

RS
′ 2

 - 1 CE
Geo

 uEast
E

 uNorth
E T

 CE
Geo T

 CE
Geo

 dRS
E

= CE
Geo

 uUp
E × CE

Geo T
 -

1

(1 - e) 2

R0
2

RS
′ 2

 - 1 uEast
Geo

 uNorth
E T

 CE
Geo T

 dRSE
Geo

 (5.2.4-20)

or, after applying (3.1.1-25) and (3.1.1-39):

5-14 EARTH RELATED NAVIGATION PARAMETERS

RS
′
 dϑENH

Geo
 = uUp

Geo× -
1

(1 - e) 2

R0
2

RS
′ 2

 - 1 uEast
Geo

 uNorth
Geo T

 dRSE
Geo

 (5.2.4-21)

where

dRSE
Geo

 = dRS
E

 transformed to the Geo Frame. The SE subscript notation has been

adopted to specifically identify that the surface position movement is relative
to the E Frame even though the components are being projected on Geo
Frame coordinates.

The north component of (5.2.4-21) is found by taking the dot product with uNorth
Geo

, applying

(3.1.1-35), and recognizing that the cross-product of north with up unit vectors lies east:

RS
′
 dϑENNorth = uNorth

Geo
 ⋅ uUp

Geo
 × dRSE

Geo
 = dRSE

Geo
 ⋅ uNorth

Geo
 × uUp

Geo

 = dRSE
Geo

 ⋅ uEast
Geo

 = dRSEEast
or

dϑENNorth =
1

RS
′

 dRSEEast (5.2.4-22)

where

dϑENNorth, dRSEEast = The north component of dϑENH and the east component

of dRSE .

The east component of (5.2.4-21) is found by taking the dot product with uEast
Geo

, applying

(3.1.1-25) and (3.1.1-35), while recognizing that the cross-product of east with up unit vectors
lies south (i.e., minus north):

RS
′
 dϑENEast = uEast

Geo
 ⋅ uUp

Geo
 × dRSE

Geo
 -

1

(1 - e) 2

R0
2

RS
′ 2

 - 1 dRSENorth

 = dRSE
Geo

 ⋅ uEast
Geo

 × uUp
Geo

 -
1

(1 - e) 2

R0
2

RS
′ 2

 - 1 dRSENorth

 = - dRSE
Geo

 ⋅ uNorth
Geo

 -
1

(1 - e) 2

R0
2

RS
′ 2

 - 1 dRSENorth

(Continued)

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-15

(Continued)

 = -
1

(1 - e) 2

R0
2

RS
′ 2

 dRSENorth

or

dϑENEast = -
1

(1 - e) 2
RS

′ 3

R0
2

 dRSENorth
(5.2.4-23)

where

dϑENEast, dRSENorth = The east component of dϑENH and the north component

of dRSE .

Radii of curvature corresponding to horizontal north and east earth surface position
movements are defined as the ratio of the horizontal earth surface position movement divided
by the corresponding horizontal angular rotation over the earth’s surface. From Equations
(5.2.4-22) and (5.2.4-23) we see then that the radii of curvature are given by:

rLs ≡
dRSEEast

dϑENNorth

 = RS
′

(5.2.4-24)

rl s ≡
dRSENorth

- dϑENEast

 = (1 - e) 2
RS

′ 3

R0
2

 (5.2.4-25)

where

rLs, rls = Radii of curvature at the earth surface corresponding to longitude (East),
latitude (North) movements of RS.

With the (5.2.4-24) - (5.2.4-25) definitions, Equations (5.2.4-22) and (5.2.4-23) become:

dϑENNorth =
1

rLs
 dRSEEast dϑENEast = -

1
rls

 dRSENorth (5.2.4-26)

The vector form of (5.2.4-26) is found from the following development:

dϑENH

Geo
 =

0 -
1
rls

0

1
rLs

0 0

0 0 0

 dRSE
Geo =

1
rls

0 0

0
1

rLs
0

0 0 0

0 - 1 0
1 0 0
0 0 0

 dRSE
Geo

5-16 EARTH RELATED NAVIGATION PARAMETERS

which is equivalently:

dϑENH

Geo
 = FCS

Geo
 uUp

Geo
 × dRSE

Geo
(5.2.4-27)

in which

FCS
Geo

 ≡

1
rls

0 0

0
1

rLs
0

0 0 0

(5.2.4-28)

where

FCS
Geo

 = Geo Frame version of the curvature matrix associated with earth surface
referenced horizontal motion.

The Equation (5.2.4-27) and (5.2.4-28) forms will now be used to find radii of curvature
corresponding to horizontal position motion at the navigation system altitude (which may be
above or below the earth surface). We begin with the Geo Frame version of (5.2.4-13):

dRSE
Geo

 = dRHE
Geo

 - h duUpE
Geo

(5.2.4-29)

where

dRHE
Geo

, duUpE
Geo

 = dRH
E

 and duUp
E

 transformed to the Geo Frame. The added E in the

subscripts identifies the differential change to be relative to the E
Frame.

Substituting (5.2.4-29) in the (5.2.4-27) cross-product term finds:

uUp
Geo

 × dRSE
Geo

 = uUp
Geo

 × dRHE
Geo

 - h uUp
Geo

 × duUpE
Geo

(5.2.4-30)

But from the Geo Frame version of (5.2.4-5):

uUp
Geo

 × duUpE
Geo

 = dϑENH

Geo
(5.2.4-31)

Substituting (5.2.4-31) in (5.2.4-30) and applying the result to (5.2.4-27) then shows (with
rearrangement) that:

I + h FCS
Geo

 dϑENH

Geo
 = FCS

Geo
 uUp

Geo
 × dRHE

Geo
(5.2.4-32)

or

ELLIPSOIDAL EARTH REFERENCED NAVIGATION PARAMETERS 5-17

dϑENH

Geo
 = FC

Geo
 uUp

Geo
 × dRHE

Geo
(5.2.4-33)

with

FC
Geo

 ≡ I + h FCS
Geo -1

 FCS
Geo

(5.2.4-34)

where

FC
Geo

 = Geo Frame version of the curvature matrix associated with horizontal motion
at altitude.

Using (5.2.4-28) for FCS
Geo

, the FC
Geo

 curvature matrix is evaluated in steps as follows:

I + h FCS
Geo

 =

1 +
h

rls
 0 0

0 1 +
h

rLs
0

0 0 1

 =

rls + h

rls
 0 0

0
rLs + h

rLs
0

0 0 1
from which

FC
Geo

 = I + h FCS
Geo -1

 FCS
Geo

 =

1
rls + h

0 0

0
1

rLs + h
0

0 0 0

(5.2.4-35)

Comparing (5.2.4-35) with (5.2.4-28), we see that the equivalent radii of curvature at altitude are
given by:

rL = rLs + h (5.2.4-36)

rl = rls + h (5.2.4-37)

where

rL, rl = Equivalent radii of curvature at the actual (at altitude) position location
corresponding to longitude (East), latitude (North) movements of R and uUp
(See Figure 5.2-1).

With (5.2.4-36) and (5.2.4-37), Equation (5.2.4-35) for the curvature matrix at altitude
becomes:

5-18 EARTH RELATED NAVIGATION PARAMETERS

FC
Geo

 =

1
rl

0 0

0
1
rL

0

0 0 0

(5.2.4-38)

5.3 TRANSPORT RATE

Transport rate ρ is defined in Section 4.1.1 as the angular rate of the locally level N Frame
relative to the E Frame (see Section 2.2 for N Frame definition). The horizontal components of

ρ (i.e., the N Frame X, Y components) rotate the N Frame Z axis to remain parallel to the
geodetic vertical (i.e., the uUp vector). As discussed in Section 4.5, the N Frame vertical axis

(Z) component of ρ is somewhat arbitrary, and depends on the type of N Frame
implementation selected.

From the previous description of ρ, we see that horizontal transport rate is a function of the
uUp angular rate (which is produced by horizontal velocity over the earth). To derive the
equations relating horizontal velocity to horizontal transport rate, we return to Equation
(5.2.4-33) and divide it by the infinitesimal time interval dt:

dϑENH

Geo

dt
 = FC

Geo
 uUp

Geo
 ×

dRHE
Geo

dt
(5.3-1)

The definition for dRHE
Geo

 given in Section 5.2.4 (following Equation (5.2.4-29)) is

analytically:

dRHE
Geo

 = CE
Geo

 dRH
E

(5.3-2)

Based on (5.3-2) and the definition for velocity relative to the earth (v) in (4.3-1), we see that

dRHE
Geo

dt
 = vH

Geo
(5.3-3)

where

vH
Geo

 = Horizontal component of velocity relative to the earth in the Geo Frame.

We also know from the Geo Frame form of the first equation in (5.2.4-4) and the transport rate
definition that:

TRANSPORT RATE 5-19

ρH
Geo

 ≡ ωENH

Geo
 =

dϑENH

Geo

dt
(5.3-4)

where

ρH
Geo

 = Horizontal components of transport rate in the Geo Frame.

Thus, with (5.3-3) and (5.3-4), Equation (5.3-1) becomes the horizontal transport rate equation
in the Geo Frame:

ρH
Geo

 = FC
Geo

 uUp
Geo

 × vGeo (5.3-5)

Note that we have used the total velocity vGeo

 in (5.3-5) (rather than vH
Geo

) because the uUp
Geo

cross-product cancels the vertical vGeo

 component.

The components of horizontal transport rate in the N Frame are obtained by multiplying

(5.3-5) by the CGeo

N
 transformation matrix and expanding using (3.2.1-4):

CGeo
N

 ρH
Geo

 = CGeo
N

 FC
Geo

 CGeo
N T

 CGeo
N

 uUp
Geo

 × vGeo

or after applying generalized Equation (3.1.1-42):

ρH
N

 = FC
N

 uUp
N

 × vN (5.3-6)

with

FC
N

 ≡ CGeo
N

 FC
Geo

 CGeo
N T

 (5.3-7)

where

FC
N

 = N Frame version of the curvature matrix associated with horizontal motion at

altitude.

The N Frame is rotated from the Geo Frame about the local vertical (Z axis of the Geo and N
Frames) by the wander angle shown in Figure 4.4.2.1-1. Taking the transpose of Equation

(4.3.1-1) gives for the CGeo

N
 matrix:

CGeo
N

 =

cos α sin α 0

- sin α cos α 0

0 0 1

(5.3-8)

5-20 EARTH RELATED NAVIGATION PARAMETERS

where

α = Wander angle.

Using (5.3-8) for CGeo

N
 in (5.3-7) with (5.2.4-38) for FC

Geo
, we see that:

FC
N

 =

cos α sin α 0

- sin α cos α 0

0 0 1

1
rl

0 0

0
1
rL

0

0 0 0

cos α - sin α 0

sin α cos α 0

0 0 1

(5.3-9)

=

1
rl

 cos2α +
1
rL

 sin2α
1
rL

 -
1
rl

 sin α cos α 0

1
rL

 -
1
rl

 sin α cos α
1
rl

 sin2α +
1
rL

 cos2α 0

0 0 0

But,
1
rl

 cos2α +
1
rL

 sin2α =
1
rl

 +
1
rL

 -
1
rl

 sin2α

1
rl

 sin2α +
1
rL

 cos2α =
1
rl

 +
1
rL

 -
1
rl

 cos2α
(5.3-10)

Substituting (5.3-10) in (5.3-9) then finds:

FC
N

 =

1
rl

 +
1
rL

 -
1
rl

 sin2α
1
rL

 -
1
rl

 sin α cos α 0

1
rL

 -
1
rl

 sin α cos α
1
rl

 +
1
rL

 -
1
rl

 cos2α 0

0 0 0

(5.3-11)

Equations (4.4.2.1-2) show that the D21 and D22 elements of the CN
E

 direction cosine matrix

are equal, respectively, to the product of cosine latitude (l) with sin α and cos α. Then, with

Equation (5.2.3-1), the sin α, cos α terms in (5.3-11) are:

sin α =
D21

cos l
 =

D21

1 - uUpYE

2
 cos α =

D22

cos l
 =

D22

1 - uUpYE

2
(5.3-12)

TRANSPORT RATE 5-21

The bracketed reciprocal radius of curvature difference term in (5.3-11) can be rearranged using
(5.2.4-36) and (5.2.4-37) as follows:

1
rL

 -
1
rl

 =
rl - rL

rL rl
 =

rls - rLs

rL rl
 =

1
rl

rLs

rL

rls

rLs
 - 1 (5.3-13)

With (5.2.4-36) and (5.2.4-24), the
rLs

rL
 term in (5.3-13) is given by:

rLs

rL
 =

rLs

rLs + h
 =

1

1 + h / RS
′

(5.3-14)

Combining (5.2.4-24), (5.2.4-25) and (5.1-10) squared, the
rls

rLs
 -1 term in (5.3-13) is:

rls

rLs
 - 1 = 1 - e 2

RS
′ 2

R0
2

 - 1

 =
1 - e 2

1 + uUpYE

2
 1 - e 2 - 1

 - 1 =
1 - uUpYE

2
 1 - e 2 - 1

1 + uUpYE

2
 1 - e 2 - 1

(5.3-15)

Equations (4.4.2.1-2) show that the D23 element of the CN
E

 direction cosine matrix is sin l,

hence, from (5.2.3-1):

uUpYE = D23 (5.3-16)

Substituting (5.3-14) and (5.3-15) into (5.3-13), the result with (5.3-12) into (5.3-11), and using

(5.3-16) for uUpYE yields the desired expression for FC
N

, the N Frame curvature matrix at

altitude. Substituting (5.3-6) (with uUp
N

 equated to uZN
N

 by the N Frame Z axis definition) into

(4.1.1-6) then obtains the total ρN
 N Frame transport rate equation based on FC

N
, the N Frame

velocity vN, and the selected vertical component of ρN
 (from Section 4.5). The overall results

are summarized as follows:

ρN
 = FC

N
 uZN

N
 × vN + ρZN uZN

N
(5.3-17)

with

5-22 EARTH RELATED NAVIGATION PARAMETERS

uZN
N

 = 0 0 1 T

FC
N

 =

FC11 FC12 0

FC21 FC22 0

0 0 0

FC11 =
1
rl

 1 + D21
2

 feh FC12 =
1
rl

 D21 D22 feh (5.3-18)

FC21 =
1
rl

 D21 D22 feh FC22 =
1
rl

 1 + D22
2

 feh

fe =
1 - e 2 - 1

1 + D23
2

 1 - e 2 - 1
fh =

1

1 + h / RS
′

feh = fe fh

in which RS
′ is given by (5.1-10) with (5.3-16) for uUpYE, rl is provided by (5.2.4-37) with

(5.2.4-25) for rls, and where:

ρN
 = Transport rate vector in N Frame coordinates (i.e., angular rate of the local level

navigation N Frame relative to the earth fixed E Frame).

ρZN = Vertical (Z axis) component of ρN
 (see Section 4.5 for options).

vN = Velocity vector relative to the earth in N Frame axes.

uZN
N

 = Unit vector along the N Frame Z axis (i.e., upward).

FC
N

 = Curvature matrix in the N Frame.

D2j = Element j in the second row of the CN
E

 matrix.

rl = Local radius of curvature at altitude in North/South (latitude change) direction.

h = Altitude.

RS
′ = Modified distance from earth center to the local earth surface referenced position

location.

e = Earth’s ellipticity (equals 1/298.3).

GRAVITY MODEL 5-23

5.4 GRAVITY MODEL

The standard gravity model utilized in most inertial navigation systems is based on the
generalized model given in Reference 3 - Section 4.4 and Reference 4 - Section 5. Reference 3
shows that for a positive altitude, the gravity components at the actual position location can be
accurately approximated by:

For h ≥ 0:

gr = -
μ

R2
 1 -

3
2

 J2
R0

R

 2
 3 cos2 φ - 1 - 2 J3

R0

R

 3
 cos φ 5 cos2 φ - 3 -

gφ

sin φ
 = 3

μ

R2

R0

R

 2
 J2 cos φ +

1
2

 J3
R0

R
 5 cos2 φ - 1 +

gθ ≈ 0

(5.4-1)

where, with reference to Figures 5.1-1 and 5.2-1 given previously:

gr = Component of gravity along the R direction.

gφ = Component of gravity perpendicular to R in the local meridian plane (positive in

the plus φ direction).

gθ = Component of gravity perpendicular to R and perpendicular to the local meridian
plane.

R = Magnitude of R.

R0 = Earth equatorial radius.

φ = Angle from earth’s positive polar rotation axis to R.

μ = Product of the mass of the earth with the universal gravitational constant. See
Table 5.6-1 for numerical value.

J2, J3, = Small empirical constants that are functions of the mass distribution of the
earth. For a spherical earth of constant density, J2, J3, would be zero.
See Table 5.6-1 for numerical values.

The (gφ / sin φ) format in (5.4-1) is used to avoid singularity problems in subsequent

developments near φ = 0 and φ = π. The R2 and cos φ terms in (5.4-1) are provided by

Equations (5.2.1-5) and (5.2.2-3), using (5.2.1-4) for RS, (5.1-10) for RS
′ and (5.3-16) for

uUpYE.

5-24 EARTH RELATED NAVIGATION PARAMETERS

For negative altitude h (e.g., below sea level or on the earth’s surface in some landlocked
regions such as Death Valley, Nevada, US), the author has no knowledge of any “official”
gravity model in the classical navigation literature. For negative h locations, a reasonable
approximation for gravity can be formulated based on the classical inverse square law gravity
model within a uniform sphere of radius R and constant mass density. Consider a point within
the sphere at distance r from the center. Further, consider the mass of the sphere as being
divided into two parts; Part 1 being the mass at distance r or less from the center of the sphere,
and Part 2 being the mass at distance greater that r from the center. Reference 37 - Chapter 5,
Section 14 shows that the gravity potential produced by the Part 1 mass is the same as if the
Part 1 mass was concentrated at the center of the sphere. Therefore, the gravitational
acceleration produced by the Part 1 mass (i.e., the gradient of the potential) is the same as if the
Part 1 mass was concentrated at the center. If we think of the Part 2 mass as consisting of a
composite of thin spherical shells of increasing radius, Reference 37 - Chapter 5, Section 14
shows that the gravitational potential from each shell is zero at distance r from the center (i.e.,
within each shell). Hence, the gravitational force produced at point r by all the shells (i.e., the
total Part 2 mass) is zero. Thus, the total gravitational acceleration at point r is that resulting
from only the Part 1 mass which, using Newton’s inverse square gravity law, is given by

g = G m / r2 = G ρ
4
3

 π r3 / r2 = G ρ
4
3

 π r in which g is the gravitational acceleration at r, G is

the universal gravitational constant, m is the Part 1 mass, and ρ is the mass density of the
sphere. We see then, that in a constant density sphere, gravity increases linearly with distance
from the center. For earth gravity when h is negative, we can assume that a similar
approximately linear relationship exists, however, to give it accuracy, we also stipulate that the
negative h gravity model will equal the Equation (5.4-1) positive h model for zero h. A gravity
model that meets these criteria is given by:

For h < 0:

gr =
R

RS
 grS

gφ

sin φ
 =

R
RS

gφ

sin φ

S

gθ ≈ 0 (5.4-2)

where

grS,
gφ

sin φ

S

 = Values for gr and
gφ

sin φ
 calculated using Equation (5.4-1) with R set

to RS. The RS value is calculated using Equations (5.2.3-1), (5.1-10)
and (5.2.1-4).

In most inertial navigation systems, gravity components are required along navigation
coordinates that are aligned with the local horizontal and geodetic vertical, i.e., uUp (see Figure
5.2-1 of Section 5.2). Components of gravity along uUp and horizontal North (uNorth in Figure

5.2-1) can be calculated by transforming the gr, gφ components through the ∂l angle (see Figure

GRAVITY MODEL 5-25

5.2-1). Once the North and Up gravity components are calculated, components in the
navigation N Frame (Section 2.2 definition) can be computed by transformation through the
wander angle. The North, Up gravity components are calculated as:

gUp = gr cos ∂l - gφ sin ∂l gNorth = - gφ cos ∂l - gr sin ∂l (5.4-3)

where

gUp = Gravity component along uUp.

gNorth = Gravity component along uNorth.

In terms of parameters previously derived in Section 5.2 and in this section, the previous
expressions are equivalently:

gUp = gr cos ∂l -
gφ

sin φ

sin φ
1 - uUpYE

2

sin ∂l

1 - uUpYE
2

 1 - uUpYE
2

(5.4-4)
gNorth

1 - uUpYE

2
 = -

gφ

sin φ

sin φ

1 - uUpYE

2
 cos ∂l - gr

sin ∂l

1 - uUpYE

2

with the contributing terms provided by Equations (5.4-1), (5.4-2), (5.2.2-5), (5.2.3-5) and

(5.3-16). The
gNorth

1 - uUpYE

2
 format in (5.4-4) will prove useful in avoiding singularities near

uUpYE = ± 1 when calculating the navigation N Frame components of gravity.

5.4.1 PLUMB-BOB GRAVITY

For inertial navigation equations written in locally level geodetic vertical coordinates, gravity
appears in conjunction with an earth rate based centripetal acceleration term. As described in
Section 4.3, the sum of these two terms is called "plumb-bob" gravity because it acts along the
line a plumb-bob would take when stationary relative to the earth at the same position location.
The vector expression for plumb-bob gravity is given by (4.3-15) repeated below without
coordinate frame designation:

gP = g - ωe × ωe × R (5.4.1-1)

where

g = Gravity vector caused by mass attraction as expressed by Equations (5.4-1) and
(5.4-2).

5-26 EARTH RELATED NAVIGATION PARAMETERS

gP = Plumb-bob gravity.

ωe = Earth’s rotation rate vector.

R = Position location vector from earth center (as in Figure 5.2-1 of Section 5.2).

The ωe × ωe × R term in (5.4.1-1) is evaluated as follows. We first note that R can be

defined as the sum of two components, a component in the equatorial plane, and a component

along the earth polar axis. The cross-product of ωe in (5.4.1-1) with the earth polar axis

component of R is zero. Therefore, we can write:

ωe × ωe × R = ωe × ωe × REq (5.4.1-2)

where
REq = Component of R in earth’s equatorial plane.

From Figure 5.2-1 it should be apparent that from the Section 5.0 definition of earth E Frame
coordinates:

REq
E

 = RXE, 0, RZE
T

or with (5.2.2-1) of Section 5.2:

REq
E

 = RS
′ + h uUpXE, 0, uUpZE

T (5.4.1-3)

The E Frame components of the earth rate vector ωe in Equation (5.4.1-2) are from Equation

(4.1.1-4):

ωe
E

 = 0 ωe 0
 T (5.4.1-4)

where

ωe = Magnitude of ωe (See Table 5.6-1 for numerical value).

Substituting (5.4.1-3) and (5.4.1-4) in (5.4.1-2) yields:

ωe × ωe × R = - RS
′ + h ωe

2
 uUpXE, 0, uUpZE

T (5.4.1-5)

The North component of (5.4.1-5) is obtained by taking the E Frame dot product with a unit

north pointing vector (uNorth
E

). The uNorth
E

 vector can be derived as the cross-product between

unit vectors up (uUp
E

) and east (uEast
E

). An analytical expression for uEast
E

 (into the plane of the

GRAVITY MODEL 5-27

paper from Figure 5.2-1) can be derived as the normalized cross-product between a unit vector

along the earth’s polar axis (the Y axis of the E Frame) and uUp
E

. Using Equations (5.1-8) for

the uUp
E

 components and uYE
E

 = (0, 1, 0) T from the E Frame definition in Section 5.0, the result

in the E Frame is:

uEast
E

 =
uYE

E
 × uUp

E

 uYE
E

 × uUp
E

 =

1

uUpZE

2
 + uUpXE

2

uUpZE

0
- uUpXE

 =
1

1 - uUpYE

2

uUpZE

0
- uUpXE

uNorth
E

 =
uUp

E
 × uEast

E

 uUp
E

 × uEast
E

 =

1

1 - uUpYE

2

- uUpXE uUpYE

uUpZE

2
 + uUpXE

2

- uUpZE uUpYE

(5.4.1-6)

=
1

1 - uUpYE

2

- uUpXE uUpYE

1 - uUpYE

2

- uUpZE uUpYE

Using (5.4.1-6) for uNorth
E

, the North component of (5.4.1-5) is then found as:

ωe
E

× ωe
E

 × R
E

 ⋅ uNorth
E

 = -
RS

′
 + h

1 - uUpYE

2
 ωe

2

uUpXE

0

uUpZE

 ⋅

- uUpXE uUpYE

1 - uUpYE

2

- uUpZE uUpYE

=
RS

′ + h

1 - uUpYE

2
 ωe

2
 uUpYE uUpXE

2
 + uUpZE

2
(5.4.1-7)

= RS
′ + h ωe

2
 uUpYE 1 - uUpYE

2

The vertical component of (5.4.1-5) is found from the dot product with uUp
E

:

5-28 EARTH RELATED NAVIGATION PARAMETERS

ωe
E

× ωe
E

 × R
E

 ⋅ uUp
E

 = - RS
′

 + h ωe
2

uUpXE

0

uUpZE

 ⋅
uUpXE

uUpYE

uUpZE

= - RS
′

 + h ωe
2

 uUpXE

2
 + uUpZE

2
 = - RS

′
 + h ωe

2
 1 - uUpYE

2

(5.4.1-8)

After dividing (5.4.1-7) by 1 - uUpYE

2
 and substitution with (5.4.1-8) into (5.4.1-1), the

North and vertical components of plumb-bob gravity gP are obtained below. The East

component is zero.

gPNorth

1 - uUpYE

2
 =

gNorth

1 - uUpYE

2
 - RS

′ + h ωe
2
 uUpYE

(5.4.1-9)

gPUp = gUp + RS
′ + h ωe

2
 1 - uUpYE

2

where

gPNorth, gPUp = North, Up (vertical) components of plumb-bob gravity gP.

gNorth

1 - uUpYE

2

, gUp = Mass attraction gravity terms as calculated in
Equations (5.4-4).

in which RS
′ is calculated with (5.1-10) and uUpYE is given by (5.2.3-1) or (5.3-16).

The navigation N Frame vertical component (Z) of gP equals gPUp because, from its Section

2.2 definition, the N Frame Z axis is along uUp. The horizontal X, Y navigation N Frame

components of gP are obtained by multiplying gPNorth by the sine and cosine of the wander

angle α relating N Frame X, Y axes to horizontal North/East (X, Y) axes:

gPXN = gPNorth sin α gPYN = gPNorth cos α gPZN = gPUp (5.4.1-10)

Substituting (5.3-12) into (5.4.1-10) then yields:

gPXN =
gPNorth

1 - uUpYE

2
 D21 gPYN =

gPNorth

1 - uUpYE

2
 D22

(5.4.1-11)

gPZN = gPUp

GRAVITY MODEL 5-29

The gPUp and
gPNorth

1 - uUpYE

2
 terms in (5.4.1-11) are calculated with Equations (5.4.1-9) using

(5.1-10) for RS
′ and (5.3-16) for uUpYE. Note how the grouping of terms in (5.4.1-11) has

avoided singularities when uUpYE ± 1. As an exercise, the reader is encouraged to trace the

gPNorth

1 - uUpYE

2
 term back to its origin in Equations (5.4-1) and (5.4-2) to verify that no

singularities are encountered in the computation chain. The Table 5.6-1 equation summary (to
follow) would be helpful in this regard.

5.5 SURFACE ALTITUDE RATE TERM ANALYSIS

This section provides a rigorous analytical basis for equating the uZN
N

 ⋅ CE
N

 RS
E

 term in

Equation (4.4.1.2-7) (Section 4.4.1.2) to zero.

Returning to Equations (5.1-9) of Section 5.1, we first write for RS
E

:

RS
E

 = RS
′

uUpXE

1 - e 2 uUpYE

uUpZE

 = RS
′

uUpXE

uUpYE + 1 - e 2 - 1 uUpYE

uUpZE

= RS
′ uUp

E
 + 1 - e 2 - 1 uUpYE uYE

E

(5.5-1)

where

uYE
E

 = Unit vector along E Frame Y axis which, for the E Frame definition in Section

5.0, lies along the earth’s polar axis.

The derivative of (5.5-l) is:

RS
E

 = RS
′
 uUp

E
 + 1 - e 2 - 1 uUpYE uYE

E
 + RS

′ uUp
E

+ (1 - e) 2 - 1 uUpYE uYE
E

(5.5-2)

Multiplying (5.5-2) by CE
N

 obtains:

CE
N

 RS
E

 = RS
′
 uUp

N
 + 1 - e 2 - 1 uUpYE uYE

N

 + RS
′ CE

N
 uUp

E
+ (1 - e) 2 - 1 uUpYE uYE

N
(5.5-3)

5-30 EARTH RELATED NAVIGATION PARAMETERS

Using Equation (4.4.1.1-5) for uUp
E

, applying generalized Equation (3.2.1-8), and

recognizing from (3.2.1-4) that the transpose of a direction cosine matrix equals its inverse, we

find for the CE
N

 uUp
E

 term in (5.5-3):

CE
N

 uUp
E

 = CE
N

 ρE× uUp
E

 = CE
N

 ρE× CE
N T

 CE
N

 uUp
E

 = ρN
 × uUp

N
(5.5-4)

where

ρN
 = Transport rate (the angular rate of Frame N relative to Frame E) as projected on

Frame N axes.

Equation (5.5-3) thereby becomes:

CE
N

 RS
E

 = RS
′
 uUp

N
 + 1 - e 2 - 1 uUpYE uYE

N

 + RS
′ ρN

 × uUp
N

 + (1 - e) 2 - 1 uUpYE uYE
N

(5.5-5)

Taking the dot product of (5.5-5) with uUp
N

 finds:

uUp
N

 ⋅ CE
N

 RS
E

 = RS
′

 + (1 - e)2 - 1 RS
′

 uUpYE + RS
′

 uUpYE uUp
N

 ⋅ uYE
N

(5.5-6)

The RS
′
 term in (5.5-6) can be developed from the derivative of the square of RS

′ in Equation

(5.1-10), rearranged:

1 + uUpYE

2
 1 - e 2 - 1 RS

′ 2
 = R0

2

Taking the derivative finds:

2 uUpYE uUpYE 1 - e 2 - 1 RS
′ 2

 + 2 1 + uUpYE

2
 1 - e 2 - 1 RS

′ RS
′
 = 0

and with rearrangement:

RS
′
 =

- uUpYE uUpYE 1 - e 2 - 1 RS
′

1 + uUpYE

2
 1 - e 2 - 1

(5.5-7)

Using (5.5-7), the RS
′
 uUpYE + RS

′ uUpYE term in (5.5-6) becomes:

SURFACE ALTITUDE RATE TERM ANALYSIS 5-31

RS
′
 uUpYE + RS

′ uUpYE =
RS

′ uUpYE

1 + uUpYE

2
 1 - e 2 - 1

(5.5-8)

Furthermore, from the definition of uUpYE and using (3.1.1-29):

uUp
N

 ⋅ uYE
N

 = uUp
E

 ⋅ uYE
E

 = uUpYE (5.5-9)

Substituting (5.5-8) and (5.5-9) into (5.5-6) then gives:

uUp
N

 ⋅ CE
N

 RS
E

 = RS
′

 +
uUpYE uUpYE 1 - e 2 - 1 RS

′

1 + uUpYE

2
 1 - e 2 - 1

(5.5-10)

With (5.5-7) for RS
′
 and uUp

N
 = uZN

N
 by definition, (5.5-10) becomes:

uZN
N

 ⋅ CE
N

 RS
E

 = 0 (5.5-11)

Equation (5.5-11) provides the analytical justification for equating the uZN
N

 ⋅ CE
N

 RS
E

 term to

zero in Equation (4.4.1.2-7) of Section 4.4.1.2.

5.6 EARTH RELATED NAVIGATION PARAMETER SUMMARY

Table 5.6-1 is a listing of the principal earth related navigation parameter equations from
Chapter 5 that would be utilized in strapdown inertial navigation system software packages.
Table 5.6-1 lists the algorithm function, input parameters, output parameters and equation
number. Definitions for the input/output parameters can be found by cross-referencing through
the Parameter Index in the back of the book. Included in Table 5.6-1 are numerical values for
earth’s shape, gravity and angular rate constants taken from Reference 4, Tables 3.1 and 5.1.
The ellipticity e in Table 5.6-1 is identical to the “flattening” parameter f in Reference 4 as

defined in Reference 4, Section 7.4. The μ and R0 parameters in Table 5.6-1 are identical to the
GM and a parameters in Reference 4, Table 3.1, but converted from metric units using a
conversion factor of 3.280833333 feet per meter. The J2 and J3 coefficients in Table 5.6-1 are
identical to the negative of the C2,0 and C3,0 coefficients in Reference 4 (defined in Reference 4,
Table 5.2). The C2,0 and C3,0 coefficients are calculated from the normalized C2,0 and C3,0

values in Reference 4, Table 5.1 using the formulas in Reference 4, Table 5.2 (i.e.,
C2,0 = 5 C2,0 and C3,0 = 7 C3,0). Thus, J2 and J3 coefficients for Table 5.6-1 were

calculated as J2 = - 5 C2,0 and J3 = - 7 C3,0.

5-32 EARTH RELATED NAVIGATION PARAMETERS

Table 5.6-1 Summary Of Earth Related Navigation Parameter Equations

EQUATION FUNCTION INPUT OUTPUT EQUATION

Earth Shape, Gravity And Angular Rate Constants Reference 4 μ = 1.407635730 E16 Ft3/Sec2.

J2 = 1.082627 E-3,

J3 = -2.5327 E-6,

R0 = 2.0925604 E7 Ft,

ωe = 7.2921150 E-5 Rad/Sec,
e = 1/298.257223563

Earth Polar Axis Component Of Geodetic Vertical
 Unit Vector CN

E uUpYE (5.3-16)

Modified Radial Distance To Earth Surface
 Location

R0, e, uUpYE RS
′ (5.1-10)

Radial Distance To Earth Surface Location RS
′ , e, uUpYE

RS (5.2.1-4)

Radial Distance To Navigation Point R0, RS,

RS
′ , h

R (5.2.1-5)

Cosine Of Range Vector Polar Coordinate Angle uUpYE, e, R,

h, RS
′

cos φ (5.2.2-3)

Modified Sine Of Range Vector Polar Coordinate
 Angle R, h, RS

′ sin φ

1 - uUpYE

2

(5.2.2-5)

Cosine And Modified Sine Of Difference Between
 Geocentric And Geodetic Latitudes R, h, RS

′ ,

e, uUpYE

cos ∂l,

sin ∂l

1 - uUpYE

2

(5.2.3-5)

Local Earth Surface Point Radius Of Curvature In
 Latitude Direction R0, e, RS

′ rls (5.2.4-25)

Local Navigation Point Radius Of Curvature In
 Latitude Direction

rls, h rl (5.2.4-37)

EARTH RELATED NAVIGATION PARAMETER SUMMARY 5-33

EQUATION FUNCTION INPUT OUTPUT EQUATION

N Frame Curvature Matrix rl, CN
E

, h, RS
′ ,

e

FC
N (5.3-18)

Vertical Transport Rate Component Section 4.5
For Options

ρZN
Section 4.5
For Options

Unit Vector Upward In N Frame Definition uZN
N (5.3-18)

N Frame Transport Rate Vector vN, FC,

ρZN, uZN
N

ρN
 = ωEN

N (5.3-17)

Gravity Components In Polar Coordinates μ, R, R0,

cos φ,
J2, J3, ...

gr,
gφ

sin φ
,

gθ

(5.4-1)
&(5.4-2)

North And Vertical Gravity Components
gr,

gφ

sin φ
,

uUpYE, cos ∂l,

sin ∂l

1 - uUpYE

2
,

sin φ

1 - uUpYE

2

gNorth

1 - uUpYE

2
,

gUp

(5.4-4)

North And Vertical Plumb-bob Gravity
 Components

gNorth

1 - uUpYE

2
,

gUp, RS
′ , h,

uUpYE, ωe

gPNorth

1 - uUpYE

2
,

gPUp

(5.4.1-9)

N Frame Plumb-bob Gravity Components gPNorth

1 - uUpYE

2
,

gPUp, CN
E

gP
N (5.4.1-11)

5-34 EARTH RELATED NAVIGATION PARAMETERS

6-1

6 Quasi-Stationary Initialization

6.0 OVERVIEW

The basic computational process in a strapdown inertial navigation system consists of the
integration of attitude, velocity and position rate equations which must first be initialized at the
start of navigation. In many applications, the initialization is performed under “quasi-
stationary” conditions. Quasi-stationary conditions are characterized as having bounded
position and attitude movement such as produced by wind gusts and passenger, fuel, stores
loading for an airplane on the ground with parking brake engaged. The knowledge that quasi-
stationary conditions apply, allows the attitude and velocity initialization process to be
performed autonomously within the inertial navigation system (i.e., without attitude or velocity
inputs) through software operations on the system’s inertial sensor signals. Position
initialization requires external latitude, longitude, altitude (or equivalent) external inputs.

This chapter discusses the principal analytical operations typically implemented for the quasi-
stationary initialization process. This includes initialization of the sensor assembly attitude (B

Frame orientation relative to the L Frame as represented by the CB
L

 matrix or qB
L

 attitude

quaternion), velocity (represented in the N Frame by vN), and the earth referenced position
location (altitude h and angular orientation of the N Frame relative to the E Frame as represented

by the CN
E

 matrix). The primary coordinate frames utilized in this chapter are the E, N, L, Geo

and B Frames defined in Section 2.2, where the E Frame axes are further specified as:

E = Earth fixed coordinate frame having its Y axis along the earth’s polar axis with X
and Z axes in the equatorial plane. The E Frame Z Axis is defined to be parallel
with the intersection of the Greenwich reference meridian plane (contains
Greenwich England) and the equatorial plane.

Other specialized coordinate frames are defined in the sections in which they are applied.

6.1 ATTITUDE (FRAME B TO FRAME L) INITIALIZATION

The basic method used to initialize the CB
L

 direction cosine matrix is based on dynamically

6-2 QUASI-STATIONARY INITIALIZATION

observing and correcting CB
L
 through the components of aSF

N
 calculated by Equations (4.2-1)

and (4.2-3) with (4.1-1) and (4.1.1-1), repeated below for easy reference:

CB
L

 = CB
L

 ωIB
B

× - ωIL
L

× CB
L

ωIL
L

 = CN
L

 ωIE
N

 + ωEN
N

aSF
L

 = CB
L

 aSF
B

aSF
N

 = CL
N

 aSF
L

(6.1-1)

For a quasi-stationary initial alignment, the average value for velocity vN and its derivative

v
N

 will be zero. From the v
N

 expression in (4.3-18), zero average v
N

 and vN corresponds to
the average specific force acceleration aSF being equal to the negative of the local plumb-bob

gravity vector gP. The initialization of CB
L

 is based on aligning the L Frame Z axis with the local

plumb-bob gravity vertical which, as discussed in Section 12.1.1 (following Equation
(12.1.1-8)), is almost exactly along the geodetic vertical. From the previous discussion we see

that this is equivalent to setting CB
L
 such that aSF

L
 as calculated with Equations (6.1-1) lies along

the negative L Frame Z axis (i.e., has zero X, Y horizontal components). This is typically
achieved using a two-step process; Coarse Leveling followed by Fine Alignment.

Coarse Leveling rapidly erects the CB
L

 matrix to an approximate vertical alignment such that

during Fine Alignment, first order approximations can be safely applied for remaining residual

verticality errors. Fine Alignment brings the CB
L

 matrix verticality to an accuracy sufficient to

initiate inertial navigation operations (the “Navigation Mode”). Fine Alignment also determines

the heading of the CB
L

 matrix (relative to true North) which is used to initialize the wander angle

of the CN
E

 matrix or alternatively, to adjust the CB
L

 matrix to a desired initial wander angle setting

(e.g., zero). The following subsections describe Coarse Leveling and Fine Alignment
operations in a quasi-stationary environment.

6.1.1 COARSE LEVELING

Coarse Leveling is a process for rapidly initializing CB
L

 to an approximate vertical L Frame

attitude. As discussed in Section 6.1, the concept is based on the average aSF specific force
acceleration being equal to - gP and the L Frame Z axis being along gP. With the understanding

that gravity acts downward and the definition of the L Frame in Section 2.2, we can then write:

ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-3

uZL = gP / gP (6.1.1-1)

where

uZL = Unit vector along the L Frame Z axis.

gP = Magnitude of gP.

With aSF approximately equal to - gP under quasi-stationary conditions, (6.1.1-1) becomes in

the B Frame:

uZL
B

 ≈ - aSF
B

 / aSF (6.1.1-2)

where

aSF = Magnitude of aSF
B

.

Equations (3.2.1-3) and (3.2.1-6) applied to the B and L Frames shows that:

CB
L

 =

uXL
B T

uYL
B T

uZL
B T

(6.1.1-3)

where

uXL
B

, uYL
B

, uZL
B

 = Unit vectors along the L Frame X, Y, Z axes projected on B Frame

axes.

Thus, with Equation (6.1.1-2) for uZL
B

, we can initialize the third row of CB
L
 as the negative

transpose of the normalized specific force acceleration vector sensed in B Frame body axes by
the strapdown accelerometers. Because Equation (6.1.1-2) is an approximation, this

initialization operation will result in an approximate “leveling” of CB
L

, hence the terminology

“Coarse Leveling”. The actual implementation of Equation (6.1.1-2) typically entails an

averaging of aSF
B

 over a short time period (e.g., one half second). The form of (6.1.1-2) assures

that the resulting third row of CB
L

 represents a unit vector.

Once the third row of CB
L

 is initialized, the setting of rows one and two is somewhat arbitrary,

so long as they properly characterize the direction cosine matrix properties of being unity in
magnitude and orthogonal to each other and row three (i.e., the properties represented by
Equation (6.1.1-3)).

6-4 QUASI-STATIONARY INITIALIZATION

A simple specification for defining the second row of CB
L

 is that the column one component

(i.e., C21 as defined in (4.1-6)) be zero:

C21 = 0 (6.1.1-4)

By this selection we are setting the locally level Y axis of the L Frame to be perpendicular to the
X axis of the B Frame (strapdown sensor assembly axes). The advantage in this approach is
that for initial attitudes of the B Frame (strapdown sensor assembly axes) with Y or Z axes
vertical, C21 under stationary conditions becomes a direct measure of Y or Z angular rate sensor

error during Fine Alignment (and Navigation). For a wander azimuth N Frame implementation
(See Section 4.5 for definition), the angular rate of the N Frame relative to the earth is zero
under stationary translational conditions (as is the L Frame angular rate from its Section 2.2
definition). Therefore, for a stationary attitude (i.e., stationary B Frame orientation relative to the

earth), the CB
L
 matrix should ideally remain constant. Thus, for either the Y or Z axes vertical,

C21 (the cosine of the angle between the L Frame Y and B Frame X axes) should remain at the
(6.1.1-4) initial condition. A C21 value differing from zero equals the integrated angular rate

sensor error since Coarse Leveling completion. This is a useful relationship for measuring
angular rate sensor error in the system test laboratory.

For rows two and three to be perpendicular, their dot product must be zero. From the

definition of the CB
L

 rows in (4.1-6) we then have:

C21 C31 + C22 C32 + C23 C33 = C22 C32 + C23 C33 = 0 (6.1.1-5)

Equation (6.1.1-5) is satisfied by:

C22 = K C33 C23 = - K C32 (6.1.1-6)

where

K = Constant selected to normalize row two (i.e., the sum of the squares of its
elements should be unity).

Equating the sum of the squares of the (6.1.1-4) and (6.1.1-6) expressions to unity, we find for
K to normalize row two:

K =
1

C32
 2

 + C33
 2

 (6.1.1-7)

ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-5

Equations (6.1.1-4) and (6.1.1-6) with (6.1.1-7) for K then yields for the initial value of row
two:

C21 = 0 C22 = C33 / C32
 2

 + C33
 2

 C23 = - C32 / C32
 2

 + C33
 2

(6.1.1-8)

Initialization of row one is trivial once rows two and three are computed. The rows of CB
L

being mutually perpendicular (from (6.1.1-3)) allows row one to be calculated as the cross-
product between rows two and three:

C11 = C22 C33 - C23 C32

C12 = C23 C31 - C21 C33

C13 = C21 C32 - C22 C31

(6.1.1-9)

The above procedure for leveling the CB
L

 matrix works as long as the B Frame X axis is not

vertical. For the X axis vertical, the B Frame Y and Z axes are perpendicular to the L Frame Z
axis, hence, the magnitudes of C32 and C33 are both zero. Then Equations (6.1.1-8) become
indeterminate because both the numerator and denominator of the C22 and C23 expressions
become zero. For the B Frame X axis near vertical, a different set of logic must be used. For
example, a C31 greater than 0.85 condition can be applied to signal the need for a revised set of
Coarse Leveling initialization logic (C31 equal to one corresponds to the B Frame X axis being

parallel to the L Frame vertical Z axis). For the alternate logic, C23 can be set to zero (rather
than C21 as in (6.1.1-4)) and we proceed as before:

C23 = 0

C21 C31 + C22 C32 + C23 C32 = C21 C31 + C22 C32 = 0
(6.1.1-10)

C21 = K C32 C22 = - K C31 (6.1.1-11)

Row two thereby becomes:

C21 = C32 / C31
 2

 + C32
 2

 C22 = - C31 / C31
 2

 + C32
 2

 C23 = 0 (6.1.1-12)

Equation (6.1.1-9) can be used as before to evaluate the row one components.

It should be noted that for the B Frame X axis vertical (for which C31 is greater than 0.85 so
that (6.1.1-12) is used for row two initialization), C23 becomes a direct measure of integrated B
Frame X axis angular rate sensor error since Coarse Leveling completion (i.e., movement of the
computed B Frame Z axis relative to the L Frame Y axis). This was the motivation for
specifying C23 = 0 for C31 greater than 0.85.

6-6 QUASI-STATIONARY INITIALIZATION

6.1.2 FINE ALIGNMENT

The quasi-stationary Fine Alignment process is designed to precision level the CB
L

 matrix in

the presence of quasi-stationary disturbances sensed by the strapdown inertial sensors.
Additionally, Fine Alignment estimates horizontal earth rate components along N Frame axes

which are used at Fine Alignment completion to initialize the CB
L

 heading (azimuth) orientation

(or, alternatively, the wander angle in the CN
E

 matrix).

Fine Alignment is an iterative estimation/filtering process based on observing the double

integral of transformed accelerometer measured specific force aSF
N

 calculated from Equations

(6.1-1), thereby deducing and correcting residual errors in CB
L
 verticality while simultaneously

estimating horizontal earth rate. Using the quasi-stationary assumptions defined in Section 6.0
and a wander azimuth L Frame for Fine Alignment (See Section 4.5 for definition), Equations
(6.1-1) for the Fine Alignment process can be simplified and expanded to:

CB
L

 = CB
L

 ωIB
B

× - ωIL
L

× CB
L

ωIL
L

 = CN
L

 ωIE
N

vH
N

 = aSFH

N
 = CL

N
 CB

L

 H
 aSF

B

ΔRH
N

 = vH
N

(6.1.2-1)

where

H = Subscript designation for horizontal components of the associated vector.

vN = Velocity relative to the earth.

ΔRN = Position divergence defined as position movement from the average position
location during the quasi-stationary Fine Alignment process.

The vH
N

 expression in Equations (6.1.2-1) is an approximation to the horizontal component of

Equation (4.3-18). It is based on the quasi-stationary assumption of zero average velocity and

the approximation that gP is vertical, hence, gP
N

 horizontal components are approximately zero.

The ωIL
L

 expression in Equations (6.1.2-1) has been simplified from its (6.1-1) form based on

the use of a wander azimuth L Frame, hence, zero vertical ωEL
L

 component, and the quasi-

ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-7

stationary zero average velocity assumption, thus, zero average transport rate (horizontal ωEL
L

component).

Equations (6.1.2-1) are integrated during Fine Alignment to calculate horizontal position

divergence ΔRH
N

 which is used as a measure of the tilt (verticality error) in the CB
L

 matrix. From

Equations (6.1.2-1), tilt in CB
L

 is produced by Fine Alignment initialization error (at Coarse

Leveling completion), uncertainty in the ωIE
N

 earth rate vector input to the CB
L

 rate equation

(through ωIL
L

), and inertial sensor output noise present on the ωIB
B

, aSF
B

 inputs. Note that

systematic errors in ωIB
B

, aSF
B

 will also produce ΔRH
N

 position divergence, however, the Fine

Alignment concept is based on ignoring these as negligible (by inertial component

design/selection). As a result, residual systematic errors in ωIB
B

, aSF
B

 will generate an error in

the CB
L

 initialization process which is deemed acceptable.

Based on the previous discussion, Fine Alignment can be analytically defined as the process

of using ΔRH
N

 in recursive iterative fashion to estimate and correct tilt (verticality error) in CB
L

while simultaneously estimating and correcting uncertainties in the earth rate vector ωIE
N

 input to

the CB
L

 rate equation. Correcting ωIE
N

 earth rate uncertainties during Fine Alignment process is

important for two reasons; 1. Initial uncertainties in ωIE
N

 are too large to enable an accurate

leveling of CB
L

, and 2. The estimated horizontal components of ωIE
N

 are used for determining the

L Frame heading attitude relative to the earth (through CN
E

 initialization or adjustment of CB
L

 as

discussed in Section 6.2) which completes the CB
L

 initialization process.

Equations (6.1.2-1) are now expanded into the form utilized during Fine Alignment for CB
L

tilt correction and ωIE
N

 estimation. For this expansion we equate ωIE
N

 to the sum of its vertical

and horizontal components, the vertical component equaling earth rate magnitude times the
cosine of the angle between the local vertical and earth’s rotation axis (i.e., uUpYE in Section

5.2.3 which, by Equation (5.2.3-1), equals the sine of geodetic latitude). The expanded form of
(6.1.2-1) then is:

6-8 QUASI-STATIONARY INITIALIZATION

CB
L

 = CB
L

 ωIB
B

× - ωIL
L

× CB
L

ωIL
L

 = CN
L

 ωIE
N

 + ωTilt
N

ωTilt
N

 = K2 uZN
N

 × ΔRH
N

ωIE
N

 = ωIEH

N
 + uZN

N
 ωe sin l (6.1.2-2)

ωIEH

N
 = K1 uZN

N
 × ΔRH

N

vH
N

 = CL
N

 CB
L

 H
 aSF

B
 - K3 ΔRH

N

ΔRH
N

 = vH
N

 - K4 ΔRH
N

where

uZN
N

 = Unit vector along the N Frame vertical axis (Z), projected on N Frame axes.

K1, K2, K3, K4 = Fine Alignment process estimation feedback control gains.

ωTilt
N

 = Angular rate feedback to correct CB
L
 tilt.

ωe = Earth rate magnitude.

l = Geodetic latitude (assumed to be available as an error free input).

The uZN
N

 cross-product operations in Equations (6.1.2-2) have been introduced as a

mathematical method for generating L Frame rotation corrections (ωTilt
N

 and ωIEH

N
) that are

ninety degrees rotated about the vertical from ΔRH
N

. It can be verified from geometrical

reasoning that this is the proper phasing for corrections to L Frame tilt that generated ΔRH
N

.

The Fine Alignment process consists of integrating Equations (6.1.2-2) until ΔRH
N

 reaches an

acceptable quasi-stationary equilibrium. At Fine Alignment completion CB
L
 will thereby be

accurately leveled and ωIEH

N
 accurately estimated. Additionally, the horizontal quasi-stationary

velocity and position vectors vH
N

 and ΔRH
N

 will become accurate representations of the true

quasi-stationary environmental motion. The initial value for CB
L

 at Fine Alignment initiation is

its value at Coarse Leveling completion. The Fine Alignment initial value for horizontal earth

ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-9

rate ωIEH

N
 is zero (i.e., complete uncertainty). The horizontal velocity vH

N
 and position

divergence ΔRH
N

 are also initialized at zero as a best guess (because their actual value is

unknown). The K1, K2, K3, K4 feedback control gains are typically calculated based on
Kalman filter theory (See Sections 15.2.1 and 15.2.1.1) which produces time varying gain
profiles that are functions of the statistical properties of the Equations (6.1.2-2) computational
parameter initial uncertainties, inertial sensor noise, and random disturbance environment
characteristics. (Technically, the K1 - K4 gains in Equations (6.1.2-2) are continuous form
representations of the actual digital discrete Kalman filter gains - See Equation (15.1.2.1-28) for
the discrete gain matrix analytical representation. See Equation (15.1.5.3.2-14) of Section
15.1.5.3.2 for the analytical representation of the continuous form Kalman gain matrix).

We note in passing that the purpose for adding the vH
N

 and ΔRH
N

 integrations in Equations

(6.1.2-2) as part of the Fine Alignment process is to provide filtering of disturbance and sensor
noise in the “forward loop” prior to application of the feedback control gains. From a Kalman

filter design standpoint, use of ΔRH
N

 allows the “measurement” noise to be modeled as an easily

defined quasi-stationary position disturbance (See Section 15.2.1.2).

6.1.3 REMOVAL OF RESIDUAL TILT EFFECTS AT FINE
ALIGNMENT COMPLETION

The quasi-stationary Fine Alignment process described in Section 6.1.2 is based on aligning
the N (and L) Frame vertical (Z) axis along the plumb-bob gravity vector direction. As
discussed in Section 6.1.2, this is a very good approximation to aligning the N Frame Z along
the local geodetic vertical (i.e., perpendicular to the local earth reference ellipsoid surface), the
proper orientation according to the N frame definition in Section 2.2. The approximation was
realized by neglecting the horizontal components of gravity in the Equations (6.1.2-1) -

(6.1.2-2) vH
N

 expression (compared with the correct Equation (4.3-18) horizontal component for

vH
N

 that includes gP
N

 gravity). It is important to realize that including the horizontal component

of gP
N

 in Equations (6.1.2-1) - (6.1.2-2) is not possible because the components of gravity are

not known in the N Frame at Fine Alignment initiation. This is due to the fact that gravity is
modeled along local North, East, Up axes (see Section 5.4) and cannot be transformed to the N
Frame until the N Frame heading relative to the earth has been determined at Fine Alignment
completion (from the estimated horizontal earth rate components). At completion of Fine

Alignment, however, the N Frame heading is known, hence, gP
N

 can be calculated, and an

6-10 QUASI-STATIONARY INITIALIZATION

adjustment can be computed and applied to CB
L

 verticality and to the ωIEH

N
 earth rate estimate to

correct for deletion of gP
N

 during the Fine Alignment process.

To correct CB
L

 we need to rotate the L Frame so that the new Z axis orientation lines up with

the geodetic vertical. Analytically this can be expressed as:

CB
L2 = CN2

L2 CN1

N2 CL1

N1 CB
L1 (6.1.3-1)

where

L1, N1 = Frame L and N orientations at completion of Fine Alignment.

L2, N2 = Frame L and N orientations after application of the verticality correction.
Frames L2 and N2 are the and L and N Frames to be used for inertial
navigation following the initial alignment mode.

CN1

N2 = Direction cosine matrix that transforms vectors from Frame N1 to

Frame N2.

CB
L1, CB

L2 = CB
L
 at completion of Fine Alignment (1) and after application of the

verticality correction (2).

CN
L

, CL
N

 = Direction cosine matrices that transform vectors from the N to the L and

from the L to the N Frames (CN
L

 is defined in Equation (4.1.1-2)).

CN2

L2 , CL1

N1 = CN
L

, CL
N

 at completion of Fine Alignment (1) and after application of the

verticality correction (2).

From the Section 2.2 definition for the L and N Frames, they are fixed relative to one another,

hence, CN2

L2 = CN
L

 and CL1

N1 = CL
N

, and (6.1.3-1) becomes:

CB
L2 = CN

L
 CN1

N2 CL
N

 CB
L1 (6.1.3-2)

The CN1

N2 matrix in (6.1.3-2) relates the N Frames before and after the verticality correction.

Before the correction, by virtue of the Fine Alignment process, the vertical Z axis of the N1
Frame becomes aligned to the negative of gP. After the verticality correction, the gP

components in Frame N2 should equal the true gP
N

 components. The gP components in Frames

N1 and N2 are related by CN2

N1, the transpose of CN1

N2 in (6.1.3-2). Analytically:

ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-11

gP
N1 = - gP uZN

N
gP

N2 = gP
N

gP
N1 = CN2

N1 gP
N2 (6.1.3-3)

where
gP = Magnitude of gP.

or in combination:

- gP uZN
N

 = CN2

N1 gP
N

(6.1.3-4)

Equation (6.1.3-4) can be solved for CN2

N1 if we base the solution on the rotation vector

associated with CN2

N1 having minimum magnitude. Generalized Equations (3.2.1.1-1),

(3.2.1.1-22) and (3.2.1.1-26) with (3.1.1-12) and (3.1.1-13) show that the solution is given by:

CN2

N1 = I + E× +
1

1 + D
 E× 2

(6.1.3-5)

with

E = -
1

gP
 gP

N
 × uZN

N
D = -

1
gP

 gP
N

 ⋅ uZN
N

(6.1.3-6)

The CN1

N2 matrix in (6.1.3-2) is the transpose of (6.1.3-5), or since the transpose of a cross-

product operator equals its negative:

CN1

N2 = I - E× +
1

1 + D
 E× 2

(6.1.3-7)

The gP
N

 vector in (6.1.3-6) is computed with Equations (5.4.1-9) and (5.2.3-1) and the fact

that the Fine Alignment calculated horizontal earth rate component ωIEH

N
 lies (approximately)

North:

gP
N

 = CGeo
N

 gP
Geo

 ≈ CGeo
N1 gP

Geo

CGeo
N1 =

cos α1 sin α1 0

- sin α1 cos α1 0

0 0 1

 gP
Geo

 =

0

gPNorth

1 - uUpYE

2
 cos l

gPUp

(6.1.3-8)

(Continued)

6-12 QUASI-STATIONARY INITIALIZATION

uNorth
N1 = ωIEH/1

N1
 / ωIEH/1

cos α1 = uNorth
N1 ⋅ uYN1

N1 sin α1 = uNorth
N1 ⋅ uXN1

N1

(6.1.3-8)
(Continued)

where

Geo = Local geographic North, East, Up coordinates as defined in Section 2.2.

CGeo

N
, CGeo

N1 = Direction cosine matrices that transform vectors from the Geo Frame to

the N Frame and from the Geo Frame to the N1 Frame.

l = Geodetic latitude.

uUpYE = Projection of a geodetic vertical unit vector on the earth’s polar axis.

α1 = Wander angle between the N1 Frame Y axis and North.

gPNorth, gPUp = North, Up components of gP.
gPNorth

1 - uUpYE

2
 and gPUp are calculated

with Equations (5.4.1-9).

ωIEH/1

N1 = Horizontal component of the ωIE earth rate vector along the N1 Frame

horizontal projected on N1 Frame axes (i.e., the ωIE determined at Fine
Alignment completion prior to application of the verticality correction).

ωIEH/1 = Magnitude of ωIEH/1

N1 .

uNorth
N1 = Unit vector in the North direction as determined in the N1 Frame

using ωIEH/1

N1 .

uXN1

N1 , uYN1

N1 = Unit vectors along N1 Frame X, Y axes, projected on the N1 Frame.

At completion of Fine Alignment, the CB
L

 matrix is corrected for verticality error by applying

Equation (6.1.3-2) with (6.1.3-6) - (6.1.3-8). Note that Equation (6.1.3-7) can be simplified by

taking advantage of the smallness of E that permits the E× 2
 term to be neglected. This

approximation is not recommended by the author on grounds of preserving the

orthogonality/normality characteristics of CB
L

 to precision in applications when the

enhancements presented in this section are warranted.

ATTITUDE (FRAME B TO FRAME L) INITIALIZATION 6-13

The estimated horizontal earth rate ωIEH/1

N1 can also be corrected at Fine Alignment

completion by transformation of ωIEH/1

N1 into the revised verticality corrected N Frame. Using

the (6.1.2-2) ωIE
N

 format finds:

ωIEH/2

N2 = CN1

N2 ωIEH/1

N1 + uZN1

N1 ωIEZN/1

 H
(6.1.3-9)

where

H = Designator for horizontal components which equal the X, Y components of the
parameter in [] brackets.

ωIEH/2

N2 = Horizontal component of the ωIE earth rate vector along the N2 Frame

horizontal projected on N2 Frame axes (i.e., the ωIE determined at Fine
Alignment completion after application of the verticality correction).

ωIEZN/1 = Component of ωIE along the Z axis of Frame N1.

uZN1

N1 = Unit vector along the Z axis of the N1 Frame as viewed in the N1 Frame.

Based on the smallness of E, we can approximate CN1

N2 in (6.1.3-7) as:

CN1

N2 ≈ I - E× (6.1.3-10)

Substituting (6.1.3-10) into (6.1.3-9) then obtains after expansion:

ωIEH/2

N2 = I - E× ωIEH/1

N1 + uZN1

N1 ωIEZN/1

H

 = ωIEH/1

N1 + uZN1

N1 ωIEZN/1

 H
 - E× ωIEH/1

N1

 H
 - E× uZN1

N1 ωIEZN/1

 H

(6.1.3-11)

From (6.1.3-6) we see that E is perpendicular to uZN
N

, hence, has no Z component. Therefore,

since ωIEH/1

N1 has no Z component, E× ωIEH/1

N1 has no X, Y components, and the

E× ωIEH/1

N1

 H
 term in (6.1.3-11) is zero. Because uZN1

N1 has only a Z component (i.e., no X, Y

components), uZN1

N1 ωIEZN/1

 H
 in (6.1.3-11) is also zero. Additionally, because uZN1

N1 has only

a Z component, E× uZN1

N1 has only X, Y components. Thus, the horizontal H designation on

6-14 QUASI-STATIONARY INITIALIZATION

E× uZN1

N1 ωIEZN/1

 H
 in (6.1.3-11) is redundant and can be removed. Making these

substitutions in (6.1.3-11) then yields the correction equation for ωIEH/1

N1 :

ωIEH/2

N2 = ωIEH/1

N1 - E× uZN1

N1 ωIEZN/1 (6.1.3-12)

with E provided by (6.1.3-6).

6.2 NAVIGATION FRAME INITIALIZATION (FRAME N TO FRAME E)

As discussed in Section 6.1.2, initialization of the L Frame azimuth (i.e., angular orientation
around the local vertical) relative to the earth E Frame at Fine Alignment completion is based on

application of ωIEH

N
 generated during Fine Alignment. For a strapdown inertial navigation

system, L Frame azimuth initialization can be accomplished in either of two ways; wander angle

setting in the CN
E

 matrix, or direct azimuth adjustment of the CB
L

 matrix. Both methods are

discussed below.

6.2.1 INITIALIZATION OF N FRAME BY WANDER ANGLE SETTING
IN THE FRAME N TO E MATRIX

Initialization of the CN
E

 matrix at Fine Alignment completion is equivalent to initialization of

latitude, longitude and wander angle (as should be apparent from the CN
E

 components in

Equations (4.4.2.1-2)). Latitude and longitude are provided as inputs to the inertial navigation
system. Initial setting of the wander angle is based on assuring that the resulting N Frame

attitude is consistent with the initial CB
L

 matrix setting. In this section we will assume that the

initial value for CB
L

 is its value at completion of the Equations (6.1.2-2) Fine Alignment

dynamic process, and following the Section 6.1.3 tilt adjustment. For a quasi-stationary

initialization, the wander angle setting that is consistent with this CB
L

 value is determined from

the horizontal earth rate estimate ωIEH

N
 generated during Fine Alignment (including the

(6.1.3-12) adjustment if applied).

Application of ωIEH

N
 to CN

E
 initialization is based on recognition that the earth rotation vector

is fixed in the E Frame, and for the particular E Frame definition in Section 6.0, lies along the E
Frame Y axis. We can, therefore, write:

NAVIGATION FRAME INITIALIZATION (FRAME N TO FRAME E) 6-15

ωIE
N

 = uYE
N

 ωe (6.2.1-1)

or

uYE
N

 =
1

ωe

 ωIE
N

(6.2.1-2)

where

uYE
N

 = Unit vector along the E Frame Y axis as projected on N Frame axes.

From generalized Equations (3.2.1-3) and (3.2.1-6) we know that:

CN
E T

 = uXE
N

uYE
N

uZE
N (6.2.1-3)

where

uXE
N

, uYE
N

, uZE
N

 = Unit vectors along E Frame X, Y, Z axes as projected on N Frame

axes.

From Equations (6.2.1-2) and (6.2.1-3) we see that the second row of the CN
E

 matrix (the

second column of CN
E T

) equals the normalized earth rate vector. If we now substitute the ωIE
N

expression from Equations (6.1.2-2) into (6.2.1-2) we find that the second row of CN
E

 is:

D21

D22

D23

 = uYE
N

 =
1

ωe

 ωIEH

N
 + uZN

N
 sin l (6.2.1-4)

Equation (6.2.1-4) is the basis for initialization of the second row of CN
E

 following a quasi-

stationary Fine Alignment in which ωIEH

N
 has been estimated. Because of residual errors in

ωIEH

N
 at Fine Alignment completion, direct use of ωIEH

N
 in Equation (6.2.1-4) would generate a

second CN
E

 row that was not unity in magnitude (i.e., had normalization error). In order to

assure a normalized second row, an alternative form of (6.2.1-4) is used based on the dot

product of (6.2.1-4) with itself being one, while recognizing that ωIEH

N
 is perpendicular to uZN

N

and the magnitude of uZN
N

 is one:

1 =
1

ωe

 ωIEH

N
 + uZN

N
 sin l ⋅ 1

ωe

 ωIEH

N
 + uZN

N
 sin l =

ωIEH

2

ωe
2

 + sin2l =
ωIEH

2

ωe
2

 + 1 - cos2l

6-16 QUASI-STATIONARY INITIALIZATION

hence,
ωIEH

2

ωe
2

 = cos2l or ωe =
ωIEH

cos l
(6.2.1-5)

where

ωIEH = Magnitude of ωIEH

N
.

Substituting for ωe in (6.2.1-4) then yields:

D21

D22

D23

 = uYE
N

 =
cos l

ωIEH

 ωIEH

N
 + uZN

N
 sin l (6.2.1-6)

Once the second row of CN
E

 has been determined from (6.2.1-6) with input latitude (l) and

ωIEH

N
, Equations (4.4.2.1-2) are applied to extract the sine and cosine of the wander angle:

sin α = D21 / cos l cos α = D22 / cos l (6.2.1-7)

Row one of CN
E

 is then initialized with (6.2.1-7), input latitude (l) and longitude (L):

D11 = cos L cos α - sin L sin l sin α
D12 = - cos L sin α - sin L sin l cos α

D13 = sin L cos l
(6.2.1-8)

Equations (4.4.2.1-2) can also be used to initialize the third row of CN
E

, or alternatively, the

third row can be obtained (as in Equation (4.4.1.1-4)) as the cross-product between rows one
and two:

D31 = D12 D23 - D13 D22

D32 = D13 D21 - D11 D23

D33 = D11 D22 - D12 D21

(6.2.1-9)

6.2.2 INITIALIZATION OF N FRAME BY DIRECT B TO L FRAME
MATRIX MODIFICATION

In this section we will assume that the initial value of CB
L

 is modified in azimuth from its

NAVIGATION FRAME INITIALIZATION (FRAME N TO FRAME E) 6-17

value at completion of the Equations (6.1.2-2) dynamic alignment process, following the

Section 6.1.3 tilt adjustment. For a quasi-stationary initialization, the CB
L

 azimuth angle

modification is selected to realign the L Frame to be parallel with local geographic axes so that
the L Frame X axis is North, Y axis is East and Z axis remains Down. The N Frame attitude

relative to the L Frame is fixed (by the Section 2.2 definition) so that after the CB
L

 adjustment,

the N Frame X axis will be horizontal East, the Y axis horizontal North with the Z axis Up. As
such, based on definition of the wander angle (between the N Frame Y axis and North), the

wander angle will be zero after the CB
L

 azimuth modification. The horizontal earth rate estimate

ωIEH

N
 generated during Fine Alignment is used to calculate the CB

L
 azimuth modification angle.

We now analytically define the CB
L

 modification process as:

CB
L+

 = CN+
L+

 CN
N+

 CL
N

 CB
L

(6.2.2-1)

where

CB
L

 = Value at Fine Alignment completion, following the Section 6.1.3 tilt adjustment.

L+, N+ = L and N Frames following the CB
L
 azimuth modification.

CB
L+

 = CB
L
 value following the azimuth angle modification.

The CB
L+

 matrix then becomes the initial value for CB
L

 at the start of the Navigation Mode.

The N and L Frames maintain their relative attitude after the CB
L

 azimuth modification, hence,

the CN+
L+

 matrix in (6.2.2-1) is simply:

CN+
L+

 = CL
N

(6.2.2-2)

The CN
N+

 matrix in (6.2.2-1) is obtained using the Equations (3.2.1-3) and (3.2.1-6) generalized

formulas:

CN
N+ T

 = uXN+
N

uYN+
N

uZN+
N (6.2.2-3)

where

uXN+
N

, uYN+
N

, uZN+
N

 = Unit vectors along the N+ Frame X, Y, Z axes as projected on

N Frame axes.

6-18 QUASI-STATIONARY INITIALIZATION

Following CB
L

 modification, the N+ Frame Y axis will be horizontal North, hence, will lie

along the horizontal component of the earth rate vector. Therefore, uYN+
N

 equals the normalized

value of ωIEH

N
 or:

uYN+
N

 =
1

ωIEH

 ωIEH

N
(6.2.2-4)

Because the CB
L

 modification is an azimuth angle change (i.e., about the local vertical), uZN+
N

 in

(6.2.2-3) is:

uZN+
N

 = uZN
N

(6.2.2-5)

The uXN+
N

 unit vector is then calculated from the cross-product between uYN+
N

 and uZN+
N

 to

complete the orthogonal N+ Frame axis unit vector triad:

uXN+
N

 = uYN+
N

 × uZN+
N

(6.2.2-6)

Application of Equation (6.2.2-1) with (6.2.2-2) - (6.2.2-6) reorients the L and N Frames so
that the New N Frame Y axis (and L Frame X axis) points North. Consequently, the associated

wander angle is zero, and initialization of the CN
E

 matrix using Equations (4.4.2.1-2) becomes:

CN
E

 =
cos L - sin L sin l sin L cos l

0 cos l sin l
- sin L - cos L sin l cos L cos l

 (6.2.2-7)

6.3 VELOCITY INITIALIZATION

Under quasi-stationary conditions, the velocity vector vN at Navigation Mode entry can be

initialized to zero. Alternatively, and more accurately, the horizontal vN components can be

initialized by setting them to vH
N

 at Fine Alignment completion as calculated in the Equations

(6.1.2-2) dynamic process. A more accurate initialization of the vN vertical component can be
realized by implementation of the vertical control loop channel (defined in Equations
(4.4.1.2.1-1) - (4.4.1.2.1-3)) during Fine Alignment. At completion of Fine Alignment, the
vertical velocity so calculated (as well as the evc3 integral controller value) would be used as

initial Navigation Mode values for these parameters. If this approach is taken, the Equation
(4.4.1.2.1-1) vertical channel angular rate cross product terms with horizontal velocity would

VELOCITY INITIALIZATION 6-19

typically be excluded during Fine Alignment as negligible, and to avoid coupling horizontal
velocity error transients into vertical velocity. Initialization of the Equations (4.4.1.2.1-1) -
(4.4.1.2.1-3) vertical channel at the start of Fine Alignment would then typically entail setting
vertical velocity to zero, the evc3 integral controller to zero, and altitude h to the pressure altitude

input hPrsr . In order to accelerate vertical channel convergence during Fine Alignment, a faster
set of control gains (C1, C2, C3) can be applied with the hPrsr input signal clamped at its starting
value to eliminate hPrsr noise inputs.

6.4 ALTITUDE INITIALIZATION

Altitude is typically initialized for the Navigation Mode at input altitude. If a vertical channel
control loop is used during inertial navigation (as discussed in Section 6.3), altitude can be
initialized for the Navigation Mode at the value calculated by Equations (4.4.1.2.1-1) -
(4.4.1.2.1-3) at Fine Alignment completion.

6-20 QUASI-STATIONARY INITIALIZATION

7-1

7

Strapdown Inertial Navigation
Digital Integration Algorithms

7.0 OVERVIEW

The basic functions executed in a strapdown INS computer are the integration of INS angular
rate sensor data into attitude (denoted as “attitude integration”), use of the attitude data to
transform INS accelerometer data from sensor coordinates (the B Frame) into navigation
coordinates (the N Frame), integration of the N Frame acceleration into velocity (denoted as
“velocity integration”), and integration of the N Frame velocity into position (denoted as
“position integration”). Chapters 4 and 6 described these basic software functions in the form
of continuous differential equations. Time-wise integration of the differential equations in the
classical sense would provide continuous measurements of INS attitude, velocity and position
location. In an actual INS, the integration functions are executed with digital algorithms
operating at a specified repetition rate. This chapter uses a comprehensive design process to
develop strapdown digital integration algorithms based on the Chapter 4 differential equations.
The derived algorithms are designed to generate the identical solution at their update times as
would a continuous integration of the Chapter 4 equations. The material presented emphasizes a
rigorous analytical formulation and the use of exact closed-form equations, when possible, for
ease in computer software documentation/validation (which is also consistent with modern day
flight computer technology). Included in the algorithm design process is a rigorous treatment of
methods for accounting for navigation coordinate frame rotation during the integration update
time periods. An abbreviated version of this chapter was published in 1998 as References 34
and 35.

From a historical perspective, since the basic strapdown inertial navigation concept was
originally formulated in the 1950’s, strapdown analysts have primarily focused on the design of
algorithms for the attitude integration function. Invariably, the design approaches were driven
by the capabilities and limitations of contemporary flight computer technology. In the late
1950’s and in the 1960’s, two approaches were pursued by strapdown analysts (in various
organizations) for the angular rate into attitude integration function (References 9, 20, 23, 39,
and 40); high speed attitude updating (e.g., 10 - 20 KHz) using first order digital algorithms,
and lower speed (e.g., 50 - 100 Hz) attitude updating using higher order algorithms. The high
speed approach was promoted as a means for accurately accounting for high frequency angular
rate components that can rectify (i.e., in the electronics sense of an oscillating signal rectifying
into a constant signal), producing a systematic three-dimensional attitude change. However,
computer technology of that time period was only capable of executing simplified first order

7-2 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

equations of limited accuracy for the attitude updating algorithms. In contrast, the higher order
algorithm proponents touted improved analytical accuracy compared to first order algorithms;
however, the improved accuracy was degraded due to the associated increase in executable
operations per attitude update cycle, hence a slower attitude update rate to satisfy contemporary
computer throughput limitations. Tradeoffs between the two approaches were clouded by the
emergence of the attitude quaternion as the “preferred approach” for the analytical form of the
computed attitude parameter (versus the traditional direction cosine matrix attitude
representation). For the algorithms investigated during that time period, the quaternion showed
improved accuracy in high frequency angular rate environments.

In 1966, the writer proposed a new “two-speed” approach for the attitude integration function
(Reference 29) by which the attitude updating operation was divided into two parts; a simple
high speed first order algorithm portion coupled with a more complex moderate speed higher
order algorithm portion whose input was provided by the high speed algorithm. The simplified
high speed algorithm accounted for small amplitude high frequency angular oscillations within
the attitude update cycle that can rectify into systematic attitude build-up (traditionally denoted as
“coning”). The moderate speed higher order algorithm accurately accounted for larger
amplitude angular motion over the moderate speed update cycle time period. Taken together,
the combined accuracy of the two-speed approach was equivalent to operating the higher order
algorithm at the high speed rate (for improved accuracy), however, due to the simplicity of the
high speed algorithm, the combined computer throughput requirement was no greater than for
original high speed first order attitude updating algorithms. The utility of the Reference 29 two
speed algorithm design approach was limited by its basic analytical formulation as a Picard type
recursive integration (Reference 19a) of the continuous form attitude rate differential equation in
which both the moderate and high speed algorithms were generated simultaneously. The
complexity of the analytical recursive integration design process limited expansion of the higher
order moderate speed algorithm (to only second order in Reference 29 which was considered
acceptable at that time period).

In an unrelated design activity, Jordan (Reference 14) in 1969 suggested a two-speed
approach for the strapdown attitude updating function in which the analytical formulation at the
onset was based on two separately defined calculations; a moderate speed classical closed-form
(“exact”) higher order attitude updating algorithm based on input attitude change, and a
simplified high speed second order integration algorithm that measured the attitude change input
for the moderate speed algorithm. In 1971, Bortz (Reference 2) extended the Jordan concept to
have the high speed calculation based on a differential equation that, when integrated, measures
the exact attitude change input to the exact attitude updating algorithm. The exact moderate
speed attitude algorithm can be structured to any specified order of accuracy by truncation of
two trigonometric coefficients. In practice, simplified forms of the Bortz attitude change
differential equation have been used for the high speed function. References 2 and 14 thereby
provided a more general form of the two-speed attitude updating approach in which the
moderate speed higher order algorithm and high speed simplified algorithm can be
independently tailored to meet particular application requirements (Interestingly, Reference 2
proposed an analog implementation for a simplified version of the high speed algorithm). A

OVERVIEW 7-3

secondary benefit derived from the Reference 2 and 14 two-speed approach (proposed using
direction cosines for the exact moderate speed attitude update operation) is that the moderate
speed portion can also be formulated with an analytically exact closed-form quaternion updating
algorithm using the identical high speed input applied for direction cosine updating. Thus, the
new two-speed approach has equal accuracy for either direction cosine or quaternion updating,
both of which derive from analytically exact closed-form equations (assuming that Taylor series
expansion for trigonometric coefficients is carried out to comparable accuracy order).

Many modern day strapdown inertial navigation systems utilize attitude updating algorithms
based on a two speed approach. The repetition rate for the moderate speed algorithm portion
(e.g., 50 - 200 Hz) is typically designed, based on maximum angular rate considerations, to
minimize power series truncation error effects in the moderate and high speed algorithms. The
repetition rate for the high speed algorithm (e.g., 1 - 4 KHz for an aircraft INS with 1 nautical-
mile-per-hour 50 percentile radial position error rate) is designed, based on the anticipated
strapdown inertial sensor assembly vibration environment, to accurately account for vibration
induced coning effects. Continuing two-speed attitude algorithm development work has
centered on variations for the high speed integration function. Originally conceived as a simple
first order algorithm (Reference 29), today’s high speed attitude algorithms have taken
advantage of increased throughput capabilities in modern day computers and become higher
order for improved accuracy (References 11, 12, 33, and 34). While the attitude updating
function has been evolving to its current form, very little parallel work has been published on
the development of the companion strapdown INS algorithms for acceleration
transformation/integration into velocity and velocity integration into position.

The acceleration transformation algorithm must account for attitude rotation during the
acceleration transformation/velocity update period. In some applications, this is achieved using
a centering algorithm (Reference 19) in which attitude data for the acceleration transformation is
updated at the center of the time interval used for integrated B Frame acceleration increment
accumulation (thereby introducing a staggered attitude-update/velocity-update integration
architecture). A variation of this approach updates the attitude at twice the velocity update rate,
with the attitude solution between velocity updates used for transformation of the integrated B
Frame acceleration increment measured over the velocity update cycle. A two-speed approach
can also be used for acceleration-transformation/velocity-integration in a dynamic environment
that parallels the two-speed attitude integration approach (References 13, 33 and 35). The high
speed portion of the algorithm is designed to account for high frequency angular and linear
oscillations that can rectify into systematic velocity build-up (traditionally denoted as
“sculling”); the low speed portion of the algorithm performs the acceleration transformation
based on inputs from the high speed algorithm. In general, however, the acceleration-
transformation/velocity-integration algorithms have lacked the analytical sophistication of the
attitude integration algorithms, being typically limited to first order accuracy under maneuvering
conditions.

Virtually no specialized work has been reported for the inertial navigation position integration
function. From the writer’s understanding, modern day strapdown inertial navigation systems

7-4 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

typically generate position as a simple trapezoidal integration of velocity at an update rate equal
to or lower than the velocity update frequency. For applications requiring precise position
change data in a dynamic environment (e.g., synthetic aperture radar motion compensation),
such a rudimentary approach to position integration may prove inadequate. For high resolution
applications, the position integration algorithm can also be structured using a two-speed format
that is directly analogous to the two-speed attitude/velocity integration algorithm approach. The
rectified dynamic angular-rate/acceleration effect measured by the high speed position algorithm
has been coined “scrolling” (by the writer) analogous to “coning” and “sculling” measured by
the high speed attitude/velocity algorithms.

Section 7.1 of this chapter develops the classical two-speed attitude integration algorithm
using a generic exact equation for the high speed portion, and describes a particular version of
the high speed portion to illustrate the design of one of the classical high speed second order
coning computation algorithms. Section 7.2 utilizes the Section 7.1 attitude algorithm
formulation as a model to formulate two-speed acceleration-transformation/velocity-integration
algorithms. Section 7.3 then uses Section 7.2 as a framework for the development of position
updating algorithms in two forms; a traditional form based on trapezoidal integration and a two-
speed high resolution version that includes the scrolling portion. Section 7.4 provides a general
discussion of the process followed in selecting algorithms for a particular application and
establishing their execution rates. A tabular reference summary of the attitude/velocity/position
integration algorithms is presented in Section 7.5.

It should also be noted that Chapter 19 (Section 19.1) describes a new unified two-speed
strapdown position/velocity algorithm approach that was originated by the author following the
original publication of this book in 2000. The velocity/position translation vectors utilized in the
unified approach are calculated at high speed and provide velocity/position change increments to
the low speed navigation algorithms of this section.

In retrospect, it is important to recognize that while the original intent of the two-speed
approach was to overcome throughput limitations of early computer technology (1965-1975),
that limitation is rapidly becoming insignificant with continuing rapid advances in modern high-
speed computer technology. This provides the motivation to return to a simpler single speed
algorithm structure in which all computations are executed at a repetition rate that is sufficiently
high to accurately account for multi-axis high frequency angular rate and acceleration
rectification effects. The two-speed algorithms described in this chapter are compatible with
compression into such a single speed format as explained in the particular sections in which the
algorithms are formulated.

The principal coordinate frames utilized in this chapter are the B, L, N, E and I Frames
defined in Section 2.2. Specialized versions of these frames are also defined separately in the
particular sections that they are applied.

ATTITUDE UPDATE ALGORITHMS 7-5

7.1 ATTITUDE UPDATE ALGORITHMS

Algorithms for the attitude integration process are developed in Section 7.1.1 for direction
cosine attitude parameters and in Section 7.1.2 for attitude quaternion parameters.

7.1.1 ATTITUDE DIRECTION COSINE MATRIX (B TO L) UPDATE ALGORITHMS

The digital updating algorithm for the CB
L

 direction cosine matrix should ideally achieve the

same numerical result at the attitude update times as would the formal continuous integration of

the Equations (4.1-1) CB
L

 expression at the same time instant. In this sense, the numerical

history of a continuous integral of (4.1-1) can be viewed as the design requirement for the

equivalent digital CB
L

 updating algorithm under the same input angular rate profile (ωIB
B

 and ωIL
L

in Equation (4.1-1)). The CB
L

 algorithm is constructed by envisioning the body (B) and local

level (L) Frame attitude histories in the digital updating world as being constructed of successive
discrete attitudes relative to non-rotating inertial space (I) at each update time instant. To be

completely general, we also allow that CB
L

 updating operations for L Frame angular motion may

not necessarily occur at the same time instant that CB
L

 is updated for B Frame motion (e.g., for a

multi-rate digital computation rate loop structure in which CB
L

 is updated at a higher rate for B

Frame rotation than for L Frame rotation. In the interests of minimizing computer throughput
requirements, the software architecture might have L Frame updates occurring 5 -10 times
slower than B Frame updates). We adopt special nomenclature to describe the coordinate frame
attitude history where:

BI(m) = Discrete attitude of the B Frame in non-rotating inertial space (I) at computer
update time tm.

m = Computer cycle index for B Frame motion updates to CB
L

.

LI(n) = Discrete attitude of the L Frame in non-rotating inertial space (I) at computer
update time tn.

n = Computer cycle index for L Frame motion updates to CB
L

.

With these definitions, the general updating algorithm for CB
L

 is constructed as follows using

the Equation (3.2.1-5) direction cosine matrix product chain rule:

CBI(m)

LI(n-1) = CBI(m-1)

LI(n-1) CBI(m)

BI(m-1)

CBI(m)

LI(n) = CLI(n-1)

LI(n) CBI(m)

LI(n-1)
(7.1.1-1)

7-6 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

where

CBI(m-1)

LI(n-1) = CB
L

 relating the B Frame at time tm-1 to the L Frame at time tn-1.

CBI(m)

LI(n) = CB
L

 relating the B Frame at time tm to the L Frame at time tn.

CBI(m)

BI(m-1) = Direction cosine matrix that accounts for B Frame rotation relative to inertial

space from its attitude at time tm-1 to its attitude at time tm.

CLI(n-1)

LI(n) = Direction cosine matrix that accounts for L Frame rotation relative to inertial

space from its attitude at time tn-1 to its attitude at time tn.

The algorithm described by Equations (7.1.1-1) relates body (B) and local-level (L) frame
attitudes at separate times and provides for B and L Frame inertial angular motion updates to

CB
L

 at different update rates. Unlike the B Frame (which can be rotating dynamically at 200 -

300 degrees per second), the inertial angular rotation rate of the local level L Frame is generally
small and equal to earth’s rotation rate plus L Frame angular rate relative to the earth (“transport
rate” which is typically never larger than a few earth rates). Consequently, the L Frame update
can generally be performed at a lower rate than the B Frame update with comparable accuracy.

The B and L Frame motion updates to CB
L

 are performed by the CBI(m)

BI(m-1) and CLI(n-1)

LI(n) terms in

Equation (7.1.1-1), algorithms for which are derived in the following subsections.

7.1.1.1 BODY (B) FRAME ROTATION UPDATE

The first expression in Equations (7.1.1-1) updates the CB
L

 attitude direction cosine matrix

using CBI(m)

BI(m-1) as follows to account for angular rotation of the strapdown sensor (body) B

Frame relative to non-rotating space ωIB
B

:

CBI(m)

LI(n-1) = CBI(m-1)

LI(n-1) CBI(m)

BI(m-1) (7.1.1.1-1)

with, formally:

CBI(m)

BI(m-1) = I + CB(t)
BI(m-1)

 dt
tm - 1

tm

(7.1.1.1-2)

and where

I = Identity matrix.

ATTITUDE UPDATE ALGORITHMS 7-7

CB(t)
BI(m-1) = Direction cosine matrix relating the B Frame attitude at an arbitrary time in

the interval tm-1 to tm, to its BI(m-1) attitude.

The CBI(m)

BI(m-1) matrix can also be expressed in terms of a rotation vector defining the Frame

BI(m) attitude relative to Frame BI(m-1). Applying Equations (3.2.2.1-8) and (3.2.2.1-9)
obtains:

CBI(m)

BI(m-1) = I +
sin φm

φm

 φm× +
(1 - cos φm)

φm
2

 φm× φm×

sin φm

φm

 = 1 -
φm

2

3 !
 +

φm
4

5 !
 -

(1 - cos φm)

φm
2

 =
1

2 !
 -

φm
2

4 !
 +

φm
4

6 !
 -

(7.1.1.1-3)

where

φm = Rotation vector defining the Frame BI(m) attitude relative to Frame BI(m-1) at
time tm.

φm = Magnitude of φm.

The φm rotation vector can be computed by treating φ as a general rotation vector defining the

general B Frame attitude relative to Frame BI(m-1) for time greater than tm-1. Then φ is

calculated as the integral from time tm-1 of the general φ equation, with φ for Equation

(7.1.1.1-3) evaluated as the integral solution at time tm. Treating Frame BI(m-1) for φ definition

as the non-rotating inertial reference frame (I), we obtain the following for the general φ
expression by application of Equation (3.3.5-14) with general Frame A replaced by inertial
Frame I for angular rate description:

φ = ωIB
B

 +
1
2

 φ × ωIB
B

 +
1

φ2
 1 -

φ sin φ

2 1-cos φ
 φ × φ × ωIB

B
(7.1.1.1-4)

where

φ = Rotation vector defining the general attitude of Frame B relative to Frame BI(m-1)
for time greater than tm-1.

ωIB
B

 = Angular rotation rate of Frame B relative to inertial space as described in Frame
B axes.

7-8 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Equation (7.1.1.1-4), commonly referred to as the Bortz equation (See Section 7.0), relates the
change in body B Frame attitude to the B Frame angular rate (as would be measured by

strapdown angular rate sensors). The attitude rotation vector φm for Equation (7.1.1.1-3) is then

obtained as the integral of (7.1.1.1-4) from time tm-1, evaluated at time tm:

φ(t) = φ(τ) dτ
tm - 1

t

φm = φ(tm) (7.1.1.1-5)

where

τ = Running integration time variable.

To reduce the number of computations involved in calculating φ with Equation (7.1.1.1-4),

simplifying assumptions are typically incorporated. For example, through a power series

expansion, the scalar multiplier of the φ × φ × ωIB
B

 term in (7.1.1.1-4) can be approximated as:

1

φ2
 1 -

φ sin φ

2 (1 - cos φ)
 =

1
12

 1 +
1
60

 φ2
 + ≈

1
12

(7.1.1.1-6)

hence, Equation (7.1.1.1-4)) to second order in φ is given by

φ ≈ ωIB
B

 +
1
2

 φ × ωIB
B

 +
1

12
 φ × φ × ωIB

B
(7.1.1.1-7)

Through simulation and analysis (analytical expansion under hypothesized analytically definable

angular motion conditions) it can be shown that to second order accuracy in φ:

1
2

 φ × ωIB
B

 +
1

12
 φ × φ × ωIB

B
 ≈ 1

2
 α × ωIB

B
(7.1.1.1-8)

with

α(t) = ωIB
B

 dτ
tm- 1

t

(7.1.1.1-9)

where

α(t) = Integral of ωIB
B

 from time tm-1 to time t.

Equation (7.1.1.1-8) is extremely significant because it enables Equation (7.1.1.1-4) to be

simplified to second order accuracy (i.e., in error to third order in φ) by retaining only first order

terms. Thus, Equation (7.1.1.1-4) becomes to second order accuracy:

ATTITUDE UPDATE ALGORITHMS 7-9

φ ≈ ωIB
B

 +
1
2

 α × ωIB
B

(7.1.1.1-10)

With (7.1.1.1-10), Equation (7.1.1.1-5) is given by:

φm = ωIB
B

 +
1
2

 α t × ωIB
B

 dt
tm- 1

tm

 (7.1.1.1-11)

Finally, using Equation (7.1.1.1-9) we obtain:

φm = αm + βm (7.1.1.1-12)

with

α t = ωIB
B

 dτ
tm- 1

t

 αm = α tm

 βm =
1
2

 α t × ωIB
B

 dt
tm- 1

tm
(7.1.1.1-13)

where

βm = Coning attitude motion from tm-1 to tm .

The βm term has been coined the “coning” term because it measures the effect of “coning

motion” components present in ωIB
B

. “Coning motion” is defined as the condition when an

angular rate vector is itself rotating. For ωIB
B

 exhibiting pure coning motion (the ωIB
B

 magnitude

being constant but the vector rotating) a fixed axis in the B Frame that is approximately

perpendicular to the plane of the rotating ωIB
B

 vector will generate a conical surface as the angular

rate motion ensues (hence, the term “coning” to describe the motion). Under coning angular

motion conditions, B Frame axes perpendicular to ωIB
B

 appear to oscillate (in contrast with non-

coning or “spinning” angular motion in which axes perpendicular to ωIB
B

 rotate around ωIB
B

).

For situations when ωIB
B

 is not rotating (i.e., parallel to a stationary non-rotating line) it is

easily seen from Equation (7.1.1.1-13) that α t will be parallel to ωIB
B

, hence, the cross-product

in the βm integrand will be zero and βm will be zero. Under these conditions, Equation

(7.1.1.1-11) reduces to the simplified form:

7-10 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

φm = ωIB
B

 dt
tm- 1

tm

 When ωIB
B

 Is Not Rotating (7.1.1.1-14)

It should be noted that Equation (7.1.1.1-14) also applies to the exact φm Equations (7.1.1.1-4) -

(7.1.1.1-5) (i.e., without approximation). This is readily verified by observing from Equation

(7.1.1.1-4) that φ(t) will initially be aligned with ωIB
B

 as the φ(t) integration begins, and will

then remain parallel to ωIB
B

 because its cross-products with ωIB
B

 in the φ(t) expression will

remain zero. Under these conditions, Equations (7.1.1.1-4) - (7.1.1.1-5) also reduce to
(7.1.1.1-14).

7.1.1.1.1 Integrated Rate And Coning Computation Algorithms

A discrete digital algorithm form of the αm integrated rate and βm coning expressions in

Equations (7.1.1.1-13) can be developed by considering βm to be the value at t = tm of the

general function β(t) . From (7.1.1.1-13):

 β(t) =
1
2

 α(τ) × ωIB
B

 dτ
tm - 1

t

(7.1.1.1.1-1)

Let us consider the integration of (7.1.1.1.1-1) as divided into portions up to and after a general
time tl-1 within the tm-1 to tm interval so that (7.1.1.1.1-1) is equivalently:

β(t) = βl-1 + Δβ(t) Δβ t =
1
2

 α(τ) × ωIB
B

 dτ
tl- 1

t

 (7.1.1.1.1-2)

with

βm = β(tm) (7.1.1.1.1-3)

where

βl-1 = Value of β(t) at t = tl-1.

l = Computer cycle index for t = tl cycle times. Note that by its definition, the l cycle
index is faster than the m cycle index.

We now define the next l cycle time point tl to be within the tm-1 to tm interval so that at tl
Equations (7.1.1.1.1-2) and (7.1.1.1.1-3), including initial conditions, become:

ATTITUDE UPDATE ALGORITHMS 7-11

βl = βl-1 + Δβl βm = βl(tl = tm) βl = 0 At t = tm-1

 Δβl =
1
2

 α t × ωIB
B

 dt
tl- 1

tl

(7.1.1.1.1-4)

Through a similar process, the α(t) expression for (7.1.1.1.1-4) (and αm for (7.1.1.1-12)) is

obtained by manipulation of α(t) in Equations (7.1.1.1-13):

α(t) = αl-1 + Δα(t)

Δα t = ωIB
B

 dτ
tl- 1

t

 Δαl = ωIB
B

 dt
tl- 1

tl

(7.1.1.1.1-5)

αl = αl-1 + Δαl αm = αl(tl = tm) αl = 0 At t = tm-1.

Equations (7.1.1.1.1-4) and (7.1.1.1.1-5) constitute the construct of a digital recursive

algorithm at the l computer cycle rate for calculating the βm coning term as a summation of

changes in β over the tm-1 to tm interval. It remains to determine a digital equivalent for the Δβl

integral term in (7.1.1.1.1-4).

We begin by substituting α(t) from (7.1.1.1.1-5) into (7.1.1.1.1-4) for Δβl and incorporate

the definition of Δα l from (7.1.1.1.1-5). The result is:

Δβl =
1
2

 α l-1 × Δα l +
1
2

 Δα(t) × ωIB
B

 dt
tl- 1

tl

(7.1.1.1.1-6)

Continuing work in attitude algorithm development has centered on the design of digital

algorithms for evaluating the Δβl integral term in coning Equation (7.1.1.1.1-6). In general, the

methods utilized assume a general analytical form for the angular rate profile ωIB
B

 in the tl-1 to tl

time interval (e.g., a truncated general polynomial in time). The (7.1.1.1.1-6) integral is then
analytically determined as a function of the general rate profile coefficients (e.g., the polynomial
coefficients). Finally, the coefficients for the angular rate profile are calculated to fit successive
integrated angular rate increment measurements. For the example that follows, the angular rate
profile is approximated as a constant plus a linear build-up in time with the constant and

ramping coefficients calculated from the current and previous values of Δα l. A more

sophisticated version of this algorithm might include a parabolic-with-time term in the assumed

angular rate profile, utilizing the current, past, and past-past values of Δα l for coefficient

7-12 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

determination. Recent work in this area (References 11 and 12), calculates the angular rate
profile coefficients from angular rate sensor measurements taken within the tl-1 to tl time

interval, thereby incorporating a third computation cycle rate into the overall attitude update

process architecture: attitude (CB
L

) update, coning (βl) update (as discussed thus far), and sensor

sampling for the coning update. Refinements on this technique (References 11 and 12) utilize a
general angular rate profile that is defined directly in terms of its impact on the Equation
(7.1.1.1.1-6) integral as a sum of weighted cross-products between successive integrated
angular rate increment sensor samples taken during the tl-1 to tl time interval (similar to the

approach presented in Reference 22 over the tm-1 to tm interval). The weighting coefficients are

then “optimized” for best average performance in a pure coning environment (i.e., ωIB
B

 constant

in magnitude but rotating). Each of the design approaches is based on curve fitting techniques
for an assumed angular rate profile shape. Each resulting algorithm behaves differently in rate
environments for which it was not designed and in the presence of angular rate sensor
quantization noise. Selection of the “preferred” algorithm should include simulation analysis to
confirm acceptable performance under operational rate environments and sensor noise
characteristics.

We conclude this section by providing an example of an algorithm for the Equation

(7.1.1.1.1-6) integral term based on the body rate term ωIB
B being approximated to first order by

the truncated power series expansion:

ωIB
B

 ≈ A + B t - t l-1 (7.1.1.1.1-7)

where

A and B = Constants.

With (7.1.1.1.1-7) the Δα(t) expression in (7.1.1.1.1-5) becomes:

Δα(t) = ωIB
B

 dτ
t l-1

t

 = A t - t l-1 +
1
2

 B t - t l-1
 2 (7.1.1.1.1-8)

Substituting (7.1.1.1.1-8) into the integral term in Δβl Equation (7.1.1.1.1-6) then yields:

ATTITUDE UPDATE ALGORITHMS 7-13

1
2

 Δα t × ωIB
B

 dt
tl- 1

tl

 =
1
2

 A t - t l-1 +
1
2

 B t - t l-1
 2 × A + B t - t l-1 dt

tl- 1

tl

 =
1
2

 A × A t - t l-1 + A × B t - t l-1
 2

tl- 1

tl

(7.1.1.1.1-9)

+
1
2

 B × A t - t l-1
 2 +

1
2

 B × B t - t l-1
 3 dt

Noting that A × A = 0, B × B = 0 and A × B = - B × A allows (7.1.1.1.1-9) to simplify to:

1
2

 Δα(t) × ωIB
B

 dt
tl- 1

tl

 =
1
2

 A × B t - t l-1
 2 -

1
2

 A × B t - t l-1
 2 dt

tl- 1

tl

=
1
4

 A × B t - t l-1
 2 dt

tl- 1

tl

 =
1
12

 A × B Tl
 3

(7.1.1.1.1-10)

where

Tl = Time interval t l - t l-1 (i.e., the l cycle computation period).

The A and B terms in (7.1.1.1.1-10) can be expressed as functions of past and current Δα
values as follows. From (7.1.1.1.1-8) we have:

Δαl = ωIB
B

 dt
tl- 1

tl

 = A tl - t l-1 +
1
2

 B tl - t l-1
 2 = A Tl +

1
2

 B Tl
 2 (7.1.1.1.1-11)

and for the previous cycle, still using (7.1.1.1.1-7) for ωIB
B

:

Δαl-1 = ωIB
B

 dt
tl- 2

tl- 1

 = A tl-1 - t l-2 -
1
2

 B tl-2 - t l-1
 2 = A Tl -

1
2

 B Tl
 2 (7.1.1.1.1-12)

in which it has been assumed that the computer l cycle period is fixed so that t l - t l-1 also
equals t l-1 - t l-2.

Equations (7.1.1.1.1-11) and (7.1.1.1.1-12) when added and differenced yields the following:

Δαl + Δαl-1 = 2 A Tl Δαl - Δαl-1 = B Tl
 2

(7.1.1.1.1-13)

7-14 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Rearrangement of Equations (7.1.1.1.1-13) shows that:

A =
1

2 Tl
 Δαl + Δαl-1 B =

1

Tl
 2

 Δαl - Δαl-1 (7.1.1.1.1-14)

Substituting Equation (7.1.1.1.1-14) into (7.1.1.1.1-10) and noting that Δα l × Δα l = 0 and

Δα l-1 × Δα l-1 = 0 gives:

1
2

 Δα (t) × ωIB
B

 dt
tl- 1

tl

 =
1

12

1
2 Tl

 Δα l + Δα l-1 ×
1

Tl
 2

 Δα l - Δα l-1 Tl
 3

=
1

12

1
2

 - Δα l × Δα l-1 + Δα l-1 × Δα l =
1
12

 Δα l-1 × Δα l

(7.1.1.1.1-15)

Substituting (7.1.1.1.1-15) into (7.1.1.1.1-6) then finally obtains:

Δβl =
1
2

 αl-1 +
1
6

 Δαl-1 × Δαl (7.1.1.1.1-16)

The overall digital algorithm for αm and βm in Equation (7.1.1.1-12) is determined from the

above results as a composite of Equations (7.1.1.1.1-4), (7.1.1.1.1-5) and (7.1.1.1.1-16):

Δαl = dα
t l-1

t l

Summation Of Integrated Angular Rate Output

Increments From Angular Rate Sensors.

αl = αl-1 + Δαl αm = αl(tl = tm) αl = 0 At t = tm-1

(7.1.1.1.1-17)

__

Δβl =
1
2

 αl-1 +
1
6

 Δαl-1 × Δαl

βl = βl-1 + Δβl βm = βl(tl = tm) βl = 0 At t = tm-1

(7.1.1.1.1-18)

where

dα = ωIB
B

 dt = Differential integrated angular rate increment (i.e., analytical
representation of pulse output from strapdown angular rate sensors).

Equation (7.1.1.1.1-18) has been classified as a “second order algorithm” for βm because it

includes current and past cycle Δα products in the Δβl equation. From the analysis leading to

Equation (7.1.1.1.1-15), the l and l-1 Δα product term in Δβl (i.e., the 1 / 6 term) stems from

the approximation of linearly ramping angular rate in the tl-2 to tl time interval. If the angular
rate was approximated as a parabolically varying function of time, a “third order algorithm”

ATTITUDE UPDATE ALGORITHMS 7-15

would result containing l, l-1, and l-2 Δα products. If the angular rate was approximated as a

constant over tl-1 to tl, the 1 / 6 term for Δβl in (7.1.1.1.1-18) would vanish, resulting in a “first

order algorithm” for βm. Finally, if angular rates are slowly varying we can approximate βm as

being equal to zero. Alternatively (and more accurately), we can set the l cycle rate equal to the

m cycle rate which equates βm in Equations (7.1.1.1.1-18) to Δβl calculated once at time tm

(and noting from the initial condition definition in (7.1.1.1.1-17) that αl-1 would be zero). Note,

that setting the l and m rates equal can also be achieved by increasing the m rate to match the l
rate. The result would be a single high speed higher order algorithm with a simpler software
architecture than the two-speed approach, but requiring more throughput. Continuing advances
in the speed of modern day computers may make this the preferred approach for the future.

7.1.1.2 LOCAL LEVEL (L) FRAME ROTATION UPDATE

The remaining part of the CB
L

 attitude direction cosine matrix update accounts for the ω I L
L

rotation rate of the local-level coordinate L Frame relative to non-rotating inertial space. The L
Frame update is given by Equation (7.1.1-1) as follows:

CBI(m)

LI(n) = CLI(n-1)

LI(n) CBI(m)

LI(n-1) (7.1.1.2-1)

The CLI(n-1)

LI(n) term in Equation (7.1.1.2-1) relates the local-level L Frame at time tn-1 to the L

Frame at time tn. A derivation that directly parallels that used to determine CBI(m)

BI(m-1) in Section

7.1.1.1 follows for CLI(n-1)

LI(n) .

The formal definition for CLI(n-1)

LI(n) is:

CLI(n-1)

LI(n) = I + CLI(n-1)

L(t)
 dt

tn -1

tn

(7.1.1.2-2)

where

CLI(n-1)

L(t)
 = Direction cosine matrix relating the L Frame attitude at an arbitrary time t in

the interval tn-1 to tn, to its LI(n-1) attitude.

The CLI(n-1)

LI(n) matrix can also be expressed in terms of the rotation vector defining the Frame

LI(n) attitude relative to Frame LI(n-1). Applying Equations (3.2.2.1-8) and (3.2.2.1-9) obtains:

7-16 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

CLI(n-1)

LI(n) = I -
sin ζn

ζn

 ζn× +
(1 - cos ζn)

ζn
2

 ζn× ζn×

sin ζn

ζn

 = 1 -
ζn

2

3 !
 +

ζn
4

5 !
 -

(1 - cos ζn)

ζn
2

 =
1

2 !
 -

ζn
2

4 !
 +

ζn
4

6 !
 -

(7.1.1.2-3)

where

ζn = Rotation vector defining the Frame LI(n) attitude at time tn relative to Frame
LI(n-1) attitude at time tn-1.

ζn = Magnitude of ζn.

Note in Equation (7.1.1.2-3) that the sign for the
sin ζn

ζn

 ζn× term is negative in contrast with

the similar term in the Equation (7.1.1.1-3) CBI(m)

BI(m-1) expression. This is because the CLI(n-1)

LI(n)

matrix has the opposite phase sense from CBI(m)

BI(m-1) (or CB
A

 in (3.2.2.1-8)) in that CLI(n-1)

LI(n)

transforms vectors from LI(n-1) to LI(n) while CBI(m)

BI(m-1) transforms vectors from BI(m) to

BI(m-1). As such, the CLI(n-1)

LI(n) form in Equation (7.1.1.2-3) is the transpose of the Equation

(7.1.1.1-3) CBI(m)

BI(m-1) expression form.

Because the tn-1 to tn update cycle is relatively short, ζn will be very small in magnitude.

Since ωIL
L

 is small and slowly changing over a typical tn-1 to tn update cycle (due to small

changes in velocity and position over this time period) the L frame rate vector ω I L
L

 can be

approximated as non-rotating. The result is that ζn for (7.1.1.2-3) can be calculated as the

integral of the simplified form of the Equation (3.3.5-14) rotation vector rate equation in which
the cross-product terms are neglected:

ζn ≈ ω I L
L

 dt
tn-1

tn

(7.1.1.2-4)

We note in passing that based on the smallness of ζn as discussed above, Equations

(7.1.1.2-3) for CLI(n-1)

LI(n) can also be simplified. For example, a second order version (accurate to

second order in ζn) is from (7.1.1.2-3):

ATTITUDE UPDATE ALGORITHMS 7-17

CLI(n-1)

LI(n) ≈ I - ζn× +
1
2

 ζn× ζn× (7.1.1.2-5)

The computer memory/throughput advantages of utilizing a simplified form of (7.1.1.2-3) for

CLI(n-1)

LI(n) (such as (7.1.1.2-5)) are trivial for today’s modern computer technology compared to

the disadvantages of increased software validation/documentation complexity and loss in
accuracy. The accuracy loss is generally minor during navigation, however, it might not be

negligible during initial alignment operations when the CLI(n-1)

LI(n) matrix is used to apply tilt

updates to CB
L
 (e.g., see Section 6.1.2). Initial tilt corrections to CB

L
 can be fairly large (e.g., 0.1

to 1.0 deg) which can produce undesirable errors in CB
L

 during the initial alignment process if

too simplified a version of (7.1.1.2-3) is utilized. The closed-loop servo action of the Section
6.1.2 initial alignment operations would eventually correct the resulting attitude error generated

in CB
L

, however, it could leave a residual orthogonality/normality error in the CB
L
 rows (and

columns). The result would be the requirement to include an orthogonality/normalization

correction algorithm (See Section 7.1.1.3) as an outer loop in the CB
L

 update processing.

7.1.1.2.1 Integrated Rate Algorithm

A discrete digital algorithm for the Equation (7.1.1.2-4) ζn integral can be constructed by first

combining Equations (4.1.1-1) and (4.1.1-6) to obtain for the integrand:

ωIL
L

 = CN
L

 ωIE
N

 + ρZN uZN
N

 + FC
N

 uZN
N

 × vN (7.1.1.2.1-1)

and then approximating:

ωIL
L

 ≈ CN
L

 ωIEn-1/2

N
 + ρZNn-1/2 uZN

N
 + FCn-1/2

N
 uZN

N
 × vN (7.1.1.2.1-2)

where

n-1/2 = Subscript indicating value for parameter midway between times tn-1 and tn.

Using (7.1.1.2.1-2) in (7.1.1.2-4) then obtains:

ζn ≈ CN
L

 ωIEn-1/2

N
 Tn + ρZNn-1/2 uZN

N
 Tn + FCn-1/2

N
 uZN

N
 × ΔRm

N∑
j

(7.1.1.2.1-3)

with ωIE
N

 evaluated using Equation (4.1.1-3) and:

7-18 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

ΔRm
N

 ≡ vN

tm - 1

tm

 dt (7.1.1.2.1-4)

where

Tn = Computer n cycle update period tn - tn-1.

j = Number of computer m cycles over the tn-1 to tn n cycle computer update period.

The n-1/2 terms in (7.1.1.2.1-3) are all functions of position, which is updated in Section 7.3

at the n cycle rate preceding the attitude update. Hence, current and past n cycle values of the ()
parameters are available for calculating the n-1/2 terms in (7.1.1.2.1-3). For example, a linear

interpolation formula using the current and past computed values for would be:

 n-1/2 ≈
1
2

 n + n-1 (7.1.1.2.1-5)

In Section 7.2 we find that the vN velocity update precedes the attitude update. Therefore,

current and past m cycle values of vN are available for evaluating the Equation (7.1.1.2.1-4)

integral for ΔRn
N

. Using a trapezoidal integration algorithm for (7.1.1.2.1-4) obtains:

ΔRm
N

 ≈
1
2

 vm
N

 + vm-1
N

 Tm (7.1.1.2.1-6)

where

Tm = Computer m cycle update period tm - tm-1.

Section 7.3 also develops a high resolution version of ΔRm
N

 for precision position updating that

accounts for dynamic angular rates and accelerations within the m-1 to m cycle update interval.

7.1.1.3 ATTITUDE DIRECTION COSINE MATRIX (B TO L) NORMALIZATION
AND ORTHOGONALIZATION CORRECTIONS

In addition to the basic CB
L

 update algorithms given previously, a normalization and

orthogonalization algorithm is frequently included to insure that the CB
L

 rows remain normal and

orthogonal to each other. Factors that cause orthogonality and normalization errors in the CB
L

updating algorithms include orthogonality/normality CB
L

 initialization errors, software

programming error, round-off error due to insufficient computer word-length for the total

ATTITUDE UPDATE ALGORITHMS 7-19

number of CB
L

 algorithm update cycles expected, and an insufficient number of terms carried in

the Equation (7.1.1.1-3) and (7.1.1.2-3) Taylor series expansions. It is important to note (as
discussed in Section 3.5.1) that orthogonality and normalization errors can only be produced
from errors in the software implementation of Equations (7.1.1-1), (7.1.1.1-3) and (7.1.1.2-3);
not from errors in the algorithms feeding these equations or from inertial sensor input errors.

The overall CB
L

 update software design/verification process must assure error free software

programming and that the Taylor series truncation error, algorithm update rates selected, and
computer round-off error is acceptable for the angular rate environment anticipated over the
expected navigation time period (as discussed in more detail in Chapters 10 and 11). Never-the-

less, inclusion of a CB
L

 orthogonality/normality correction algorithm has been traditionally

employed in most strapdown software packages for enhanced accuracy and to relax the more

stringent requirement of not allowing any orthogonality/normalization error in the basic CB
L

updating operations.

The orthogonality/normality correction algorithm for the CB
L

 direction cosine matrix is

developed in this section based on maintaining the rows of CB
L
 unity in magnitude and

perpendicular to each other. Orthogonalizing and normalizing the rows of CB
L

 also achieves the

same result for the CB
L
 columns as demonstrated by Equation (3.5.1-18) of Section 3.5.1.

Equations (3.5.1-9) and (3.5.1-15) show that the orthogonality/normality error in CB
L

 can be

calculated from:

ESYM =
1
2

 CB
L

 CB
L T

 - I (7.1.1.3-1)

where

 = Designation for parameter calculated in the INS computer, hence, containing error.

The same parameter without the designation will be considered in this section to
be the idealized error free value.

ESYM = Error in the rows of CB
L
 characterized by symmetry about the CB

L
 diagonal.

ESYM is a symmetric matrix. The ESYM off-diagonal element in row i,

column j equals half the perpendicularity error between rows i and j of CB
L

(positive for CB
L
 rows i and j being less than 90 degrees apart). The ESYM ith

diagonal element equals the normality error (error in magnitude) of CB
L

 row i.

7-20 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Based on the above definitions and generalized Equations (3.5.1-13) and (3.5.1-15), the

normality error in row i of CB
L

 can be expressed as:

δC i = εii C i (7.1.1.3-2)

where

C i = ith column of CB
L T

, which is the same as the ith row of CB
L

, but in “official”

column matrix vector format. It is unfortunate that we have to resort to such
shenanigans for compatibility with the accepted practice of representing vectors
as column rather than row matrices.

δC i = Error in the ith column of CB
L T

.

εii = Element in row i, column i of ESYM.

The normality error in C i is then corrected by subtracting δC i as defined by (7.1.1.3-2) from

C i . Using the approximation that C i ≈ C i obtains:

C i+ = C i- - δC i = C i- - εii C i ≈ C i- - εii C i- = 1 - εii C i- (7.1.1.3-3)

where
-, + = Designation for the parameter value before (-) and after (+) the correction.

The orthogonality error between rows i and j of CB
L

 can be caused by either row i, row j, or

both being rotated from their nominal orthogonal condition. With no other information
available we assume it is equally likely that the orthogonality error can be in either row i or j

(i.e., C i and C j), hence, half the error value is assigned to each. To correct for non-

orthogonality, C i and C j must be rotated by one half the orthogonality error in the proper

direction (away from each for the angle between C i and C j less than 90 degrees; i.e., for a

positive dot product between C i and C j). Since the rows of CB
L
 are perpendicular to one

another, the orthogonality correction for C i rotated away from C j is equivalent to a negative

rotation of C i about the third row vector C k through one half the orthogonality error. Using the
previous definition for the ESYM error matrix, applying generalized Equation (3.2.2-20), and

recognizing that the orthogonality error is very small, then yields for the C i orthogonalization
correction operation:

C i+ = I - εij C k × C i- ≈ C i- - εij C k- × C i- (7.1.1.3-4)

ATTITUDE UPDATE ALGORITHMS 7-21

where

εij = Element in row i, column j of ESYM (or in row j, column i since ESYM is

symmetric) which, from Equation (3.5.1-15), is half the dot product between C i

and C j .

For row j, the orthogonality correction is the same magnitude but in the opposite direction:

C j+ = C j- + εij C k- × C j- (7.1.1.3-5)

But because C i , C j and C k are mutually perpendicular (approximately):

C k × C i ≈ C j C k × C j ≈ - C i (7.1.1.3-6)

Substituting (7.1.1.3-6) in (7.1.1.3-4) and (7.1.1.3-5) then yields the orthogonality correction

algorithm for CB
L

 rows i and j:

C i+ = C i- - εij C j- C j+ = C j- - εij C i- (7.1.1.3-7)

The combined normalization and orthogonalization correction process is the composite of
Equations (7.1.1.3-3) and (7.1.1.3-7) for the three rows (i.e., normalization for each row and
orthogonalization of the three sets of rows taken two at a time):

C 1+ = C 1- - ε11 C 1- - ε12 C 2- - ε13 C 3-

C 2+ = C 2- - ε12 C 1- - ε22 C 2- - ε23 C 3-

C 3+ = C 3- - ε13 C 1- - ε23 C 2- - ε33 C 3-

(7.1.1.3-8)

or in matrix form using the definitions for the Ci’s and recognizing that εij = εji:

CB+
L T

 = CB-
L T

 - CB-
L T

 ESYM = CB-
L T

 I - ESYM (7.1.1.3-9)

Because ESYM is symmetric, it equals its transpose. Thus, the transpose of (7.1.1.3-9) is:

CB+
L

 = I - ESYM CB-
L

(7.1.1.3-10)

Equation (7.1.1.3-1) for ESYM measurement and (7.1.1.3-9) for ESYM correction constitute

the algorithm for correcting orthogonality/normality error in the rows of CB
L

. As has already

been mentioned, if the rows of CB
L
 are orthogonalized and normalized, then the columns of CB

L

will also be orthogonalized and normalized.

7-22 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

An alternative to the previous approach is to structure the algorithm to measure and correct

the normality/orthogonality error in the columns of CB
L

. From (3.5.1-17), the

orthogonality/normality error in the columns of CB
L

 are:

E'SYM =
1
2

 CB
L T

 CB
L

 - I (7.1.1.3-11)

where

E'SYM = Error in the columns of CB
L

 characterized by symmetry about the CB
L

diagonal. E'SYM is a symmetric matrix. The E'SYM off-diagonal element in
row i, column j equals half the perpendicularity error between columns i and

j of CB
L

 (negative for CB
L

 columns i and j being more than 90 degrees apart).
The E'SYM ith diagonal element equals the normality error (error in

magnitude) of CB
L

 column i.

From Equation (3.5.1-18), the relationship between E'SYM and ESYM is:

ESYM = CB
L

 E'SYM CB
L -1

(7.1.1.3-12)

Substituting (7.1.1.3-12) into (7.1.1.3-10) obtains the CB
L

 update algorithm based on E'SYM

measurements:

CB+
L

 = I - ESYM CB-
L

 = I - CB-
L

 E'SYM CB-
L -1

 CB-
L

 = CB-
L

 - CB-
L

 E'SYM
or

CB+
L

 = CB-
L

 I - E'SYM (7.1.1.3-13)

Equations (7.1.1.3-11) and (7.1.1.3-13) (based on E'SYM) are an alternative to Equations

(7.1.1.3-1) and (7.1.1.3-9) (based on ESYM) for correcting orthogonality/normality error in CB
L
.

Either set achieves the overall result of normalizing and orthogonalizing both the rows and

columns of CB
L

. To conserve computational throughput, the ESYM form has been utilized in

past practice as a means for eliminating the need for both computing ESYM and correcting CB
L

 in

the same computation cycle. For this approach to be valid (i.e., stable) ESYM evaluated with
(7.1.1.3-1) in one computation cycle must be present and undistorted compared to the ESYM

that would have been calculated at the later time when CB
L
 is corrected (using (7.1.1.3-9). This

implies that ESYM must have a low rate of change. The expectation for ESYM to change over
time can be evaluated by looking at its derivative. From (3.5.1-25) (with the L Frame
substituted for the generic A Frame) we have:

ATTITUDE UPDATE ALGORITHMS 7-23

ESYM = ESYM ωIL
L

× - ωIL
L

× ESYM +
1
2

 δCBComp

L
 CB

L T
 + CB

L
 δCBComp

L T
(7.1.1.3-14)

where

δCBComp

L
 = Computational error rate in CB

L
 produced from algorithm error,

programming error, and computer finite word-length round-off (or
truncation).

Equation (7.1.1.3-14) shows that past ESYM values generate ESYM changes proportional to

the product of ESYM with ωIL
L

, the L Frame angular rate relative to inertial space (I). For a

properly designed locally level frame (see Section 4.5 for options), ωIL
L

 will be small in

magnitude (typically no larger than a few earth rates). As such, ESYM calculated at one time

and applied later will have the same effect on CB
L

 as if it was applied at the instant it was
calculated. In contrast, the Equations (7.1.1.3-11) and (7.1.1.3-13) E'SYM approach has

Equation (3.5.1-26) for its change rate:

E'SYM = E'SYM ωIB
B

× - ωIB
B

× E'SYM +
1
2

 CB
L T

 δCBComp

L
 + δCBComp

L T
 CB

L
(7.1.1.3-15)

Equation (7.1.1.3-15) shows that past E'SYM values generate E'SYM changes proportional to

the product of E'SYM with ωIB
B

, the strapdown sensor axis B Frame angular rate relative to

inertial space (I). Since the magnitude of ωIB
B

 can be large (under maneuvering conditions), past
values of E'SYM can be significantly distorted from the time it is measured until the time it is
corrected. Hence, if the E'SYM approach is to be applied (orthogonalization and normalization

of the CB
L

 columns), the time between measurement and correction must be short to preserve

stability (e.g., in the same computation cycle).

It is also noted in passing that selection of the Equations (7.1.1.3-1) and (7.1.1.3-9)

ESYM form (orthogonalization/normalization of the CB
L

 rows) facilitates the option of only

computing two rows of CB
L
 by integration, with the third row then calculated as the cross-

product between the first two rows (i.e., as in Equations (4.1-9)). This is achieved by using
Equations (7.1.1.3-3) and (7.1.1.3-7) to normalize and orthogonalize the first two rows, with
the required ESYM components calculated from (3.5.1-15):

εii =
1
2

 Ci ⋅ Ci - 1 εij =
1
2

 Ci ⋅ Cj (7.1.1.3-16)

7-24 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

The cross-product operation to obtain the third row will then automatically make it normal and

orthogonal to rows one and two, thereby producing a complete CB
L

 matrix with orthogonal and

normal rows (and columns).

7.1.2 ATTITUDE QUATERNION (B TO L) UPDATE ALGORITHMS

The updating algorithm for the qB
L

 attitude quaternion is developed following the identical

procedure used for the CB
L

 updating algorithm derivation in Section 7.1.1. We first adopt the

identical nomenclature where:

BI(m) = Discrete attitude of the B Frame in non-rotating inertial space (I) at computer
update time tm.

m = Computer cycle index for B Frame motion updates to qB
L

.

LI(n) = Discrete attitude of the L Frame in non-rotating inertial space (I) at computer
update time tn.

n = Computer cycle index for L Frame motion updates to qB
L

.

The general updating algorithm for qB
L

 is then constructed using the Equation (3.2.4.1-9) attitude

quaternion chain rule:

qBI(m)

LI(n-1) = qBI(m-1)

LI(n-1) qBI(m)

BI(m-1)

(7.1.2-1)

qBI(m)

LI(n) = qLI(n-1)

LI(n) qBI(m)

LI(n-1)

where

qBI(m-1)

LI(n-1) = qB
L

 relating the B Frame at time tm-1 to the L Frame at time tn-1.

qBI(m)

LI(n) = qB
L

 relating the B Frame at time tm to the L Frame at time tn.

qBI(m)

BI(m-1) = Attitude quaternion that accounts for B Frame rotation relative to inertial

space from its attitude at time tm-1 to its attitude at time tm

qLI(n-1)

LI(n) = Attitude quaternion that accounts for L Frame rotation relative to inertial

space from its attitude at time tn-1 to its attitude at time tn.

ATTITUDE UPDATE ALGORITHMS 7-25

The updates for qB
L

 are performed by the qBI(m)

BI(m-1) and qLI(n-1)

LI(n) terms in (7.1.2-1), algorithm

derivations for which follow.

7.1.2.1 BODY (B) FRAME UPDATE

The first expression in Equations (7.1.2-1) updates the qB
L

 attitude quaternion using qBI(m)

BI(m-1)

to account for angular rotation rate ωIB
B

 of the strapdown sensor (body) B Frame relative to non-

rotating space:

qBI(m)

LI(n-1) = qBI(m-1)

LI(n-1) qBI(m)

BI(m-1) (7.1.2.1-1)

with, formally:

qBI(m)

BI(m-1) = q1 + qB(t)
BI(m-1)

 dt
tm - 1

tm

(7.1.2.1-2)

where
q1 = Identity quaternion defined in Equation (3.3.4-4).

qB(t)
BI(m-1) = Attitude quaternion relating the B Frame attitude at an arbitrary time t in the

interval tm-1 to tm, to its BI(m) attitude.

The qBI(m)

BI(m-1) attitude quaternion can also be expressed in terms of the rotation vector defining

the Frame BI(m) attitude relative to Frame BI(m-1). Applying Equation (3.2.4.4-2) obtains:

qBI(m)

BI(m-1)
 =

cos 0.5 φm

sin 0.5 φm

0.5 φm

 0.5 φm

(7.1.2.1-3)

sin 0.5 φm

0.5 φm

 = 1 -
(0.5 φm)

2

3 !
 +

(0.5 φm)
4

5 !
 -

cos 0.5 φm = 1 -
(0.5 φm)

2

2 !
 +

(0.5 φm)
4

4 !
 -

7-26 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

where

φm = Rotation vector defining the Frame BI(m) attitude relative to Frame BI(m-1) at
time tm.

φm = Magnitude of φm.

The φm rotation vector in Equation (7.1.2.1-3) for attitude quaternion updating is identical to

φm used in Section 7.1.1.1 for CB
L
 direction cosine matrix updating and is calculated using the

identical algorithm provided by Equations (7.1.1.1-12), (7.1.1.1.1-17) and (7.1.1.1.1-18).

7.1.2.2 LOCAL LEVEL (L) FRAME ROTATION UPDATE

The second expression in Equations (7.1.2-1) updates the qB
L

 attitude quaternion using

qLI(n-1)

LI(n) to account for angular rotation rate ωIL
L

 of the local L Frame relative to non-rotating

space:

qBI(m)

LI(n) = qLI(n-1)

LI(n) qBI(m)

LI(n-1) (7.1.2.2-1)

with, formally:

qLI(n-1)

LI(n) = q1 + qLI(n-1)

L(t)
 dt

tn -1

tn

(7.1.2.2-2)

where

qLI(n-1)

L(t)
 = Attitude quaternion relating the L Frame attitude at an arbitrary time t in the

interval tn-1 to tn, with its LI(n-1) attitude.

The qLI(n-1)

LI(n) attitude quaternion can also be expressed in terms of a rotation vector defining

the Frame LI(n) attitude relative to Frame LI(n-1). Applying Equations (3.2.4.4-2) yields:

ATTITUDE UPDATE ALGORITHMS 7-27

qLI(n-1)

LI(n)
 =

cos 0.5 ζn

-
sin 0.5 ζn

0.5 ζn

 0.5 ζn

(7.1.2.2-3)

sin 0.5 ζn

0.5 ζn

 = 1 -
(0.5 ζn)

2

3 !
 +

(0.5 ζn)
4

5 !
 -

cos 0.5 ζn = 1 -
(0.5 ζn)

2

2 !
 +

(0.5 ζn)
4

4 !
 -

where

ζn = Rotation vector defining the Frame LI(n) attitude at time tn relative to Frame
LI(n-1) attitude at time tn-1.

ζn = Magnitude of ζn.

The negative sign on the
sin 0.5 ζn

0.5 ζn

 0.5 ζn term accounts for the opposite phase sense of qLI(n-1)

LI(n)

which describes the Frame LI(n-1) attitude relative to Frame LI(n) compared with the rotation

vector ζn phase sense which describes the Frame LI(n) attitude relative to Frame LI(n-1). The ζn

rotation vector in Equations (7.1.2.2-3) is identical to ζn used for CB
L

 direction cosine matrix

updating and is calculated using the identical computational algorithm described in Section
7.1.1.2.1 and provided by Equations (7.1.1.2.1-3), (7.1.1.2.1-5) and (7.1.1.2.1-6).

An approximate form of Equations (7.1.2.2-3) that is comparable in accuracy to direction
cosine updating Equation (7.1.1.2-5) is readily obtained by substitution and truncation:

qLI(n-1)

LI(n)
 =

1 -
1
2

 (ζn/2)
2

-
1
2

 ζn

(7.1.2.2-4)

The comments in Section 7.1.1.2 regarding the advisability of using the simplified Equation
(7.1.1.2-5) direction cosine local level frame updating algorithm also apply regarding use of
Equation (7.1.2.2-4) for attitude quaternion updating rather than the complete Equations
(7.1.2.2-3) form.

7-28 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

7.1.2.3 ATTITUDE QUATERNION (B TO L) NORMALIZATION CORRECTION

In order to preserve the fundamental attitude quaternion normality characteristic as
represented in general by Equation (3.2.4.1-2), a normalization algorithm is frequently

incorporated as an outer loop function in the qB
L

 attitude quaternion updating process. The

discussion at the beginning of Section 7.1.1.3 for direction cosine matrices regarding the need
for a normalization/orthogonalization function is equally applicable for the attitude quaternion,
the only exception being that “orthogonalization” has no meaning in the definition for the
quaternion (as it does for the attitude direction cosine matrix), hence, the orthogonalization
discussion in Section 7.1.1.3 does not apply.

To simplify notation, q will be utilized for qB
L

. We first write:

q = q + δq (7.1.2.3-1)

where

 = Designation for parameter calculated in the INS computer, hence, containing error.

The same parameter without the designation will be considered in this section to
be the idealized error free value.

δq = Error in q.

The normalization error in q can be determined from the requirement for the ideal q as given
in Equations (3.2.4-21) and (3.2.4-22):

q q* = 1 (7.1.2.3-2)

Using (7.1.2.3-1), the product of q with its complex conjugate is:

q q* = q q* + q δq* + δq q* + δq δq* ≈ q q* + q δq* + δq q* (7.1.2.3-3)

We now define the δq in q due to abnormality as:

δq = εq q (7.1.2.3-4)

where

εq = Normalization error in q .

Substituting (7.1.2.3-4) in (7.1.2.3-3) with (7.1.2.3-2) obtains:

ATTITUDE UPDATE ALGORITHMS 7-29

q q* = q q* + 2 εq q q* = 1 + 2 εq q q* = 1 + 2 εq (7.1.2.3-5)

from which we see (using qB
L
 for q by definition) that:

εq =
1
2

 qB
L

 qB
L

* - 1 (7.1.2.3-6)

The error in q is corrected by subtracting δq as defined by (7.1.2.3-4). Using the

approximation that q ≈ q obtains:

q = q - δq = q - εq q ≈ q - εq q = 1 - εq q (7.1.2.3-7)

With qB
L
 for q, (7.1.2.3-7) becomes the expression for quaternion normalization error correction:

qB+
L

 = 1 - εq qB-
L

(7.1.2.3-8)

where
-, + = Designation for the parameter value before (-) and after (+) the correction.

7.1.2.4 QUATERNION TO DIRECTION COSINE MATRIX CONVERSION

If the quaternion is utilized for attitude determination, a conversion to the equivalent attitude
direction cosine matrix form is typically incorporated for acceleration transformation and Euler
angle extraction purposes. The appropriate conversion formula is provided by Equation (4.2-5):

CB
L

 =

a2 + b2 - c2 - d2 2 b c - a d 2 b d + a c

2 b c + a d a2 - b2 + c2 - d2 2 c d - a b

2 b d - a c 2 c d + a b a2 - b2 - c2 + d2

(7.1.2.4-1)

where

a, b, c, d = Elements of qB
L

.

7.2 VELOCITY UPDATE ALGORITHMS

The navigation velocity algorithm calculates the velocity of the system relative to the earth
fixed frame. The algorithm integrates specific force acceleration sensed by the body mounted
accelerometers, Coriolis accelerations due to rotations of the local-level and earth frames, and

7-30 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

gravity. The velocity algorithm implemented in the navigation software is formulated as a
digital integration of Section 4.3 Equation (4.3-18) with (4.2-1) and (4.2-3) combined below:

v
N

 = CL
N

 CB
L

 aSF
B

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN (7.2-1)

where

vN = Velocity relative to the earth in N Frame axes.

aSF
B

 = Specific force acceleration measured in the strapdown sensor body B Frame (by
accelerometers).

ωEN
N

 = Angular rate of the local level navigation N Frame with respect to the earth E
Frame (i.e., “transport rate”) in N Frame axes.

ωIE
N

 = Angular rate of the earth E Frame with respect to inertial space (I) in N Frame
axes.

gP
N

 = Plumb-bob gravity vector in the N Frame.

CB
L

 = Direction cosine matrix between the B Frame and the local level L Frame.

CL
N

 = Direction cosine matrix between the L and N Frame (see Equation (4.1.1-2)).

The digital velocity integration algorithm is formulated as:

vm
N

 = vm-1
N

 + CL
N

 ΔvSFm

L
 + ΔvG/CORm

N
(7.2-2)

ΔvG/CORm

N
 = gP

N
 - ωEN

N
 + 2 ωIE

N
 × vN dt

tm-1

tm

(7.2-3)

ΔvSFm

L
 = CB

L
 aSF

B
 dt

tm-1

tm

(7.2-4)

where

m = Digital integration algorithm update rate cycle index.

ΔvSFm

L
 = L Frame coordinate portion of velocity change produced by specific force.

If vertical channel control is to be incorporated as in Equation (4.4.1.2.1-1) - (4.4.1.2.1-3), the
following additional velocity update operation would be included representing the integral of the
previous equations over an altitude update cycle:

VELOCITY UPDATE ALGORITHMS 7-31

vn+
N

 = vn-
N

 - evc1n Tn uZN
N

(7.2-5)

with

∂hn = hn - hPrsr n

evc3n = evc3n-1 + C1 ∂hn Tn evc1n = evc3n + C2 ∂hn evc2n = C3 ∂hn

(7.2-6)

where

-, + = Indicators for the value of vn
N

 before (-) and after (+) the vertical stabilization

addition.

n = Altitude update cycle index.

Tn = Time interval between altitude update cycles.

hPrsrn = Pressure altitude input signal.

evc1n = Vertical velocity control signal.

evc2n = Altitude control signal (See Equation (7.3.1-5) for how applied).

evc3n = Integral controller.

C1, C2, C3 = Vertical channel control gains (See Equations (4.4.1.2.1-11) for how
typically determined).

Digital algorithms are formulated below for the (7.2-3) gravity/Coriolis velocity increment

ΔvG/CORm

N
 and the (7.2-4) integrated transformed specific force acceleration increment ΔvSFm

L
.

The algorithm developed for ΔvSFm

L
 is modeled after the Section 7.1.1 two-speed attitude update

approach; a moderate speed attitude update algorithm was used that is analytically exact under
conditions when the angular rate vector is not rotating (i.e., constant in direction) during the
attitude update time interval; a high speed algorithm was then used to measure rectifying
rotating angular rate vector effects (i.e., “coning”) for input to the moderate speed algorithm.

For the ΔvSFm

L
 two-speed update approach, the moderate speed algorithm is designed to be

analytically exact under constant B Frame angular-rate/specific-force-acceleration vector
direction and magnitude ratio during the velocity update period; the high speed algorithm
measures rectifying dynamic angular-rate/linear-acceleration effects (“sculling”) for input to the
moderate speed algorithm.

7-32 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

7.2.1 GRAVITY/CORIOLIS VELOCITY INCREMENT ALGORITHM

From Equations (5.4.1-11) with (5.4.1-9), (5.4-4), (5.4-1), and (5.4-2), the gP
N

 term in

Equation (7.2-3) is a function of position location with very small horizontal components.
Since the position varies smoothly over a digital algorithm m cycle with limited magnitude

change (particularly in altitude), gP
N

 in (7.2-3) can be approximated by its average value across

the m cycle. Because the (7.2-3) Coriolis term (angular rate products with velocity) is small
(due to the small size of the angular rates) and because velocity varies smoothly over an m
cycle, the Coriolis contributors can also be approximated by their average value over the m
cycle. This rationale forms the basis for the following trapezoidal integration algorithm typically

utilized for ΔvG/CORm

N
 in (7.2-3) using (4.1.1-6) for ωEN

N
:

ΔvG/CORm

N
 ≈ gPm-1/2

N
 - 2 ωIEm-1/2

N
 + ρZNm-1/2 uZN

N

 + FCm-1/2

N
 uZN

N
 × vm-1/2

N
 × vm-1/2

N
 Tm

(7.2.1-1)

where
m-1/2 = Designation for parameter value midway between tm-1 and tm.

Tm = Velocity integration algorithm update period tm - tm-1.

The ωIE
N

 term in (7.2.1-1) is evaluated with Equation (4.1.1-3), ρZN is computed based on N

Frame selection in Section 4.5, and gP
N

 is calculated from Section 5.4.1, Equation (5.4.1-11) and

its inputs.

Because ΔvG/CORm

N
 is used in Equation (7.2-2) to update vN from its m-1 to m cycle value,

vm-1/2
N

 is not explicitly available for Equation (7.2.1-1) and must be approximated based on

extrapolation from past values. An example is the linear extrapolation algorithm:

vm-1/2
N

 ≈ vm-1
N

 +
1
2

 vm-1
N

 - vm-2
N

 =
3
2

 vm-1
N

 -
1
2

 vm-2
N

(7.2.1-2)

The gP
N

, ωIE
N

, ρZN, FC parameters in (7.2.1-1) are functions of position which (from Section

7.3) is updated following the velocity update, possibly at a slower n cycle computation rate.

VELOCITY UPDATE ALGORITHMS 7-33

Therefore, the m-1/2 designation evaluation for these parameters is not explicitly available and
must also be approximated based on extrapolation from past values. For example, for linear
extrapolation:

 m-1/2 ≈ n-1 +
r - 1/2

j
 n-1 - n-2 (7.2.1-3)

where

n = Computer cycle index for position updates.

j = Number of m cycles in each n cycle.

r = Number of m cycles at time tm since the last n cycle (i.e., since tn-1).

7.2.2 INTEGRATED TRANSFORMED SPECIFIC FORCE
ACCELERATION INCREMENT ALGORITHM

A digital algorithm for ΔvSFm

L
 integrated transformed acceleration increment Equation

(7.2-4) must account for the rotation of the local level L Frame and the strapdown sensor
“body” B Frame during the tm-1 to tm computation period. Adopting the same notation used in
Section 7.1.1 to describe discrete attitudes of the L and B Frames relative to inertial space (I) at
computer update time instants, Equation (7.2-4) can be expanded using the Equation (3.2.1-5)
chain rule and integration by parts as follows:

ΔvSFm

L
 = ΔvSFm

LI(m)
 = CLI(m-1)

L(t)
 CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

= CLI(m-1)

LI(m) CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

- CLI(m-1)

L(t)

tm-1

tm

 CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(τ)
BI(m-1) aSF

B
 dτ dt

tm-1

t

(7.2.2-1)

Assuming CLI(m-1)

L(t)
 is approximately constant and CB(τ)

BI(m-1) aSF
B

 dτ
tm-1

t

 changes approximately

linearly over the m cycle we then get:

7-34 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

ΔvSFm

L
 ≈ CLI(m-1)

LI(m) CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

 -
1

Tm
 CLI(m-1)

LI(m) - I
tm-1

tm

 CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(τ)
BI(m-1) aSF

B
 dτ

tm-1

tm

t - tm-1

Tm
 dt

= CLI(m-1)

LI(m) CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

 -
1
2

 CLI(m-1)

LI(m) - I CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

=
1
2

 CLI(m-1)

LI(m) + I CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

=
1
2

 CLI(n-1)

LI(m) + CLI(n-1)

LI(m-1) CBI(m-1)

LI(n-1) CB(t)
BI(m-1) aSF

B
 dt

tm-1

tm

(7.2.2-1a)

in which it is recognized that the L and LI Frames at time tm are identical by definition of the LI
Frame. Upon further expansion:

ΔvSFm

LI(n-1)
 = CBI(m-1)

LI(n-1) ΔvSFm

BI(m-1)
(7.2.2-2)

ΔvSFm

BI(m-1)
 = CB(t)

BI(m-1) aSF
B

 dt
tm-1

tm

(7.2.2-3)

ΔvSFm

L
 ≈

1
2

 CLI(n-1)

LI(m) + CLI(n-1)

LI(m-1) ΔvSFm

LI(n-1)

 = ΔvSFm

LI(n-1)
 +

1
2

 CLI(n-1)

LI(m) - I + CLI(n-1)

LI(m-1) - I ΔvSFm

LI(n-1)
(7.2.2-4)

As in Section 7.1.1, Equations (7.2.2-2) - (7.2.2-4) allow for the general case in which the

CB
L

 matrix is updated for L Frame rotation at a cycle rate (index n) that may differ (be slower)

than the CB
L

 update rate for B Frame rotation (index m). For example, in the interests of

minimizing computer throughput requirements, the software architecture might have the n cycle
L Frame update rate 5 times slower than the m cycle B Frame update rate. Equations (7.2.2-2)

VELOCITY UPDATE ALGORITHMS 7-35

- (7.2.2-4) are also valid, however, if we choose to update CB
L

 at equal rates for B and L Frame

motion (i.e., n = m). Note, that for n ≠ m , Equation (7.2.2-4) still requires an L Frame

orientation evaluation at the B Frame m cycle update time (for LI(m) in the CLI(n-1)

LI(m) matrix).

Note also, that the form of the (7.2.2-2) algorithm is based on the use of CB
L

 at the previous B

Frame m cycle (i.e., BI(m-1) in the CBI(m-1)

LI(n-1) matrix). This implies that CB
L

 will be updated for B

Frame rotation following the Equation (7.2.2-2) acceleration transformation operation.

It remains to define algorithms for calculating CLI(n-1)

LI(m) in (7.2.2-4) to correct for local level

frame rotation during acceleration transformation, and for the ΔvSFm

BI(m-1)
 body frame specific

force acceleration increment term in (7.2.2-2) and (7.2.2-3).

7.2.2.1 CORRECTION FOR L FRAME ROTATION DURING
ACCELERATION TRANSFORMATION

The CLI(n-1)

LI(m) matrix in (7.2.2-4) can be defined analytically as in Equations (7.1.1.2-3) and

(7.1.1.2.1-3) - (7.1.1.2.1-6), but with the ζn term calculated as a summation from tn-1 to tm
rather than from tn-1 to tn. Because of the very small angular rotation rate of the L Frame

relative to inertial space, CLI(n-1)

LI(m) in (7.2.2-4) is very close to the identity matrix I. For many

applications,
1
2

 CLI(n-1)

LI(m) - I + CLI(n-1)

LI(m-1) - I ΔvSFm

LI(n-1)
 in (7.2.2-4) can, therefore, be totally

ignored as negligible compared to other acceleration error sources. For high accuracy

applications when
1
2

 CLI(n-1)

LI(m) - I + CLI(n-1)

LI(m-1) - I ΔvSFm

LI(n-1)
 is to be included, a first order form of

(7.1.1.2-3) - (7.1.1.2-4) usually suffices such that:

CLI(n-1)

LI(m) ≈ I - ζn-1,m× (7.2.2.1-1)

ζn-1,m = ωIL
L

 dt
tn-1

tm

(7.2.2.1-2)

We then approximate ωIL
L

 in (7.2.2.1-2) using (4.1.1-1), (4.1.1-6), and the assumption of

slowly changing contributors as in Section 7.2.1:

ωIL
L

 = CN
L

 ωIE
N

 + ωEN
N

 ≈ CN
L

 ωIEn-1,m
2

N
 + ρZNn-1,m

2

 uZN
N

 + FCn-1,m
2

N
 uZN

N
 × vN (7.2.2.1-3)

7-36 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

where

n-1,m
2

 = Subscript indicating value for parameter midway between the times tn-1 and

tm.

Substituting (7.2.2.1-3) into (7.2.2.1-2) yields for ζn-1,m:

ζn-1,m ≈ CN
L

 ωIEn-1,m
2

N
 r Tm + ρZNn-1,m

2

 uZN
N

 r Tm + FCn-1,m
2

N
 uZN

N
 × ΔRn-1,m

N
(7.2.2.1-4)

ΔRn-1,m
N

 ≡ vN

tn-1

tm

 dt (7.2.2.1-5)

where

r = Number of m cycles at time tm since the last n cycle (i.e., since tn-1).

Tm = Time interval between m cycles.

The ωIE
N

 term in (7.2.2.1-4) is evaluated with Equation (4.1.1-3) and ρZN is calculated based on

N Frame selection in Section 4.5.

As in Section 7.2.1, n-1,m

2
 in (7.2.2.1-4) must be approximated based on past value

extrapolation; e.g.:

 n-1,m

2
 ≈ ()n-1 +

1
2

r
 j

 ()n-1 - ()n-2 (7.2.2.1-6)

where

j = Number of m cycles in each n cycle.

Because (7.2.2.1-4) is used to update vN in Equations (7.2-2) with (7.2.2-4) and (7.2.2.1-1),

current values of vN are not available for evaluating ΔRn-1,m
N

 in (7.2.2.1-5). Hence, past value

extrapolation must be employed such as in Section 7.2.1:

ΔRn-1,m
N

 ≈
Tm

2
 3 vm-1

N
 - vm-2

N
 For r = 1

ΔRn-1,m
N

 ≈
Tm

2
 3 vm-1

N
 - vm-2

N
 + vi

N
 + vi-1

N∑
i = m+1-r

i = m-1

 For r > 1

(7.2.2.1-7)

VELOCITY UPDATE ALGORITHMS 7-37

7.2.2.2 BODY FRAME INTEGRATED SPECIFIC FORCE
ACCELERATION INCREMENT

The ΔvSFm

BI(m-1)
 integral term in (7.2.2-2) and (7.2.2-3) is calculated using a high speed digital

algorithm similar to the type employed in Equations (7.1.1.1-12) based on (7.1.1.1-13) for
attitude updating. Derivation of the algorithm is initially based on first order approximations for

CB(t)
BI(m-1). The first order solution is then divided into two parts for application of the “two-

speed” algorithm approach; a portion that measures dynamic B Frame angular-rate/specific-
force-acceleration through high speed integration within the m cycle, and a portion calculated at
the m cycle rate that measures the effect of slowly changing B Frame angular-rate/specific-
force. Finally, the first order m cycle portion is expanded to be exact for constant B Frame
angular-rate/specific-force vector direction and constant ratio of the angular-rate/specific-force-
acceleration vector magnitudes (of which a special case is constant B Frame angular rate/specific
force direction and magnitude).

Following the similar development incorporated in Section 7.1.1.1, the CB(t)
BI(m-1) term in the

Equation (7.2.2-3) ΔvSFm

BI(m-1)
 integrand is expressed as:

CB(t)
BI(m-1) = I +

sin φ(t)

φ(t)
 φ(t) × +

1 - cos φ(t)

φ(t)
2

 φ(t) × 2
(7.2.2.2-1)

where

φ(t) = Rotation vector defining the general attitude of Frame B relative to Frame
BI(m-1) for time t greater than tm-1.

φ(t) = Magnitude of φ(t) .

Equations (7.1.1.1-9) and (7.1.1.1-10) show that for α(t) small compared to one (i.e., a small

coning effect), φ(t) in (7.2.2.2-1) can be approximated by:

φ(t) ≈ α(t) (7.2.2.2-2)

with

α(t) = ωIB
B

 dτ
tm- 1

t

 (7.2.2.2-3)

7-38 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

A first order approximation for Equation (7.2.2.2-1) neglects φ(t) × 2
 and approximates

sin φ(t)

φ(t)
 by unity (assuming that the m cycle rate is selected fast enough to maintain φ(t) at a

reasonably small value; e.g., less than 0.05 radians). With (7.2.2.2-2), Equation (7.2.2.2-1)
reduces to:

CB(t)
BI(m-1) ≈ I + α(t) × (7.2.2.2-4)

Substituting (7.2.2.2-4) into (7.2.2-3) then yields to first order:

ΔvSFm

BI(m-1)
 = I + α(t) × aSF

B
 dt

tm-1

tm

 = aSF
B

 dt
tm-1

tm

 + α(t) × aSF
B

 dt
tm-1

tm

(7.2.2.2-5)

or

ΔvSFm

BI(m-1)
 = υm + α (t) × aSF

B
 dt

tm-1

tm

α (t) = ωIB
B

 dτ
tm- 1

t

 υ (t) = aSF
B

 dτ
tm- 1

t

 υm = υ (tm)

(7.2.2.2-6)

where

υ(t) = Integral of aSF
B

 from time tm-1 to time t.

Equations (7.2.2.2-6) define a method for calculating ΔvSFm

BI(m-1)
 for Equation (7.2.2-2). It is

instructive to analyze these equations under conditions when the angular rate and specific force
vectors are not rotating in the B Frame, and the ratio of magnitudes of the angular rate and
specific force vectors is constant. This condition covers the case when the B Frame angular rate
and specific force vectors are both constant, but also covers the broader case when the angular-
rate/specific-force vectors have constant B Frame direction with identical time function
magnitudes (e.g., in-phase sinusoidal oscillations of the angular rate and specific force
magnitudes). Under the conditions described above, we can write for the angular rate vector

ωIB
B

 and its integral:

ωIB
B

 = ω uω α(t) = ωIB
B

tm-1

t

 dτ = uω ω
tm-1

t

 dτ = uω α(t) (7.2.2.2-7)

VELOCITY UPDATE ALGORITHMS 7-39

where

ω = Magnitude of ωIB
B

.

uω = Unit vector along ωIB
B

 in which uω is constant in the B Frame.

α(t) = Magnitude of α(t) .

We also note from (7.2.2.2-7) that:

uω dα = ωIB
B

 dt = uω ω dt (7.2.2.2-8)
or

ω dt = dα (7.2.2.2-9)

For the aSF
B

 specific force vector, we can write for constant B Frame acceleration direction with

magnitude proportional to the angular rate magnitude:

aSF
B

 = ua aSF aSF = K ω (7.2.2.2-10)

where

aSF = Magnitude of aSF
B

.

ua = Unit vector along aSF
B

 in which ua is constant in the B Frame.

K = Constant equal to the ratio of aSF to ω.

We make note for later use that from (7.2.2.2-6), (7.2.2.2-7) and (7.2.2.2-10):

υ(t) = aSF
B

tm-1

t

 dτ = ua K ω
tm-1

t

 dτ = ua K α(t) (7.2.2.2-11)

Substituting (7.2.2.2-7), (7.2.2.2-9) and (7.2.2.2-10) into the (7.2.2.2-6) ΔvSFm

BI(m-1)
 integral term,

finds using (7.1.1.1-13):

7-40 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

For Non-Rotating B Frame Angular-Rate/Specific-Force Vectors With
Constant Angular-Rate/Specific-Force Magnitude Ratio:

α(t) × aSF
B

 dt
tm-1

tm

 = uω α(t) × ua K ω dt
tm-1

tm

= uω × ua K α(t) ω dt
tm-1

tm

 = uω × ua K α dα
α = 0

αm

(7.2.2.2-12)

=
1
2

 uω × ua K α2
 α = 0
 αm

 =
1
2

 uω × ua K αm
2

But from (7.2.2.2-6) with (7.2.2.2-7) and (7.2.2.2-10) we can also write:

αm = ωIB
B

 dt
tm-1

tm

 = uω ω dt
tm-1

tm

 = uω αm

υm = aSF
B

 dt
tm-1

tm

 = ua aSF dt
tm-1

tm

 = ua K ω dt
tm-1

tm

 = ua K αm

(7.2.2.2-13)

from which:

uω = αm / αm ua K = υm / αm (7.2.2.2-14)

Substituting (7.2.2.2-12) with (7.2.2.2-14) into (7.2.2.2-6) then obtains:

For Non-Rotating B Frame Angular-Rate/Specific-Force Vectors With
Constant Angular-Rate/Specific-Force Magnitude Ratio:

ΔvSFm

BI(m-1)
 = υm +

1
2

 αm × υm

α(t) = ωIB
B

 dτ
tm- 1

t

 αm = α(tm) (7.2.2.2-15)

υ(t) = aSF
B

 dτ
tm- 1

t

 υm = υ(tm)

If we now compare Equations (7.2.2.2-6) for the general case with Equations (7.2.2.2-15)
for the particular case noted, we see that the difference is the replacement of the integral term

VELOCITY UPDATE ALGORITHMS 7-41

with
1
2

 αm × υm. For situations when non-rotating B Frame angular-rate/specific-force vectors

with constant angular-rate/specific-force magnitude ratio is a reasonable approximation over the
tm-1 to tm time interval, Equations (7.2.2.2-15) are preferred because the integral term (and its

attendant high speed algorithm) is replaced by
1
2

 αm × υm which is evaluated once at the m

cycle time.

A fundamental limitation in Equations (7.2.2.2-6) or (7.2.2.2-15) is the first order

approximation that underlies their development (i.e., Equation (7.2.2.2-4) for CB(t)
BI(m-1) that was

used in the Equation (7.2.2-3) ΔvSFm

BI(m-1)
 expression). It would be desirable if the Equation

(7.2.2.2-4) approximation could be applied only to the high frequency content of CB(t)
BI(m-1), with

the low frequency content retaining the full Equation (7.2.2.2-1) form. Such an algorithm can
be synthesized by first noting that:

d
dt

 α (t) × υ (t) = α (t) × υ (t) + α (t) × υ (t) = α (t) × υ (t) - υ (t) × α (t) (7.2.2.2-16)

with α(t) and υ(t) as defined in Equations (7.2.2.2-6). Upon rearrangement, (7.2.2.2-16)
becomes:

α (t) × υ (t) =
d
dt

 α (t) × υ (t) + υ (t) × α (t) (7.2.2.2-17)

Trivially,

α (t) × υ (t) =
1
2

 α (t) × υ (t) +
1
2

 α (t) × υ (t) (7.2.2.2-18)

We now substitute (7.2.2.2-17) for one of the terms on the right in (7.2.2.2-18) to obtain:

α (t) × υ (t) =
1
2

d
dt

 α (t) × υ (t) +
1
2

 α (t) × υ (t) + υ (t) × α (t) (7.2.2.2-19)

From Equations (7.2.2.2-6) we know that:

α(t) = ωIB
B

υ(t) = aSF
B

(7.2.2.2-20)

with which Equation (7.2.2.2-19) assumes the form:

α (t) × aSF
B

 =
1
2

d
dt

 α (t) × υ (t) +
1
2

 α (t) × aSF
B

 + υ (t) × ωIB
B

(7.2.2.2-21)

7-42 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Equation (7.2.2.2-21) is an alternate expression for the integrand in the Equations (7.2.2.2-6)

ΔvSFm

BI(m-1)
 expression. Substituting (7.2.2.2-21) for the integrand yields the following equivalent

form:

ΔvSFm

BI(m-1)
 = υm +

1
2

 αm × υm +
1
2

 α (t) × aSF
B

 + υ (t) × ωIB
B

 dt
tm-1

tm

(7.2.2.2-22)

If we compare Equation (7.2.2.2-22) with Equations (7.2.2.2-15) for ΔvSFm

BI(m-1)
 under non-

rotating B Frame angular-rate/specific-force vectors with constant angular-rate/specific-force
magnitude ratio (of which constant angular-rate/specific-force vectors is a special case), we see
that they are equivalent except for the integral term in (7.2.2.2-22). It is easily verified by
substituting Equations (7.2.2.2-7), (7.2.2.2-10) and (7.2.2.2-11) into (7.2.2.2-22), that the
integral term in (7.2.2.2-22) vanishes for non-rotating B Frame angular-rate/specific-force
vectors with constant angular-rate/specific-force magnitude ratio. We conclude that the integral
term in (7.2.2.2-22) represents a contribution from “high frequency” components in the

ΔvSFm

BI(m-1)
 Equation (7.2.2-3) integrand, while the remaining terms (i.e., υm +

1
2

 αm × υm)

represent a combination of both “low frequency" and “high frequency” effects.

The integral term in (7.2.2.2-22), denoted as “sculling”, measures the “constant”

contribution to ΔvSFm

BI(m-1)
 created from combined dynamic angular-rate/specific-force

rectification. The rectification is a maximum under classical sculling motion defined as

sinusoidal angular-rate/specific-force in which the α(t) angular excursion about one B Frame

axis is at the same frequency and in phase with the aSF
B

 specific force along another B Frame

axis (with a constant acceleration component then produced along the average third axis
direction). This is the same principle used by mariners to propel a boat in the forward direction
using a single oar operated with an undulating motion (also denoted as “sculling", the original

use of the term). Note, that the ΔvSFm

BI(m-1)
 integral term in Equations (7.2.2.2-6) has also been

defined as “sculling” even though it contains large contributions under conditions of non-
rotating B Frame angular-rate/specific-force vectors with constant angular-rate/specific-force

magnitude ratio (i.e., “non-sculling” conditions). The
1
2

 αm × υm term in (7.2.2.2-22) is

denoted herein as “velocity rotation compensation”. The “velocity” notation has been adopted
to denote that this rotation compensation term feeds the “velocity” rate equation (in contrast
with a “position rotation compensation” term to be discussed in Section 7.3.3 that feeds the
position rate equation). With these definitions, a comparison between (7.2.2.2-6) and
(7.2.2.2-22) identifies the integral term in Equations (7.2.2.2-6) as representing the composite

VELOCITY UPDATE ALGORITHMS 7-43

of sculling and velocity rotation compensation effects. Using this terminology, Equation
(7.2.2.2-22) can be rewritten as:

ΔvSFm

BI(m-1)
 = υm + ΔvRotm + ΔvSculm (7.2.2.2-23)

with

ΔvScul (t) =
1
2

 α (τ) × aSF
B

 + υ (τ) × ωIB
B

 dτ
tm-1

t

ΔvSculm = ΔvScul(tm)

α(τ) = ωIB
B

 dt
tm- 1

τ

 αm = α(tm) (7.2.2.2-24)

υ(τ) = aSF
B

 dt
tm- 1

τ

 υm = υ(tm)

and

ΔvRotm =
1
2

 αm × υm (7.2.2.2-25)

where

ΔvRotm = “Velocity Rotation Compensation” term.

ΔvSculm = “Sculling” term.

Alternatively, beginning from the (7.2.2.2-6) version:

ΔvSFm

BI(m-1)
 = υm + ΔvRot/Sculm (7.2.2.2-26)

with

ΔvRot/Scul (t) = α (τ) × aSF
B

 dτ
tm-1

t

ΔvRot/Sculm = ΔvRot/Scul(tm)

α(τ) = ωIB
B

 dt
tm- 1

τ

 (7.2.2.2-27)

υ(τ) = aSF
B

 dt
tm- 1

τ

 υm = υ(tm)

7-44 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

where

ΔvRot/Sculm = Composite “Sculling” and "Velocity Rotation Compensation” term.

Equations (7.2.2.2-23) - (7.2.2.2-25) are equivalent to Equations (7.2.2.2-26) - (7.2.2.2-27);
both equation sets exhibit only first order accuracy. However, Equation (7.2.2.2-23) is now in a
form that enables us to substitute an expanded expression for the (7.2.2.2-25) rotation
compensation term that makes (7.2.2.2-23) exact under conditions when the angular rate and
specific force vectors are not rotating in the B Frame, and the ratio of magnitudes of the angular
rate and specific force vectors is constant. This is an important extension because general
motion is typically dominated by low frequency angular rate and specific force components that
may have large amplitudes under extreme maneuvers (when second order algorithm errors may
not be negligible). The extension to exactness is not possible for the (7.2.2.2-26) - (7.2.2.2-27)
form because the rotation compensation effect is imbedded within the integral which includes

the first order sculling term. The following sections derive an exact ΔvRotm
 velocity rotation

compensation algorithm for Equation (7.2.2.2-23) in addition to digital integration algorithms
for the (7.2.2.2-24) and (7.2.2.2-27) integral terms.

7.2.2.2.1 Exact Velocity Rotation Compensation Algorithm

The “exact” velocity rotation compensation algorithm is defined as the algorithm that when

substituted for ΔvRotm
 in Equations (7.2.2.2-23), provides an exact solution for ΔvSFm

BI(m-1)
 in

Equations (7.2.2-3) under conditions when the angular rate and specific force vectors are not
rotating in the B Frame, and the ratio of magnitudes of the angular rate and specific force
vectors is constant. The “exact” condition covers the case when the B Frame angular rate and
specific force vectors are both constant, but also covers the broader case when the angular-
rate/specific-force vectors have constant B Frame direction with identical time function
magnitudes (e.g., in-phase sinusoidal oscillations of the angular rate and specific force
magnitudes). The exact rotation compensation algorithm is derived from Equation (7.2.2-3)

using (7.2.2.2-1) for CB(t)
BI(m-1) when the direction of the angular rate vector is constant (i.e., the

angular rate vector is not rotating which is defined in Section 7.1.1.1 as a non-coning
environment). Recall from Section 7.1.1.1 (See Equation (7.1.1.1-14)) that for the case when

ωIB
B

 is not rotating, φ(t) is equal to α(t) (the integral of ωIB
B

). Under this restriction, (7.2.2.2-7)

applies for α(t) , and (7.2.2.2-1) with (7.2.2.2-7) for φ(t) = α(t) substituted in Equation

(7.2.2-3) gives:

VELOCITY UPDATE ALGORITHMS 7-45

For A Non-Coning Angular Rate Condition:

ΔvSFm

BI(m-1)
 = I +

sin α(t)

α(t)
 α(t) × +

1 - cos α(t)

α(t)
2

 α(t) × 2
 aSF

B
 dt

tm-1

tm

 = I + sin α(t) uω× + 1 - cos α(t) uω× 2
 aSF

B
 dt

tm-1

tm

(7.2.2.2.1-1)

For constant B Frame acceleration direction with magnitude proportional to the angular rate

magnitude, Equation (7.2.2.2-10) applies for aSF
B

, which when substituted in (7.2.2.2.1-1) finds:

For Non-Rotating B Frame Angular-Rate/Specific-Force Vectors With
Constant Angular-Rate/Specific-Force Magnitude Ratio:

ΔvSFm

BI(m-1) = aSF
B

 dt
tm-1

tm

 + uω × ua K sin α(t) ω dt
tm-1

tm

 + uω × uω × ua K 1 - cos α(t) ω dt
tm-1

tm
(7.2.2.2.1-2)

Substituting (7.2.2.2-6), (7.2.2.2-9) and (7.2.2.2-14) from Section 7.2.2.2 into (7.2.2.2.1-2)
yields:

For Non-Rotating B Frame Angular-Rate/Specific-Force Vectors With
Constant Angular-Rate/Specific-Force Magnitude Ratio:

ΔvSFm

BI(m-1) = υm +
αm × υm

αm
2

 sin α dα
α = 0

αm

 +
αm × αm × υm

αm
3

 1 - cos α dα
α = 0

αm
(7.2.2.2.1-3)

The integral terms in (7.2.2.2.1-3) are easily evaluated analytically to be:

sin α dα
α = 0

αm

 = 1 - cos αm 1 - cos α dα
α = 0

αm

 = αm - sin αm (7.2.2.2.1-4)

7-46 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Substitution in (7.2.2.2.1-3) then obtains the desired “exact” form for ΔvSFm

BI(m-1)
:

For Non-Rotating B Frame Angular-Rate/Specific-Force Vectors With
Constant Angular-Rate/Specific-Force Magnitude Ratio:

ΔvSFm

BI(m-1) = υm +
(1 - cos αm)

αm
2

 αm × υm +
1

αm
2

 1 -
sin αm

αm

 αm × αm × υm (7.2.2.2.1-5)

Equation (7.2.2.2.1-5) constitutes an exact solution for ΔvSFm

BI(m-1)
 under non-rotating B Frame

angular-rate/specific-force vectors and fixed ratio between the angular-rate/specific-force
magnitudes. We are now in a position to compare Equation (7.2.2.2.1-5) with Equation
(7.2.2.2-23) under the “exact” conditions to identify the “exact” rotation compensation term.
The discussion following Equation (7.2.2.2-22) in Section 7.2.2.2 showed that the sculling term

ΔvSculm is zero under the “exact” conditions. Setting ΔvSculm to zero in (7.2.2.2-23) finds that

ΔvSFm

BI(m-1)
 is given by:

For Non-Rotating B Frame Angular-Rate/Specific-Force Vectors With
Constant Angular-Rate/Specific-Force Magnitude Ratio:

ΔvSFm

BI(m-1)
 = υm + ΔvRotm (7.2.2.2.1-6)

Comparing Equations (7.2.2.2.1-5) and (7.2.2.2.1-6) it should be clear that the “exact” rotation

compensation term ΔvRotm is:

ΔvRotm =
1 - cos αm

αm
2

 αm × υm +
1

αm
2

 1 -
sin αm

αm

 αm × αm × υm (7.2.2.2.1-7)

The trigonometric coefficients in (7.2.2.2.1-7) can be calculated from the Taylor series
expansion formulas:

1 - cos αm

αm
2

 =
1

2 !
 -

αm
2

4 !
 +

αm
4

6 !
 -

1

αm
2

 1 -
sin αm

αm

 =
1
3 !

 -
αm

2

5 !
 +

αm
4

7 !
 -

(7.2.2.2.1-8)

Equation (7.2.2.2.1-7) with (7.2.2.2.1-8) constitutes an alternative algorithm for the

(7.2.2.2-25) ΔvRotm rotation compensation term that will generate an exact solution for

ΔvSFm

BI(m-1)
 in (7.2.2.2-23) under non-rotating B Frame angular-rate/specific-force vectors with

fixed ratio between the angular-rate/specific-force magnitudes. In contrast, the (7.2.2.2-25)

VELOCITY UPDATE ALGORITHMS 7-47

ΔvRotm
 algorithm is accurate to only first order. Note that to first order in αm, Equation

(7.2.2.2.1-7) with (7.2.2.2.1-8) reduces to the Equation (7.2.2.2-25) ΔvRotm
 form (as it should).

Finally, it is to be noted that Chapter 19 (Section 19.1) describes a unified approach to
strapdown algorithm design that uses a velocity translation vector (analogous to the rotation

vector) for an exact calculation of ΔvSFm

BI(m-1)
. The velocity translation vector concept is

formulated as an extension of Equation (7.2.2.2.1-5) to general motion (i.e., without requiring
the restriction of non-rotating B Frame angular-rate/specific-force vectors with fixed ratio
between the angular-rate/specific-force magnitudes invoked in this section). The unified
approach was developed by the author following the original publication of this book in 2000.

7.2.2.2.2 Integrated Rate, Acceleration And Sculling Algorithm Forms

In this section we develop digital algorithms for calculating the υm, ΔvSculm, ΔvRot/Sculm

integral terms in Equations (7.2.2.2-23) - (7.2.2.2-24) and (7.2.2.2-26) - (7.2.2.2-27) (the αm

term is provided from attitude algorithm Equations (7.1.1.1.1-17)).

We seek algorithms for calculating ΔvSculm and ΔvRot/Sculm as defined in Equations

(7.2.2.2-24) and (7.2.2.2-27):

ΔvScul(t) =
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tm-1

t

ΔvSculm = ΔvScul(tm) (7.2.2.2.2-1)

ΔvRot/Scul(t) = α(τ) × aSF
B

 dτ
tm-1

t

ΔvRot/Sculm = ΔvRot/Scul(tm) (7.2.2.2.2-2)

Since it is more general, and includes the (7.2.2.2.2-2) integrand, let’s begin with the

development of a digital algorithm for calculating the (7.2.2.2.2-1) sculling term ΔvSculm.

Following the identical procedure used in Section 7.1.1.1.1 for the coning algorithm, let us
consider the integration of (7.2.2.2.2-1) as divided into portions up to and after a general time
tl-1 within the tm-1 to tm interval so that the (7.2.2.2.2-1) integral is equivalently:

ΔvScul(t) = ΔvScull-1 + δvScul(t)

δvScul(t) =
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tl-1

t (7.2.2.2.2-3)

7-48 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

We now define the next l cycle time point tl within the tm-1 to tm interval so that at tl Equations

(7.2.2.2.2-3) with α(τ) and υ(τ) from (7.2.2.2-24), including initial conditions, become:

α(τ) = αl-1 + Δα(τ)

Δα(τ) = ωIB
B

 dt
t l-1

τ

Δαl = ωIB
B

 dt
t l-1

tl

αl = αl-1 + Δαl αm = αl(tl = tm) αl = 0 At τ = tm-1.

υ(τ) = υl-1 + Δυ(τ)

Δυ(τ) = aSF
B

 dt
t l-1

τ

 Δυl = aSF
B

 dt
t l-1

tl

 (7.2.2.2.2-4)

υl = υl-1 + Δυl υm = υl(tl = tm) υl = 0 At τ = tm-1.

ΔvScull = ΔvScull-1 + δvScull

δvScul(t) =
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tl-1

t

δvScull = δvScul(tl)

ΔvSculm = ΔvScull(tl = tm) ΔvScull = 0 At t = tm-1

Equations (7.2.2.2.2-4) constitute the construct of a digital recursive algorithm at the l computer

cycle rate for calculating the ΔvSculm sculling term as a summation of changes in ΔvScul over

the tm-1 to tm interval. It remains to determine a digital equivalent for the δvScull integral term in

(7.2.2.2.2-4).

Beginning from (7.2.2.2.2-4), we substitute α(τ) and υ(τ) into δvScul(t), incorporate the

definitions for Δαl and Δυl, and evaluate at tl. The result is:

δvScull =
1
2

 αl-1 × Δυ l + υl-1 × Δα l +
1
2

 Δα (t) × aSF
B

 + Δυ(t) × ωIB
B

 dt
tl- 1

tl

(7.2.2.2.2-5)

As for the Section 7.1.1.1.1 coning algorithm design process, development of a digital
algorithm for the integral term in sculling Equation (7.2.2.2.2-5) is based on an assumed form
for the B Frame angular-rate/specific-force history during the tl-1 to tl time interval. Unlike the

VELOCITY UPDATE ALGORITHMS 7-49

coning algorithm, very little published work exists regarding approaches for selecting angular-
rate/linear-acceleration time histories for application to sculling algorithm design. In principle,
the approaches used for the coning algorithm can also be applied for sculling, including
optimization for sculling type motion (See discussion following Equation (7.1.1.1.1-6), and
Reference 13). For this section, we provide an example based on general linearly changing
angular-rate/specific-force over the tl-1 to tl time interval, the coefficients for which are
calculated from current and past l cycle sensor samples (as in Section 7.1.1.1.1). Thus, we
approximate:

ωIB
B

 ≈ A + B t - t l-1 aSF
B

 ≈ C + D t - t l-1 (7.2.2.2.2-6)

where

A, B, C, D = Constant vectors.

With (7.2.2.2.2-5) and the Δα, Δυ definitions in (7.2.2.2.2-4):

Δα(t) = A t - t l-1 +
1
2

 B t - t l-1
 2

Δυ(t) = C t - t l-1 +
1
2

 D t - t l-1
 2

(7.2.2.2.2-7)

Substituting (7.2.2.2.2-6) and (7.2.2.2.2-7) then yields for the integrand in (7.2.2.2.2-5):

α(t) × aSF
B

 + υ(t) × ωIB
B

 = A(t - tl-1) +
1
2

 B (t- tl-1)2 × C + D(t - tl-1)

+ C(t - tl-1) +
1
2

 D (t - tl-1)2 × A + B(t - tl-1)

= (A × C) (t - tl-1) + (A × D) +
1
2

 (B × C) (t - tl-1)2 +
1
2

 (B × D) (t - tl-1)3 (7.2.2.2.2-8)

+ (C × A) (t - tl-1) + (C × B) +
1
2

 (D × A) (t - tl-1)2 +
1
2

 (D × B) (t - tl-1)3

=
1
2

 A × D + C × B (t - tl-1)2

With (7.2.2.2.2-8), the integral term in (7.2.2.2.2-5) becomes:

1
2

 Δα (t) × aSF
B

 + Δυ(t) × ωIB
B

 dt
tl-1

tl

 =
1
12

 A × D + C × B Tl
3

(7.2.2.2.2-9)

where
Tl = Time interval t l - t l-1 (i.e., the l cycle computation period).

7-50 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Following the same procedure as in Section 7.1.1.1.1, the set of A, B, C, D constants in
(7.2.2.2.2-9) can be calculated for each tl-1 to tl time interval using successive measurements of
integrated angular rate and specific force acceleration increments from the inertial sensors. Two
such intervals would be required to uniquely determine the four constant vectors A, B, C, D for
the (7.2.2.2.2-6) linearly ramping model (a parabolic model would be characterized by 6
constant vectors and require three sensor measurements for determination, etc.). The result is
then substituted for A, B, C, D in (7.2.2.2.2-9) to derive the algorithm equivalent to the
(7.2.2.2.2-5) integral term over the tl-1 to tl time interval. The successive sensor integral
increments can be sampled at the l cycle rate in which case measurements would be taken at tl-1
and tl, each spanning tl-2 to tl-1 and tl-1to tl (or tl-2 to tl, overall). Alternatively (as in References
11, 12 and 22), the sensor samples can be taken within the tl-1 to tl time interval, two samples
per l cycle for the (7.2.2.2.2-6) linearly ramping model, three for a parabolic model, etc. For
sensor samples taken at the l cycle rate as in Section 7.1.1.1.1, the results for the A, B, C, D
terms in (7.2.2.2.2-9) are:

A =
1

2 Tl
 Δαl + Δαl-1 B =

1

Tl
 2

 Δαl - Δαl-1

C =
1

2 Tl
 Δυl + Δυl-1 D =

1

Tl
 2

 Δυl - Δυl-1

(7.2.2.2.2-10)

Substitution of (7.2.2.2.2-10) in (7.2.2.2.2-9) then yields:

1
2

 Δα (t) × aSF
B

 + Δυ(t) × ωIB
B

 dt
tl-1

tl

=
1

12

1
2

 Δαl + Δαl-1 × Δυl - Δυl-1 + Δυl + Δυl-1 ×
1
2

 Δαl - Δαl-1

=
1

24
 Δαl × Δυl - Δαl × Δυl-1 + Δαl-1 × Δυl - Δαl-1 × Δυl-1 (7.2.2.2.2-11)

+ Δυl × Δαl - Δυl × Δαl-1 + Δυl-1 × Δαl - Δυl-1 × Δαl-1

=
1

12
 Δαl-1 × Δυl + Δυl-1 × Δαl

Finally, we substitute (7.2.2.2.2-11) into (7.2.2.2.2-5) to obtain the desired equation for δvScull :

δvScull =
1
2

 α l-1 +
1
6

 Δαl-1 × Δυ l + υ l-1 +
1
6

 Δυl-1 × Δα l (7.2.2.2.2-12)

A digital algorithm for αm, υm and ΔvSculm is determined from the above results as a

composite of Equations (7.2.2.2.2-4) and (7.2.2.2.2-12):

VELOCITY UPDATE ALGORITHMS 7-51

Δαl, αl =
Integrated Angular Rate Sensor Outputs
From Algorithm Equations (7.1.1.1.1-17)

(7.2.2.2.2-13)

Δυl = dυ
t l-1

t l

Summation Of Integrated Specific Force

Output Increments From Accelerometers

υl = υl-1 + Δυl υm = υl(tl = tm) υl = 0 At t = tm-1.

(7.2.2.2.2-14)

δvScull =
1
2

 α l-1 +
1
6

 Δα l-1 × Δυ l + υ l-1 +
1
6

 Δυ l-1 × Δα l

ΔvScull = ΔvScull-1 + δvScull ΔvSculm = ΔvScull(tl = tm) (7.2.2.2.2-15)

ΔvScull = 0 At t = tm-1

where

dυ = aSF
B

 dt = Differential integrated specific force acceleration increment (i.e.,

analytical representation of pulse output from strapdown
accelerometers).

Equations (7.2.2.2.2-15) for ΔvSculm has been classified as a “second order algorithm”

because it includes current and past l cycle Δα, Δυ products. From the analysis leading to

Equation (7.2.2.2.2-12), the l, l-1 cycle Δα, Δυ product terms in δvScull (i.e., the 1 / 6 terms)

stem from the approximation of linearly ramping angular rate and specific force acceleration in
the tl-2 to tl time interval. If the angular rate and specific force acceleration terms were
approximated as parabolically varying functions of time, a “third order algorithm” would result

containing l, l-1, and l-2 cycle Δα, Δυ products. If the angular rate and specific force
acceleration were approximated as constants over tl-1 to tl, the 1 / 6 terms in (7.2.2.2.2-15)

would vanish, resulting in a “first order algorithm” for ΔvSculm. If angular rates and

accelerations are slowly varying we can approximate ΔvSculm as being equal to zero.

Alternatively (and more accurately), we can set the l cycle rate equal to the m cycle rate which

equates ΔvSculm to δvScull in Equations (7.2.2.2.2-15) calculated once at time tm (and noting

from the initial condition definitions in (7.2.2.2.2-13) and (7.2.2.2.2-14), that αl-1 and υl-1

would be zero). Finally, we note, as in Section 7.1.1.1.1, that setting the l and m rates equal can
also be achieved by increasing the m rate to match the l rate. The result would be a single high
speed higher order algorithm with a simpler software architecture than the two-speed approach,
but requiring more throughput. Continuing advances in the speed of modern day computers
may make this the preferred approach for the future.

7-52 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Using the same procedure as above for ΔvSculm, a digital integration algorithm can also be

developed for ΔvRot/Sculm defined in Equation (7.2.2.2.2-2). As in (7.2.2.2.2-3) - (7.2.2.2.2-4)

we first obtain:

α(τ) = αl-1 + Δα(τ)

Δα(τ) = ωIB
B

 dt
t l-1

τ

 Δαl = ωIB
B

 dt
t l-1

tl

αl = αl-1 + Δαl αl = 0 At τ = tm-1

ΔvRot/Scull = ΔvRot/Scull-1 + δvRot/Scull (7.2.2.2.2-16)

δvRot/Scul(t) = α(τ) × aSF
B

 dτ
tl-1

t

δvRot/Scull = δvRot/Scul(tl)

ΔvRot/Sculm = ΔvRot/Scull(tl = tm)

vRot/Scull = 0 At t = tm-1

Proceeding from (7.2.2.2.2-16), we substitute α(τ) in δvRot/Scul(t) and evaluate at tl:

δvRot/Scull = αl-1 × Δυ l + Δα(t) × aSF
B

 dt
tl-1

tl

Δυl = aSF
B

 dt
t l-1

t l

(7.2.2.2.2-17)

With (7.2.2.2.2-6) and (7.2.2.2.2-7) for Δα(t) and aSF
B

, the integrand in (7.2.2.2.2-17)
becomes:

Δα(t) × aSF
B

 = A(t - tl-1) +
1
2

 B (t- tl-1)2 × C + D(t - tl-1)

= (A × C) (t - tl-1) + (A × D) +
1
2

 (B × C) (t - tl-1)2 +
1
2

 (B × D) (t - tl-1)3
(7.2.2.2.2-18)

With (7.2.2.2.2-18), the integral term in (7.2.2.2.2-17) becomes:

VELOCITY UPDATE ALGORITHMS 7-53

Δα(t) × aSF
B

 dt
tl-1

tl

 =
1
2

 (A × C) Tl
 2

 +
1
3

 (A × D) +
1
2

 (B × C) Tl
 3

 +
1
8

 (B × D) Tl
 4

(7.2.2.2.2-19)

Substituting (7.2.2.2.2-10) for A, B, C, D, expansion and recombination obtains:

Δα(t) × aSF
B

 dt
tl-1

tl

 =
1
2

 (Δαl × Δυl) +
1
12

 Δαl-1 × Δυl + Δυl-1 × Δαl (7.2.2.2.2-20)

With (7.2.2.2.2-20), the δvRot/Scull term in Equations (7.2.2.2.2-17) then becomes:

δvRot/Scull = α l-1 +
1
2

 Δαl × Δυ l +
1
12

 Δαl-1 × Δυl + Δυl-1 × Δαl (7.2.2.2.2-21)

A digital algorithm for υm and ΔvRot/Sculm in (7.2.2.2-26) is determined from the above

results as a composite of Equations (7.2.2.2.2-21) and (7.2.2.2.2-16) with α, Δα, υ, Δυ terms
from (7.2.2.2.2-13) - (7.2.2.2.2-14):

Δαl, αl =
Integrated Angular Rate Sensor Outputs
From Algorithm Equations (7.1.1.1.1-17)

(7.2.2.2.2-22)

Δυl = dυ
t l-1

t l

Summation Of Integrated Specific Force

Output Increments From Accelerometers

υl = υl-1 + Δυl υm = υl(tl = tm) υl = 0 At t = tm-1.

 (7.2.2.2.2-23)

__

δvRot/Scull = α l-1 +
1
2

 Δαl × Δυ l +
1
12

 Δαl-1 × Δυl + Δυl-1 × Δαl

 ΔvRot/Scull = ΔvRot/Scull-1 + δvRot/Scull

 ΔvRot/Sculm = ΔvRot/Scull(tl = tm)

 ΔvRot/Scull = 0 At t = tm-1

(7.2.2.2.2-24)

Equation (7.2.2.2.2-24) for ΔvRot/Sculm has been classified as a “second order algorithm”

because it includes current and past l cycle Δα, Δυ products. From the analysis leading to

Equation (7.2.2.2.2-21), the l and l-1 cycle Δα, Δυ product terms in δvRot/Scull (i.e., the 1 / 12

term) stem from the approximation of linearly ramping angular rate and specific force

7-54 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

acceleration in the tl-2 to tl time interval. If the angular rate and specific force acceleration terms
were approximated as parabolically varying functions of time, a “third order algorithm” would

result containing l, l-1, and l-2 cycle Δα, Δυ products. If the angular rate and specific force
acceleration were approximated as constants (i.e., slowly varying) over tl-1 to tl, the 1 / 12 term

in (7.2.2.2.2-24) would vanish, resulting in a “first order algorithm” for δvRot/Scull.

Alternatively, for slowly varying angular rates and accelerations we can set the l cycle rate equal

to the m cycle rate which equates ΔvRot/Sculm to δvRot/Scull in Equations (7.2.2.2.2-24)

calculated once at time tm (and noting from the initial condition definitions in (7.2.2.2.2-22) that

αl-1 would be zero). Finally, we note, as in Section 7.1.1.1.1, that setting the l and m rates equal

can also be achieved by increasing the m rate to match the l rate. The result would be a single
high speed higher order algorithm with a simpler software architecture than the two-speed
approach, but requiring more throughput. Continuing advances in the speed of modern day
computers may make this the preferred approach for the future.

7.3 POSITION UPDATE ALGORITHMS

In this section we develop digital integration algorithms for calculating position relative to the

earth in the form of altitude (h) above the earth surface and the CN
E

 direction cosine matrix

defining the angular attitude between the local level N Frame and the earth fixed E Frame (from
which latitude/longitude can be extracted). Two algorithm forms are developed; a “typical”
form based on trapezoidal integration of velocity, and a high resolution form which accounts for
dynamic attitude and velocity changes within the position update period. The high resolution
algorithm is modeled after the Section 7.2 two-speed velocity update approach; a moderate
speed algorithm is used for position update that is analytically exact under constant angular-
rate/specific-force-acceleration during the position update period; a high speed algorithm is then
used to measure rectifying dynamic angular-rate/specific-force effects (denoted by the writer as
“scrolling”) for input to the moderate speed algorithm.

Both the typical and high resolution forms can be represented by continuous differential
Equations (4.4.1.2-8) and (4.4.1.1-1) repeated below:

h = uZN
N

 ⋅ vN (7.3-1)

CN
E

 = CN
E

 ρN× (7.3-2)

where

ρN
 = Transport rate (also known as ωEN

N
), the angular rate of the N frame relative to

the E Frame, projected on N Frame axes.

POSITION UPDATE ALGORITHMS 7-55

The typical and high resolution position algorithm forms derive from a general updating

formulation for h and CN
E

.

7.3.1 POSITION UPDATING IN GENERAL

The general altitude h updating algorithm is formulated as the integral of Equation (7.3-1)
over a computer update cycle:

hn = hn-1 + Δhn (7.3.1-1)

Δhn = uZN
N

 ⋅ vN

tn-1

tn

 dt (7.3.1-2)

where

n = Computer cycle index for position updates.

Allowing for a higher speed digital computation loop (i.e., the m loop for attitude and velocity
integration), Equation (7.3.1-2) can be written as:

Δhn = uZN
N

 ⋅ ΔRm
N∑

m=1

j

(7.3.1-3)

ΔRm
N

 ≡ vN

tm - 1

tm

 dt (7.3.1-4)

where

j = Number of m cycles in an n cycle.

If vertical channel control is to be included as in Equations (4.4.1.2.1-1) - (4.4.1.2.1-3), the
following additional altitude update equation would be included:

hn+ = hn- - evc2n Tn (7.3.1-5)

where
-, + = Indicators for hn value before (-) and after (+) the vertical stabilization addition.

evc2n = Altitude control signal calculated as in Equations (7.2-6).

Tn = Time interval between position update cycles.

The general updating algorithm for the CN
E

 direction cosine matrix is designed to achieve the

same numerical result at the update times as would the formal continuous integration of the

7-56 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Equations (7.3-2) CN
E

 expression at the same time instant. The algorithm is constructed by

envisioning the local level navigation N Frame angular history in the digital updating world

(produced in Equation (7.3-2) by ρN
) as being constructed of successive discrete attitudes

relative to the earth (E Frame) at each update time instant. We apply special nomenclature to
describe the coordinate frame attitude history where:

NE(n) = Coordinate frame corresponding to the discrete attitude of the N Frame in
rotating earth space (E) at computer update time tn.

With this definition, the general updating algorithm for CN
E

 is constructed as follows using the

Equation (3.2.1-5) direction cosine matrix product chain rule:

CNE(n)

E
= CNE(n-1)

E
 CNE(n)

NE(n-1) (7.3.1-6)

where

CNE(n-1)

E
 = CN

E
 relating the N Frame at time tn-1 to the E Frame.

CNE(n)

E
 = CN

E
 relating the N Frame at time tn to the E Frame.

CNE(n)

NE(n-1) = Direction cosine matrix that accounts for N Frame rotation relative to the E

Frame from its attitude at time tn-1 to its attitude at time tn.

The CNE(n)

NE(n-1) matrix in Equation (7.3.1-6) is defined formally as:

CNE(n)

NE(n-1) = I + CN(t)
NE(n-1)

 dt
tn -1

tn

(7.3.1-7)

where

CN(t)
NE(n-1) = Direction cosine matrix relating the N Frame attitude at an arbitrary time t in

the interval tn-1 to tn, with its NE(n-1) attitude.

Following the same development procedure for CBI(m)

BI(m-1) in Section 7.1.1.1, the CNE(n)

NE(n-1)

matrix can also be expressed in terms of a rotation vector defining the Frame NE(n) attitude
relative to Frame NE(n-1). Applying Equations (3.2.2.1-8) and (3.2.2.1-9) obtains:

POSITION UPDATE ALGORITHMS 7-57

CNE(n)

NE(n-1) = I +
sin ξn

ξn

 ξn× +
(1 - cos ξn)

ξn
2

 ξn× ξn×

sin ξn

ξn

 = 1 -
ξn

2

3 !
 +

ξn
4

5 !
 -

(1 - cos ξn)

ξn
2

 =
1
2 !

 -
ξn

2

4 !
 +

ξn
4

6 !
 -

(7.3.1-8)

where

ξn = Rotation vector defining the Frame NE(n) attitude at time tn relative to the Frame
NE(n-1) attitude at time tn-1.

ξn = Magnitude of ξn.

The angular rotation rate of the N Frame relative to the earth ρN
 is small and typically no

larger than one or two earth rates. As such, because the tn-1 to tn update cycle is relatively short,

ξn will be very small in magnitude. Since ρN
 is small and slowly changing over a typical tn-1 to

tn update cycle (due to small changes in velocity and position over this time period) ρN
 can be

approximated as non-rotating. The result is that ξn for (7.3.1-8) can be calculated as the integral

of the simplified form of the Equation (3.3.5-14) rotation vector rate expression in which the
cross-product terms are neglected:

ξn ≈ ρN
 dt

tn-1

tn

(7.3.1-9)

A discrete digital algorithm for the Equation (7.3.1-9) ξn integral can be constructed by first

approximating ρN
 from (4.1.1-6) as:

ρN
 ≈ ρZNn-1/2 uZN

N
 + FCn-1/2

N
 uZN

N
 × vN (7.3.1-10)

where

n-1/2 = Subscript indicating value for parameter midway between times tn-1 and tn.

FC
N

 = Curvature matrix (3 by 3) in the N Frame that is a function of position (CN
E

, h)

with elements 3, i and i, 3 equal to zero and the remaining elements symmetrical
about the diagonal. For a spherical earth model, the “remaining” elements are
zero off the diagonal and the reciprocal of the radial distance from earth center to
the INS on the diagonal. For an ellipsoidal earth model, the “remaining” terms
represent the local curvature on the earth surface projected to the INS altitude
(See Equations (5.3-18) for closed-form expression).

7-58 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Using (7.3.1-10) in (7.3.1-9) and applying the (7.3.1-4) definition, then obtains:

ξn ≈ ρZNn-1/2 uZN
N

 Tn + FCn-1/2

N
 uZN

N
 × ΔRm

N∑
m=1

j

(7.3.1-11)

The n-1/2 terms in (7.3.1-11) are all functions of position which has not yet been updated.
Hence, in order to calculate the n-1/2 terms, an approximate extrapolation formula must be

used based on previously computed values for the parameters. For example, a linear
extrapolation formula using the last two computed values for would be:

 n-1/2 ≈ n-1 +
1
2

 n-1 - n-2 =
3
2

 n-1 -
1
2

 n-2 (7.3.1-12)

The method for calculating the ΔRm
N

 term for (7.3.1-3) and (7.3.1-11) from the Equation

(7.3.1-4) integral depends on whether typical (e.g., trapezoidal) integration is used for position
updating or whether a more precision high resolution integration approach is to be applied.

We note in passing that based on the smallness of ξn, Equations (7.3.1-8) for CNE(n)

NE(n-1) can

also be simplified. For example, a second order algorithm version (accurate to second order in

ξn) is from(7.3.1-8):

CNE(n)

NE(n-1) ≈ I + ξn× +
1
2

 ξn× ξn× (7.3.1-13)

Except for the initial alignment argument, the comments at the end of Section (7.1.1.2)
regarding the advisability of using the simplified Equation (7.1.1.2-5) direction cosine local

level frame updating algorithm also apply regarding use of Equation (7.3.1-13) for CNE(n)

NE(n-1)

rather than the complete Equation (7.3.1-8) form.

7.3.2 TYPICAL POSITION UPDATING ALGORITHM

Applying typical trapezoidal integration for the h and CN
E

 updating process would utilize

Equations (7.3.1-1), (7.3.1-3), (7.3.1-5), (7.3.1-6), (7.3.1-8), (7.3.1-11) and (7.3.1-12) with a

trapezoidal integration algorithm in (7.3.1-4) for ΔRm
N

:

ΔRm
N

 ≈
1
2

 vm
N

 + vm-1
N

 Tm (7.3.2-1)

POSITION UPDATE ALGORITHMS 7-59

7.3.3 HIGH RESOLUTION POSITION UPDATING ALGORITHMS

The high resolution approach for implementing the h and CN
E

 updating process would utilize

Equations (7.3.1-1), (7.3.1-3), (7.3.1-5), (7.3.1-6), (7.3.1-8), (7.3.1-11) and (7.3.1-12) with a

high speed digital integration algorithm in (7.3.1-4) for ΔRm
N

.

The digital algorithm for ΔRm
N

 is developed by first expanding the (7.3.1-4) vN integrand.

Using the expression for vm
N

 in Equations (7.2-2) with (7.2-4), vN can be defined as a

continuous time function at a general time point t since the last tm-1 update:

vN(t) = vm-1
N

 + CL
N

 ΔvSF

L
(t) + ΔvG/CORm

N

t - tm-1

Tm

ΔvSF

L
(t) = CB

L

tm-1

t

 aSF
B

 dτ

(7.3.3-1)

Equations (7.3.3-1) are based on the assumption that gravity/Coriolis term ΔvG/CORm

N
 can be

approximated as the integral of a constant over tm-1 to tm. With (7.3.3-1), ΔRm
N

 from (7.3.1-4)

is given by:

ΔRm
N

 = vm-1
N

 +
1
2

 ΔvG/CORm

N
 Tm + CL

N
 ΔRSFm

L

ΔRSFm

L
 = ΔvSF

L
(t)

tm - 1

tm

 dt ΔvSF
L

(t) = CB
L

tm - 1

t

 aSF
B

 dτ

(7.3.3-2)

where

ΔRSFm

L
 = L Frame coordinate portion of ΔRm produced by specific force acceleration.

Equations (7.2.2-2), (7.2.2-4) and (7.2.2.2-22) show that ΔvSF
L

(t) in (7.3.3-2) can be

approximated to first order (in body rotation angle) by:

ΔvSF
L

(t) =
1
2

 CLI(n-1)

L(t)
 + CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t) =
1
2

 CL(m-1)

L(t)
 + I CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t)

 =
1
2

 CL(m-1)

L(t)
 - I CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t) + CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t)
(7.3.3-3)

(Continued)

7-60 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

=
1
2

 CL(m-1)

L(m) - I
t - tm-1

Tm
 CL(n-1)

L(m-1) ΔvSFm

L(n-1)

t - tm-1

Tm
 + CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t)

=
1
2

 CL(m-1)

L(m) - I CL(n-1)

L(m-1) ΔvSFm

L(n-1)

t - tm-1
 2

Tm
 2

 + CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t)

=
1
2

 CL(n-1)

L(m) - CL(n-1)

L(m-1) ΔvSFm

L(n-1)

t - tm-1
 2

Tm
 2

 + CL(n-1)

L(m-1) ΔvSF
L(n-1)

(t)
(7.3.3-3)

(Continued)

ΔvSF
L(n-1)(t) = CB(m-1)

L(n-1) ΔvSF
B(m-1)(t)

ΔvSF
B(m-1)(t) = υ(t) +

1
2

 α(t) × υ(t) +
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tm-1

t

α(τ) = ωIB
B

tm - 1

τ

 dt υ(τ) = aSF
B

tm - 1

τ

 dt

where

CB(m-1)

L(n-1) = CB
L

 matrix updated for B Frame motion at time t = tm-1 and for L Frame

motion at time t = tn-1.

CL(n-1)

L(m) , CL(n-1)

L(m-1) = Current and past m cycle values for the direction cosine matrix

relating Frame L at times tn-1 and tm (as calculated with Equations
(7.2.2.1-1) and (7.2.2.1-4)).

In Equations (7.3.3-3), the “I” notation in subscripts and superscripts used for clarity in

Equations (7.2.2-2) and (7.2.2-4), has been dropped for simplicity. In addition, CL(m-1)

L(t)
 - I and

ΔvSF
L(n-1)(t) in the first part of the ΔvSF

L
(t) expression have been approximated to be linearly

ramping in time over tm-1 to tm. Note also, as discussed in Section 7.2.2.1, that the CL(n-1)

L

terms in (7.3.3-3) can be approximated by the identity matrix for all but very high precision
applications.

Based on (7.3.3-3), the (7.2.2.2-24) definitions, and including the simplified (7.2.2.1-1) form

for CL(n-1)

L(m) , the ΔRSFm

L

term in (7.3.3-2) can be defined by the equivalent forms:

POSITION UPDATE ALGORITHMS 7-61

ΔRSFm

L
 = -

1
6

 ζn-1,m - ζn-1,m-1 × ΔvSFm

L(n-1)
 Tm + CL(n-1)

L(m-1) CB(m-1)

L(n-1) ΔRSFm

B(m-1)

ΔRSFm

B(m-1) = ΔvSF
B(m-1)

(t) dt
tm - 1

tm

 = υ(t) +
1
2

 α(t) × υ(t) + ΔvScul(t) dt
tm - 1

tm

ΔvScul(t) =
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tm - 1

t
(7.3.3-4)

 α(τ) = ωIB
B

tm - 1

τ

 dt υ(τ) = aSF
B

tm - 1

τ

 dt

where

ΔvScul(t) = Velocity change since tm-1 due to sculling oscillatory motion.

Following a similar development path as used in Section 7.2.2.2 for the body frame

integrated specific force acceleration increment, the
1
2

 α(t) × υ(t) dt term in the Equation

(7.3.3-4) ΔRSFm

B(m-1) expression can be revised into a non-integral term plus an integral term that

vanishes under constant angular-rate/specific-force-acceleration, both being of first order
accuracy. The non-integral term will then be extended into a more accurate form that is exact
under constant angular-rate/specific-force. We begin using classical integration by parts

substitution (as in Section 7.2.2.2 leading to (7.2.2.2-21)), to show that the
1
2

 α(t) × υ(t) dt

term has the following equivalent forms:

r0 =
1
2

 α(t) × υ(t) dt
tm - 1

tm

r1 =
1
2

 α(t) × υ(t) dt
tm - 1

tm

 =
1
2

 Sαm × υm -
1
2

 Sα(t) × aSF
B

 dt
tm - 1

tm

r2 =
1
2

 α(t) × υ(t) dt
tm - 1

tm

 =
1
2

 αm × Sυm +
1
2

 Sυ(t) × ωIB
B

 dt
tm - 1

tm

(7.3.3-5)

(Continued)

7-62 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

Sα(t) = α(τ) dτ
tm - 1

t

Sυ(t) = υ(τ) dτ
tm - 1

t
(7.3.3-5)

(Continued)

αm = α(tm) υm = υ(tm)

Sαm = Sα(tm) Sυm = Sυ(tm)

where

r0 = Original analytical form of the integral term.

r1, r2 = Alternative analytical forms of the integral term.

Sα, Sυ = Time integral of α, υ.

Since r1 and r2 are analytically equivalent to the original r0 integral form, we can write:

1
2

 α(t) × υ(t) dt
tm - 1

tm

 =
1
3

 r0 + r1 + r2 (7.3.3-6)

Substituting for r0, r1, and r2 from (7.3.3-5) into (7.3.3-6) and combining terms then yields:

1
2

 α(t) × υ(t) dt
tm - 1

tm

 =
1
6

 Sαm × υm + αm × Sυm

 -
1
6

 Sα(t) × aSF
B

 - Sυ(t) × ωIB
B

 - α(t) × υ(t) dt
tm - 1

tm

(7.3.3-7)

We now substitute Equation (7.3.3-7) with the Equation (7.3.3-5) definitions into Equations

(7.3.3-2) and (7.3.3-4) to obtain the desired form for calculating ΔRm
N

:

ΔRm
N

 = vm-1
N

 +
1
2

 ΔvG/CORm

N
 Tm + CL

N
 ΔRSFm

L

ΔRSFm

L
 = -

1
6

 ζn-1,m - ζn-1,m-1 × ΔvSFm

L(n-1)
 Tm + CL(n-1)

L(m-1) CB(m-1)

L(n-1) ΔRSFm

B(m-1)

(7.3.3-8)

ΔRSFm

B(m-1) = Sυm + ΔRRotm + ΔRScrlm (7.3.3-9)

with

POSITION UPDATE ALGORITHMS 7-63

ΔRScrlm =
1
6

 6 ΔvScul(t) - Sα(t) × aSF
B

 + Sυ(t) × ωIB
B

 + α(t) × υ(t) dt
tm-1

tm

ΔvScul(t) =
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tm-1

t

Sα(t) = α(τ) dτ
tm - 1

t

Sαm = Sα(tm) (7.3.3-10)

Sυ(t) = υ(τ) dτ
tm - 1

t

Sυm = Sυ(tm)

α(τ) = ωIB
B

 dt
tm - 1

τ

αm = α(tm)

υ(τ) = aSF
B

 dt
tm - 1

τ

υm = υ(tm)

and

ΔRRotm =
1
6

 Sαm × υm + αm × Sυm (7.3.3-11)

where

ΔRRotm = “Position Rotation Compensation” analogous to the “Velocity Rotation
Compensation” term in Equation (7.2.2.2-23).

ΔRScrlm = “Scrolling” term analogous to the “sculling” term in Equation (7.2.2.2-23).
The term “scrolling” was coined by the author merely to have a name for
the term and also to have one that sounds like “sculling”, but for position
integration (change in the position vector R stressing the “R” sound). The
complex mathematical derivations and associated algorithms that
accompany “scrolling” may prove to be a more appropriate reason for the
name.

The ΔvG/CORm

N
, ΔvSFm

L(n-1), CL(n-1)

L(m-1) and ζn-1,m terms in (7.3.3-8) are provided from Equations

(7.2.1-1) - (7.2.1-3), (7.2.2-2), (7.2.2.1-1), (7.2.2.1-4) and (7.2.2.1-6) - (7.2.2.1-7) of the
velocity update computations.

7-64 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

A key characteristic of (7.3.3-9) is that the ΔRScrlm scrolling term is identically zero under

constant body axis angular rate and specific force conditions. This can be readily verified from
Equations (7.3.3-10) by substitution of a constant angular rate and specific force vector for the

ωIB
B

 and aSF
B terms, and carrying out the indicated operations analytically. As such, ΔRScrlm

will only produce an output under the presence of dynamic body axis angular-rate/specific-force
components. This is an important characteristic because for most real dynamic environments,
the magnitude of high frequency angular-rate/specific-force is small so that first order
approximations accurately apply (first order in integrated body angular-rate/specific-force over

the tm-1 to tm time interval, the basis for the analytical form of ΔRScrlm in Equations

(7.3.3-10)). We conclude that the analytical form for ΔRScrlm will also yield a reasonably

accurate solution under situations when the low frequency body angular rate and specific force
components are large. In contrast, the Equation (7.3.3-11) position rotation compensation

ΔRRotm term (also based on first order approximations) can have noticeable second order error

under extreme maneuvers. However, the form of (7.3.3-9) which has ΔRRotm separate from

other terms, allows us to expand ΔRRotm (in the following section) to a more accurate form that

is exact under constant angular-rate/specific-force (similar to the velocity rotation compensation
term in Section 7.2.2.2.1).

From the characteristics of the ΔRScrlm scrolling term delineated above, we see that this

term is to position integration what the “coning” term is to attitude integration and what the
“sculling” term is to velocity integration; each accounts for higher frequency body frame
dynamic inputs (i.e., angular rate and, if applicable, specific force acceleration) within the digital
integration m cycle update period; each is zero under constant body rate and, if applicable,
constant body specific force acceleration conditions. The coning and sculling terms are also
zero under the broader definitions of non-rotating B Frame angular rate (for coning), and non-
rotating B Frame angular-rate/specific-force coupled with constant angular-rate/specific-force
magnitude ratio (for sculling).

The following sections develop algorithms for the exact position rotation compensation term
in (7.3.3-9), and for the scrolling and other integral terms in (7.3.3-10).

7.3.3.1 EXACT POSITION ROTATION COMPENSATION ALGORITHM

The derivation of Equations (7.3.3-8) - (7.3.3-11) was based on small-angle/velocity-change

assumptions for the ΔRRotm and ΔRScrlm terms in the ΔRSFm

B(m-1) expression. An improved

accuracy version of ΔRRotm can also be developed by specifying the solution to be exact under

POSITION UPDATE ALGORITHMS 7-65

constant body angular rate and specific force acceleration, and to first order, equal ΔRRotm in

Equation (7.3.3-11) under general angular-rate/specific-force conditions. The improved
version, when utilized in Equations (7.3.3-9) yields a more accurate integration algorithm under
large magnitude angular-rate/linear-acceleration conditions than is provided by the Equation
(7.3.3-11) first order accuracy form.

The derivation of the exact position rotation compensation algorithm begins by returning to

the basic definition for ΔRSFm

B(m-1) in Equations (7.3.3-4):

ΔRSFm

B(m-1)
 = ΔvSF

B(m-1)
(t) dt

tm - 1

tm

(7.3.3.1-1)

Under constant B Frame specific force acceleration and non-coning angular rate, Equation

(7.2.2.2.1-1) becomes for ΔvSF
BI(m-1) at a general time t following tm-1:

For Non-Coning Angular Rate And Constant B Frame Specific Force:

ΔvSF
BI(m-1)(t) = aSF

B
 dτ

tm-1

t

 + uω × aSF
B

 sin α(τ) dτ
tm-1

t

 + uω × uω × aSF
B

 1 - cos α(τ) dτ
tm-1

t
(7.3.3.1-2)

where

uω = Unit vector along ωIB
B

 in which uω is constant in the B Frame.

α(τ) = Magnitude of the integral of ωIB
B

 from time tm-1 to time τ.

Substituting (7.3.3.1-2) into (7.3.3.1-1) finds for ΔRSFm

B
:

For Non-Coning Angular Rate And Constant B Frame Specific Force:

ΔRSFm

B(m-1)
 =

tm-1

tm

aSF
B

 dτ dt
tm-1

t

 + uω × aSF
B

tm-1

tm

sin α(τ) dτ dt
tm-1

t

 + uω × uω × aSF
B

tm-1

tm

1 - cos α(τ) dτ dt
tm-1

t
(7.3.3.1-3)

For constant B Frame angular rate we see from (7.2.2.2-7) that:

7-66 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

For Constant B Frame Angular Rate:

α(t) = ω dτ
tm - 1

t

 = ω (t - tm-1) ω = Constant. (7.3.3.1-4)

where

ω = Magnitude of ωIB
B

.

Applying (7.3.3.1-4) in (7.3.3.1-3) allows the integral terms containing α(τ) to be evaluated as:

For Constant B Frame Angular Rate:

tm-1

tm

sin α(τ) dτ dt
tm-1

t

 =
tm-1

tm

sin ω (τ - tm-1) dτ dt
tm-1

t

=
1

ω
 1 - cos ω (t - tm-1) dt

tm-1

tm

 =
1

ω
 Tm -

1

ω
 sin (ωTm) =

1

ω2
 αm - sin αm

(7.3.3.1-5)

tm-1

tm

1 - cos α(τ) dτ dt
tm-1

t

 =
tm-1

tm

1 - cos ω (τ - tm-1) dτ dt
tm-1

t

= (t - tm-1) -
1

ω
 sin ω (t - tm-1) dt

tm-1

tm

 =
1
2

 Tm
 2

 -
1

ω2
 1 - cos (ωTm)

=
1

ω2

1
2

 αm
2

 - (1 - cos αm)

where

αm = α(tm) from Equation (7.3.3.1-4).

With (7.3.3.1-4) we can also write:

ω =
αm

Tm
(7.3.3.1-6)

so that (7.3.3.1-5) becomes:

POSITION UPDATE ALGORITHMS 7-67

For Constant B Frame Angular Rate:

tm-1

tm

sin α (τ) dτ dt
tm-1

t

 =
Tm

 2

αm

 1 -
sin α m

α m

tm-1

tm

1 - cos α (τ) dτ dt
tm-1

t

 = Tm
 2

1
2

 -
(1 - cos α m)

α m
2

(7.3.3.1-7)

Applying (7.3.3.1-7) in (7.3.3.1-3) then obtains:

For Constant B Frame Angular Rate And Specific Force:

ΔRSFm

B(m-1)
 =

tm-1

tm

aSF
B

 dτ dt
tm-1

t

 + uω × aSF
B

Tm

 2

αm

 1 -
sin α m

α m

 + uω × uω × aSF
B

 Tm
 2

1
2

 -
(1 - cos α m)

α m
2

(7.3.3.1-8)

Equation (7.3.3.1-8) can be further refined by substitution of Sυm as defined in Equations

(7.3.3-10) for the double integral, application of Equations (7.2.2.2-10), (7.2.2.2-14) and
(7.3.3.1-6) for appropriate terms, and factorization:

For Constant B Frame Angular Rate And Specific Force:

ΔRSFm

B(m-1)
 = Sυm +

1

α m
2

 1 -
sin α m

α m

 I +
1

α m
2

1
2

 -
(1 - cos α m)

α m
2

 α m × α m × υm Tm

(7.3.3.1-9)
where

I = Identity matrix.

We also note for numerical computational purposes, that the Taylor series expansions for
trigonometric functions in (7.3.3.1-9) are given by:

1

α m
2

 1 -
sin α m

α m

 =
1

3 !
 -

α m
2

5 !
 +

α m
4

7 !
 -

1

α m
2

1
2

 -
1 - cos α m

α m
2

 =
1

4 !
 -

α m
2

6 !
 +

α m
4

8 !
 -

(7.3.3.1-10)

7-68 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

The αm × υm Tm term in (7.3.3.1-9) can be expressed in an alternative form through the

following development. Using appropriate definitions from (7.3.3-10) we find that:

For Constant B Frame Angular Rate And Specific Force:

Sυm =
tm-1

tm

aSF
B

 dτ dt
tm-1

t

 = aSF
B

tm-1

tm

dτ dt
tm-1

t

 =
1
2

 aSF
B

 Tm
 2

 =
1
2

 υm Tm

Sαm =
tm-1

tm

ωIB
B

 dτ dt
tm-1

t

 = ωIB
B

tm-1

tm

dτ dt
tm-1

t

 =
1
2

 ωIB
B

 Tm
 2

 =
1
2

 αm Tm

(7.3.3.1-11)

From (7.3.3.1-11) we then can show that αm × υm Tm under the (7.3.3.1-9) constant B Frame

angular-rate/specific-force condition is equivalently:

For Constant B Frame Angular Rate And Specific Force:

αm × υm Tm = Sαm × υm + αm × Sυm (7.3.3.1-12)

We then substitute (7.3.3.1-12) for αm × υm Tm in (7.3.3.1-9) to obtain:

For Constant B Frame Angular Rate And Specific Force:

ΔRSFm

B(m-1)
 = Sυm +

1

α m
2

 1 -
sin α m

α m

 I

 +
1

α m
2

1
2

 -
(1 - cos α m)

α m
2

 α m × Sαm × υm + α m × Sυm

(7.3.3.1-13)

Equation (7.3.3.1-13) is now in a form for defining the exact position rotation compensation

term by comparison with (7.3.3-9) for ΔRSFm

B(m-1)
. Under the conditions of constant B Frame

angular rate and specific force, the ΔRScrlm term in (7.3.3-9) is zero, and ΔRSFm

B(m-1)
 with

(7.3.3-11) reduces to:

For Constant B Frame Angular Rate And Specific Force:

ΔRSFm

B(m-1) = Sυm + ΔRRotm ΔRRotm =
1
6

 Sαm × υm + αm × Sυm (7.3.3.1-14)

Applying Equations (7.3.3.1-10) shows that (7.3.3.1-13) to first order is given by:

POSITION UPDATE ALGORITHMS 7-69

For Constant B Frame Angular Rate And Specific Force:

ΔRSFm

B(m-1) = Sυm +
1
6

 Sαm × υm + αm × Sυm (7.3.3.1-15)

Finally, we compare (7.3.3.1-15) (i.e., the first order version of (7.3.3.1-13)) with (7.3.3.1-14)
to deduce the sought after exact position rotation compensation algorithm from (7.3.3.1-13)
with (7.3.3.1-10):

ΔRRotm =
1

α m
2

 1 -
sin α m

α m

 I +
1

α m
2

1
2

 -
(1 - cos α m)

α m
2

 α m× Sαm × υm + α m × Sυm

1

α m
2

 1 -
sin α m

α m

 =
1

3 !
 -

α m
2

5 !
 +

α m
4

7 !
 - (7.3.3.1-16)

1

α m
2

1
2

 -
1 - cos α m

α m
2

 =
1

4 !
 -

α m
2

6 !
 +

α m
4

8 !
 -

Equations (7.3.3.1-16) can now be utilized in (7.3.3-9) for ΔRRotm in place of (7.3.3-11) to

obtain the equivalent higher order equation for ΔRSFm

B(m-1)

that is exact under constant B Frame

angular rate and specific force conditions.

Finally, it is to be noted that Chapter 19 (Section 19.1) describes a unified approach to
strapdown algorithm design that uses a position translation vector (analogous to the rotation

vector) for an exact calculation of ΔRSFm

B(m-1). The position translation vector concept is

formulated as an extension of Equation (7.3.3.1-9) to general motion (i.e., without requiring the
restriction of constant B Frame angular-rate/specific-force vectors invoked in this section). The
unified approach was developed by the author following the original publication of this book in
2000.

7.3.3.2 COMPUTER ALGORITHMS FOR SCROLLING
AND OTHER INTEGRAL TERMS

The computer algorithms used to implement the integration operations in Equations
(7.3.3-10) are executed at a high computation cycle rate within the position update cycle. The

αm and υm integral terms in (7.3.3-10) are provided by Equations (7.2.2.2.2-4). The remaining

integral terms in (7.3.3-10) can be rewritten to reflect the high speed computing cycle as
follows:

7-70 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

α(τ) = αl-1 + Δα(τ)

Δα(τ) = ωIB
B

 dt
t l-1

τ

Δαl = ωIB
B

 dt
t l-1

tl

αl = αl-1 + Δαl αl = 0 At τ = tm-1

υ(τ) = υl-1 + Δυ(τ)

Δυ(τ) = aSF
B

 dt
t l-1

τ

 Δυl = aSF
B

 dt
t l-1

tl

υl = υl-1 + Δυl υl = 0 At τ = tm-1

Sα(t) = Sαl-1 + ΔSα(t) (7.3.3.2-1)

ΔSα(t) = α(τ) dτ
tl- 1

t

ΔSαl = ΔSα(tl)

Sαl = Sαl-1 + ΔSαl Sαm = Sαl(tl = tm) Sαl = 0 At t = tm-1

Sυ(t) = Sυl-1 + ΔSυ(t)

ΔSυ(t) = υ(τ) dτ
tl- 1

t

ΔSυl = ΔSυ(tl)

Sυl = Sυl-1 + ΔSυl Sυm = Sυl(tl = tm) Sυl = 0 At t = tm-1

ΔRScrll = ΔRScrll-1 + δRScrll ΔRScrlm = ΔRScrll(tl = tm) ΔRScrll = 0 At t = tm-1

δRScrll =
1
6

 6 ΔvScul(t) - Sα(t) × aSF
B

 + Sυ(t) × ωIB
B

 + α(t) × υ(t)
tl- 1

tl

 dt

ΔvScul(t) = ΔvScull-1 + δvScul(t) ΔvScull = ΔvScul(tl) ΔvScull = 0 At t = tm-1

δvScul(t) =
1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 dτ
tl- 1

t

POSITION UPDATE ALGORITHMS 7-71

where

l = High speed computer cycle index.

tl-1, tl = Time at computer cycles l-1 and l.

As in Section 7.2.2.2.2 for the velocity sculling algorithm and other integral terms,
algorithms can designed for the integral terms in (7.3.3.2-1) to be analytically exact under
assumed forms of the angular rate and specific force acceleration profile within the l cycle.
Coefficients for the angular-rate/specific-force profiles are then determined from sequential
integrated angular-rate/specific-force increments taken at the l cycle rate (or, alternatively, at a
higher speed sensor sampling rate within the l cycle). For this section, we provide an example
based on general linearly changing angular-rate/specific-force over the tl-1 to tl time interval, the
coefficients of which are calculated from current and past l cycle sensor samples (as in Section
7.2.2.2.2). Thus, we approximate:

ωIB
B

 ≈ A + B t - t l-1 aSF
B

 ≈ C + D t - t l-1 (7.3.3.2-2)

where

A, B, C, D = Constant vectors.

Substituting (7.3.3.2-2) into (7.3.3.2-1) yields the following for particular terms:

Δα(t) = A +
1
2

 B (t- tl-1) (t- tl-1)

Δυ(t) = C +
1
2

 D (t- tl-1) (t- tl-1)

α(t) = αl-1 + A (t- tl-1) +
1
2

 B (t- tl-1)2

υ(t) = υl-1 + C (t- tl-1) +
1
2

 D (t- tl-1)2

(7.3.3.2-3)

ΔSα(t) = αl-1 (t- tl-1) +
1
2

 A +
1
3

 B (t- tl-1) (t- tl-1)2

ΔSυ(t) = υl-1 (t- tl-1) +
1
2

 C +
1
3

 D (t- tl-1) (t- tl-1)2

Sα(t) = Sαl-1 + αl-1 (t- tl-1) +
1
2

 A (t- tl-1)2 +
1
6

 B (t- tl-1)3

Sυ(t) = Sυl-1 + υl-1 (t- tl-1) +
1
2

 C (t- tl-1)2 +
1
6

 D (t- tl-1)3

With (7.3.3.2-2) and (7.3.3.2-3), the δvScul(t) integrand in (7.3.3.2-1) becomes:

7-72 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

1
2

 α(τ) × aSF
B

 + υ(τ) × ωIB
B

 =
1
2

 αl-1 + A (τ-tl-1) +
1
2

 B (τ-tl-1)
2

 × C + D (τ-tl-1)

 +
1
2

 υl-1 + C (τ-tl-1) +
1
2

 D (τ-tl-1)
2

 × A + B (τ-tl-1)

=
1
2

 αl-1 × C + D (τ-tl-1) +
1
2

 υl-1 × A + B (τ-tl-1) +
1
4

 A × D + C × B (τ-tl-1)
2

(7.3.3.2-4)

Taking the integral of (7.3.3.2-4) from tl-1 to t obtains for ΔvScul(t) in (7.3.3.2-1):

ΔvScul(t) = ΔvScull-1 +
1
2

 αl-1 × C +
1
2

 D (t-tl-1) (t-tl-1)

 +
1
2

 υl-1 × A +
1
2

 B (t-tl-1) (t-tl-1) +
1
12

 A × D + C × B (t-tl-1)3
(7.3.3.2-5)

The integral of (7.3.3.2-5) for δRScrll in Equation (7.3.3.2-1) is then given by:

ΔvScul(t) dt
tl- 1

tl

 = ΔvScull-1Tl +
1
2

 αl-1 ×
1
2

 C +
1
6

 D Tl Tl
 2

 +
1
2

 υl-1 ×
1
2

 A +
1
6

 B Tl Tl
 2

 +
1
48

 A × D + C × B Tl
 4

 = ΔvScull-1Tl +
1
2

 αl-1 -
1
12

 B Tl
 2

 ×
1
2

 C +
1
6

 D Tl Tl
 2

 +
1
2

 υl-1 -
1

12
 D Tl

 2
 ×

1
2

 A +
1
6

 B Tl Tl
 2

(7.3.3.2-6)

where
Tl = High speed computer l cycle update time interval tl - tl-1.

With Equation (7.3.3.2-3) for particular terms, Equation (7.3.3.2-6) becomes:

ΔvScul(t) dt
tl- 1

tl

 = ΔvScull-1Tl +
1
2

 αl-1 -
1
12

 B Tl
 2

 × ΔSυl - υl-1Tl

 +
1
2

 υl-1 -
1
12

 D Tl
 2

 × ΔSαl - αl-1Tl

(7.3.3.2-7)

Following a similar development using Equations (7.3.3.2-2) - (7.3.3.2-3) for the δRScrll

integrand terms in (7.3.3.2-1) (exclusive of the ΔvScul element) yields:

POSITION UPDATE ALGORITHMS 7-73

- Sα(t) × aSF
B

 + Sυ(t) × ωIB
B

 + α(t) × υ(t)

 = - Sαl-1 + αl-1 (t- tl-1) +
1
2

 A (t- tl-1)2 +
1
6

 B (t- tl-1)3 × C + D (t- tl-1)

 + Sυl-1 + υl-1 (t- tl-1) +
1
2

 C (t- tl-1)2 +
1
6

 D (t- tl-1)3 × A + B (t- tl-1)

 + αl-1 + A (t- tl-1) +
1
2

 B (t- tl-1)2 × υl-1 + C (t- tl-1) +
1
2

 D (t- tl-1)2 (7.3.3.2-8)

 = - Sαl-1 × aSF
B

 + Sυl-1 × ωIB
B

 + αl-1 × υl-1

 +
1
2

 υl-1 × B - αl-1 × D (t- tl-1)2

 +
1
6

 D × A + C × B (t- tl-1)3 +
1
12

 D × B (t- tl-1)4

Integrating (7.3.3.2-8) and substitution with (7.3.3.2-7) into (7.3.3.2-1) then obtains for δRScrll:

δRScrll = δRScrlA l + δRScrlBl

δRScrlA l = ΔvScull-1 Tl +
1
2

 αl-1 -
1
12

 B Tl
 2

 × ΔSυl - υl-1 Tl

 +
1
2

 υl-1 -
1

12
 D Tl

 2
 × ΔSαl - αl-1 Tl (7.3.3.2-9)

δRScrlBl =
1
6

 - Sαl-1 × Δυl + Sυl-1 × Δαl +
1
6

 αl-1 × υl-1 Tl

 +
1

36
 υl-1 × B - αl-1 × D Tl

 3

 +
1

144
 D × A + C × B Tl

 4
 +

1
360

 D × B Tl
 5

where

δRScrlA l = Portion of δRScrll produced by the ΔvScul sculling term.

δRScrlBl = Portion of δRScrll
produced by all but the ΔvScul sculling term.

It finally remains to define the A, B, C, D terms in (7.3.3.2-9) in terms of strapdown sensor
input parameters. As in Equations (7.2.2.2.2-10), assuming approximately linearly ramping
angular rates and accelerations, these terms can be defined in terms of current and past values of

the Δα, Δυ integrated strapdown angular-rate/specific-force increments:

7-74 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

A =
1

2 Tl
 Δαl + Δαl-1 B =

1

Tl
 2

 Δαl - Δαl-1

C =
1

2 Tl
 Δυl + Δυl-1 D =

1

Tl
 2

 Δυl - Δυl-1

(7.3.3.2-10)

Substitution of (7.3.3.2-10) into the last two terms of the δRScrlBl expression in Equation

(7.3.3.2-9) yields:

1
144

 D × A + C × B Tl
4
 +

1
360

 D × B Tl
5

=
Tl

288
 Δυl - Δυl-1 × Δαl + Δαl-1 + Δυl + Δυl-1 × Δαl - Δαl-1

 +
Tl

360
 Δυl - Δυl-1 Δαl - Δαl-1 (7.3.3.2-11)

=
Tl

288
 Δυl - Δυl-1 × 2 Δαl - Δαl - Δαl-1 + 2 Δυl - Δυl - Δυl-1 × Δαl - Δαl-1

 +
Tl

360
 Δυl - Δυl-1 Δαl - Δαl-1

=
Tl

144
 Δυl - Δυl-1 × Δαl + Δυl × Δαl - Δαl-1 - Tl

1
144

 -
1

360
 Δυl - Δυl-1 × Δαl - Δαl-1

=
Tl

144
 Δυl - Δυl-1 × Δαl + Δυl × Δαl - Δαl-1 -

Tl

240
 Δυl - Δυl-1 × Δαl - Δαl-1

With (7.3.3.2-10), the second and third terms in the Equations (7.3.3.2-9) δRScrlBl
expression

are:
1
6

 αl-1 × υl-1 Tl +
1

36
 υl-1 × B - αl-1 × D Tl

 3

=
Tl

6
 αl-1 × υl-1 +

Tl

36
 υl-1 × Δαl - Δαl-1 - αl-1 × Δυl - Δυl-1

=
Tl

6
 αl-1 -

1
6

 Δαl - Δαl-1 × υl-1 -
1
6

 Δυl - Δυl-1

(7.3.3.2-12)

+
Tl

216
 Δυl - Δυl-1 × Δαl - Δαl-1

Equations (7.3.3.2-11) and (7.3.3.2-12) in combination become:

POSITION UPDATE ALGORITHMS 7-75

1
6

 αl-1 × υl-1 Tl +
1

36
 υl-1 × B - αl-1 × D Tl

 3
 +

1
144

 D × A + C × B Tl
 4

 +
1

360
 D × B Tl

 5

=
Tl

144
 Δυl - Δυl-1 × Δαl + Δυl × Δαl - Δαl-1

 +
Tl

6
 αl-1 -

1
6

 Δαl - Δαl-1 × υl-1 -
1
6

 Δυl - Δυl-1

 +
Tl

2160
 Δυl - Δυl-1 × Δαl - Δαl-1

(7.3.3.2-13)

Finally, we substitute (7.3.3.2-13) into (7.3.3.2-9) to obtain the desired form for the δRScrlBl

expression. With (7.3.3.2-10) substitution into the δRScrlA l
expression, the final result is:

δRScrll = δRScrlA l + δRScrlBl

δRScrlA l = ΔvScull-1 Tl +
1
2

 αl-1 -
1
12

 Δαl - Δαl-1 × ΔSυl - υl-1 Tl

 +
1
2

 υl-1 -
1

12
 Δυl - Δυl-1 × ΔSαl - αl-1 Tl

δRScrlBl =
1
6

 Sυl-1 +
Tl

24
 Δυl - Δυl-1 × Δαl

(7.3.3.2-14)

 -
1
6

 Sαl-1 +
Tl

24
 Δαl - Δαl-1 × Δυl

 +
Tl

6
 αl-1 -

1
6

 Δαl - Δαl-1 × υl-1 -
1
6

 Δυl - Δυl-1

 -
Tl

2160
 Δαl - Δαl-1 × Δυl - Δυl-1

Algorithms for evaluating ΔSαl and ΔSυl in Equations (7.3.3.2-1) are derived similarly by

substitution of (7.3.3.2-10) into (7.3.3.2-3). The development for ΔSαl is as follows:

ΔSαl = αl-1Tl +
1
2

1
2

 Δαl + Δαl-1 +
1
3

 Δαl - Δαl-1 Tl

 = αl-1Tl +
1

12
 5 Δαl + Δαl-1 Tl

(7.3.3.2-15)

The result for ΔSαl
and ΔSυl

then is:

ΔSαl = αl-1Tl +
Tl

12
 5 Δαl + Δαl-1

ΔSυl = υl-1Tl +
Tl

12
 5 Δυl + Δυl-1

(7.3.3.2-16)

7-76 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

In summary, the algorithm used for calculating ΔRScrlm in Equation (7.3.3-9) is given by

Equations (7.3.3.2-1) with (7.3.3.2-14) and (7.3.3.2-16). The ΔvScull-1 term in (7.3.3.2-14) is

provided from the sculling algorithm in Equations (7.2.2.2.2-15). In combination, the overall

composite result for ΔRScrlm as well as the Sαm, αm, Sυm, υm terms for Equations (7.3.3-9)

and (7.3.3-11) or (7.3.3.1-16) is as follows:

Δαl, αl =
Integrated Angular Rate Sensor Outputs
From Algorithm Equations (7.1.1.1.1-17)

(7.3.3.2-17)

Δυl, υl =
Integrated Accelerometer Outputs
From Algorithm Equations (7.2.2.2.2-14)

__

ΔSαl = αl-1Tl +
Tl

12
 5 Δαl + Δαl-1

Sαl = Sαl-1 + ΔSαl Sαm = Sαl(tl = tm) Sαl = 0 At t = tm-1

(7.3.3.2-18)

__

ΔSυl = υl-1Tl +
Tl

12
 5 Δυl + Δυl-1

Sυl = Sυl-1 + ΔSυl Sυm = Sυl(tl = tm) Sυl = 0 At t = tm-1

(7.3.3.2-19)

__

ΔRScrll = ΔRScrll-1 + δRScrlA l + δRScrlBl

δRScrlA l = ΔvScull-1 Tl +
1
2

 αl-1 -
1
12

 Δαl - Δαl-1 × ΔSυl - υl-1 Tl

 +
1
2

 υl-1 -
1

12
 Δυl - Δυl-1 × ΔSαl - αl-1 Tl

δRScrlBl =
1
6

 Sυl-1 +
Tl

24
 Δυl - Δυl-1 × Δαl

 -
1
6

 Sαl-1 +
Tl

24
 Δαl - Δαl-1 × Δυl (7.3.3.2-20)

 +
Tl

6
 αl-1 -

1
6

 Δαl - Δαl-1 × υl-1 -
1
6

 Δυl - Δυl-1

 -
Tl

2160
 Δαl - Δαl-1 × Δυl - Δυl-1

ΔvScull-1 = From Sculling Algorithm Equation (7.2.2.2.2-15)

ΔRScrlm = ΔRScrll(tl = tm) ΔRScrll = 0 At t = tm-1

POSITION UPDATE ALGORITHMS 7-77

Equations (7.3.3.2-20) can be classified as a second order algorithm for δRScrll because it

includes current and past cycle Δαl, Δυl products. If the angular-rate/specific-force profile was

approximated as constant over two successive l cycles, the Δαl - Δαl-1 , Δυl - Δυl-1 terms in

(7.3.3.2-20) would vanish, resulting in a first order δRScrll algorithm. Under conditions when

the angular rate and specific force acceleration can be approximated as constant (i.e., slowly

varying) over an m cycle, ΔRScrll in (7.3.3.2-20) is approximately zero and the

ΔRScrll, δRScrlA l, δRScrlBl calculations in (7.3.3.2-20) can be deleted. Alternatively (and more

accurately), for slowly varying angular rates and accelerations, one l cycle of Equations
(7.3.3.2-20) can be executed each m cycle, while noting from the initial condition definitions

that αl-1, υl-1, Sαl-1 and Sυl-1 are zero. As noted in Sections 7.1.1.1.1 and 7.2.2.2.2, setting the

l and m rates equal can also be achieved by increasing the m rate to match the l rate. The result
would be a single high speed higher order algorithm with a simpler software architecture than
the two-speed approach, but requiring more throughput. Continuing advances in the speed of
modern day computers may make this the preferred approach for the future.

It is also to be noted that Chapter 19 (Section 19.1) describes a unified approach to strapdown
algorithm design that uses a position translation vector (analogous to the rotation vector) for an

exact calculation of ΔRSFm

Bm-1
. The position translation vector concept is formulated as an

extension of Equation (7.3.3.1-9) to general motion (i.e., without requiring the restriction of
constant B Frame angular-rate/specific-force vectors invoked in this section). General motion is
accounted for in the unified approach using a high speed scrolling calculation as part of the
position translation vector computation. The unified scrolling equation is similar to but not
identical to the scrolling equations of this section. Both scrolling concepts are identically zero
under constant B Frame angular-rate/specific-force. The unified approach was developed by the
author following the original publication of this book in 2000.

7.4 ALGORITHM AND EXECUTION RATE SELECTION

Faced with the multitude of potential strapdown inertial navigation algorithms to choose
from, the software designer must ultimately choose one set for the application at hand. The
algorithms presented in Sections 7.1 - 7.3 are but one version of many similar algorithms
developed over the years by several authors. The process of selecting the algorithms and their
execution rates for a particular application should consider the allowable algorithm error under
anticipated angular-rate/specific-force vibration, the capability of the projected target navigation
computer for the required algorithm execution rate, and the complexity of the design procedure
for software validation/documentation with the selected algorithms.

For the two-speed attitude/velocity/position algorithm updating approach described in
Sections 7.1 - 7.3, the repetition rate for the moderate speed (m cycle) algorithms would be

7-78 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

typically selected based on maximum angular-rate/specific-force considerations, to minimize
power series truncation error in the moderate and high speed algorithms. The repetition rate for
the high speed (l cycle) algorithms would be typically selected based on the anticipated
strapdown inertial sensor assembly vibration environment, to accurately account for vibration
induced coning/sculling/scrolling effects.

Evaluation of candidate algorithm error characteristics is generally performed using
computerized time domain simulators that exercise the algorithms in particular groupings at
their selected repetition rates. The simulators generate simulated strapdown inertial sensor
angular-rate/specific-force profiles for algorithm test input, together with known navigation
parameter solutions for algorithm output comparison (e.g., Section 11.2.). For the
attitude/velocity algorithms discussed in Sections 7.1 and 7.2, simplified analytical error models
can also be used to predict high speed coning/sculling algorithm error under specified
coning/sculling rates/amplitudes as a function of algorithm repetition rate (See Chapter 10). The
coning/sculling rates/amplitudes must be derived either from empirical data, or more
commonly, from analytical models of the sensor assembly mount imbalance and its response to
external input vibration at particular frequencies (as in Chapter 10). Frequency domain
simulators (e.g., Section 10.6) can be used to evaluate high speed coning/sculling algorithm
error under specified input vibration power spectral density profiles and sensor assembly mount
imbalance as a function of algorithm repetition rate. For example, the coning/sculling
algorithms described by Equations (7.1.1.1.1-18) and (7.2.2.2.2-15) can be shown by

Equations (10.6.1-25) to have errors of 0.00037 deg/hr (E δβAlgo-m z for the coning

algorithm) and 0.044 micro-g’s (E δΔvSculAlgo-mz for the sculling algorithm) when operated

at a 2 KHz repetition rate (Tl
-1

) under exposure to 7.6 g’s root-mean-square E aVib
2

(t) wide

band random linear input vibration (flat GaVib(ω) at 0.04 g2/Hz density from 20 - 1000 Hz,

then decreasing logarithmically to 0.01 g2/Hz at 2000 Hz). The linear vibration generates a
multi-axis 3.6 g / 0.38 milli-radian root-mean-square linear-acceleration/angular-displacement

oscillation (E aSF(t)2 and E θ(t)
2) of the sensor assembly with corresponding

coning/sculling rates of 9.9 deg/hr (E ΦConz) and 1.3 milli-g’s (E vSF/Sculz) due to the

following typical sensor assembly mount characteristics input to Equations (10.6.1-8) as
simulator input parameters: 50 Hz linear vibration mode undamped natural frequency

(ωx / 2 π), 0.125 linear vibration mode damping ratio (ζx), 71 Hz rotary vibration mode

undamped natural frequency (ωθ / 2 π), 0.18 rotary vibration mode damping ratio (ζθ), 5%

sensor assembly mount/isolator spring/damping imbalance (εk × 100 and εc × 100), 1.4%

sensor assembly center of mass offset from the isolator/mount center of force (εl × 100 percent

of distance between isolators) and 7 inches distance between sensor assembly isolators

ALGORITHM AND EXECUTION RATE SELECTION 7-79

(L × 12). Similar analysis can also be used to evaluate the “folding effect” error in the Section

7.3 position integration algorithms (see Section 10.1.3.2.3) using the E δRSF/Algo
2

(t)

expression in Equations (10.6.1-25).

The capabilities of modern day computer and INS software technology make it reasonable to
specify that the attitude algorithm error be no greater than 5% of the equivalent error produced
by the INS inertial sensors (whose cost increases dramatically with accuracy demands). For an
INS with sensor bias accuracy requirements of 0.007 deg/hr for the angular rate sensors and 40
micro-g for the accelerometers (typical for an aircraft INS having 1 nautical mile per hour 50
percentile radial position error rate and 2 - 3 fps 1 sigma velocity accuracy), the above 0.00037
deg/hr coning algorithm error satisfies the 5 % allowance, while the above 0.044 micro-g
sculling algorithm error is almost two orders of magnitude within the 5% allowance. For this
situation, a 1 KHz sculling algorithm rate would probably be more appropriate, however, 2
KHz might still be utilized for compatibility with the 2 KHz rate selected for the coning
algorithm.

In the case of the positioning algorithms discussed in Section 7.3, the “typical” form
presented in Section 7.3.2 is usually adequate for most applications (to date). For the
exceptional cases when very high resolution position updating is required, the time interval for
the accuracy requirement is usually restricted to brief periods during the application mission
profile. Moreover, for some of these applications, post-processing is acceptable using data
recorded during the high resolution time interval, hence, the complexity of the high resolution
algorithms would not be a real-time computer throughput issue. For example, for Synthetic
Aperture Radar (SAR) motion compensation, high resolution position data is required for only
brief intervals (e.g., 5 - 10 seconds) during SAR data acquisition, which may then be
subsequently processed for SAR image formation. We also note that in high resolution
applications, the earth referenced position of the INS chassis/mount is usually the required
output, which equals the sum of earth referenced inertial sensor assembly position (calculated
by the inertial navigation algorithms) plus vibration/specific-force induced displacement of the
sensor assembly relative to the INS chassis/mount (due to compliance of elastomeric isolators
that interface the sensor assembly to the INS chassis). Such displacement can be computed
under dynamic maneuvers by appropriate digital filtering of vibration induced jitter (as in
Chapter 9) and by quasi-static flexure modeling (i.e., displacement equals average negative
specific force divided by the square of the sensor assembly isolator mount undamped natural

frequency). This quasi-static correction can be seen from Equation (10.5.1-7) rearranged with x

identified as the specific force, x - xF identified as the sensor assembly displacement,
2 k
m

identified from (10.5.1-18) as the undamped natural frequency squared, x - xF approximated as

zero under quasi-static conditions, and the δ terms ignored as negligible. Note that in principle,

7-80 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

the displacement can also be measured directly using special sensing devices installed on the
sensor assembly.

As an example of the inertial navigation position integration algorithm selection process, let
us consider a high resolution application with an overall INS requirement for position error
fluctuations to be “significantly less than 1 cm” during 5 - 10 second periods (not unusual for
applications in which the actual requirement is a function of error frequency content and not
clearly known). Allowing design margin for error in the sensor-assembly-to-chassis-mount
flexure displacement calculation (described in the previous paragraph), we budget the INS
accuracy specification into a requirement for the position algorithm to have less than 0.01 cm
dynamic position error fluctuation during 5 - 10 sec. Let us further assume for this example
that the basic position algorithm update rate has been selected to be 50 Hz and that the selected
inertial velocity algorithm accuracy is compatible with high resolution position updating
requirements (e.g., includes high rate sculling). Simplified “pencil-and-paper” analysis of the
“typical” form (7.3.2-1) position algorithm (or other versions) can be used to assess its
accuracy at 50 Hz using the high resolution algorithm to represent the correct truth model. An

analytical model for the high resolution ΔRSFm

B(m-1) increment truth model can be derived using

ΔvSF
B(m-1) from (7.2.2.2-5) with (7.2.2.2-3) in (7.3.3-4):

ΔRSFm

B(m-1) = ΔvSF
B(m-1)(τ) dτ

tm - 1

tm

ΔvSF
B(m-1)(τ) = I + α(t) × aSF

B
 dt

tm - 1

τ

 α(t) = ωIB
B

 dτ
tm- 1

t

(7.4-1)

The Equation (7.3.2-1) “typical” algorithm is based on approximating the rate of change of
velocity as constant. Neglecting the small L Frame rotation effect, this is equivalent to

approximating ΔvSF
B(m-1)(τ) in (7.4-1) as a linear function of time τ since tm-1 for which

ΔRSFm

B(m-1) in (7.3.3-4) would equal Tm times half the value of ΔvSF
B(m-1)(τ) at τ = tm. Thus,

position updating based on the (7.3.2-1) “typical” algorithm is equivalent to:

ΔRSF/Typm

B(m-1) =
1
2

 ΔvSFm

B
 Tm ΔvSFm

B(m-1) = ΔvSF
B(m-1)(tm) (7.4-2)

where

ΔRSF/Typm

B(m-1) = “Typical” algorithm equivalent to ΔRSFm

B(m-1).

ALGORITHM AND EXECUTION RATE SELECTION 7-81

For the (7.2.2.2.2-6) linearly ramping specific-force/angular-rate model in (7.4-1) - (7.4-2), the

position increments for the truth model ΔRSFm

B(m-1) and for the “typical” algorithm ΔRSF/Typm

B(m-1)

become:

ΔRSFm

B(m-1) =
1
2

 C Tm
 2

 +
1
6

 D + A × C Tm
 3

 +
1
12

 A × D +
1
2

 B × C Tm
 4

 +
1
40

 B × D Tm
 5

(7.4-3)

ΔRSF/Typm

B(m-1) =
1
2

 C Tm
 2

 +
1
4

 D + A × C Tm
 3

 +
1
6

 A × D +
1
2

 B × C Tm
 4

 +
1
16

 B × D Tm
 5

Comparing ΔRSF/Typm

B(m-1) with the ΔRSFm

B(m-1) truth model in (7.4-3) allows the error in

ΔRSF/Typm

B(m-1) to be assessed for selected maneuver values. Under a constant specific force

maneuver (i.e., D = 0) with zero angular rate (i.e., A = B = 0), ΔRSF/Typm

B(m-1) equals ΔRSFm

B(m-1),

hence, is error free. Under a D = 3 g/sec linear acceleration rate with C = 0 and zero angular
rate (A = B = 0), or for A = 1 rad/sec angular rate with C = 3 g acceleration and B = D = 0, the

calculated error in ΔRSF/Typm

B(m-1) (using Tm = 0.02 sec for the 50 Hz update rate) is 0.00196 cm or

50 × 0.00196 = 0.098 cm in one second. Compared with the 0.01 cm in 5 - 10 sec
requirement, the 0.098 cm in 1 sec figure would be considered unacceptable. Position
algorithm assessment under vibration can also be analytically estimated. The velocity sampling
process for the position integration algorithm can produce position error under vibration due to
frequency folding effects (as described in Chapter 10, Section 10.1.3). For example, for the 3.6
g root-mean-square sensor assembly vibration (in the previous sculling example), the associated
velocity vibration is 11.2 cm/sec root-mean-square centered around the sensor assembly 50 Hz
mount resonance (which would be accurately measured by the hypothesized velocity
algorithm). The aliasing (i.e., “folding” effect) error associated with sampling the vibrating

velocity at 50 Hz for algorithm (7.3.2-1) can produce a 11.2 × 0.02 = 0.22 cm error each
position update. If the error is random per update, the total cumulative error in 1 second (50

updates) would be 0.22 × 50 = 1.6 cm; if the error is systematic, the position error in 1 second

would be 0.22 × 50 = 11 cm . In either case, the algorithm error greatly exceeds the 0.01 cm
over 5 - 10 sec requirement. A more sophisticated analytical assessment of position algorithm
folding effect error can be made using Chapter 10, Equations (10.1.3.2.4-3), (10.3-20),
(10.4.2-44), (10.6.1-25) or (10.6.2-21).

Based on such analyses, let us assume we have elected to use the (7.3.3-8) - (7.3.3-9) high
resolution position algorithm to assure 5 - 10 sec 0.01 cm high quality resolution. The next
question is which terms in (7.3.3-9) are to be included. The Sυm term in (7.3.3-9) is the

dominant term for integrating velocity into position and must be included. Under a 3 g constant

7-82 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

specific force maneuver, Sυm from (7.3.3-10) equals 0.59 cm per 50 Hz position update cycle

or 29.4 cm in one second. The next most important term is the ΔRRotm position rotation

compensation term. Using (7.3.3-11) with (7.3.3-10) input, the magnitude of ΔRRotm under a

constant 3 g / 1 rad per sec maneuver is 0.0039 cm per update cycle or 0.20 cm cumulative
position change in 1 second (Note, for a 3 g/sec linearly ramping specific force, Sυm also equals

0.0039 cm per cycle and sums to 0.20 cm in one second). For the 0.01 cm requirement, the

ΔRRotm term is, therefore, also needed. The question of whether to include the ΔRScrlm term

can be addressed by analyzing the magnitude of ΔRScrlm under dynamic vibration motion using

a rearranged version of (7.3.3-9):

ΔRScrlm = ΔRSFm

B(m-1) - Sυm - ΔRRotm (7.4-4)

Consider the 3.6 g root-mean-square vibration condition under 1 rad/sec constant angular

rate. For a 3.6 g root-mean-square pure sine wave (i.e., 3.6 × 2 = 5.1 g amplitude) at the 50

Hz isolator resonance frequency, the magnitudes of Sυm and υm in 0.02 sec are, from

(7.3.3-10), 0.32 cm and 0 cm/sec, respectively. For the 1 rad/sec angular rate over 0.02 sec, αm

is 0.02 rad. Thus, from (7.3.3-11), ΔRRotm is (0.32 × 0.02) / 6 = 0.0011 cm , which, if

systematic, accumulates in one second to 0.0011 × 50 = 0.053 cm . If random from cycle to

cycle, the error accumulation over 10 seconds would be 0.0011 × 50 × 10 = 0.024 cm . The

true solution ΔRSFm

B(m-1) for this particular case (pure sinusoidal acceleration with constant angular

rate) can be found by noting, using analytical integration, that the double integral of α(t) × aSF
B

in (7.4-1) is zero at the sinusoidal vibration cycle times. Thus, at the vibration cycle times and

with the definition for Sυm in (7.3.3-10), we see from (7.4-1) that ΔRSFm

B(m-1) = Sυm. Therefore,

from (7.4-4), the cumulative magnitude of ΔRScrlm will equal the magnitude of ΔRRotm, or

from the previous numerical ΔRRotm assessment, ΔRScrlm will be 0.053 cm per second (if

systematic) and 0.024 cm over 10 seconds (if random). To meet the accuracy requirement of

0.01 cm over 5 - 10 seconds, we conclude that ΔRScrlm will also be required.

The final question is which particular terms in ΔRScrlm algorithm (7.3.3-10) are needed. The

answer can be obtained from similar individual analyses of each term in (7.3.3-10) to identify
which are significant relative to the requirement. A simpler approach is to arbitrarily, but
conservatively, use the full (7.3.3-10) form. The rationale might be that the savings in using a
simplified version (e.g., without the second order terms) is not worth the time and cost for
justification, assuming computer throughput is not an issue. This approach has additional merit

ALGORITHM AND EXECUTION RATE SELECTION 7-83

because it frees the system designer of concern for INS algorithm error during the development
optimization process of the system using the INS.

The position algorithm selection process described above is fairly rudimentary, admittedly
conservative, but sufficient, if the outcome is the conservative approach of applying the full high
resolution algorithm, particularly if the accuracy requirement cannot be clearly defined. Had the
choice been to use the “typical” algorithm, or an alternate version thereof, a more sophisticated
process would have been required to assure adequate performance over a more accurate and
complete set of defined operating conditions. For example, complex maneuver/vibration
profiles can be simulated and input to the “trial” algorithm, with its accuracy evaluated using the
high resolution algorithm (with the same input) as a reference. In this regard, the high
resolution algorithm can be viewed as a truth model for position algorithm evaluation, but
available for use if the “trial” algorithm is inadequate. An assessment of the need to include
particular terms in the scrolling portion of the high resolution algorithm can be made similarly;
by calculating the magnitude of each term under simulated input versus error allowances (a term
is needed if its magnitude exceeds the allowance). This step can be augmented using analytical
models for input conditions, similar to the approach described in the previous example.

As pointed out in Reference 18, an interesting and often overlooked INS algorithm error
mechanism that can be generated during initial self alignment is potential build-up from position
integration algorithm folding effect error under vibration exposure. The self-alignment process
frequently uses the integral of velocity (a position parameter known as “position divergence”)
for the input to the initial alignment Kalman filter (see Chapter 6, Section 6.1.2 and the Chapter
15 discussion in the second paragraph following Equation (15.2.1-1)). By processing the
position divergence input, the Kalman filter is able to determine the horizontal components of
earth rate in the local level L Frame from which initial INS heading is calculated. System
effects that produce errors on the position divergence signal lead to earth rate estimation errors,
hence, initial heading error. Two such effects are accelerometer horizontal quantization noise
and ramping horizontal accelerometer error during the self alignment process. Similarly,
folding effect error in the position divergence computation algorithm under vibration can also
produce initial heading error. (The position divergence algorithm error has a dynamic time
profile whose amplitude and frequency depend on the difference between the algorithm
repetition rate and the frequency content of INS vibration during initial alignment - See Sections
10.1.3.2.4, 10.3, 10.4.2, 10.6.1, and 10.6.2 of Chapter 10). Sections 14.4 and 14.6.4.4 of
Chapter 14 show how earth rate estimation error during initial self-alignment is impacted by the
effect of accelerometer horizontal quantization noise and ramping horizontal error on the
position divergence input to the initial alignment Kalman filter. Section 14.2 shows how earth
rate estimation error creates initial heading error. For simplified analysis purposes, an
equivalency can be defined between the effects of position divergence algorithm folding,
accelerometer horizontal quantization noise and accelerometer ramping horizontal error on
position divergence error. Through this equivalency and the above noted Chapter 14 section

7-84 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

results, the effect of position divergence folding on initial heading error can be approximately
evaluated. Using such results, guidelines can be established to assure that position divergence
folding will not generate unacceptable initial heading error. The overall method is illustrated in
Section 7.4.1 that follows.

So long as the selected integration algorithm is analytically valid, it can be improved in
accuracy by increasing its repetition rate. All of the error mechanisms described in this section
would be completely eliminated if their repetition rates were infinite. Continuing computer
technology advances (increasing speed and decreasing program memory cost), therefore, tend
to diminish any advantages one algorithm might have over another (usually measured primarily
by accuracy for a given repetition rate and, secondarily, by required program memory).
Excessively high repetition rates are to be avoided, however (even if computer throughput
allowances permit) to limit error build-up caused by computer finite word length effects and
rectification of high frequency multi-axis sensor errors (high frequency error output from one
inertial sensor that is frequency correlated with outputs from sensors in the other axes; denoted
as “pseudo-coning” error for the coning part of the attitude computation in Section 7.1 and
“pseudo-sculling” error for the sculling part of the velocity calculation in Section 7.2). The
finite computer word-length error effect is generally not a major factor with modern computer
technology, typically having 64 bit double precision floating point word lengths. The pseudo-
coning/sculling issue must be resolved on an individual design basis depending on the
characteristics of high frequency error effects anticipated from the inertial sensor assembly in its
operational dynamic environment. A general ground-rule to follow in coning/sculling algorithm
repetition rate selection is to run the algorithms only as fast as required to accurately measure
anticipated real multi-axis high frequency angular-rate/specific-force that can potentially rectify
into real attitude/velocity change, but no faster, to minimize the likelihood of rectifying high
frequency sensor output error into attitude/velocity error build-up.

The ultimate selection of algorithms to be used in a particular application is generally made
based on prior experience of the responsible design engineer. The author has had long
experience with the algorithms described in Sections 7.1 - 7.3 and feels comfortable adapting
them to any strapdown application. They are well defined analytically, can be programmed
using a simple sequential software executive structure, readily lend themselves to straight-
forward validation procedures, and are easily adapted to the requirements and constraints of
particular applications.

7.4.1 ASSESSMENT OF POSITION INTEGRATION ALGORITHM FOLDING
EFFECT ON INITIAL ALIGNMENT HEADING ERROR

This section describes an approximate method for assessing the effect of position integration
algorithm folding on initial self-alignment heading error under sinusoidal and random vibration

ALGORITHM AND EXECUTION RATE SELECTION 7-85

exposures. The method is based on results developed in Chapters 10 and 14, the appropriate
sections of which the reader is encouraged to first thoroughly digest.

A rough assessment of initial alignment heading error due to position integration algorithm
folding under sinusoidal vibration (at a particular frequency) can be made as follows. First, we

identify δRSF/Algo(t) in Sections 10.1.3.2.3 and 10.1.3.2.4 as the error in the position

divergence computation algorithm, the input to the initial alignment Kalman filter as described

in the previous section (third from last paragraph). Then we write for δRSF/Algo(t) from
Equations (10.1.3.2.4-1), (10.1.3.2.3-11) and (10.1.3.2.3-12) with tM equated to the general

running time in alignment t:

δRSF/Algo(t) = - uVib
1

Ω2
 aSF0

Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)

+
1

12
 Ω Tl sin Ω′ Tl - 1 sin Ω′(t - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF)

-
1

12
 Ω Tl cos Ω′(t - t0) + Ω t0 - ϕaSF - cos (Ω t0 - ϕaSF) (1 - cos Ω′ Tl)

(7.4.1-1)

where

Tl = Position divergence integration algorithm update time period.

aSF0 = Sinusoidal vibration acceleration amplitude.

Ω = Sinusoidal vibration frequency.

k = Nearest integer value of the ratio of Ω to 2 π / Tl.

Ω′ = Folded frequency defined analytically as Ω -
2 π k

Tl
.

The effect of the (7.4.1-1) position divergence error on initial heading alignment performance
can be estimated from its third derivative (i.e., time ramping acceleration) which, due to the
sinusoidal terms, acts similar to an oscillating accelerometer bias trending error on the position
divergence input to the initial alignment Kalman filter (see previous section - third from last
paragraph). The third derivative of (7.4.1-1) is:

δRSF/Algo(t) = uVib
1

Ω2
 aSF0 Ω′

 3

Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)

+
1

12
 Ω Tl sin Ω′ Tl - 1 cos Ω′(t - t0) + Ω t0 - ϕaSF

+
1

12
 Ω Tl sin Ω′(t - t0) + Ω t0 - ϕaSF (1 - cos Ω′ Tl)

(7.4.1-2)

7-86 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

For k > 0 and for small values of Ω′ Tl, Equation (10.1.3.2.3-14) shows that

Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 ≈

2 π k

Ω′ Tl

. For small Ω′ Tl (compared to one) we can also approximate

Ω =
2 π k

Tl
. Thus, for

1

Ω′ Tl

 large compared to Ω Tl (and to one), (7.4.1-2) can be approximated

as:

δRSF/Algo(t) ≈ uVib
1

2 π k

Tl

 2
 aSF0 Ω′

 3

2 π k

Ω′ Tl

 cos Ω′(t - t0) + Ω t0 - ϕaSF

 = uVib aSF0 Ω′
 2

Tl

2 π k
 cos Ω′(t - t0) + Ω t0 - ϕaSF

(7.4.1-3)

Equation (7.4.1-3) allows the third derivative of the position divergence algorithm error to be
evaluated as a function of the vibration amplitude, vibration frequency (as a multiple k of the

algorithm update frequency
2 π
Tl

), folding frequency and algorithm update time period. The

effect of (7.4.1-3) on initial alignment accuracy is very pronounced when the folding frequency

Ω′ is on the order of the alignment time so that the (7.4.1-3) effect on alignment behaves as a
“steady” acceleration trending over the alignment period (similar to a steady accelerometer
horizontal bias trending error). On the other hand, the amplitude of (7.4.1-3) increases with

folding frequency. However, the author knows from experience that for large Ω′ (e.g., greater

than 2 π × 10 Hz), the folding effect, even though large in amplitude, generally has no serious
impact on initial alignment heading determination accuracy because the alignment Kalman filter
effectively attenuates dynamic inputs in this frequency range. Let us now look at the folding

effect for the case when the cycle time period associated with Ω′ (i.e.,
2 π

Ω′
) equals the alignment

time (or Ω′ =
2 π

TAlign
), and the (7.4.1-3) amplitude becomes:

δRSF/AlgoAmp ≈ aSF0
2 π

TAlign

 2

Tl

2 π k
 = aSF0

2 π Tl

k TAlign
 2

(7.4.1-4)

where

TAlign = Alignment time.

If we treat (7.4.1-4) as the equivalent to an accelerometer bias trending, we can use Equation

(14.4-6) to estimate the resulting initial heading error as δRSF/AlgoAmp divided by the product of

ALGORITHM AND EXECUTION RATE SELECTION 7-87

gravity magnitude with horizontal earth rate. As a numerical example, consider the case in
which aSF0 = 1 g, Tl = 0.02 sec , TAlign = 300 sec and k = 1. Then at 45 deg latitude the

estimated folding effect heading error ψ would be:

ψ ≈
2 π × 0.02

3002

1
15 deg/hr

57.3 × 3600 rad/sec per deg/hr
 cos 45

 103 mil-rad/rad = 27.2 mil-rad

Clearly this would be a disastrous situation for a standard accuracy aircraft type INS for which
the initial heading alignment accuracy requirement is typically on the order of 1 mil-rad. In
order to eliminate this error effect, assurance must be provided that any discrete vibration
frequency that may exist on the sensor assembly during initial alignment will not be an integer
multiple of the position algorithm update frequency (a classical example of such a discrete
vibration effect is the linear acceleration induced in strapdown accelerometers from back
reaction torque transmitted into the sensor assembly by mechanically dithered laser gyros
(Reference 32)). This can be achieved by running the algorithm faster than the highest
frequency expected, or by controlling the frequency source itself (if possible) to be far enough
removed from the algorithm update frequency. Sufficient safety margin must be provided in
either case. The degree of margin required should be assessed using a simulation of the
alignment process in the presence of discrete sinusoidal frequency vibration input (e.g., a single
horizontal axis version of Equations (15.2.1.1-21) with simulated horizontal sinusoidal

acceleration vibration used for CB
N

 aSF
B

 H
).

An estimate for the initial alignment heading error due to position integration folding under
random vibration can be made by first calculating the position divergence algorithm error

variance (E δRSF/Algo
2

(t) in Equations (10.6.1-25)) for t equal to the alignment time. The

E δRSF/Algo
2

(t) expression in Equations (10.6.1-25) has a dynamic time profile whose

amplitude and frequency depend on the difference between the algorithm repetition rate and the
frequency content of the input vibration. From Equations (12.5.1-1) we see that accelerometer

quantization error δυQuant integrates directly into position error δRN. Therefore, from Equation

(15.1.2.1.1-30), accelerometer quantization error generates a build-up in the position divergence
error variance equal to the quantization noise density qυQuant multiplied by the velocity-into-
position integration time t. We can then calculate the equivalent qυQuant value that would

produce the same position error variance as the position integration algorithm folding effect by

dividing E δRSF/Algo
2

(t) by t. With qυQuant so determined, the associated earth rate estimation

error during alignment PΩυQuant is calculated as
20 qυQuant

g2 t5
 (from Equations (14.6.4.4-2)).

7-88 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

The resulting initial heading error is the square root of PΩυQuant divided by horizontal earth

rate. A more precise assessment of the effect of sampling on initial alignment accuracy can be
made by simulating the alignment process equations using a simulated random vibration
signature as the measurement noise (e.g., a single horizontal axis version of Equations

(15.2.1.1-21) with simulated horizontal random acceleration vibration used for CB
N

 aSF
B

 H
. The

acceleration vibration can be simulated as white acceleration noise feeding a second order
spring/damper system such as Equations (15.2.1.2-8)).

7.5 STRAPDOWN INERTIAL NAVIGATION SYSTEM
ALGORITHM SUMMARY

Table 7.5-1 is a listing of the principal algorithms from Chapter 7 (including Chapter 4 output
equations and Chapter 5, Table 5.6-1 earth related parameters) typically utilized in strapdown
inertial navigation system software packages. Table 7.5-1 lists the algorithm function, input
parameters, output parameters and equation number. Definitions for the input/output
parameters are provided in the sections in which the algorithms/equations are derived as
identified in the Parameter Index at the end of the book.

Table 7.5-1 Summary Of Typical Strapdown Inertial Navigation System
Computational Algorithms

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

HIGH SPEED CALCULATIONS

Integrated B Frame Angular Rate Increments Δαl αl, αm
(7.1.1.1.1-17)

Integrated B Frame Acceleration Increments Δυl υl, υm
(7.2.2.2.2-14)

Coning Increment Δα l, αl βm
(7.1.1.1.1-18)

Sculling Increment Δαl, αl,

Δυl, υl

ΔvScull,

ΔvSculm

(7.2.2.2.2-15)

High Speed Update Time Interval (Constant) Constant Tl ---

(Continued)

STRAPDOWN INERTIAL NAVIGATION SYSTEM ALGORITHM SUMMARY 7-89

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Doubly Integrated B Frame Angular Rate And
 Acceleration Increments (For High Resolution
 Position Algorithm)

Δαl, αl,

Δυl, υl, Tl

ΔSαl, Sαl,

Sαm, ΔSυl,

Sυl, Sυm

(7.3.3.2-18),
(7.3.3.2-19)

Scrolling Increment (For High Resolution Position
 Algorithm)

Δαl, αl,

ΔSαl, Sαl,

Δυl, υl,

ΔSυl, Sυl,

ΔvScull, Tl

ΔRScrlm
(7.3.3.2-20)

NORMAL SPEED CALCULATIONS

EARTH RELATED PARAMETERS

Earth Shape, Gravity And Angular Rate Constants Reference 4 R0, e, μ, J2,

J3, .., ωe

Reference 4

Earth Polar Axis Component of Geodetic Vertical
 Unit Vector CN

E uUpYE (5.3-16)

Modified Radial Distance to Earth Surface Location R0, e, uUpYE RS
′ (5.1-10)

Radial Distance to Earth Surface Location RS
′ , e, uUpYE

RS (5.2.1-4)

Radial Distance to Navigation Point R0, Rs,

RS
′ , h

R (5.2.1-5)

Cosine Of Range Vector Polar Coordinate Angle uUpYE, e, R ,

h,

RS
′

cos φ (5.2.2-3)

Modified Sine Of Range Vector Polar Coordinate
 Angle R, h, RS

′ sin φ

1 - uUpYE

2

(5.2.2-5)

7-90 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Cosine And Modified Sine Of Difference Between
 Geocentric And Geodetic Latitudes R, h, RS

′ , e,

uUpYE

cos ∂l,
sin ∂l

1 - uUpYE

2

(5.2.3-5)

Local Earth Surface Point Radius Of Curvature In
 Latitude Direction R0, e, RS

′ rls (5.2.4-25)

Local Navigation Point Radius Of Curvature In
 Latitude Direction

rls, h rl (5.2.4-37)

Curvature Matrix In The N Frame rl, CN
E

, h, RS
′ ,

e

FC
N (5.3-18)

Vertical Transport Rate Component Section 4.5
For Options

ρZN
Section 4.5
For Options

Unit Vector Upward In N Frame Definition uZN
N (5.3-18)

N Frame Transport Rate Vector vN, FC
N

,

ρZN, uZN
N

ρN
 = ωEN

N (5.3-17)

Gravity Components In Polar Coordinates μ, R, R0,

cos φ,
J2, J3, ...

gr,
gφ

sin φ
,

gθ

(5.4-1) &
(5.4-2)

North And Vertical Gravity Components
gr,

gφ

sin φ
,

uUpYE, cos ∂l,

sin ∂l

1 - uUpYE

2
,

sin φ

1 - uUpYE

2

gNorth

1 - uUpYE

2
,

gUp

(5.4-4)

STRAPDOWN INERTIAL NAVIGATION SYSTEM ALGORITHM SUMMARY 7-91

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

North And Vertical Plumb-bob Gravity
 Components

gNorth

1 - uUpYE

2
,

gUp, RS
′ , h,

uUpYE, ωe

gPNorth

1 - uUpYE

2
,

gPUp

(5.4.1-9)

N Frame Plumb-bob Gravity Components gPNorth

1 - uUpYE

2
,

gPUp, CN
E

gP
N (5.4.1-11)

N Frame Earth Rate Vector CN
E

, ωe ωIE
N (4.1.1-3),

(4.1.1-4)

VELOCITY CALCULATIONS

B Frame Velocity Rotation Compensation (Exact
 Formulation)

αm, υm ΔvRotm
(7.2.2.2.1-7),
(7.2.2.2.1-8)

B Frame Velocity Rotation Compensation (First
 Order Approximation Form)

αm, υm ΔvRotm
(7.2.2.2-25)

B Frame Integrated Specific Force Acceleration
 Increment

υm, ΔvRotm,

ΔvSculm

ΔvSFm

BI(m-1) (7.2.2.2-23)

L Frame Integrated Specific Force Acceleration
 Increment ΔvSFm

BI(m-1)
,

CBI(m-1)

LI(n-1)

ΔvSFm

LI(n-1) (7.2.2-2)

N To L Frame Direction Cosine Matrix (Constant) Definition
CN

L
 = CL

N T (4.1.1-2)

Velocity (And Attitude) m Cycle Update Time
 Interval, m Cycles Per n Cycle, And m Cycles
 Since n-1

Constants Tm, j, r ---

7-92 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

L Frame Rotation Vector (Cycle n-1 To m) ωIE
N

, ρZN,

FC
N

, vN, Tm,

r, j, CN
L

,
uZN

N

ζn-1,m
(7.2.2.1-4) -
(7.2.2.1-7)

L Frame Rotation Matrix (First Order Form) ζn-1,m CLI(n-1)

LI(m) = CL(n-1)

L(m) (7.2.2.1-1)

L Frame Rotation Compensation
ΔvSFm

LI(n-1)
,

CLI(n-1)

LI(m)

ΔvSFm

L (7.2.2-4)

Integrated Coriolis Acceleration & Plumb-bob
 Gravity Increment gP

N
, ωIE

N
,

ρZN, FC
N

,

vN, uZN
N

, Tm ,

r, j

ΔvG/CORm

N (7.2.1-1) -
(7.2.1-3)

N Frame Velocity Update
ΔvSFm

L
,

ΔvG/CORm

N
,

CL
N

, vm-1
N

vm
N (7.2-2)

Vertical Channel Control Gains Constants C1, C2, C3 (4.4.1.2.1-11)

Altitude (And Position) Update Time Interval Constant Tn ---

Vertical Channel Control Signals C1, C2, C3,

Tn, hPrsrn, hn

evc1n, evc2n (7.2-6)

Vertical Velocity Control vn-

N
, uZN

N
,

evc1n, Tn

vN (7.2-5)

East, North, Up Velocity Component Outputs vN, α vEast,

vNorth , vUp

(4.3.1-4)

STRAPDOWN INERTIAL NAVIGATION SYSTEM ALGORITHM SUMMARY 7-93

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

POSITION CALCULATIONS

Position Rotation Compensation (High Resolution
 Position Algorithm - Exact Form)

αm, Sαm,

υm, Sυm

ΔRRotm
(7.3.3.1-16)

Position Rotation Compensation (High Resolution
 Position Algorithm - First Order Accuracy Form)

αm, Sαm,

υm, Sυm

ΔRRotm
(7.3.3-11)

Body Frame Position Increment Due To Specific
 Force Acceleration (High Resolution Position
 Algorithm)

Sυm, ΔRRotm,

ΔRScrlm

ΔRSFm

B (7.3.3-9)

N Frame Position Increment (High Resolution
 Position Algorithm) vm-1

N
, ΔvG/CORm

N
,

ΔRSFm

B
, ΔvSFm

L(n-1),

CB(m-1)

L(n-1) = CBI(m-1)

LI(n-1) ,

ζn-1,m , ζn-1,m-1,

CL(n-1)

L(m-1) = CLI(n-1)

LI(m-1),

CL
N

, Tm

ΔRm
N (7.3.3-8)

N Frame Position Increment (Trapezoidal Position
 Algorithm)

vN, Tm ΔRm
N (7.3.2-1)

Altitude Change ΔRm
N

, uZN
N Δhn

(7.3.1-3)

Position Rotation Vector ρZN, FC
N

,

ΔRm
N

, uZN
N

,

Tn

ξn
(7.3.1-11),
(7.3.1-12)

Position Rotation Change Matrix ξn CNE(n)

NE(n-1) (7.3.1-8)

Altitude Update hn-1, Δhn hn (7.3.1-1)

7-94 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Altitude Control hn-, evc2n, Tn hn+ (7.3.1-5)

Position Direction Cosine Matrix Update CNE(n-1)

E
,

CNE(n)

NE(n-1)

CNE(n)

E (7.3.1-6)

Latitude, Longitude Outputs And Wander Angle CN
E l, L, α (4.4.2.1-3)

ATTITUDE CALCULATIONS

B Frame Rotation Vector αm, βm φm
(7.1.1.1-12)

B Frame Rotation Matrix (For Attitude Direction
 Cosine Matrix Updating)

φm CBI(m)

BI(m-1) (7.1.1.1-3)

B Frame Rotation Quaternion (For Attitude
 Quaternion Updating)

φm qBI(m)

BI(m-1) (7.1.2.1-3)

Attitude Update For B Frame Rotation (Direction
 Cosine Matrix Form) CBI(m-1)

LI(n-1) ,

CBI(m)

BI(m-1)

CBI(m)

LI(n-1) (7.1.1.1-1)

Attitude Update For B Frame Rotation (Quaternion
 Form) qBI(m-1)

LI(n-1) ,

qBI(m)

BI(m-1)

qBI(m)

LI(n-1) (7.1.2.1-1)

Position And L Frame Update Time Interval Constant Tn ---

L Frame Rotation Vector (Cycle n-1 To n) ωIE
N

, ρZN,

FC
N

, ΔRm
N

,

uZN
N

, Tn, CN
L

ζn
(7.1.1.2.1-3),
(7.1.1.2.1-5)

L Frame Rotation Matrix For Attitude Direction
 Cosine Matrix Updating (Exact Form)

ζn CLI(n-1)

LI(n) (7.1.1.2-3)

STRAPDOWN INERTIAL NAVIGATION SYSTEM ALGORITHM SUMMARY 7-95

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

L Frame Quaternion For Attitude Quaternion
 Updating (Exact Form)

ζn qLI(n-1)

LI(n) (7.1.2.2-3)

Attitude Update For L Frame Rotation (Direction
 Cosine Matrix Form) CBI(m)

LI(n-1),

CLI(n-1)

LI(n)

CBI(m)

LI(n) (7.1.1.2-1)

Attitude Update For L Frame Rotation (Quaternion
 Form) qBI(m)

LI(n-1),

qLI(n-1)

LI(n)

qBI(m)

LI(n) (7.1.2.2-1)

Normalization And Orthogonalization Corrections
 (For Attitude Direction Cosine Matrix) CB

L
CB

L (7.1.1.3-1),
(7.1.1.3-10)

Normalization Corrections (For Attitude
 Quaternion) qB

L
qB

L (7.1.2.3-6),
(7.1.2.3-8)

Attitude Quaternion To Attitude Direction Cosine
 Matrix Conversion (For Attitude Quaternion As
 Basic Attitude Form)

qB
L

CB
L (7.1.2.4-1)

Roll, Pitch, True Heading Euler Angle Outputs CB
L

, α φ, θ, ψTrue
(4.1.2-1),
(4.1.2-2)

7-96 STRAPDOWN INERTIAL NAVIGATION DIGITAL INTEGRATION ALGORITHMS

8-1

8

Navigation System Component
Compensation Algorithms

8.0 OVERVIEW

In manufacturing an inertial navigation system it is virtually impossible to control tolerances
so that the component accuracies are consistent with system navigational accuracy requirements.
However, manufactured component inaccuracies are generally stable and analytically
predictable, which provides the basis for correcting the inaccuracies as a system software
operation. Once the component error effects are “characterized” (or “modeled”) analytically (a
combined analytical/component test iterative design process), system software algorithms are
designed to compensate the component errors as part of the navigation system software
computational process. The error effects for each system component are then measured as part
of manufacturing/test operations (the “calibration” process) and the resulting measurement data
(in the form of “calibration coefficients”) are installed in the system software for operation with
the component compensation algorithms. The residual errors left after system software
compensation (e.g., due to component instabilities, calibration error, unmodelable error effects,
and calibration algorithm error) then determines the ultimate accuracy of the inertial navigation
system.

This chapter describes error models and compensation algorithms that can be used to correct
for errors in the strapdown inertial sensors (angular rate sensors and accelerometers), relative
displacement between accelerometers (“size effect”), misalignment of the strapdown sensor
assembly relative to the system mount, and alignment of the system mount in the user vehicle
relative to vehicle reference axes. Included is a discussion of the application of the sensor
compensation algorithms to the Chapters 7 and 19 (Section 19.1) strapdown inertial navigation
integration routines and their associated coning, sculling and scrolling elements. A table is
provided at the end of the chapter listing the principal calibration equations developed in the
order they would be processed and applied in the strapdown navigation computer.

Depending on his/her experience in the development and application of inertial sensor
compensation algorithms, the reader may find the forms presented in this chapter to be more
complex than the usual linearized treatment of error effects. In keeping with the basic theme of
the book, the forms presented here are provided whenever possible without resorting to
simplifying approximations (unless that is the only practical solution). The reader should
recognize, however, that when operating the presented compensation algorithms in system
software, the more complicated calculations shown for the compensation coefficients can be

8-2 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

either pre-computed or executed once at system start-up (if not time varying), or executed at a
low speed background computation cycle rate (if time varying). The reader should also
recognize that many of the matrix operations shown are performed with diagonal matrices that
have two simplifying properties: 1. Products of diagonal matrices are diagonal with each
element equal to the product of the corresponding elements in the multiplying matrices, and 2.
The inverse of a diagonal matrix is diagonal with each element equal to the reciprocal of the
corresponding element in the original matrix. These observations considerably simplify the
system software execution rate requirements for many of the compensation equations
presented.

The principal coordinate frame used in this chapter is the sensor “body” B Frame as defined
in Section 2.2.

8.1 INERTIAL SENSOR COMPENSATION ALGORITHMS

This section derives representative algorithms for compensating the angular rate sensor and
accelerometer signals in a strapdown inertial navigation system. Both “Sensor Level” and
“System Level” compensation terms are described; Sensor Level compensation is measured at
the component level (angular rate sensor or accelerometer), System Level compensation is
measured after system assembly; both are applied as part of the system computational process
to correct the data used to update attitude, velocity, and position. Also described is the analytical
process for calculating the sensor compensation coefficients from sensor measurements and the
Chapter 18 System Level test results.

8.1.1 INERTIAL SENSOR ERROR CHARACTERISTICS
AND COMPENSATION FORMULAS

This section characterizes the errors typically present in the raw inertial sensor outputs
(angular rate sensors and accelerometers) and then derives a general form of compensation
equations for correcting the errors.

8.1.1.1 ANGULAR RATE SENSOR ERROR CHARACTERISTICS
AND COMPENSATION FORMULAS

The output vector from a strapdown angular rate sensor triad can be characterized as a
function of its input angular rate vector as:

ωPuls =
1

ΩWt0

 I + FScal FAlgn ω + δωBias + δωQuant + δωRand (8.1.1.1-1)

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-3

where

ω = Angular rate vector sensed by the angular rate sensor triad. The components of ω
are the angular rate vector projections onto the sensor (or “Body”) B Frame.

ωPuls = Angular rate sensor triad output vector in pulses per second. Each axis output
pulse is a digital indication that the sensor associated with that axis has rotated
through an integrated angular rate increment around its input axis equal to that
particular sensor’s pulse size.

ΩWt0 = Nominal pulse weight (a positive value) for each angular rate sensor (radians
per pulse).

I = Identity matrix.

FScal = Angular rate sensor triad scale factor correction matrix; a diagonal matrix in
which each element adjusts the output pulse scaling to correspond to the actual
scaling for the particular sensor output. Nominally, the FScal matrix is zero.
The FScal matrix may include non-linear scale factor effects and temperature
dependency.

FAlgn = Alignment matrix for the angular rate sensor triad. Each row represents a unit
vector along a particular angular rate sensor input axis as projected onto the
B-Frame. Nominally, the FAlgn matrix is identity. The FAlgn matrix may
include specific force acceleration dependency.

δωBias = Angular rate sensor triad bias vector. Each element equals the systematic
output from a particular angular rate sensor under zero input angular rate

conditions. In some angular rate sensors, δωBias may have environmental
sensitivities (e.g., temperature and specific force acceleration dependency).

δωQuant = Instantaneous angular rate sensor triad pulse quantization error associated
with the output only being provided when the cumulative input equals the
pulse weight per axis. Includes pulse output logic dead-band effect under
turn-around conditions (see Section 8.1.3.2).

δωRand = Angular rate sensor triad random error output vector.

Equation (8.1.1.1-1) can be solved for the B Frame angular rate input vector as follows:

ω′ = ΩWt0 I + FScal
 -1 ωPuls (8.1.1.1-2)

ω = FAlgn
 -1

 ω′ - δωBias - δωQuant - δωRand (8.1.1.1-3)

where

ω′ = Scale factor compensated angular rate sensor output vector.

8-4 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Equation (8.1.1.1-2) represents the scale factor compensation equation for the raw angular rate

sensor triad ωPuls output. Compensation for the remaining predictable errors in ωPuls is

achieved using a simplified form of (8.1.1.1-3) in which it is recognized that the δωRand

component is unpredictable, hence, can only be approximated by zero:

ω ≈ FAlgn
 -1

 ω′ - δωBias - δωQuant (8.1.1.1-4)

Compensation Equations (8.1.1.1-2) and (8.1.1.1-4) are further refined to a more familiar
form by introducing the following definitions:

ΩWt ≡ ΩWt0 I + FScal
 -1 (8.1.1.1-5)

KMis ≡ I - FAlgn
 -1

(8.1.1.1-6)

KBias ≡ FAlgn
 -1

 δωBias (8.1.1.1-7)

where

ΩWt = Angular rate sensor triad scale factor pulse weighting matrix (radians per
pulse).

KMis = Angular rate sensor triad misalignment compensation matrix (nominally zero).

KBias = Angular rate sensor bias compensation vector.

Substituting (8.1.1.1-5) - (8.1.1.1-7) into (8.1.1.1-2) and (8.1.1.1-4) then obtains the equivalent
compensation equations:

ω′ = ΩWt ωPuls

ω ≈ ω′ - KMis ω′ - KBias - FAlgn
 -1

 δωQuant

(8.1.1.1-8)

Equations (8.1.1.1-5) - (8.1.1.1-8) constitute the compensation equations for the angular rate
sensor output vector in continuous angular rate vector format. These equations will form the
basis for the angular rate sensor triad compensation algorithms presented in Section 8.1.2.1.

8.1.1.1.1 Sensor And System Level Compensation Coefficient
Evaluation For The Angular Rate Sensors

Compensation of the ωPuls angular rate sensor triad output as described in Section 8.1.1.1

requires that FScal, FAlgn and δωBias be evaluated for the angular rate sensors. This typically

involves use of generic analytic algorithms that characterize sensor performance in terms of

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-5

coefficients that are unique to each individual sensor. Determination of the coefficients is the
calibration process performed as part of manufacturing/assembly/test operations. Calibration
coefficient updates may also be performed during the INS operational life to sustain acceptable
performance. A typical "factory" calibration process consists of two steps: “Sensor Level”
calibration and “System Level” calibration. Sensor Level calibration is performed on each
individual sensor before installation into the strapdown sensor assembly, and typically

determines (for the angular rate sensors) the primary contributors to FScal and δωBias.
Following Sensor Level calibration, the sensors are installed in the sensor assembly and System
Level calibration is performed. System Level calibration determines (for the angular rate

sensors) the FAlgn matrix and residual corrections to FScal and δωBias.

System Level calibration is performed on a sensor assembly that is being compensated using
Sensor Level compensation equations. Hence, in effect, the following forms of Equations
(8.1.1.1-2) and (8.1.1.1-4) apply for the angular rate sensor outputs during the System Level
calibration process:

ω′ * = ΩWt0 I + FSensScal
 -1 ωPuls (8.1.1.1.1-1)

ω* = FSensAlgn
 -1

 ω′ * - δωSensBias - δω*Quant (8.1.1.1.1-2)

where

FSensScal = Sensor Level determined FScal matrix.

ω′ * = ω′ based on using a Sensor Level determined FScal matrix.

FSensAlgn = Pre System Level determined FAlgn matrix. Normally, FSensAlgn would
be identity (i.e., assumed zero misalignments). For generality, and to
make the equations to follow also compatible with coefficient updates
following factory calibration, FSensAlgn has been included in Equation
(8.1.1.1.1-2).

ω* = ω based on using ω´* (rather than ω´).

δωSensBias = Sensor Level determined δωBias bias vector.

δω*Quant = δωQuant calculated using Sensor Level compensated data.

The ωPuls term in (8.1.1.1.1-1) can be expressed as a function of the true angular rate input

vector ω using Equations (8.1.1.1-2) and (8.1.1.1-4) combined:

ωPuls =
1

ΩWt0

 I + FScal FAlgn ω + δωBias + Quantization terms (8.1.1.1.1-3)

8-6 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Combining (8.1.1.1.1-1) - (8.1.1.1.1-3) and assuming that quantization effects have been
properly compensated in (8.1.1.1.1-2) then yields:

ω* = FSensAlgn
 -1

 I + FSensScal
 -1 I + FScal FAlgn ω + δωBias - δωSensBias (8.1.1.1.1-4)

The System Level sensor calibration procedure is based on measuring the errors induced in

strapdown inertial navigation software operations when using the ω* Sensor Level calibrated
strapdown sensor assembly data for input. The System Level calibration procedure (such as
described in Chapter 18) typically evaluates angular rate sensor System Level scale factor,

misalignment, and bias errors based on the following linearized model for the ω* input data:

ω* = I + κSystScal/Mis ω + κSystBias (8.1.1.1.1-5)

where

κSystScal/Mis = Angular rate sensor triad System Level Scale-Factor/Misalignment
error matrix.

κSystBias = Angular rate sensor triad System Level bias error vector.

Equating (8.1.1.1.1-4) and (8.1.1.1.1-5) enables us to solve for new (revised)

FScal, FAlgn, δωBias calibration coefficients in terms of Sensor Level coefficients and the

System Level determined values for κSystScal/Mis, κSystBias:

I + κSystScal/Mis ω + κSystBias

 = FSensAlgn
 -1

 I + FSensScal
 -1 I + FScal FAlgn ω + δωBias - δωSensBias

(8.1.1.1.1-6)

Rearranging (8.1.1.1.1-6) obtains:

I + FScal FAlgn ω + δωBias

 = I + FSensScal FSensAlgn I + κSystScal/Mis ω + κSystBias + δωSensBias
(8.1.1.1.1-7)

Equating terms multiplying and not multiplying ω then gives:

I + FScal FAlgn = I + FSensScal FSensAlgn I + κSystScal/Mis (8.1.1.1.1-8)

δωBias = I + FScal
 -1 I + FSensScal FSensAlgn κSystBias + δωSensBias (8.1.1.1.1-9)

Equation (8.1.1.1.1-9) is expanded by first writing from (8.1.1.1.1-8):

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-7

I + FScal
 -1 I + FSensScal = FAlgn FSensAlgn I + κSystScal/Mis

 -1
(8.1.1.1.1-10)

Substituting (8.1.1.1.1-10) in (8.1.1.1.1-9) then yields:

δωBias = FAlgn FSensAlgn I + κSystScal/Mis
 -1

 FSensAlgn κSystBias + δωSensBias

= FAlgn I + κSystScal/Mis
 -1

 FSensAlgn
 -1

 FSensAlgn κSystBias + δωSensBias (8.1.1.1.1-11)

= FAlgn I + κSystScal/Mis
 -1

 κSystBias + FSensAlgn
 -1

 δωSensBias

Applying (8.1.1.1.1-11) in (8.1.1.1-7) also obtains for KBias in alternate compensation
Equations (8.1.1.1-8):

KBias = I + κSystScal/Mis
 -1

 κSystBias + FSensAlgn
 -1

 δωSensBias (8.1.1.1.1-12)

Returning to Equation (8.1.1.1.1-8), we can solve individually for FScal and FAlgn by noting
that FScal is a diagonal matrix, hence:

FScal = Diag I + FSensScal FSensAlgn I + κSystScal/Mis FAlgn
 -1

 - I (8.1.1.1.1-13)

FAlgnOff-Diag = Off Diag I + FScal
 -1 I + FSensScal FSensAlgn I + κSystScal/Mis

(8.1.1.1.1-14)
where

FAlgn Off-Diag = Off-diagonal elements of FAlgn .

Off Diag () = Off-diagonal elements of ().

Diag () = Diagonal elements of ().

Since FScal includes non-linear as well as linear scale factor effects, the non-linear terms (albeit
small compared to the linear terms) make FScal a function of angular rate. Section 8.1.1.3
discusses how Equations (8.1.1.1.1-9) - (8.1.1.1.1-14) (and subsequent developments thereof)
can be extended to account for the non-linear effects.

The diagonal elements of FAlgn are calculated from the constraint that the rows of FAlgn

represent unit vectors along sensor input axes. We define:

FAlgn XX FAlgn XY FAlgn XZ

FAlgn YX FAlgn YY FAlgn YZ

FAlgn ZX FAlgn ZY FAlgn ZZ

 ≡ FAlgn (8.1.1.1.1-15)

8-8 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Applying the unit vector constraint to each row of FAlgn sets the sum of the squares of each row
to unity, hence, the diagonal elements of FAlgn are:

FAlgn XX = 1 - FAlgn XY

 2
 - FAlgn XZ

 2

FAlgn YY = 1 - FAlgn YX

 2
 - FAlgn YZ

 2
(8.1.1.1.1-16)

FAlgn ZZ = 1 - FAlgn ZX

 2
 - FAlgn ZY

 2

Equations (8.1.1.1.1-13) - (8.1.1.1.1-16) must be solved simultaneously to obtain FScal and
FAlgn . However, because these equations are non-linear in FScal and FAlgn , a closed-form

solution is not possible, and we must resort to iterative numerical techniques. The method is
simply to first approximate FAlgn in (8.1.1.1.1-13) as FSensAlgn, and then solve Equations
(8.1.1.1.1-13) - (8.1.1.1.1-16) in the sequence shown to determine FScal and FAlgn .
Subsequent iteration cycles use the FAlgn value determined from the last iteration cycle in
(8.1.1.1.1-13). After two or three iteration cycles, FScal and FAlgn will be calculated to high

precision. Equations (8.1.1.1-5) and (8.1.1.1-6) can then be used to obtain ΩWt and KMis in
alternate compensation Equations (8.1.1.1-8).

It is instructive to apply linearization techniques to Equations (8.1.1.1.1-13) and
(8.1.1.1.1-14) to verify that the resulting first order forms are reasonable. We first write:

FAlgn = I + FAlgn - I

FSensAlgn = I + FSensAlgn - I
(8.1.1.1.1-17)

The FAlgn - I and FSensAlgn - I terms in (8.1.1.1.1-17) are small because FAlgn and
FSensAlgn are approximately identity. Additionally, from the definition of the rows of F Algn

and FSensAlgn as unit vectors, we can also state as in (8.1.1.1.1-16), that the diagonal elements
in FAlgn and FSensAlgn can be approximated by unity to first order accuracy (first order in the
off-diagonal FAlgn , FSensAlgn terms). Using these approximations, we now substitute

(8.1.1.1.1-17) into Equations (8.1.1.1.1-13) and (8.1.1.1.1-14) while also recognizing that

FSensScal, FScal and κSystScal/Mis are small compared to the identity matrix. Expanding the

results, dropping products of FSensScal, FScal, κSystScal/Mis, FAlgn - I , FSensAlgn - I a s
second order (and higher), and approximating the FAlgn diagonal elements by unity yields the

following first order accuracy version of Equations (8.1.1.1.1-13), (8.1.1.1.1-14) and
(8.1.1.1.1-16):

FScal ≈ FSensScal + Diag κSystScal/Mis (8.1.1.1.1-18)

FAlgn ≈ FSensAlgn + Off Diag κSystScal/Mis (8.1.1.1.1-19)

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-9

Equations (8.1.1.1.1-18) and (8.1.1.1.1-19) have the form that one would logically expect (i.e.,
they make sense).

In practice, linearized forms of Equations (8.1.1.1.1-13) - (8.1.1.1.1-14) can be utilized in

many applications based on the assumption that κSystScal/Mis, FAlgn - I and FSensAlgn - I
will be small while allowing for the possibility that FSensScal may be larger than acceptable for
first order approximation. Following the linearization procedure leading to Equations
(8.1.1.1.1-18) and (8.1.1.1.1-19), the simplified linearized form of Equation (8.1.1.1.1-13) is
obtained from:

FScal = Diag I + FSensScal I + FSensAlgn - I I + κSystScal/Mis I + FAlgn - I -1 - I

 ≈ Diag I + FSensScal I + FSensAlgn - I + κSystScal/Mis - FAlgn - I - I

 = Diag I + FSensScal I + FSensAlgn - FAlgn + κSystScal/Mis - I (8.1.1.1.1-20)

 = Diag FSensScal + I + FSensScal FSensAlgn - FAlgn + κSystScal/Mis

Equation (8.1.1.1.1-20) can be further reduced using the following general matrix property
(which is easily verified by component expansion), that if D is a diagonal matrix and E is a
general arbitrary matrix, then:

Diag (D E) = D Diag (E) (8.1.1.1.1-21)

where

D = Arbitrary diagonal matrix.

E = Arbitrary matrix in general.

Since FSensScal is diagonal and (from (8.1.1.1.1-16)) the diagonal elements of FSensAlgn and
FAlgn are identity to first order, (8.1.1.1.1-20) using (8.1.1.1.1-21) becomes the simplified

form:

FScal ≈ FSensScal + I + FSensScal Diag κSystScal/Mis (8.1.1.1.1-22)

The corresponding linearized form of (8.1.1.1.1-14) is obtained by first noting from
(8.1.1.1.1-22) that:

I + FScal ≈ I + FSensScal I + Diag κSystScal/Mis (8.1.1.1.1-23)
or

I + FScal
 -1 ≈ I + Diag κSystScal/Mis

 -1
 I + FSensScal

 -1 (8.1.1.1.1-24)

Substituting (8.1.1.1.1-24) into (8.1.1.1.1-14) shows that:

8-10 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

FAlgn Off-Diag ≈ Off Diag I + Diag κSystScal/Mis
 -1

 I + FSensAlgn - I I + κSystScal/Mis

≈ Off Diag I - Diag κSystScal/Mis + FSensAlgn - I + κSystScal/Mis (8.1.1.1.1-25)

= Off Diag FSensAlgn + κSystScal/Mis

Then, because the diagonal elements of FAlgn and FSensAlgn are identity (to first order), we

have from (8.1.1.1.1-25):

FAlgn ≈ I + Off Diag FAlgn

 ≈ I + Off Diag FSensAlgn + Off Diag κSystScal/Mis

(8.1.1.1.1-26)

or

FAlgn ≈ FSensAlgn + Off Diag κSystScal/Mis (8.1.1.1.1-27)

Finally, we note that if simplified Equations (8.1.1.1.1-22) and (8.1.1.1.1-27) are to be
applied for FScal and FAlgn , a corresponding approximate form of (8.1.1.1.1-12) for KBias

should also be used based on the same assumptions that led to the approximate FScal and FAlgn

forms; i.e., that κSystScal/Mis, FAlgn - I and FSensAlgn - I will be small compared to identity.

Incorporating these approximations in (8.1.1.1.1-12) then finds:

KBias ≈ κSystBias + δωSensBias (8.1.1.1.1-28)

8.1.1.2 ACCELEROMETER ERROR CHARACTERISTICS
AND COMPENSATION FORMULAS

The output vector from a strapdown accelerometer triad can be characterized as a function of
its input specific force acceleration vector as:

aSFPuls =
1

AWt0
 I + GScal GAlgn aSF + δaBias

 + δaSize + δaAniso + δaQuant + δaRand

(8.1.1.2-1)

where
aSF = Specific force acceleration vector sensed by the accelerometer triad. The

components of aSF are the specific force acceleration vector projections onto the
sensor (or “Body”) B Frame.

aSFPuls = Accelerometer triad output vector in pulses per second. Each axis output
pulse is a digital indication that the sensor associated with that axis has
accelerated through an integrated specific force acceleration increment along
its input axis equal to that particular sensor’s pulse size.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-11

AWt0 = Nominal pulse weight (a positive value) for each accelerometer (ft per sec per
pulse).

I = Identity matrix.

GScal = Accelerometer triad scale factor correction matrix; a diagonal matrix in which
each element adjusts the output pulse scaling to correspond to the actual scaling
for the particular sensor output. Nominally, the GScal matrix is zero. The
GScal matrix may include non-linear scale factor effects and temperature
dependency.

GAlgn = Alignment matrix for the accelerometer triad. Each row represents a unit
vector along a particular accelerometer input axis as projected onto the
B-Frame. Nominally, the GAlgn matrix is identity. The GAlgn matrix may
include specific force acceleration dependency.

δaBias = Accelerometer triad bias vector. Each element equals the systematic output
from a particular accelerometer under zero input specific force acceleration

conditions. In some accelerometers, δaBias may have environmental
sensitivities (e.g., temperature and linear vibration dependency).

δaSize = Accelerometer triad size effect error created by the fact that due to physical
size, the accelerometers in the triad cannot be collocated, hence, do not
measure components of identically the same acceleration vector (See Section
8.1.4.1).

δaAniso = Accelerometer triad anisoinertia error effect (present in pendulous
accelerometers) created by mismatch in the moments of inertia around the
input and pendulum axes (See Section 8.1.4.2).

δaQuant = Instantaneous accelerometer triad pulse quantization error associated with
the output only being provided when the cumulative input equals the pulse
weight per axis. Includes pulse output logic dead-band effect under turn-
around conditions (See Section 8.1.3.2).

δaRand = Accelerometer triad random error output vector.

As in Section 8.1.1.1, Equation (8.1.1.2-1) can be solved for the B Frame specific force
acceleration input vector as follows:

aSF
′ = AWt0 I + GScal

 -1 aSFPuls (8.1.1.2-2)

aSF = GAlgn
 -1

 aSF
′ - δaBias - δaSize - δaAniso - δaQuant - δaRand (8.1.1.2-3)

8-12 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

where

aSF
′ = Scale factor compensated accelerometer triad output vector.

Equation (8.1.1.2-2) represents the scale factor compensation equation for the raw
accelerometer triad aSFPuls output. Note that because GScal is a diagonal matrix, the inverse of

I + GScal in Equation (8.1.1.2-2) simply equals the matrix with diagonal elements equal to the
reciprocal of the I + GScal diagonal terms. Compensation for the remaining predictable errors
in aSFPuls is achieved using a simplified form of (8.1.1.2-3) in which it is recognized that the

δaRand component is unpredictable, hence, can only be approximated by zero:

aSF = GAlgn
 -1

 aSF
′ - δaBias - δaSize - δaAniso - δaQuant (8.1.1.2-4)

Compensation Equations (8.1.1.2-2) and (8.1.1.2-4) are further refined to a more familiar
form by introducing the following definitions:

AWt ≡ AWt0 I + GScal
 -1 (8.1.1.2-5)

LMis ≡ I - GAlgn
 -1

(8.1.1.2-6)

LBias ≡ GAlgn
 -1

 δaBias (8.1.1.2-7)

where

AWt = Accelerometer triad scale factor pulse weighting matrix (fps per pulse).

LMis = Accelerometer triad misalignment compensation matrix (nominally zero).

LBias = Accelerometer bias compensation vector.

Substituting (8.1.1.2-5) - (8.1.1.2-7) into (8.1.1.2-2) and (8.1.1.2-4) then obtains the equivalent
compensation equations:

aSF
′ = AWt aSFPuls

aSF ≈ aSF
′ - LMis aSF

′ - LBias - GAlgn
 -1

 δaSize + δaAniso + δaQuant

(8.1.1.2-8)

Equations (8.1.1.2-5) - (8.1.1.2-8) constitute the compensation equations for the
accelerometer triad output vector in continuous acceleration vector format. These equations will
form the basis for the accelerometer triad compensation algorithms presented in Section 8.1.2.2.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-13

8.1.1.2.1 Sensor And System Level Compensation Coefficient
Evaluation For The Accelerometers

Compensation of the aSFPuls accelerometer triad as described in Section 8.1.1.2 requires that

GScal, GAlgn and δaBias be evaluated for the accelerometers. This typically involves use of

generic analytic algorithms that characterize the sensor performance in terms of coefficients that
are unique to each individual sensor. Determination of the coefficients is the calibration process
performed as part of manufacturing/assembly/test operations. A typical "factory" calibration
process consists of two steps: “Sensor Level” calibration and “System Level” calibration.
Sensor Level calibration is performed on each individual sensor before installation into the
strapdown sensor assembly, and typically determines (for the accelerometers) the primary

contributors to GScal and δaBias. Following Sensor Level calibration, the sensors are installed
in the sensor assembly and System Level calibration is performed. System Level calibration
then determines (for the accelerometers) the GAlgn matrix and residual corrections to GScal and

δaBias.

System Level calibration is performed on a sensor assembly that is being compensated using
Sensor Level compensation equations, hence, in effect, the following forms of Equations
(8.1.1.1-2) and (8.1.1.1-4) apply for the accelerometer outputs:

aSF
′ * = AWt0 I + GSensScal

 -1 aSFPuls (8.1.1.2.1-1)

aSF
* = GSensAlgn

 -1
 aSF

′ * - δaSensBias - δaSize
* - δaAniso

* - δaQuant
* (8.1.1.2.1-2)

where

GSensScal = Sensor Level determined GScal matrix.

aSF
′ * = aSF

′ based on using a Sensor Level determined GScal matrix.

GSensAlgn = Pre System Level determined GAlgn matrix. Normally, GSensAlgn would
be identity (i.e., assumed zero misalignment). For generality, and to make
the equations to follow also compatible with coefficient updates following
factory calibration, GSensAlgn has been included in Equation (8.1.1.2.1-2).

aSF
* = aSF based on using aSF

′ * (rather than aSF
′).

δaSensBias = Sensor Level determined δaBias bias vector.

δaSize
* , δaAniso

* , δaQuant
* = δaSize, δaAniso, δaQuant calculated using Sensor Level

compensated data.

8-14 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

The aSFPuls term in (8.1.1.2.1-1) can be expressed as a function of the true specific force

acceleration input vector aSF using Equations (8.1.1.2-2) and (8.1.1.2-4) combined:

aSFPuls =
1

AWt0
 I + GScal GAlgn aSF + δaBias +

Size Effect, Anisoinertia,
and Quantization terms

(8.1.1.2.1-3)

Combining (8.1.1.2.1-1) - (8.1.1.2.1-3) and assuming that size effect, anisoinertia, and
quantization effects have been properly compensated in (8.1.1.2.1-2) then yields:

aSF
* = GSensAlgn

 -1
 I + GSensScal

 -1 I + GScal GAlgn aSF + δaBias - δaSensBias (8.1.1.2.1-4)

The System Level sensor calibration procedure is based on measuring the errors induced in

strapdown inertial navigation software operations when using the aSF
* Sensor Level calibrated

strapdown sensor assembly data for input. The System Level calibration procedure (such as
described in Chapter 18) typically evaluates accelerometer System Level scale factor,

misalignment, and bias errors based on the following linearized model for the aSF
* input data:

aSF
* = I + λSystScal/Mis aSF + λSystBias (8.1.1.2.1-5)

where

λSystScal/Mis = Accelerometer triad System Level scale-factor/misalignment error
matrix.

λSystBias = Accelerometer triad System Level bias error vector.

Equating (8.1.1.2.1-4) and (8.1.1.2.1-5) enables us to solve for new (revised)

GScal, GAlgn, δaBias calibration coefficients in terms of Sensor Level coefficients and the

System Level determined values for λSystScal/Mis, λSystBias. Following the same procedure
leading to Equations (8.1.1.1.1-8) and (8.1.1.1.1-9), we find for the accelerometers:

I + GScal GAlgn = I + GSensScal GSensAlgn I + λSystScal/Mis (8.1.1.2.1-6)

δaBias = I + GScal
 -1 I + GSensScal GSensAlgn λSystBias + δaSensBias (8.1.1.2.1-7)

Equation (8.1.1.2.1-7) can be used to solve for LBias in (8.1.1.2-7) by first writing from
(8.1.1.2.1-6):

I + GScal
 -1 I + GSensScal = GAlgn GSensAlgn I + λSystScal/Mis

 -1
(8.1.1.2.1-8)

Substituting (8.1.1.2.1-8) in (8.1.1.2.1-7) then yields for δaBias :

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-15

δaBias = GAlgn GSensAlgn I + λSystScal/Mis
 -1

 GSensAlgn λSystBias + δaSensBias

= GAlgn I + λSystScal/Mis
 -1

 GSensAlgn
 -1

 GSensAlgn λSystBias + δaSensBias (8.1.1.2.1-9)

= GAlgn I + λSystScal/Mis
 -1

 λSystBias + GSensAlgn
 -1

 δaSensBias

Applying (8.1.1.2.1-9) in (8.1.1.2-7) also obtains for LBias:

LBias = I + λSystScal/Mis
 -1

 λSystBias + GSensAlgn
 -1

 δaSensBias (8.1.1.2.1-10)

Returning to Equation (8.1.1.2.1-6) and following the same procedure leading to Equations
(8.1.1.1.1-13) - (8.1.1.1.1-16), we obtain the iterative form of Equation (8.1.1.2.1-6) to be used
in evaluating GScal , GAlgn for the accelerometers:

GScal = Diag I + GSensScal GSensAlgn I + λSystScal/Mis GAlgn
 -1

 - I (8.1.1.2.1-11)

GAlgnOff-Diag = Off Diag I + GScal
 -1 I + GSensScal GSensAlgn I + λSystScal/Mis

(8.1.1.2.1-12)

GAlgn XX GAlgn XY GAlgn XZ

GAlgn YX GAlgn YY GAlgn YZ

GAlgn ZX GAlgn ZY GAlgn ZZ

 ≡ GAlgn (8.1.1.2.1-13)

GAlgn XX = 1 - GAlgn XY

 2
 - GAlgn XZ

 2

GAlgn YY = 1 - GAlgn YX

 2
 - GAlgn YZ

 2
(8.1.1.2.1-14)

GAlgn ZZ = 1 - GAlgn ZX

 2
 - GAlgn ZY

 2

where

GAlgn Off-Diag = Off-diagonal elements of GAlgn .

Since GScal includes non-linear as well as linear scale factor effects, the non-linear terms (albeit
generally small compared to the linear terms) make GScal a function of specific force. Section
8.1.1.3 discusses how Equations (8.1.1.2.1-11) - (8.1.1.2.1-14) (and subsequent developments
thereof in this section) can be extended to account for the non-linear effects.

8-16 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Equations (8.1.1.2.1-11) - (8.1.1.2.1-14) are solved iteratively by first approximating GAlgn

in Equation (8.1.1.2.1-11) as GSensAlgn, and then processing Equations (8.1.1.2.1-11) -
(8.1.1.2.1-14) in the sequence shown to determine GScal and GAlgn . Subsequent iteration
cycles then use the GAlgn value determined from the last iteration cycle in Equation
(8.1.1.2.1-11). After two or three iteration cycles, GScal and GAlgn will be calculated to high

precision.

In practice, linearized forms of Equations (8.1.1.2.1-11) - (8.1.1.2.1-14) can be utilized in

many applications based on the assumption that λSystScal/Mis, GAlgn - I and GSensAlgn - I

will be small. Following the linearization procedure that led to Equations (8.1.1.1.1-22),
(8.1.1.1.1-27) and (8.1.1.1.1-28), the simplified approximate forms of Equations (8.1.1.2.1-10)
- (8.1.1.2.1-14) are given by:

GScal ≈ GSensScal + I + GSensScal Diag λSystScal/Mis (8.1.1.2.1-15)

GAlgn ≈ GSensAlgn + Off Diag λSystScal/Mis (8.1.1.2.1-16)

LBias ≈ λSystBias + δaSensBias (8.1.1.2.1-17)

8.1.1.3 DEALING WITH SCALE FACTOR NON-LINEARITIES

In many applications, the ΩWt and AWt scale factor matrices in Sections 8.1.1.1.1 and

8.1.1.2.1 are approximated as constant, representing a linear scale factor error characteristic (i.e.,
angular-rate-sensor/accelerometer output linearly proportional to angular-rate/specific-force

input). If non-linear scale factor effects exist, ΩWt and AWt become functions of angular-

rate/specific-force. In this section we analyze how the results of Sections 8.1.1.1.1 and 8.1.1.2.1
can be expanded to specifically account for scale factor non-linearities. We will develop the
procedure first for the accelerometers and then apply it to the angular rate sensors.

The accelerometer triad pulse weighting matrix AWt is calculated from GScal as shown in
Equation (8.1.1.2-5). To handle non-linearities in AWt, let us begin by defining GScal as being

composed of linear and non-linear terms, viz.:

I + GScal = I + GScalLin I + GScalNonLin (8.1.1.3-1)

where

GScalLin = Linear scale factor portion of GScal (independent of specific force input).

GScalNonLin = Non-linear portion of GScal dependent on specific force input.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-17

We now address the problem of calculating GScalLin and GScalNonLin for (8.1.1.3-1) from
Sensor Level and System Level test data measurements. As in (8.1.1.3-1) we first define:

I + GSensScal = I + GSensScalLin I + GSensScalNonLin

λSystScal/Mis = λSystScalLin/Mis + λSystScalNonLin

(8.1.1.3-2)

where

GSensScalLin = Linear scale factor portion of GSensScal (independent of specific force
input).

GSensScalNonLin = Non-linear portion of GSensScal dependent on specific force input.

λSystScalLin/Mis = Linear scale factor portion of λSystScal/Mis (independent of specific
force input).

λSystScalNonLin = Non-linear portion of λSystScal/Mis dependent on specific force
input. By its name, we are assuming that the non-linear terms in

λSystScalNonLin are only in the scale factor (diagonal elements) and
do not include misalignment effects (off-diagonal elements); i.e.,

λSystScalNonLin is a diagonal matrix.

In general, GSensScalNonLin and GSensScalLin would be determined from Sensor Level tests
with GSensScalNonLin calculated as a function of the raw accelerometer pulse output (see
Equation (8.1.1.2-1) for general accelerometer output model), but applied during Sensor Level

testing on each individual accelerometer. The λSystScalLin/Mis and λSystScalNonLin terms
would be determined by System Level tests, typically based on a linearized error model such as
Equation (8.1.1.2.1-5). Chapter 18, Section 18.4 provides an example of a typical System
Level test and associated error determination procedure.

Continuing, from Equation (8.1.1.2.1-15) we see that I + GScal in (8.1.1.3-1) is also given
by:

I + GScal ≈ I + GSensScal I + Diag λSystScal/Mis (8.1.1.3-3)

Substituting (8.1.1.3-1) and (8.1.1.3-2) into (8.1.1.3-3) obtains:

I + GScalLin I + GScalNonLin = I + GSensScalLin I + GSensScalNonLin I

+ Diag λSystScalLin/Mis + λSystScalNonLin (8.1.1.3-4)

≈ I + GSensScalLin I + GSensScalNonLin I + Diag λSystScalLin/Mis I + λSystScalNonLin

8-18 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Recognizing that all matrices in (8.1.1.3-4) are diagonal and that the product of diagonal
matrices is unaffected by the order of multiplication, Equation (8.1.1.3-4) can be rearranged into
the following:

I + GScalLin I + GScalNonLin (8.1.1.3-5)

≈ I + GSensScalLin I + Diag λSystScalLin/Mis I + GSensScalNonLin I + λSystScalNonLin

from which we can then write:

I + GScalLin ≈ I + GSensScalLin I + Diag λSystScalLin/Mis

I + GScalNonLin ≈ I + GSensScalNonLin I + λSystScalNonLin

(8.1.1.3-6)

Accelerometer non-linear scale factor effects can be handled using (8.1.1.3-1) for I + GScal in
AWt Equation (8.1.1.2-5), with I + GScalLin and I + GScalNonLin provided by (8.1.1.3-6).

Equivalent results are obtained for the angular rate sensors by applying the same
methodology to Equation (8.1.1.1.1-22). The results are:

I + FScal = I + FScalLin I + FScalNonLin

κSystScal/Mis = κSystScalLin/Mis + κSystScalNonLin

(8.1.1.3-7)

with

I + FScalLin ≈ I + FSensScalLin I + Diag κSystScalLin/Mis

I + FScalNonLin ≈ I + FSensScalNonLin I + κSystScalNonLin

(8.1.1.3-8)

where

FScalLin = Linear scale factor portion of FScal (independent of angular rate input).

FScalNonLin = Non-linear portion of FScal dependent on angular rate input.

FSensScalLin = Linear scale factor portion of FSensScal (independent of angular rate
input).

FSensScalNonLin = Non-linear portion of FSensScal dependent on angular rate input.

κSystScalLin/Mis = Linear scale factor portion of κSystScal/Mis (independent of angular
rate input).

κSystScalNonLin = Non-linear portion of κSystScal/Mis dependent on angular rate input
(a diagonal matrix attributable to only scale factor error effects).

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-19

Angular rate sensor non-linear scale factor effects can be handled using (8.1.1.3-7) for

I + FScal in ΩWt Equation (8.1.1.1-5), with I + FScalLin and I + FScalNonLin provided by
(8.1.1.3-8). In general, FSensScalNonLin and FSensScalLin would be determined from Sensor
Level tests with FSensScalNonLin calculated as a function of the raw angular rate sensor pulse
output (see Equation (8.1.1.1-1) for general angular rate sensor output model), but applied

during Sensor Level testing on each individual angular rate sensor. The κSystScalLin/Mis and

κSystScalNonLin terms would be determined by System Level tests, typically based on a
linearized error model such as Equation (8.1.1.1.1-5). Chapter 18, Section 18.4 provides an
example of a typical System Level test and associated error determination procedure.

As an example of the application of the above results, let us consider the case of a common
accelerometer scale factor asymmetry type non-linearity. Scale factor asymmetry produces an
acceleration error proportional to the magnitude of the input acceleration. From Equation
(8.1.1.2-1) we see that I + GScal (a diagonal matrix containing the non-linearity) multiplies a

composite of acceleration terms which we define for discussion purposes as aSF
″ :

aSF
″ ≡ GAlgn aSF + δaBias + δaSize + δaAniso + δaQuant + δaRand (8.1.1.3-9)

To account for asymmetrical scale factor error, I + GScal should include a constant component

(GScalNonLin) that reverses its sign for negative compared to positive values of aSF
″ . The

desired result is achieved from (8.1.1.2-1) by modeling I + GScal as in (8.1.1.3-1) with
GScalNonLin given by:

GScalNonLin = GScalAsym ASign
″ (8.1.1.3-10)

in which from (8.1.1.2-1) and (8.1.1.3-9):

ASign
″ ≡

Sign aSFX
″ 0 0

0 Sign aSFY
″ 0

0 0 Sign aSFZ
″

(8.1.1.3-11)

where

aSFi
″ = Component i of aSF

″ in (8.1.1.3-9).

ASign
″ = Diagonal matrix with element i equal to the sign of aSFi

″ .

Sign () = One for () greater than or equal to zero and minus one for () less than zero.

GScalAsym = Accelerometer scale factor asymmetry matrix.

8-20 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Because GScal is diagonal and small compared to identity, I + GScal will be diagonal with
positive components. Therefore, from (8.1.1.3-9) and (8.1.1.2-1), the sign of the aSFPuls

components in (8.1.1.2-1) will equal the sign of the (8.1.1.3-9) aSF
″ components:

ASign
″ = APulsSign (8.1.1.3-12)

where

APulsSign = Diagonal matrix with element i equal to the sign of aSFPulsi defined below.

aSFPulsi = Accelerometer i component of the aSFPuls output pulse rate vector.

Thus, using (8.1.1.3-12), Equation (8.1.1.3-10) is equivalently:

GScalNonLin = GScalAsym APulsSign (8.1.1.3-13)

Similarly, for GSensScalNonLin in (8.1.1.3-2) determined from Sensor Level tests, we write (as
in (8.1.1.3-13)) :

GSensScalNonLin = GSensScalAsym APulsSign (8.1.1.3-14)

where

GSensScalAsym = Accelerometer scale factor asymmetry matrix determined from
Sensor Level testing.

The λSystScalNonLin matrix during System Level tests can be modeled from (8.1.1.2.1-5)
and (8.1.1.3-2) as:

λSystScalNonLin = λSystScalAsym ASign (8.1.1.3-15)

where

ASign = Diagonal matrix with element i equal to the sign of aSFi defined below.

aSFi = Component i of aSF in Equation (8.1.1.2.1-5).

λSystScalAsym = Accelerometer scale factor asymmetry matrix determined from
System Level testing.

Applying (8.1.1.3-12), we make the first order approximation that:

ASign ≈ ASign
″ = APulsSign (8.1.1.3-16)

from which (8.1.1.3-15) becomes:

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-21

λSystScalNonLin ≈ λSystScalAsym APulsSign (8.1.1.3-17)

Substituting (8.1.1.3-14) and (8.1.1.3-17) into the (8.1.1.3-6) I + GScalNonLin expression

obtains:

I + GScalNonLin = I + GSensScalAsym APulsSign I + λSystScalAsym APulsSign (8.1.1.3-18)

Equation (8.1.1.3-18) for I + GScalNonLin and (8.1.1.3-6) for I + GScalLin , when

substituted in (8.1.1.3-1), finds I + GScal for AWt in (8.1.1.2-5), which then determines aSF
′ in

(8.1.1.2-8). A composite version of these results obtains the following revised form of the aSF
′

expression in (8.1.1.2-8):

aSF
′ = AWt + aSF+Puls + AWt - aSF-Puls (8.1.1.3-19)

in which

aSF+Puls ≡

aSF+PulsX

aSF+PulsY

aSF+PulsZ

aSF-Puls ≡

aSF-PulsX

aSF-PulsY

aSF-PulsZ

AWt + = AWt0 I + GSensScalLin I

(8.1.1.3-20)

+ Diag λSystScalLin/Mis I + GSensScalAsym I + λSystScalAsym
 -1

AWt - = AWt0 I + GSensScalLin I

+ Diag λSystScalLin/Mis I - GSensScalAsym I - λSystScalAsym
 -1

where
aSF+Pulsi = aSFPulsi defined previously when it is positive.

aSF-Pulsi = aSFPulsi when it is negative.

aSF+Puls = Accelerometer pulse rate output vector formed from the aSF+Pulsi’s.

aSF-Puls = Accelerometer pulse rate output vector formed from the aSF-Pulsi’s.

AWt +, AWt - = Accelerometer plus and minus pulse weighting coefficients.

Equation (8.1.1.3-19) lends itself to compensation for a commonly used sensor output
format in which positive and negative pulses are provided on separate output lines. Scale factor
asymmetry compensation can be achieved in this situation by scaling the positive pulses by

8-22 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

AWt +, the negative pulses by AWt -, and summing the result to form aSF
′ . This is fairly simple

and can be achieved on all sensor input data at the maximum input rate, prior to application of
remaining compensations. The AWt + and AWt - matrices would be calculated at system start-

up if all contributions are constant, or at a lower rate if some contributions vary with time (e.g.,
temperature sensitive terms modeled as a function of measured sensor temperature).

During System Level testing, the AWt +, AWt - values used to compute aSF
′ in accelerometer

compensation Equation (8.1.1.3-19) would be as in (8.1.1.3-20), but with the λSyst matrices

set to zero. The results of the System Level testing would, of course, then be used to calculate

the λSyst matrices.

The previous accelerometer scale factor asymmetry results are easily extended to angular rate

sensors for the ω′ vector in compensation Equations (8.1.1.1-8) which then becomes:

ω′ = ΩWt + ω+Puls + ΩWt - ω-Puls (8.1.1.3-21)

with

ω+Puls ≡

ω+PulsX

ω+PulsY

ω+PulsZ

ω-Puls ≡

ω-PulsX

ω-PulsY

ω-PulsZ

ΩWt + = ΩWt0 I + FSensScalLin I

(8.1.1.3-22)

+ Diag κSystScalLin/Mis I + FSensScalAsym I + κSystScalAsym
 -1

ΩWt - = ΩWt0 I + FSensScalLin I

+ Diag κSystScalLin/Mis I - FSensScalAsym I - κSystScalAsym
 -1

where

FSensScalAsym = Angular rate sensor scale factor asymmetry matrix determined from
Sensor Level testing.

κSystScalAsym = Angular rate sensor scale factor asymmetry matrix determined from
System Level testing.

ω+Puls i = ωPuls i defined below when it is positive.

ωPuls i = Component i of angular rate sensor output pulse rate vector ωPuls.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-23

ω-Puls i = ωPuls i when it is negative.

ω+Puls = Angular rate sensor pulse rate output vector formed from the ω+Puls i’s.

ω-Puls = Angular rate sensor pulse rate output vector formed from the ω-Puls i’s.

ΩWt +, ΩWt - = Angular rate sensor plus and minus pulse weighting coefficients.

During System Level testing, the ΩWt +, ΩWt - values used to compute ω′ in angular rate

sensor compensation Equation (8.1.1.3-21) would be as in (8.1.1.3-22), but with the κSyst

matrices set to zero. The results of the System Level testing would, of course, then be used to

calculate the κSyst matrices.

To conclude the discussion on scale factor asymmetry, let us recall that the previous results

for AWt and ΩWt were based on the Equation (8.1.1.2.1-15) simplified form of GScal for the
accelerometers (and by extension, the Equation (8.1.1.1.1-22) simplified form of FScal for the
angular rate sensors). Therefore, when applying the previous results, we should also use the
corresponding simplified forms for GAlgn , LBias, FAlgn and KBias that were derived from the
same assumptions leading to GScal, FScal Equations (8.1.1.2.1-15) and (8.1.1.1.1-22). Thus,
GAlgn and LBias would be calculated from Equations (8.1.1.2.1-16) - (8.1.1.2.1-17); FAlgn and
KBias would be calculated from Equations (8.1.1.1.1-27) - (8.1.1.1.1-28). Also note, from
(8.1.1.3-2) and its angular rate sensor equivalent, that the Off Diag terms in (8.1.1.2.1-16) and
(8.1.1.1.1-27) are equivalently:

Off Diag λSystScal/Mis = Off Diag λSystScalLin/Mis (8.1.1.3-23)

Off Diag κSystScal/Mis = Off Diag κSystScalLin/Mis (8.1.1.3-24)

8.1.2 INERTIAL SENSOR INTEGRATED OUTPUT COMPENSATION ALGORITHMS

The Chapter 7 strapdown inertial navigation software algorithms are based on the use of
compensated inertial sensor inputs (i.e., after application of the inertial sensor compensation
equations developed in Sections 8.1.1.1 and 8.1.1.2). Specifically, compensated inertial sensor

data is utilized for αm in Equations (7.1.1.1-12), for υm in Equations (7.2.2.2-23) or

(7.2.2.2-26), for αm and υm in Equations (7.2.2.2-25) or (7.2.2.2.1-7) with (7.2.2.2.1-8), for

Sυm in Equations (7.3.3-9), and for αm, υm, Sαm, and Sυm in Equations (7.3.3-11) or

(7.3.3.1-16). Additionally, compensated sensor data based on the Section 8.1.1.1 and 8.1.1.2
equations is used in the coning, sculling and scrolling algorithms for attitude/velocity/ position

8-24 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

updating, and in the accelerometer size-effect/anisoinertia correction algorithms. Sections
8.1.2.1 and 8.1.2.2 to follow utilize the Section 8.1.1.1 and 8.1.1.2 equations to develop

compensation algorithms for the αm and Sαm integrated angular rate terms and for the υm and

Sυm integrated specific force terms. Sensor compensation for the accelerometer size effect,

accelerometer anisoinertia, coning, sculling and scrolling algorithms are developed in
subsequent Sections 8.1.4.1 (and subsections), 8.1.4.2, 8.2.1.1, 8.2.2.1, 8.2.2.2 and 8.2.3.1.

It is to be noted that the Chapter 19 (Section 19.1) unified strapdown velocity/position
algorithms (in Equations (19.1.5-9) with (19.1.11-1)) are also based on the use of compensated

inertial sensor inputs. A compensated rotation vector φm for (19.1.5-9) is derived directly from

the 8.2.1.1 result by summing the compensated coning equation with the compensated αm from

Section 8.1.2.1. The compensated velocity translation vector ηm for (19.1.5-9) is derived
directly from the 8.2.2.1 result by summing the compensated sculling equation with the

compensated υm from Section 8.1.2.2 (because the sculling input δηSculm to ηm in (19.1.11-1)

is analytically identical to the Chapter 7 sculling term ΔvSculm whose compensated form is

derived in 8.2.2.1). A compensated Sυm for the position translation vector ζm input in

(19.1.11-1) is as derived in 8.1.2.2. A compensated version of the scrolling input δζScrolm to

ζm in (19.1.11-1) (for use in (19.1.5-9)) has not yet been developed as of this writing.

8.1.2.1 ANGULAR RATE SENSOR INTEGRATED OUTPUT
COMPENSATION ALGORITHMS

The uncompensated form of αm and Sαm is obtained from the basic definition of αm and

Sαm (e.g., Equation (7.3.3-10)), but computed from raw angular rate sensor output data:

αCnt(τ) = dαCnt
tm - 1

τ

 αCntm = αCnt(tm)

SαCnt(t) = αCnt(τ) dτ
tm - 1

t

 SαCntm = SαCnt(tm)

(8.1.2.1-1)

where

dαCnt = ωPuls dt = Uncompensated angular rate sensor triad output differential pulse
count vector.

ωPuls = Uncompensated angular rate sensor triad output pulse rate vector.

αCntm, SαCntm = αm, Sαm computed from uncompensated angular rate sensor triad
output pulse data.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-25

Digital integration algorithms for αCntm, SαCntm in (8.1.2.1-1) are provided by Equations

(8.2.1.1-15) and (8.2.3.1-4) in subsequent Sections 8.2.1.1 and 8.2.3.1.

The compensated form of αm and Sαm derives from the Equation (8.1.1.1-8) angular rate

sensor triad compensation formulas repeated below:

ω′ = ΩWt ωPuls

ω ≈ ω′ - KMis ω′ - KBias - FAlgn
 -1

 δωQuant

(8.1.2.1-2)

in which ΩWt, KMis and KBias are as calculated in (8.1.1.1-5) - (8.1.1.1-7).

Applying (8.1.2.1-2) to Equation (8.1.2.1-1) and approximating FAlgn as identity obtains the

compensated αm, Sαm algorithms:

α′m = ΩWt αCntm (8.1.2.1-3)

αm ≈ α′m - KMis α′m - KBias Tm - δαQuantCm (8.1.2.1-4)

Sαm

 ′ = ΩWt SαCntm (8.1.2.1-5)

Sαm ≈ Sαm

 ′ - KMis Sαm

 ′ -
1
2

 KBias Tm + δαQuantCm Tm (8.1.2.1-6)

where

δαQuantCm = Integrated angular rate triad quantization compensation at computer
cycle m (See Section 8.1.3.3 for associated algorithms).

Tm = Computer update cycle time period.

′ = Reference to scaled parameters, but compensated only for scale factor error.

Equations (8.1.2.1-4) and (8.1.2.1-6) are based on the assumption that KBias can be treated
as a constant over the computer update time interval m. If KBias contains dynamic time varying
terms (e.g., specific force sensitive elements), a more complicated version of the KBias integral
over the computer update period would be required. Also note that in Equation (8.1.2.1-6), the

approximation has been made that δαQuantCm builds linearly across the computer update

interval.

Equations (8.1.2.1-3) and (8.1.2.1-5) for α′m, Sαm

 ′ are based on the assumption that ΩWt can

be approximated as constant over an m cycle. Under this assumption, if ΩWt contains non-

8-26 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

linear terms (as addressed in Section 8.1.1.3), ΩWt would be calculated as a function of αCntm.

For the more general case in which ΩWt may have rapid variations, α′m, Sαm

 ′ can be calculated

based on Equation (7.3.3-10), but computed from scale factor compensated angular rate sensor

output data ω′ as in (8.1.2.1-2):

α′(τ) = ΩWt dαCnt
tm - 1

τ

α′m = α′(tm) (8.1.2.1-7)

Sα
 ′ (t) = α′(τ) dτ

tm - 1

t

Sαm

 ′ = Sα
 ′ (tm) (8.1.2.1-8)

If scale factor asymmetry is to be compensated as described in Section 8.1.1.3, the α′(τ)

integrand in (8.1.2.1-7) would be based on ω′ from (8.1.1.3-21) (repeated below) replacing ω′
in (8.1.2.1-2):

ω′ = ΩWt + ω+Puls + ΩWt - ω-Puls (8.1.2.1-9)

in which ΩWt +, ΩWt - are scale factor weighting matrices as defined in Equation (8.1.1.3-22)

for positive and negative uncompensated angular rate sensor pulse rate output data (ω+Puls and

ω-Puls - See Section 8.1.1.3 for further clarification). Then, based on (8.1.2.1-7) and

(8.1.2.1-9), αm′ would be calculated as:

α′(τ) = ΩWt + dα +Cnt + ΩWt - dα -Cnt
tm-1

τ

α′m = α′(tm) (8.1.2.1-10)

where

dα +Cnt, dα -Cnt = ω+Puls dt and ω-Puls dt, the uncompensated angular rate sensor
triad differential positive and negative pulse rate output vectors.

Digital integration algorithms for α′m in (8.1.2.1-10) and Sαm

 ′ in (8.1.2.1-8) are provided by

Equations (8.2.1.1-18) and (8.2.3.1-7) in subsequent Sections 8.2.1.1 and 8.2.3.1.

8.1.2.2 ACCELEROMETER INTEGRATED OUTPUT
COMPENSATION ALGORITHMS

The uncompensated form of υm and Sυm is obtained from the basic definition of υm and Sυm

(e.g., (7.3.3-10)), but computed from raw accelerometer output data:

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-27

υCnt(τ) = dυCnt
tm - 1

τ

 υCntm = υCnt(tm)

SυCnt(t) = υCnt(τ) dτ
tm - 1

t

 SυCntm = SυCnt(tm)

(8.1.2.2-1)

where

dυCnt = aSFPuls dt = Uncompensated accelerometer triad output differential pulse
count vector.

aSFPuls = Uncompensated accelerometer triad output pulse rate vector.

υCntm, SυCntm = υm, Sυm computed from uncompensated accelerometer triad output
data.

Digital integration algorithms for υCntm, SυCntm in (8.1.2.2-1) are provided by Equations

(8.2.2.1-36) and (8.2.3.1-4) in subsequent Sections 8.2.2.1 and 8.2.3.1.

The compensated form of υm and Sυm derives from the Equation (8.1.1.2-8) accelerometer

triad compensation formulas repeated below:

aSF
′ = AWt aSFPuls

aSF ≈ aSF
′ - LMis aSF

′ - LBias - GAlgn
 -1

 δaSize + δaAniso + δaQuant

(8.1.2.2-2)

with AWt, LMis and LBias as calculated in (8.1.1.2-5) - (8.1.1.2-7).

Applying Equation (8.1.2.2-2) to (8.1.2.2-1) obtains the compensated υm, Sυm algorithms:

υ′m = AWt υCntm (8.1.2.2-3)

υm ≈ υ′m - LMis υ′m - LBias Tm - δ υSizeCm- δ υAnisoCm - δ υQuantC m (8.1.2.2-4)

Sυm

 ′ = AWt SυCntm (8.1.2.2-5)

Sυm ≈ Sυm

 ′ - LMis Sυm

 ′

 -
1
2

 LBias Tm + δυSizeCm + δυAnisoCm + δυQuantCm Tm

(8.1.2.2-6)

where

8-28 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

δ υSizeC m, δ υAnisoCm, δ υQuantCm = Accelerometer triad size effect, anisoinertia and
quantization compensations over computer cycle m (See Sections 8.1.3.3,
8.1.4.1 (and subsections) and 8.1.4.2 for associated algorithms). For the

δ υAnisoCm
 and δυQuantCm algorithms, the GAlgn

 -1
 multiplier in (8.1.2.2-2) is

approximated by identity. For the δυSizeC m algorithm, versions are provided

that approximate GAlgn
 -1

 by identity, and which include the GAlgn
 -1

 multiplier.

Equations (8.1.2.2-4) and (8.1.2.2-6) are based on the assumption that LBias can be treated as
a constant over the computer update time interval m. If LBias contains dynamic time varying
terms (e.g., angular rate sensitive elements), a more complicated version of the LBias integral
over the computer update period would be required. Also note that in Equation (8.1.2.2-6), the

approximation has been made that δυQuantCm, δυSizeCm, δυAnisoCm build linearly across the

computer update interval.

Equations (8.1.2.2-3) and (8.1.2.2-5) for υ′m, Sυm

 ′ are based on the assumption that AWt can

be approximated as constant over an m cycle. Under this assumption, if AWt contains non-

linear terms (as addressed in Section 8.1.1.3), AWt would be calculated as a function of υCntm.

For the more general case in which AWt may have rapid variations, υ′m, Sυm

 ′ can be calculated

based on Equation (7.3.3-10), but computed from scale factor compensated accelerometer

output data aSF
′ as in (8.1.2.2-2):

υ′(τ) = AWt dυCnt
tm - 1

τ

υ′m = υ′(tm) (8.1.2.2-7)

Sυ
 ′ (t) = υ′(τ) dτ

tm - 1

t

Sυm

 ′ = Sυ
 ′ (tm) (8.1.2.2-8)

If scale factor asymmetry is to be compensated as described in Section 8.1.1.3, the υ′(τ)

integrand in (8.1.2.2-7) would be based on aSF
′ from (8.1.1.3-19) (repeated below) replacing

aSF
′ in (8.1.2.2-2):

aSF
′ = AWt + aSF+Puls + AWt - aSF-Puls (8.1.2.2-9)

in which AWt +, AWt - are scale factor weighting matrices as defined in Equation (8.1.1.3-20)

for positive and negative uncompensated accelerometer pulse rate output data (aSF+Puls and

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-29

aSF-Puls - See Section 8.1.1.3 for further clarification). Then, based on (8.1.2.2-7) and

(8.1.2.2-9), υ′m would be calculated as:

υ′(τ) = AWt + dυ +Cnt + AWt - dυ -Cnt
tm - 1

τ

υ′m = υ′(tm) (8.1.2.2-10)

where

dυ +Cnt, dυ -Cnt = aSF+Puls dt and aSF-Puls dt, the uncompensated accelerometer triad
differential positive and negative pulse rate output vectors.

Digital integration algorithms for υ′m in (8.1.2.2-10) and Sυm

 ′ in (8.1.2.2-8) are provided by

Equations (8.2.2.1-39) and (8.2.3.1-7) in subsequent Sections 8.2.2.1 and 8.2.3.1.

8.1.3 INERTIAL SENSOR QUANTIZATION COMPENSATION ALGORITHMS

The design of a strapdown inertial sensor (angular rate sensor or accelerometer) and its
computer interface electronics typically includes a pulse output function and an integration
function. The pulse output function generates an output logic pulse each time the integrated
input to the sensor reaches a specific value known as the pulse size. A “positive” logic pulse is
output when the integrated input (since the last output pulse) is positive and equal to the pulse
size; a “negative” pulse is output when the integrated input (since the last pulse output) is
negative and equal to the pulse size. The integration function is implemented by the pulse
generation operation and by counting the plus and minus output pulses provided to the
strapdown navigation computer, thereby accurately reconstructing the integral of the sensor
input (within a pulse). Without compensation, the accuracy of the reconstructed integral in the
strapdown computer is limited to the pulse size. The associated error is denoted as “Pulse
Quantization Error” and the associated compensation will be defined as “Quantization
Compensation”.

One of two types of quantization compensation can be utilized to reduce pulse quantization
error, depending on the particular sensor utilized and its output availability; Pulse Count
Residual compensation or Turn-Around Dead-Band compensation.

8.1.3.1 PULSE COUNT RESIDUAL COMPENSATION

For some inertial sensors, the integrated input minus the sum of the pulses emitted (“pulse
count residual”) is a measurable analog signal and available as an additional output (sometimes
including a bias). For other inertial sensors, the pulse count residual is estimated as the ratio of
the measured time interval from the previous pulse to the sensor data sample time, divided by

8-30 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

the current measured time between pulses (Note - To assure a reasonably short time interval
between pulses, time base measurement of the pulse count residual is usually restricted to
sensors having a biased input). Pulse Count Residual compensation utilizes the pulse count
residual output to refine the pulse count sample in the strapdown computer. The pulse count
residual is created by the pulse generation logic within the inertial sensor electronics and can be
defined analytically as:

CntRes = CntRes0 +
1

Wt
 Integ - Cnt (8.1.3.1-1)

where

CntRes = Pulse count residual output since the end of the last computer cycle l (i.e.,
since the end of cycle l-1).

CntRes0 = Value of CntRes at the start of the first l cycle.

Integ = Integrated sensor input from the start of the first l cycle to the current time
within the current l cycle (measured in radians for an integrating angular rate
sensor and ft per sec for an accelerometer).

Cnt = Sensor output pulse count from the start of the first l cycle to the current time
within the current l cycle.

Wt = Pulse weighting coefficient for the particular sensor (measured in rad per pulse
for an angular rate sensor and ft per sec per pulse for an accelerometer).

At the end of cycle l immediately following the emission of the last pulse associated with
cycle l, Equation (8.1.3.1-1) is:

CntResl = CntRes0 +
1

Wt
 Integl - Cntl (8.1.3.1-2)

where

CntResl = Pulse count residual output from the inertial sensor at the end of computer
cycle l.

Integ l = Integrated sensor input from the start of the first l cycle to the end of the
current l cycle.

Cnt l = Sensor output pulse count from the start of the first l cycle to the end of the
current l cycle.

The difference between pulse count residual measurements over two successive l cycles is
the difference between (8.1.3.1-2) at l and l-1:

CntResl - CntResl-1 =
1

Wt
 Integl - Integl-1 - Cntl - Cntl-1 (8.1.3.1-3)

With rearrangement and redefinition of terms, (8.1.3.1-3) is equivalently:

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-31

ΔIntegl = Wt ΔCntl + CntResl - CntResl-1 (8.1.3.1-4)

where

ΔIntegl = Integrated sensor input over computer cycle l.

ΔCnt l = Sensor output pulse count over computer cycle l.

The quantization error is defined as:

δQuantl ≡ Wt ΔCntl - ΔIntegl (8.1.3.1-5)

or, with (8.1.3.1-4):

δQuantl = - Wt CntResl - CntResl-1 (8.1.3.1-6)

where

δQuantl = Quantization error over cycle l.

Equation (8.1.3.1-6) is the quantization compensation correction for application each
computer l cycle. It is compatible with the definitions of the quantization compensation terms in

Equations (8.1.2.1-2) - (8.1.2.1-4) (δαQuantCm for angular rate sensors) and Equations

(8.1.2.2-2) - (8.1.2.2-4) (δυQuantCm for accelerometers), but for an l cycle within an m cycle.

Over an m cycle, the equivalent to (8.1.3.1-6) would be:

δQuantm = - Wt CntResl - CntResl-1∑
l = (m-1) k

m k

 = - Wt CntResm - CntResm-1 (8.1.3.1-7)

where

CntResm = Pulse count residual output from the inertial sensor sampled at the end of
each computer cycle m, representing the integrated input since the last
pulse output (measured in fractions of a pulse).

δQuantm = Quantization error over cycle m.

k = Number of l computer cycles in one m computer cycle.

Equation (8.1.3.1-7) is the quantization compensation correction form for application once each
computer m cycle.

8.1.3.2 TURN-AROUND DEAD-BAND COMPENSATION

For an idealized inertial sensor (an angular rate sensor for example), output pulses are emitted
consecutively on a plus or minus output line (depending on the sign of the input rate), with each

8-32 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

pulse representing a fixed angular movement through an integrated angular rate increment equal
to the sensor pulse size. A helpful analogy for understanding the pulse output logic is to
imagine traveling past a picket fence. The picket fence represents inertial space, and the distance
between the right edge of two successive pickets corresponds to the sensor pulse size. Imagine
observing the picket fence while looking through a small viewing window (representing the
inertial sensor) that restricts your field of view to no more than one picket at a time. As the
window passes each picket, a pulse is issued on a plus or minus output line, depending on
whether the window is moving from left-to-right or right-to-left past the picket in view. By
summing the pulses, the net distance traveled past the picket fence (the integrated output from
the inertial sensor) can be determined.

Let us assume that the sensor pulse output logic is designed to emit an output pulse at the
instant the right edge of the viewing window passes the right edge of the picket in view (the
“trigger point”). Consider a condition for which the sensor is rotating in the positive direction,
and the last sensor output pulse was emitted at a trigger point corresponding to the sensor being

at integrated rate angle θ (around its input axis). Now assume that at angle θ + Δθ the sensor

reverses direction. Let us further assume that Δθ (a positive value) is smaller than the sensor
pulse size so that no additional positive output pulses are triggered. Following the change in

direction, the ideal sensor would rotate negatively through minus Δθ and emit a negative pulse

at the instant its pulse trigger edge passed the trigger point, again at the angle equal to θ
condition. The negative pulse would thereby exactly cancel the positive pulse emitted

previously when passing by θ under positive rate. Now consider that the previous rotation

sequence occurred for a very slow positive rate through θ to θ + Δθ, and a very slow turn

around back through θ negatively. In the presence of electrical noise in the pulse output
circuitry or for high frequency low amplitude input rate, flurries of plus and minus outputs

would be emitted as the sensor crossed angle θ in the positive direction, and again as it re-
crossed negatively. To avoid this condition, a dead-band is typically built into the sensor pulse
output logic that will only issue the first negative output pulse after the sensor has rotated

negatively through a specified fixed angle increment (dead-band) past the θ point when the last
positive pulse was emitted. Reciprocal logic is also included for rate reversals from minus to
plus. The above discussion applies equally to accelerometers for which the dead-band in the
pulse logic represents a small integrated specific force acceleration increment on the order of the
accelerometer pulse size in magnitude.

An analytical representation of the above pulse generation process can be developed as
follows. A positive pulse is emitted when CntRes as defined in Equation (8.1.3.1-1) exceeds a
specified positive trigger threshold. Simultaneously, CntRes is reduced by one (in accordance
with Equation (8.1.3.1-1)). For continuing positive motion, the Integ term in (8.1.3.1-1) builds
up positively until CntRes again reaches the positive trigger threshold, another positive pulse is

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-33

emitted, and CntRes is reduced again by one. The net effect under continuing positive motion is
to control CntRes so that its average value equals the positive trigger threshold value minus one
half. The reciprocal effect applies for continuous negative motion; a negative trigger threshold is
used to trigger negative pulses, and the CntRes average value is controlled to equal the negative
trigger threshold value plus one half. As described above, when a positive pulse is emitted,
CntRes is reduced by one. The added dead-band logic described in the previous paragraph then
requires the Integ term in (8.1.3.1-1) to be further reduced by the selected dead-band value
before a negative pulse is issued. The result equates the difference between the positive and
negative trigger thresholds to one plus the dead-band. Stated differently, the negative trigger
threshold equals the positive trigger threshold minus the quantity, one plus the dead-band. The
previous description can be described analytically as:

CntResAvg = Thrsh+ -
1
2

 Step Pulslast + Thrsh - +
1
2

 1 - Step Pulslast

 = Thrsh+ -
1
2

 Step Pulslast

 + Thrsh+ - (1 + db) +
1
2

 1 - Step Pulslast

 = Thrsh+ -
1
2

 - Thrsh+ - (1 + db) +
1
2

 Step Pulslast

 + Thrsh+ - (1 + db) +
1
2

 = Thrsh+ -
1
2

 - db + db Step Pulslast

(8.1.3.2-1)

where

CntResAvg = Average value of CntRes.

Thrsh+, Thrsh - = Positive and negative trigger threshold value.

Pulslast = Value of the last pulse emitted (+1 or -1).

Step () = Unit step function having a value of zero for () < 0 and unity for () ≥ 0.

We also note that:

Step () =
1
2

 1 + Sign () (8.1.3.2-2)

where

Sign () = +1 for () > 0 and -1 for () < 0.

With (8.1.3.2-2), Equation (8.1.3.2-1) becomes:

CntResAvg = Thrsh+ -
1
2

 -
1
2

 db +
1
2

 db Sign Pulslast (8.1.3.2-3)

8-34 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Equation (8.1.3.2-3) accurately represents the average value of CntRes during continuous
positive or negative motion (i.e., when the current and last pulse output are of the same sign).
During the turn-around transition from positive to negative or negative to positive motion
(8.1.3.2-1) is in error. However, for a sensor with a small enough pulse size and fast sampling
rate (compared to expected high frequency dynamic motion inputs), the fraction of the time in
turn-arounds will be small compared to the time for motion in one direction (i.e., motion over
two successive pulses). On this basis, the error in (8.1.3.2-1) during turn-arounds can be
considered small, hence, negligible. Turn-Around Dead-Band compensation is based on using
CntResAvg as defined by (8.1.3.2-3) as an approximation to the actual CntRes signal. Thus, at
the end of an l cycle we approximate CntRes from (8.1.3.2-3) as:

CntResl ≈ Thrsh+ -
1
2

 -
1
2

 db +
1
2

 db Sign Pulsl (8.1.3.2-4)

where

Pulsl = Value for the pulse emitted immediately preceding the end of cycle l.

The difference between (8.1.3.2-4) over two successive l cycles is:

CntResl - CntResl-1 =
db
2

 Sign Pulsl - Sign Pulsl-1 (8.1.3.2-5)

Turn-Around Dead-Band compensation applies Equation (8.1.3.2-5) in (8.1.3.1-6). Thus:

δQuant l = - Wt
db
2

 Sign Puls l - Sign Puls l-1 (8.1.3.2-6)

or if we further approximate the Puls terms by the equivalent ΔCnt values:

δQuantl ≈ - Wt
db
2

 Sign ΔCntl - Sign ΔCntl -1 (8.1.3.2-7)

Equation (8.1.3.2-7) is compatible with the definitions of the quantization compensation

terms in Equations (8.1.2.1-2) - (8.1.2.1-4) (δαQuantCm for angular rate sensors) and Equations

(8.1.2.2-2) - (8.1.2.2-4) (δυQuantCm for accelerometers), but for an l cycle within an m cycle.

Over an m cycle, the equivalent to (8.1.3.2-7) would be:

δQuantm = - Wt
db
2

 Sign ΔCntl - Sign ΔCntl-1∑
l = (m-1) k

m k

 = - Wt
db
2

 Sign ΔCntl = m k - Sign ΔCntl =(m-1) k - 1

 ≈ - Wt
db
2

 Sign ΔCntm - Sign ΔCntm-1

(8.1.3.2-8)

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-35

where

ΔCntl = m k, ΔCntl =(m-1) k - 1 = ΔCnt l over computer l cycles mk and (m-1)k-1.

ΔCntm, ΔCntm-1 = Sensor output pulse counts over computer cycles m and m-1.

with δQuant m and k as defined in Section 8.1.3.1.

Equations (8.1.3.2-7) and (8.1.3.2-8) account for the average error introduced at turn-around
by the pulse dead-band logic.

8.1.3.3 PULSE QUANTIZATION COMPENSATION ALGORITHM FORMS

The δαQuantCm, δυQuantCm, δαQuantCl : m pulse quantization terms included in Equations

(8.1.2.1-4), (8.1.2.1-6), (8.1.2.2-4), (8.1.2.2-6), and subsequently (8.1.4.1.4-10), represent
implementations of Equations (8.1.3.1-6) and (8.1.3.1-7), or (8.1.3.2-7) and (8.1.3.2-8), into
the angular rate sensor and accelerometer compensation formulas. Values for the quantization
compensation terms derived from Equations (8.1.3.1-6) and (8.1.3.1-7) are as follows:

δαQuantCm = - ΩWt αCntResl - αCntResl-1∑
l = (m-1) k

m k

 = - ΩWt αCntResm - αCntResm-1

(8.1.3.3-1)

δαQuantCl : m = - ΩWt αCntResm - αCntRes(l : m) -1 (8.1.3.3-2)

δυQuantCm = - AWt υCntResl - υCntResl-1∑
l = (m-1) k

m k

 = - AWt υCntResm - υCntResm-1

(8.1.3.3-3)

where

αCntResl, υCntResl = Vectors with elements equal to the X, Y and Z angular rate
sensor and accelerometer analog pulse count residual outputs
sampled at the end of computer cycle l.

αCntResm, υCntResm = Vectors with elements equal to the X, Y and Z angular rate
sensor and accelerometer analog pulse count residual outputs
sampled at the end of computer cycle m.

αCntRes(l : m) -1 = αCntResl for computer l cycle immediately preceding αCntResm.

8-36 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Values for the quantization compensation terms derived from Equations (8.1.3.2-7) and
(8.1.3.2-8) are given by:

δαQuantCm = - ΩWt
dbω

2
Sign ΔαCnt l - Sign ΔαCnt l-1∑

l = (m-1) k

m k

 ≈ - ΩWt
dbω

2
 Sign αCntm - Sign αCntm-1

(8.1.3.3-4)

δαQuantCl : m = - ΩWt
dbω

2
 Sign ΔαCntm - Sign ΔαCnt(l : m) -1 (8.1.3.3-5)

δυQuantCm = - AWt
dba

2
Sign ΔυCnt l - Sign ΔυCnt l-1∑

l = (m-1) k

m k

 ≈ - AWt
dba

2
 Sign υCntm - Sign υCntm-1

(8.1.3.3-6)

where

dbω, dba = Angular rate sensor and accelerometer pulse output turn-around logic dead-
bands.

ΔαCnt l, ΔυCnt l = Pulse output summation vectors with elements equal for the X, Y, Z
angular rate sensor and accelerometer pulse counts over computer
cycle l.

Δα Cntm, ΔυCntm = ΔαCnt l, ΔυCnt l at the end of computer cycle m.

ΔαCnt(l : m) -1 = ΔαCnt l for computer l cycle immediately preceding ΔαCntm
 .

αCntm, υCntm = Pulse output summation vectors with elements equal to the X, Y and
Z angular rate sensor and accelerometer pulse counts over computer
cycle m.

Sign (V) = Vector with components Sign (VX), Sign (VY), Sign (VZ) in which VX,
VY, VZ equal the X, Y, Z components of V.

An alternate version of (8.1.3.3-4) - (8.1.3.3-6) can also be written based on scaled sensor
data in which the bracketed terms in the Sign () functions would be replaced, based on

Equations (8.1.2.1-10) and (8.1.2.2-10), by the equivalent ′ scaled sensor data parameters:

δαQuantCm ≈ - ΩWt
dbω

2
 Sign α′m - Sign α′m-1 (8.1.3.3-7)

δαQuantCl : m = - ΩWt
dbω

2
 Sign Δα′m - Sign Δα′(l : m) -1 (8.1.3.3-8)

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-37

δυQuantCm ≈ - AWt
dba

2
 Sign υ′m - Sign υ′m-1 (8.1.3.3-9)

where

Δα′m = Δα′l at the end of computer cycle m.

Δα′(l : m) -1 = Δα′l for computer l cycle immediately preceding Δα′m.

The ′ scaled sensor data parameters in (8.1.3.3-7) - (8.1.3.3-9) are as calculated in subsequent
Equations (8.1.4.1.4-5), (8.2.1.1-18) and (8.2.2.1-39).

If scale factor asymmetry is being compensated explicitly as in Section 8.1.1.3, the AWt and

ΩWt matrices in the previous expressions can be approximated as the average of the Section

8.1.1.3 positive and negative weighting matrices, i.e.:

AWt ≈
1
2

 AWt + + AWt - (8.1.3.3-10)

ΩWt ≈
1
2

 ΩWt + + ΩWt - (8.1.3.3-11)

8.1.4 ACCELEROMETER SIZE EFFECT AND ANISOINERTIA
COMPENSATION ALGORITHMS

In addition to the inertial sensor corrections discussed in Sections 8.1.1 - 8.1.3, compensation
is frequently employed in strapdown inertial navigation systems for accelerometer size effect
and, for pendulous accelerometers, anisoinertia error. Due to the physical size of
accelerometers, each accelerometer in the accelerometer triad of a strapdown inertial navigation
sensor assembly cannot be collocated. As a result, each accelerometer measures the acceleration
of a point at its center of seismic mass (the effective acceleration measurement point within the
accelerometer), which differs from the other accelerometer measurement points. This net
acceleration vector measurement error due to non-collocated accelerometers is known as
accelerometer size effect error. Anisoinertia error in pendulous accelerometers is generated by
reaction torque about the hinge axis proportional to the product of angular rates about the
pendulum and input axis, multiplied by the difference in moments of inertia about the pendulum
and input axes (Reference 31). Unlike the Sensor and System Level corrections discussed in
Sections 8.1.1 - 8.1.2 whose compensation coefficients depend on individual sensor
measurements, once the size effect and anisoinertia error coefficients are determined for a
particular sensor model and inertial sensor assembly design, they are the same for all
accelerometers and sensor assemblies of the same design.

8-38 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

8.1.4.1 ACCELEROMETER SIZE EFFECT COMPENSATION ALGORITHM

An analytical description of accelerometer size effect error can be derived from the
relationship between the position location of an accelerometer in the sensor assembly and the
position of a defined navigation reference point within the navigation system:

Rk
I
 = RRef

I
 + l k

I
(8.1.4.1-1)

where

I = Non-rotating inertial coordinate frame as defined in Section 2.2.

Rk
I
 = Position vector from earth’s center to accelerometer k, projected on I Frame axes.

RRef
I

 = Position vector from earth’s center to the INS navigation reference point,

projected on I Frame axes. The navigation reference point is defined as a
selected fixed point within the INS whose position and velocity is to be
calculated by the inertial navigation integration algorithms.

l k
I

 = Position vector from the INS navigation reference point to the accelerometer k

center of seismic mass, as projected on I Frame axes.

Taking the second derivative of (8.1.4.1-1) gives:

Rk
I
 = RRef

I
 + l k

I
(8.1.4.1-2)

Equating the R derivative terms in (8.1.4.1-2) to the sum of the specific force and gravitational
accelerations obtains:

Rk
I
 = aSFk

I
 + gk

I
RRef

I
 = aSFRef

I
 + gRef

I
(8.1.4.1-3)

where

aSFk

I
, aSFRef

I
, gk

I
, gRef

I
 = Specific force and gravitational accelerations at the Rk

I
 and

RRef
I

 locations. Accelerometer k measures the component of

aSFk along its input axis.

The l k
I
 term in (8.1.4.1-2) can be expressed as a function of the INS angular rate by first

applying generalized Equation (3.4-6) to the l k
I

 first derivative while recognizing that l k is fixed

in sensor assembly axes:

l k
I
 = CB

I
 l k

B
 + ωIB

I
 × l k

I
 = ωIB

I
 × l k

I
(8.1.4.1-4)

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-39

where

ωIB
I

 = Angular rate of the sensor assembly B Frame (defined in Section 2.2) relative to
inertial space, expressed in I Frame coordinates.

CB
I

 = Direction cosine matrix that transforms vectors from the B Frame to the I

Frame.

Taking the derivative of (8.1.4.1-4) and substituting (8.1.4.1-4) for l k
I
 yields the desired

expression for the (8.1.4.1-2) l k
I
 term:

l k
I

 = ωIB
I

 × l k
I

 + ωIB
I

 × l k
I

 = ωIB
I

 × l k
I

 + ωIB
I

 × ωIB
I

 × l k
I

(8.1.4.1-5)

Substituting (8.1.4.1-5) and (8.1.4.1-3) into (8.1.4.1-2) with the approximation that the
gravitational acceleration at the accelerometer and INS reference points are equal, finds after
rearrangement:

aSFk

I
 = aSFRef

I
 + gRef

I
 - gk

I
 + ωIB

I
 × l k

I
 + ωIB

I
 × ωIB

I
 × l k

I

≈ aSFRef

I
 + ωIB

I
 × l k

I
 + ωIB

I
 × ωIB

I
 × l k

I
(8.1.4.1-6)

Finally, we transform Equation (8.1.4.1-6) to the B Frame, find its component along the
accelerometer k input axis, and drop the superscript and IB subscript notation for simplicity.
The result is an equation for the accelerometer output as a function of the reference point specific
force:

aSFk = GAlgnk

T
 ⋅ aSFRef + ω × l k + ω × ω × l k (8.1.4.1-7)

where

ω = B Frame components of the accelerometer triad inertial angular rotation rate ωIB
measured by the INS strapdown angular rate sensors.

aSFk = k axis accelerometer sensed acceleration.

aSFRef = B Frame components of the INS navigation reference point specific force
acceleration, which is the aSF vector used for INS velocity determination (as
in continuous form Equation (4.3-18) with (4.2-1) and (4.2-3)).

GAlgn k

T
 = Vector formed from the kth column of GAlgn

T
, the transpose of the GAlgn

accelerometer triad alignment matrix. From the definition of GAlgn

following Equation (8.1.1.2-1), the GAlgn k

T
 vector represents a unit vector in

B Frame coordinates along the accelerometer k input axis.

8-40 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

The acceleration vector sensed by an orthogonal accelerometer triad, then, is from (8.1.4.1-7):

aAccl = aSFk uk∑
k=1,3

 = GAlgnk

T
 ⋅ aSFRef + ω × l k + ω × ω × l k u k∑

k=1,3

= GAlgnk

T
 ⋅ aSFRef uk∑

k=1,3

 + GAlgnk

T
 ⋅ ω × l k + ω × ω × l k u k∑

k=1,3

= GAlgn aSFRef + GAlgnk

T
 ⋅ ω × l k + ω × ω × l k u k∑

k=1,3

 (8.1.4.1-8)

where
aAccl = Vector formed from the three aSFk accelerometer inputs.

u k = B Frame components of a unit vector along the nominal accelerometer k input
axis. For this development we will assume that the accelerometers are nominally
aligned with B Frame axes so that u k is a unit vector along B Frame axis X, Y or
Z for k = 1, 2 or 3.

For an idealized accelerometer of infinitesimal physical size, the three accelerometers in the
sensor assembly can be collocated at the same physical point in the sensor assembly which
would then be identified as the INS reference point. Then the l k’s would be zero and Equation
(8.1.4.1-8) would reduce to aAccl = GAlgn aSFRef (Note that this is of the same form as the

GAlgn aSF term in (8.1.1.2-1)). Because of the finite size of the actual accelerometers, the l k’s

are non-zero, and aAccl ≠ GAlgn aSFRef. The l k terms in (8.1.4.1-8) are identified as the “size

effect” error δaSize in Equation (8.1.1.2-1).

Based on (8.1.4.1-8), the aSFRef specific force acceleration of the sensor assembly reference

point can be accurately computed if the aAccl outputs are corrected for size effect as in

(8.1.1.2-4):

aSFRef = GAlgn
-1

 aAccl - δ aSize

δ aSize ≡ GAlgnk

T
 ⋅ ω × l k + ω × ω × l k uk∑

k=1,3

(8.1.4.1-9)

where

δaSize = Size effect correction.

With rotation compensation and sculling terms applied (e.g., as in Equations (7.2.2.2-22) -
(7.2.2.2-25)) for transformation algorithm computation rate correction, the composite specific
force acceleration signal (for integration into velocity) would be:

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-41

aSFTot = aSFRef +
1
2

d
dt

 (α × υRef) +
1
2

 α × aSFRef + υRef × ω

 υRef ≡ aSFRef dτ
tm - 1

t (8.1.4.1-10)

where
aSFTot = Total specific force acceleration to be integrated into velocity.

α = Integral of ω for rotation compensation and sculling terms.

 υRef = υ in Equation (7.2.2.2-22) based on the INS navigation reference point specific
force acceleration.

tm-1 = Time at the end of the previous m computation cycle.

Substituting from (8.1.4.1-9) in (8.1.4.1-10) then finds:

υRef = GAlgn
-1

 aAccl - δ aSize dτ
tm - 1

t

 = υ* - δυSizeC

υ* ≡ GAlgn
-1

 aAccl dτ
tm - 1

t

 δυSizeC ≡ GAlgn
-1

 δ aSize dτ
tm - 1

t
(8.1.4.1-11)

aSFTot = GAlgn
-1

 aAccl - δ aSize +
1
2

d
dt

 (α × υRef)

 +
1
2

 α × GAlgn
-1

 aAccl - δ aSize +
1
2

 (υ* - δυSizeC) × ω

= GAlgn
-1

 aAccl - GAlgn
-1

 δ aSize +
1
2

d
dt

 (α × υRef)

(8.1.4.1-12)

+
1
2

 α × GAlgn
-1

 aAccl + υ* × ω -
1
2

 α × GAlgn
-1

 δ aSize + δυSizeC × ω

where

υ* = υ in Equation (7.2.2.2-22) based on alignment compensated accelerometer data,
but without size effect correction to the INS navigation reference point specific
force acceleration.

δυSizeC = Size effect correction to υ*.

The GAlgn
-1

 aAccl term in Equation (8.1.4.1-12) is already accounted for in the Equation

(8.1.2.2-4) and (8.1.2.2-6) velocity/position sensor compensation algorithms. Similarly, the

8-42 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

GAlgn
-1

 δ aSize term in (8.1.4.1-12) is accounted for in (8.1.2.2-4) and (8.1.2.2-6) by the

δυSizeCm term which is δυSizeC in (8.1.4.1-11) evaluated at time tm:

δυSizeCm ≡ GAlgn
 -1

 δ aSize dt
tm - 1

tm

(8.1.4.1-13)

The
1
2

d
dt

 (α × υRef) term in Equation (8.1.4.1-12) is handled by the velocity/position rotation

compensation algorithms in Equations (7.2.2.2-23), (7.2.2.2.1-7), (7.3.3-9) and (7.3.3.1-16)
using the outputs from the (8.1.2.2-4) and (8.1.2.2-6) compensation algorithms. The
1
2

 α × GAlgn
-1

 aAccl + υ* × ω term in (8.1.4.1-12) is accounted for by the sculling term in

Equations (7.2.2.2-23) - (7.2.2.2-24), and in sculling/scrolling compensation algorithms
(8 . 2 . 2 . 1 -41) and (8 .2 .3 .1-2) to follow later in this chapter. The
1
2

 α × GAlgn
-1

 δ aSize + δυSizeC × ω term in (8.1.4.1-12) is a correction to the (7.2.2.2-23)

sculling term to account for size effect error in the accelerometer data used in this equation.

Including the
1
2

 α × GAlgn
-1

 δ aSize + δυSizeC × ω correction, Equation (7.2.2.2-23) is

rewritten as:

ΔvSFm

BI(m-1)
 = υm + ΔvRotm + ΔvSculm - δ vScul-SizeCm (8.1.4.1-14)

with, using (8.1.4.1-11) for δυSizeC :

δvScul-SizeCm ≡
1
2

 α × GAlgn
-1

 δ aSize + δυSizeC × ω dt
tm - 1

tm

δυSizeC ≡ GAlgn
 -1

 δ aSize dτ
tm - 1

t
(8.1.4.1-15)

where

δvScul-SizeCm = Size effect correction (integrated over an m cycle) applied to the

ΔvSculm sculling term that was calculated with accelerometer data not
containing size effect compensation.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-43

As in Equation (8.1.4.1-12), we also incorporate the δvScul-SizeCm term into the high

resolution Equation (7.3.3-9) B Frame position change increment caused by specific force
acceleration, to obtain the enhanced form:

ΔRSFm

B
 = Sυm + ΔRRotm + ΔRScrlm -

1
2

 δvScul-SizeCm Tm (8.1.4.1-16)

where

Tm = Velocity update time interval.

Equation (8.1.4.1-16) is based on approximating δvScul-SizeCm as a linear ramping time

function over the Tm time interval.

The above development for ΔvSFm

BI(m-1)
 Equation (8.1.4.1-14) with (8.1.4.1-15) was based on

the Equation (7.2.2.2-22) version of the velocity updating increment algorithm. If the
alternative (7.2.2.2-6) algorithm version is used, a similar development applies. In this case we
start with the equivalent to (7.2.2.2-6):

aSFTot = aSFRef + α × aSFRef (8.1.4.1-17)

and then substitute for aSFRef from (8.1.4.1-9):

aSFTot = GAlgn
-1

 aAccl - δ aSize + α × GAlgn
-1

 aAccl - δ aSize

 = GAlgn
-1

 aAccl - GAlgn
-1

 δ aSize + α × GAlgn
-1

 aAccl - α × GAlgn
-1

 δ aSize

(8.1.4.1-18)

As in (8.1.4.1-12) for the previous development, the GAlgn
-1

 aAccl term in (8.1.4.1-18) is

accounted for in the Equation (8.1.2.2-4) and (8.1.2.2-6) velocity/position sensor compensation

algorithms, as is the GAlgn
-1

 δ aSize term using δυSizeCm from (8.1.4.1-13). The

α × GAlgn
-1

 δ aSize term in (8.1.4.1-18) is a correction to the (7.2.2.2-26) composite velocity-

rotation-compensation/sculling term to account for size effect error in the accelerometer data

used in this equation. Including the α × GAlgn
-1

 δ aSize correction, Equation (7.2.2.2-26) is

rewritten as:

ΔvSFm

BI(m-1)
 = υm + ΔvRot/Sculm - δvRot/Scul-SizeCm (8.1.4.1-19)

δvRot/Scul-SizeCm ≡ α × GAlgn
-1

 δ aSize dt
tm - 1

tm

(8.1.4.1-20)

8-44 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

where

δvRot/Scul-SizeCm = Size effect correction (integrated over an m cycle) applied to the

ΔvRot/Sculm composite velocity-rotation-compensation/sculling
term that was calculated with accelerometer data not containing
size effect compensation.

The subsections to follow develop algorithms for calculating δυSizeCm, δvScul-SizeCm and

δvRot/Scul-SizeCm in Equations (8.1.4.1-14), (8.1.4.1-16) and (8.1.4.1-19) from their analytical

definitions in (8.1.4.1-13), (8.1.4.1-15) and (8.1.4.1-20) using δ aSize from (8.1.4.1-9).

8.1.4.1.1 δυSizeCm Size Effect Algorithm

In developing the algorithm for δυSizeCm in (8.1.4.1-13), we take advantage of assumed

smallness in the misalignment of the inertial sensor input axes from their nominally assumed
orientation along B Frame X, Y and Z axes. This assumption applied to the GAlgn
accelerometer alignment matrix means that the associated LMis misalignment matrix is small
compared to the identity matrix I. Equation (8.1.1.2-6) rearranged relates GAlgn to LMis:

GAlgn
-1

 = I - LMis (8.1.4.1.1-1)

Multiplying (8.1.4.1.1-1) by (I + LMis) and dropping LMis
2

 as second order, we see that:

GAlgn
-1

 (I + LMis) = (I - LMis) (I + LMis) = I - LMis
2

 ≈ I (8.1.4.1.1-2)

or, equivalently:

GAlgn ≈ I + LMis (8.1.4.1.1-3)

Taking the transpose of (8.1.4.1.1-3) finds:

GAlgn
T

 = I + LMis
T

(8.1.4.1.1-4)

or, by column:

GAlgn k

T
 = uk + LMisk

T
(8.1.4.1.1-5)

where

LMisk

T
 = Vector formed from the kth column of LMis

T
.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-45

We will also make use of the approximate form of (8.1.1.1-8) based on neglecting all but the
misalignment error term:

ω ≈ ω′ - KMis ω′ (8.1.4.1.1-6)

where

ω′ = Angular rate sensor output compensated for scale factor error but not for
misalignment error.

We are now ready to apply (8.1.4.1.1-1), (8.1.4.1.1-5) and (8.1.4.1.1-6) in the (8.1.4.1-13)

δυSizeCm equation using (8.1.4.1-9) for δaSize. For the integrand we find after neglecting

misalignment products as second order:

GAlgn
 -1

 δaSize ≈ uk ⋅ ω′ × l k + ω′ × ω′ × l k uk∑
k=1,3

- LMis uk ⋅ ω′ × l k + ω′ × ω′ × l k uk∑
k=1,3

+ LMisk

T
 ⋅ ω′ × l k + ω′ × ω′ × l k uk∑

k=1,3

- uk ⋅ KMis ω′ × l k + KMis ω′ × ω′ × l k + ω′ × KMis ω′ × l k uk∑
k=1,3

(8.1.4.1.1-7)

Let’s define some terms to make (8.1.4.1.1-7) at least look a little bit simpler:

δa′Sizek ≡ ω′ × l k + ω′ × ω′ × l k δa′Size ≡ uk ⋅ δa′Sizek uk∑
k=1,3

(8.1.4.1.1-8)

where

δa′Sizek = The size effect acceleration vector at the accelerometer k center of seismic
mass, but calculated using angular rate sensor data without KM i s
misalignment compensation.

δa′Size = The size effect correction to the accelerometer triad output vector aAccl, but
calculated using accelerometer and angular rate sensor data without LMis and
KMis misalignment compensation.

Substituting (8.1.4.1.1-8) in (8.1.4.1.1-7) then yields:

GAlgn
 -1

 δaSize = δa′Size + ΔδaSize (8.1.4.1.1-9)

with

8-46 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ΔδaSize ≡ - LMis δa′Size + LMisk

T
 ⋅ δa′Sizek uk∑

k=1,3 (8.1.4.1.1-10)

- uk ⋅ KMis ω′ × l k + KMis ω′ × ω′ × l k + ω′ × KMis ω′ × l k uk∑
k=1,3

where

ΔδaSize = Correction to δa′Size for LMis and KMis misalignment.

Using (8.1.4.1.1-9) in (8.1.4.1-13) divides δυSizeCm into two parts:

δυSizeCm = δυ′SizeCm + ΔδυSizeCm (8.1.4.1.1-11)

δυ′SizeCm ≡ δa′Size dt
tm-1

tm

ΔδυSizeCm ≡ ΔδaSize dt
tm-1

tm

(8.1.4.1.1-12)

with δa′Size and ΔδaSize as defined in (8.1.4.1.1-8) and (8.1.4.1.1-10) and where

δυ′SizeCm = The size effect correction to the integrated accelerometer triad output

increment vector υm, but calculated using accelerometer and angular rate
sensor data without LMis and KMis misalignment compensation.

ΔδυSizeCm = Correction to δυ′SizeCm for LMis and KMis misalignment.

The δυ′SizeCm equation in (8.1.4.1.1-12) can be viewed as an approximation to the correct

δυSizeCm value based on the assumption that sensor misalignments are small, hence, can be

ignored in the δυSizeCm determination. For most applications, the error introduced by this

approximation is negligibly small. The ΔδυSizeCm correction term can be applied for those

unusual applications when sensor misalignment effects must be included in the size effect

calculations. The following subsections find algorithms for δυ′SizeCm and ΔδυSizeCm in

(8.1.4.1.1-11) and (8.1.4.1.1-12).

8.1.4.1.1.1 δυ′SizeCm Size Effect Term Algorithm

The algorithm for evaluating δυ′SizeCm as defined by Equation (8.1.4.1.1-12) is determined

by first expanding Equations (8.1.4.1.1-8) for δa′Size in component form, using the following
for the individual vector constituents:

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-47

ω′ = ω′X, ω′Y, ω′Z
T

 ω′ = ω′X, ω′Y, ω′Z
T

lk = lXk, lYk, lZk
T (8.1.4.1.1.1-1)

where

ω′X, ω′Y, ω′Z = B Frame X, Y, Z components of ω′.

lXk, lYk, lZk = B Frame X, Y, Z components of lk.

Substituting (8.1.4.1.1.1-1) into Equations (8.1.4.1.1-8) obtains for the Y component of

δa′Size (representative):

δa′SizeY = - lZ2 ω′X + lX2 ω′Z + lZ2 ω′Y ω′Z + lX2 ω′Y ω′X - lY2 ω′Z
 2

 + ω′X
 2

(8.1.4.1.1.1-2)

where

δa′SizeY = B Frame Y axis component of δa′Size.

The computer algorithm for integration of Equation (8.1.4.1.1.1-2) into the Equation

(8.1.4.1.1-12) δυ′SizeCm size effect term is developed by analyzing the integral of the two

characteristic terms in (8.1.4.1.1.1-2) over a transformation cycle:

γim ≡ ω′i dt
t m-1

t m

γijm ≡ ω′i ω′j dt
t m-1

t m

(8.1.4.1.1.1-3)

where

m = Acceleration-transformation/velocity-update cycle index.

γim, γijm = Integrated characteristic terms in (8.1.4.1.1.1-2) over an m cycle.

i = B Frame angular rate input axis (X, Y, or Z).

The γim term in (8.1.4.1.1.1-3) is by direct integration:

γim = ω′im - ω′im-1 (8.1.4.1.1.1-4)

where

ω′im, ω′im-1 = ω′i at the current m cycle time tm and the previous m cycle time tm-1.

A digital algorithm for (8.1.4.1.1.1-4) is derived from the following approximations for ω′im
and ω′im-1:

8-48 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ω′im ≈
1
2

 fSize Δα′im+ + Δα′im ω′im-1 ≈
1
2

 fSize Δα′i(m-1)+ + Δα′im-1 (8.1.4.1.1.1-5)

in which

Δα′il ≡ dα′i
t l-1

t l

(8.1.4.1.1.1-6)

where

l = Size effect algorithm computation rate index (typically equal to the sculling
algorithm iteration rate).

dα′i = ω′i dt = Differential integrated i axis scaled angular rate increment (i.e.,
analytical representation of scaled pulse output from the i axis
strapdown angular rate sensor).

Δα′il = Integrated B Frame i axis inertial angular rotation rate from tl-1 to tl (with scale
factor calibration but without misalignment correction).

fSize = Size effect algorithm computation frequency equal to the reciprocal of the l
cycle time period tl - tl-1.

Δα′im, Δα′im-1 = Δα′il at the current and previous m cycle (at tl = tm and tl = tm-1).

Δα′im+, Δα′i(m-1)+ = Δα′il immediately following Δα′im, Δα′im-1 (i.e., for tl

immediately following tm and tm-1).

Substituting (8.1.4.1.1.1-5) in (8.1.4.1.1.1-4) then gives for γim:

γim =
1
2

 fSize Δα′im+ + Δα′im - Δα′i(m-1)+ - Δα′im-1 (8.1.4.1.1.1-7)

In practice, to implement (8.1.4.1.1.1-7) as shown, the m cycle transformation computation

would require a delay of one size effect calculation cycle to measure Δα′im+. To avoid the time

delay, the following (8.1.4.1.1.1-8) approximation to Equation (8.1.4.1.1.1-7) can be used for

γim. The approximation is equivalent to a phase shift in γim of half a size effect computation

cycle. For constant angular acceleration, the (8.1.4.1.1.1-8) algorithm yields the identical results
as (8.1.4.1.1.1-7).

γim ≈ fSize Δα′im - Δα′im-1 (8.1.4.1.1.1-8)

An important property of the (8.1.4.1.1.1-8) approximation is that its sum over successive m

cycles equals the current Δα′im minus the original Δα′im at the start of the summation. This

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-49

characteristic is also present in the (8.1.4.1.1.1-7) form as well as the fundamental Equation
(8.1.4.1.1.1-4) form which the algorithm has been designed to emulate.

A construct of a digital integration algorithm for γijm in Equation (8.1.4.1.1.1-3) is prepared

by first introducing an intermediate parameter:

ηijm ≡
1

fSize
 ω′i ω′j dt

t m-1

t m

(8.1.4.1.1.1-9)

with which, from (8.1.4.1.1.1-3):

γijm = fSize ηijm (8.1.4.1.1.1-10)

where

ηijm = Frequency normalized γijm parameter.

As will soon be apparent, introducing the intermediate ηijm parameter has certain algorithmic

computational simplifications. Then from (8.1.4.1.1.1-9), as in Equations (7.1.1.1.1-4), we
write:

Δηijl ≡
1

fSize
 ω′i ω′j dt

t l-1

t l

 ηijl = ηijl-1 + Δηijl

ηijm = ηijl(tl = tm) ηijl = 0 At t = tm-1

(8.1.4.1.1.1-11)

where

Δηijl = Integrated frequency normalized characteristic term in (8.1.4.1.1.1-2) over an
l cycle.

Evaluation of the Equation (8.1.4.1.1.1-11) Δηijl integral over an l cycle is based on

approximating ω′i and ω′j by their average values over the l cycle:

ω′i ≈ fSize Δα′il ω′j ≈ fSize Δα′jl (8.1.4.1.1.1-12)

Substituting (8.1.4.1.1.1-12) into the (8.1.4.1.1.1-11) Δηijl expression yields the approximate

form:

Δηijl ≈ Δα′il Δα′jl (8.1.4.1.1.1-13)

8-50 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

The overall δυ′SizeCm size effect correction algorithm is obtained from Equation

(8.1.4.1.1-12) using (8.1.4.1.1.1-2) as the representative Y axis integrand component, with the

individual term integral forms provided by Equation (8.1.4.1.1.1-8) for γim and (8.1.4.1.1.1-10)

for γijm, using ηijm from (8.1.4.1.1.1-11) with (8.1.4.1.1.1-13) for Δηijl. The final combined

result is:

Δα′il ≡ dα′i
t l-1

t l
Summation Of Integrated Scaled Angular Rate

Output Increments From Angular Rate Sensors

ηijl = ηijl-1 + Δα′il Δα′jl

ηijm = ηijl(tl = tm) ηijl = 0 At t = tm-1

(8.1.4.1.1.1-14)

Δα′im = Δα′il At t = tm

Δα′i(l : m) -1 = Δα′il Immediately preceding t = tm.

δυ′SizeCYm = fSize - lZ2 Δα′X m - Δα′Xm-1 + lX2 Δα′Zm - Δα′Zm-1

 + lZ2 ηYZm + lX2 ηXY m - lY2 ηZZm + ηXX m

δυ′SizeCZm, δυ′SizeCXm = Similarly by permuting subscripts.

 (8.1.4.1.1.1-15)

where

δυ′SizeCXm, δυ′SizeCYm, δυ′SizeCZm = X, Y, Z Components of δυ′SizeCm.

The Δα′i(l : m) -1 representation in (8.1.4.1.1.1-14) has been provided for the Equation

(8.1.3.3-5) quantization expression which will be utilized in Section 8.1.4.1.4 to compensate

Δαi for sensor error.

8.1.4.1.1.2 ΔδυSizeCm Size Effect Correction Algorithm

The ΔδυSizeCm integrand in (8.1.4.1.1-12) will be evaluated using the following for the

misalignment matrices based on the approximation that LMis and KMis are small, hence, their
diagonal terms are second order and negligible (See Equations (8.1.1.1-6), (8.1.1.1.1-16),
(8.1.1.2-6) and (8.1.1.2.1-14)):

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-51

KMis ≈

0 KMisXY KMisXZ

KMisYX 0 KMisYZ

KMisZX KMisZY 0

 LMis ≈

0 LMisXY LMisXZ

LMisYX 0 LMisYZ

LMisZX LMisZY 0

(8.1.4.1.1.2-1)
where

KMisij, LMis ij = Elements in row i, column j of KMis and LMis.

Using (8.1.4.1.1-10) for ΔδaSize, (8.1.4.1.1-8) for δa′Size and δa′Sizek , (8.1.4.1.1.1-1) for

the vector components, and (8.1.4.1.1.2-1) for the misalignment matrices, the ΔδυSizeCm

integrand in (8.1.4.1.1-12) becomes for the Y-axis component (as an example):

ΔδaSizeY = - LMisYX δa′SizeX - δa′Size/X2 - LMisYZ δa′SizeZ - δa′Size/Z2

- KMisZX lX2 ω′X - KMisZY lX2 - KMisXY lZ2 ω′Y + KMisXZ lZ2 ω′Z

- KMisYX lX2 ω′X
2
 - KMisXY lX2 + KMisZYlZ2 ω′Y

2
 - KMisYZ lZ2 ω′Z

2

+ 2 KMisXY lY2 - KMisZX lZ2 ω′X ω′Y + 2 KMisZY lY2 - KMisXZ lX2 ω′Y ω′Z
+ 2 KMisXZ + KMisZX lY2 - KMisYZ lX2 - KMisYX lZ2 ω′Z ω′X (8.1.4.1.1.2-2)

δa′Size/Xk = - lYk ω′Z + lZk ω′Y + lYk ω′X ω′Y + lZk ω′Z ω′X - lXk ω′Y
 2

 + ω′Z
 2

δa′Size/Zk = Similarly by permuting subscripts.

where

δa′SizeX, δa′SizeZ = B Frame X and Y axis components of δa′Size.

δa′Size/Xk, δa′Size/Zk = B Frame X and Y axis components of δa′Sizek (k = 1, 2 or 3
for the X, Y or Z axis accelerometer).

Note from the analytical definitions of δa′Size and δa′Sizek in (8.1.4.1.1-8), that δa′SizeY equals

δa′Size/Y2, and similarly for the X and Z components (i.e., δa′SizeX = δa′Size/X1 a n d

δa′SizeZ = δa′Size/Z3).

Integrating (8.1.4.1.1.2-2) from tm-1 to tm, using (8.1.4.1.1.1-9) for the ω′i ω′j integrals,

(8.1.4.1.1.1-3) and (8.1.4.1.1.1-8) for the ω′i integrals, and (8.1.4.1.1-12) for the δa′Sizei

integrals, we then find for the ΔδυSizeCm algorithm:

8-52 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ηijm, Δα′jm = From Algorithm Equations (8.1.4.1.1.1-14).

δυ′SizeCim = From Algorithm Equations (8.1.4.1.1.1-15).

ΔδυSizeCYm = - LMisYX δυ′SizeCXm - δυ′SizeCX/2m - LMisYZ δυ′SizeCZm - δυ′SizeCZ/2m

 + fSize - KMisZX lX2 Δα′Xm - Δα′Xm-1 - KMisZY lX2 - KMisXY lZ2 Δα′Ym - Δα′Ym-1

 + KMisXZ lZ2 Δα′Zm - Δα′Zm-1

 - KMisYX lX2 ηXXm - KMisXY lX2 + KMisZY lZ2 ηYYm - KMisYZ lZ2 ηZZm

(8.1.4.1.1.2-3)

 + 2 KMisXY lY2 - KMisZX lZ2 ηXYm + 2 KMisZY lY2 - KMisXZ lX2 ηYZm

 + 2 KMisXZ + KMisZX lY2 - KMisYZ lX2 - KMisYX lZ2 ηZXm

ΔδυSizeCZm, ΔδυSizeCXm = Similarly by permuting subscripts.

with the newly defined vector:

δυ′SizeC/km ≡ δa′Sizek dt
tm-1

tm

(8.1.4.1.1.2-4)

and its components using (8.1.4.1.1-8) for δa′Sizek:

δυ′SizeCX/km = fSize - lYk Δα′Zm - Δα′Zm-1 + lZk Δα′Ym - Δα′Ym-1

 + lYk ηXYm + lZk ηZXm - lXk ηYYm + ηZZm

δυ′SizeCY/km, δυ′SizeCZ/km = Similarly by permuting subscripts.

(8.1.4.1.1.2-5)

where

δΔυSizeCXm, δΔυSizeCYm, δΔυSizeCZm = B Frame X, Y, Z components of

ΔδυSizeCm defined in Equation (8.1.4.1.1-12).

δυ′SizeC/km = Integral of δa′Sizek from tm-1 to tm.

δυ′SizeCX/km, δυ′SizeCY/km, δυ′SizeCZ/km = B Frame X, Y, Z components

of δυ′SizeC/km.

8.1.4.1.2 δvScul-SizeCm Sculling Size Effect Algorithm

The algorithm for δvScul-SizeCm is based on an approximate form of (8.1.4.1-15) that

ignores sensor misalignment effects as second order, and eliminates other terms based on the

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-53

relative frequency and magnitude of angular vibration compared to other angular rate effects.
The algorithm derivation begins with approximating the GAlgn matrix in (8.1.4.1-15) by identity

and GAlgn k

T
 as uk (see (8.1.4.1.1-5)) so that (8.1.4.1-15) with (8.1.4.1-9) for δaSize becomes:

δvScul-SizeCm ≈
1
2

 α × δaSize + δυSizeC × ω dt
tm-1

tm

δaSize ≈ uk ⋅ ω × l k + ω × ω × l k uk∑
k=1,3

(8.1.4.1.2-1)

δυSizeC ≈ δaSize dτ
tm-1

t

 ≈ uk ⋅ ω × l k + ω × ω × l k dτ
tm-1

t

 uk∑
k=1,3

We then define the angular rate ω as the sum of vibration and remaining lower frequency
components such that:

ω = ωLo-f + ωVib

ω = ωLo-f + ωVib

α = ω dτ
tm-1

t

 = αLo-f + αVib

(8.1.4.1.2-2)

αLo-f ≡ ωLo-f dτ
tm-1

t

αVib ≡ ωVib dτ
tm - 1

t

where

ωVib = Higher frequency components of ω attributed to angular vibration.

ωLo-f = Remaining lower frequency components of ω.

αLo-f, αVib = Integrals of ωLo-f and ωVib since time tm-1.

To assess the relative magnitude of terms in (8.1.4.1.2-1), we substitute (8.1.4.1.2-2) in

(8.1.4.1.2-1), expand the δvScul-SizeCm integrand in terms of the new ωVib, ωLo-f, ωLo-f, ωVib,

αLo-f and αVib parameters, and assess the order of magnitude of each of the resulting

components in the expanded δvScul-SizeCm integrand form. The result for each of the

δvScul-SizeCm integrand constituents is:

8-54 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ωLo-f =
o ωLo-f

αLo-f =
o ωLo-f Tm

αVib =
o θVib sin ΩVib t =

o θVib

ωVib = αVib =
o θVib ΩVib cos ΩVib t =

o θVib ΩVib

ωVib =
o θVib ΩVib

2

ωVib × l k =
o θVib ΩVib

2
 l

ωVib × ωVib × l k =
o θVib

2
 ΩVib

2
 l

ωLo-f × ωVib × l k =
o θVib ωLo-f ΩVib l

ωVib × ωLo-f × l k =
o θVib ωLo-f ΩVib l

ωLo-f × ωLo-f × l k =
o ωLo-f

2
 l

(8.1.4.1.2-3)

 ωVib × l k dτ
tm - 1

t

 =
o θVib ΩVib l

 ωVib × ωVib × l k dτ
tm - 1

t

 =
o θVib

2
 ΩVib l

 ωLo-f × ωVib × l k dτ
tm - 1

t

 =
o θVib ωLo-f l

 ωVib × ωLo-f × l k dτ
tm - 1

t

 =
o θVib ωLo-f l

 ωLo-f × ωLo-f × l k dτ
tm - 1

t

 =
o ωLo-f

2
 Tm l

where

=
o = Notation signifying "is of the order of magnitude of".

θVib = Representative angle vibration amplitude.

ΩVib = Representative angular vibration frequency.

ωLo-f = Representative ωLo-f magnitude.

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-55

l = Representative lk magnitude.

Tm = Time interval from tm-1 to tm for the computer m cycle update rate.

To make numerical comparisons between the (8.1.4.1.2-3) terms, we will use the following

as representative of moderate to severe environment values: ωLo-f = 300 deg/sec ≈ 6 rad/sec and

from Section 7.4, θVib = 0.4 milli-rad and ΩVib = 2 π × 50 Hz ≈ 300 rad/sec. Based on a

representative Tm update cycle time value of 0.01 sec, Equations (8.1.4.1.2-3) become:

ωLo-f =
o 6

αLo-f =
o 0.06

αVib =
o 0.0004

ωVib =
o 0.12

ωVib =
o 36

ωVib × l k =
o 36 l

ωVib × ωVib × l k =
o 0.0144 l

ωLo-f × ωVib × l k =
o 0.72 l

ωVib × ωLo-f × l k =
o 0.72 l

ωLo-f × ωLo-f × l k =
o 36 l

 ωVib × l k dτ
tm - 1

t

 =
o 0.12 l

 ωVib × ωVib × l k dτ
tm - 1

t

 =
o 0.000048 l

 ωLo-f × ωVib × l k dτ
tm - 1

t

 =
o 0.0024 l

 ωVib × ωLo-f × l k dτ
tm - 1

t

 =
o 0.0024 l

 ωLo-f × ωLo-f × l k dτ
tm - 1

t

 =
o 0.36 l

(8.1.4.1.2-4)

Based on (8.1.4.1.2-4), we can ignore the ωVib × ωVib × l k , ωLo-f × ωVib × l k and

ωVib × ωLo-f × l k terms in the (8.1.4.1.2-1) δ aSize expression compared to the ωVib × l k and

ωLo-f × ωLo-f × l k terms, and we can ignore ωVib compared to ωLo-f. Similarly, we can also

ignore the integrated ωVib × ωVib × l k , ωLo-f × ωVib × l k and ωVib × ωLo-f × l k terms in

the (8.1.4.1.2-1) δυSizeC expression compared to the integrated ωVib × l k and

ωLo-f × ωLo-f × l k terms, and we can ignore αVib compared to αLo-f. Based on these

findings, we define the following for the potentially significant δ aSize andδυSizeC constituents:

8-56 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

δa″Size ≡ uk ⋅ ω × l k uk∑
k=1,3

δυ″SizeC ≡ δ a″Size dτ
tm-1

t

δaSizeLo-f/ω
2 ≡ uk ⋅ ωLo-f × ωLo-f × l k uk∑

k=1,3

(8.1.4.1.2-5)

δυSizeC

Lo-f/ω
2 ≡ δaSize

Lo-f/ω
2 dτ

tm - 1

t

where

δa″Size = Approximation for δaSize that ignores all ω × ω × l k terms.

δυ″SizeC = The integral of δa″Size from time tm-1.

δ aSize

Lo-f/ω
2 = The ωLo-f × ωLo-f × l k portion of ω × ω × l k .

δυSizeC

Lo-f/ω
2 = The integral of δ aSize

Lo-f/ω
2 from time tm-1.

Using the (8.1.4.1.2-5) definitions and the previous relative magnitude assumptions, the

(8.1.4.1.2-1) δvScul-SizeCm integrand with (8.1.4.1.2-2) becomes:

α × δ aSize + δ υSizeC × ω ≈ α × δ a″Size + δ υ″SizeC × ω
+ αLo-f + αVib × δ aSizeLo-f/ω

2 + δ υSizeCLo-f/ω
2 × ωLo-f + ωVib (8.1.4.1.2-6)

≈ α × δ a″Size + δ υ″SizeC × ω + αLo-f × δ aSizeLo-f/ω
2 + δ υSizeCLo-f/ω

2 × ω Lo-f

Based on the definition for the Lo-f terms in (8.1.4.1.2-6) as being composed of low frequency
components, we can approximate these terms as constant over an m update cycle. Then the
following shows that the last two terms in (8.1.4.1.2-6) sum to approximately zero.

αLo-f ≈ ω Lo-f (t - tm-1)

δ υSizeCLo-f/ω
2 ≈ δ aSizeLo-f/ω

2 (t - tm-1)

αLo-f × δ aSizeLo-f/ω
2 + δ υSizeCLo-f/ω

2 × ω Lo-f

 ≈ ωLo-f × δ aSizeLo-f/ω
2 (t - tm-1) + δ aSizeLo-f/ω

2 × ω Lo-f (t - tm-1) = 0

(8.1.4.1.2-7)

With (8.1.4.1.2-7), we see from (8.1.4.1.2-6) that α × δ aSize + δ υSizeC × ω can b e

approximated as α × δ a″Size + δ υ″SizeC × ω. It is also useful to note that this approximation is

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-57

valid under zero vibration for any ωLo-f value, not only the value used in (8.1.4.1.2-4) for order
of magnitude comparisons.

Our final assumption approximates the α and ω terms in (8.1.4.1.2-6) and the (8.1.4.1.2-2)

α expression, and the ω term in the (8.1.4.1.2-5) δ a″Size expression, by their equivalent ′ values

(without misalignment compensation). Then, δvScul-SizeCm in (8.1.4.1.2-1) with (8.1.4.1.2-6) -

(8.1.4.1.2-7), (8.1.4.1.2-2) for α, and (8.1.4.1.2-5) for δ a″Size and δυ″SizeC becomes;

δvScul-SizeCm ≈
1
2

 α′ × δ a″Size + δυ″SizeC × ω′ dt
tm - 1

tm

(8.1.4.1.2-8)

δa″Size ≈ uk ⋅ ω′ × l k uk∑
k=1,3

α′ = ω′ dτ
tm - 1

t

 δυ″SizeC = δ a″Size dτ
tm - 1

t
(8.1.4.1.2-9)

The direct algorithmic implementation of (8.1.4.1.2-8) and (8.1.4.1.2-9) implies a high speed
integration within the m cycle (i.e., at the l cycle rate). The terms to be integrated are in the form

of α′ products with ω′ in the α′ × δ a″Size expression, and ω′ products with ω′ in δυ″SizeC × ω′.
The ω′ with ω′ products are already calculated as part of the δυ′SizeCm algorithm (in the form of

Equations (8.1.4.1.1.1-14)). To eliminate an additional high speed calculation for α′ with ω′
products, Equation (8.1.4.1.2-8) is modified by incorporating the following for the α′ × δ a″Size

integrand term based on (8.1.4.1.2-9) for α′ and δυ″SizeC, and the derivative of α × δυSizeC ,
rearranged:

α′ × δ a″Size =
d
dt

 α′ × δυ″SizeC - ω′ × δυ″SizeC (8.1.4.1.2-10)

Substituting (8.1.4.1.2-10) in (8.1.4.1.2-8) obtains the equivalent form:

δvScul-SizeCm =
1
2

 α′m × δυ″SizeCm - ω′ × δυ″SizeC dt
tm-1

tm

≈
1
2

 αm × δυ″SizeCm - ω′ × δυ″SizeC dt
tm-1

tm
(8.1.4.1.2-11)

8-58 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Equation (8.1.4.1.2-11) is the form we will now use to find a digital computation algorithm

for δvScul-SizeCm. Using (8.1.4.1.1.1-1) and (8.1.4.1.1.1-3) for component definitions,

Equation (8.1.4.1.2-11) with (8.1.4.1.2-9) obtains for the δvScul-SizeCm Y axis component (as

representative):

δvScul-SizeCYm =
1
2

 αZm ω′Ym + ω′Ym-1 lZ1 - ω′Zm + ω′Zm-1 lY1

 -
1
2

 αXm ω′Xm + ω′Xm-1 lY3 - ω′Ym + ω′Ym-1 lX3

 + γXX m lY3 + γZZm lY1 - γXY m lX3 - γYZm lZ1

(8.1.4.1.2-12)

Using Equations (8.1.4.1.1.1-10) and (8.1.4.1.1.1-12) for γijm and ω′im in (8.1.4.1.2-12), then

yields the δvScul-SizeCm digital computation algorithm:

ηijm, Δα′jm = From Algorithm Equations (8.1.4.1.1.1-14).

αim = From Algorithm Equation (8.1.2.1-4).

δvScul-SizeCYm = fSize
1
2

 αZm Δα′Y m + Δα′Y m-1 lZ1 - Δα′Zm + Δα′Zm-1 lY1

 -
1
2

 αXm Δα′X m + Δα′Xm-1 lY3 - Δα′Y m + Δα′Ym-1 lX3

+ ηXX m lY3 + ηZZm lY1 - ηXY m lX3 - ηYZm lZ1 (8.1.4.1.2-13)

δvScul-SizeCZm, δvScul-SizeCXm = Similarly by permuting subscripts.

where

δvScul-SizeCXm, δvScul-SizeCYm, δvScul-SizeCZm = B Frame X, Y, Z components of

δvScul-SizeCm.

8.1.4.1.3 δvRot/Scul-SizeCm Size Effect Algorithm

Given that the δvScul-SizeCm algorithm has been derived in Section 8.1.4.1.2, it is tempting to

short circuit the development process for the δvRot/Scul-SizeCm algorithm by jumping directly to

an approximation to (8.1.4.1-20) modeled after (8.1.4.1.2-8) for δvScul-SizeCm (that was based

on (8 .1 .4 .1 -15)). The quick result would approximate δvRot/Scul-SizeCm as

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-59

α′ × δa″Size dt
tm-1

tm

. Unfortunately, this approximation is flawed because it depends on

mutual cancellation of low frequency ω × ω × l k terms contained in δaSize of Equation

(8.1.4.1-9) (as in Equation (8.1.4.1.2-7) for the δvScul-SizeCm derivation). In this case, there is

no δυSizeCLo-f/ω
2 × ωLo-f term to cancel αLo-f × δaSizeLo-f/ω

2 in α × δaSize of

δvRot/Scul-SizeCm Equation (8.1.4.1-20). Thus, the previous approximation contains

αLo-f × δaSizeLo-f/ω
2 errors under high angular rate conditions that are not negligible for the

Section 8.1.4.1.2 order of magnitude comparisons. If we are to include ω × ω × l k in δaSize, a

brute force implementation of (8.1.4.1-20) for δvRot/Scul-SizeCm would contain high speed (l

cycle) integrations of terms of the form αi ωj ωk, terms not yet contained in any of the size

effect algorithms developed thus far. To avoid the additional high speed integrations, the

alternative derivation approach described below is taken for the δvRot/Scul-SizeCm algorithm.

The δvRot/Scul-SizeCm algorithm derivation begins with approximating the GAlgn matrix in

(8.1.4.1-20) by identity so that (8.1.4.1-20) becomes:

δvRot/Scul-SizeCm ≈ α × δaSize dt
tm-1

tm

(8.1.4.1.3-1)

Using the same approximation, we also know from (8.1.4.1.2-2), (8.1.4.1-11) and the

derivative of α × δυSizeC that:

α = ω dτ
tm - 1

t

 δυSizeC ≈ δaSize dτ
tm - 1

t

(8.1.4.1.3-2)

1
2

 α × δaSize =
1
2

d
dt

 α × δυSizeC -
1
2

 ω × δυSizeC

 =
1
2

d
dt

 α × δυSizeC +
1
2

 δυSizeC × ω
(8.1.4.1.3-3)

hence,

α × δaSize =
1
2

 α × δaSize +
1
2

 α × δaSize

 =
1
2

d
dt

 α × δυSizeC +
1
2

 α × δaSize + δυSizeC × ω
(8.1.4.1.3-4)

8-60 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Substituting (8.1.4.1.3-4) in (8.1.4.1.3-1) then finds:

δvRot/Scul-SizeC m =
1
2

 αm × δυSizeC m +
1
2

 α × δ aSize + δυSizeC × ω dt
tm - 1

tm

(8.1.4.1.3-5)

or with the integral term recognized as δvScul-SizeCm from (8.1.4.1.2-1):

δvRot/Scul-SizeCm =
1
2

 αm × δυSizeCm + δvScul-SizeCm (8.1.4.1.3-6)

The digital algorithm for δvRot/Scul-SizeCm is then found by substituting for δvScul-SizeCm

from (8.1.4.1.2-13):

ηijm, Δα′jm = From Algorithm Equations (8.1.4.1.1.1-14).

αim = From Algorithm Equation (8.1.2.1-4).

δυSizeCim = From Algorithm Equations (8.1.4.1.1-11) With (8.1.4.1.1.1-15) And
(8.1.4.1.1.2-3).

δvRot/Scul-SizeCYm =
1
2

 αZm δυSizeCXm - αXm δυSizeCZm

 + fSize
1
2

 αZm Δα′Y m + Δα′Ym-1 lZ1 - Δα′Zm + Δα′Zm-1 lY1

 -
1
2

 αXm Δα′X m + Δα′Xm-1 lY3 - Δα′Y m + Δα′Ym-1 lX3

+ ηXX m lY3 + ηZZm lY1 - ηXY m lX3 - ηYZm lZ1

(8.1.4.1.3-7)

δvRot/Scul-SizeCXm, δvRot/Scul-SizeCZm = Similarly by permuting subscripts.

where

δυSizeCim = ith component of δυSizeCm.

δvRot/Scul-SizeCXm, δvRot/Scul-SizeCYm, δvRot/Scul-SizeCZm = B Frame X, Y, Z

components of δvRot/Scul-SizeCm.

For most applications, δυSizeCim in (8.1.4.1.3-7) can be approximated by the equivalent

δυ′SizeCim form in (8.1.4.1.1.1-15) that neglects sensor misalignment effects. This is

equivalent to neglecting the ΔδυSizeCm term in δυSizeCm Equation (8.1.4.1.1-11).

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-61

8.1.4.1.4 Sensor Compensation Applied To Size Effect Algorithm Terms

The l loop summation and sampling operations in size effect Equations (8.1.4.1.1.1-14) can
be performed using raw (unscaled and uncompensated) angular rate sensor outputs with scaling
and compensation then applied at the acceleration-transformation/velocity-update time tm. The
raw output summation and sampling operations would then have the form:

ΔαiCnt l ≡ dαiCnt
t l-1

t l
Summation Increment Of Angular

Rate Sensor Output Pulses

ηijCntl = ηijCntl-1 + ΔαiCntl ΔαjCntl

ηijCntm = ηijCntl(tl = tm) ηijCntl = 0 At t = tm-1

(8.1.4.1.4-1)

ΔαiCntm = ΔαiCntl At t = tm

ΔαiCnt(l : m) -1 = ΔαiCntl Immediately preceding t = tm .

where

Cnt = Label for Equations (8.1.4.1.1.1-14) parameters computed with unscaled and
uncompensated angular rate sensor outputs.

dαiCnt = ωiPuls dt = Unscaled differential integrated i axis angular pulse rate
increment (i.e., analytical representation of raw pulse output
from the i axis strapdown angular rate sensor).

The Equation (8.1.4.1.4-1) results can be scaled using the first Equation (8.1.2.1-2)
compensation formula:

ω′ = ΩWt ωPuls (8.1.4.1.4-2)

Applying (8.1.4.1.4-2) to Equations (8.1.4.1.4-1) using (8.1.4.1.1.1-9) for ηijm definition yields

the scaled version of the size effect algorithm parameters:

ηijm = ΩWti ΩWtj ηijCntm

Δα′im = ΩWti ΔαiCntm

Δα′i(l : m) -1 = ΩWti ΔαiCnt(l : m) -1

(8.1.4.1.4-3)

8-62 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

where

′ = Reference to scaled parameters, but compensated only for scale factor error. Note

that ηijm is already defined by (8.1.4.1.1.1-9) to be based on scale factor only
compensation.

ΩWti = Element in row i, column i of diagonal matrix ΩWt.

Equations (8.1.4.1.4-1) and (8.1.4.1.4-3) for ηijm, Δα′im, Δα′i(l : m) -1 are based on the

assumption that ΩWti can be approximated as constant over an m cycle. Under this

assumption, if ΩWti contains non-linear terms (as addressed in Section 8.1.1.3), ΩWti would

be calculated as a function of αiCntm, the sum of the ΔαiCnt l’s over an m cycle (See Equation

(8.2.1.1-15) for αCntm algorithm). For the more general case in which ΩWti may have rapid

variations, ηijm, Δα′im, Δα′i(l : m) -1 can be calculated based on Equation (8.1.4.1.1.1-3), but

computed from scale factor compensated angular rate sensor output data ω´ as in (8.1.4.1.4-2).

Then the equivalent to (8.1.4.1.4-1) and (8.1.4.1.4-3) for ηijm, Δα′im, Δα′i(l : m) -1 would be:

ΔαiCnt l ≡ dαiCnt
t l-1

t l

Summation Increment Of Angular

Rate Sensor Output Pulses

Δα′il = ΩWti ΔαiCnt l

(8.1.4.1.4-4)

__

ηijl = ηijl-1 + Δα′il Δα′jl

ηijm = ηijl
 (tl = tm) ηijl = 0 At t = tm-1

Δα′i m = Δα′i l At t = tm

Δα′i (l : m) -1 = Δα′i l Immediately preceding t = tm .

(8.1.4.1.4-5)

If scale factor asymmetry compensation is being applied in the software algorithms as

described in Section 8.1.1.3, Equation (8.1.4.1.4-4) would be based on ω′ given by Equation
(8.1.1.3-21) rather than (8.1.4.1.4-2):

ω′ = ΩWt + ω+Puls + ΩWt - ω-Puls (8.1.4.1.4-6)

The ΩWt +, ΩWt - terms in Equation (8.1.4.1.4-6) are scale factor weighting matrices defined in

Equation (8.1.1.3-22) for positive and negative uncompensated angular rate sensor pulse rate

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-63

output data (ω+Puls and ω-Puls - See Section 8.1.1.3 for further clarification). Based on

Equation (8.1.4.1.4-6), the equivalent to (8.1.4.1.4-4) would be as follows:

Δαi+Cnt l ≡ dαi+Cnt
t l-1

t l
Summation Increment Of Positive

Angular Rate Sensor Output Pulses

Δαi-Cnt l ≡ dαi-Cnt
t l-1

t l
Summation Increment Of Negative

Angular Rate Sensor Output Pulses
(8.1.4.1.4-7)

Δα′il = ΩWt i+ Δαi+Cnt l + ΩWt i- Δαi-Cnt l

where

dαi+Cnt, dαi-Cnt = ωi+Puls dt and ωi-Puls dt, the uncompensated i axis angular rate
sensor differential positive and negative pulse rate outputs.

ΩWt i+, ΩWt i- = Angular rate sensor i positive and negative pulse scale factors.

Equations (8.1.4.1.4-7) are based on the assumption that separate plus and minus pulse sum
outputs are provided from the angular rate sensor interface to the navigation software. If only a
composite pulse sum is available (as in (8.1.4.1.4-4)), Equation (8.1.4.1.4-7) would be of the
form:

ΔαiCnt l ≡ dαiCnt
t l-1

t l

Summation Increment Of Angular

Rate Sensor Output Pulses

If ΔαiCnt l ≥ 0 Then: Δα′il = ΩWt i+ ΔαiCnt l

 Else: Δα′il = ΩWt i- ΔαiCnt l

(8.1.4.1.4-8)

The ηijm, Δα′im, Δα′i(l : m) -1 data from (8.1.4.1.4-1) and (8.1.4.1.4-3), or from (8.1.4.1.4-4)

(or (8.1.4.1.4-7)) and (8.1.4.1.4-5), can be used directly in the Equation (8.1.4.1.1.1-15),
(8.1.4.1.1.2-3), (8.1.4.1.2-13) and (8.1.4.1.3-7) size effect algorithms, and in quantization
algorithm (8.1.3.3-5).

For higher accuracy, quantization compensation can be added in the above Δα′im
calculations based on an approximation to the second expression in Equations (8.1.2.1-2):

ω′Q = ω′ - δωQuant (8.1.4.1.4-9)

8-64 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

where

ω′Q = Enhanced accuracy version of ω′ that includes both scale factor and quantization
compensation.

Applying (8.1.4.1.4-9) to Δα′im in (8.1.4.1.1.1-14) yields the enhanced accuracy version:

Δα′Qim = Δα′ im - δαQuantCl : m (8.1.4.1.4-10)

where

Δα′Qim, = Enhanced accuracy version of Δα′im that includes both scale factor and
quantization compensation.

δαQuantCl : m = Integrated angular rate sensor quantization error over the l cycle time
period, evaluated at the acceleration-transformation/velocity-update
time tm.

Section 8.1.3.3 provides formulas for calculating δαQuantCl : m in Equation (8.1.4.1.4-10).

Extension of the same technique for the adjunct to (8.1.4.1.4-1) and (8.1.4.1.4-5) should be
obvious.

8.1.4.1.5 Size Effect Algorithms Under Benign Environments

Under benign environments (i.e., slowly changing angular rates) the high speed size effect l
cycle calculations can be executed at the m cycle acceleration-transformation/velocity-update

rate. Under these conditions Δα′im = α′im ≈ αim and Equations (8.1.4.1.1.1-15),

(8.1.4.1.1.2-3), (8.1.4.1.1.2-5), (8.1.4.1.2-13) and (8.1.4.1.3-7) become:

δυ′SizeCYm ≈ fSize - lZ2 αXm - αXm-1 + lX2 αZm - αZm-1

 + lZ2 αYm αZm + lX2 αXm αYm - lY2 αZm αZm + αXm αXm

δυ′SizeCZm, δυ′SizeCXm = Similarly by permuting subscripts.

(8.1.4.1.5-1)

__

ΔδυSizeCYm ≈ - LMisYX δυ′SizeCXm - δυ′SizeCX/2m - LMisYZ δυ′SizeCZm - δυ′SizeCZ/2m

 + fSize - KMisZX lX2 αXm - αXm-1 - KMisZY lX2 - KMisXY lZ2 αYm - αYm-1

 + KMisXZ lZ2 αZm - αZm-1 - KMisYX lX2 αXm

2

 - KMisXY lX2 + KMisZYlZ2 αYm

2
 - KMisYZ lZ2 αZm

2 (8.1.4.1.5-2)

(Continued)

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-65

 + 2 KMisXY lY2 - KMisZX lZ2 αXm αYm + 2 KMisZY lY2 - KMisXZ lX2 αYm αZm

 + 2 KMisXZ + KMisZX lY2 - KMisYZ lX2 - KMisYX lZ2 αZm αXm

ΔδυSizeCZm, ΔδυSizeCXm = Similarly by permuting subscripts.

(8.1.4.1.5-2)
(Continued)

__

δυ′SizeCX/km = fSize - lYk αZm - αZm-1 + lZk αYm - αYm-1

 + lYk αXm αYm + lZk αZm αXm - lXk αYm

2
 + αZm

2

δυ′SizeCY/km, δυ′SizeCZ/km = Similarly by permuting subscripts.

(8.1.4.1.5-3)

__

δvScul-SizeCYm ≈ fSize
1
2

 αZm αYm + αYm-1 lZ1 - αZm + αZm-1 lY1

 -
1
2

 αXm αXm + αXm-1 lY3 - αYm + αYm-1 lX3

+ αXm

2
 lY3 + αZm

2
 lY1 - αXm αYm lX3 - αYm αZm lZ1

(8.1.4.1.5-4)

δvScul-SizeCZm, δvScul-SizeCXm = Similarly by permuting subscripts.
__

δvRot/Scul-SizeCYm ≈
1
2

 αZm δυSizeCXm - αXm δυSizeCZm

 + fSize
1
2

 αZm αYm + αYm-1 lZ1 - αZm + αZm-1 lY1

 -
1
2

 αXm αXm + αXm-1 lY3 - αYm + αYm-1 lX3

 + αXm

2
 lY3 + αZm

2
 lY1 - αXm αYm lX3 - αYm αZm lZ1

(8.1.4.1.5-5)

δvRot/Scul-SizeCXm, δvRot/Scul-SizeCZm = Similarly by permuting subscripts.

The α terms in Equations (8.1.4.1.5-1) - (8.1.4.1.5-5) would be the compensated values
provided by Equations (8.1.2.1-3) (or (8.1.2.1-7)) and (8.1.2.1-4).

8-66 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

8.1.4.2 PENDULOUS ACCELEROMETER ANISOINERTIA
COMPENSATION ALGORITHM

Pendulous accelerometers have a dynamic error characteristic denoted as anisoinertia error
which is proportional to the product of the angular rates along the input and pendulum axes (See
Reference 31):

δaAnisok = KAniso ωk ωp (8.1.4.2-1)

where

δaAnisok = Accelerometer k anisoinertia error.

ωk, ωp = Angular rates around accelerometer k input axis (k) and pendulum
axis (p).

KAniso = Accelerometer anisoinertia coefficient.

The integral of Equation (8.1.4.2-1) (multiplied by the kth row of GAlgn
-1

 for the k axis

accelerometer - as in (8.1.2.2-2)) is used to compensate the integrated specific force acceleration

output from the accelerometer, as indicated by δυAnisoCm in Equations (8.1.2.2-4) and

(8.1.2.2-6). If we make the approximation of neglecting inertial sensor misalignment effects,

the components of δυAnisoCm become the simple integral of (8.1.4.2-1) using ω′k ω′p for

ωk ωp, or with (8.1.4.1.1.1-3) for the ω′k ω′p integral:

δυAnisoCkm = KAniso γ k pm (8.1.4.2-2)

where

δυAnisoCkm = Component of δυAnisoCm for the k axis accelerometer.

or, using (8.1.4.1.1.1-10):

δυAnisoCkm = fSize KAniso ηkpm (8.1.4.2-3)

with ηkpm calculated from the (8.1.4.1.1.1-14) algorithm (or the (8.1.4.1.4-1) and (8.1.4.1.4-3)

variants).

For enhanced accuracy, a correction term can be included in (8.1.4.2-3) that accounts for

inertial sensor misalignments (as was the ΔδυSizeCm sensor misalignment correction in

(8.1.4.1.1-11) for the δυSizeCm algorithm). Since the KAniso coefficient is generally much

smaller than the size effect lever arms, δυAnisoCm is generally smaller than δυSizeCm, hence, a

INERTIAL SENSOR COMPENSATION ALGORITHMS 8-67

δυAnisoCm misalignment correction is generally negligible compared to ΔδυSizeCm. It is also

noted that the anisoinertia term affects the ΔvScul sculling algorithm of Section 8.2.2.1 and the

ΔvRot/Scul combined rotation-compensation/sculling algorithm of Section 8.2.2.2, both sections
to follow, which do not include anisoinertia compensation in their calculations. The associated

error effect is generally negligible compared to the δυScul-SizeC or δυRot/Scul-SizeC correction

terms of Sections 8.1.4.1.2 and 8.1.4.1.3 (corrections to ΔvScul and ΔvRot/Scul), due to the
generally smaller value of the KAniso coefficient compared to the size effect lever arms.

For benign angular rate environments, (8.1.4.2-2) can be approximated as in Equations
(8.1.4.1.5-1) - (8.1.4.1.5-4):

δυAnisoCkm ≈ KAniso αkm αpm (8.1.4.2-4)

where

αkm, αpm = Components of αm from Equations (8.1.2.1-3) - (8.1.2.1-4) along
accelerometer k input (k) and pendulum (p) axes.

8.2 INERTIAL SENSOR COMPENSATION
APPLIED TO NAVIGATION ALGORITHMS

Section 8.1 described algorithms for compensating the inertial sensor outputs for predictable
error characteristics. In this section we apply the Section 8.1 sensor compensation to the
strapdown inertial navigation attitude, velocity and position updating algorithms developed in
Chapters 7 and 19 (Section 19.1). Included is a detailed discussion of methods for
compensating the coning, sculling, and scrolling high speed algorithms for inertial sensor error.

8.2.1 INERTIAL SENSOR COMPENSATION FOR ATTITUDE UPDATING

The angular rate sensor outputs in a strapdown system are used through suitable algorithms
(Section 7.1) to update the system attitude reference. In general, this is achieved by processing
Equations (7.1.1.1-12) and (7.1.1.1-13) (repeated below) over an attitude update cycle to
calculate a rotation vector. The rotation vector is then used to update the strapdown attitude data.
The rotation vector so calculated is also identical to the rotation vector of Section 19.1,
Equations (19.1.5-9) for updating velocity/position based on a new unified strapdown algorithm
concept that uses velocity/position translation vectors (analogous to the rotation vector) obtained
by integrating Equations (19.1.8-3).

8-68 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

φm = αm + βm

α t = ω dτ
tm - 1

t

 αm = α(tm) (8.2.1-1)

βm =
1
2

 α(t) × ω dt
tm - 1

tm

where

ω = Angular rate vector sensed by angular rate sensor triad.

m = Attitude update cycle index.

αm = Integrated angular rate sensor vector output from tm-1 to tm.

βm = Coning attitude motion from tm-1 to tm .

φm = Rotation vector over mth attitude update interval.

All vectors in (8.2.1-1) are in B Frame coordinates, the superscript notation for which has been

omitted for simplicity. Similarly, the IB subscript has been dropped from the ω angular rate

sensor vector which was identified in Chapter 7 as ωIB.

Equations (8.2.1-1) are based on the use of compensated angular rate sensor input data.
Equations (8.1.2.1-3) (or (8.1.2.1-7)) and (8.1.2.1-4) provide the means for calculating the

compensated form of αm for Equations (8.2.1-1). The βm coning term in (8.2.1-1) can be

determined using compensated ω angular rate input data based on compensation Equations

(8.1.2.1-2). A problem with this approach is that the ω compensation operations would have to

be performed at the high rate used to calculate βm (i.e., the l computer cycle rate as depicted in

Equations (7.1.1.1.1-18) which is the computer implementation of (8.2.1-1)). Alternatively, the
Equations (7.1.1.1.1-18) coning algorithm can be determined with uncompensated angular rate
sensor data, with the uncompensated coning solution then compensated for angular rate sensor
error at the attitude update rate (i.e., the m rate in Equations (7.1.1.1.1-18)). The following
section describes the latter approach.

8.2.1.1 CONING INCREMENT COMPENSATION ALGORITHM

Development of the algorithm for compensating the Equation (8.2.1-1) βm coning term

begins with an approximate form of Equations (8.1.1.1-8) which neglects the quantization
compensation terms as second order for coning increment compensation purposes:

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-69

ω′ = ΩWt ωPuls (8.2.1.1-1)

ω ≈ ω′ - KMis ω′ - KBias (8.2.1.1-2)

where

ωPuls = Uncompensated angular rate sensor output pulse rate vector (pulses per
second).

ΩWt = Diagonal angular rate sensor pulse weighting matrix (radians per pulse)
defined in Equations (8.1.1.1-5).

KMis, KBias = Angular rate sensor misalignment matrix and bias vector compensation
coefficients as defined in Equations (8.1.1.1-6) and (8.1.1.1-7).

Substituting (8.2.1.1-1) and (8.2.1.1-2) into the (8.2.1-1) α t expression then obtains:

α′(t) = ΩWt αCnt(t) (8.2.1.1-3)

αCnt(t) = ωPuls dτ
tm - 1

t

 (8.2.1.1-4)

α(t) ≈ α′(t) - KMis α′(t) - KBias t - tm-1 (8.2.1.1-5)

where

αCnt(t) = α(t) computed from uncompensated angular rate sensor triad output data.

We now substitute (8.2.1.1-2) and (8.2.1.1-5) into the (8.2.1-1) βm expression to obtain for

the integrand:

β(t) =
1
2

 α(t) × ω

=
1
2

 α′(t) - KMis α′(t) - KBias t - tm-1 × ω′ - KMis ω′ - KBias

≈
1
2

 α′(t) × ω′ - KMis α′(t) × ω′ - α′(t) × KMis ω′ (8.2.1.1-6)

- α′(t) - ω′ (t - tm-1) × KBias

≈
1
2

 α′(t) × ω′ - KMis α′(t) × ω′ - α′(t) × KMis ω′

Equation (8.2.1.1-6) is based on dropping KMis, KBias product terms as second order and

approximating ω′ as constant in the α′(t) - ω′ (t - tm-1) × KBias term so that

α′(t) ≈ ω′ (t - tm-1).

8-70 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

By component expansion and grouping of terms it easily demonstrated that Equation
(8.2.1.1-6) can be written in the equivalent form:

β(t) = I - KMisCone β ′(t) (8.2.1.1-7)

with

β ′(t) =
1
2

 α′(t) × ω′ (8.2.1.1-8)

KMisCone =

KMisYY + KMisZZ - KMisYX - KMisZX

- KMisXY KMisZZ + KMisXX - KMisZY

- KMisXZ - KMisYZ KMisXX + KMisYY

 (8.2.1.1-9)

where

β ′(t) = β(t) computed with scaled but uncompensated inertial sensor data (except for
scale factor error correction which is included in the scaling operation).

KMisij = Element of KMis in row i and column j.

From the definition of KMis in Equation (8.1.1.1-6), it can be demonstrated that the diagonal

elements are second order compared to the off-diagonal terms. This forms the basis for
neglecting the KMis diagonal elements in Equation (8.2.1.1-9) to obtain the simpler form:

KMisCone ≈

0 - KMisYX - KMisZX

- KMisXY 0 - KMisZY

- KMisXZ - KMisYZ 0

(8.2.1.1-10)

Equation (8.2.1.1-8) can be defined in terms of the equivalent uncompensated coning rate
term by substitution of (8.2.1.1-1) and (8.2.1.1-3) into (8.2.1.1-8), including (8.2.1.1-4),
expansion and regrouping of terms:

β ′(t) = ΩConeWt βCnt(t) (8.2.1.1-11)

with

βCnt(t) =
1
2

 αCnt t × ωPuls αCnt = ωPuls dτ
tm - 1

t

(8.2.1.1-12)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-71

ΩConeWt =

ΩWtY ΩWtZ 0 0

0 ΩWtZ ΩWtX 0

0 0 ΩWtX ΩWtY

(8.2.1.1-13)

where

βCnt(t) = β(t) computed with uncompensated inertial sensor output pulse data.

ΩWti = Element in row i, column i of ΩWt.

The integral of Equations (8.2.1.1-7) and (8.2.1.1-11) over an attitude update cycle defines
the algorithm for compensating the coning term calculated from uncompensated angular rate
sensor output data:

βCntm =
1
2

 αCnt(t) × dαCnt
tm- 1

tm

 αCnt(t) = dαCnt
tm - 1

t

β´m = ΩConeWt βCntm βm = I - KMisCone β´m

(8.2.1.1-14)

where

dαCnt = ωPuls dt = Uncompensated angular rate sensor triad output differential pulse
count vector.

The algorithmic implementation of Equation (8.2.1.1-14) would utilize the Equations

(7.1.1.1.1-17) and (7.1.1.1.1-18) digital integration routine for the βCntm calculation exactly as

βm is calculated in (7.1.1.1.1-17) and (7.1.1.1.1-18), but using uncompensated angular rate data:

ΔαCnt l = dαCnt
t l-1

t l

Summation Increment Of Angular

Rate Sensor Output Pulses

αCnt l = αCnt l-1 + ΔαCnt l (8.2.1.1-15)

αCntm = αCnt l(tl = tm) αCnt l = 0 At t = tm-1.
__

ΔβCnt l =
1
2

 αCnt l-1 +
1
6

 ΔαCnt l-1 × ΔαCnt l

βCnt l = βCnt l-1 + ΔβCnt l (8.2.1.1-16)

βCntm = βCnt l(tl = tm) βCnt l = 0 At t = tm-1.
__

β ′m = ΩConeWt βCntm βm = I - KMisCone β ′m (8.2.1.1-17)

8-72 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

It should be noted that in some applications, sufficient accuracy may be obtainable by

recognizing that KMisCone is small and potentially negligible in calculating βm. In this case the

approximation can be made that βm equals β´m in Equations (8.2.1.1-17).

Equations (8.2.1.1-15) - (8.2.1.1-17) for β ′m are based on the assumption that ΩWt can be

approximated as constant over an m cycle. Under this assumption, if ΩWt contains non-linear

terms (as addressed in Section 8.1.1.3), ΩWt would be calculated as a function of αCntm. For

the more general case in which ΩWt may have rapid variations, β ′m can be calculated based on

Equation (8.2.1-1), but computed from scale factor compensated angular rate sensor output data

ω´ as in (8.2.1.1-1). Then the equivalent to (8.2.1.1-15) - (8.2.1.1-17) for βm becomes:

ΔαCnt l = dαCnt
t l-1

t l

Summation Increment Of Angular

Rate Sensor Output Pulses

Δα′l = ΩWt ΔαCnt l (8.2.1.1-18)

α′l = α′l-1 + Δα′l

α′m = α′l(tl = tm) α′l = 0 At t = tm-1.
 __

Δβ ′l =
1
2

 α′l-1 +
1
6

 Δα′l-1 × Δα′l

β ′l = β ′l-1 + Δβ ′l (8.2.1.1-19)

β ′m = β ′l(tl = tm) β ′l = 0 At t = tm-1.
 __

βm = I - KMisCone β ′m (8.2.1.1-20)

Finally, if angular rate sensor scale factor asymmetry compensation is being applied in the
software algorithms as described in Section 8.1.1.3, Equation (8.2.1.1-18) would be based on

ω´ given by Equation (8.1.1.3-21) rather than (8.2.1.1-1):

ω′ = ΩWt + ω+Puls + ΩWt - ω-Puls (8.2.1.1-21)

The ΩWt +, ΩWt - terms in Equation (8.2.1.1-21) are scale factor weighting matrices defined in

Equation (8.1.1.3-22) for positive and negative uncompensated angular rate sensor pulse rate

output data (ω+Puls and ω-Puls - See Section 8.1.1.3 for further clarification). Based on

Equation (8.2.1.1-21), the equivalent to the (8.2.1.1-18) operations would be as follows:

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-73

Δα +Cntl ≡ dα +Cnt
tl-1

tl
Summation Increment Of Positive

Angular Rate Sensor Output Pulses

Δα -Cntl ≡ dα -Cnt
tl-1

tl
Summation Increment Of Negative

Angular Rate Sensor Output Pulses

Δα′l = ΩWt + Δα +Cntl + ΩWt - Δα -Cntl (8.2.1.1-22)

α′l = α′l-1 + Δα′l

α′m = α′l(tl = tm) α′l = 0 At t = tm-1.

where

dα +Cnt, dα -Cnt = ω+Puls dt and ω-Puls dt, the uncompensated angular rate differential
positive and negative pulse rate outputs.

Equations (8.2.1.1-22) are based on the assumption that separate plus and minus pulse sum
outputs are provided from the angular rate sensor interface to the navigation software. If only a
composite pulse sum is available (as in (8.2.1.1-18)), Equations (8.2.1.1-22) would be of the
form:

ΔαCnt l = dαCnt
t l-1

t l

Summation Increment Of Angular

Rate Sensor Output Pulses

Do For Each Component Of ΔαCnt l:

If ΔαiCnt l ≥ 0 Then: Δα′il = ΩWti+ ΔαiCnt l (8.2.1.1-23)

Else: Δα′il = ΩWti- ΔαiCnt l

α′l = α′l-1 + Δα′l

α′m = α′l(tl = tm) α′l = 0 At t = tm-1.

where

ΔαiCnt l, Δα′il = Components i of αCnt l, Δα′l.

ΩWti +, ΩWti- = Elements i, i in ΩWt +, ΩWt -.

8.2.2 INERTIAL SENSOR COMPENSATION FOR VELOCITY UPDATING

The accelerometer and angular rate sensor outputs in a strapdown system are used through
suitable algorithms (Section 7.2) to update the system velocity data. In general, this is achieved

8-74 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

by calculating an integrated specific force acceleration increment in body B Frame coordinates
with Equations (7.2.2.2-23), (7.2.2.2-24) and (7.2.2.2-25) (or (7.2.2.2.1-7) as an option) or
Equations (7.2.2.2-26) - (7.2.2.2-27), all repeated below, over an acceleration transformation
update cycle. The integrated acceleration increment is then used to update the velocity data. The
sculling vector obtained in these calculations is also identical to the sculling portion of the
velocity translation vector (analogous to the rotation vector) of Section 19.1, Equations
(19.1.8-3) for updating velocity in Equations (19.1.5-9) based on a new unified strapdown
algorithm concept. The sculling portion of the velocity translation vector is the integral of

ηAlgo/c in (19.1.8-3) without the aSF term.

ΔvSFm = υm + ΔvRotm + ΔvSculm

ΔvRotm =
1
2

 αm × υm or Equation (7.2.2.2.1-7) as option

ΔvScul m =
1
2

 α(t) × aSF + υ(t) × ω dt
tm-1

tm

(8.2.2-1)

α(t) = ω dτ
tm - 1

t

 αm = α(tm)

υ(t) = aSF dτ
tm - 1

t

 υm = υ(tm)

or

ΔvSFm = υm + ΔvRot/Sculm

ΔvRot/Sculm = α(t) × aSF dt
tm-1

tm

α(t) = ω dτ
tm-1

t

(8.2.2-2)

υ(t) = aSF dτ
tm - 1

t

 υm = υ(tm)

where

ΔvSFm = Integrated specific force acceleration increment.

aSF = Specific force acceleration vector sensed by accelerometer triad.

ω = Angular rate vector sensed by angular rate sensor triad.

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-75

m = Acceleration-transformation/velocity-update cycle index.

υm = Integrated specific force vector from tm-1 to tm.

αm = Integrated angular rate vector from tm-1 to tm.

ΔvRotm = “Velocity Rotation Compensation” term.

ΔvSculm = “Sculling” term.

ΔvRot/Sculm = Composite “Sculling” and “Velocity Rotation Compensation” term.

All vectors in (8.2.2-1) and (8.2.2-2) are in B Frame coordinates, the superscript notation for

which has been omitted for simplicity. Similarly, the IB subscript has been dropped from the ω
angular rate sensor vector which was identified in Chapter 7 as ωIB.

Equations (8.2.2-1) and (8.2.2-2) are based on the use of compensated accelerometer and
angular rate sensor data. Equations (8.1.2.1-3) (or (8.1.2.1-7)), (8.1.2.1-4), (8.1.2.2-3) (or

(8.1.2.2-7)) and (8.1.2.2-4) provide the means for calculating the compensated form of αm and

υm for Equations (8.2.2-1) and (8.2.2-2). The ΔvSculm sculling term in (8.2.2-1) and the

ΔvRot/Sculm composite sculling/rotation-compensation term in (8.2.2-2) can be calculated using

compensated ω, aSF angular-rate/specific-force input data based on compensation Equations

(8.1.2.1-2) and (8.1.2.2-2). A problem with this approach is that the ω, aSF compensation

operations would have to be performed at the high rate used to calculate ΔvSculm or ΔvRot/Sculm

(i.e., the l computer cycle rate as depicted in Equations (7.2.2.2.2-15) or (7.2.2.2.2-24) which
are the computer implementations of Equations (8.2.2-1) and (8.2.2-2)). Alternatively, the
Equations (7.2.2.2.2-15) sculling algorithm or the Equations (7.2.2.2.2-24) composite
sculling/rotation-compensation algorithm can be calculated with uncompensated angular rate
and accelerometer sensor data, with the uncompensated sculling or sculling/rotation-
compensation solutions then compensated for sensor error at the acceleration-
transformation/velocity-update rate (i.e., the m rate in Equations (7.2.2.2.2-15) or
(7.2.2.2.2-24)). The following sections describe the latter approach.

8.2.2.1 SCULLING INCREMENT COMPENSATION ALGORITHM

Development of the algorithm for compensating the Equation (8.2.2-1) ΔvSculm sculling

term begins with an approximate form of Equations (8.1.2.1-2) and (8.1.2.2-2) which neglects
the quantization terms as second order for sculling increment compensation purposes:

8-76 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ω′ = ΩWt ωPuls (8.2.2.1-1)

ω ≈ ω′ - KMis ω′ - KBias (8.2.2.1-2)

aSF
′ = AWt aSFPuls (8.2.2.1-3)

aSF ≈ aSF
′ - LMis aSF

′ - LBias
* (8.2.2.1-4)

with

LBias
* ≡ LBias + GAlgn

 -1
 δaSize + δaAniso (8.2.2.1-5)

where

ωPuls = Uncompensated angular rate sensor output pulse rate vector (pulses per
second).

ΩWt = Diagonal angular rate sensor pulse weighting matrix (radians per pulse)
defined by Equation (8.1.1.1-5).

KMis, KBias = Angular rate sensor triad misalignment matrix and bias vector
compensation coefficients as defined in Equations (8.1.1.1-6) -
(8.1.1.1-7).

aSFPuls = Uncompensated accelerometer output pulse rate vector (pulses per second).

AWt = Diagonal accelerometer pulse weighting matrix (feet per second per pulse)
defined by Equation (8.1.1.2-5).

LMis, LBias = Accelerometer triad misalignment matrix and bias vector compensation
coefficients as defined in Equations (8.1.1.2-6) - (8.1.1.2-7).

GAlign, δ aSize, δ aAniso = Accelerometer triad alignment matrix, size effect vector and
anisoinertia vector as defined following Equations
(8.1.1.2-1).

LBias
* = Accelerometer triad equivalent bias vector.

Substituting (8.2.2.1-1) - (8.2.2.1-4) into the (8.2.2-1) α t , υ t expressions obtains:

α′(t) = ΩWt αCnt(t) (8.2.2.1-6)

αCnt(t) = ωPuls dτ
tm - 1

t

 (8.2.2.1-7)

α(t) ≈ α′(t) - KMis α′(t) - KBias t - tm-1 (8.2.2.1-8)

υ′(t) = AWt υCnt(t) (8.2.2.1-9)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-77

υCnt(t) = aSFPuls dτ
tm-1

t

 (8.2.2.1-10)

υ(t) ≈ υ′(t) - LMis υ′(t) - LBias
* t - tm-1 (8.2.2.1-11)

where

αCnt(t), υCnt(t) = α(t), υ(t) computed from uncompensated angular rate sensor and
accelerometer triad output data.

We now substitute (8.2.2.1-2), (8.2.2.1-4), (8.2.2.1-8) and (8.2.2.1-11) into the (8.2.2-1)

ΔvSculm expression to obtain for the integrand:

ΔvScul(t) =
1
2

 α(t) × aSF + υ(t) × ω =
1
2

 α(t) × aSF - ω × υ(t)

=
1
2

 α′(t) - KMis α′(t) - KBias t - tm-1 × aSF
′ - LMis aSF

′ - LBias
*

- ω′ - KMis ω′ - KBias × υ′(t) - LMis υ′(t) - LBias
* t - tm-1

≈
1
2

 α′(t) × aSF
′ - ω′ × υ′(t) - KMis α′(t) × aSF

′ - KMis ω′ × υ′(t)

- α′(t) × LMis aSF
′ - ω′ × LMis υ′(t) (8.2.2.1-12)

- KBias × aSF
′ t - tm-1 - υ′(t) - α′(t) - ω′ t - tm-1 × LBias

*

≈
1
2

 α′(t) × aSF
′ - ω′ × υ′(t) - KMis α′(t) × aSF

′ - KMis ω′ × υ′(t)

- α′(t) × LMis aSF
′ - ω′ × LMis υ′(t)

= ΔvScul
 ′ (t) -

1
2

 KMis α′(t) × aSF
′ - KMis ω′ × υ′(t)

+ α′(t) × LMis aSF
′ - ω′ × LMis υ′(t)

with

ΔvScul
 ′ (t) ≡

1
2

 α′(t) × aSF
′ - ω′ × υ′(t) (8.2.2.1-13)

where

ΔvScul
 ′ (t) = ΔvScul(t) computed with scaled but uncompensated inertial sensor data

(except for scale factor error correction which is included in the scaling
operation).

8-78 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Equation (8.2.2.1-12) is based on dropping KMis, LMis, KBias, LBias
* product terms as second

order, approximating ω′ as constant in the α′(t) - ω′ t - tm-1 × LBias
* expression so that

α′(t) ≈ ω′ (t - tm-1), and approximating aSF
′

 as constant in the KBias × aSF
′ t - tm-1 - υ′(t)

expression so that υ′(t) ≈ aSF
′ t - tm-1 .

Further development of the sculling compensation algorithm is facilitated by first defining a
more basic vector product terminology. The cross-product of two arbitrary vectors is given by:

V = A × B =

AY BZ - AZ BY

AZ BX - AX BZ

AX BY - AY BX

(8.2.2.1-14)

where

A, B = Arbitrary vectors.

V = Cross-product between A and B.

Ai, Bi = Components of A, B.

We define the following vector product operators:

V1 ≡

AY BZ

AZ BX

AX BY

V2 ≡

AZ BY

AX BZ

AY BX

V3 ≡

AX BX

AY BY

AZ BZ

(8.2.2.1-15)

Using the (8.2.2.1-15) definitions in (8.2.2.1-14), the V cross-product vector is given by:

V = V1 - V2 (8.2.2.1-16)

Now consider a vector W formed as a sum of cross-product terms:

W = VAB + VCD + V E F + ⋅ ⋅ ⋅ ⋅ (8.2.2.1-17)

with

VAB ≡ A × B VCD ≡ C × D VEF ≡ E × F (8.2.2.1-18)

where
A, B, C, D, E, F = Arbitrary vectors.

Applying the Equation (8.2.2.1-15) definitions to Equation (8.2.2.1-17) obtains:

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-79

W1 = VAB1 + VCD1 + V E F 1 + ⋅ ⋅ ⋅ ⋅ (8.2.2.1-19)

W2 = VAB2 + VCD2 + V E F 2 + ⋅ ⋅ ⋅ ⋅ (8.2.2.1-20)

W3 = VAB3 + VCD3 + V E F 3 + ⋅ ⋅ ⋅ ⋅ (8.2.2.1-21)

where

()1, ()2, ()3 = Vector component product operators as defined by Equations
(8.2.2.1-15).

Then, the vector W in (8.2.2.1-17) formed as the sum of cross-products becomes:

W = W1 - W2 (8.2.2.1-22)

Let us now use the Equation (8.2.2.1-15) operators with the (8.2.2.1-19) - (8.2.2.1-21) rules

to ΔvScul
 ′ (t) in Equation (8.2.2.1-13) to define the following ΔvScul1

 ′ (t), ΔvScul2
 ′ (t), ΔvScul3

 ′ (t)

component parameters:

ΔvScul1
 ′ (t) =

1
2

α′Y(t) aSFZ
′ - υ′Z(t) ω′Y

α′Z(t) aSFX
′ - υ′X(t) ω′Z

α′X(t) aSFY
′ - υ′Y(t) ω′X

ΔvScul2
 ′ (t) =

1
2

α′Z(t) aSFY
′ - υ′Y(t) ω′Z

α′X(t) aSFZ
′ - υ′Z(t) ω′X

α′Y(t) aSFX
′ - υ′X(t) ω′Y

(8.2.2.1-23)

ΔvScul3
 ′ (t) =

1
2

α′X(t) aSFX
′ - υ′X(t) ω′X

α′Y(t) aSFY
′ - υ′Y(t) ω′Y

α′Z(t) aSFZ
′ - υ′Z(t) ω′Z

where

υ′X(t) , υ′Y(t) , υ′Z(t) = Components of υ′(t) .

aSFX
′ , aSFY

′ , aSFZ
′ = Components of aSF

′ .

α′X(t) , α′Y(t) , α′Z(t) = Components of α′(t) .

ω′X, ω′Y, ω′Z = Components of ω′.

8-80 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

We also define the equivalent version of Equation (8.2.2.1-13) based on uncompensated
angular rate sensor and accelerometer output data:

ΔvSculCnt(t) ≡
1
2

 αCnt(t) × aSFPuls - ωPuls × υCnt(t) (8.2.2.1-24)

where

ΔvSculCnt(t) = ΔvScul(t) calculated with uncompensated inertial sensor output pulse
data.

Applying the Equation (8.2.2.1-15) operators with the (8.2.2.1-19) - (8.2.2.1-21) rules to

ΔvSculCnt(t) in Equation (8.2.2.1-24) defines the following ΔvSculCnt1(t), ΔvSculCnt2(t),

ΔvSculCnt3(t) version vector parameters:

ΔvSculCnt1(t) =
1
2

αCntY(t) aSFPulsZ - υCntZ(t) ωPulsY

αCntZ(t) aSFPulsX - υCntX(t) ωPulsZ

αCntX(t) aSFPulsY - υCntY(t) ωPulsX

ΔvSculCnt2(t) =
1
2

αCntZ(t) aSFPulsY - υCntY(t) ωPulsZ

αCntX(t) aSFPulsZ - υCntZ(t) ωPulsX

αCntY(t) aSFPulsX - υCntX(t) ωPulsY

(8.2.2.1-25)

ΔvSculCnt3(t) =
1
2

αCntX(t) aSFPulsX - υCntX(t) ωPulsX

αCntY(t) aSFPulsY - υCntY(t) ωPulsY

αCntZ(t) aSFPulsZ - υCntZ(t) ωPulsZ

where

αCntX(t), αCntY(t), αCntZ(t) = Components of αCnt(t) .

ωPulsX, ωPulsY, ωPulsZ = Components of ωPuls.

υCntX(t), υCntY(t), υCntZ(t) = Components of υCnt(t) .

aSFPulsX, aSFPulsY, aSFPulsZ = Components of aSFPuls.

From the forms of Equations (8.2.2.1-23) and (8.2.2.1-25), we see with Equations
(8.2.2.1-1), (8.2.2.1-3), (8.2.2.1-6) and (8.2.2.1-9) that:

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-81

ΔvScul1
 ′ (t) = ΩAWt1 ΔvSculCnt1(t)

ΔvScul2
 ′ (t) = ΩAWt2 ΔvSculCnt2(t) (8.2.2.1-26)

ΔvScul3
 ′ (t) = ΩAWt3 ΔvSculCnt3(t)

with

ΩAWt1 =

ΩWtY AWtZ 0 0

0 ΩWtZ AWtX 0

0 0 ΩWtX AWtY

ΩAWt2 =

ΩWtZ AWtY 0 0

0 ΩWtX AWtZ 0

0 0 ΩWtY AWtX

(8.2.2.1-27)

ΩAWt3 =

ΩWtX AWtX 0 0

0 ΩWtY AWtY 0

0 0 ΩWtZ AWtZ

where

ΩWti, AWti = Elements in row i, column i of ΩWt, AWt.

With Equation (8.2.2.1-22) we can utilize the Equations (8.2.2.1-26) results to calculate

ΔvScul
 ′ (t) for Equation (8.2.2.1-12):

ΔvScul
 ′ (t) = ΔvScul1

 ′ (t) - ΔvScul2
 ′ (t)) (8.2.2.1-28)

It will be beneficial to also define:

ΔvSculR
 ′ (t) ≡ ΔvScul1

 ′ (t) + ΔvScul2
 ′ (t)

ΔvSculQ
 ′ ≡ ΔvScul3

 ′ (t)

(8.2.2.1-29)

8-82 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

We now expand the individual elements of ΔvScul(t) Equation (8.2.2.1-12) in scalar component

form for all but the ΔvScul
 ′ (t) term. After collection and rearrangement of the detailed results,

regrouping of terms, and substitution of Equations (8.2.2.1-23), (8.2.2.1-25), (8.2.2.1-28) and
(8.2.2.1-29), the following is obtained:

ΔvScul(t) = ΔvScul
 ′ (t) - LK1 ΔvScul

 ′ (t) - LK2 ΔvSculR
 ′ (t) - LK3 ΔvSculQ

 ′ (t) (8.2.2.1-30)

in which:

LK1 ≡
1
2

LMisYY + LMisZZ

+ KMisYY + KMisZZ

- LMisYX + KMisYX - LMisZX + KMisZX

- LMisXY + KMisXY
LMisZZ + LMisXX

+ KMisZZ + KMisXX

- LMisZY + KMisZY

- LMisXZ + KMisXZ - LMisYZ + KMisYZ
LMisXX + LMisYY

+ KMisXX + KMisYY

LK2 ≡
1
2

LMisZZ - LMisYY

- KMisZZ + KMisYY

- LMisYX - KMisYX LMisZX - KMisZX

LMisXY - KMisXY
LMisXX - LMisZZ

- KMisXX + KMisZZ

- LMisZY - KMisZY

- LMisXZ - KMisXZ LMisYZ - KMisYZ
LMisYY - LMisXX

- KMisYY + KMisXX

(8.2.2.1-31)

LK3 ≡

0 LMisZY - KMisZY - LMisYZ - KMisYZ

- LMisZX - KMisZX 0 LMisXZ - KMisXZ

LMisYX - KMisYX - LMisXY - KMisXY 0

where

LMisij, KMisij = Elements i, j of LMis, KMis.

From the definition of KMis and LMis in Equations (8.1.1.1-6), (8.1.1.1.1-15),

(8.1.1.1.1-16), (8.1.1.2-6), (8.1.1.2.1-13) and (8.1.1.2.1-14), it can be demonstrated that the
diagonal elements are second order compared to the off-diagonal terms. This forms the basis
for neglecting the KMis , LMis diagonal elements in Equations (8.2.2.1-31) to obtain the simpler

versions of LK1 and LK2:

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-83

LK1 ≈
1
2

0 - LMisYX + KMisYX - LMisZX + KMisZX

- LMisXY + KMisXY 0 - LMisZY + KMisZY

- LMisXZ + KMisXZ - LMisYZ + KMisYZ 0

(8.2.2.1-32)

LK2 ≈
1
2

0 - LMisYX - KMisYX LMisZX - KMisZX

LMisXY - KMisXY 0 - LMisZY - KMisZY

- LMisXZ - KMisXZ LMisYZ - KMisYZ 0

Finally, the integral of Equations (8.2.2.1-25) - (8.2.2.1-26) and (8.2.2.1-28) - (8.2.2.1-30)
over an acceleration-transformation/velocity-update cycle defines the algorithm for
compensating the sculling term calculated from uncompensated inertial sensor output data:

dΔvSculCnt1 =
1
2

αCntY(t) dυCntZ - υCntZ(t) dαCntY

αCntZ(t) dυCntX - υCntX(t) dαCntZ

αCntX(t) dυCntY - υCntY(t) dαCntX

dΔvSculCnt2 =
1
2

αCntZ(t) dυCntY - υCntY(t) dαCntZ

αCntX(t) dυCntZ - υCntZ(t) dαCntX

αCntY(t) dυCntX - υCntX(t) dαCntY

dΔvSculCnt3 =
1
2

αCntX(t) d υCntX - υCntX(t) d αCntX

αCntY(t) d υCntY - υCntY(t) d αCntY

αCntZ(t) d υCntZ - υCntZ(t) d αCntZ

(8.2.2.1-33)

ΔvSculCnt1m = dΔvSculCnt1
tm - 1

tm

ΔvSculCnt2m = dΔvSculCnt2
tm - 1

tm

ΔvSculCnt3m = dΔvSculCnt3
tm - 1

tm

8-84 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ΔvScul1m
 ′ = ΩAWt1 ΔvSculCnt1m ΔvScul2m

 ′ = ΩAWt2 ΔvSculCnt2m

ΔvScul3m
 ′ = ΩAWt3 ΔvSculCnt3m

ΔvSculm
 ′ = ΔvScul1m

 ′ - ΔvScul2m
 ′ ΔvSculRm

 ′ = ΔvScul1m
 ′ + ΔvScul2m

 ′ (8.2.2.1-34)

ΔvSculQm
 ′ = ΔvScul3m

 ′

ΔvSculm = ΔvSculm
 ′ - LK1 ΔvSculm

 ′ - LK2 ΔvSculRm
 ′ - LK3 ΔvSculQm

 ′

where

dαCnt = ωPuls dt = Uncompensated angular rate sensor triad output differential pulse
count vector.

dυCnt = aSFCnt dt = Uncompensated accelerometer triad output differential pulse
count vector.

The algorithmic implementation of the Equations (8.2.2.1-33) ΔvSculCnt1m, ΔvSculCnt2m,

ΔvSculCnt3m integrations would be performed using the Equation (7.2.2.2.2-13) - (7.2.2.2.2-15)

integration routines for ΔvSculm but with uncompensated data:

αCnt l, ΔαCnt l = From Equations (8.2.1.1-15) (8.2.2.1-35)
__

ΔυCnt l = dυCnt
t l-1

t l

Summation Increment Of

Accelerometer Output Pulses

υCnt l = υCnt l-1 + ΔυCnt l (8.2.2.1-36)

υCntm = υCnt l(tl = tm) υCnt l = 0 At t = tm-1.

δvSculCnt1l =
1

2

αCntYl-1 +
1

6
 ΔαCntYl-1 ΔυCntZl - υCntZl-1 +

1

6
 ΔυCntZl-1 ΔαCntYl

αCntZl-1 +
1

6
 ΔαCntZl-1 ΔυCntXl - υCntXl-1 +

1

6
 ΔυCntXl-1 ΔαCntZl

αCntXl-1 +
1

6
 ΔαCntXl-1 ΔυCntYl - υCntYl-1 +

1

6
 ΔυCntYl-1 ΔαCntXl

(8.2.2.1-37)

(Continued)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-85

δvSculCnt2l =
1

2

αCntZl-1 +
1

6
 ΔαCntZl-1 ΔυCntYl - υCntYl-1 +

1

6
 ΔυCntYl-1 ΔαCntZl

αCntXl-1 +
1

6
 ΔαCntXl-1 ΔυCntZl - υCntZl-1 +

1

6
 ΔυCntZl-1 ΔαCntXl

αCntYl-1 +
1

6
 ΔαCntYl-1 ΔυCntXl - υCntXl-1 +

1

6
 ΔυCntXl-1 ΔαCntYl

δvSculCnt3l =
1

2

αCntXl-1 +
1

6
 ΔαCntXl-1 ΔυCntXl - υCntXl-1 +

1

6
 ΔυCntXl-1 ΔαCntXl

αCntYl-1 +
1

6
 ΔαCntYl-1 ΔυCntYl - υCntYl-1 +

1

6
 ΔυCntYl-1 ΔαCntYl

αCntZl-1 +
1

6
 ΔαCntZl-1 ΔυCntZl - υCntZl-1 +

1

6
 ΔυCntZl-1 ΔαCntZl

(8.2.2.1-37)
(Continued)

ΔvSculCnt1l = ΔvSculCnt1l-1 + δvSculCnt1l

ΔvSculCnt2l = ΔvSculCnt2l-1 + δvSculCnt2l

ΔvSculCnt3l = ΔvSculCnt3l-1 + δvSculCnt3l

ΔvSculCnt1m = ΔvSculCnt1l(tl = tm) ΔvSculCnt1l = 0 At t = tm-1

ΔvSculCnt2m = ΔvSculCnt2l(tl = tm) ΔvSculCnt2l = 0 At t = tm-1

ΔvSculCnt3m = ΔvSculCnt3l(tl = tm) ΔvSculCnt3l = 0 At t = tm-1

where

ΔαCnt l = As defined in (8.2.1.1-15).

ΔαCntXl, ΔαCntYl, ΔαCntZl = X, Y, Z components of ΔαCnt l.

αCntXl, αCntYl, αCntZl = X, Y, Z components of αCnt l.

ΔυCnt l = As defined in (8.2.2.1-36).

ΔυCntXl, ΔυCntYl, ΔυCntZl = X, Y, Z components of ΔυCnt l.

υCntXl, υCntYl, υCntZl = X, Y, Z components of υCnt l.

It should be noted that in some applications, sufficient accuracy may be obtainable by
recognizing that LK1, LK2, LK3 as computed in (8.2.2.1-31) and (8.2.2.1-32) are small and

potentially negligible in calculating ΔvSculm. In this case the approximation can be made that

8-86 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ΔvSculm equals ΔvSculm
 ′ in Equations (8.2.2.1-34) which also eliminates the requirement to

calculate ΔvSculRm
 ′ , ΔvSculQm

 ′ , ΔvScul3m
 ′ and ΔvSculCnt3m.

Equations (8.2.2.1-34) - (8.2.2.1-37) for ΔvScul1m
 ′ , ΔvScul2m

 ′ , ΔvScul3m
 ′ are based on the

assumption that AWt and ΩWt can be approximated as constant over an m cycle. Under this

assumption, if AWt or ΩWt contain non-linear terms (as addressed in Section 8.1.1.3), AWt

and ΩWt would be calculated as a function of υCntm and αCntm. For the more general case in

which AWt or ΩWt may have rapid variations, ΔvScul1m
 ′ , ΔvScul2m

 ′ , ΔvScul3m
 ′ can be calculated

based on Equation (8.2.2-1), but computed from scale factor compensated inertial sensor output

data aSF
′ , ω′ as in (8.2.2.1-1) and (8.2.2.1-3). Then the equivalent to (8.2.2.1-34) - (8.2.2.1-37)

for ΔvSculm becomes:

α′l, Δα′l = From Equations (8.2.1.1-18) (8.2.2.1-38)

ΔυCnt l = dυCnt
t l-1

t l

Summation Increment Of

Accelerometer Output Pulses

Δυ′l = AWt ΔυCnt l (8.2.2.1-39)

υ′l = υ′l-1 + Δυ′l

υ′m = υ′l(tl = tm) υ′l = 0 At t = tm-1.

δvScul1l
 ′ , δvScul2l

 ′ , δvScul3l
 ′ = Equation (8.2.2.1-15) vector product forms of:

δvScull
 ′ =

1
2

 α′ l-1 +
1
6

 Δα′l-1 × Δυ′ l - Δα′ l × υ′ l-1 +
1
6

 Δυ′l-1

ΔvScul1l
 ′ = ΔvScul1l-1

 ′ + δvScul1l
 ′

ΔvScul2l
 ′ = ΔvScul2l-1

 ′ + δvScul2l
 ′ (8.2.2.1-40)

ΔvScul3l
 ′ = ΔvScul3l-1

 ′ + δvScul3l
 ′

(Continued)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-87

ΔvScul1m
 ′ = ΔvScul1l

 ′ (tl = tm) ΔvScul1l
 ′ = 0 At t = tm-1

ΔvScul2m
 ′ = ΔvScul2l

 ′ (tl = tm) ΔvScul2l
 ′ = 0 At t = tm-1

(8.2.2.1-40)
(Continued)

ΔvScul3m
 ′ = ΔvScul3l

 ′ (tl = tm) ΔvScul3l
 ′ = 0 At t = tm-1

__

ΔvSculm
 ′ = ΔvScul1m

 ′ - ΔvScul2m
 ′ ΔvSculRm

 ′ = ΔvScul1m
 ′ + ΔvScul2m

 ′

ΔvSculQm
 ′ = ΔvScul3m

 ′ (8.2.2.1-41)

ΔvSculm = ΔvSculm
 ′ - LK1 ΔvSculm

 ′ - LK2 ΔvSculRm
 ′ - LK3 ΔvSculQm

 ′

Finally, if scale factor asymmetry compensation is being applied in the software algorithms

as described in Section 8.1.1.3, Equations (8.2.2.1-38) - (8.2.2.1-39) would be based on aSF
′

and ω′ given by Equations (8.1.1.3-19) and (8.1.1.3-21) rather than (8.2.2.1-3) and (8.2.2.1-1):

ω′ = ΩWt + ω+Puls + ΩWt - ω-Puls

aSF
′ = AWt + aSF+Puls + AWt - aSF-Puls

(8.2.2.1-42)

The AWt +, AWt -, ΩWt +, ΩWt - terms in Equation (8.2.2.1-42) are scale factor weighting

matrices defined in Equations (8.1.1.3-20) and (8.1.1.3-22) for positive and negative
uncompensated sensor pulse rate output data (See Section 8.1.1.3 for further clarification).
Based on Equations (8.2.2.1-42), the equivalent to the (8.2.2.1-38) - (8.2.2.1-39) operations
would be as follows:

α′l, Δα′l = From Equations (8.2.1.1-22) (8.2.2.1-43)

Δυ +Cntl ≡ dυ +Cnt
tl-1

tl
Summation Increment Of Positive

Accelerometer Output Pulses

Δυ -Cntl ≡ dυ -Cnt
tl-1

tl
Summation Increment Of Negative

Accelerometer Output Pulses

Δυ′l = AWt + Δυ +Cntl + AWt - Δυ -Cntl (8.2.2.1-44)

υ′l = υ′l-1 + Δυ′l

υ′m = υ′l(tl = tm) υ′l = 0 At t = tm-1

8-88 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

Equations (8.2.2.1-43) - (8.2.2.1-44) are based on the assumption that separate plus and
minus pulse sum outputs are provided from the inertial sensor interface to the navigation
software. If only a composite pulse sum is available (as in (8.2.2.1-38) - (8.2.2.1-39)),
Equations (8.2.2.1-43) - (8.2.2.1-44) would be of the form:

α′l, Δα′l = From Equations (8.2.1.1-23) (8.2.2.1-45)
__

ΔυCnt l = dυCnt
t l-1

t l

Summation Increment Of

Accelerometer Output Pulses

Do For Each Component Of ΔυCnt l:

If ΔυiCnt l ≥ 0 Then: Δυ′il = AWti+ ΔυiCnt l

 Else: Δυ′il = AWti- ΔυiCnt l

(8.2.2.1-46)

υ′l = υ′l-1 + Δυ′l

υ′m = υ′l(tl = tm) υ′l = 0 At t = tm-1

where

ΔυiCnt l, Δυ′il = Components i of υCnt l, Δυ′l.

AWti +, AWti- = Elements i, i in AWt +, AWt -.

8.2.2.2 COMBINED VELOCITY ROTATION COMPENSATION AND
SCULLING INCREMENT COMPENSATION ALGORITHM

Following the same procedure leading to Equations (8.2.2.1-33) and (8.2.2.1-34) the
following can be derived for the composite rotation-compensation/sculling term vRot/Sculm

defined analytically in Equations (8.2.2-2):

dΔvRot/SculCnt1 =

αCntY(t) dυCntZ

αCntZ(t) dυCntX

αCntX(t) dυCntY

(8.2.2.2-1)

(Continued)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-89

dΔvRot/SculCnt2 =

αCntZ(t) dυCntY

αCntX(t) dυCntZ

αCntY(t) dυCntX

dΔvRot/SculCnt3 =

αCntX(t) d υCntX

αCntY(t) d υCntY

αCntZ(t) d υCntZ

(8.2.2.2-1)
(Continued)

ΔvRot/SculCnt1m = dΔvRot/SculCnt1
tm - 1

tm

ΔvRot/SculCnt2m = dΔvRot/SculCnt2
tm - 1

tm

ΔvRot/SculCnt3m = dΔvRot/SculCnt3
tm - 1

tm

ΔvRot/Scul1m
 ′ = ΩAWt1 ΔvRot/SculCnt1m

ΔvRot/Scul2m
 ′ = ΩAWt2 ΔvRot/SculCnt2m

ΔvRot/Scul3m
 ′ = ΩAWt3 ΔvRot/SculCnt3m

ΔvRot/Sculm
 ′ = ΔvRot/Scul1m

 ′ - ΔvRot/Scul2m
 ′ (8.2.2.2-2)

ΔvRot/SculRm
 ′ = ΔvRot/Scul1m

 ′ + ΔvRot/Scul2m
 ′

ΔvRot/SculQm
 ′ = ΔvRot/Scul3m

 ′

ΔvRot/Sculm = ΔvRot/Sculm
 ′ - LK1 ΔvRot/Sculm

 ′

- LK2 ΔvRot/SculRm
 ′ - LK3 ΔvRot/SculQm

 ′

8-90 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

It should be noted that in the development of Equations (8.2.2.2-2), angular rate sensor and
accelerometer bias terms are dropped based on their smallness compared to the dominant scale
factor and misalignment terms. In this respect, (8.2.2.2-2) are less than accurate than Equations
(8.2.2.1-34) in which sensor bias terms cancel (see discussion following Equation
(8.2.2.1-13)).

The algorithmic implementation of the Equations (8.2.2.2-1) ΔvRot/SculCnt1m,

ΔvRot/SculCnt2m, ΔvRot/SculCnt3m integrations would be performed using the Equation

(7.2.2.2.2-22) - (7.2.2.2.2-24) integration routines for ΔvRot/Sculm but with uncompensated

data:

αCnt l, ΔαCnt l = From Equations (8.2.1.1-15) (8.2.2.2-3)
__

υCnt l, ΔυCnt l = As In Equations (8.2.2.1-36) (8.2.2.2-4)
__

δvRot/SculCnt1l =

αCntYl-1 +
1

2
 ΔαCntYl ΔυCntZl +

1

12
 ΔαCntYl-1 ΔυCntZl - ΔυCntZl-1 ΔαCntYl

αCntZl-1 +
1

2
 ΔαCntZl ΔυCntXl +

1

12
 ΔαCntZl-1 ΔυCntXl - ΔυCntXl-1 ΔαCntZl

αCntXl-1 +
1

2
 ΔαCntXl ΔυCntYl +

1

12
 ΔαCntXl-1 ΔυCntYl - ΔυCntYl-1 ΔαCntXl

δvRot/SculCnt2l =

αCntZl-1 +
1

2
 ΔαCntZl ΔυCntYl +

1

12
 ΔαCntZl-1 ΔυCntYl - ΔυCntYl-1 ΔαCntZl

αCntXl-1 +
1

2
 ΔαCntXl ΔυCntZl +

1

12
 ΔαCntXl-1 ΔυCntZl - ΔυCntZl-1 ΔαCntXl

αCntYl-1 +
1

2
 ΔαCntYl ΔυCntXl +

1

12
 ΔαCntYl-1 ΔυCntXl - ΔυCntXl-1 ΔαCntYl

(8.2.2.2-5)

δvRot/SculCnt3l =

αCntXl-1 +
1

2
 ΔαCntXl ΔυCntXl +

1

12
 ΔαCntXl-1 ΔυCntXl - ΔυCntXl-1 ΔαCntXl

αCntYl-1 +
1

2
 ΔαCntYl ΔυCntsYl +

1

12
 ΔαCntYl-1 ΔυCntYl - ΔυCntYl-1 ΔαCntYl

αCntZl-1 +
1

2
 ΔαCntZl ΔυCntsZl +

1

12
 ΔαCntZl-1 ΔυCntZl - ΔυCntZl-1 ΔαCntZl

(Continued)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-91

ΔvRot/SculCnt1l = ΔvRot/SculCnt1l-1 + δvRot/SculCnt1l

ΔvRot/SculCnt2l = ΔvRot/SculCnt2l-1 + δvRot/SculCnt2l

ΔvRot/SculCnt3l = ΔvRot/SculCnt3l-1 + δvRot/SculCnt3l
(8.2.2.2-5)
(Continued)

ΔvRot/SculCnt1m = ΔvRot/SculCnt1l(tl = tm) ΔvRot/SculCnt1l = 0 At t = tm-1

ΔvRot/SculCnt2m = ΔvRot/SculCnt2l(tl = tm) ΔvRot/SculCnt2l = 0 At t = tm-1

ΔvRot/SculCnt3m = ΔvRot/SculCnt3l(tl = tm) ΔvRot/SculCnt3l = 0 At t = tm-1

It should also be noted that in some applications, sufficient accuracy may be obtainable by
recognizing that LK1, LK2, LK3 as computed in (8.2.2.1-31) and (8.2.2.1-32) are small and

potentially negligible in calculating ΔvRot/Sculm. In this case the approximation can be made

that ΔvRot/Sculm equals ΔvRot/Sculm
 ′ in Equations (8.2.2.2-2) which also eliminates the

requirement to calculate ΔvRot/SculRm
 ′ , ΔvRot/SculQm

 ′ , ΔvRot/Scul3m
 ′ and ΔvRot/SculCnt3m.

Equations (8.2.2.2-2) - (8.2.2.2-5) for ΔvRot/Scul1m
 ′ , ΔvRot/Scul2m

 ′ , ΔvRot/Scul3m
 ′ are based

on the assumption that AWt and ΩWt can be approximated as constant over an m cycle. Under

this assumption, if AWt or ΩWt contain non-linear terms (as addressed in Section 8.1.1.3),

AWt and ΩWt would be calculated as a function of υCntm and αCntm. For the more general case

in which AWt or ΩWt may have rapid variations, ΔvRot/Scul1m
 ′ , ΔvRot/Scul2m

 ′ , ΔvRot/Scul3m
 ′ can

be calculated based on Equation (8.2.2-2), but from scale factor compensated inertial sensor

output data aSF
′ , ω′ as in (8.2.2.1-1) and (8.2.2.1-3). Then the equivalent to (8.2.2.2-2) -

(8.2.2.2-5) for ΔvRot/Sculm becomes:

α′l, Δα′l = From Equations (8.2.1.1-18) (8.2.2.2-6)

υ′l, Δυ′l = As In Equations (8.2.2.1-39) (8.2.2.2-7)

8-92 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

δvRot/Scul1l
 ′ , δvRot/Scul2l

 ′ , δvRot/Scul3l
 ′ = Equation (8.2.2.1-15) vector product forms of:

δvRot/Scull
 ′ = α′ l-1 +

1
2

 Δα′l × Δυ′ l +
1
12

 Δα′ l-1 × Δυ′ l - Δα′l × Δυ′l-1

ΔvRot/Scul1l
 ′ = ΔvRot/Scul1l-1

 ′ + δvRot/Scul1l
 ′

ΔvRot/Scul2l
 ′ = ΔvRot/Scul2l-1

 ′ + δvRot/Scul2l
 ′ (8.2.2.2-8)

ΔvRot/Scul3l
 ′ = ΔvRot/Scul3l-1

 ′ + δvRot/Scul3l
 ′

ΔvRot/Scul1m
 ′ = ΔvRot/Scul1l

 ′ (tl = tm) ΔvRot/Scul1l
 ′ = 0 At t = tm-1

ΔvRot/Scul2m
 ′ = ΔvRot/Scul2l

 ′ (tl = tm) ΔvRot/Scul2l
 ′ = 0 At t = tm-1

ΔvRot/Scul3m
 ′ = ΔvRot/Scul3l

 ′ (tl = tm) ΔvRot/Scul3l
 ′ = 0 At t = tm-1

ΔvRot/Sculm
 ′ = ΔvRot/Scul1m

 ′ - ΔvRot/Scul2m
 ′

ΔvRot/SculRm
 ′ = ΔvRot/Scul1m

 ′ + ΔvRot/Scul2m
 ′

ΔvRot/SculQm
 ′ = ΔvRot/Scul3m

 ′ (8.2.2.2-9)

ΔvSculm = ΔvRot/Sculm
 ′ - LK1 ΔvRot/Sculm

 ′

- LK2 ΔvRot/SculRm
 ′ - LK3 ΔvRot/SculQm

 ′

Finally, if scale factor asymmetry compensation is being applied in the software algorithms
as described in Section 8.1.1.3, Equations (8.2.2.2-6) - (8.2.2.2-7) would be based on:

α′l, Δα′l = From Equations (8.2.1.1-22) (8.2.2.2-10)

υ′l, Δυ′l = As In Equations (8.2.2.1-44) (8.2.2.2-11)

Equations (8.2.2.2-10) - (8.2.2.2-11) are based on the assumption that separate plus and minus
pulse sum outputs are provided from the inertial sensor interface to the navigation software. If
only a composite pulse sum is available (as in (8.2.2.2-6) - (8.2.2.2-7)), Equations (8.2.2.2-10)
- (8.2.2.2-11) would be of the form:

α′l, Δα′l = From Equations (8.2.1.1-23) (8.2.2.2-12)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-93

υ′l, Δυ′l = As In Equations (8.2.2.1-46) (8.2.2.2-13)

8.2.3 INERTIAL SENSOR COMPENSATION FOR POSITION UPDATING

The accelerometer and angular rate sensor outputs in a strapdown system are used through
suitable algorithms to update the system position data (Section 7.3). In general, this can be
achieved by processing Equations (8.1.4.1-16), (7.3.3-10) and (7.3.3-11) (with (7.3.3.1-16) as
an option to (7.3.3-11)) (repeated below) over an acceleration transformation update cycle to
calculate a doubly integrated specific force acceleration increment in body B Frame coordinates.
The doubly integrated acceleration increment is then used to update the position data. The
scrolling vector obtained in these calculations is similar to but not identical to the scrolling
portion of the position translation vector (analogous to the rotation vector) of Section 19.1,
Equations (19.1.8-3) for updating position in Equations (19.1.5-9) based on a new unified
strapdown algorithm concept. The scrolling portion of the position translation vector is defined

as the integral of ζAlgo/c in (19.1.8-3) minus the integrated aSF portion of the ηAlgo/c input.

ΔRSFm

B
 = Sυm + ΔRRotm + ΔRScrlm -

1
2

 δ vScul-SizeC m Tm

ΔRRotm =
1
6

 Sαm × υm + αm × Sυm or Equation (7.3.3.1-16) as option

ΔRScrlm =
1
6

 6 ΔvScul(t) - Sα(t) × aSF + Sυ(t) × ω + α (t) × υ (t) dt
tm - 1

tm

ΔvScul(t) =
1
2

 α (τ) × aSF + υ (τ) × ω dτ
tm - 1

t

(8.2.3-1)

Sα(t) = α(τ) dτ
tm - 1

t

Sαm = Sα(tm)

Sυ(t) = υ(τ) dτ
tm - 1

t

Sυm = Sυ(tm)

α(τ) = ω dt
tm - 1

τ

αm = α(tm)

υ(τ) = aSF dt
tm - 1

τ

υm = υ(tm)

8-94 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

where

ΔRSFm = Doubly integrated specific force acceleration increment.

aSF = Specific force acceleration vector sensed by accelerometer triad.

ω = Angular rate vector sensed by angular rate sensor triad.

m = Acceleration-transformation/velocity-update/position-update cycle index.

υm = Integrated specific force vector from tm-1 to tm.

αm = Integrated angular rate vector from tm-1 to tm.

Sυm = Doubly integrated specific force vector from tm-1 to tm.

Sαm = Doubly integrated angular rate vector from tm-1 to tm.

ΔRRotm = “Position Rotation Compensation” term.

ΔvScul(t) = “Sculling” term.

ΔRScrlm = “Scrolling” term.

All vectors in (8.2.3-1) are in B Frame coordinates, the superscript notation for which has been

omitted for simplicity. Similarly, the IB subscript has been dropped from the ω angular rate

sensor vector which was identified in Chapter 7 as ωIB.

Equations (8.2.3-1) are based on the use of compensated accelerometer and angular rate
sensor data. Equations (8.1.2.1-3) (or (8.1.2.1-7)), (8.1.2.1-4), (8.1.2.1-5) (or (8.1.2.1-8)),
(8.1.2.1-6), (8.1.2.2-3) (or (8.1.2.2-7)), (8.1.2.2-4), (8.1.2.2-5) (or (8.1.2.2-8)) and (8.1.2.2-6)

provide the means for calculating the compensated form of αm, Sαm, υm and Sυm for Equations

(8.2.3-1). The ΔRScrlm scrolling term in (8.2.3-1) can be calculated using compensated ω, aSF

angular rate, specific force acceleration input data based on compensation Equations (8.1.2.1-2)
and (8.1.2.2-2) (similarly for integrating the scrolling portion of the position translation vector
rate equation in (19.1.8-3) as part of position updating using the Chapter 19 (Section 19.1)

unified approach - The scrolling portion of ζAlgo/c is defined as ζAlgo/c in (19.1.8-3) minus the

integrated aSF portion of the ηAlgo/c input). A problem with this approach is that the ω, aS F

compensation operations would have to be performed at the high rate used to calculate ΔRScrlm

(i.e., the l computer cycle rate as depicted in Equations (7.3.3.2-20) which is the computer
implementation of Equations (8.2.3-1)). Alternatively, the Equations (7.3.3.2-20) scrolling
algorithm can be calculated with uncompensated angular rate and accelerometer sensor data,
with the uncompensated scrolling solution then compensated for sensor error at the position
increment update rate (i.e., the m rate in Equations (7.3.3.2-20)). The following section
describes the latter approach.

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-95

8.2.3.1 SCROLLING INCREMENT AND DOUBLE INTEGRATION
TERM COMPENSATION ALGORITHMS

Following the identical procedure that led to Equations (8.2.2.1-33) - (8.2.2.1-34) for sculling
compensation, we find for the Equation (8.2.3-1) scrolling term compensation:

dΔRScrlCnt1, dΔRScrlCnt2, dΔRScrlCnt3 = Equation (8.2.2.1-15) vector product forms of:

dΔRScrlCnt =
1
6

 6 ΔvSculCnt(t) dt - SαCnt(t) × dυCnt

- dαCnt × SυCnt(t) + αCnt(t) × υCnt(t) dt
with

ΔvSculCnt(t) =
1
2

 αCnt(τ) × dυCnt - dαCnt × υCnt(τ)
tm - 1

t

(8.2.3.1-1)

ΔRScrlCnt1m = dΔRScrlCnt1
tm - 1

tm

ΔRScrlCnt2m = dΔRScrlCnt2
tm - 1

tm

ΔRScrlCnt3m = dΔRScrlCnt3
tm - 1

tm

ΔRScrl1m
 ′ = ΩAWt1 ΔRScrlCnt1m ΔRScrl2m

 ′ = ΩAWt2 ΔRScrlCnt2m

ΔRScrl3m
 ′ = ΩAWt3 ΔRScrlCnt3m

ΔRScrlm
 ′ = ΔRScrl1m

 ′ - ΔRScrl2m
 ′ ΔRScrlRm

 ′ = ΔRScrl1m
 ′ + ΔRScrl2m

 ′ (8.2.3.1-2)

ΔRScrlQm
 ′ = ΔRScrl3m

 ′

ΔRScrlm = ΔRScrlm
 ′ - LK1 ΔRScrlm

 ′ - LK2 ΔRScrlRm
 ′ - LK3 ΔRScrlQm

 ′

where

dαCnt, dυCnt = ω dt, aSF dt = Uncompensated angular rate sensor
and accelerometer triad output differential
pulse count vectors.

αCnt, SαCnt, υCnt, SυCnt, ΔvSculCnt = α, Sα, υ, Sυ, ΔvScul calculated from
uncompensated inertial sensor data.

8-96 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ΔRScrlCnt = ΔRScrl in Equations (8.2.3-1) calculated with uncompensated inertial
sensor data.

dΔRScrlCnt = Differential change in ΔRScrlCnt.

It should be noted that in the development of Equations (8.2.3.1-2), angular rate sensor and
accelerometer bias terms are dropped based on their smallness compared to the dominant scale
factor and misalignment terms. In this respect, the development of (8.2.3.1-2) differs from the
development of Equations (8.2.2.1-34) in which sensor bias terms cancel (see discussion
following Equation (8.2.2.1-13)).

The algorithmic implementation of the Equations (8.2.3.1-1) ΔRScrlCnt1m, ΔRScrlCnt2m,

ΔRScrlCnt3m integrations would be performed using the Equations (7.3.3.2-20) integration

routine for ΔRScrlm, but with uncompensated data. Including the uncompensated version of

Equations (7.3.3.2-18) - (7.3.3.2-19) for the Sαm, Sυm algorithms finds:

αCnt l, ΔαCnt l, υCnt l, ΔυCnt l =
From Equations

(8.2.1.1-15) and (8.2.2.1-36)
(8.2.3.1-3)

__

ΔSαCnt l = αCnt l-1Tl +
Tl

12
 5 ΔαCnt l + ΔαCnt l-1

ΔSυCnt l = υCnt l-1Tl +
Tl

12
 5 ΔυCnt l + ΔυCnt l-1 (8.2.3.1-4)

SαCnt l = SαCnt l-1 + ΔSαCnt l SυCnt l = SυCnt l-1 + ΔSυCnt l

SαCntm = SαCnt l(tl = tm) SυCntm = SυCnt l(tl = tm)

SαCnt l = 0 At t = tm-1. SυCnt l = 0 At t = tm-1

__

δRScrlCnt1l, δRScrlCnt2l, δRScrlCnt3l = Equation (8.2.2.1-15) vector product forms of the

following δRScrlCnt l expression using Equations (8.2.2.1-37) for the ΔvSculCnt1l,

ΔvSculCnt2l, ΔvSculCnt3l sculling terms:
(8.2.3.1-5)

δRScrlCnt l = δRScrlCntA l + δRScrlCntBl

with

(Continued)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-97

δRScrlCntA l = ΔvSculCntl-1 Tl

+
1
2

 αCnt l-1 -
1

12
 ΔαCnt l - ΔαCnt l-1 × ΔSυCnt l - υCnt l-1 Tl

-
1
2

 ΔSαCnt l - αCnt l-1 Tl × υCnt l-1 -
1
12

 ΔυCnt l - ΔυCnt l-1

δRScrlCntBl = -
1
6

 ΔαCnt l × SυCnt l-1 +
Tl

24
 ΔυCnt l - ΔυCnt l-1

-
1
6

 SαCnt l-1 +
Tl

24
 ΔαCnt l - ΔαCnt l-1 × ΔυCnt l

+
Tl

6
 αCnt l-1 -

1
6

 ΔαCnt l - ΔαCnt l-1 × υCnt l-1 -
1
6

 ΔυCnt l - ΔυCnt l-1

-
Tl

2160
 ΔαCnt l - ΔαCnt l-1 × ΔυCnt l - ΔυCnt l-1 (8.2.3.1-5)

(Continued)

ΔRScrlCnt1l = ΔRScrlCnt1l-1 + δRScrlCnt1l

ΔRScrlCnt2l = ΔRScrlCnt2l-1 + δRScrlCnt2l

ΔRScrlCnt3l = ΔRScrlCnt3l-1 + δRScrlCnt3l

ΔRScrlCnt1m = ΔRScrlCnt1l(tl = tm) ΔRScrlCnt1l = 0 At t = tm-1

ΔRScrlCnt2m = ΔRScrlCnt2l(tl = tm) ΔRScrlCnt2l = 0 At t = tm-1

ΔRScrlCnt3m = ΔRScrlCnt3l(tl = tm) ΔRScrlCnt3l = 0 At t = tm-1

Equations (8.2.3.1-2) - (8.2.3.1-5) for ΔRScrl1m
 ′ , ΔRScrl2m

 ′ , ΔRScrl3m
 ′ are based on the

assumption that AWt and ΩWt can be approximated as constant over an m cycle. Under this

assumption, if AWt or ΩWt contain non-linear terms (as addressed in Section 8.1.1.3), AWt

and ΩWt would be calculated as a function of υCntm and αCntm. For the more general case in

which AWt or ΩWt may have rapid variations, ΔRScrl1m
 ′ , ΔRScrl2m

 ′ , ΔRScrl3m
 ′ can be calculated

based on Equation (8.2.3-1), but computed from scale factor compensated inertial sensor output

data aSF
′ , ω′ as in (8.2.2.1-1) and (8.2.2.1-3). Then the equivalent to (8.2.3.1-2) - (8.2.3.1-5)

for ΔRScrlm becomes:

α′l, Δα′l, υ′l, Δυ′l =
From Equations

(8.2.1.1-18) and (8.2.2.1-39)
(8.2.3.1-6)

8-98 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ΔSαl

 ′ = α′l-1 Tl +
Tl

12
 5 Δα′l + Δα′l-1

ΔSυl

 ′ = υ′l-1 Tl +
Tl

12
 5 Δυ′l + Δυ′l-1

Sαl

 ′ = Sαl-1

 ′ + ΔSαl

 ′ Sυl

 ′ = Sυl-1

 ′ + ΔSυl

 ′ (8.2.3.1-7)

Sαm

 ′ = Sαl

 ′ (tl = tm) Sυm

 ′ = Sυl

 ′ (tl = tm)

Sαl

 ′ = 0 At t = tm-1. Sυl

 ′ = 0 At t = tm-1.

__

δRScrl1l
 ′ , δRScrl2l

 ′ , δRScrl3l
 ′ = Equation (8.2.2.1-15) vector product forms of the

following δRScrll
 ′ expression using Equations (8.2.2.1-40) for the ΔvScul1l

 ′ , ΔvScul2l
 ′ ,

ΔvScul3l
 ′ versions of the ΔvScull

 ′ sculling term:

δRScrll
 ′ = δRScrlA l

 ′ + δRScrlBl
 ′

with

δRScrlAl
 ′ = ΔvScull-1

 ′ Tl +
1
2

 α′l-1 -
1
12

 Δα′l - Δα′l-1 × ΔSυl

 ′ - υ′ l-1 Tl

-
1
2

 ΔSαl

 ′ - α′l-1 Tl × υ′l-1 -
1
12

 Δυ′l - Δυ′l-1

(8.2.3.1-8)

δRScrlBl
 ′ = -

1
6

 Δα′l × Sυl-1

 ′ +
Tl

24
 Δυ′l - Δυ′l-1

-
1
6

 Sαl-1

 ′ +
Tl

24
 Δα′l - Δα′l-1 × Δυ′l

+
Tl

6
 α′l-1 -

1
6

 Δα′l - Δα′l-1 × υ′l-1 -
1
6

 Δυ′l - Δυ′l-1

-
Tl

2160
 Δα′l - Δα′l-1 × Δυ′l - Δυ′l-1

ΔRScrl1l
 ′ = ΔRScrl1l-1

 ′ + δRScrl1l
 ′ ΔRScrl2l

 ′ = ΔRScrl2l-1
 ′ + δRScrl2l

 ′

ΔRScrl3l
 ′ = ΔRScrl3l-1

 ′ + δRScrl3l
 ′

(Continued)

INERTIAL SENSOR COMPENSATION APPLIED TO NAVIGATION ALGORITHMS 8-99

ΔRScrl1m
 ′ = ΔRScrl1l

 ′ (tl = tm) ΔRScrl1l
 ′ = 0 At t = tm-1

ΔRScrl2m
 ′ = ΔRScrl2l

 ′ (tl = tm) ΔRScrl2l
 ′ = 0 At t = tm-1

(8.2.3.1-8)
(Continued)

ΔRScrl3m
 ′ = ΔRScrl3l

 ′ (tl = tm) ΔRScrl3l
 ′ = 0 At t = tm-1

ΔRScrlm
 ′ = ΔRScrl1m

 ′ - ΔRScrl2m
 ′ ΔRScrlRm

 ′ = ΔRScrl1m
 ′ + ΔRScrl2m

 ′

ΔRScrlQm
 ′ = ΔRScrl3m

 ′ (8.2.3.1-9)

ΔRScrlm = ΔRScrlm
 ′ - LK1 ΔRScrlm

 ′ - LK2 ΔRScrlRm
 ′ - LK3 ΔRScrlQm

 ′

Finally, if scale factor asymmetry compensation is being applied in the software algorithms
as described in Section 8.1.1.3, Equations (8.2.3.1-6) would be based on:

α′l, Δα′l, υ′l, Δυ′l =
From Equations

(8.2.1.1-22) and (8.2.2.1-44)
(8.2.3.1-10)

Equations (8.2.3.1-10) are based on the assumption that separate plus and minus pulse sum
outputs are provided from the inertial sensor interface to the navigation software. If only a
composite pulse sum is available (as in (8.2.3.1-3)), Equations (8.2.3.1-10) would be of the
form:

α′l, Δα′l, υ′l, Δυ′l =
From Equations

(8.2.1.1-23) and (8.2.2.1-46)
(8.2.3.1-11)

8.3 SENSOR ASSEMBLY ALIGNMENT COMPENSATION

The attitude of the vehicle in which the strapdown inertial navigation system (INS) is

installed is determined from the attitude direction matrix CB
L

, the inertial sensor assembly

mounting misalignments and the orientation of the INS mount relative to user vehicle reference
axes. The following coordinate frame definitions apply:

L = Locally level attitude reference frame.

B = Body (or inertial sensor assembly) coordinate frame.

M = INS mount coordinate frame (the B Frame is nominally aligned to the
M Frame).

VRF = User vehicle reference axes.

8-100 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

An attitude direction cosine matrix relating the user vehicle and locally level attitude reference
axes can be written from the Equation (3.2.1-5) chain law and (3.2.1-3):

CVRF
L

 = CB
L

 CB
M T

 CVRF
M

(8.3-1)

Using Equation (3.2.2.1-8), the CB
M

 direction cosine matrix in (8.3-1) can be defined in terms of

the associated rotation vector components as follows:

CB
M

 = I +
sin J

J
 J × +

(1 - cos J)

J2
 J × J × ≈ I + J × (8.3-2)

where

J, J = Sensor triad mount misalignment rotation error vector and its magnitude
(determined using the Chapter 18, Section 18.4.7.4 system test procedure).

The CVRF
M

 matrix in Equation (8.3-1) is a function of the particular mount orientation in the user

vehicle.

Once CVRF
L

 is obtained from Equation (8.3-1), the typical roll, pitch, heading outputs of the

user vehicle can be easily calculated using Equations (4.1.2-1) and (4.1.2-2) with the Cij terms

interpreted as the elements of the CVRF
L

 matrix.

In some applications, vector data defined in the B Frame or the locally level navigation N
Frame is also desired in VRF coordinates (e.g., B Frame angular rate and specific force
acceleration, and N Frame velocity). This is easily achieved using the following direction cosine
transformation matrices:

CB
VRF

 = CVRF
M T

 CB
M

CN
VRF = CL

N
 CB

L
 CB

M T
 CVRF

M
 T

(8.3-3)

The CL
N

 matrix in Equation (8.3-3) is provided by Equation (4.1.1-2) repeated below:

CL
N

 =
0 1 0
1 0 0
0 0 -1

(8.3-4)

STRAPDOWN INERTIAL SENSOR ASSEMBLY COMPENSATION ALGORITHM SUMMARY 8-101

8.4 STRAPDOWN INERTIAL SENSOR ASSEMBLY
COMPENSATION ALGORITHM SUMMARY

Table 8.4-1 illustrates how the Chapter 8 inertial sensor assembly compensation algorithms
would be applied to the Table 7.5-1 navigation algorithms which were derived based on perfect
inertial sensor assembly input data. Table 8.4-1 lists the algorithm function, input parameters,
output parameters and equation number. Definitions for the input/output parameters are
provided in the sections in which the algorithms/equations are derived as listed in the Parameter
Index tabulation in the back of the book. The Chapter 8 algorithms selected for Table 8.4-1
provide for general inertial sensor data scale factor compensation at the high speed input rate,
and for accelerometer scale factor asymmetry compensation as described in Section 8.1.1.3.
Section 8.1.3.1 pulse count residual quantization compensation is shown for the accelerometers,
while Section 8.1.3.2 turn-around dead-band quantization compensation is shown for the
angular rate sensors. This quantization compensation approach has been used in some inertial
sensor assemblies containing electrically rebalanced pendulous accelerometers and ring laser
gyro type angular rate sensors (both described in Reference 31).

Table 8.4-1 Summary Of Typical Strapdown Inertial Navigation System
Computations With Sensor Compensation Algorithms

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

HIGH SPEED CALCULATIONS

Scale Factor Compensated Integrated B Frame
 Angular Rate Increments

ΩWt, ΔαCnt l Δα′l, α′l,
α′m

(8.2.1.1-18)

Scale Factor Compensated Integrated B Frame
 Acceleration Increments

AWt +, AWt -,

Δυ +Cntl,

Δυ -Cntl

Δυ′l, υ′l,
υ′m

(8.2.2.1-44)

Scale Factor Compensated Coning Increment Δα′l, α′l β ′m (8.2.1.1-19)

(Continued)

8-102 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Scale Factor Compensated Sculling Increments Δα′l, α′l,
Δυ′l, υ′l

ΔvScul1l
 ′ ,

ΔvScul1m
 ′ ,

ΔvScul2l
 ′ ,

ΔvScul2m
 ′ ,

ΔvScul3l
 ′ ,

ΔvScul3m
 ′

(8.2.2.1-40)

High Speed Update Time Interval (Constant) Constant Tl ---

Scale Factor Compensated Doubly Integrated B
 Frame Angular Rate And Acceleration Increments
 (For High Resolution Position Algorithm)

Δα′l, α′l,
Δυ′l, υ′l, Tl

ΔSαl

 ′ , Sαl

 ′ ,

Sαm

 ′ , ΔSυl

 ′ ,

Sυl

 ′ , Sυm

 ′

(8.2.3.1-7)

Scale Factor Compensated Scrolling Increment (For
 High Resolution Position Algorithm)

Δα′l, α′l,

ΔSαl

 ′ , Sαl

 ′ ,

Δυ′l, υ′l,

ΔSυl

 ′ , Sυl

 ′ ,

ΔvScul1l
 ′ ,

ΔvScul2l
 ′ ,

ΔvScul3l
 ′ , Tl

ΔRScrl1m
 ′ ,

ΔRScrl2m
 ′ ,

ΔRScrl3m
 ′

(8.2.3.1-8)

Scale Factor Compensated Accelerometer Size
 Effect And Anisoinertia Input Parameters

Δα′l ηijm, Δα′m,

Δα′(l : m) -1

(8.1.4.1.4-5)

STRAPDOWN INERTIAL SENSOR ASSEMBLY COMPENSATION ALGORITHM SUMMARY 8-103

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

NORMAL SPEED CALCULATIONS

INERTIAL SENSOR COMPENSATION

Angular Rate Sensor Calibration Data Sensor And System
Level Test Results.
May Include Active

Temperature
Functional

Dependency.

FSensScal,

δωSensBias,
FSensAlgn,

κSystScal/Mis ,

κSystBias

Angular Rate Sensor Scale Factor And
 Misalignment Compensation Terms

FSensScal,
FSensAlgn,

κSystScal/Mis

FScal, FAlgn (8.1.1.1.1-13),
(8.1.1.1.1-14),
(8.1.1.1.1-16)

Nominal Angular Rate Sensor Scale Factor
 (Constant)

Constant ΩWt0

Angular Rate Sensor Scale Factor Matrix And
 Misalignment Compensation Coefficients

ΩWt0, FScal,

FAlgn

ΩWt, KMis
(8.1.1.1-5),
(8.1.1.1-6)

Angular Rate Sensor Bias Compensation
 Coefficients

FSensAlgn,

κSystScal/Mis,

δωSensBias,

κSystBias

KBias (8.1.1.1.1-12)

Nominal Angular Rate Sensor Pulse Output
 Turn-Around Dead-Band

Constant dbω ---

Angular Rate Sensor Quantization Compensation
 Term (Based On Turn-Around Dead-Band Effect)

α′m, ΩWt,
dbω

δαQuantCm
(8.1.3.3-7)

Attitude Update Time Interval (Constant) Constant Tm ---

Fully Compensated Integrated B Frame Angular
 Rate Increments

α′m, KMis,

KBias,

δαQuantCm,

Tm

αm
(8.1.2.1-4)

8-104 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Accelerometer Calibration Data Sensor And System
Level Test Results.
May Include Active

Temperature
Functional

Dependency.

GSensScalLin,
GSensScalAsym,

GSensAlgn,

δaSensBias,

λSystScalLin/Mis,

λSystScalAsym,

λSystBias

Nominal Accelerometer Scale Factor (Constant) Constant AWt0 ---

Accelerometer Scale Factor Matrices AWt0,

GSensScalLin,
GSensScalAsym,

λSystScalLin/Mis,

λSystScalAsym

AWt +, AWt - (8.1.1.3-20)

Accelerometer Alignment Compensation Term GSensAlgn,

λSystScalLin/Mis

GAlgn (8.1.1.3-23),
(8.1.1.2.1-16)

Accelerometer Alignment Compensation
 Coefficients

GAlgn LMis (8.1.1.2-6)

Accelerometer Bias Compensation Coefficient δaSensBias,

λSystBias

LBias (8.1.1.2.1-17)

Accelerometer Quantization Compensation Terms
 (Based On Measured Pulse Count Residuals)

υCntResm,

AWt +, AWt -

δυQuantCm
(8.1.3.3-10),
(8.1.3.3-3)

Incremental Angular Rate Sensor Quantization
 Compensation Term (Based On Turn-Around
 Dead-Band Effect)

Δα′m,

Δα′(l : m) -1,

ΩWt, dbω

δαQuantCl : m
(8.1.3.3-8)

Accelerometer Size Effect And Anisoinertia Input
 Parameters Compensated For Scale Factor And
 Quantization

Δα′m,

δαQuantCl : m

Δα′Qim
(8.1.4.1.4-10)

STRAPDOWN INERTIAL SENSOR ASSEMBLY COMPENSATION ALGORITHM SUMMARY 8-105

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Accelerometer Size Effect Compensation Rate And
 Lever Arms (Constants)

Constant fSize, l k

Accelerometer Size Effect Compensation Term
 Components

Δα′m = Δα′Qm,

ηijm, KMis,

LMis, fSize, l k

δυ′SizeCm,

ΔδυSizeCm,

(8.1.4.1.1.1-15),
(8.1.4.1.1.2-3),
(8.1.4.1.1.2-5)

Accelerometer Size Effect Compensation
 Terms

δυ′SizeCm,

ΔδυSizeCm,

ηijm, αm,

Δα′m = Δα′Qm,

fSize, l k

δυSizeCm,

δvScul-SizeCm

(8.1.4.1.1-11),
(8.1.4.1.2-13)

Accelerometer Anisoinertia Coefficient (Constant) Constant KAniso ---

Accelerometer Anisoinertia Compensation Term ηijm, KAniso,

fSize

δυAnisoCm
(8.1.4.2-3)

Fully Compensated Integrated B Frame
 Acceleration Increments

υ′m, LMis,

LBias,

δυSizeCm,

δυAnisoCm,

δυQuantCm,

Tm

υm
(8.1.2.2-4)

Coning Compensation Coefficient Matrix KMis KMisCone (8.2.1.1-9)

Compensated Coning Increment β ′m,

KMisCone

βm
(8.2.1.1-20)

Sculling & Scrolling Compensation Coefficient
 Matrices

KMis, LMis LK1, LK2,
LK3

(8.2.2.1-31)

8-106 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Compensated Sculling Increments
ΔvScul1m

 ′ ,

ΔvScul2m
 ′ ,

ΔvScul3m
 ′ ,

LK1, LK2,
LK3

ΔvSculm
(8.2.2.1-41)

Compensated Doubly Integrated B Frame Angular
 Rate And Acceleration Increments (For High
 Resolution Position Algorithm)

Sαm

 ′ , KMis,

KBias,

δαQuantCm,

Sυm

 ′ , LMis,

LBias,

δυSizeCm,

δυAnisoCm,

δυQuantCm,

Tm

Sαm, Sυm (8.1.2.1-6),
(8.1.2.2-6)

Compensated Scrolling Increment (For High
 Resolution Position Algorithm) ΔRScrl1m

 ′ ,

ΔRScrl2m
 ′ ,

ΔRScrl3m
 ′ ,

LK1, LK2,
LK3

ΔRScrlm
(8.2.3.1-9)

EARTH RELATED PARAMETERS Table 7.5-1 Earth Related Parameter
 Calculations

VELOCITY CALCULATIONS

Table 7.5-1 Velocity Calculations Up To B Frame
 Integrated Specific Force Acceleration Increment

Table 7.5-1 Velocity Calculations Up To B
 Frame Integrated Specific Force
 Acceleration Increment

STRAPDOWN INERTIAL SENSOR ASSEMBLY COMPENSATION ALGORITHM SUMMARY 8-107

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

B Frame Integrated Specific Force Acceleration
 Increment

υm, ΔvRotm,

ΔvSculm,

δvScul-SizeCm

ΔvSFm

BI(m-1) (8.1.4.1-14)

Remaining Velocity Calculations Table 7.5-1 Velocity Calculations Following
 B Frame Integrated Specific Force
 Acceleration Increment

POSITION CALCULATIONS

Table 7.5-1 Position Calculations Up To Body
 Frame Position Increment Due To Specific
 Force Acceleration (High Resolution Position
 Algorithm)

Table 7.5-1 Position Calculations Up To
 Body Frame Position Increment Due To
 Specific Force Acceleration (High
 Resolution Position Algorithm)

Body Frame Position Increment Due To Specific
 Force Acceleration (High Resolution Position
 Algorithm)

Sυm, ΔRRotm,

ΔRScrlm,

δvScul-SizeCm,

Tm

ΔRSFm

B (8.1.4.1-16)

Remaining Position Calculations Table 7.5-1 Position Calculations Following
 Body Frame Position Increment Due To
 Specific Force Acceleration (High
 Resolution Position Algorithm)

ATTITUDE CALCULATIONS

Table 7.5-1 Attitude Calculations Up To Roll, Pitch,
 True Heading Euler Angle Outputs

Table 7.5-1 Attitude Calculations Up To
 Roll, Pitch, True Heading Euler Angle
 Outputs

Sensor Assembly Attitude Alignment Calibration
 Coefficients And Mount Geometry

System Level
Test Results

And
Geometry

J, CVRF
M ---

Attitude Compensation For Sensor Assembly
 Misalignment and Mounting CB

L
, CVRF

M
, J CVRF

L (8.3-1),
(8.3-2)

8-108 NAVIGATION SYSTEM COMPONENT COMPENSATION ALGORITHMS

ALGORITHM FUNCTION INPUT OUTPUT EQUATION

Roll, Pitch, True Heading Euler Angle Outputs CVRF
L

, α φ, θ, ψTrue
(4.1.2-1),
(4.1.2-2)

With CVRF
L

Interpreted As

CB
L

9-1

9 Sensor Assembly Jitter Compensation

9.0 OVERVIEW

This chapter derives computational routines for removing sensor assembly jitter motion from
the computed navigation parameters in a strapdown inertial navigation system. For this
development, jitter is defined as angular and linear movement of the INS strapdown sensor
assembly relative to “rigid” user vehicle reference axes. Jitter is produced by vehicle dynamic
disturbances that create vehicle bending, and that also excite sensor assembly motion on its
isolators (if used) within the INS. Additionally, for sensor assemblies using mechanically
dithered ring laser gyro rate sensors, jitter is produced by the sensor assembly reaction to gyro
dither torque.

Three basic methods might be considered for jitter removal; 1. Filtering of inertial sensor data
prior to integration into navigation data (attitude, velocity, position), 2. Filtering of the inertially
computed navigation data, and 3. Inertially determining the jitter and subtracting it from the
computed navigation data. The first method also removes real coning/sculling/scrolling motion
from the inertial sensor output, hence, is only practical when it is known that these effects are
not significant for the particular application requirements. The second method can distort the
dynamic characteristics of the desired jitter-free “rigid” user vehicle navigation data since it is
also filtered as part of the jitter removal process. The third jitter subtraction method removes the
jitter while preserving the dynamic characteristics of the jitter-free solution, and will be the
method described in this chapter. The success of the jitter subtraction process depends on the
accuracy for determining jitter motion based on inertial sensor outputs.

In this chapter we will first develop an analytical definition for jitter in attitude, velocity and
position. Routines for calculating jitter follow from the analytical definition. Finally, equations
will be developed for removing the jitter from the basic attitude, velocity and position navigation
parameters.

The principal coordinate frames utilized in this chapter are the B, L, N and E Frames as
defined in Section 2.2.

9.1 ANALYTICAL DESCRIPTION OF JITTER

The analytical description of jitter is developed by separately defining the motion of the

9-2 SENSOR ASSEMBLY JITTER COMPENSATION

strapdown sensor assembly and the user vehicle, and then taking the difference to define the
jitter components. The general differential equations that describe the motion of the sensor
assembly have been derived in Chapter 4 as Equations (4.1-1), (4.3-18) and (4.3-1)
summarized below:

CB
L

 = CB
L

 ωIB
B

× - ωIL
L

× CB
L

v
N

 = aSF
N

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN (9.1-1)

R
E

 = vE

where

ωIB = Angular rotation rate vector of the strapdown sensor assembly body B Frame
relative to non-rotating inertial space, sensed in the B Frame by the strapdown
angular rate sensors.

ωIL = Angular rotation rate vector of the locally level attitude reference L Frame
relative to non-rotating inertial space.

CB
L

 = Direction cosine matrix that transforms vectors from B to L Frame coordinates.

v = Velocity vector relative to the earth.

ωIE = Earth E Frame rotation rate vector relative to non-rotating inertial space.

ωEN = Angular rate vector of the locally level navigation N Frame relative to the E
Frame.

aSF = Specific force acceleration vector of the sensor assembly, sensed in the B Frame
by the strapdown accelerometers.

gP = Plumb-bob gravity vector.

R = Sensor assembly position distance vector from earth’s center.

An equivalent equation for R
E

 in (9.1-1) can be developed in the N-Frame from (4.3-1),
(4.3-2) and generalized Equation (3.4-6):

R
N

 = CE
N

 R
E

 + ωNE
N

 × RN = vN - ωEN
N

 × RN (9.1-2)

Equations (9.1-1) with (9.1-2) are:

ANALYTICAL DESCRIPTION OF JITTER 9-3

C = C ωB
B

× - ωIL
L

× C

v
N = aSF

N + gP
N - ωEN

N
 + 2 ωIE

N × vN (9.1-3)

R
N

 = vN - ωEN
N

 × RN

where for notation simplicity in this development we have defined:

C ≡ CB
L ωB

B
 ≡ ωIB

B

Equations (9.1-3) describe the motion of the sensor assembly. An equivalent set of
equations can be written that describe the motion of the user vehicle reference frame (i.e.,
without jitter):

CUV = CUV ωUV
UV

× - ωIL
L

×

UV
 CUV

vUV
N

 = aSFUV

N
 + gPUV

N
 - ωEN

N
 + 2 ωIE

N
 × vN

UV
(9.1-4)

RUV
N

 = vUV
N

 - ωEN
N

 × RN

UV

where

UV = User vehicle reference frame (without jitter). If the sensor assembly was free of
angular jitter, the UV and B Frames would be parallel.

()UV = Designates vector components evaluated along UV Frame axes.

()
UV

 = Designates parameters that would be calculated in a strapdown INS that is

free of jitter. In the absence of jitter, the ()UV and actual inertial sensor
assembly parameters would be identical.

ωUV, aSFUV = Values for ωB, aSF if the inertial sensor assembly was jitter free.

We now define the sensor assembly jitter in terms of the variation between the Equation
(9.1-3) and (9.1-4) navigation parameters:

ΔRJTR
N

 ≡ RN - RUV
N ΔvJTR

N
 ≡ vN - vUV

N ΔθJTR
B

× ≡ CB
UV

 - I (9.1-5)

where

ΔvJTR
N

, ΔRJTR
N

 = Velocity and position jitter motion of the sensor assembly as

described in the N Frame.

9-4 SENSOR ASSEMBLY JITTER COMPENSATION

ΔθJTR
B

 = Angular jitter rotation vector of the B Frame relative to the UV Frame as
described in the B Frame.

CB
UV

 = Direction cosine matrix that transforms vectors from the B Frame to the UV

Frame.

The ΔθJTR
B

 expression in Equations (9.1-5) is based on a first order approximation to general

rotation vector Equation (3.2.2.1-8).

A differential equation in the B Frame for the velocity jitter rate vector is developed by first
defining:

ΔvJTR
L

 = CN
L

 ΔvJTR
N ΔvJTR

B
 = CT ΔvJTR

L
(9.1-6)

Taking the derivative of Equations (9.1-6) and recognizing from the Section 2.2 definitions that
Frames N and L are parallel, hence, their relative attitude is constant, obtains:

ΔvJTR
L

 = CN
L

 ΔvJTR
N

ΔvJTR
B

 = C
T

 ΔvJTR
L

 + CT ΔvJTR
L

(9.1-7)

or, with (9.1-5),

ΔvJTR
B

 = C
T

 ΔvJTR
L

 + CT CN
L

 v
N

 - vUV
N

(9.1-8)

The transpose of C from (9.1-3) coupled with v
N

 and vUV
N

 from (9.1-3) and (9.1-4), when

substituted in (9.1-8), yields:

ΔvJTR
B

 = - ωB
B

× CT + CT ωIL
L

× ΔvJTR
L

 + CT CN
L

 aSF
N

 - aSFUV

N
 + aG/COR

N
 - aG/CORUV

N (9.1-9)

with

aG/COR
N

 ≡ gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN

aG/CORUV

N
 ≡ gPUV

N
 - ωEN

N
 + 2 ωIE

N
 × vN

UV

(9.1-10)

Since the UV and B Frames are nearly at the same position, the gP
N

 and gPUV

N
 terms in

(9.1-10) are virtually identical. We also note that the ωEN
N

 + 2 ωIE
N

 × vN term in (9.1-10) is

very close to the “UV” version, and that both are generally small compared to aSF
N

 and aSFUV

N
.

ANALYTICAL DESCRIPTION OF JITTER 9-5

This provides the justification for neglecting the difference between aG/COR
N

 and aG/CORUV

N
 in

(9.1-9). We also note that ωIL
L

 is generally much smaller than ωB
B

, hence, this term can also be

neglected in (9.1-9). Applying these simplifications to (9.1-9) with (9.1-6), yields the
approximate form:

ΔvJTR
B

 ≈ CT CN
L

 aSF
N

 - aSFUV

N
 - ωB

B
× CT ΔvJTR

L

 = CT CN
L

 aSF
N

 - aSFUV

N
 - ωB

B
 × ΔvJTR

B
(9.1-11)

We now define:

ΔaJTR
N

 ≡ aSF
N

 - aSFUV

N ΔaJTR
B

 = CT CN
L

 ΔaJTR
N

(9.1-12)

where

ΔaJTR
B

, ΔaJTR
N

 = Jitter specific force acceleration as described in the B and N Frames.

With (9.1-12), Equation (9.1-11) becomes:

ΔvJTR
B

 = ΔaJTR
B

 - ωB
B

 × ΔvJTR
B

(9.1-13)

Equation (9.1-13) includes approximations that are small, but that over time, could integrate into

a sizable error in ΔvJTR
B

. To preclude the long term error build-up, a first order feedback term is

added to (9.1-13) to obtain the final result:

ΔvJTR
B

 = ΔaJTR
B

 - ωB
B

 × ΔvJTR
B

 - CJTR ΔvJTR
B

(9.1-14)

where

CJTR = Drift control feedback gain.

The CJTR coefficient is set to a low enough value to avoid corruption of the high frequency

dynamic characteristics of ΔvJTR
B

.

A similar procedure is used to develop the ΔRJTR
B

 rate equation. First:

ΔRJTR
B

 = CT CN
L

 ΔRJTR
N

(9.1-15)

Then:

9-6 SENSOR ASSEMBLY JITTER COMPENSATION

ΔRJTR
B

 = C
T

 CN
L

 ΔRJTR
N

 + CT CN
L

 ΔRJTR
N

 = C
T

 ΔRJTR
L

 + CT CN
L

 R
N

 - RUV
N (9.1-16)

With (9.1-3) and (9.1-4) we obtain:

ΔRJTR
B

 = - ωB
B

× CT + CT ωIL
L

× ΔRJTR
L

+ CT CN
L

 vN - vUV
N

 - ωEN
N

 × RN + ωEN
N

 × RN
UV (9.1-17)

≈ - ωB
B

× CT ΔRJTR
L

 + CT CN
L

 vN - vUV
N

With (9.1-5), (9.1-6), (9.1-15) and feedback drift control, Equation (9.1-17) assumes the final
form:

ΔRJTR
B

 = ΔvJTR
B

 - ωB
B

 × ΔRJTR
B

 - CJTR ΔRJTR
B (9.1-18)

It remains to develop a differential equation for the rate of change of ΔθJTR
B

 in (9.1-5). The

derivation begins by first noting that by their definitions,

C = CUV CB
UV

(9.1-19)

The derivative of (9.1-19) is:

C = CUV CB
UV

 + CUV CB
UV (9.1-20)

From (9.1-5) we can write:

CB
UV

 = ΔθJTR
B

× (9.1-21)

From (9.1-3), (9.1-4) and (9.1-19) with approximations and generalized Equation (3.1.1-40):

C = C ωB
B

× (9.1-22)

CUV = CUV ωUV
UV

× = CUV CB
UV

 ωUV
B

× CUV
B

 = C ωUV
B

× CUV
B

(9.1-23)

Substituting (9.1-19) and (9.1-21) - (9.1-23) into (9.1-20) obtains:

ANALYTICAL DESCRIPTION OF JITTER 9-7

C ωB
B

× = C ωUV
B

× CUV
B

 CB
UV

 + CUV ΔθJTR
B

×

 = C ωUV
B

× + C CUV
B

 ΔθJTR
B

×
(9.1-24)

or

ΔθJTR
B

 × = CB
UV

 ωB
B

 - ωUV
B

 × ≈ ωB
B

 - ωUV
B

 × (9.1-25)

or

ΔθJTR
B

 = ωB
B

 - ωUV
B

(9.1-26)

We define:

ΔωJTR
B

 ≡ ωB
B

 - ωUV
B

(9.1-27)

where

ΔωJTR
B

 = Jitter angular rate as described in the B Frame.

Finally, with (9.1-27) and introduction of low frequency drift control, Equation (9.1-26)
assumes the final form:

ΔθJTR
B

 = ΔωJTR
B

 - CJTR ΔθJTR
B

(9.1-28)

In summary, Equations (9.1-14), (9.1-18), and (9.1-28) with (9.1-5), (9.1-6), and (9.1-15)
define the differential equations for jitter motion of the B Frame relative to the UV Frame.
These equations are repeated below:

ΔθJTR
B

× ≡ CB
UV

 - I

ΔvJTR
N

 ≡ vN - vUV
N ΔvJTR

B
 = CT CN

L
 ΔvJTR

N
(9.1-29)

ΔRJTR
N

 ≡ RN - RUV
N ΔRJTR

B
 = CT CN

L
 ΔRJTR

N

ΔθJTR
B

 = ΔωJTR
B

 - CJTR ΔθJTR
B

ΔvJTR
B

 = ΔaJTR
B

 - ωB
B

 × ΔvJTR
B

 - CJTR ΔvJTR
B

(9.1-30)

ΔRJTR
B

 = ΔvJTR
B

 - ωB
B

 × ΔRJTR
B

 - CJTR ΔRJTR
B

9-8 SENSOR ASSEMBLY JITTER COMPENSATION

9.2 JITTER RATE/ACCELERATION MEASUREMENT

The ΔωJTR
B

 and ΔaJTR
B

 angular-rate/linear-acceleration jitter terms in Equations (9.1-30) can

be evaluated from the strapdown INS angular rate sensor and accelerometer signals by
employing a suitable filter. This method is based on the assumption that the jitter motion can be
defined to be that portion of the total sensor output signal with frequency content above a
specified cutoff frequency. Sensor outputs with frequency content below the cutoff then
represent the jitter free (UV) motion. The basic structure of the jitter filter is a low pass stage
that measures the jitter free (UV) motion, followed by subtraction of the UV motion from the
full sensor output to determine the jitter signal. The subtraction process includes compensation
for the dynamic delay time in the jitter filter. Analytically then, the overall method for
determining angular rate and acceleration jitter is as follows:

ωUV F

B
 = FLP ωB

B
aSF/UVF

B
 = FLP aSF

B

ωBDL

B
 = GDL ωB

B
aSFDL

B
 = GDL aSF

B
(9.2-1)

ΔωJTRDL

B
 = ωBDL

B
 - ωUV F

B
ΔaJTRDL

B
 = aSFDL

B
 - aSF/UVF

B

where

FLP() = Transfer function of the low pass filter used to estimate angular-rate/linear-
acceleration jitter from the sensed B frame rate/acceleration data.

GDL() = Delay function to compensate for dynamic time delay associated with the
FLP() filter.

F = Subscript designating FLP() filter output.

DL = Subscript designation for time delayed signal in which delay time equals the
FLP() filter dynamic delay time.

The FLP() function in (9.2-1) should be selected to meet a specified cutoff frequency and
attenuation characteristic. It is advantageous if the selected filter is implemented with a fixed
dynamic delay time characteristic for all input frequencies (i.e., linear phase versus frequency
response) such as exhibited by a Remez digital filter. This allows the GDL() function to be
implemented as a pure time delay to perfectly compensate for filter delay time match-up error.
For FLP() with a fixed time delay, the GDL() function would represent the value of its

argument at the FLP() filter input time. Note, that the ΔωJTR
B

 and ΔaJTR
B

 terms calculated per

Equations (9.2-1) will then also contain a time delay (as indicated by “DL”).

JITTER RATE /ACCELERATION MEASUREMENT 9-9

The ΔωJTRDL

B
, ΔaJTRDL

B
 terms calculated in (9.2-1) are used to compute the ΔθJTR

B
, ΔvJTR

B
,

and ΔRJTR
B

 jitter parameters by integrating Equations (9.1-30) with ΔωJTRDL

B
, ΔaJTRDL

B
 as

input. Since, as discussed above, the ΔωJTRDL

B
, ΔaJTRDL

B
 inputs to (9.1-30) will be time

delayed, their use in (9.1-30) will produce the same time delay in the ΔθJTR
B

, ΔvJTR
B

, and ΔRJTR
B

outputs. The revised form of (9.1-30) that acknowledges the time delay factor is as follows:

ΔθJTRDL

B
 = ΔωJTRDL

B
 - CJTR ΔθJTRDL

B

ΔvJTRDL

B
 = ΔaJTRDL

B
 - ωBDL

B
 × ΔvJTRDL

B
 - CJTR ΔvJTRDL

B
(9.2-2)

ΔRJTRDL

B
 = ΔvJTRDL

B
 - ωBDL

B
 × ΔRJTRDL

B
 - CJTR ΔRJTRDL

B

The integral of Equations (9.2-2) with input from (9.2-1) provides the desired measurements of
sensor assembly jitter to be removed from the inertially computed attitude, velocity, position
navigation parameters.

9.3 JITTER FILTER INPUTS

The ωB
B

 and aSF
B

 angular-rate-sensor/accelerometer inputs to the Equation (9.2-1) jitter filters

can be approximated by the outputs from the inertial sensors compensated for only scale factor
as in Equations (8.1.1.1-8) and (8.1.1.2-8):

ωB
B

 ≈ ΩWt ωPuls aSF
B

 ≈ AWt aSFPuls (9.3-1)

where

ΩWt = Angular rate sensor triad scale factor pulse weighting matrix (radians per
pulse).

ωPuls = Uncompensated angular rate sensor triad “instantaneous” output pulse rate
vector (pulses per sec).

AWt = Accelerometer triad scale factor pulse weighting matrix (ft per sec per pulse).

aSFPuls = Uncompensated accelerometer triad “instantaneous” output pulse rate vector
(pulses per sec).

9-10 SENSOR ASSEMBLY JITTER COMPENSATION

For improved performance, the accelerometer data can also be compensated for
accelerometer size effect prior to jitter filter input. From Equation (8.1.4.1-9) (with GAlgn
approximated by identity), the accelerometer size effect correction for each accelerometer would
classically be given by:

δaSizek = ωB
B

 × l k
B

 + ωB
B

 × ωB
B

 × l k
B

 ⋅ uk
B

(9.3-2)

where

uk = Unit vector along the accelerometer k input axis.

l k = Lever arm from the accelerometer k center of seismic mass to the sensor
assembly navigation reference point.

δaSizek = Size effect correction to accelerometer k output.

For normal application conditions, the δaSizek correction given by Equation (9.3-2) would be

small and not significant enough to be included in the calculation of sensor assembly jitter
motion. However, under test laboratory conditions when jitter may be introduced through
angular oscillations of the INS on a test rotation table, the angular acceleration term may no
longer be negligible. To avoid potential performance problems under laboratory jitter test

conditions, the ωB
B

 × l k
B

 angular acceleration term in Equation (9.3-2) can be applied to the aSF
B

signal prior to processing by the Equation (9.2-1) jitter filters. The ωB
B

 term in (9.3-2) would be

calculated as the rate of change ωB
B

 from Equation (9.3-1). Digital algorithms for the above

operations can be derived as in Section 8.1.4.1 and its subsections.

9.4 JITTER REMOVAL

After the jitter motion parameters ΔθJTRDL

B
, ΔvJTRDL

B
, ΔRJTRDL

B
 are calculated by integrating

Equations (9.2-2), they can be used to remove jitter effects from the INS navigation parameters.
Jitter can also be removed from the B Frame angular rate and acceleration signals for output

purposes using ΔωJTRDL

B
, ΔaJTRDL

B
 from (9.2-1). The means for jitter removal is through the

inverse of (9.1-5), (9.1-6), (9.1-15), and (9.1-19). Since the calculated jitter parameters include
a time delay, INS navigation parameters must also be delayed by the same amount so that the
jitter corrections can be accurately synchronized. An additional delay must typically be included
so that the final result is synchronized with navigation parameter update cycle times. Assuming
identical update rates for the navigation parameters, the net result for the angular rate,
acceleration, attitude and velocity parameters would be as follows:

JITTER REMOVAL 9-11

ΔωJTRSDL

B
 = GS/DL ΔωJTRDL

B
ΔaJTRSDL

B
 = GS/DL ΔaJTRDL

B

ΔθJTRSDL

B
 = GS/DL ΔθJTRDL

B
ΔvJTRSDL

B
 = GS/DL ΔvJTRDL

B

ΔvJTRSDL

N
 = CL

N
 CSDL ΔvJTRSDL

B

ωSDL
B

 = GSDL ωB
B

aSFSDL

B
 = GSDL aSF

B
(9.4-1)

CSDL = GSDL C vSDL
N

 = GSDL vN

ωUV SDL

B
 = ωSDL

B
 - ΔωJTRSDL

B
aSF/UVSDL

B
 = aSDL

B
 - ΔaJTRSDL

B

CUV SDL = CSDL I - ΔθJTRSDL

B
× vUV SDL

N
 = vSDL

N
 - ΔvJTRSDL

N

where

GSDL() = Delay function corresponding to specified integer number of navigation
parameter update cycles.

GS/DL() = Delay function applied to GDL() delay filter outputs that results in a net
delay (including the GDL() delay time) equal to the specified integer
number of navigation parameter update cycles.

SDL = Subscript designation for time delayed signal in which the delay time equals
the specified integer number of navigation parameter update cycles.

The C and vN terms in (9.4-1) would be the CB
L

 attitude direction cosine matrix and vN earth

reference velocity as calculated by the strapdown inertial navigation integration algorithms of
Chapter 7 (including the Chapter 8 sensor compensation) and the Chapter 19, Section 19.1
unified algorithms (if applied). As for the GDL() delay function, the associated time delays
would be selected so that the GSDL() and GS/DL() functions can be realized as equal to their
arguments at previous computer update cycle times corresponding to the time delays.

The vertical component of position jitter can be removed similarly from the altitude
parameter:

ΔRJTRSDL

B
 = GS/DL ΔRJTRDL

B
 ΔRJTRSDL

N
 = CL

N
 CSDL ΔRJTRSDL

B

hSDL = GSDL(h) hUVSDL = hSDL - uZN
N

 ⋅ ΔRJTRSDL

N
(9.4-2)

where

h = Altitude.

9-12 SENSOR ASSEMBLY JITTER COMPENSATION

uZN
N

 = Unit vector upward along the Z axis of the N Frame.

The h altitude term in (9.4-2) would be as calculated by the Chapter 7 strapdown inertial
navigation integration algorithms.

The horizontal component of position jitter can be removed from the INS navigation data by

adjustment of the CN
E

 matrix (i.e., the direction cosine matrix that transforms vectors from the N

Frame to the E Frame). The method is by defining an equivalent earth surface angular rotation
vector corresponding to the calculated position jitter vector, and then removing the horizontal

angular rotation components from CN
E

. The method is directly analogous to Equations

(7.3.1-6), (7.3.1-8) and (7.3.1-11) for position updating. Using these equations as a template,
assuming that position and velocity updating cycle rates are equal (i.e., equivalent to setting the n

and m rates equal in the previous referenced equations), approximating FC
N

 as the identity

matrix divided by the average local radius of curvature with the 3, 3 element set to zero, and
carrying only first order terms then obtains:

ξJTRSDL

N
 =

1
R

 uZN
N

 × ΔRJTRSDL

N
 DSDL = GSDL D

DUVSDL = DSDL I - ξJTRSDL

N
×

(9.4-3)

where

D = CN
E

 for simplicity in Equation (9.4-3).

R = Average local radius of curvature which usually can safely be approximated as
earth’s equatorial radius.

ξJTRSDL

N
 = Horizontal angular jitter of the N Frame.

The D (or CN
E

) position direction cosine matrix in (9.4-3) would be as calculated by the Chapter

7 strapdown inertial navigation integration algorithms (including the Chapter 19, Section 19.1
unified algorithms if applied).

9.5 NAVIGATION OUTPUT PARAMETERS

Once the jitter is removed from the basic attitude, velocity, and position integration
parameters as described in Equations (9.4-1) through (9.4-3), traditional navigation output data
can be calculated from the jitter free results such as Equations (4.4.2.1-3) for
latitude/longitude/wander-angle, Equations (4.3.1-4) for north/east/vertical velocity and
Equations (4.1.2-1), (4.1.2-2), (8.3-1) and (8.3-2) for roll/pitch/heading attitude. The altitude

NAVIGATION OUTPUT PARAMETERS 9-13

output would be hUV SDL directly from Equations (9.4-2). B Frame angular rates and

acceleration outputs would be obtained from ωUV SDL

B
, aSF/UVSDL

B
 after transformation into the

appropriate vehicle coordinate frame using Equation (8.3-3).

9-14 SENSOR ASSEMBLY JITTER COMPENSATION

10-1

10 Vibration Effects Analysis

10.0 OVERVIEW

In this chapter we will develop analytical techniques that can be used to assess strapdown
INS performance under dynamic vibration environments. In particular, methods will be
developed for assessing strapdown computation algorithm accuracy and inertial sensor vibration
sensitive error effects under linear and angular vibration in sinusoidal and random vibration
environments. Section 10.1 analyzes the effect of sinusoidal linear and angular vibrations of the
strapdown inertial sensor assembly on true attitude/velocity/position, strapdown algorithm
computed attitude/velocity/position, and on strapdown inertial sensor error. Section 10.2
provides a brief review of linear system response to sinusoidal and random inputs. Sections
10.3 and 10.4 apply Section 10.2 to translate the Section 10.1 sinusoidal response results into
strapdown sensor assembly response to external sinusoidal and random vibration inputs, while
accounting for damping and resonance of the strapdown inertial sensor assembly mechanical
mounting within the INS chassis. Section 10.5 describes simplified analytical methods that can
be used to model the damping/resonance dynamic response characteristics of the strapdown
sensor assembly to system level linear/angular vibration inputs. Section 10.6 describes the
structure of a simplified simulation program that can be used to evaluate vibration sensitive
performance parameters based on the Section 10.3 - 10.5 results.

All the vectors in this chapter represent projections on the sensor assembly “body” B Frame
coordinate axes as it is defined in Section 2.2. The B superscript notation on the vectors has
been omitted in this chapter for simplicity.

10.1 RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS

In this section we analyze the effect of sensor assembly linear and angular vibration based on
sinusoidal motion specified in the sensor assembly B Frame. The section is divided into five
major subsections covering attitude motion response, velocity motion response, position motion
response, vibration induced sensor error effects, and a summary of results obtained. For the
attitude, velocity and position response subsections, discussions are provided on the true
response, the response produced by the strapdown attitude/velocity/position integration
algorithms, and the error induced by approximations in the integration algorithms.

10-2 VIBRATION EFFECTS ANALYSIS

10.1.1 ATTITUDE MOTION RESPONSE UNDER ANGULAR VIBRATION

To simplify the analysis to follow, we will restrict the attitude motion discussion to angular
response generated by angular vibration around the B Frame X and Y axes. The results can
then be easily extended by designated axis permutation to account for similar effects under Y/Z
and Z/X angular vibrations.

We define the sinusoidal angular vibration profile to be analyzed by the following general
forms:

θ(t) = ux θ0x sin Ωx t - ϕθx + uy θ0y sin Ωy t - ϕθy (10.1.1-1)

ωIB(t) = ux θ0x Ωx cos Ωx t - ϕθx + uy θ0y Ωy cos Ωy t - ϕθy (10.1.1-2)

where

ωIB(t) = B Frame angular rate vector relative to inertial space that would be measured
by the strapdown angular rate sensors.

θ(t) = B Frame vibration “angle” vector which we define as the integrated B Frame

angular rate. Note that ωIB(t) is the derivative of θ(t) . Since we will be
addressing angular vibration effects that are by nature, small in amplitude, the

integral of generalized Equation (3.3.5-14) shows that θ(t) is approximately the
rotation vector associated with the vibration motion, hence, represents an actual
physical angle vector.

ux, uy = Unit vectors along the B Frame X, Y axes.

Ωx, Ωy = Frequency of the sinusoidal angular vibration around B Frame axes X and
Y.

θ0x, θ0y = Sinusoidal vibration “angle” vector amplitude around B Frame axes X and
Y.

ϕθx, ϕθy = Phase angle associated with each B Frame X, Y axis angular vibration.

10.1.1.1 ATTITUDE MOTION CHARACTERISTICS

Let us analyze the effect of the Equation (10.1.1-2) angular rate on B Frame attitude at time t
relative to B Frame attitude at some arbitrary time t0. To do this, it is convenient to define
attitude in terms of a rotation vector described formally in Section 3.2.2, recognizing that any of
the attitude parameters discussed in previous chapters (e.g. direction cosine matrix, attitude
quaternion) can be analytically defined in terms of the rotation vector. To simplify the analysis,
we recognize that attitude motion produced by angular vibration is, by nature, small in

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-3

amplitude, hence, we can use Equation (7.1.1.1-10) with (7.1.1.1-9) as a model to write an
approximate rotation vector rate equation:

Φ(t) ≈ ωIB(t) +
1
2

 A (t) × ωIB(t) (10.1.1.1-1)

A (t) ≡ ωIB(τ) dτ
t0

t

(10.1.1.1-2)

where

Φ(t) = Rotation vector describing the B Frame attitude at time t relative to the B
Frame attitude at some arbitrary prior initial time.

t0 = Initial B Frame attitude reference time for Φ(t) definition.

A (t) = Integrated B Frame angular rate since time t0.

The integral of (10.1.1.1-1) from time t0 with (10.1.1.1-2) provides the rotation vector:

Φ(t) = A (t) +
1
2

 A (τ) × ωIB(τ) dτ
t0

t

(10.1.1.1-3)

where

τ = Integration time parameter.

For the angular vibration motion described by Equations (10.1.1-1) - (10.1.1-2), Equation
(10.1.1.1-2) and the integrand cross-product term in (10.1.1.1-3) are given by:

A (t) = ux θ0x sin Ωx t - ϕθx - sin Ωx t0 - ϕθx

 + uy θ0y sin Ωy t - ϕθy - sin Ωy t0 - ϕθy

(10.1.1.1-4)

A (t) × ωIB(t) = uz θ0x θ0y sin Ωx t - ϕθx - sin Ωx t0 - ϕθx Ωy cos Ωy t - ϕθy

 - sin Ωy t - ϕθy - sin Ωy t0 - ϕθy Ωx cos Ωx t - ϕθx
(10.1.1.1-5)

or upon expansion for A (t) × ωIB(t):

10-4 VIBRATION EFFECTS ANALYSIS

A (t) × ωIB(t) =

uz θ0x θ0y - Ωy sin Ωx t0 - ϕθx cos Ωy t - ϕθy + Ωx sin Ωy t0 - ϕθy cos Ωx t - ϕθx

+ Ωy sin Ωx t - ϕθx cos Ωy t - ϕθy - Ωx sin Ωy t - ϕθy cos Ωx t - ϕθx

= uz θ0x θ0y - Ωy sin Ωx t0 - ϕθx cos Ωy t - ϕθy + Ωx sin Ωy t0 - ϕθy cos Ωx t - ϕθx

+
Ωy

2
 sin Ωy + Ωx t - ϕθy + ϕθx - sin Ωy - Ωx t - ϕθy - ϕθx (10.1.1.1-6)

-
Ωx

2
 sin Ωy + Ωx t - ϕθy + ϕθx + sin Ωy - Ωx t - ϕθy - ϕθx

= uz θ0x θ0y - Ωy sin Ωx t0 - ϕθx cos Ωy t - ϕθy + Ωx sin Ωy t0 - ϕθy cos Ωx t - ϕθx

+
Ωy - Ωx

2
 sin Ωy + Ωx t - ϕθy + ϕθx -

Ωy + Ωx

2
 sin Ωy - Ωx t - ϕθy - ϕθx

Substituting the (10.1.1.1-6) result into (10.1.1.1-3) then obtains for the integral:

1
2

 A(τ) × ωIB(τ) dτ
t0

t

 = uz
1
2

 θ0x θ0y - sin Ωx t0 - ϕθx sin Ωy t - ϕθy - sin Ωy t0 - ϕθy

+ sin Ωy t0 - ϕθy sin Ωx t - ϕθx - sin Ωx t0 - ϕθx

-
Ωy - Ωx

2 Ωy + Ωx

 cos Ωy + Ωx t - ϕθy + ϕθx - cos Ωy + Ωx t0 - ϕθy + ϕθx

+
Ωy + Ωx

2 Ωy - Ωx

 cos Ωy - Ωx t - ϕθy - ϕθx - cos Ωy - Ωx t0 - ϕθy - ϕθx (10.1.1.1-7)

= uz
1
2

 θ0x θ0y - sin Ωx t0 - ϕθx sin Ωy t - ϕθy + sin Ωy to - ϕθy sin Ωx t - ϕθx

-
Ωy - Ωx

2 Ωy + Ωx

 cos Ωy + Ωx t - ϕθy + ϕθx - cos Ωy + Ωx t0 - ϕθy + ϕθx

+
Ωy + Ωx

2 Ωy - Ωx

 cos Ωy - Ωx t - ϕθy - ϕθx - cos Ωy - Ωx t0 - ϕθy - ϕθx

The sine products in (10.1.1.1-7) can be expressed in an equivalent form as follows:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-5

- sin Ωx t0 - ϕθx sin Ωy t - ϕθy + sin Ωy t0 - ϕθy sin Ωx t - ϕθx

= -
1
2

 cos Ωy t - Ωx t0 - ϕθy - ϕθx +
1
2

 cos Ωy t + Ωx t0 - ϕθy + ϕθx

+
1
2

 cos Ωy t0 - Ωx t - ϕθy - ϕθx -
1
2

 cos Ωy t0 + Ωx t - ϕθy + ϕθx (10.1.1.1-8)

= sin
1
2

 Ωy - Ωx t + t0 - ϕθy - ϕθx sin
1
2

 Ωy + Ωx t - t0

- sin
1
2

 Ωy + Ωx t + t0 - ϕθy + ϕθx sin
1
2

 Ωy - Ωx t - t0

Substituting (10.1.1.1-4) and (10.1.1.1-7) with (10.1.1.1-8) into (10.1.1.1-3) then yields the
equation for the rotation vector attitude response:

Φ(t) = ux θ0x sin Ωx t - ϕθx - sin Ωx t0 - ϕθx

+ uy θ0y sin Ωy t - ϕθy - sin Ωy t0 - ϕθy

+ uz
1
2

 θ0x θ0y sin
1
2

 Ωy - Ωx t + t0 - ϕθy - ϕθx sin
1
2

 Ωy + Ωx t - t0

- sin
1
2

 Ωy + Ωx t + t0 - ϕθy + ϕθx sin
1
2

 Ωy - Ωx t - t0 (10.1.1.1-9)

-
Ωy - Ωx

2 Ωy + Ωx

 cos Ωy + Ωx t - ϕθy + ϕθx - cos Ωy + Ωx t0 - ϕθy + ϕθx

+
Ωy + Ωx

2 Ωy - Ωx

 cos Ωy - Ωx t - ϕθy - ϕθx - cos Ωy - Ωx t0 - ϕθy - ϕθx

Equation (10.1.1.1-9) shows that for the hypothesized Equation (10.1.1-2) general sinusoidal
X/Y angular rate vibration profile, the rotation vector attitude response is also sinusoidal at the
same frequencies around B Frame axes X and Y. Around the B Frame Z axis, the response is

the sum and the sum of products of sinusoids at the sum and difference frequencies Ωy + Ωx ,

Ωy - Ωx . Hence, the attitude response has no net rotation angle build-up, provided that the

frequency difference Ωy - Ωx is non-zero (i.e., Ωx ≠ Ωy). For the case when Ωx approaches

Ωy, the frequency difference cosine functions become very low in frequency, approaching a

constant, and the associated multiplication term
Ωy + Ωx

2 Ωy - Ωx

 becomes large. In the limit, when

10-6 VIBRATION EFFECTS ANALYSIS

Ωx and Ωy are equal, the product of
Ωy + Ωx

2 Ωy - Ωx

 with the frequency difference cosines produces

a linearly increasing value for the Z component of Φ(t) as the following analysis shows.

For the case when Ωx approaches Ωy and in the limit, equals Ωy, Equation (10.1.1.1-9)

becomes:

For Ωx → Ωy = Ω:

Φ(t) = ux θ0x sin Ω t - ϕθx - sin Ω t0 - ϕθx

+ uy θ0y sin Ω t - ϕθy - sin Ω t0 - ϕθy (10.1.1.1-10)

+ uz
1
2

 θ0x θ0y - sin ϕθy - ϕθx sin Ω (t - t0)

+
Ω

Ωy - Ωx

 cos Ωy - Ωx t - ϕθy - ϕθx - cos Ωy - Ωx t0 - ϕθy - ϕθx

where

Ω = Frequency for both B Frame X and Y axis angular vibrations.

The cosine terms in Equation (10.1.1.1-10) can be reduced further as Ωx → Ωy = Ω:

cos Ωy - Ωx t - ϕθy - ϕθx - cos Ωy - Ωx t0 - ϕθy - ϕθx

= - 2 sin
1
2

 Ωy - Ωx t + t0 - 2 ϕθy - ϕθx sin
1
2

 Ωy - Ωx t - t0 (10.1.1.1-11)

≈ Ωy - Ωx t - t0 sin ϕθy - ϕθx

Thus, with (10.1.1.1-11), when Ωx and Ωy are equal, the (10.1.1.1-10) rotation vector attitude

history is as follows:

For Ωx → Ωy = Ω:

Φ(t) = ux θ0x sin Ω t - ϕθx - sin Ω t0 - ϕθx

+ uy θ0y sin Ω t - ϕθy - sin Ω t0 - ϕθy (10.1.1.1-12)

+ uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx t - t0 -
sin Ω (t - t0)

Ω

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-7

Comparing Equation (10.1.1.1-12) with general Equation (10.1.1.1-9), we see that the X and

Y axis angular responses are sinusoidal and identical, but that for Ωx → Ωy = Ω in

(10.1.1.1-12), the Z axis response has been converted into an Ω frequency sinusoid plus an
unbounded linear build-up with time (t - t0) function. After one vibration cycle (i.e.,

t - t0 > 2 π / Ω) the linear (t - t0) function dominates the response. The (10.1.1.1-12) Z axis

linear with time build-up term has been designated as the “coning” response. The term
“coning” describes the conical surface generated by the B Frame Z axis under the Equation

(10.1.1-1) and (10.1.1-2) angular motion when Ωx = Ωy. The linear with time coefficient in

Equation (10.1.1.1-12) has been designated as the “coning rate” given by:

ΦCon = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx (10.1.1.1-13)

where

ΦCon = Coning rate vector for B Frame X, Y axis angular vibration at the same
frequency.

Note in Equation (10.1.1.1-13), that ΦCon is proportional to the sine of the phase angle

difference between the Equation (10.1.1-1) or (10.1.1-2) X and Y axis angular vibration
components, with worst case coning rate occurring for a 90 degree phase separation. Note also
that the coning rate amplitude is proportional to the product of the coning frequency with the
angular vibration amplitudes around axes X and Y. Thus, coning rate increases linearly with the

angular vibration frequency Ω (sometimes denoted as the “coning frequency”) and as the
square of the angular vibration amplitude. It is also interesting to note as can be demonstrated

analytically, that under Equation (10.1.1-1) angular vibration (with Ωx → Ωy = Ω), the area

traced out by the B Frame Z axis on the B Frame X, Y axis plane over one vibration cycle

equals π θ0x θ0y sin ϕθy - ϕθx . The time rate that the area is swept is the previous expression

multiplied by the vibration frequency (in Hz), which equals
Ω

2 π
 × π θ0x θ0y sin ϕθy - ϕθx or

1
2

 Ω θ0x θ0y sin ϕθy - ϕθx , the coning rate magnitude in Equation (10.1.1.1-13).

10.1.1.2 ATTITUDE ALGORITHM RESPONSE

The software in a strapdown INS processes a digital integration algorithm to calculate B
Frame attitude. For consistency with Section 10.1.1.1, we will assume that the attitude
integration algorithm is a digital version of the continuous form Equations (10.1.1.1-2) and

10-8 VIBRATION EFFECTS ANALYSIS

(10.1.1.1-3) based on attitude in the form of a rotation vector. Thus, we assume the attitude
algorithm is derived from the following equivalent version of (10.1.1.1-2) and (10.1.1.1-3):

α(t) ≡ ωIB(τ) dτ
tm - 1

t

 αm = α(tm) Am-1 = αi∑
 1

m-1

A(t) = Am-1 + α(t)

ΔΦm = αm +
1
2

 A(t) × ωIB(t) dt
tm - 1

tm

Φm = ΔΦi∑
1

m

(10.1.1.2-1)

where

m =Strapdown software attitude update algorithm cycle index. The m zero cycle
corresponds to time t0 in Equations (10.1.1.1-2) and (10.1.1.1-3).

i = Particular m cycle over the m cycle history.

α(t) = Integrated B Frame angular rate from the last m cycle time tm-1 to time t.

αm = Integrated B Frame angular rate from tm-1 to time tm.

Φm = B Frame attitude at computer cycle m.

ΔΦm = Change in B Frame attitude over the m cycle time interval from tm-1 to tm.

The integral term in the ΔΦm expression can be expanded if we substitute for A(t) and apply

the αm definition from (10.1.1.2-1):

1
2

 A(t) × ωIB(t) dt
tm - 1

tm

 =
1
2

 Am-1 + α(t) × ωIB(t) dt
tm - 1

tm

 =
1
2

 Am-1 × αm +
1
2

 α(t) × ωIB(t) dt
tm - 1

tm

 =
1
2

 Am-1 × αm + βm

(10.1.1.2-2)

with

βm ≡
1
2

 α(t) × ωIB(t) dt
tm - 1

tm

(10.1.1.2-3)

where

βm = Coning contribution to ΔΦm.

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-9

With (10.1.1.2-2) and (10.1.1.2-3), Equations (10.1.1.2-1) become:

α(t) = ωIB(τ) dτ
tm - 1

t

αm = α(tm) Am = αi∑
 1

m

βm =
1
2

 α(t) × ωIB(t) dt
tm - 1

tm

(10.1.1.2-4)

Φm = Am +
1
2

 Ai-1 × αi∑
1

m

 + βi∑
1

m

Equations (10.1.1.2-4) represent the equivalent digital forms of Equations (10.1.1.1-2) and

(10.1.1.1-3), generating the identical solution at the m cycle times. The α, β terms in
(10.1.1.2-4) should be recognized as the identical terms in Section 7.1.1.1 for strapdown attitude
algorithm development. The following subsections analyze the response of Equations
(10.1.1.2-4) under the hypothesized Section 10.1.1 sinusoidal angular vibrations for the exact
implementation of (10.1.1.2-4) and for the approximate forms typified in the INS software.

10.1.1.2.1 Exact Attitude Algorithm Response

The (10.1.1.2-4) algorithm is exact, hence, its overall response at the m cycle times to general
X, Y sinusoidal angular vibration is identical to (10.1.1.1-9) which was derived from
(10.1.1.1-2) - (10.1.1.1-3). Similarly, the overall response for equal X, Y angular vibration
frequencies is identical to the (10.1.1.1-12) - (10.1.1.1-13) results. It is instructive to analyze the
individual contributions in (10.1.1.2-4) to the overall result. For this discussion, we will only

address the case for which the X, Y angular vibration frequencies are equal (i.e., Ωx = Ωy = Ω).

From Equation (10.1.1.1-4) (the exact equivalent to the (10.1.1.2-4) Am expression at tm),

we can write for Am under the (10.1.1-2) vibration exposure with Ωx → Ωy = Ω:

Am = ux θ0x sin Ω tm - ϕθx - sin Ω t0 - ϕθx

 + uy θ0y sin Ω tm - ϕθy - sin Ω t0 - ϕθy

(10.1.1.2.1-1)

From the definition for αm in (10.1.1.2-4), we also write for the (10.1.1-2) vibration with

Ωx = Ωy = Ω:

10-10 VIBRATION EFFECTS ANALYSIS

αm = ωIB(t) dt
tm - 1

tm

 = ux θ0x sin Ω tm - ϕθx - sin Ω tm-1 - ϕθx

 + uy θ0y sin Ω tm - ϕθy - sin Ω tm-1 - ϕθy

(10.1.1.2.1-2)

The combination of (10.1.1.2.1-1) and (10.1.1.2.1-2) for m = i then yields an expression for the

cross-product term in the (10.1.1.2-4) Φm equation:

Ai-1 × αi = (10.1.1.2.1-3)

uz θ0x θ0y sin Ω ti-1 - ϕθx - sin Ω t0 - ϕθx sin Ω ti - ϕθy - sin Ω ti-1 - ϕθy

- sin Ω ti-1 - ϕθy - sin Ω t0 - ϕθy sin Ω ti - ϕθx - sin Ω ti-1 - ϕθx

or with much manipulation:

Ai-1 × αi = uz θ0x θ0y sin Ω ti-1 - ϕθx sin Ω ti - ϕθy - sin Ω ti-1 - ϕθx sin Ω ti-1 - ϕθy

- sin Ω t0 - ϕθx sin Ω ti - ϕθy + sin Ω t0 - ϕθx sin Ω ti-1 - ϕθy

- sin Ω ti-1 - ϕθy sin Ω ti - ϕθx + sin Ω ti-1 - ϕθy sin Ω ti-1 - ϕθx

+ sin Ω t0 - ϕθy sin Ω ti - ϕθx - sin Ω t0 - ϕθy sin Ω ti-1 - ϕθx

= uz θ0x θ0y
1
2

 cos Ω ti - t i-1 - ϕθy - ϕθx -
1
2

 cos Ω ti + t i-1 - ϕθy + ϕθx

-
1
2

 cos Ω ti - t0 - ϕθy - ϕθx +
1
2

 cos Ω ti + t0 - ϕθy + ϕθx (10.1.1.2.1-4)

+
1
2

 cos Ω ti-1 - t0 - ϕθy - ϕθx -
1
2

 cos Ω ti-1 + t0 - ϕθy + ϕθx

-
1
2

 cos Ω ti - t i-1 + ϕθy - ϕθx +
1
2

 cos Ω ti + t i-1 - ϕθy + ϕθx

+
1
2

 cos Ω ti - t0 + ϕθy - ϕθx -
1
2

 cos Ω ti + t0 - ϕθy + ϕθx

-
1
2

 cos Ω ti-1 - t0 + ϕθy - ϕθx +
1
2

 cos Ω ti-1 + t0 - ϕθy + ϕθx

(Continued)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-11

= uz θ0x θ0y
1
2

 cos Ω ti - t i-1 - ϕθy - ϕθx -
1
2

 cos Ω ti - t i-1 + ϕθy - ϕθx

- 1
2

 cos Ω ti - t0 - ϕθy - ϕθx + 1
2

 cos Ω ti - t0 + ϕθy - ϕθx

+ 1
2

 cos Ω ti-1 - t0 - ϕθy - ϕθx - 1
2

 cos Ω ti-1 - t0 + ϕθy - ϕθx

(10.1.1.2.1-4)
(Continued)

= uz θ0x θ0y
1
2

 cos ϕθy - ϕθx - Ω ti - t i-1 -
1
2

 cos ϕθy - ϕθx + Ω ti - t i-1

-
1
2

 cos ϕθy - ϕθx - Ω ti - t0 +
1
2

 cos ϕθy - ϕθx + Ω ti - t0

+
1
2

 cos ϕθy - ϕθx - Ω ti-1 - t0 -
1
2

 cos ϕθy - ϕθx + Ω ti-1 - t0

= uz θ0x θ0y sin ϕθy - ϕθx sin Ω ti - t i-1 - sin Ω ti - t0 + sin Ω ti-1 - t0

With (10.1.1.2.1-4), the summation term in the (10.1.1.2-4) Φm expression becomes:

1
2

 Ai-1 × αi∑
1

m

 = uz
1
2

 θ0x θ0y sin ϕθy - ϕθx sin Ω ti - t i-1∑
1

m

 - sin Ω ti - t0 + sin Ω ti-1 - t0

(10.1.1.2.1-5)

The (10.1.1.2.1-5) result can be further simplified using the following substitutions:

ti - t i-1 = Tm t i - t0 = i Tm

ti-1 - t0 = i - 1 Tm m =
tm - t0

Tm

(10.1.1.2.1-6)

where

Tm = Time interval for the computer m cycle attitude update rate.

Substituting (10.1.1.2.1-6) into the (10.1.1.2.1-5) summation term gives:

sin Ω Tm - sin i Ω Tm + sin i-1 Ω Tm∑
i = 1

m

= m sin Ω Tm - sin i Ω Tm∑
i=1

m

 + sin i-1 Ω Tm∑
i=1

m

(10.1.1.2.1-7)

(Continued)

10-12 VIBRATION EFFECTS ANALYSIS

= m sin Ω Tm - sin i Ω Tm∑
i=1

m

 + sin i Ω Tm∑
i=0

m-1
(10.1.1.2.1-7)
(Continued)

= m sin Ω Tm - sin m Ω Tm =
tm - t0

Tm
 sin Ω Tm - sin Ω tm - t0

= Ω
sin Ω Tm

Ω Tm

 tm - t0 -
sin Ω tm - t0

Ω

With (10.1.1.2.1-7) substituted in (10.1.1.2.1-5), the summation term in the (10.1.1.2-4) Φm

expression finally becomes:

1
2

 Ai-1 × αi∑
1

m

 = uz
1
2

 Ω θ0x θ0y s in ϕθy - ϕθx
sin Ω Tm

Ω Tm

 tm - t0

-
sin Ω tm - t0

Ω

(10.1.1.2.1-8)

An analytical equation for the (10.1.1.2-3) βm coning term in the (10.1.1.2-4) Φm expression

is more easily obtained by direct extension of Equation (10.1.1.1-12), the solution to

(10.1.1.1-3) under (10.1.1-2) vibration with Ωx = Ωy = Ω. On review of the (10.1.1.1-12)

derivation, it should be clear that the Z component of (10.1.1.1-12) is the integral term in
(10.1.1.1-3), or with (10.1.1.1-2) and evaluation at tm:

A(t) = ωIB(τ) dτ
t0

t

(10.1.1.2.1-9)

1
2

 A(t) × ωIB(t) dt
t0

tm

 = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx tm - t0 -
sin Ω (tm - t0)

Ω

For comparison, the calculations for βm in Equations (10.1.1.2-4) are repeated below:

βm =
1
2

 α(t) × ωIB(t) dt
tm - 1

tm

α(t) = ωIB(τ) dτ
tm - 1

t

(10.1.1.2.1-10)

Comparing Equations (10.1.1.2.1-9) and (10.1.1.2.1-10) we see that they are analytically
equivalent; (10.1.1.2.1-9) can be converted to (10.1.1.2.1-10) through the following
substitutions:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-13

A(t) → α(t) t0 → tm-1 tm - tm-1 = Tm (10.1.1.2.1-11)

for which the βm analytical solution becomes:

βm = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 -
sin ΩTm

ΩTm

 Tm (10.1.1.2.1-12)

Thus, βm is constant and the βi summation term in the (10.1.1.2-4) Φm expression is given by:

βi∑
1

m

 = m βm =
tm - t0

Tm
 βm

 = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 -
sin ΩTm

ΩTm

 tm - t0

(10.1.1.2.1-13)

Because βm is constant, we can also define a Φm attitude build-up rate contribution associated

with the βi coning summation term in (10.1.1.2-4) as the tm - t0 coefficient in (10.1.1.2.1-13):

βm = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 -
sin ΩTm

ΩTm

(10.1.1.2.1-14)

where

βm = Constant rate of change in Φm generated by the summing of βi’s in Equation
(10.1.1.2-4).

As an exercise, we now form Φm in (10.1.1.2-4) by combining (10.1.1.2.1-13),

(10.1.1.2.1-8) and (10.1.1.2.1-1):

Φm = ux θ0x sin Ω tm - ϕθx - sin Ω t0 - ϕθx

+ uy θ0y sin Ω tm - ϕθy - sin Ω t0 - ϕθy (10.1.1.2.1-15)

+ uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx (tm - t0) -
sin Ω (tm - t0)

Ω

The result is identical to (10.1.1.1-12) at the m cycle times (as it should be since (10.1.1.2-4) is
an exact algorithm).

Let us now review the results of our findings. In Section 10.1.1.1 we noted that for time

greater than one vibration cycle, the tm - t0 term in (10.1.1.2.1-15) dominates the Φm Z axis

response, having a linear with time “coning rate” build-up with slope:

10-14 VIBRATION EFFECTS ANALYSIS

ΦCon = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx (10.1.1.2.1-16)

Comparing βm in Equation (10.1.1.2.1-14) and ΦCon in (10.1.1.2.1-16), we see that:

βm = 1 -
sin ΩTm

ΩTm

 ΦCon (10.1.1.2.1-17)

Thus, βm measures the 1 -
sin ΩTm

ΩTm

 portion of ΦCon. For large ΩTm (i.e., large coning rate

compared to the attitude update frequency 1 / Tm), the
sin ΩTm

ΩTm

 term in (10.1.1.2.1-17) goes to

zero and βm becomes equal to the full coning rate ΦCon. For small ΩTm, the
sin ΩTm

ΩTm

 term

goes to one, 1 -
sin ΩTm

ΩTm

 goes to zero, hence, βm goes to zero. Therefore, βm measures the

high frequency portion of the total coning rate (i.e., high frequency compared to the attitude
update frequency).

The total attitude is formed in the (10.1.1.2-4) Φm equation by the summing of Am from

(10.1.1.2.1-1) with βi∑
1

m

 from (10.1.1.2.1-13) and
1
2

 Ai-1 × αi∑
1

m

 from (10.1.1.2.1-8). The

coning contribution to Φm is manifested in the ΦCon build-up rate of Equation (10.1.1.2.1-16).
From (10.1.1.2.1-1) we see that the Am term in (10.1.1.2-4) has no contribution to the

(10.1.1.2.1-16) coning rate which is about uz. The contribution of βi∑
1

m

 to Φm coning rate is

βm in (10.1.1.2.1-17) which, as discussed previously, measures the 1 -
sin ΩTm

ΩTm

 high

frequency portion of ΦCon. From (10.1.1.2.1-8) we see that the
sin ΩTm

ΩTm

 portion of ΦCon (i.e.,

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-15

the portion not measured by βm) is contained in the
1
2

 Ai-1 × αi∑
1

m

 term. Thus
1
2

 Ai-1 × αi∑
1

m

in (10.1.1.2-4) measures the low frequency portion of ΦCon.

A review of Section 7.1.1.1 reveals that βm in (10.1.1.2-4) is the identical coning term

measured by the high speed part of the two-speed attitude update algorithm (see Equations
(7.1.1.1-12) - (7.1.1.1-13)). The low speed (m cycle) part of the attitude update algorithm

measures the remaining Am +
1
2

 Ai-1 × αi∑
1

m

 term in (10.1.1.2-4). Thus, from (10.1.1.2.1-17),

βm for the high speed algorithm measures 1 -
sin ΩTm

ΩTm

 of the total coning rate, while the

remaining
sin ΩTm

ΩTm

 coning rate portion is measured by the low speed part of the two-speed

algorithm.

Equation (10.1.1.2.1-17) is based on an analytical integration for βm in (10.1.1.2-4). In this

sense, (10.1.1.2.1-17) can be considered as the solution for the “exact” coning algorithm for
which exact denotes an infinitely fast computer capable of executing the continuous analytical
integration operation. The low speed portion of the two-speed attitude updating algorithm was
derived in Section 7.1.1.1 as an exact solution (assuming an exact input from the high speed

portion). Thus, Am +
1
2

 Ai-1 × αi∑
1

m

 in (10.1.1.2-4) represents the low speed portion of both

the exact version and the attitude updating algorithm version of Section 7.1.1.1 used in the INS
computer.

10.1.1.2.2 INS Attitude Algorithm Response And Error

In the last section we analyzed the response of an exact attitude computation algorithm to
hypothesized sinusoidal vibrations to discriminate between the total attitude solution and the

portion of the attitude solution contributed by the exact βm coning algorithm. We showed that

under angular vibrations of identical frequency around the B Frame X and Y axes, the overall

attitude rotated around the B Frame Z axis at a constant total “coning rate” ΦCon described by

Equation (10.1.1.2.1-16). In this section we will analyze the response of the attitude algorithm

10-16 VIBRATION EFFECTS ANALYSIS

implemented in the strapdown INS which we model after the Equation (10.1.1.2-4) general
form:

AAlgom = αAlgoi∑
 1

m

ΦAlgom = AAlgom +
1
2

 AAlgoi-1 × αAlgoi∑
1

m

 + βAlgoi∑
1

m
(10.1.1.2.2-1)

where

()Algo = Version of () in Equations (10.1.1.2-4) implemented in the strapdown INS
software.

Let us further assume the (10.1.1.2.2-1) INS software attitude algorithm is of the Section

7.1.1.1 two-speed type, with AAlgom +
1
2

 AAlgoi-1 × αAlgoi∑
1

m

 implemented as an exact low-

speed algorithm (as in Section 7.1.1.1), and the high speed portion implemented as in Equations
(7.1.1.1.1-17) - (7.1.1.1.1-18):

ΔαAlgol = dα
tl- 1

tl
Summation Of Integrated Angular Rate Output

Increments From Angular Rate Sensors

αAlgol = αAlgol-1 + ΔαAlgol (10.1.1.2.2-2)

αAlgom = αAlgol
 (tl = tm) αAlgol = 0 At t = tm-1.

__

ΔβAlgol =
1
2

 αAlgol-1 +
1
6

 ΔαAlgol-1 × ΔαAlgol

βAlgol = βAlgol-1 + ΔβAlgol (10.1.1.2.2-3)

βAlgom = βAlgol
 (tl = tm) βAlgol = 0 At t = tm-1.

If we now compare Equations (10.1.1.2.2-1) - (10.1.1.2.2-3) with the Equations (10.1.1.2-4)
“exact” algorithm equivalent, it should be apparent that the algorithms are identical except for

the β terms; i.e.:

ΔαAlgo = Δα αAlgo = α AAlgo = A (10.1.1.2.2-4)

Using (10.1.1.2.2-4), we subtract the (10.1.1.2.2-1) and (10.1.1.2-4) Φ total attitude expressions
to obtain an equation for the INS attitude algorithm error:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-17

δΦAlgom ≡ ΦAlgom - Φm = βAlgoi∑
1

m

 - βi∑
1

m

(10.1.1.2.2-5)

where

δΦAlgom = Total INS attitude algorithm error at completion of attitude computation
cycle m.

We also define:

δβAlgom ≡ βAlgom - βm (10.1.1.2.2-6)

where

δβAlgom = INS coning algorithm error for attitude computation cycle m.

Let us evaluate the individual terms in (10.1.1.2.2-5) - (10.1.1.2.2-6) under our hypothesized

(10.1.1-2) angular rate vibration exposure with Ωx = Ωy = Ω. First, we find for the true

integrated rate terms:

αl ≡ ωIB(t) dt
tl=(m-1)s

tl

 = ux θ0x sin Ω t l - ϕθx - sin Ω t l=(m-1)s - ϕθx

 + uy θ0y sin Ω t l - ϕθy - sin Ω t l=(m-1)s - ϕθy

Δαl ≡ ωIB(t) dt
tl- 1

tl

 = ux θ0x sin Ω t l - ϕθx - sin Ω t l-1 - ϕθx

 + uy θ0y sin Ω t l - ϕθy - sin Ω t l-1 - ϕθy

(10.1.1.2.2-7)

where

s = Number of l cycles in an m cycle.

We then find an analytical expression for βAlgom in (10.1.1.2.2-3) which we first rewrite

using (10.1.1.2.2-4):

βAlgom =
1
2

 α l-1 × Δα l∑
(m-1)s+1

ms

 +
1
12

 Δα l-1 × Δα l∑
(m-1)s+1

ms

(10.1.1.2.2-8)

Following the lengthy procedure that led to
1
2

 Ai-1 × αi∑
1

m

 in Equation (10.1.1.2.1-8) from

(10.1.1.2.1-1) - (10.1.1.2.1-2), Equations (10.1.1.2.2-7) can be combined to derive an analytical

10-18 VIBRATION EFFECTS ANALYSIS

expression for the
1
2

 α l-1 × Δα l∑
(m-1)s+1

ms

 term in (10.1.1.2.2-8). Al te rna t ive ly ,

1
2

 α l-1 × Δα l∑
(m-1)s+1

ms

 can be determined by inspection if we compare (10.1.1.2.2-7) with

Equations (10.1.1.2.1-1) - (10.1.1.2.1-2), and note that they are of identical form. This

observation allows us to quickly write
1
2

 α l-1 × Δα l∑
(m-1)s+1

ms

 from the
1
2

 Ai-1 × αi∑
1

m

 result by

translating the (10.1.1.2.1-8) terms:

Ai-1 → αl-1 αi → Δαl Tm → Tl tm → t l=ms t0 → t l=(m-1)s

tm - t0 → tl=ms - t l=(m-1)s = s Tl = Tm (i = 1 to m) → l = (m-1)s+1 to ms

Then we quickly find:

1
2

 αl-1 × Δαl∑
(m-1)s+1

ms

 = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 Tm

(10.1.1.2.2-9)

The
1

12
 Δαl-1 × Δαl∑

(m-1)s+1

ms

 term in (10.1.1.2.2-8) is unique to the particular Section

7.1.1.1.1 second order coning algorithm. A more general higher order form of (10.1.1.2.2-8)
for coning algorithms based on l cycle integrated angular rate measurements is:

Δα j ≡ dα
tj-1

tj

 Δαk ≡ dα
tk -1

tk

βAlgom =
1
2

 α l-1 × Δα l∑
(m-1)s+1

ms

 + Cj,k Δα j × Δα k∑
j, k

∑
l=(m-1)s+1

ms
(10.1.1.2.2-10)

where

j, k = High speed computer cycle indices at the l cycle rate that are displaced from the l
cycle by integers.

Cj,k = Coefficient for the j, k product.

For the Section 7.1.1.1.1 second order coning algorithm represented by (10.1.1.2.2-8), the
values for j, k and Cj,k are j = l-1, k = l and Cj,k = 1/12. Variations on (10.1.1.2.2-10) are also

possible (e.g., References 11 and 12) in which the j, k computer cycle rate is faster than the

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-19

l cycle rate by an integer multiple with the j, k summation performed once each l cycle. This

latter approach requires the angular rate sensor Δα summers to be sampled at the faster j, k
cycle rate. Returning to our original j, k definition (i.e., at the l cycle rate), let us now develop a
general expression for the summation of one of the j, k product terms in (10.1.1.2.2-10).

From the (10.1.1.2.2-10) definitions, we first write as in (10.1.1.2.2-7):

Δαj = ux θ0x sin Ω tj - ϕθx - sin Ω tj-1 - ϕθx

+ uy θ0y sin Ω tj - ϕθy - sin Ω tj-1 - ϕθy
(10.1.1.2.2-11)

Δαk = ux θ0x sin Ω tk - ϕθx - sin Ω tk-1 - ϕθx

+ uy θ0y sin Ω tk - ϕθy - sin Ω tk-1 - ϕθy

Combining Equations (10.1.1.2.2-11) into the (10.1.1.2.2-10) inner summation cross-product
gives:

Δαj × Δαk = (10.1.1.2.2-12)

uz θ0x θ0y sin Ω tj - ϕθx - sin Ω tj-1 - ϕθx sin Ω tk - ϕθy - sin Ω tk-1 - ϕθy

- sin Ω tj - ϕθy - sin Ω tj-1 - ϕθy sin Ω tk - ϕθx - sin Ω tk-1 - ϕθx

or upon expansion:

Δαj × Δαk = uz θ0x θ0y sin Ω tj - ϕθx sin Ω tk - ϕθy - sin Ω tj - ϕθx sin Ω tk-1 - ϕθy

- sin Ω tj-1 - ϕθx sin Ω tk - ϕθy + sin Ω tj-1 - ϕθx sin Ω tk-1 - ϕθy

- sin Ω tj - ϕθy sin Ω tk - ϕθx + sin Ω tj - ϕθy sin Ω tk-1 - ϕθx (10.1.1.2.2-13)

+ sin Ω tj-1 - ϕθy sin Ω tk - ϕθx - sin Ω tj-1 - ϕθy sin Ω tk-1 - ϕθx

= uz θ0x θ0y
1
2

 cos Ω tk - t j - ϕθy - ϕθx -
1
2

 cos Ω tk + tj - ϕθy + ϕθx

-
1
2

 cos Ω tk-1 - tj - ϕθy - ϕθx +
1
2

 cos Ω tk-1 + tj - ϕθy + ϕθx

-
1
2

 cos Ω tk - t j-1 - ϕθy - ϕθx +
1
2

 cos Ω tk + tj-1 - ϕθy + ϕθx

(Continued)

10-20 VIBRATION EFFECTS ANALYSIS

+
1
2

 cos Ω tk-1 - tj-1 - ϕθy - ϕθx -
1
2

 cos Ω tk-1 + tj-1 - ϕθy + ϕθx

-
1
2

 cos Ω tk - t j + ϕθy - ϕθx +
1
2

 cos Ω tk + tj - ϕθy + ϕθx

+
1
2

 cos Ω tk-1 - tj + ϕθy - ϕθx -
1
2

 cos Ω tk-1 + tj - ϕθy + ϕθx
(10.1.1.2.2-13)

(Continued)

+
1
2

 cos Ω tk - t j-1 + ϕθy - ϕθx -
1
2

 cos Ω tk + tj-1 - ϕθy + ϕθx

-
1
2

 cos Ω tk-1 - tj-1 + ϕθy - ϕθx +
1
2

 cos Ω tk-1 + tj-1 - ϕθy + ϕθx

= uz θ0x θ0y
1
2

 cos Ω tk - t j - ϕθy - ϕθx -
1
2

 cos Ω tk - t j + ϕθy - ϕθx

-
1
2

 cos Ω tk-1 - tj - ϕθy - ϕθx +
1
2

 cos Ω tk-1 - tj + ϕθy - ϕθx

-
1
2

 cos Ω tk - t j-1 - ϕθy - ϕθx +
1
2

 cos Ω tk - t j-1 + ϕθy - ϕθx

+
1
2

 cos Ω tk-1 - tj-1 - ϕθy - ϕθx -
1
2

 cos Ω tk-1 - tj-1 + ϕθy - ϕθx

= uz θ0x θ0y sin ϕθy - ϕθx sin Ω tk - t j - sin Ω tk-1 - tj - sin Ω tk - t j-1 + sin Ω tk-1 - tj-1

The Equation (10.1.1.2.2-13) result can be simplified if we introduce:

pjk ≡
tk - t j

Tl
(10.1.1.2.2-14)

where
pjk = Integer representing the number of l cycles from tj to tk.

for which

tk - t j = pjk Tl tk-1 - tj = pjk - 1 Tl

tk - t j-1 = pjk + 1 Tl tk-1 - tj-1 = pjk Tl
(10.1.1.2.2-15)

Using (10.1.1.2.2-15), the Equation (10.1.1.2.2-13) result reduces to:

Δαj × Δαk = uz θ0x θ0y sin ϕθy - ϕθx sin pjk Ω Tl - sin pjk - 1 Ω Tl

- sin pjk + 1 Ω Tl + sin pjk Ω Tl (10.1.1.2.2-16)

= uz θ0x θ0y sin ϕθy - ϕθx 2 sin pjk Ω Tl - sin pjk - 1 Ω Tl - sin pjk + 1 Ω Tl

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-21

Equation (10.1.1.2.2-16) expresses the well known curious result (among coning algorithm

designers) that for the Equation (10.1.1-2) angular rate with Ωx = Ωy = Ω, the cross-product

between integrated angular rate increments separated by any integer number of angular rate
integration cycles, is constant. This then allows the (10.1.1.2.2-10) summing operation over l to
be easily evaluated as:

 Δαj × Δαk∑
l=(m-1)s+1

ms

 =

(10.1.1.2.2-17)

uz θ0x θ0y sin ϕθy - ϕθx 2 sin pjk Ω Tl - sin pjk - 1 Ω Tl - sin pjk + 1 Ω Tl s

The s term in (10.1.1.2.2-17) is the number of l cycles in an m cycle, hence:

s =
Tm

Tl
(10.1.1.2.2-18)

with which (10.1.1.2.2-17) assumes the form:

 Δαj × Δαk∑
l=(m-1)s+1

ms

 = (10.1.1.2.2-19)

uz Ω θ0x θ0y sin ϕθy - ϕθx 2
sin pjk Ω Tl

Ω Tl

 -
sin pjk - 1 Ω Tl

Ω Tl

 -
sin pjk + 1 Ω Tl

Ω Tl

 Tm

For the particular Section 7.1.1.1.1 coning algorithm represented by (10.1.1.2.2-8), pjk = 1
and Cj,k = 1/12 so:

1

12
 Δαl-1 × Δαl∑

l=(m-1)s+1

ms

 =

uz
1

12
 Ω θ0x θ0y sin ϕθy - ϕθx 2

sin Ω Tl

Ω Tl

 -
sin 2 Ω Tl

Ω Tl

 Tm

(10.1.1.2.2-20)

The bracketed term in (10.1.1.2.2-20) simplifies as follows:

2
sin Ω Tl

Ω Tl

 -
sin 2 Ω Tl

Ω Tl

 = 2
sin Ω Tl

Ω Tl

 -
2 sin Ω Tl cos Ω Tl

Ω Tl

 = 2
sin Ω Tl

Ω Tl

 1 - cos Ω Tl

(10.1.1.2.2-21)

hence,

10-22 VIBRATION EFFECTS ANALYSIS

1

12
 Δαl-1 × Δαl∑

l=(m-1)s+1

ms

 =

uz
1
6

 Ω θ0x θ0y sin ϕθy - ϕθx
sin Ω Tl

Ω Tl

 1 - cos Ω Tl Tm

(10.1.1.2.2-22)

Combining (10.1.1.2.2-9) with (10.1.1.2.2-22) in (10.1.1.2.2-8) and factoring 1/2 to the left,

we obtain for the INS software coning algorithm solution βAlgom:

βAlgom = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

+
1
3

sin Ω Tl

Ω Tl

 1 - cos Ω Tl Tm (10.1.1.2.2-23)

= uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 Tm

Since βAlgom is constant in (10.1.1.2.2-23) and independent of m, its sum in (10.1.1.2.2-5) is

easily evaluated as m times βAlgom. We identify the product of m with Tm as tm - t0 and have:

βAlgoi∑
1

m

 = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 (tm - t0) (10.1.1.2.2-24)

Finally, we substitute (10.1.1.2.2-24) and βi∑
1

m

 from (10.1.1.2.1-13) in (10.1.1.2.2-5) to

obtain for the total INS attitude algorithm attitude error at computer cycle m:

δΦAlgom = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1

 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 tm - to

(10.1.1.2.2-25)

We also substitute (10.1.1.2.2-23) for βAlgom with (10.1.1.2.1-12) for βm into (10.1.1.2.2-6)

which gives the INS coning algorithm error for computer cycle m:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-23

δβAlgom = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1

 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 Tm

(10.1.1.2.2-26)

Thus, we see from (10.1.1.2.2-25) and (10.1.1.2.2-26) that the errors in the INS total attitude
solution and coning algorithm are proportional to the associated evaluation time interval, with
the proportionality coefficient independent of time. As in Section 10.1.1.1, Equation
(10.1.1.1-13) and Section 10.1.1.2.1, Equation (10.1.1.2.1-14), it is meaningful to identify the
coefficients in (10.1.1.2.2-23), (10.1.1.2.2-25) and (10.1.1.2.2-26) as the coning algorithm rate,
the attitude algorithm rate error and the coning algorithm rate error given by:

βAlgom = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1

 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

(10.1.1.2.2-27)

δΦAlgom = δβAlgom =

 uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1
(10.1.1.2.2-28)

where

βAlgom = Constant rate of change in the INS total attitude algorithm solution ΦAlgom

generated by the summing of βAlgo i’s in Equation (10.1.1.2.2-1).

δΦAlgom, δβAlgom = Error build-up rate associated with the INS software total attitude
algorithm and the coning contribution to the total attitude
algorithm.

10.1.2 VELOCITY RESPONSE UNDER COMBINED ANGULAR
AND LINEAR VIBRATION

To simplify the analysis to follow, we will restrict the discussion to velocity generated by
angular vibration around B Frame axis X coupled with linear vibration along B Frame axis Y.
The results can then be easily extended by designated axis permutation to account for similar
effect under Y/Z, Z/X and Y/X, Z/Y, X/Z angular/linear vibrations.

10-24 VIBRATION EFFECTS ANALYSIS

We define the sinusoidal angular/linear vibration profile being analyzed by the following
general forms:

θ(t) = ux θ0x sin Ωx t - ϕθx (10.1.2-1)

ωIB(t) = ux θ0x Ωx cos Ωx t - ϕθx (10.1.2-2)

aSF(t) = uy aSF0y sin Ωy t - ϕaSFy (10.1.2-3)

where

ωIB(t) = B Frame angular rate vector relative to inertial space that would be measured
by the strapdown angular rate sensors.

θ(t) = B Frame vibration “angle” vector which we define as the integrated B Frame

angular rate. Note that ωIB(t) is the derivative of θ(t) . Since we will be
addressing angular vibration effects that are by nature, small in amplitude, the

integral of generalized Equation (3.3.5-14) shows that θ(t) is approximately the
rotation vector associated with the vibration motion, hence, represents an actual
physical angle vector.

aSF(t) = B Frame specific force acceleration vector that would be measured by the
strapdown accelerometers.

ux, uy = Unit vectors along the B Frame X, Y axes.

Ωx, Ωy = Frequency of the sinusoidal angular/linear vibrations around B Frame axis X
and along B Frame axis Y.

θ0x = Sinusoidal vibration “angle” vector amplitude around B Frame axis X.

aSF0y = Sinusoidal vibration amplitude of the B Frame Y axis specific force
acceleration vibration.

ϕθx, ϕaSFy = Phase angles associated with the B Frame X, Y axis angular/linear

vibrations.

The velocity response analyses to follow almost directly parallel the analyses of Section
10.1.1 for attitude response under vibration. To make the parallels clearer, it is advantageous to
use the following equivalent form of (10.1.2-3) for the acceleration vibration:

aSF(t) = uy aSF0y cos Ωy t - ϕaSFy -
π
2

(10.1.2-4)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-25

10.1.2.1 VELOCITY MOTION CHARACTERISTICS

Let us analyze the effect of Equation (10.1.2-2) angular rate and Equation (10.1.2-4) linear
acceleration on velocity motion at time t relative to some arbitrary time t0. To do this, it is
convenient to define velocity as the integral of specific force in a non-rotating coordinate frame.
The non-rotating frame we select is the B Frame at time t0. To simplify the analysis, we
recognize that attitude motion produced by angular vibration is, by nature, small in amplitude,
hence, we can use Equation (7.2.2.2-5) - (7.2.2.2-6) with (7.2.2.2-21) as a model to write an
approximate equation for the velocity rate in the time t0 oriented B Frame:

vSF(t) = aSF(t) +
d
dt

1
2

 A(t) × V(t) +
1
2

 A(t) × aSF(t) + V(t) × ωIB(t) (10.1.2.1-1)

with

A(t) ≡ ωIB(τ) dτ
t0

t

V(t) ≡ aSF(τ) dτ
t0

t

(10.1.2.1-2)

where

t0 = Initial time for B Frame attitude reference and velocity definition.

vSF(t) = Velocity at time t in the time t0 oriented B Frame due to (10.1.2-2) and
(10.1.2-4) angular/linear vibration since time t0.

A(t), V(t) = Integrated B Frame angular rate and specific force acceleration since time
t0.

The integral of (10.1.2.1-1) from time t0 with the (10.1.2.1-2) definitions, provides an
expression for the velocity in the t0 B Frame for analytical development:

vSF(t) = V(t) +
1
2

 A(t) × V(t) +
1
2

 A(τ) × aSF(τ) + V(τ) × ωIB(τ) dτ
t0

t

(10.1.2.1-3)

We now substitute Equations (10.1.2-2) and (10.1.2-4) for the sinusoidal vibration
components into Equation (10.1.2.1-3) with (10.1.2.1-2) and expand. For the (10.1.2.1-2)
terms we find:

A(t) = ux θ0x sin Ωx t - ϕθx - sin Ωx t0 - ϕθx

V(t) = uy aSF0y
1

Ωy

 sin Ωy t - ϕaSFy -
π
2

 - sin Ωy t0 - ϕaSFy -
π
2

(10.1.2.1-4)

With (10.1.2.1-4), the
1
2

 A(t) × V(t) term in (10.1.2.1-3) is:

10-26 VIBRATION EFFECTS ANALYSIS

1
2

 A(t) × V(t) = uz
1
2

 θ0x aSF0y
1

Ωy

 sin Ωx t - ϕθx

 - sin Ωx t0 - ϕθx cos Ωy t0 - ϕaSFy - cos Ωy t - ϕaSFy

(10.1.2.1-5)

With (10.1.2.1-4), (10.1.2-2) and (10.1.2-4), the A(t) × aSF(t) + V(t) × ωIB(t) term in the

(10.1.2.1-3) integrand is:

A(t) × aSF(t) + V(t) × ωIB(t) =

uz θ0x aSF0y sin Ωx t - ϕθx - sin Ωx t0 - ϕθx cos Ωy t - ϕaSFy -
π
2

-
1

Ωy

 sin Ωy t - ϕaSFy -
π
2

 - sin Ωy t0 - ϕaSFy -
π
2

 Ωx cos Ωx t - ϕθx (10.1.2.1-6)

= uz θ0x aSF0y
1

Ωy

 sin Ωx t - ϕθx - sin Ωx t0 - ϕθx Ωy cos Ωy t - ϕaSFy -
π
2

- sin Ωy t - ϕaSFy -
π
2

 - sin Ωy t0 - ϕaSFy -
π
2

 Ωx cos Ωx t - ϕθx

Comparing Equation (10.1.2.1-6) with (10.1.1.1-5), we see that they are identical in form;

(10.1.1.1-5) can be converted to (10.1.2.1-6) by substituting θ0y → aSF0y
1

Ωy

 and

ϕθy → ϕaSFy +
π
2

. This same substitution can then be used in (10.1.1.1-7) with (10.1.1.1-8)

(both derived from (10.1.1.1-5)) to quickly determine an analytical expression for the integral of
(10.1.2.1-6):

1
2

 A(τ) × aSF(τ) + V(τ) × ωIB(τ) dτ
t0

t

 = (10.1.2.1-7)

uz
1
2

 θ0x aSF0y
1

Ωy

 sin
1
2

 Ωy - Ωx t + t0 - ϕaSFy - ϕθx -
π
2

 sin
1
2

 Ωy + Ωx t - t0

- sin
1
2

 Ωy + Ωx t + t0 - ϕaSFy + ϕθx -
π
2

 sin
1
2

 Ωy - Ωx t - t0

(Continued)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-27

-
Ωy - Ωx

2 Ωy + Ωx

 cos Ωy + Ωx t - ϕaSFy + ϕθx -
π
2

 - cos Ωy + Ωx t0 - ϕaSFy + ϕθx -
π
2

+
Ωy + Ωx

2 Ωy - Ωx

 cos Ωy - Ωx t - ϕaSFy - ϕθx -
π
2

 - cos Ωy - Ωx t0 - ϕaSFy - ϕθx -
π
2

(10.1.2.1-7)
(Continued)

or, equivalently:

1
2

 A(τ) × aSF(τ) + V(τ) × ωIB(τ) dτ
t0

t

 =

uz
1
2

 θ0x aSF0y
1

Ωy

 - cos
1
2

 Ωy - Ωx t + t0 - ϕaSFy - ϕθx sin
1
2

 Ωy + Ωx t - t0

+ cos
1
2

 Ωy + Ωx t + t0 - ϕaSFy + ϕθx sin
1
2

 Ωy - Ωx t - t0 (10.1.2.1-8)

-
Ωy - Ωx

2 Ωy + Ωx

 sin Ωy + Ωx t - ϕaSFy + ϕθx - sin Ωy + Ωx t0 - ϕaSFy + ϕθx

+
Ωy + Ωx

2 Ωy - Ωx

 sin Ωy - Ωx t - ϕaSFy - ϕθx - sin Ωy - Ωx t0 - ϕaSFy - ϕθx

Finally, we substitute (10.1.2.1-8), (10.1.2.1-5) and (10.1.2.1-4) in (10.1.2.1-3) to obtain for
the vibration induced velocity vSF(t):

vSF(t) = uy aSF0y
1

Ωy

 cos Ωy t0 - ϕaSFy - cos Ωy t - ϕaSFy

+ uz
1
2

 θ0x aSF0y
1

Ωy

 sin Ωx t - ϕθx - sin Ωx t0 - ϕθx cos Ωy t0 - ϕaSFy - cos Ωy t - ϕaSFy

- cos
1
2

 Ωy - Ωx t + t0 - ϕaSFy - ϕθx sin
1
2

 Ωy + Ωx t - t0

+ cos
1
2

 Ωy + Ωx t + t0 - ϕaSFy + ϕθx sin
1
2

 Ωy - Ωx t - t0 (10.1.2.1-9)

-
Ωy - Ωx

2 Ωy + Ωx

 sin Ωy + Ωx t - ϕaSFy + ϕθx - sin Ωy + Ωx t0 - ϕaSFy + ϕθx

+
Ωy + Ωx

2 Ωy - Ωx

 sin Ωy - Ωx t - ϕaSFy - ϕθx - sin Ωy - Ωx t0 - ϕaSFy - ϕθx

10-28 VIBRATION EFFECTS ANALYSIS

Equation (10.1.2.1-9) shows that for the hypothesized Equation (10.1.2-2) and (10.1.2-3)
sinusoidal X/Y angular-rate/linear-acceleration vibration profile, the velocity response is also

sinusoidal at the acceleration frequency Ωy along B Frame axis Y. Along B Frame axis Z,

however, the response is a constant plus sinusoids at the angular rate and acceleration

frequencies Ωx and Ωy (from expansion of the leading square bracketed product term), plus

sinusoids at the sum and difference frequencies Ωy + Ωx , Ωy - Ωx (as shown explicitly in

(10.1.2.1-9) but also including a term from expansion of the leading square bracketed product).
Hence, the velocity response has no net build-up, provided that the frequency difference

Ωy - Ωx is non-zero (i.e., Ωx ≠ Ωy). For the case when Ωx approaches Ωy, the frequency

difference sine functions become very low in frequency, approaching a constant, and the

associated multiplication term
Ωy + Ωx

2 Ωy - Ωx

 becomes large. In the limit, when Ωx and Ωy are

equal, the product of
Ωy + Ωx

2 Ωy - Ωx

 with the frequency difference sines produces a linearly

increasing value for the Z component of vSF(t) as the following analysis shows.

For the case when Ωx approaches Ωy and in the limit, equals Ωy, Equation (10.1.2.1-9)
becomes:

For Ωx → Ωy = Ω:

vSF(t) = uy aSF0y
1

Ω
 cos Ω t0 - ϕaSFy - cos Ω t - ϕaSFy

+ uz
1
2

 θ0x aSF0y
1

Ω
 sin Ω t - ϕθx - sin Ω t0 - ϕθx cos Ω t0 - ϕaSFy

(10.1.2.1-10)

- cos Ω t - ϕaSFy - cos ϕaSFy - ϕθx sin Ω (t - t0)

+
Ω

Ωy - Ωx

 sin Ωy - Ωx t - ϕaSFy - ϕθx - sin Ωy - Ωx t0 - ϕaSFy - ϕθx

The sine terms in Equation (10.1.2.1-10) can be reduced further as Ωx → Ωy = Ω:

sin Ωy - Ωx t - ϕaSFy - ϕθx - sin Ωy - Ωx t0 - ϕaSFy - ϕθx

= 2 cos
1
2

 Ωy - Ωx t + t0 - ϕaSFy - ϕθx sin
1
2

 Ωy - Ωx t - t0 (10.1.2.1-11)

≈ cos ϕaSFy - ϕθx Ωy - Ωx t - t0

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-29

Thus, with (10.1.2.1-11) in (10.1.2.1-10), when Ωx and Ωy are equal, the velocity history is as
follows:

vSF(t) = uy aSF0y
1

Ω
 cos Ω t0 - ϕaSFy - cos Ω t - ϕaSFy

+ uz
1
2

 θ0x aSF0y
1

Ω
 sin Ω t - ϕθx - sin Ω t0 - ϕθx cos Ω t0 - ϕaSFy (10.1.2.1-12)

 - cos Ω t - ϕaSFy + cos ϕaSFy - ϕθx (t - t0) -
sin Ω (t - t0)

Ω

Comparing Equation (10.1.2.1-12) with general Equation (10.1.2.1-9), we see that the Y axis
velocity responses are sinusoidal and identical, the Z axis response has sinusoidal plus constant

components, but that for Ωx → Ωy = Ω in (10.1.2.1-12), the Z axis response contains a
constant linear build-up with time (t - t0) function. The (10.1.2.1-12) Z axis linear with time

build-up term has been designated as the “sculling” response which dominates the Z axis

motion after one vibration cycle (i.e., t - t0 > 2 π / Ω). The term “sculling” is taken from the

method used to propel a boat in the forward direction using a single oar positioned aft by the
mariner and operated using an undulating motion. The undulating motion imparted to the oar
generates an oscillating angular rotation of the oar shaft around the vertical while imparting
thrust to the oar blade across the direction of travel when the oar shaft angle orientation is at
left/right angle peaks. Due to the angle of the oar when the blade thrust is applied, a component
of thrust is directed in the forward direction for both the right and left blade strokes, providing a
net acceleration of the boat in the forward direction. For the vibration motion of Equations
(10.1.2-1) and (10.1.2-3), the identical effect is created when the X axis angular oscillation is at
the same frequency and in phase with the Y axis acceleration, creating a net acceleration along
the Z axis. The linear with time coefficient in Equation (10.1.2.1-12) has been designated as the
“sculling rate” and is given by:

vSFScul = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx (10.1.2.1-13)

where

vSFScul = Sculling rate vector for combined B Frame X axis angular vibration and Y
axis acceleration vibration at the same frequency.

Note in Equation (10.1.2.1-13), that vSFScul is proportional to the cosine of the phase angle

difference between the Equations (10.1.2-1) and (10.1.2-3) X axis angular vibration and Y axis
acceleration vibration components, with worst case sculling rate occurring when the angular and
linear acceleration oscillations are in phase. Note also that sculling rate increases as the product
of the angular and acceleration vibration amplitude products. Finally, we see from

10-30 VIBRATION EFFECTS ANALYSIS

(10.1.2.1-13) that for a given vibration angle and acceleration amplitude, the sculling rate is

independent of the angular/linear vibration frequency Ω (sometimes denoted as the “sculling
frequency”), so long as the angular/linear vibration frequencies are equal.

10.1.2.2 VELOCITY ALGORITHM RESPONSE

The software in a strapdown INS processes a digital integration algorithm to calculate
velocity. For consistency with Section 10.1.2.1, we will assume that the velocity integration
algorithm is a digital version of the continuous form Equations (10.1.2.1-2) and (10.1.2.1-3)
based on attitude in the form of a rotation vector. Thus, we assume the velocity algorithm is
derived from the following equivalent version of (10.1.2.1-2) and (10.1.2.1-3):

α(t) ≡ ωIB(τ) dτ
tm - 1

t

υ(t) ≡ aSF(τ) dτ
tm-1

t

αm = α(tm) υm = υ(tm)

Am = αi∑
 1

m

Vm = υi∑
 1

m

(10.1.2.2-1)

A (t) = Am-1 + α (t) V (t) = Vm-1 + υ (t)

vSFm = Vm +
1
2

 Am × Vm +
1
2

 A (t) × aSF(t) + V (t) × ωIB(t) dt
ti-1

ti

∑
i=1

m

where

m = Strapdown software attitude/velocity update algorithm cycle index. The m zero
cycle corresponds to time t0 in Equations (10.1.2.1-2) and (10.1.2.1-3).

i = Particular m cycle over the m cycle history.

α(t) = Integrated B Frame angular rate from the last m cycle time tm-1 to time t.

υ(t) = Integrated B Frame specific force from the last m cycle time tm-1 to time t.

αm, υm = Integrated B Frame angular rate and specific force from tm-1 to time tm.

vSFm = Velocity due to angular/linear vibration in the t0 B Frame at computer
cycle m.

The integral term in the vSFm expression can be expanded if we substitute for A(t), V(t) and

apply the αm, υm definition from (10.1.2.2-1):

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-31

1
2

 A(t) × aSF(t) + V(t) × ωIB(t) dt
ti-1

ti

 =
1
2

 Ai-1 + α(t) × aSF(t) + Vi-1 + υ(t) × ωIB(t) dt
ti-1

ti

 =
1
2

 Ai-1 × υi + Vi-1 × αi +
1
2

 α(t) × aSF(t) + υ(t) × ωIB(t) dt
ti-1

ti

 =
1
2

 Ai-1 × υi + Vi-1 × αi + ΔvSculi

(10.1.2.2-2)

with

ΔvSculi ≡
1
2

 α(t) × aSF(t) + υ(t) × ωIB(t) dt
ti-1

ti

(10.1.2.2-3)

where

ΔvSculi = Sculling contribution to integral in (10.1.2.2-1).

With (10.1.2.2-2) and (10.1.2.2-3), Equations (10.1.2.2-1) become:

α(t) = ωIB(τ) dτ
tm - 1

t

υ(t) = aSF(τ) dτ
tm-1

t

ΔvSculi ≡
1
2

 α(t) × aSF(t) + υ(t) × ωIB(t) dt
ti-1

ti

αm = α(tm) υm = υ(tm) (10.1.2.2-4)

Am = αi∑
 1

m

Vm = υi∑
 1

m

vSFm = Vm +
1
2

 Am × Vm +
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 + ΔvSculi∑
1

m

Equations (10.1.2.2-4) represent the equivalent digital forms of Equations (10.1.2.1-2) and

(10.1.2.1-3), generating the identical solution at the m cycle times. The α, υ, ΔvScul terms in
(10.1.2.2-4) should be recognized as the identical terms in Section 7.2.2.2 for strapdown
velocity algorithm development. The following subsections analyze the response of Equations

10-32 VIBRATION EFFECTS ANALYSIS

(10.1.2.2-4) under the hypothesized Section 10.1.2 sinusoidal angular/linear vibrations for the
exact implementation of (10.1.2.2-4) and for the approximate forms typified in the INS
software.

10.1.2.2.1 Exact Velocity Algorithm Response

The (10.1.2.2-4) algorithm is exact, hence, its overall response at the m cycle times to general
X, Y sinusoidal angular/linear vibration is identical to (10.1.2.1-9) which was derived from
(10.1.2.1-2) - (10.1.2.1-3). Similarly, the overall response for equal X, Y angular/linear
vibration frequencies is identical to the (10.1.2.1-12) - (10.1.2.1-13) results. It is instructive to
analyze the individual contributions in (10.1.2.2-4) to the overall result. For this discussion, we
will only address the case when the X, Y angular vibration frequencies are equal (i.e.,

Ωx = Ωy = Ω).

From (10.1.2.1-4) (the exact equivalent to the Equations (10.1.2.2-4) Am, Vm expressions at
tm), we can write for Am, Vm under the (10.1.2-2) and (10.1.2-4) vibration exposure with

Ωx = Ωy = Ω:

Am = ux θ0x sin Ω tm - ϕθx - sin Ω t0 - ϕθx

Vm = uy aSF0y
1

Ω
 sin Ω tm - ϕaSFy -

π
2

 - sin Ω t0 - ϕaSFy -
π
2

(10.1.2.2.1-1)

Using (10.1.2.2.1-1) we find:

1
2

 Am × Vm = uz
1
2

 θ0x aSF0y
1

Ω
 sin Ω tm - ϕθx

 - sin Ω t0 - ϕθx cos Ω t0 - ϕaSFy - cos Ω tm - ϕaSFy

(10.1.2.2.1-2)

From the definition for αm, υm in (10.1.2.2-4), we can also write for the (10.1.2-2) and

(10.1.2-4) vibration at Ωx = Ωy = Ω:

αm = ωIB(t) dt
tm-1

tm

 = ux θ0x sin Ω tm - ϕθx - sin Ω tm-1 - ϕθx (10.1.2.2.1-3)

υm = aSF(t) dt
tm-1

tm

 = uy aSF0y
1

Ω
 sin Ω tm - ϕaSFy -

π
2

 - sin Ω tm-1 - ϕaSFy -
π
2

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-33

The combination of (10.1.2.2.1-1) and (10.1.2.2.1-3) for m = i then yields an expression for the
cross-product term under the summation in the (10.1.2.2-4) vSFm equation:

Ai-1 × υi + Vi-1 × αi = uz θ0x aSF0y
1

Ω
 sin Ω ti-1 - ϕθx

- sin Ω t0 - ϕθx sin Ω ti - ϕaSFy -
π
2

 - sin Ω ti-1 - ϕaSFy -
π
2

(10.1.2.2.1-4)

- sin Ω ti-1 - ϕaSFy -
π
2

 - sin Ω t0 - ϕaSFy -
π
2

 sin Ω ti - ϕθx - sin Ω ti-1 - ϕθx

If we compare Equation (10.1.2.2.1-4) with (10.1.1.2.1-3) we see that they are identical in

form; (10.1.1.2.1-3) can be converted to (10.1.2.2.1-4) by substituting θ0y → aSF0y
1

Ω
 and

ϕθy → ϕaSFy +
π
2

. This same substitution can then be used in (10.1.1.2.1-8) (which was

derived from (10.1.1.2.1-3)) to quickly determine an analytical expression for the

1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 term in (10.1.2.2-4):

1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 =

uz
1
2

 θ0x aSF0y sin ϕaSFy +
π
2

 - ϕθx
sin Ω Tm

Ω Tm

 tm - t0 -
sin Ω tm - t0

Ω
(10.1.2.2.1-5)

= uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx
sin Ω Tm

Ω Tm

 tm - t0 -
sin Ω tm - t0

Ω

An analytical expression for the sculling term in vSFm Equation (10.1.2.2-4) can be easily

obtained by direct extension of Equation (10.1.2.1-12), the solution to (10.1.2.1-3) under

(10.1.2-2) and (10.1.2-4) vibration with Ωx = Ωy = Ω. On review of the (10.1.2.1-12)

derivation, it should be clear that the second part of the (10.1.2.1-12) Z component is the
integral term in (10.1.2.1-3), or with (10.1.2.1-2):

10-34 VIBRATION EFFECTS ANALYSIS

A(t) = ωIB(τ) dτ
t0

t

V(t) = aSF(τ) dτ
t0

t

1
2

 A(t) × aSF(t) + V(t) × ωIB(t) dt
t0

tm

 = (10.1.2.2.1-6)

uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx tm- t0 -
sin Ω (tm - t0)

Ω

For comparison, the calculations for ΔvSculm in Equations (10.1.2.2-4) are repeated below:

α(t) = ωIB(τ) dτ
tm-1

t

 υ(t) = aSF(τ) dτ
tm-1

t

ΔvSculm =
1
2

 α(t) × aSF(t) + υ(t) × ωIB(t) dt
tm-1

tm
(10.1.2.2.1-7)

Comparing Equations (10.1.2.2.1-6) and (10.1.2.2.1-7) we see that they are analytically
equivalent; (10.1.2.2.1-6) can be converted to (10.1.2.2.1-7) through the following substitutions:

A(t) → α(t) V(t) → υ(t) t0 → tm-1 tm - tm-1 = Tm (10.1.2.2.1-8)

for which the ΔvSculm analytical solution becomes:

ΔvSculm = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 -
sin ΩTm

ΩTm

 Tm (10.1.2.2.1-9)

Thus, ΔvSculm is constant and the ΔvSculi summation term in the (10.1.2.2-4) vSFm
 expression

is given by:

ΔvSculi∑
1

m

 = m ΔvSculm =
tm - t0

Tm
 ΔvSculm

 = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 -
sin ΩTm

ΩTm

 tm - t0

(10.1.2.2.1-10)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-35

Because ΔvSculm is constant, we can also define a vSFm velocity build-up rate contribution

associated with the ΔvSculi sculling summation term in (10.1.2.2-4) as the tm - t0 coefficient in

(10.1.2.2.1-10):

ΔvSculm = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 -
sin ΩTm

ΩTm

(10.1.2.2.1-11)

where

ΔvSculm = Constant rate of change in vSFm generated by the summing of ΔvSculi’s in
Equation (10.1.2.2-4).

As an exercise, we form vSFm in (10.1.2.2-4) by combining (10.1.2.2.1-10), (10.1.2.2.1-5),

(10.1.2.2.1-2) and the Vm expression in (10.1.2.2.1-1):

vSFm = uy aSF0y
1

Ω
 cos Ω t0 - ϕaSFy - cos Ω tm - ϕaSFy

+ uz
1
2

 θ0x aSF0y
1

Ω
 sin Ω tm - ϕθx - sin Ω t0 - ϕθx cos Ω t0 - ϕaSFy (10.1.2.2.1-12)

- cos Ω tm - ϕaSFy + cos ϕaSFy - ϕθx (tm - t0) -
sin Ω (tm - t0)

Ω

The result is identical to (10.1.2.1-12) at the m cycle times (as it should since (10.1.2.2-4) is an
exact algorithm).

Let us now review the results of our findings. In Section 10.1.2.1 we noted that for time
greater than one vibration cycle, the tm - t0 term in (10.1.2.2.1-12) dominates the vSFm Z axis

response, having a linear with time “sculling rate” build-up with slope:

vSFScul = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx (10.1.2.2.1-13)

Comparing ΔvSculm in Equation (10.1.2.2.1-11) and vSFScul in (10.1.2.2.1-13), we see that:

ΔvSculm = 1 -
sin ΩTm

ΩTm

 vSFScul (10.1.2.2.1-14)

10-36 VIBRATION EFFECTS ANALYSIS

Thus, ΔvSculm measures the 1 -
sin ΩTm

ΩTm

 portion of vSFScul. For large ΩTm (i.e., large

sculling rate compared to the attitude/velocity update frequency 1 / Tm), the
sin ΩTm

ΩTm

 term in

(10.1.2.2.1-14) goes to zero and ΔvSculm becomes equal to the full sculling rate vSFScul. For

small ΩTm, the
sin ΩTm

ΩTm

 term goes to one, 1 -
sin ΩTm

ΩTm

 goes to zero, hence, ΔvSculm goes to

zero. Therefore, ΔvSculm measures the high frequency portion of the total sculling rate (i.e.,

high frequency compared to the attitude/velocity update frequency).

The total velocity is formed in the (10.1.2.2-4) vSFm equation by the summing of Vm from

(10.1.2.2.1-1), ΔvSculi∑
1

m

 from (10.1.2.2.1-10),
1
2

 Am × Vm from (10.1.2.2.1-2) and

1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 from (10.1.2.2.1-5). The sculling contribution to vSFm is

manifested in the vSFScul build-up rate of Equation (10.1.2.2.1-13). From (10.1.2.2.1-1) we see

that Vm has no contribution to the sculling rate which is about uz. The contribution of

ΔvSculi∑
1

m

 to the vSFm sculling rate is ΔvSculm in (10.1.2.2.1-14) which, as discussed

previously, measures the 1 -
sin ΩTm

ΩTm

 high frequency portion of vSFScul. From (10.1.2.2.1-5)

we see that the
sin ΩTm

ΩTm

 portion of vSFScul (i.e., the portion not measured by ΔvSculm) is

contained i n t h e
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 term. Thus
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 in

(10.1.2.2-4) measures the low frequency portion of vSFScul.

A review of Section 7.2.2.2 reveals that ΔvSculm in (10.1.2.2-4) is the identical sculling term

measured by the high speed part of the two-speed velocity update algorithm (see Equations
(7.2.2.2-23) - (7.2.2.2-25)). The low speed (m cycle) part of the velocity update algorithm

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-37

measures the remaining Vm +
1
2

 Am × Vm +
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 term in (10.1.2.2-4).

Thus, from (10.1.2.2.1-14), ΔvSculm for the high speed algorithm measures 1 -
sin ΩTm

ΩTm

 of

the total sculling rate, while the remaining
sin ΩTm

ΩTm

 sculling rate portion is measured by the low

speed part of the two-speed algorithm.

Equation (10.1.2.2.1-14) is based on an analytical integration for ΔvSculm in (10.1.2.2-4). In

this sense, (10.1.2.2.1-14) can be considered as the solution for the “exact” sculling algorithm
for which exact denotes an infinitely fast computer capable of executing the continuous
analytical integration operation. The low speed portion of the two-speed velocity updating
algorithm was derived in Section 7.2.2.2 as an exact solution (assuming an exact input from

the high speed portion). Thus, Vm +
1
2

 Am × Vm +
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 in (10.1.2.2-4)

represents the low speed portion of both the exact version, and the Section 7.2.2.2 INS
computer velocity updating algorithm version.

10.1.2.2.2 INS Velocity Algorithm Response And Error

In the last section we analyzed the response of an exact velocity computation algorithm to
hypothesized sinusoidal vibrations to discriminate between the total velocity solution and the

portion of the velocity solution contributed by the exact ΔvSculm sculling algorithm. We

showed that under combined angular/linear vibrations of identical frequency around the B
Frame X axis and along the B Frame Y axis, the overall velocity developed an unbounded linear

increase with time along the B Frame Z axis at a constant total “sculling rate” vSFScul given by

Equation (10.1.2.2.1-13). In this section we will analyze the response of the velocity algorithm
implemented in the strapdown INS which we model after the Equation (10.1.2.2-4) general
form:

AAlgom = αAlgoi∑
 1

m

 VAlgom = υAlgoi∑
 1

m

vSF/Algom = VAlgom +
1
2

 AAlgom × VAlgom (10.1.2.2.2-1)

+
1
2

 AAlgo i-1 × υAlgo i + VAlgo i-1 × αAlgo i∑
1

m

 + ΔvScul/Algoi∑
1

m

10-38 VIBRATION EFFECTS ANALYSIS

where

()Algo = Version of () in Equations (10.1.2.2-4) implemented in the strapdown INS
software.

Let us further assume that the (10.1.2.2.2-1) INS software attitude algorithm is of the

Section 7.2.2.2 two-speed type, with VAlgom +
1
2

 AAlgom × VAlgom +
1
2

 AAlgoi-1 × υAlgoi +∑
1

m

VAlgoi-1 × αAlgoi implemented as an exact low-speed algorithm (as in Section 7.2.2.2), and the

high speed portion implemented as in Equations (7.2.2.2.2-13) - (7.2.2.2.2-15):

ΔαAlgol = dα
t l-1

t l
Summation Of Integrated Angular Rate Output

Increments From Angular Rate Sensors

αAlgol = αAlgol-1 + ΔαAlgol (10.1.2.2.2-2)

αAlgom = αAlgol
 (tl = tm) αAlgol = 0 At t = tm-1.

ΔυAlgol = dυ
t l-1

t l
Summation Of Integrated Specific Force

Output Increments From Accelerometers

υAlgol = υAlgol-1 + ΔυAlgol (10.1.2.2.2-3)

υAlgom = υAlgol
 (tl = tm) υAlgol = 0 At t = tm-1.

δvScul/Algol =
1
2

 αAlgol-1 +
1
6

 ΔαAlgol-1 × ΔυAlgol

+ υAlgol-1 +
1
6

 ΔυAlgol-1 × ΔαAlgol (10.1.2.2.2-4)

ΔvScul/Algol = ΔvScul/Algol-1 + δvScul/Algol

ΔvScul/Algom = ΔvScul/Algol
 (tl = tm) ΔvScul/Algol = 0 At t = tm-1.

If we compare Equations (10.1.2.2.2-1) - (10.1.2.2.2-4) with the Equations (10.1.2.2-4)
“exact” algorithm equivalent, it should be apparent that the algorithms are identical except for

the ΔvScul terms; i.e.:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-39

 ΔαAlgo = Δα αAlgo = α AAlgo = A

 ΔυAlgo = Δυ υAlgo = υ VAlgo = V
(10.1.2.2.2-5)

Using (10.1.2.2.2-5), we subtract the (10.1.2.2.2-1) and (10.1.2.2-4) vSF total velocity
expressions to obtain an equation for the INS velocity algorithm error:

δvSF/Algom ≡ vSF/Algom - vSFm = ΔvScul/Algoi∑
1

m

 - ΔvSculi∑
1

m

(10.1.2.2.2-6)

where

δvSF/Algom = Total INS velocity algorithm error at completion of velocity computation
cycle m.

We also define:

δΔvScul/Algom ≡ ΔvScul/Algom - ΔvSculm (10.1.2.2.2-7)

where

δΔvScul/Algom = INS sculling algorithm error for velocity computation cycle m.

Let us evaluate the individual terms in (10.1.2.2.2-6) - (10.1.2.2.2-7) under our hypothesized

(10.1.2-2) and (10.1.2-4) angular-rate/linear-acceleration vibration exposure with Ωx = Ωy = Ω.

First, we find for the true integrated rate and acceleration terms:

αl ≡ ωIB(t) dt
tl=(m-1)s

tl

 = ux θ0x sin Ω t l - ϕθx - sin Ω t l=(m-1)s - ϕθx

υl ≡ aSF(t) dt
tl=(m-1)s

tl

 = uy aSF0y
1

Ω
 sin Ω tl - ϕaSFy -

π
2

 - sin Ω tl=(m-1)s - ϕaSFy -
π
2

Δαl = ωIB(t) dt
tl- 1

tl

 = ux θ0x sin Ω t l - ϕθx - sin Ω t l-1 - ϕθx

(10.1.2.2.2-8)

Δυl ≡ aSF(t) dt
tl- 1

tl

 = uy aSF0y
1

Ω
 sin Ω tl - ϕaSFy -

π
2

 - sin Ω tl-1 - ϕaSFy -
π
2

where

s = Number of l cycles in an m cycle.

10-40 VIBRATION EFFECTS ANALYSIS

We then find an analytical expression for ΔvScul/Algom in (10.1.2.2.2-4) which we first

rewrite using (10.1.2.2.2-5):

ΔvScul/Algom =
1
2

 α l-1 × Δυ l + υ l-1 × Δα l∑
(m-1)s+1

ms

 +
1
12

 Δα l-1 × Δυ l + Δυ l-1 × Δα l∑
(m-1)s+1

ms
(10.1.2.2.2-9)

Following the procedure that led to
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 in Equation (10.1.2.2.1-5)

from (10.1.2.2.1-1) and (10.1.2.2.1-3), Equations (10.1.2.2.2-8) can be combined to derive an

analytical expression for the
1
2

 α l-1 × Δυ l + υ l-1 × Δα l∑
(m-1)s+1

ms

 term in (10.1.2.2.2-9).

Alternatively,
1
2

 α l-1 × Δυ l + υ l-1 × Δα l∑
(m-1)s+1

ms

 can be determined by inspection if we

compare (10.1.2.2.2-8) with Equations (10.1.2.2.1-1) and (10.1.2.2.1-3), and noting that they
are of identical form. This observation allows us to quickly write

1
2

 α l-1 × Δυ l + υ l-1 × Δα l∑
(m-1)s+1

ms

 from the
1
2

 Ai-1 × υi + Vi-1 × αi∑
1

m

 result if we

translate the (10.1.2.2.1-5) terms as:

Ai-1 → αl-1 αi → Δαl Vi-1 → υl-1 υi → Δυl Tm → Tl tm → t l=ms

t0 → tl = (m-1)s tm - t0 → tl = ms - tl = (m-1)s = s Tl = Tm

(i = 1 to m) → l = (m -1) s+1 to m s

Then we quickly find:

1
2

 αl-1 × Δυl + υl-1 × Δαl∑
(m-1)s+1

ms

 =

 uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 Tm

(10.1.2.2.2-10)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-41

The
1

12
 Δα l-1 × Δυ l + Δυ l-1 × Δα l∑

(m-1)s+1

ms

 term in (10.1.2.2.2-9) is unique to the

particular Section 7.2.2.2.2 second order sculling algorithm. A more general higher order form
of (10.1.2.2.2-9) for sculling algorithms based on l cycle integrated angular-rate/linear-
acceleration measurements is:

Δαj ≡ dα
tj-1

tj

 Δαk ≡ dα
tk-1

tk

Δυj ≡ dυ
tj-1

tj

 Δυk ≡ dυ
tk-1

tk

ΔvScul/Algom =
1
2

 α l-1 × Δυ l + υ l-1 × Δα l∑
(m-1)s+1

ms

 + Cj,k Δαj × Δυk + Δυj × Δαk∑
j, k

∑
l=(m-1)s+1

ms

(10.1.2.2.2-11)

where

j, k = High speed computer cycle indices at the l cycle rate that are displaced from the l
cycle by integers.

Cj,k = Coefficient for the j, k product.

For the Section 7.2.2.2.2 second order sculling algorithm represented by (10.1.2.2.2-9), the j, k,
and Cj,k values are j = l-1, k = l and Cj,k = 1/12. Variations on (10.1.2.2.2-11) are also possible

(e.g., Reference 13) in which the j, k computer cycle rate is faster than the l cycle rate by an
integer multiple with the j, k summation performed once each l cycle. This latter approach

requires the angular rate sensor and accelerometer Δα, Δυ summers to be sampled at the faster
j, k cycle rate. Returning to our original j, k definition (i.e., at the l cycle rate), let us now
develop a general expression for the summation of one of the j, k product terms in
(10.1.2.2.2-11).

From the (10.1.2.2.2-11) definitions, we first write as in (10.1.2.2.2-8):

10-42 VIBRATION EFFECTS ANALYSIS

Δαj = ux θ0x sin Ω tj - ϕθx - sin Ω tj-1 - ϕθx

Δυj = uy aSF0y
1

Ω
 sin Ω tj - ϕaSFy -

π
2

 - sin Ω tj-1 - ϕaSFy -
π
2

(10.1.2.2.2-12)

Δαk = ux θ0x sin Ω tk - ϕθx - sin Ω tk-1 - ϕθx

Δυk = uy aSF0y
1

Ω
 sin Ω tk - ϕaSFy -

π
2

 - sin Ω tk-1 - ϕaSFy -
π
2

Combining Equations (10.1.2.2.2-12) into the (10.1.2.2.2-11) inner summation cross-product
gives:

Δαj × Δυk + Δυj × Δαk = uz θ0x aSF0y
1

Ω
 sin Ω tj - ϕθx

- sin Ω tj-1 - ϕθx sin Ω tk - ϕaSFy -
π
2

 - sin Ω tk-1 - ϕaSFy -
π
2

(10.1.2.2.2-13)

- sin Ω tj - ϕaSFy -
π
2

 - sin Ω tj-1 - ϕaSFy -
π
2

 sin Ω tk - ϕθx - sin Ω tk-1 - ϕθx

If we compare Equation (10.1.2.2.2-13) with the equivalent coning algorithm term

Δαj × Δαk in Equation (10.1.1.2.2-12), we see that they are identical in form; (10.1.1.2.2-12)

can be converted to (10.1.2.2.2-13) by substituting θ0y → aSF0y
1

Ω
 and ϕθy → ϕaSFy +

π
2

.

Then Equation (10.1.1.2.2-16) for Δαj × Δαk derived from (10.1.1.2.2-12) can be converted to

the equivalent result needed for the (10.1.2.2.2-11) sculling algorithm using the same previous
substitutions. Thus:

Δαj × Δυk + Δυj × Δαk = uz θ0x aSF0y
1

Ω
 sin ϕaSFy +

π
2

 - ϕθx 2 sin pjk Ω Tl

- sin pjk - 1 Ω Tl - sin pjk + 1 Ω Tl (10.1.2.2.2-14)

= uz θ0x aSF0y
1

Ω
 cos ϕaSFy - ϕθx 2 sin pjk Ω Tl - sin pjk - 1 Ω Tl - sin pjk + 1 Ω Tl

where
pjk = Integer representing the number of l cycles from cycle j at tj to cycle k at tk.

Equation (10.1.2.2.2-14) expresses the interesting result that for the Equation (10.1.2-2) and

(10.1.2-3) angular-rate/linear-acceleration with Ωx = Ωy = Ω, the sum of cross-products

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-43

between integrated angular rate and linear acceleration increments separated by any integer
number of sensor increment integration cycles, is constant.

Carrying the coning to sculling algorithm conversion process a step further, the Equation
(10.1.1.2.2-19) summation term for the coning algorithm (which was derived from
(10.1.1.2.2-12)) can be converted to the equivalent result for the sculling algorithm using the

θ0y → aSF0y
1

Ω
 and ϕθy → ϕaSFy +

π
2

 substitutions. Thus:

Δαj × Δυk + Δυj × Δαk∑
l=(m-1)s+1

ms

 = uz θ0x aSF0y sin ϕaSFy +
π
2

 - ϕθx 2
sin pjk Ω Tl

Ω Tl

-
sin pjk - 1 Ω Tl

Ω Tl

 -
sin pjk + 1 Ω Tl

Ω Tl

 Tm (10.1.2.2.2-15)

= uz θ0x aSF0y cos ϕaSFy - ϕθx 2
sin pjk Ω Tl

Ω Tl

 -
sin pjk - 1 Ω Tl

Ω Tl

 -
sin pjk + 1 Ω Tl

Ω Tl

 Tm

For the particular Section 7.2.2.2.2 sculling algorithm represented by (10.1.2.2.2-9), pjk = 1

and Cj,k = 1/12 so with (10.1.2.2.2-15):

1
12

 Δαl-1 × Δυl + Δυl-1 × Δαl∑
l=(m-1)s+1

ms

= uz
1

12
 θ0x aSF0y cos ϕaSFy - ϕθx 2

sin Ω Tl

Ω Tl

 -
sin 2 Ω Tl

Ω Tl

 Tm (10.1.2.2.2-16)

= uz
1
6

 θ0x aSF0y cos ϕaSFy - ϕθx
sin Ω Tl

Ω Tl

 1 - cos Ω Tl Tm

Then, combining (10.1.2.2.2-10) with (10.1.2.2.2-16) in (10.1.2.2.2-9) and factoring 1/2 to the

left, we obtain for the INS software sculling algorithm solution ΔvScul/Algom:

ΔvScul/Algom = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

+
1
3

sin Ω Tl

Ω Tl

 1 - cos Ω Tl Tm (10.1.2.2.2-17)

= uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 Tm

10-44 VIBRATION EFFECTS ANALYSIS

Since ΔvScul/Algom is constant in (10.1.2.2.2-17) and independent of m, its sum in

(10.1.2.2.2-6) is easily evaluated as m times ΔvScul/Algom. Identifying the product of m with

Tm as tm - t0, we then have:

ΔvScul/Algoi∑
1

m

 = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1

 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 (tm - t0)

(10.1.2.2.2-18)

Finally, we substitute (10.1.2.2.2-18) and ΔvSculi∑
1

m

 from (10.1.2.2.1-10) in (10.1.2.2.2-6)

to obtain for the total INS algorithm velocity error at computer cycle m:

δvSF/Algom = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1

- cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 (tm - t0)

(10.1.2.2.2-19)

We also substitute (10.1.2.2.2-17) for ΔvScul/Algom with (10.1.2.2.1-9) for ΔvSculm into

(10.1.2.2.2-7) which gives the INS sculling algorithm error for computer cycle m:

δΔvScul/Algom = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1

 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 Tm

(10.1.2.2.2-20)

Thus we see from (10.1.2.2.2-19) and (10.1.2.2.2-20) that the errors in the INS total velocity
solution and sculling algorithm are proportional to the associated evaluation time interval, with
the proportionality coefficient independent of time. As in Section 10.1.2.1 Equation
(10.1.2.1-13) and Section 10.1.2.2.1 Equation (10.1.2.2.1-11), it is meaningful to identify the
coefficients in (10.1.2.2.2-17), (10.1.2.2.2-19) and (10.1.2.2.2-20) as the sculling algorithm
rate, the velocity algorithm rate error and the sculling algorithm rate error given by:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-45

ΔvScul/Algom = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1

 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

(10.1.2.2.2-21)

 δvSF/Algom = δΔvScul/Algom =

uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

(10.1.2.2.2-22)

where

ΔvScul/Algom = Constant rate of change in vSF/Algom generated by the summing of

ΔvScul/Algoi’s in Equation (10.1.2.2.2-1).

δvSF/Algom, δΔvScul/Algom = Error build-up rate associated with INS software total
velocity and the sculling algorithm contribution to total velocity.

10.1.3 POSITION RESPONSE UNDER LINEAR VIBRATION

Unlike the attitude and velocity response characteristics, the position computation response of
inertial navigation systems under vibration can become significantly distorted due to “frequency
folding” effects. Frequency folding is the apparent distortion one observes when sampling a
sinusoidal wave form when the oscillation frequency is nearly an integer multiple of the
sampling frequency. A classic example of frequency folding is the visual image generated from
a strobe light illuminating a vibrating object. As the strobe light frequency is adjusted such that
the vibration frequency is nearly an integer multiple of the strobe frequency, the illuminated
object vibration frequency appears to slow down, becoming stationary when the ratio between
the strobe and vibration frequencies is an exact integer.

In the case of a vibrating strapdown inertial navigation system, sampling the inertial sensor
signals into the navigation computer produces a similar frequency folding effect. Thus, the
attitude and velocity generated by integrating (summing) the angular rate sensor and
accelerometer signals also contains frequency folding. If the angular rate sensor and
accelerometer inputs represent integrated increments of angular rate and specific force
acceleration (as assumed in the Chapters 7 and 19 (Section 19.1) integration algorithms), their
sum in the navigation computer will generate the correct attitude/velocity solution at the sample
instants, even though the apparent frequency will appear distorted due to the sample data folding
effect. (The previous statement ignores the small, though generally not negligible
coning/sculling effects present in the navigation computer generated attitude/velocity solutions

10-46 VIBRATION EFFECTS ANALYSIS

under angular and linear vibrations whose accuracy is a function of the algorithm repetition rate.
When the vibration effects are uncorrelated between axes (i.e., for zero coning and sculling), the
attitude and velocity algorithm solutions presented in Chapters 7 and 19 (Section 19.1) would be
exact at the computer cycle times, regardless of the algorithm update frequency). However, in
the case of the position algorithm (i.e., digital integration of velocity), folding can produce a
significant error in the position solution, even for uncorrelated between axis vibrations, because
the integration is performed using folded velocity data. It is important to note that this same
folding effect can also be present in the algorithm used to calculate the Chapter 6 initial

alignment measurement (ΔRH
N

 in Section 6.1.2) which is also a velocity integration operation.

The impact of folding effect algorithm error on initial heading alignment accuracy can be
catastrophic in a vibration environment if not properly handled (See Sections 7.4 and 7.4.1 for
further discussion). In general, potentially large position folding effect errors under linear
vibration can only be eliminated by increasing the position update algorithm computation rate.

In the sub-sections to follow we will analyze the position computation frequency folding
error in the presence of sinusoidal linear specific force acceleration vibration along a single axis,
but with no angular motion. The acceleration vibration profile to be analyzed will be of the
following general form:

aSF(t) = uVib aSF0 sin (Ω t - ϕaSF) ωIB(t) = 0 (10.1.3-1)

where

ωIB(t) = B Frame angular rate vector relative to inertial space that would be measured
by the strapdown angular rate sensors.

aSF(t) = B Frame specific force acceleration vector that would be measured by the
strapdown accelerometers.

uVib = Linear vibration axis (assumed fixed in the B Frame).

Ω = Frequency of the aSF(t) vibration.

aSF0 = Amplitude of the aSF(t) vibration.

ϕaSF = Phase angle associated with the aSF(t) vibration.

10.1.3.1 POSITION MOTION CHARACTERISTICS

Let us analyze the effect of the Equation (10.1.3-1) angular rate and linear acceleration on
position motion at time t relative to some arbitrary time t0. To do this, it is convenient to define
position as the integral of velocity in a non-rotating coordinate frame. The non-rotating frame
we select is the B Frame at time t0. Thus, we write:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-47

RSF(t) = vSF(t) (10.1.3.1-1)

where

RSF(t), vSF(t) = Position and velocity at time t in the time t0 oriented B Frame due to
(10.1.3-1) angular rate and linear vibration since time t0.

We can use (10.1.2.1-3) for vSF(t) in (10.1.3.1-1), which under the (10.1.3-1) zero assumed

angular rate condition is from (10.1.2.1-1):

vSF(t) = aSF(t) (10.1.3.1-2)

The integral of (10.1.3.1-1) over a position computation update is the position change over
the cycle:

ΔRSFm = vSF(t) dt
tm-1

tm

(10.1.3.1-3)

where

m = Position computation cycle index.

ΔRSFm = Change in RSF over cycle m.

The position at a particular computation cycle is the sum of ΔRSFm’s since t0, up to the end of

the particular computation cycle time:

RSFM = ΔRSFm∑
m = 1

M

(10.1.3.1-4)

where

M = The value for m at a particular computation cycle.

RSFM = RSF(t) at completion of cycle M (i.e., at time tM).

Equation (10.1.3.1-2) can be integrated from time t0. Assuming that vSF(t) = 0 at time t0 we
get:

vSF(t) = vSFm-1 + aSF(τ) dτ
tm-1

t

(10.1.3.1-5)

vSFm-1 = aSF(t) dt
t0

tm-1

(10.1.3.1-6)

10-48 VIBRATION EFFECTS ANALYSIS

where

vSFm-1 = vSF(t) at time tm-1 (with vSF0 assumed to be zero).

Substituting (10.1.3.1-5) in (10.1.3.1-3) yields for ΔRSFm:

ΔRSFm = vSFm-1 + aSF(τ) dτ
tm - 1

t

 dt

tm - 1

tm

 = vSFm-1 Tm + Sυm (10.1.3.1-7)

in which we have defined as in (7.3.3-10):

Sυm ≡
tm-1

tm

aSF(τ) dτ
tm-1

t

 dt (10.1.3.1-8)

where

Sυm = Double integral of aSF(t) over cycle m.

Tm = The time interval for each m cycle.

Substituting (10.1.3.1-7) in (10.1.3.1-4) then gives:

RSFM = vSFm-1 Tm∑
m = 1

M

 + Sυm∑
m = 1

M

(10.1.3.1-9)

Equation (10.1.3.1-9) with (10.1.3.1-8) and (10.1.3.1-6) represents the actual position
response characteristic of the sensor assembly under zero angular rate.

10.1.3.2 POSITION ALGORITHM RESPONSE

The software in a strapdown INS processes a digital velocity integration algorithm to
calculate position. Chapters 7 and 19 (Section 19.1) describe such position algorithms as a
general inertial navigation computational operation (Sections 7.3 and 19.1.5). Similar

algorithms would be used to calculate the Chapter 6 initial alignment measurement (ΔRH
N

 in

Section 6.1.2) which is also a velocity integration operation. Equation (10.1.3.1-9) with
(10.1.3.1-8) and (10.1.3.1-6) represents an exact integration algorithm that would generate the
exact position solution. In an INS, the equivalent to these equations would be approximated in
the INS computer. The following subsections analyze the response of Equation (10.1.3.1-9)
with (10.1.3.1-8) and (10.1.3.1-6) under the hypothesized (10.1.3-1) sinusoidal linear vibration
for an exact algorithmic implementation and for an approximate form typified in the INS
software.

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-49

10.1.3.2.1 Exact Position Algorithm Response

Under the (10.1.3-1) sinusoidal linear vibration profile, the inner term in (10.1.3.1-8) can be
analytically integrated as follows:

aSF(τ) dτ
tm-1

t

 = - uVib
1

Ω
 aSF0 cos (Ω t - ϕaSF) - cos (Ω tm-1 - ϕaSF) (10.1.3.2.1-1)

Substituting (10.1.3.2.1-1) in (10.1.3.1-8) gives:

Sυm = - uVib
1

Ω2
 aSF0 sin (Ω tm - ϕaSF) - sin (Ω tm-1 - ϕaSF)

 - Tm Ω cos (Ω tm-1 - ϕaSF)

(10.1.3.2.1-2)

Applying (10.1.3.2.1-2) to the summation term in (10.1.3.1-9) obtains:

Sυm∑
m = 1

M

 = - uVib
1

Ω2
 aSF0 sin (Ω tM - ϕaSF) - sin (Ω t0 - ϕaSF)

 - Tm Ω cos (Ω tm-1 - ϕaSF)∑
m = 1

M
(10.1.3.2.1-3)

Finally, we substitute (10.1.3.2.1-3) into (10.1.3.1-9) to find with (10.1.3.1-6):

RSFM = - uVib
1

Ω2
 aSF0 sin (Ω tM - ϕaSF) - sin (Ω t0 - ϕaSF)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos (Ω tm-1 - ϕaSF) Tm∑

m = 1

M
(10.1.3.2.1-4)

vSFm-1 = aSF(t) dt
t0

tm-1

(10.1.3.2.1-5)

Equation (10.1.3.2.1-4) with (10.1.3.2.1-5) represents the response of the exact position
updating algorithm to the (10.1.3-1) vibration profile.

10-50 VIBRATION EFFECTS ANALYSIS

10.1.3.2.2 INS Position Algorithm Response

In an INS computer, the position updating algorithm equivalent to Equation (10.1.3.1-9) with
(10.1.3.1-8) and (10.1.3.1-6) can be represented as:

RSF/AlgoM = vSF/Algom-1 Tm∑
m = 1

M

 + Sυ/Algom∑
m = 1

M

(10.1.3.2.2-1)

vSF/Algom-1 = ΔvSF/Algoi∑
i = 1

m-1

(10.1.3.2.2-2)

Sυ/Algo m = ΔSυ/Algo l∑
l = (m-1)r+1

m r

(10.1.3.2.2-3)

where

Algo = Designation for the INS algorithm calculated value of the associated parameter.

i = Dummy m cycle index.

l = High speed computation cycle index.

r = Number of l cycles in an m cycle.

ΔvSF/Algoi = The change in vSF/Algo over computer cycle m = i.

ΔSυ/Algo l = The change in Sυ/Algo over computer cycle l.

For zero angular rate, we see from (10.1.2.2.2-1), (10.1.2.2.2-3) and dυ = aSF(t) dt (using the

definition following (7.2.2.2.2-15)) that ΔvSF/Algoi is given by:

ΔvSF/Algoi = Δυl∑
l = (i-1)r+1

i r

Δυl = aSF(t) dt
tl -1

tl

(10.1.3.2.2-4)

where

Δυl = Integrated specific force over an l cycle, the form of the input assumed from the
strapdown accelerometers.

Substituting (10.1.3.2.2-4) in (10.1.3.2.2-2) finds the obvious result:

vSF/Algom-1 = ∑
i = 1

m-1

Δυ l∑
l = (i-1)r+1

i r

 = Δυ l∑
l = 1

(m-1)r

 = aSF(t) dt
t0

tm-1

(10.1.3.2.2-5)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-51

Thus, by comparison with (10.1.3.2.1-5):

vSF/Algom-1 = vSFm-1 (10.1.3.2.2-6)

i.e., the velocity computation algorithm is error free in the absence of angular rate.

For the ΔSυ/Algol term in (10.1.3.2.2-3) we can write from (7.3.3.2-19) and (7.2.2.2.2-14)

for Chapter 7 high resolution position algorithm (and for the Chapter 19 (Section 19.1),
Equations (19.1.11-1) position translation vector algorithm):

ΔSυ/Algo l = υl-1Tl +
Tl

12
 5 Δυl + Δυl-1 υl = υl-1 + Δυl

 υ(m-1)r = 0
(10.1.3.2.2-7)

where

Tl = The time interval for each l cycle.

From (10.1.3.2.2-7) we see that:

Δυl = υl - υl-1 (10.1.3.2.2-8)

with which the
Tl

12
 5 Δυl + Δυl-1 term in (10.1.3.2.2-7) can be expressed as:

Tl

12
 5 Δυl + Δυl-1 =

Tl

12
 6 Δυl - Δυl - Δυl-1 =

1
2

 Δυl Tl -
Tl

12
 Δυl - Δυl-1

 =
1
2

 υl - υl-1 Tl -
Tl

12
 Δυl - Δυl-1

(10.1.3.2.2-9)

Substituting (10.1.3.2.2-9) in (10.1.3.2.2-7) and the result in (10.1.3.2.2-3) for Sυ/Algom,

rewriting the (10.1.3.2.2-7) υl term in summation form, and including (10.1.3.2.2-4) for Δυl

yields the equivalent expressions:

Sυ/Algom =
1
2

 υl + υl-1 Tl∑
l = (m-1)r+1

m r

 -
1
12

 Δυl - Δυl-1 Tl∑
l = (m-1)r+1

m r

υl = Δυj∑
j = (m-1)r+1

l

 υ(m-1)r = 0 Δυl = aSF(t) dt
tl- 1

tl
(10.1.3.2.2-10)

where

j = Dummy index for l.

10-52 VIBRATION EFFECTS ANALYSIS

Equations (10.1.3.2.2-10) are in the form we need for evaluation of Sυ/Algom
 based on the

particular aSF(t) vibration profile being analyzed. Substituting aSF(t) from (10.1.3-1) in the

(10.1.3.2.2-10) Δυl and υl expressions yields:

Δυl = - uVib
1

Ω
 aSF0 cos (Ω tl - ϕaSF) - cos (Ω tl-1 - ϕaSF)

Δυl-1 = - uVib
1

Ω
 aSF0 cos (Ω tl-1 - ϕaSF) - cos (Ω tl-2 - ϕaSF)

υl = - uVib
1

Ω
 aSF0 cos (Ω tl - ϕaSF) - cos (Ω t(m-1)r - ϕaSF) (10.1.3.2.2-11)

υl-1 = - uVib
1

Ω
 aSF0 cos (Ω tl-1 - ϕaSF) - cos (Ω t(m-1)r - ϕaSF)

υ(m-1)r = 0

Using the Δυl terms from (10.1.3.2.2-11),
1
12

 Δυl - Δυl-1 Tl∑
l = (m-1)r+l

mr

 in (10.1.3.2.2-10)

becomes:

1
12

 Δυl - Δυl-1 Tl∑
l = (m-1)r+l

mr

 = - uVib
1

Ω2
 aSF0

1
12

 cos (Ω tmr - ϕaSF)

- cos (Ω tmr-1 - ϕaSF) - cos (Ω t(m-1)r - ϕaSF) + cos (Ω t(m-1)r-1 - ϕaSF) Ω Tl

(10.1.3.2.2-12)

The
1
2

 υl + υl-1 Tl∑
l = (m-1)r+l

mr

 term in (10.1.3.2.2-10) with υ(m-1)r = 0 (from (10.1.3.2.2-10))

is first expanded as:

1
2

 υl + υl-1 Tl∑
l = (m-1)r+l

mr

 =
1
2

 υ(m-1)r+1 + υ(m-1)r Tl +
1
2

 υl + υl-1 Tl∑
l = (m-1)r+2

mr

 =
1
2

 υ(m-1)r+1 Tl +
1
2

 υl + υl-1 Tl∑
l = (m-1)r+2

mr

(10.1.3.2.2-13)

We then substitute from (10.1.3.2.2-11) for the υl’s:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-53

υl + υl-1 = - uVib
1

Ω
 aSF0 cos (Ω tl - ϕaSF) + cos (Ω tl-1 - ϕaSF)

- 2 cos (Ω t(m-1)r - ϕaSF) (10.1.3.2.2-14)

υ(m-1)r+1 = - uVib
1

Ω
 aSF0 cos (Ω t(m-1)r+1 - ϕaSF) - cos (Ω t(m-1)r - ϕaSF)

Applying (10.1.3.2.2-14) in (10.1.3.2.2-13) yields:

1
2

 υl + υl-1 Tl∑
l = (m-1)r+l

mr

= - uVib
1

Ω2
 aSF0

1
2

 cos (Ω t(m-1)r+1 - ϕaSF) - cos (Ω t(m-1)r - ϕaSF) Ω Tl

+
1
2

 cos (Ω t l - ϕaSF) + cos (Ω t l-1 - ϕaSF) Ω Tl∑
l = (m-1)r+2

mr

- Ω (r-1) Tl cos (Ω t(m-1)r - ϕaSF)

= - uVib
1

Ω2
 aSF0

1
2

 cos (Ω t(m-1)r+1 - ϕaSF) - cos (Ω t(m-1)r - ϕaSF) Ω Tl

+
1
2

 cos (Ω t l - ϕaSF) + cos (Ω t l-1 - ϕaSF) Ω Tl∑
l = (m-1)r+1

mr

(10.1.3.2.2-15)

-
1
2

 cos (Ω t(m-1)r+1 - ϕaSF) + cos (Ω t(m-1)r - ϕaSF) Ω Tl

- Ω (r-1) Tl cos (Ω t(m-1)r - ϕaSF)

= - uVib
1

Ω2
 aSF0

1
2

 cos (Ω tl - ϕaSF) + cos (Ω tl-1 - ϕaSF) Ω Tl ∑
l = (m-1)r+1

mr

- cos (Ω t(m-1)r - ϕaSF) Ω Tl - Ω (r-1) Tl cos (Ω t(m-1)r - ϕaSF)

= - uVib
1

Ω2
 aSF0

1
2

 cos (Ω tl - ϕaSF) + cos (Ω tl-1 - ϕaSF) Ω Tl∑
l = (m-1)r+1

mr

- Ω r Tl cos (Ω t(m-1)r - ϕaSF)

10-54 VIBRATION EFFECTS ANALYSIS

Based on the definitions for m, r, and Tl, we can write for the time parameters in
(10.1.3.2.2-15) and (10.1.3.2.2-12):

tl = l Tl + t0 tl-1 = (l-1) Tl + t0

tmr = m r Tl + t0 tmr-1 = (mr-1) Tl + t0 (10.1.3.2.2-16)

t(m-1) r = (m -1) r Tl + t0 t(m-1) r-1 = (m -1) r-1 Tl + t0

Continuing development is expedited by defining:

β ≡ Ω Tl α ≡ Ω Tm φ ≡ Ω t0 - ϕaSF (10.1.3.2.2-17)

We also know from the definition of r and Tl that

Tm = r Tl (10.1.3.2.2-18)

so α in (10.1.3.2.2-17) is equivalently:

α = Ω r Tl (10.1.3.2.2-19)

Using (10.1.3.2.2-16), (10.1.3.2.2-17) and (10.1.3.2.2-19), the trigonometric arguments in
(10.1.3.2.2-15) and (10.1.3.2.2-12) become:

Ω t l - ϕaSF = l β + φ Ω t l-1 - ϕaSF = (l-1) β + φ

Ω tmr - ϕaSF = m α + φ Ω tmr-1 - ϕaSF = m α + φ - β (10.1.3.2.2-20)

Ω t(m-1)r - ϕaSF = (m-1) α + φ Ω t(m-1)r-1 - ϕaSF = (m-1) α + φ - β

Substituting (10.1.3.2.2-20) in (10.1.3.2.2-15) and (10.1.3.2.2-12), and the result with
(10.1.3.2.2-19) in (10.1.3.2.2-10), then finds for Sυ/Algom

 :

Sυ/Algom = - uVib
1

Ω2
 aSF0

1
2

 cos (l β + φ) + cos (l-1) β + φ β∑
l = (m-1)r+l

mr

-
1

12
 β cos (m α + φ) - cos (m-1) α + φ - cos (m α + φ - β) (10.1.3.2.2-21)

 + cos (m-1) α + φ - β - α cos (m-1) α + φ

The
1

12
 β coefficient in (10.1.3.2.2-21) is equivalently:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-55

cos (m α + φ) - cos (m-1) α + φ - cos (m α + φ - β) + cos (m-1) α + φ - β

= cos (m α + φ) - cos (m-1) α + φ - cos (m α + φ) cos β - sin (m α + φ) sin β
+ cos (m-1) α + φ cos β + sin (m-1) α + φ sin β

= cos (m α + φ) - cos (m-1) α + φ (1 - cos β) (10.1.3.2.2-22)

- sin (m α + φ) - sin (m-1) α + φ sin β

Applying (10.1.3.2.2-22) in (10.1.3.2.2-21) and summing the result from m = 1 to M finds an

expression for Sυ/Algom∑
m = 1

M

 in the (10.1.3.2.2-1) RSF/AlgoM equation:

Sυ/Algom∑
m = 1

M

 = - uVib
1

Ω2
 aSF0 β

1
2

 cos (l β + φ) + cos (l-1) β + φ∑
l = 1

Mr

-
1

12
 β cos (M α + φ) - cos φ (1 - cos β) - sin (M α + φ) - sin φ sin β (10.1.3.2.2-23)

- α cos (m-1) α + φ∑
m = 1

M

We now substitute (10.1.3.2.2-23) and (10.1.3.2.2-6) in (10.1.3.2.2-1) to obtain an equation for
the algorithm computed position vector:

RSF/AlgoM = - uVib
1

Ω2
 aSF0 β

1
2

 cos (l β + φ) + cos (l-1) β + φ∑
l = 1

Mr

-
1

12
 β cos (M α + φ) - cos φ (1 - cos β) - sin (M α + φ) - sin φ sin β (10.1.3.2.2-24)

- α cos (m-1) α + φ∑
m = 1

M
 + vSFm-1 Tm ∑

m = 1

M

To complete the development we will need an equation for the leading (10.1.3.2.2-24)
summation term. This is derived from basic trigonometric identities as follows. First we write
in general:

cos (ρ + γ) + cos (ρ - γ) = 2 cos γ cos ρ

ρ - γ = ρ + γ - 2 γ
(10.1.3.2.2-25)

where

ρ, γ = Arbitrary parameters.

10-56 VIBRATION EFFECTS ANALYSIS

Then we define:

μ ≡ ρ + γ (10.1.3.2.2-26)

where

μ = Another arbitrary parameter.

so that:

ρ = μ - γ (10.1.3.2.2-27)

Substituting (10.1.3.2.2-27) in (10.1.3.2.2-25) finds with rearrangement:

1
2

 cos μ = cos γ cos (μ - γ) - 1
2

 cos (μ - 2 γ) (10.1.3.2.2-28)

or upon expansion:

1
2

 cos μ + cos (μ - γ) = cos γ cos (μ - γ) +
1
2

 cos (μ - γ) - cos (μ - 2 γ) (10.1.3.2.2-29)

We now set the μ and γ parameters to particular parameters in Equation (10.1.3.2.2-24):

μ = l β + φ γ = β (10.1.3.2.2-30)

and note from (10.1.3.2.2-30) that:

μ - γ = (l-1) β + φ μ - 2 γ = (l-2) β + φ (10.1.3.2.2-31)

Applying (10.1.3.2.2-30) and (10.1.3.2.2-31) in (10.1.3.2.2-29) obtains for the argument in the
leading (10.1.3.2.2-24) summation term:

1
2

 cos (l β + φ) + cos (l-1) β + φ

 = cos β cos (l-1) β + φ +
1
2

 cos (l-1) β + φ - cos (l-2) β + φ
(10.1.3.2.2-32)

The term multiplying cos β in (10.1.3.2.2-32) can be expanded as:

cos (l-1) β + φ

=
1
2

 cos (l-1) β + φ + cos (l β + φ) - cos (l β + φ) + cos (l-1) β + φ (10.1.3.2.2-33)

=
1
2

 cos (l β + φ) + cos (l-1) β + φ -
1
2

 cos (l β + φ) - cos (l-1) β + φ

Substituting (10.1.3.2.2-33) in (10.1.3.2.2-32) obtains:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-57

1
2

 cos (l β + φ) + cos (l-1) β + φ

= cos β
1
2

 cos (l β + φ) + cos (l-1) β + φ -
1
2

 cos (l β + φ) - cos (l-1) β + φ

+
1
2

 cos (l-1) β + φ - cos (l-2) β + φ (10.1.3.2.2-34)

= cos β
1
2

 cos (l β + φ) + cos (l-1) β + φ -
1
2

 cos β cos (l β + φ) - cos (l-1) β + φ

+
1
2

 cos (l β + φ) - cos (l-1) β + φ cos β +
1
2

 sin (l β + φ) - sin (l-1) β + φ sin β

= cos β
1
2

 cos (l β + φ) + cos (l-1) β + φ +
1
2

 sin β sin (l β + φ) - sin (l-1) β + φ

or upon rearrangement:

1
2

 cos (l β + φ) + cos (l-1) β + φ

 =
sin β

2 (1 - cos β)
 sin (l β + φ) - sin (l-1) β + φ

(10.1.3.2.2-35)

Equation (10.1.3.2.2-35) is in the form we seek for application in the leading (10.1.3.2.2-24)
summation term. The result is:

1
2

 cos (l β + φ) + cos (l-1) β + φ∑
l = 1

Mr

 =
sin β

2 (1 - cos β)
 sin (M r β + φ) - sin φ

(10.1.3.2.2-36)

Substituting (10.1.3.2.2-36) in (10.1.3.2.2-24) then yields for RSF/AlgoM:

RSF/AlgoM = - uVib
1

Ω2
 aSF0

 β sin β

2 (1 - cos β)
 sin (M r β + φ) - sin φ

-
1

12
 β cos (M α + φ) - cos φ (1 - cos β) - sin (M α + φ) - sin φ sin β (10.1.3.2.2-37)

- α cos (m-1) α + φ∑
m = 1

M

 + vSFm-1 Tm∑
m = 1

M

The final step is to convert the α, β, φ parameters in (10.1.3.2.2-37). This is easily achieved
by noting from the Tm, M and m definitions that:

10-58 VIBRATION EFFECTS ANALYSIS

M Tm = tM - t0 (m-1) Tm = tm-1 - t0 (10.1.3.2.2-38)

and from (10.1.3.2.2-17) and (10.1.3.2.2-19):

α = r β (10.1.3.2.2-39)

where

tM = Time t at computer cycle m = M.

Using (10.1.3.2.2-38) - (10.1.3.2.2-39) and (10.1.3.2.2-17) we see then that:

M r β + φ = M α + φ = M Ω Tm + φ = Ω (tM - t0) + Ω t0 - ϕaSF

 = Ω tM - ϕaSF

(m-1) α + φ = (m-1) Ω Tm + φ = Ω (tm-1 - t0) + Ω t0 - ϕaSF

 = Ω tm-1 - ϕaSF

(10.1.3.2.2-40)

Substituting (10.1.3.2.2-40) with α and β from (10.1.3.2.2-17) in (10.1.3.2.2-37) obtains the
final result:

RSF/AlgoM = - uVib
1

Ω2
 aSF0

Ω Tl sin Ω Tl

2 1 - cos Ω Tl

 +
1
12

 Ω Tl sin Ω Tl sin (Ω tM - ϕaSF)

- sin (Ω t0 - ϕaSF) -
1

12
 Ω Tl cos (Ω tM - ϕaSF) - cos (Ω t0 - ϕaSF) (1 - cos Ω Tl)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos (Ω tm-1 - ϕaSF) Tm∑

m = 1

M

(10.1.3.2.2-41)

Equation (10.1.3.2.2-41) represents the INS computer algorithm determined position
response to the (10.1.3-1) input vibration, assuming that the position updating algorithm is of
the Chapter 7 high resolution (or the Chapter 19 (Section 19.1), Equations (19.1.11-1) position
translation vector algorithm) form.

10.1.3.2.3 Folding Effects In The Position Algorithms

Sections 10.1.3.2.1 and 10.1.3.2.2 developed analytical expressions for the INS position
response to the (10.1.3-1) vibration input for exact and INS position updating algorithm
implementations. The results provided by Equations (10.1.3.2.1-4), (10.1.3.2.1-5) and
(10.1.3.2.2-41) are repeated below in slightly revised format:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-59

RSF/AlgoM = - uVib
1

Ω2
 aSF0

Ω Tl sin Ω Tl

2 1 - cos Ω Tl

 +
1
12

 Ω Tl sin Ω Tl sin Ω(tM - t0)

+ Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF)

-
1

12
 Ω Tl cos Ω(tM - t0) + Ω t0 - ϕaSF - cos (Ω t0 - ϕaSF) (1 - cos Ω Tl)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos Ω(tm-1 - t0) + Ω t0 - ϕaSF Tm∑

m = 1

M

(10.1.3.2.3-1)

RSFM = - uVib
1

Ω2
 aSF0 sin Ω(tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos Ω(tm-1 - t0) + Ω t0 - ϕaSF Tm∑

m = 1

M

vSFm-1 = aSF(t) dt
t0

tm-1

Let us now introduce a new folded frequency parameter as the difference between the actual

vibration frequency Ω and an integer multiple of a base frequency determined by the l

computation cycle rate. The l cycle update frequency is 1 / Tl cycles per second or 2 π / Tl

radians per second. We define the folded frequency as the difference between Ω and its closest

integer multiple of 2 π / Tl or:

k =
Ω Tl

2 π Intgr

Ω′ ≡ Ω -
2 π k

Tl
(10.1.3.2.3-2)

where

k = Nearest integer value of the ratio of Ω to 2 π / Tl.

()Intgr = () rounded to the nearest integer value (e.g., (0.3) Intgr = 0, (0.5) Intgr = 1,
(0.7) Intgr = 1, (1.3) Intgr = 1, (1.5) Intgr = 2, (1.7) Intgr = 2, etc.).

Ω′ = Folded frequency.

Based on the definition for ()Intgr above, we see that:

- 0.5 ≤ () - () Intgr < 0.5 (10.1.3.2.3-3)

10-60 VIBRATION EFFECTS ANALYSIS

Dividing the Ω′ expression in (10.1.3.2.3-2) by 2 π / Tl and substituting for k finds:

Ω′ Tl

2 π
 =
Ω Tl

2 π
 -
Ω Tl

2 π Intgr

(10.1.3.2.3-4)

Setting () - () Intgr in (10.1.3.2.3-3) to
Ω Tl

2 π
 -
Ω Tl

2 π Intgr

, we see from (10.1.3.2.3-3) and

(10.1.3.2.3-4) that:

- 0.5 ≤
Ω′ Tl

2 π
 < 0.5 (10.1.3.2.3-5)

or after multiplying by 2 π:

- π ≤ Ω′ Tl < π (10.1.3.2.3-6)

Equation (10.1.3.2.3-6) identifies the limits for the Ω′ folded frequency parameter defined by
Equations (10.1.3.2.3-2).

Let us apply Ω′ to Equations (10.1.3.2.3-1). First we write the (10.1.3.2.3-2) equivalent:

Ω =
2 π k

Tl
 + Ω′ (10.1.3.2.3-7)

Then from (10.1.3.2.2-38) and (10.1.3.2.2-18):

1
Tl

 (tM - t0) =
Tm

Tl
 M = M r

1
Tl

 (tm-1 - t0) =
Tm

Tl
 (m -1) = (m -1) r (10.1.3.2.3-8)

Equation (10.1.3.2.3-7) multiplied by Tl and the result by (10.1.3.2.3-8) shows that:

Ω Tl = 2 π k + Ω′ Tl

Ω(tM - t0) =
2 π k

Tl
 (tM - t0) + Ω′(tM - t0) = 2 π k M r + Ω′(tM - t0) (10.1.3.2.3-9)

Ω(tm-1 - t0) =
2 π k

Tl
 (tm-1 - t0) + Ω′(tm-1 - t0) = 2 π k (m-1) r + Ω′(tm-1 - t0)

Using (10.1.3.2.3-9) while noting that k, m and r are integers, we see that the sinusoidal terms
in (10.1.3.2.3-1) are equivalently:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-61

sin Ω Tl = sin Ω′ Tl

cos Ω Tl = cos Ω′ Tl

sin Ω(tM - t0) + Ω t0 - ϕaSF = sin Ω′(tM - t0) + Ω t0 - ϕaSF (10.1.3.2.3-10)

cos Ω(tM - t0) + Ω t0 - ϕaSF = cos Ω′(tM - t0) + Ω t0 - ϕaSF

cos Ω(tm-1 - t0) + Ω t0 - ϕaSF = cos Ω′(tm-1 - t0) + Ω t0 - ϕaSF

Substituting (10.1.3.2.3-10) in (10.1.3.2.3-1) then obtains the equivalent result:

RSF/AlgoM = - uVib
1

Ω2
 aSF0

Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)

+
1

12
 Ω Tl sin Ω′ Tl sin Ω′(tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF) (10.1.3.2.3-11)

-
1

12
 Ω Tl cos Ω′(tM - t0) + Ω t0 - ϕaSF - cos (Ω t0 - ϕaSF) (1 - cos Ω′ Tl)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos Ω′(tm-1 - t0) + Ω t0 - ϕaSF Tm∑

m = 1

M

RSFM = - uVib
1

Ω2
 aSF0 sin Ω′(tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos Ω′(tm-1 - t0) + Ω t0 - ϕaSF Tm∑

m = 1

M
(10.1.3.2.3-12)

Equations (10.1.3.2.3-10) - (10.1.3.2.3-12) clearly show that the computer input data
sampling process (at the l cycle rate) has the general effect on both the exact and INS algorithms
of producing position solutions (at the computer sample times) whose sinusoidal components

appear to be at the folded frequency Ω′, rather than at the true position vibration frequency Ω.

The terminology “folding” refers to the apparent mapping (“folding” back) of the frequency Ω

sinusoidal components into the Ω′ frequency band from minus to plus
π
Tl

 (see Equation

(10.1.3.2.3-6)). We also note that the same is true for the attitude and velocity updating
algorithms (both the exact and INS versions) as substitution of (10.1.3.2.3-10) for X and Y axis
vibrations in the appropriate attitude/velocity solutions would reveal (i.e., for exact algorithm
attitude in Equations (10.1.1.2.1-15), for INS algorithm attitude in (10.1.1.2.2-1)

10-62 VIBRATION EFFECTS ANALYSIS

with (10.1.1.2.2-4), (10.1.1.2.1-1), (10.1.1.2.1-8) and (10.1.1.2.2-24), for exact algorithm
velocity in Equation (10.1.2.2.1-12), and for INS algorithm velocity in Equations (10.1.2.2.2-1)
with (10.1.2.2.2-5), (10.1.2.2.1-1), (10.1.2.2.1-2), (10.1.2.2.1-5) and (10.1.2.2.2-18)). In the
case of the exact position algorithm, the solution so produced (i.e., RSFM in (10.1.3.2.3-12)) is

the true solution at m cycle time M. However, for the INS position algorithm, the position
solution (i.e., RSF/AlgoM in (10.1.3.2.3-11)) may be distorted from RSFM, particularly for the

situation when the folded frequency Ω′ approaches zero (i.e., when Ω is close to an integer

multiple of 2 π / Tl - See Equation (10.1.3.2.3-2), and (1 - cos Ω′ Tl) approaches zero - See

Equation (10.1.3.2.3-11)). Let’s look at the
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 term of concern in Equation

(10.1.3.2.3-11) when Ω′ approaches zero for two situations, k = 0 and k > 0.

From Equation (10.1.3.2.3-2), we see that the k = 0 situation corresponds to Ω′ = Ω and

thus, with Equation (10.1.3.2.3-6), Ω Tl lying between zero and π (assuming we are only

dealing with positive real Ω frequencies). Then the Ω′ approaching zero condition can be stated

as Ω Tl = Ω′ Tl = ε in which ε is a small number approaching zero. Under these conditions we

can write:

Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 =

ε sin ε

2 (1 - cos ε)
 =

ε (ε -
ε3

3 !
 +)

2 (1 - 1 +
ε2

2 !
 -)

 ≈
ε2

ε2
 = 1 (10.1.3.2.3-13)

Similarly, we note that the coefficients for the
1
12

 Ω Tl terms in (10.1.3.2.3-11) become

Ω Tl sin Ω′ Tl ≈ ε2 and Ω Tl (1 - cos Ω′ Tl) ≈
1
2

 ε3 which, for small ε, are negligible

compared to
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 ≈ 1. Substituting these findings in (10.1.3.2.3-11), we see that

for the k = 0, Ω′ = Ω approaching zero situation, the RSF/AlgoM solution becomes equal to the

(10.1.3.2.3-12) RSFM true solution.

What about the case when k > 0 and Ω′ approaches zero? Then we can also write Ω′ Tl = ε,
but for this, from (10.1.3.2.3-7), Ω Tl = 2 π k + ε. Under these conditions we see that:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-63

Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 =

(2 π k + ε) sin ε

2 (1 - cos ε)

 =
(2 π k + ε) (ε -

ε3

3 !
 +)

2 (1 - 1 +
ε2

2 !
 -)

 ≈
2 π k ε

ε2
 =

2 π k

ε
 =

2 π k

Ω′ Tl

(10.1.3.2.3-14)

In the limit when Ω′ = 0,
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 and the Equation (10.1.3.2.3-11) RSF/AlgoM

amplitude go to infinity. Thus, the computed RSF/AlgoM position has a potentially serious

singularity condition that must be addressed when evaluating position algorithm performance.
One obvious approach for avoiding the singularity all together is to operate the position

algorithm at a high enough l cycle rate (i.e., small enough Tl) that Ω will be less than
2 π
Tl

 over

the range of possible Ω input vibration frequencies. From (10.1.3.2.3-2) we see that under

these conditions k will never equal 2 or more, and Ω′ will not approach zero for k = 1 provided

that Tl is small enough that Ω is sufficiently smaller than
2 π
Tl

 for the largest expected Ω. For

safety, and to minimize
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 distortion from the ideal unity value (as in

(10.1.3.2.3-12)), we might try setting Tl to one tenth of
2 π

Ω
 for the maximum Ω. However, in

a real application, it may not be practical to operate the position algorithm at this high a rate. For
example, it is not unusual to experience input vibration frequencies in actual usage that range up

to 2 K Hz (or 2 π 2000 rad/sec). By the previous safety factor of 10 rule we would then

require the position algorithm to operate at a Tl of 0.1 ×
2 π

2 π 2000
 sec corresponding to an l

cycle update frequency of 20 K Hz. This seems unreasonably high.

In the real world, we would operate the position algorithm at an l cycle update rate that may

be slower than the maximum possible vibration frequency. In other words, Ω′ may approach
zero with k > 0 over ranges of the vibration frequencies; i.e., Equation (10.1.3.2.3-14) will

apply, including the possibility for the Ω′ = 0 condition for which
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 is infinite.

10-64 VIBRATION EFFECTS ANALYSIS

What does this mean physically, and faced with this possibility, how can we use (10.1.3.2.3-14)
to analyze the effect on RSF/AlgoM performance?

Fortunately, the real world places practical limits on infinite analytical predictions. In this
case, the obvious limit is the time it would take the RSF/AlgoM position solution to reach the

infinite value. From (10.1.3.2.3-11) we see that this would correspond to an infinite time

because the sinusoid multiplied by the amplitude function containing
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
, is at

frequency Ω′ which is zero for infinite
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
. Thus, to find a finite RSFM solution

near the Ω′ = 0 condition (for any k), RSFM must be evaluated over the finite navigation time.

For the remainder of this section we will explore an alternative version of the (10.1.3.2.3-11)

RSF/AlgoM solution that avoids the
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 singularity condition. The result will be an

equation for RSFM that can be evaluated for any input and folded frequency, thereby providing a

practical analysis tool for evaluating RSF/AlgoM as a function of Tl. Application of the result
enables the design engineer to assess the minimum Tl value required to meet a particular
RSF/AlgoM accuracy requirement over a specified navigation time period for a specified input
vibration frequency and amplitude.

To develop the singularity free version of (10.1.3.2.3-11), we begin with the expansion:

sin Ω′(tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF)

= sin (Ω t0 - ϕaSF) cos Ω′(tM - t0) + cos (Ω t0 - ϕaSF) sin Ω′(tM - t0)

 - sin (Ω t0 - ϕaSF)
(10.1.3.2.3-15)

= cos (Ω t0 - ϕaSF) sin Ω′(tM - t0) - sin (Ω t0 - ϕaSF) 1 - cos Ω′(tM - t0)

Next we employ our functional friends from Equation (7.1.1.1-3) of Chapter 7 (and Equations
(19.1.4-1) of Chapter 19):

f1(ϑ) ≡
sin ϑ

ϑ
 = 1 -

ϑ2

3 !
 +
ϑ4

5 !
 -

f2(ϑ) ≡
(1 - cos ϑ)

ϑ2
 =

1
2 !

 -
ϑ2

4 !
 +
ϑ4

6 !
 -

(10.1.3.2.3-16)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-65

where

f1(ϑ) , f2(ϑ) = Functional operators on the general angle parameter ϑ.

Based on the (10.1.3.2.3-16) definitions, we then write for particular Ω′ trigonometric functions
in (10.1.3.2.3-11) and (10.1.3.2.3-15):

sin Ω′ Tl = Ω′ Tl f1(Ω′ Tl)

(1 - cos Ω′ Tl) = (Ω′ Tl)
2
 f2(Ω′ Tl)

(10.1.3.2.3-17)

sin Ω′ (tM - t0) = Ω′(tM - t0) f1 Ω′(tM - t0)

1 - cos Ω′(tM - t0) = Ω′(tM - t0)
 2

 f2 Ω′(tM - t0)
(10.1.3.2.3-18)

We now substitute (10.1.3.2.3-17) in the Equation (10.1.3.2.3-11) multiplier of

sin Ω′ (tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF); then substitute (10.1.3.2.3-18) in

(10.1.3.2.3-15) with the result applied for sin Ω′ (tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF) in

(10.1.3.2.3-11). After factorization and rearrangement (left as an exercise for the reader), we
obtain a singularity free form of RSF/AlgoM:

RSF/AlgoM = - uVib
1

Ω2
 aSF0 Ω(tM - t0)

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 +

1
12

 (Ω′ Tl)
2
 f1 (Ω′ Tl) cos Ω t0

- ϕaSF f1 Ω′(tM - t0) - sin (Ω t0 - ϕaSF) Ω′(tM - t0) f2 Ω′(tM - t0) (10.1.3.2.3-19)

-
1

12
 Ω Tl cos Ω′(tM - t0) + Ω t0 - ϕaSF - cos (Ω t0 - ϕaSF) (1 - cos Ω′ Tl)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos Ω′(tm-1 - t0) + Ω t0 - ϕaSF Tm∑

m = 1

M

Comparing (10.1.3.2.3-19) with (10.1.3.2.3-11), we see that the fundamental difference is

the replacement of the troublesome
Ω Tl sin Ω′ Tl

2 (1 - cos Ω′ Tl)
 term with

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
. From the

definitions of f1 and f2 in (10.1.3.2.3-16), we see that both are finite for all values of their

arguments. Furthermore, from (10.1.3.2.3-6) and (10.1.3.2.3-16), we see that f2 (Ω′ Tl) is non-

zero over the range of Ω′ Tl, equaling
2

π2
 at the Ω′ Tl = ± π ends and

1
2

 at the Ω′ Tl = 0 center.

10-66 VIBRATION EFFECTS ANALYSIS

Thus,
f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 is finite over the range of all possible Ω′’s and Ω’s, enabling RSF/AlgoM to be

evaluated with (10.1.3.2.3-19) for any vibration frequency and l cycle update time interval.

10.1.3.2.4 INS Position Algorithm Error Response

When analyzing the performance of the INS position algorithm, what we are really interested
in is the algorithm error compared to the ideal error free position algorithm solution:

δRSF/AlgoM ≡ RSF/AlgoM - RSFM (10.1.3.2.4-1)

where

δRSF/AlgoM = Error in RSF/AlgoM.

An analytical expression for δRSF/AlgoM in (10.1.3.2.4-1) is easily derived by subtracting

(10.1.3.2.3-12) from (10.1.3.2.3-19). First we convert (10.1.3.2.3-12) to the (10.1.3.2.3-19)
format by substituting(10.1.3.2.3-18) in (10.1.3.2.3-15) with the result applied i n

(10.1.3.2.3-12) for sin Ω′(tM - t0) + Ω t0 - ϕaSF - sin (Ω t0 - ϕaSF):

RSFM = - uVib
1

Ω2
 aSF0 Ω(tM - t0)

 Ω′

Ω
 cos (Ω t0 - ϕaSF) f1 Ω′(tM - t0)

- sin (Ω t0 - ϕaSF) Ω′(tM - t0) f2 Ω′ (tM - t0) (10.1.3.2.4-2)

+ vSFm-1 + uVib
1

Ω
 aSF0 cos Ω′(tm-1 - t0) + Ω t0 - ϕaSF Tm∑

m = 1

M

Subtracting (10.1.3.2.4-2) from (10.1.3.2.3-19) then obtains δRSF/AlgoM. Including

(10.1.3.2.3-2) combined for completeness and replacing tM with the general time variable t,
yields the singularity free form:

δRSF/Algo(t) = - uVib
1

Ω2
 aSF0 Ω(t - t0)

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω

+
1

12
 (Ω′ Tl)

2
 f1 (Ω′ Tl) cos (Ω t0 - ϕaSF) f1 Ω′(t - t0) (10.1.3.2.4-3)

(Continued)

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-67

- sin (Ω t0 - ϕaSF) Ω′(t - t0) f2 Ω′ (t - t0)

-
1

12
 Ω Tl cos Ω′(t - t0) + Ω t0 - ϕaSF - cos (Ω t0 - ϕaSF) (1 - cos Ω′ Tl)

Ω′ = Ω -
2 π
Tl

Ω Tl

2 π Intgr

(10.1.3.2.4-3)
(Continued)

in which f1 and f2 are defined by Equations (10.1.3.2.3-16).

10.1.4 SENSOR ERROR EFFECTS

Several inertial sensor error mechanisms are excited by vibration rectification. In the
subsections to follow we will address two types; when the individual sensor generates vibration
rectification error, and when the sensor dynamic response characteristic produces vibration
rectification error in the high speed strapdown computation algorithms.

10.1.4.1 INDIVIDUAL SENSOR VIBRATION RECTIFICATION

Two common individual accelerometer vibration rectification error sources are g-squared
error and (for a pendulous accelerometer) anisoinertia error (Reference 31) which, under
sinusoidal vibration, we can define analytically as:

δaAcclG2(t) = LG2 aAcclInpt(t) aAcclPend(t)

δaAcclAniso(t) = LAniso ωIBAccl/Inpt(t) ωIBAccl/Pend(t)
(10.1.4.1-1)

with

aAcclInpt(t) = aAccl0Inpt sin Ω t - ϕaAccl Inpt

aAcclPend(t) = aAccl0Pend sin Ω t - ϕaAccl Pend

ωIBAccl/Inpt(t) = ωIB0Accl/Inpt sin Ω t - ϕωIBAccl/Inpt

ωIBAccl/Pend(t) = ωIB0Accl/Pend sin Ω t - ϕωIBAccl/Pend

(10.1.4.1-2)

where

δaAcclG2(t), δaAcclAniso(t) = Accelerometer g-squared and anisoinertia error.

aAcclInpt(t), aAcclPend(t) = Specific force acceleration along the accelerometer input
and pendulum axes.

10-68 VIBRATION EFFECTS ANALYSIS

LG2, LAniso = Accelerometer g-squared and anisoinertia error coefficients.

aAccl0Inpt, aAccl0Pend = Amplitudes of the aAcclInpt(t), aAcclPend(t) sinusoidal
acceleration vibrations.

ϕaAccl Inpt, ϕaAccl Pend = Phase angles for the aAcclInpt(t), aAcclPend(t) sinusoidal

acceleration vibrations.

ωIBAccl/Inpt(t), ωIBAccl/Pend(t) = Components of accelerometer angular rotation rate
relative to inertial space around the accelerometer
input and pendulum axes.

ωIB0Accl/Inpt, ωIB0Accl/Pend = Amplitudes of the ωIBAccl/Inpt(t), ωIBAccl/Pend(t)
sinusoidal angular rate vibrations.

ϕωIBAccl/Inpt, ϕωIBAccl/Pend = Phase angles for the ωIBAccl/Inpt(t), ωIBAccl/Pend(t)

sinusoidal angular rate vibrations.

Ω = Vibration frequency (assumed equal for vibrations along and around the
accelerometer input and pendulum axes). We are only studying the case when the
vibration frequencies are equal. For unequal vibration frequencies between axes,
analyses similar to those in Sections 10.1.1.1 and 10.1.2.1 would show that no
error rectification occurs, hence, is only of academic interest.

The Equation (10.1.4.1-1) error mechanisms have a common structure that can be analyzed
from the response of a general function:

f(t) = hx(t) hy(t) (10.1.4.1-3)

with

hx(t) = h0x sin Ω t - ϕhx hy(t) = h0y sin Ω t - ϕhy (10.1.4.1-4)

where

f(t) = Generalized vibration induced sensor error.

x, y = Generalized axes associated with a particular inertial sensor.

hx(t), hy(t) = Generalized sinusoidal vibrations at frequency Ω along (around) the
inertial sensor axes x and y.

h0x, h0y, ϕhx, ϕhy = Amplitudes and phase angles associated with hx(t), hy(t) .

We are concerned when f(t) develops a systematic (constant) component as manifested in a
non-zero mean value over an extended time period which we define analytically as:

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-69

f(t) ≡
1
T

 f(t)
t0

t0 + T

 dt
T → ∞

(10.1.4.1-5)

where

f(t) = Mean value of f(t).

t0 = Starting time for mean value evaluation.

T = Averaging time for mean value evaluation.

Combining (10.1.4.1-3) - (10.1.4.1-4) and expanding finds for the integrand in (10.1.4.1-5):

f(t) = hx(t) hy(t) = h0x h0y sin Ω t - ϕhx sin Ω t - ϕhy

 =
1
2

 h0x h0y cos ϕhy - ϕhx - cos 2 Ω t - ϕhx + ϕhy
(10.1.4.1-6)

With (10.1.4.1-6), the (10.1.4.1-5) integral is:

1
T

 f(t) dt
t0

t0 + T

 =
1
2

 h0x h0y cos ϕhy - ϕhx

 -
1

2 Ω T
 sin 2 Ω t0 + T - ϕhx + ϕhy +

1

2 Ω T
 sin 2 Ω t0 - ϕhx + ϕhy

(10.1.4.1-7)

Letting T go to infinity in the limit then obtains for f(t) :

f(t) =
1
2

 h0x h0y cos ϕhy - ϕhx (10.1.4.1-8)

Using (10.1.4.1-8), we can compare (10.1.4.1-1) - (10.1.4.1-2) to the general form
(10.1.4.1-3) - (10.1.4.1-4) to write for the mean accelerometer g-squared and anisoinertia errors:

δaAcclG2 = LG2
1
2

 aAccl0Inpt aAccl0Pend cos ϕaAccl Pend
 - ϕaAccl Inpt

δaAcclAniso = LAniso
1
2

 ωIB0Accl/Inpt ωIB0Accl/Pend cos ϕωIBAccl/Pend
 - ϕωIBAccl/Inpt

(10.1.4.1-9)

where

δaAcclG2, δaAcclAniso = Mean values for δaAcclG2(t), δaAcclAniso(t) defined similarly
to (10.1.4.1-5).

10-70 VIBRATION EFFECTS ANALYSIS

10.1.4.2 VIBRATION RECTIFICATION FROM SENSOR DYNAMIC
RESPONSE IN STRAPDOWN COMPUTATION ALGORITHMS

The strapdown computation algorithms developed in Chapters 7 and 19 (Section 19.1) were
based on operating from angular rate sensor and accelerometer signals that provided an accurate
measurement of B frame angular-rate/specific-force. Chapter 8 addressed the process by which
raw outputs from the inertial sensors can be compensated to remove their predictable error
mechanisms. Implicit to the Chapter 8 discussion was the assumption that the sensor outputs
being compensated were a direct reflection of the inputs and errors, without dynamic time shift.
In this section we introduce the problem created by the dynamic response of inertial sensors to
vibration (high frequency) inputs in which the sensor output may be distorted in both amplitude
and phase from the input. The result is a potential distortion in the output of the strapdown
computation algorithms using the sensor data. In Section 10.2 we will discuss the details of
describing the dynamic response characteristics for linear systems in general, and then apply
them in subsequent sections to the results of this (and other) sections.

For simplicity, this section will only address the error in the velocity integration algorithms
produced by inertial sensor dynamic response. The analysis methods utilized can then be
applied to the effect of sensor dynamic response in the strapdown attitude integration
algorithms. Let us proceed to define the problem at hand as the computation of velocity under
sinusoidal vibration from angular rate sensors and accelerometers having the Section 10.1.2
inputs, and assuming, as usual, equal vibration frequencies for the vibration components (with
the understanding that if the frequencies were different, no net deleterious error effects would
arise):

ωIB(t) = ux θ0x Ω cos Ω t - ϕθx

aSF(t) = uy aSF0y sin Ω t - ϕaSFy

(10.1.4.2-1)

where

Ω = Vibration frequency.

In response to the (10.1.4.2-1) vibration input, the angular rate sensors and accelerometers
provide the following outputs at the same frequency, but at a different amplitude and phase:

ωARS(t) = ux ωARS0x cos Ω t - ϕωARSx

aAccl(t) = uy aAccl0y sin Ω t - ϕaAccly

(10.1.4.2-2)

where

ωARS(t), aAccl(t) = Angular rate sensor and accelerometer outputs under the
(10.1.4.2-1) vibration exposure.

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-71

ωARS0x, aAccl0y = Amplitudes of the ωARS(t), aAccl(t) sinusoidal outputs.

ϕωARSx, ϕaAccly = Phase angles for the ωARS(t), aAccl(t) sinusoidal outputs.

The (10.1.4.2-2) angular rate sensor and accelerometer output amplitudes and phase angles
differ from those of the (10.1.4.2-1) input because of the sensor non-ideal dynamic response
characteristics.

Section 10.1.2.1 (Equation (10.1.2.1-13)) showed that under the (10.1.4.2-1) vibration, a true
constant velocity rate was generated along the B Frame Z axis identified as the sculling rate:

vSFScul = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx (10.1.4.2-3)

Therefore, the strapdown INS computation software under the (10.1.4.2-2) vibration input will
generate a sculling rate equal to:

vSF/SculSnsDyn = uz
1
2

 ωARS0x
1

Ω
 aAccl0y cos ϕaAccly - ϕωARSx (10.1.4.2-4)

where

vSF/SculSnsDyn = Sculling rate generated from INS software with input from inertial
sensors having non-ideal dynamic response characteristics.

We can then define the velocity error caused by inertial sensor dynamic response as the
difference between the true and INS computer generated velocity solutions:

δvSF/SculSnsDyn ≡ vSF/SculSnsDyn - vSFScul (10.1.4.2-5)

where

δvSF/SculSnsDyn = Error in vSF/SculSnsDyn due to non-ideal inertial sensor dynamic
response characteristics.

Substituting (10.1.4.2-3) and (10.1.4.2-4) into (10.1.4.2-5) then finds for δvSF/SculSnsDyn:

δvSF/SculSnsDyn = uz
1
2

 ωARS0x
1

Ω
 aAccl0y cos ϕaAccly - ϕωARSx

- θ0x aSF0y cos ϕaSFy - ϕθx

(10.1.4.2-6)

or

10-72 VIBRATION EFFECTS ANALYSIS

δvSF/SculSnsDyn = uz
1

2 Ω
 ωARS0x aAccl0y cos ϕaAccly - ϕωARSx

 - ω0x aSF0y cos ϕaSFy - ϕθx

(10.1.4.2-7)

in which

ω0x ≡ θ0x Ω (10.1.4.2-8)

In general, the phase/amplitude response of an inertial sensor (with non-ideal dynamic
response characteristics) to sinusoidal inputs tracks the input phase/amplitude for low

frequencies (i.e., in Equation (10.1.4.2-4), ϕaAccly = ϕaSFy, ϕωARSx = ϕθx, ωARS0x = ω0x and

aAccl0y = aSF0y), and then loses tracking accuracy as the input frequency increases. We find,

however, that the phase response with increasing frequency tends to vary from the input phase
well before the amplitude varies from the input amplitude. An inertial sensor for strapdown
inertial navigation applications should maintain good phase angle tracking for high input
frequencies to minimize the sculling error demonstrated in Equation (10.1.4.2-7). (Note that the
Equation (10.1.4.2-7) sculling error is zero when the inertial sensor output phase/amplitude
equals the input phase/amplitude). However, it is also important to note from Equation
(10.1.4.2-7), that it is the relative dynamic phase response between the accelerometers and
angular rate sensors that affects sculling computation accuracy; not the individual phase angle
response for each sensor. Based on this observation, one solution that can be considered for a
dynamic mismatch in the accelerometer/angular-rate-sensor phase angle characteristic is to
artificially add an output shaping filter to the wider bandwidth sensor to make its filtered output
track the dynamic phase characteristic of the narrower bandwidth sensor. A similar discussion
applies to the coning error generated for dynamically mismatched X/Y, Y/Z, and Z/X axis
angular rate sensors, however, since all the angular rate sensors in a strapdown INS are
generally of a common design, all will nominally have identical dynamic characteristics, and
phase angle mismatch will only occur due to manufacturing variations between the axis
components.

In subsequent sections, Equation (10.1.4.2-6) will be further analyzed based on analytical

representations for the ωARS0x, aAccl0y, ϕωARSx, ϕaAccl y dynamic response terms.

10.1.5 SUMMARY OF RESPONSE TO SINUSOIDAL SENSOR VIBRATION INPUT

Following is a summary of the principal sinusoidal response results derived in the previous
subsections as provided by Equations (10.1.1.1-13), (10.1.1.2.1-14), (10.1.1.2.2-27),
(10.1.1.2.2-28), (10.1.2.1-13), (10.1.2.2.1-11), (10.1.2.2.2-21), (10.1.2.2.2-22), (10.1.3.2.4-3),
(10.1.4.1-8), (10.1.4.1-9), and (10.1.4.2-6):

RESPONSE TO DISCRETE SINUSOIDAL SENSOR VIBRATION INPUTS 10-73

ΦCon = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx

βm = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 -
sin ΩTm

ΩTm

βAlgom = uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

δΦAlgom = δβAlgom =

uz
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

vSFScul = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx

ΔvSculm = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 -
sin ΩTm

ΩTm

(10.1.5-1)

ΔvScul/Algom = uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +

 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

δvSF/Algom = δΔvScul/Algom =

uz
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

δRSF/Algo(t) = - uVib
1

Ω2
 aSF0 Ω(t - t0)

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω

+
1

12
 (Ω′ Tl)

2
 f1 (Ω′ Tl) cos (Ω t0 - ϕaSF) f1 Ω′(t - t0)

- sin (Ω t0 - ϕaSF) Ω′(t - t0) f2 Ω′(t - t0)

-
1

12
 Ω Tl cos Ω′(t - t0) + Ω t0 - ϕaSF - cos (Ω t0 - ϕaSF) (1 - cos Ω′ Tl)

(Continued)

10-74 VIBRATION EFFECTS ANALYSIS

Ω′ = Ω -
2 π
Tl

Ω Tl

2 π Intgr

f1 and f2 are defined by Equations (10.1.3.2.3-16).

f(t) =
1
2

 h0x h0y cos ϕhy - ϕhx
(10.1.5-1)

(Continued)

δaAcclG2 = LG2
1
2

 aAccl0Inpt aAccl0Pend cos ϕaAcclPend - ϕaAcclInpt

δaAcclAniso = LAniso
1
2

 ωIB0Accl/Inpt ωIB0Accl/Pend cos ϕωIBAccl/Pend - ϕωIBAccl/Inpt

δvSF/SculSnsDyn = uz
1
2

 ωARS0x
1

Ω
 aAccl0y cos ϕaAccly - ϕωARSx

- θ0x aSF0y cos ϕaSFy - ϕθx

10.2 REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS

In Section 10.1 we analyzed the effect of sinusoidal angular rate and linear acceleration
vibrations at discrete frequencies on strapdown INS computational performance. For the cases
investigated, we have presumed knowledge of the amplitude and phase of the inertial sensor
angular-rate/linear-acceleration output measurements; either equal to the sensor inputs (i.e., for
idealized error free instruments) or at the input frequency with a specified output amplitude and
phase angle. In general, the sensor vibration inputs are generated by vehicle vibrations
translating through mechanical structural resonances connecting the sensors to the vibration
sources. Furthermore, the vibration sources generally consist of a spectrum of frequency
components at differing energy levels. In this section we will review linear dynamic system
theory to develop the analytic tools necessary to translate the vibration source inputs into their
ultimate effect on inertial sensor input and output. We will then apply the theory in subsequent
sections to extend the Section 10.1 results to include system dynamic response effects to
discrete sinusoidal and random input source vibrations. It is assumed in the development to
follow that the reader has a working understanding of Laplace transforms.

10.2.1 LINEAR SYSTEM RESPONSE TO SINUSOIDAL INPUTS

Consider a general linear process that satisfies the differential equation:

y(t) + cy1 y(t) + cy2 y(t) + = cx0 x(t) + cx1 x(t) + cx2 x(t) + (10.2.1-1)

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-75

where

cxi, cyi = Constants.

x(t), y(t) = Process input and output.

The “particular solution” to (10.2.1-1) for y(t) is its response to x(t), ignoring initial conditions
on y(t) and its derivatives. The Laplace transform of the (10.2.1-1) particular solution is

obtained as the Laplace transform of (10.2.1-1) with the y, y, y: etc. initial condition terms
ignored (Reference 10 - Appendix II, Laplace Transform Pair Number 6):

Y(S) = H(S) X(S) (10.2.1-2)

with

H(S) =
cx0 + cx1 S + cx2 S2 +

1 + cy1 S + cy2 S2 +
(10.2.1-3)

where

S = Laplace transform parameter.

X(S) = Laplace transform of x(t).

Y(S) = Laplace transform of the y(t) response to x(t).

H(S) = Transfer function defining the Y(S) response to the X(S) input. Since the
Laplace transform of a unit impulse is one, we see from (10.2.1-2) that the
Y(S) response to a unit impulse is H(S). Thus, the transfer function H(S) is
the Laplace transform of the y(t) impulse response.

Let us consider the Y(S) response to a general x(t) sinusoid of the form:

x(t) = A sin (ω t + ψ) (10.2.1-4)

where

ω, A, ψ = Frequency, amplitude, phase angle of the x(t) sinusoid, each considered
constant.

The Laplace transform of (10.2.1-4) is (Reference 10 - Appendix III, Laplace Transform Pair
Number 104):

X(S) =
A ω cos ψ + S sin ψ

S2 + ω2
(10.2.1-5)

and the Y(S) response from (10.2.1-2) will be:

10-76 VIBRATION EFFECTS ANALYSIS

Y(S) = H(S)
A ω cos ψ + S sin ψ

S2 + ω2
(10.2.1-6)

Equation (10.2.1-6) can be expanded as a linear function of its characteristic roots:

Y(S) =
E1

S - r1
 +

E2

S - r2
 +

E3

S - r3
 + +

D1

S + j ω
 +

D2

S - j ω
(10.2.1-7)

where
ri = Characteristic root of the H(S) denominator.

Ei, Di = Constants.

j = Imaginary number equal to the square root of minus one.

Equation (10.2.1-7) is based on H(S) having no equal denominator roots. If some of the ri’s
are equal, (10.2.1-7) will be a little more complicated, however, the results to follow will not be
affected. The Ei terms in (10.2.1-7) correspond to time functions (inverse Laplace transforms)

of the form Ei e
ri t (Reference 10 - Appendix III, Laplace Transform Pair Number 9). For a

stable process, the ri’s will be negative, hence, the Ei e
ri t terms will be transitory, decaying to

zero. What will be left, then, are the two Di terms. Let us analyze these terms in more detail.

The magnitude of each Di can be determined by multiplying (10.2.1-7) by the Di
denominator and setting the denominator to zero. For the D2 coefficient, setting the

denominator to zero corresponds to setting S = jω, hence:

Y(S) S - jω S → jω =

E1

S - r1
 +

E2

S - r2
 +

E3

S - r3
 + +

D1

S + j ω
 S - jω

 S → jω
+ D2 = D2

(10.2.1-8)

or with (10.2.1-6) for Y(S):

D2 = H(S)
A ω cos ψ + S sin ψ

S2 + ω2
 S - jω

 S → jω

= H(S)
A ω cos ψ + S sin ψ

S + jω S - jω
 S - jω

 S → jω
 = H(jω)

A ω cos ψ + j ω sin ψ

2 jω

(10.2.1-9)

hence:

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-77

D2 =
A cos ψ + j sin ψ

2 j
 H(jω) (10.2.1-10)

Similarly, we find for D1:

D1 = -
A cos ψ - j sin ψ

2 j
 H(- jω) (10.2.1-11)

Thus, D1 is the complex conjugate of D2.

Further analysis will be expedited if we introduce the well known mathematical identity
(Euler’s theorem):

e j ψ = cos ψ + j sin ψ (10.2.1-12)

Then (10.2.1-10) and (10.2.1-11) simplify to:

D1 = -
A
2 j

 e- j ψ H(- jω) D2 =
A
2 j

 e j ψ H(jω) (10.2.1-13)

Let us now analyze the form of the transfer function H(jω) in (10.2.1-13) for which we can
write in general:

H(jω) = Re(ω) + j Im(ω) (10.2.1-14)

where

Re(ω), Im(ω) = Real numbers corresponding to the real and imaginary portions

of H(jω).

We could have also defined the equivalent form:

H(jω) = B(ω) cos φ(ω) + j B(ω) sin φ(ω) (10.2.1-15)

which from (10.2.1-14) has the equivalencies:

B(ω) cos φ(ω) = Re(ω) B(ω) sin φ(ω) = Im(ω) (10.2.1-16)

where

B(ω), φ(ω) = Amplitude ratio and phase angle associated with H(j ω).

10-78 VIBRATION EFFECTS ANALYSIS

Taking the square root of the sum of the squares of the (10.2.1-16) and the arc tangent of the

ratio then provides the relationship between B(ω), φ(ω) and Re(ω), Im(ω):

B(ω) = Re(ω)
2
 + Im(ω)

2 φ(ω) = tan-1
Im(ω)

Re(ω)
(10.2.1-17)

The Equation (10.2.1-15) form will prove more useful for our purposes because we can then
apply our (10.2.1-12) formula for simplification:

H(jω) = B(ω) cos φ(ω) + j sin φ(ω) = B(ω) e j φ(ω) (10.2.1-18)

Similarly we find for the H(- jω) term in (10.2.1-13):

H(- jω) = B(ω) e- j φ(ω) (10.2.1-19)

Now substitute (10.2.1-18) - (10.2.1-19) into (10.2.1-13) to obtain for the Di coefficients:

D1 = -
A
2 j

 e- j ψ B(ω) e- j φ(ω) = -
A
2 j

 B(ω) e- j φ(ω) + ψ (10.2.1-20)

D2 =
A
2 j

 e j ψ B(ω) e j φ(ω) =
A
2 j

 B(ω) e j φ(ω) + ψ (10.2.1-21)

Equations (10.2.1-20) and (10.2.1-21) are in a convenient form for substitution back into
(10.2.1-7). First, however, let us state two other mathematical identities stemming from
Equation (10.2.1-12):

sin ψ =
1

2 j
 e j ψ - e- j ψ cos ψ =

1
2

 e j ψ + e- j ψ (10.2.1-22)

Let us now proceed back to equation (10.2.1-7) in which the Di terms can be combined into
the following form:

D1

S + j ω
 +

D2

S - j ω
 =

D1 S - j ω + D2 S + j ω

S2 + ω2
 =

D2 + D1 S + j D2 - D1 ω

S2 + ω2
(10.2.1-23)

The D2 + D1 and j D2 - D1 terms in (10.2.1-23) are then easily evaluated from (10.2.1-20) -

(10.2.1-22) to be:

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-79

D2 + D1 = A B(ω)
1

2 j
 e j φ(ω) + ψ - e- j φ(ω) + ψ = A B(ω) sin φ(ω) + ψ

j D2 - D1 = A B(ω)
1
2

 e j φ(ω) + ψ + e- j φ(ω) + ψ = A B(ω) cos φ(ω) + ψ
(10.2.1-24)

Finally, we substitute (10.2.1-23) with (10.2.1-24) into Equation (10.2.1-7) to obtain for Y(S):

Y(S) =
E1

S - r1
 +

E2

S - r2
 +

E3

S - r3
 +

 +
B(ω) A ω cos φ(ω) + ψ + S sin φ(ω) + ψ

S2 + ω2

(10.2.1-25)

Equation (10.2.1-25) is in a form that enables a simple inverse Laplace transformation back
to the time domain. Using Equations (10.2.1-4) and (10.2.1-5) as a guide, the result is:

yx(t) = Transitory terms + B(ω) A sin ω t + ψ + φ(ω)

for (10.2.1-26)

x(t) = A sin ω t + ψ

where

yx(t) = Portion of y(t) generated by x(t).

The transitory terms in (10.2.1-26) decay to zero for a stable process. Thus, Equation
(10.2.1-26) shows that the “steady state” response of y(t) to a sinusoidal x(t) input at frequency

ω is to generate a sinusoidal output at the same frequency ω, but with amplitude multiplied by

B(ω) and phase increased by φ(ω). The B(ω), φ(ω) factors represent the dynamic response
characteristics of the Equation (10.2.1-1) linear process as defined analytically by (10.2.1-14)
and (10.2.1-17) for the H(S) transfer function.

Equation (10.2.1-17) for B(ω), φ(ω) is generally not a convenient form for analytical
evaluation. For the remainder of this section we will develop an expanded version of this

equation that enables B(ω), φ(ω) to be calculated from individual contributors to the H(S)
transfer function.

Consider a linear process formed from a series of processes of the general form given by
(10.2.1-1). For example, let’s say y1(t) is generated from x(t) in a process of the general
(10.2.1-1) form, then y2(t) is generated from y1(t) using the (10.2.1-1) format but with y1(t)
input and y2(t) output (with different coefficients), y3(t) is formed from y2(t), etc., eventually
leading to y(t). Each of these processes (i.e., x(t) to y1(t), y1(t) to y2(t), y2(t) to y3(t), to y(t))

10-80 VIBRATION EFFECTS ANALYSIS

will have a transfer function and Laplace transform relating output to input of the form given in
(10.2.1-2) and (10.2.1-3). Thus:

Y1(S) = H1(S) X(S)

Y2(S) = H2(S) Y1(S) (10.2.1-27)

Y3(S) = H3(S) Y2(S)

where

Hi(S) = Transfer function of intermediate linear process.

Then the composite of (10.2.1-27) is:

Y(S) = H1(S) H2(S) H3(S) X(S) (10.2.1-28)

hence, with (10.2.1-2):

H(S) = H1(S) H2(S) H3(S) (10.2.1-29)

Consider that each of the transfer functions in (10.2.1-29) has a numerator and denominator
polynomial in S as in Equation (10.2.1-3):

Hi(S) =
HNumi (S)

HDeni (S)
(10.2.1-30)

where

HNumi(S), HDeni(S) = Numerator and denominator polynomials of Hi(S) .

Substituting jω for S with (10.2.1-30) in (10.2.1-29) then obtains:

H(jω) =
HNum1(jω) HNum2(jω) HNum3(jω)

HDen1(jω) HDen2(jω) HDen3(jω)
(10.2.1-31)

Using (10.2.1-14), (10.2.1-17) and (10.2.1-18) as a general framework, the HNumi(S),
HDeni (S) terms in (10.2.1-31) can be converted to the equivalent forms:

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-81

HNumi(jω) = ReNumi(ω) + j Im Numi(ω) = BNumi(ω) e j φNum i (ω)

BNumi(ω) = ReNumi

2
(ω) + ImNumi

2
(ω)

φNumi(ω) = tan-1
ImNumi(ω)

ReNumi(ω)

HDeni(jω) = ReDeni(ω) + j ImDeni(ω) = BDeni(ω) e j φDeni(ω) (10.2.1-32)

BDeni(ω) = ReDeni

2
(ω) + ImDeni

2
(ω)

φDeni(ω) = tan-1
ImDeni(ω)

ReDeni(ω)

where

ReNumi(ω), ImNumi(ω), ReDeni(ω), ImDeni(ω) = Real numbers corresponding to the real

and imaginary portions of HNumi(jω), HDeni(jω).

BNumi(ω), φNumi(ω), BDeni(ω), φDeni(ω) = Amplitude ratios and phase angles

associated with HNumi(jω), HDeni(jω).

Substituting (10.2.1-32) in (10.2.1-31) then yields for H(jω):

H(jω) =
BNum1(ω) BNum2(ω) BNum3(ω) e j φNum1(ω) + φNum2(ω) + φNum3(ω)

BDen1(ω) BDen2(ω) BDen3(ω) e j φDen1(ω) + φDen2(ω) + φDen3(ω)

(10.2.1-33)

=
BNum1(ω) BNum2(ω) BNum3(ω)

BDen1(ω) BDen2(ω) BDen3(ω)
 e j φNum1(ω) + φNum2(ω) + - φDen1(ω) - φDen2(ω) -

Finally, we equate the (10.2.1-33) result to (10.2.1-18) to obtain formula for the H(jω)
amplitude and phase angle as a function of the individual numerator/denominator component
amplitudes and phase angles:

B(ω) =
BNum1(ω) BNum2(ω) BNum3(ω)

BDen1(ω) BDen2(ω) BDen3(ω)

(10.2.1-34)

φ(ω) = φNum1(ω) + φNum2(ω) + φNum3(ω) + - φDen1(ω) - φDen2(ω) - φDen3(ω) -

10-82 VIBRATION EFFECTS ANALYSIS

10.2.2 LINEAR SYSTEM RESPONSE TO RANDOM INPUTS

Section 10.2.1 dealt with the response of linear systems to sinusoidal inputs at a particular
frequency. In this section we address the more general problem of describing linear system
response to general time function inputs that are random from time function sample to sample.
This will be accomplished by building on the results of the previous section using the Fourier
series approach (Reference 10 - Section 2.1) for describing a general time function over a
sample time interval:

p(t) = pi(t)∑
i = 0

∞

pi(t) = ai cos(i Δω t) + bi sin(i Δω t)

Δω =
2 π
T

a0 =
1
T

 p(t) dt
- 0.5 T

0.5 T

 b0 = 0 (10.2.2-1)

ai =
2
T

 p(t) cos(i Δω t) dt
- 0.5 T

0.5 T

 for i > 0

bi =
2
T

 p(t) sin(i Δω t) dt
- 0.5 T

0.5 T

 for i > 0

where

i = Index for terms in the Fourier series.

p(t) = General time function.

T = Width of the time interval over which the Fourier series fits the time function. The
particular form of the Fourier series in (10.2.2-1) is based on the time interval

extending from t = -
T
2

 to t =
T
2

.

Δω = Base frequency for the Fourier series corresponding to the time interval T.

pi(t) = Component i of the general Fourier series consisting of a sinusoid at frequency

i Δω.

ai, bi = Fourier series coefficients in pi(t).

For our purposes, the mean squared value of p(t) will be of primary importance which we
define as a linear average of p(t) squared over the Fourier series time interval:

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-83

p(t)2 =
1
T

 p(t)2 dt
- 0.5 T

0.5 T

(10.2.2-2)

where

p(t)2 = p(t) mean squared value.

If we substitute p(t) from (10.2.2-1) into (10.2.2-2) and analytically carry out the integration

operations, we can determine an expression for p(t)2 as a function of the Fourier coefficients:

p(t)2 =
1
T

 pi(t)∑
i = 0

∞
 pj(t)∑
j = 0

∞
 dt

- 0.5 T

0.5 T

=
1
T

 ai cos(i Δω t) + bi sin(i Δω t)∑
i = 0

∞
 aj cos(j Δω t) + bj sin(j Δω t)∑
j = 0

∞
 dt

- 0.5 T

0.5 T

=
1
T

 ai
2
 cos2(i Δω t) + bi

2
 sin2(i Δω t)∑

i = 0

∞

- 0.5 T

0.5 T

+ ∑
i = 0

∞
ai aj cos(i Δω t) cos(j Δω t) + ai bj cos(i Δω t) sin(j Δω t)∑

j = 0
j ≠i

∞
(10.2.2-3)

 + bi aj sin(i Δω t) cos(j Δω t) + bi bj sin(i Δω t) sin(j Δω t) dt

=
1
T

 ai
2
 cos2(i Δω t) + bi

2
 sin2(i Δω t)∑

i = 0

∞
 dt

- 0.5 T

0.5 T

=
1
T

 ai
2
 cos2(i Δω t) + bi

2
 sin2(i Δω t) dt

- 0.5 T

0.5 T

∑
i = 0

∞

where

j = Substitute (for i) Fourier series index.

or

10-84 VIBRATION EFFECTS ANALYSIS

p(t)2 =
1
2

 ai
2

 + bi
2∑

i = 0

∞
(10.2.2-4)

Let us now substitute for ai, bi from (10.2.2-1) to develop an equation for the
1
2

 ai
2
 + bi

2
’s in

(10.2.2-4) as a function of p(t) and the i Δω frequency associated with each i:

1
2

 a0
2
 + b0

2
 =

1

2 T2
 p(t) dt

- 0.5 T

0.5 T

 p(u) du
- 0.5 T

0.5 T

=
1

2 T2

- 0.5 T

0.5 T

 p(t) p(u) dt du
- 0.5 T

0.5 T

For i > 0:

1
2

 ai
2

 + bi
2

 =
2

T2
 p(t) cos(i Δω t) dt

- 0.5 T

0.5 T

 p(u) cos(i Δω u) du
- 0.5 T

0.5 T

(10.2.2-5)

+ p(t) sin(i Δω t) dt
- 0.5 T

0.5 T

 p(u) sin(i Δω u) du
- 0.5 T

0.5 T

=
2

T2

- 0.5 T

0.5 T

 p(t) p(u) cos(i Δω t) cos(i Δω u) + sin(i Δω t) sin(i Δω u) dt du
- 0.5 T

0.5 T

=
2

T2

- 0.5 T

0.5 T

 p(t) p(u) cos i Δω (u - t) dt du
- 0.5 T

0.5 T

where

u = Substitute (for t) running time parameter.

At this point we introduce the concept of a random process as an ensemble of p(t)’s
representing a potential group of p(t) histories running in parallel over time t. In fact, of course,
only one of the p(t)’s (randomly selected) will actually exist in the real world. We also
hypothesize that each p(t) ensemble member is random in some analytically defined manner
relative to the other members of the ensemble. Analyses can then be performed over the
ensemble at particular time points to statistically characterize p(t). For example, we will be
dealing with the expected value of the p(t) mean squared value which from (10.2.2-4) can be
written as:

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-85

E p(t)2 = E
1
2

 ai
2

 +bi
2∑

i = 0

∞
(10.2.2-6)

where

E () = Expected value operator representing the average of () over the ensemble
members at some time point t.

Continued development of Equations (10.2.2-5) in the statistical ensemble world is expedited
by introducing the following parameter definition:

τ ≡ u - t (10.2.2-7)

where

τ = Time difference parameter that will soon be identified as the correlation time for
the p(t) ensemble random process.

Using (10.2.2-7) and its converse u = t + τ, the expected value of (10.2.2-5) for (10.2.2-6) is:

E
1
2

 a0
2
 + b0

2
 =

1

2 T2

u = - 0.5 T

0.5 T

ϕpp(t, τ) dt du
t = - 0.5 T

0.5 T

(10.2.2-8)

E
1
2

 ai
2
 + bi

2
 =

2

T2

u = - 0.5 T

0.5 T

 ϕpp(t, τ) cos i Δω τ dt du
t = - 0.5 T

0.5 T

 For i > 0

in which

ϕpp(t, τ) ≡ E p(t) p(t + τ) (10.2.2-9)

where

ϕpp(t, τ) = Autocorrelation function for p(t) with the separation time parameter τ
identified as the correlation time.

For our purposes we will only be considering “stationary” random processes for which the
autocorrelation function is independent of t and a function only of the correlation time:

ϕpp(t, τ) = ϕpp(τ) (10.2.2-10)

Equations (10.2.2-8) can be converted into a single integration process if we perform it in a
coordinate frame (u, t space) that is rotated from u, t by 45 degrees. Then the following
transformation equations apply:

10-86 VIBRATION EFFECTS ANALYSIS

u' =
1

2
 (u - t) t' =

1

2
 (u + t) (10.2.2-11)

where

u', t' = Transformed u, t parameters.

Figure 10.2.2-1 depicts the Equation (10.2.2-11) axes and the integration limit boundaries
associated with Equations (10.2.2-8).

u

t

T
2

T
22 T

T
2

T
2

T
2

T
2

u'
t'

2 T - 2 u'

2 T + 2 u'

Figure 10.2.2-1 Integration Parameter Transformation

Given (10.2.2-10), the integrands in (10.2.2-8) are only a function of τ. From (10.2.2-11)

and (10.2.2-7) we see that τ is constant for a particular u'. Hence, the integrands in (10.2.2-8)
are also constant for a given u'. This characteristic allows the (10.2.2-8) double integration
process to be simplified by performing the integration in u', t' space over the same area as the

(10.2.2-8) u, t area (i.e., the area within the square having u, t boundaries of ±
T
2

). Let us

execute the (10.2.2-8) double integration in u', t' space first along t' (for which u' is constant),

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-87

and then along u'. As can be seen from Figure 10.2.2-1, the t' integration range is from

-
1
2

 2 T - 2 u' to +
1
2

 2 T - 2 u' , or from -
1
2

 2 T + 2 u' to +
1
2

 2 T + 2 u' , depending on

whether u' is positive or negative. The u' integration range is from - T / 2 to + T / 2. Then
the double integrals in (10.2.2-8) have the form:

u = - 0.5 T

0.5 T

f(τ) dt du
t = - 0.5 T

0.5 T

 =

u' = - T

2

0

f(τ) dt' du'
t' = - 1

2
 2 T + 2 u'

1

2
 2 T + 2 u'

 +
u' = 0

 T

2
f(τ) dt' du'

t' = - 1

2
 2 T - 2 u'

1

2
 2 T - 2 u'

(10.2.2-12)

= 2 T + 2 u' f(τ) du'
- T

2

0

 + 2 T - 2 u' f(τ) du'
0

 T

2

where

f(τ) = Integrand in either of the Equation (10.2.2-8) expressions.

Let us now combine (10.2.2-7) and u' from (10.2.2-11) giving:

u' =
1

2
 τ du' =

1

2
 dτ (10.2.2-13)

From Equation (10.2.2-13) we see that τ = 2 u', hence, τ goes from - T to + T as u' goes from
- T / 2 to + T / 2. Then (10.2.2-12) with (10.2.2-13) simplifies to:

u = - 0.5 T

0.5 T

f(τ) dt du
t = - 0.5 T

0.5 T

 = T + τ f(τ) dτ
- T

0

 + T - τ f(τ) dτ
0

T

 = T f(τ) + τ f(τ) dτ
- T

0

 + T f(τ) - τ f(τ) dτ
0

T
(10.2.2-14)

Equation (10.2.2-14) can be further simplified if we now consider processes of long time

duration for which T is large. The f(τ) function in (10.2.2-14) is, from (10.2.2-8) and

(10.2.2-10), either ϕpp(τ) or ϕpp(τ) cos i Δω τ , hence has magnitude on the order of ϕpp(τ).

As usual for random processes, we will assume a zero mean for the p(t) process at any time

10-88 VIBRATION EFFECTS ANALYSIS

point t. We also know from the nature of random processes that ϕpp(τ) becomes small as τ
becomes large. For large T, therefore, we are justified in neglecting the τ f(τ) terms in

(10.2.2-14) compared to the T f(τ) terms. Thus, for large T, (10.2.2-14) reduces to:

- 0.5 T

0.5 T

f(τ) du dt
- 0.5 T

0.5 T

 = T f(τ) dτ
- T

T

 For Large T (10.2.2-15)

Applying (10.2.2-15) in (10.2.2-8) then gives:

For Large T:

E
1
2

 a0
2
 + b0

2
 =

1
2 T

 ϕpp(τ) dτ
- T

T

E
1
2

 ai
2
 + bi

2
 =

2
T

 ϕpp(τ) cos i Δω τ dτ
- T

T

 For i > 0

(10.2.2-16)

It is advantageous to recognize that (10.2.2-10) implies that ϕpp(τ) is a symmetrical function

of τ (i.e., same value for positive or negative τ) as is easily shown by expansion of (10.2.2-9)

with t equal to any time s, and then setting s to t - τ:

ϕpp(t,τ) = ϕpp(τ) = ϕpp(s,τ) = E p(s) p(s + τ)

 = E p(t - τ) p(t) = E p(t) p(t - τ) = ϕpp t, - τ = ϕpp(- τ)
(10.2.2-17)

We also know that cos i Δω τ in (10.2.2-16) is a symmetrical function of τ. Then, using

(10.2.2-1) for Δω, we see that (10.2.2-16) is:

E
1
2

 a0
2
 + b0

2
 = Δω

1

4 π
 ϕpp(τ) dτ

- T

T

 = Δω
1

2 π
 ϕpp(τ) dτ

0

T

E
1
2

 ai
2

 + bi
2

 = Δω
1

π
 ϕpp(τ) cos i Δω τ dτ

- T

T

(10.2.2-18)

 = Δω
2

π
 ϕpp(τ) cos i Δω τ dτ

0

T

 For i > 0

REVIEW OF LINEAR DYNAMIC FREQUENCY RESPONSE ANALYTICS 10-89

Now we are ready to let T go to infinity in the limit. From Equation (10.2.2-1) we see that

this corresponds to letting Δω go to an infinitesimal dω. We also define:

ω ≡ i Δω (10.2.2-19)

for which (10.2.2-18) then becomes the differential:

E
1
2

 a(0) 2 + b(0) 2 = dω
1
4

 G(0)

E
1
2

 a(ω)
2
 + b(ω)

2
 = dω G(ω) For ω > 0

(10.2.2-20)

in which we have defined:

G(ω) ≡ 2
π

 ϕpp(τ) cos ωτ dτ
0

∞

(10.2.2-21)

where

G(ω) = Power spectral density of the p(t) random process. As an aside, it can be
readily verified that (10.2.2-21) is equivalent to the Fourier transform of the

autocorrelation function ϕpp(τ).

Note that in light of (10.2.2-19), the functional dependence of ai, bi on the i index has been

modified in (10.2.2-20) to a functional dependence on the new frequency parameter ω.

For typical random processes in which ϕpp(τ) decreases to zero with increasing τ, Equation

(10.2.2-21) shows that G(0) will be finite. Then the E
1
2

 a(0)2 + b(0)2 term in (10.2.2-20)

becomes negligible, and we can write in general, without ω specificity:

1

dω
 E

1
2

 a(ω)
2
 + b(ω)

2
 = G(ω) (10.2.2-22)

Equation (10.2.2-22) with (10.2.2-1) for p(t) will form the basis for analyses in Section 10.4
that translate Section 10.1 results into the expected system response under random vibration
inputs.

Finally, let us return to (10.2.2-4) for E p(t)2 and look at this equation in the limit as T goes

to infinity and Δω goes to dω:

10-90 VIBRATION EFFECTS ANALYSIS

E p(t)2 = E
1
2

 ai
2

 + bi
2∑

i = 0

∞
 =

1

Δω
 E

1
2

 a(ω)
2
 + b(ω)

2
 Δω∑

i = 0

∞

=
1

dω
 E

1
2

 a(ω)
2
 + b(ω)

2
 dω

0

∞ (10.2.2-23)

Thus, with (10.2.2-22), we have the well known result:

E p(t)2 = G(ω) dω
0

∞

(10.2.2-24)

10.3 RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT

Section 10.1 analyzed the effect of sinusoidal angular rate and linear acceleration vibrations at
discrete frequencies on strapdown INS computational performance. The results were
summarized in Equations (10.1.5-1). Equations (10.1.5-1) are based on assumed inertial
sensor sinusoidal output characteristics (amplitude and phase). In this section we will use the
results of Section 10.2.1 to rewrite Equations (10.1.5-1) based on the sinusoidal output
response of the inertial sensors to a specified system level input sinusoidal vibration at a
particular frequency and phase angle:

pVib(t) = pVib0 sin (Ωt + ψpVib) (10.3-1)

where

pVib(t) = Generalized system sinusoidal vibration input.

Ω, pVib0, ψpVib = Frequency, amplitude and phase angle associated with pVib(t) .

The pVib(t) vibration could be an acceleration or angular rate vibration that is specified at

some particular location and direction in the vehicle in which the INS is mounted. An example
would be a sinusoidal vibration specified as an input to the INS mount along a particular INS
axis. Because the INS inertial sensors are typically not rigidly connected to the mount (e.g., due
to elastomeric isolators - See Section 10.5), the vibration felt by the sensors will be shifted in
amplitude and phase from the pVib(t) amplitude/phase. For this section, pVib(t) will be

considered as acting along a constant direction in the B Frame. Let us now consider strapdown
inertial sensor angular and linear response in the B Frame to the general pVib(t) vibration input.
Using Equation (10.2.1-26) we can write for the (10.3-1) form of pVib(t) :

RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT 10-91

θ(t) = ux θx(t) + uy θy(t) + uz θz(t)

 θx(t) = Bθx pVib0 sin Ωt + ψpVib + φθx

 θy(t) = Bθy pVib0 sin Ωt + ψpVib + φθy

 θz(t) = Bθz pVib0 sin Ωt + ψpVib + φθz

(10.3-2)

aSF(t) = ux aSFx(t) + uy aSFy(t) + uz aSFz(t)

 aSFx(t) = BaSFx pVib0 sin Ω t + ψpVib + φaSFx

 aSFy(t) = BaSFy pVib0 sin Ω t + ψpVib + φaSFy

 aSFz(t) = BaSFz pVib0 sin Ω t + ψpVib + φaSFz

(10.3-3)

where

θ(t) = B Frame vibration “angle” vector which we define as the integrated B Frame

angular rate. We also define θ(t) such that the angular rate in the B Frame

(sensed by the strapdown angular rate sensors) is the derivative of θ(t) .

aSF(t) = B Frame specific force acceleration vector that would be measured by the
strapdown accelerometers.

θx(t), θy(t), θz(t), aSFx(t), aSFy(t), aSFz(t) = B Frame X, Y, Z components of θ(t)

and aSF(t).

Bθx, Bθy, Bθz, φθx, φθy, φθz = Amplitude ratios and phase angles associated with the

transfer functions relating pVib(t) to the θx(t), θy(t),

θz(t) response at frequency Ω.

BaSFx, BaSFy, BaSFz, φaSFx, φaSFy, φaSFz = Amplitude ratios and phase angles

associated with the transfer functions relating pVib(t) to the

aSFx(t), aSFy(t), aSFz(t) response at frequency Ω.

A more general treatment would consider pVib(t) as a three component vector with each
component being a sinusoid with unique phase relationship between the component sinusoids.

The effect on θ(t) and aSF(t) in Equations (10.3-2) - (10.3-3) would be to linearly add terms for
the additional axis components, of identical form to those shown. This general treatment

10-92 VIBRATION EFFECTS ANALYSIS

adds a considerable degree of complexity, and doesn’t alter the essential characteristic of results
obtained. For simplicity then, we will only consider the single axis pVib(t) definition. It is
worthy of note to point out that typical vibration test specifications for INS’s are also based on
the vibration input being along a fixed axis relative to the INS, hence, the single axis pVib(t)
approach has merit if one is concerned with performance prediction for a vibration test.

Let us now consider how pVib(t) and its (10.3-2) - (10.3-3) response impacts the βm,

ΔvSculm and δvSFSculSnsDyn performance parameters in Equations (10.1.5-1). The results will

then be easily extended to the remaining (10.1.5-1) vibration performance parameters.

From the Section 10.1.1.2.1 analyses leading to βm (in Equation (10.1.1.2.1-14)), we know

that the βm equation is based on the following inertial sensor outputs (from (10.1.1-1)):

θ(t) = ux θx(t) + uy θy(t)
(10.3-4)

θx(t) = θ0x sin Ω t - ϕθx θy(t) = θ0y sin Ω t - ϕθy

The Z component response of βm to the previous input is from (10.1.1.2.1-14):

βmz =
1
2

 Ω θ0x θ0y sin ϕθy - ϕθx 1 -
sin ΩTm

ΩTm

(10.3-5)

where

βmz = B Frame Z component of βm.

If the derivation of βm in Section 10.1.1.2.1 is reviewed, it should be clear that each

component of βm is formed from the products of angular vibration terms along the other

component axes. Hence, products of X/Y vibrations produced the βmz Z component of βm,

and Y/Z, Z/X vibration products would have produced X and Y components for βm. We

should add that this same general rule applies for all of the vibration performance vector

parameters in summary Equations (10.1.5-1). Thus, had a θz(t) component been included in

(10.3-4), the (10.3-5) βzm result would have been the same, but βmx, βmy components would

also have been present. Values for these βmx, βmy can be readily derived directly from (10.3-5)

by permuting subscripts. With this general understanding, we will continue this section dealing

RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT 10-93

only with the Z axis response of the (10.1.5-1) performance parameters as representative of
each B Frame axis response to a B Frame three-axis vibration.

Continuing with the βmz analysis, then, we quickly see by comparing the X, Y components

of (10.3-4) and (10.3-2) that:

θ0x = Bθx pVib0 ϕθx = - ψpVib - φθx

θ0y = Bθy pVib0 ϕθy = - ψpVib - φθy

(10.3-6)

Substituting (10.3-6) into (10.3-5) provides the desired equation for βmz as a function of

pVib(t) characteristics.

βmz =
1
2

 Ω Bθx Bθy pVib 0

2
 sin φθx - φθy 1 -

sin ΩTm

ΩTm

(10.3-7)

Let’s apply a similar treatment for the ΔvSculm term in (10.1.5-1). From the Section

10.1.2.2.1 analyses leading to ΔvSculm (in Equation (10.1.2.2.1-11)), we know that the ΔvSculm

equation is based on the (10.1.2-1) and (10.1.2-3) inertial sensor inputs having angular motion

about B Frame axis X and linear motion along B Frame axis Y producing ΔvSculm along B

Frame axis Z. From the same analyses, it should also be apparent that sinusoidal angular
motion about B Frame Y coupled with linear motion along B Frame X at the same frequency

will also produce ΔvSculm along B Frame Z. A more general version of the (10.1.5-1) ΔvSculm

expression that accounts for combined B Frame X, Y angular/linear vibration is obtained by

inspection and direct expansion of (10.1.2-1), (10.1.2-3) and ΔvSculm in (10.1.5-1) using

subscript permutation for the Y-angular/X-linear vibration portion:

θ(t) = ux θx(t) + uy θy(t)

θx(t) = θ0x sin Ω t - ϕθx θy(t) = θ0y sin Ω t - ϕθy
(10.3-8)

aSF(t) = ux aSFx(t) + uy aSFy(t)

aSFx(t) = aSF0x sin Ω t - ϕaSFx aSFy(t) = aSF0y sin Ω t - ϕaSFy

ΔvScul-mz =
1
2

 θ0x aSF0y cos ϕaSFy - ϕθx

 - θ0y aSF0x cos ϕaSFx - ϕθy 1 -
sin ΩTm

ΩTm

(10.3-9)

10-94 VIBRATION EFFECTS ANALYSIS

where

ΔvScul-mz = B Frame Z component of ΔvSculm.

Comparing the X, Y components of (10.3-8) and (10.3-2) - (10.3-3) we quickly see that:

θ0x = Bθx pVib0 ϕθx = - ψpVib - φθx

θ0y = Bθy pVib0 ϕθy = - ψpVib - φθy
(10.3-10)

aSF0x = BaSFx pVib0 ϕaSFx = - ψpVib - φaSFx

aSF0y = BaSFy pVib0 ϕaSFy = - ψpVib - φaSFy

Substituting (10.3-10) into the (10.3-9) ΔvScul-mz
 expression provides the desired equation for

ΔvScul-mz as a function of pVib(t) characteristics:

ΔvScul-mz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy

 - Bθy BaSFx cos φθy - φaSFx 1 -
sin ΩTm

ΩTm

(10.3-11)

For the δvSF/SculSnsDyn performance parameter in (10.1.5-1) we must account for the

dynamic response of the inertial sensors to inputs derived from pVib(t) . From the Section

10.1.4.2 analyses leading to δvSF/SculSnsDyn (in Equation (10.1.4.2-6)), we know that the

δvSF/SculSnsDyn equation is based on (10.1.4.2-1) - (10.1.4.2-2) inertial sensor inputs/outputs

having angular motion about B Frame axis X and linear motion along B Frame axis Y

producing δvSF/SculSnsDyn along B Frame axis Z. From the same analyses, it should also be

apparent that sinusoidal angular motion about B Frame Y coupled with linear motion along B

Frame X at the same frequency will also produce δvSF/SculSnsDyn along B Frame Z. A more

general version of the (10.1.5-1) δvSF/SculSnsDyn expression that accounts for combined B

Frame X, Y angular/linear vibration is obtained by inspection and direct expansion of

(10.1.4.2-1), (10.1.4.2-2) and δvSF/SculSnsDyn in (10.1.5-1) using subscript permutation for the

Y-angular/X-linear vibration portion:

ωIB(t) = ux θ0x Ω cos Ω t - ϕθx + uy θ0y Ω cos Ω t - ϕθy

aSF(t) = ux aSF0x sin Ω t - ϕaSFx + uy aSF0y sin Ω t - ϕaSFy

(10.3-12)

RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT 10-95

ωARS(t) = ux ωARS0x cos Ω t - ϕωARSx + uy ωARS0y cos Ω t - ϕωARSy

aAccl(t) = ux aAccl0x sin Ω t - ϕaAccl x + uy aAccl0y sin Ω t - ϕaAccl y

(10.3-13)

δvSF/Scul/SnsDynz =
1
2

 ωARS0x
1

Ω
 aAccl0y cos ϕaAccly - ϕωARSx

- θ0x aSF0y cos ϕaSFy - ϕθx -
1
2

 ωARS0y
1

Ω
 aAccl0x cos ϕaAccl x - ϕωARSy (10.3-14)

- θ0y aSF0x cos ϕaSFx - ϕθy

where

δvSF/Scul/SnsDynz
 = B Frame Z component of δvSF/SculSnsDyn.

ωARS0x, ωARS0y, aAccl0x, aAccl0y = Amplitudes for the ωARS(t), aAccl(t) angular
rate sensor and accelerometer B Frame X, Y axis

sinusoidal outputs at frequency Ω.

ϕωARSx, ϕωARSy, ϕaAccl x, ϕaAccl y = Phase angles for the ωARS(t), aAccl(t)

angular rate sensor and accelerometer B Frame X,

Y axis sinusoidal outputs at frequency Ω.

The ωIB(t) expression in (10.3-12) is the derivative of the equivalent angular vibration
equation:

θ(t) = ux θ0x sin Ω t - ϕθx + uy θ0y sin Ω t - ϕθy (10.3-15)

Comparing (10.3-15) and the aSF(t) expression in (10.3-12) with the X, Y components of
(10.3-2) - (10.3-3) we see that (10.3-10) still applies. Equation (10.2.1-26) shows that the

dependence of ωARS(t), aAccl(t) on ωIB(t), aSF(t) as defined in (10.3-12) - (10.3-13) is:

ωARS(t) = ux BωARSx
 θ0x Ω cos Ω t - ϕθx + φωARSx

+ uy BωARSy
 θ0y Ω cos Ω t - ϕθy + φωARSy

(10.3-16)

aAccl(t) = ux BaAcclx aSF0x sin Ω t - ϕaSFx + φaAcclx

+ uy BaAccly aSF0y sin Ω t - ϕaSFy + φaAccly

10-96 VIBRATION EFFECTS ANALYSIS

where

BωARSx
, BωARSy

, φωARSx, φωARSy = Amplitude ratios and phase angles associated

with the X, Y angular rate sensor response to

applied inputs at frequency Ω.

BaAcclx, BaAccly, φaAcclx, φaAccly = Amplitude ratios and phase angles associated with
the X, Y accelerometer response to applied inputs

at frequency Ω.

Comparing (10.3-16) and (10.3-13) we see that:

ωARS0x = BωARSx
 θ0x Ω ϕωARSx = ϕθx - φωARSx

ωARS0y = BωARSy
 θ0y Ω ϕωARSy = ϕθy - φωARSy

(10.3-17)

aAccl0x = BaAcclx aSF0x ϕaAcclx = ϕaSFx - φaAcclx

aAccl0y = BaAccly aSF0y ϕaAccly = ϕaSFy - φaAccly

Combining (10.3-17) and (10.3-10) then finds:

ωARS0x = BωARSx
 Bθx pVib0 Ω ϕωARSx = - ψpVib - φθx - φωARSx

ωARS0y = BωARSy
 Bθy pVib0 Ω ϕωARSy = - ψpVib - φθy - φωARSy

(10.3-18)

aAccl0x = BaAcclx BaSFx pVib0 ϕaAcclx = - ψpVib - φaSFx - φaAcclx

aAccl0y = BaAccly BaSFy pVib0 ϕaAccly = - ψpVib - φaSFy - φaAccly

Finally, we substitute (10.3-18) and (10.3-10) into the (10.3-14) δvSF/Scul/SnsDynz

expression to obtain the equation for δvSF/Scul/SnsDynz as a function of pVib(t) characteristics:

δvSF/Scul/SnsDynz =
1
2

 pVib0

2
 Bθx BaSFy BωARSx

 BaAccly cos φθx

 + φωARSx - φaSFy - φaAccly - cos φθx - φaSFy

(10.3-19)

- Bθy BaSFx BωARSy
 BaAcclx cos φθy + φωARSy - φaSFx - φaAcclx - cos φθy - φaSFx

The above treatment can also be applied to the remaining performance parameters in
Equations (10.1.5-1). By inspection of Equation (10.3-11) compared to (10.3-9) for

RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT 10-97

ΔvScul-mz, and Equation (10.3-7) compared to (10.3-5) for βmz, the equivalent results for the

remaining (10.1.5-1) parameters should be obvious. The overall result (including the

previously derived ΔvScul-mz , βmz, δvSF/Scul/SnsDynz equations) is given by:

ΦConz =
1
2

 Ω Bθx Bθy pVib 0

2
 sin φθx - φθy

βmz =
1
2

 Ω Bθx Bθy pVib 0

2
 sin φθx - φθy 1 -

sin ΩTm

ΩTm

βAlgo-m z =
1
2

 Ω Bθx Bθy pVib 0

2
 sin φθx - φθy 1 +

1
3

 1

- cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

δΦAlgo-m z = δβAlgo-m z =
1
2

 Ω Bθx Bθy pVib 0

2
 sin φθx - φθy 1 +

1
3

 1

- cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

vSF/Sculz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy (10.3-20)

- Bθy BaSFx cos φθy - φaSFx

ΔvScul-mz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy

- Bθy BaSFx cos φθy - φaSFx 1 -
sin ΩTm

ΩTm

ΔvScul/Algo-mz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy

- Bθy BaSFx cos φθy - φaSFx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

(Continued)

10-98 VIBRATION EFFECTS ANALYSIS

δvSF/Algo-mz = δΔvScul/Algo-mz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy

- Bθy BaSFx cos φθy - φaSFx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

δRSF/Algo(t) = - uVib
1

Ω2
 pVib0 BaSF Ω(t - t0)

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω

+
1

12
 (Ω′ Tl)

2
 f1 (Ω′ Tl) cos Ω t0 + ψpVib + φaSF f1 Ω′(t - t0)

- sin (Ω t0 + ψpVib + φaSF) Ω′ (t - t0) f2 Ω′(t - t0)

-
1

12
 Ω Tl cos Ω′(t - t0) + Ω t0 + ψpVib + φaSF

(10.3-20)
(Continued)

- cos (Ω t0 + ψpVib + φaSF) (1 - cos Ω′ Tl)

Ω′ = Ω -
2 π
Tl

Ω Tl

2 π Intgr

f1 and f2 are defined by Equations (10.1.3.2.3-16)

f(t) =
1
2

 Bhx Bhy pVib0

2
 cos φhx - φhy

δaAcclG2 = LG2
1
2

 BAcclInpt BAcclPend pVib0

2
 cos φaAccl Inpt - φaAccl Pend

δaAcclAniso = LAniso
1
2

 BωIBAccl/Inpt
 BωIBAccl/Pend

 pVib0

2
 cos φωIBAccl/Inpt - φωIBAccl/Pend

δvSF/Scul/SnsDynz =
1
2

 pVib0

2
 Bθx BaSFy BωARSx

 BaAccly cos φθx

+ φωARSx - φaSFy - φaAccly - cos φθx - φaSFy

- Bθy BaSFx BωARSy
 BaAcclx cos φθy + φωARSy - φaSFx - φaAcclx - cos φθy - φaSFx

where

ΦConz
 , βAlgo-mz

 , δ ΦAlgo-mz
 , δ βAlgo-mz = B Frame Z axis components of

ΦCon, βAlgom, δΦAlgom, δβAlgom.

vSF/Sculz
 , ΔvScul/Algo-mz

 , δvSF/Algo-mz
, δΔvScul/Algo-mz

 = B Frame Z axis

components of vSFScul, ΔvScul/Algom, δvSF/Algom, δΔvScul/Algom

RESPONSE TO SINUSOIDAL SYSTEM VIBRATION INPUT 10-99

BaSF, φaSF = Amplitude ratio and phase angle associated with the transfer function

relating pVib(t) to the response of δRSF/Algo(t) in Equations (10.1.5-1)

at frequency Ω.

Bhx, Bhy, φhx, φhy = Amplitude ratios and phase angles associated with the transfer

functions relating pVib(t) to the response of the Section 10.1.4.1

hx(t), hy(t) parameters at frequency Ω.

BAcclInpt, BAcclPend, φaAccl Inpt, φaAccl Pend = Amplitude ratios and phase angles

associated with the transfer functions relating pVib(t)
to the response of the Section 10.1.4.1

aAcclInpt(t), aAcclPend(t) parameters at frequency Ω.

BωIBAccl/Inpt
, BωIBAccl/Pend

, φωIBAccl/Inpt, φωIBAccl/Pend = Amplitude ratios and phase

angle associated with the transfer functions relating pVib(t)
to the response of the S e c t i o n 1 0 . 1 . 4 . 1

ωIBAccl/Inpt(t), ωIBAccl/Pend(t) parameters at frequency Ω.

10.4 RESPONSE TO RANDOM SYSTEM VIBRATION INPUT

In Section 10.3 we developed analytical expressions for several INS vibration sensitive
performance parameters for a general system sinusoidal vibration input p(t) at a particular
frequency along a particular B frame direction. The overall results have been summarized in
Equations (10.3-20). In this section we analyze the problem of defining INS vibration
performance in the presence of a general random vibration system input profile. The problem
will be addressed as an extension of the Section 10.3 discrete frequency results to the general
random vibration profile case using the Section 10.2.2 Fourier series approach. We begin, as in
Section 10.2.2, by first defining the vibration input profile as the general Fourier series:

pVib(t) = pVibi(t)∑
0

∞

pVibi(t) = aVibi sin ωit + bVibi cos ωit
(10.4-1)

where

pVib(t) = General system vibration input (angular or linear) in a fixed B Frame
direction.

pVibi(t) = Contribution of frequency ωi components to pVib(t) .

aVibi, bVibi = Fourier series coefficients associated with pVib(t) .

10-100 VIBRATION EFFECTS ANALYSIS

We assume, of course, as in Equations (10.2.2-19) and (10.2.2-1), that ωi satisfies:

ωi = i Δω Δω =
2 π
T

(10.4-2)

where

T = Width of the time interval over which the Fourier series fits the pVib(t) time
function.

Equation (10.4-1) for pVibi(t) can also be written in the alternative form:

pVibi(t) = pVib0/i sin (ωi t + ψpVibi) (10.4-3)

where

pVib0/i, ψpVibi = Amplitude and phase angle for the pVibi(t) sinusoid.

Upon expansion we get:

pVibi(t) = pVib0/i sin ωi t cos ψpVibi + cos ωi t sin ψpVibi (10.4-4)

Comparing (10.4-4) with the pVibi(t) expression in (10.4-1) we see that:

pVib0/i cos ψpVibi = aVibi pVib0/i sin ψpVibi = bVibi (10.4-5)

from which:

pVib0/i = aVibi

2
 + bVibi

2 ψpVibi = tan -1bVibi

aVibi

(10.4-6)

Section 10.4.1 to follow evaluates the βmz parameter in Equations (10.3-20) under the above

pVib(t) vibration exposure. The result is then extended as in Section 10.2.2, to the response

under random vibration. Then, using the βmz results as a template, the random vibration

response of the remaining Equation (10.3-20) parameters is determined. An exception is the
(10.3-20) position algorithm error parameter which, due to the complexity of its random
response development, is derived separately in Section 10.4.2.

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-101

10.4.1 ATTITUDE/VELOCITY RESPONSE TO RANDOM VIBRATION INPUT

Let us now address the problem of determining the βmz coning performance parameter

response to random vibration. As in Section 10.2.2, we first find the response of βmz to the

Section 10.4 defined pVib(t) vibration profile. We begin by writing the equivalent to (10.3-2)
for the B Frame angular response to each pVibi(t) component from the (10.4-3) definition:

θi(t) = ux θx i(t) + uy θyi(t) + uz θzi(t)

 θx i(t) = Bθx/i pVib0/i sin ωit + ψpVibi + φθx/i

 θyi(t) = Bθy/i pVib0/i sin ωit + ψpVibi + φθy/i

 θzi(t) = Bθz/i pVib0/i sin ωit + ψpVibi + φθz/i

(10.4.1-1)

where

θi(t) = B Frame vibration “angle” vector response to pVibi(t) which we also define as
the integrated B Frame angular rate response.

θx i(t), θyi(t), θzi(t) = B Frame X, Y, Z components of θi(t) .

Bθx/i, Bθy/i, Bθz/i, φθx/i, φθy/i, φθz/i = Amplitude ratios and phase angles associated

with the transfer functions relating pVibi(t) to the

θx i(t), θyi(t), θzi(t) response at frequency ωi.

Note (as in Section 10.3) that for a more general multi-axis pVib(t) definition, Equations
(10.4-1) - (10.4.1-1) would contain additional terms of identical form for each added pVib(t)
component. This section will eventually consider pVib(t) to be a random process. For the
general pVib(t) case, if we consider each added pVib(t) component as a random process that is

independent of the others, the net statistical result eventually obtained will be the linear sum of
the effect of each pVib(t) component acting independently. Based on this understanding, we

will continue the discussion (as in Section 10.3) based on our simplified single B Frame
direction pVib(t) component model, which is also consistent with pVib(t) definitions in INS

test specifications.

We assume a linear response of θi(t) to pVibi(t) , hence, the total angular response around

axes X, Y and Z (i.e., θx(t), θy(t), θz(t)) is the sum of the i component responses:

10-102 VIBRATION EFFECTS ANALYSIS

θx(t) = θx i(t)∑
i = 0

∞
 θy(t) = θyi(t)∑

i = 0

∞
 θz(t) = θzi(t)∑

i = 0

∞

θ(t) = ux θx(t) + uy θy(t) + uz θz(t)

(10.4.1-2)

We seek the βmz response to the total angular vibration θ(t) of (10.4.1-2). If Sections

10.1.1.1, 10.1.1.2 and 10.1.1.2.1 are reviewed, it will be recalled that βmz (the B Frame Z

component of βm) is derived from the integral of products between X and Y axis angular-

displacement/angular-rate vibrations. Section 10.1.1.1 showed that if the frequencies for the X
and Y axis angular vibrations were equal, a net coning attitude rate will develop around the Z

axis. The βmz term represents the portion of the coning rate computed by the high speed

Section 7.1.1.1.1 coning algorithm. Section 10.1.1.1 also showed that if the angular vibrations
around the X and Y axes were of different frequencies, no net coning rate motion would

develop. Based on these factors, consider what the Z axis coning response will be to θx(t) and

θy(t) vibrations as defined in (10.4.1-2) and (10.4.1-1). The product of the X, Y effects will

create a summation of products at the same and at different ωi frequencies. The overall coning

rate generated about the Z axis will only be produced from the products at the same frequency.
Each of the same frequency products will generate an individual contribution to the net coning

rate for its particular frequency ωi. Then the total coning rate will be the sum of each of these i

coning rate contributions. Thus, we can write:

βmz = βmz/i∑
i = 0

∞
(10.4.1-3)

where

βmz/i = Contribution to βmz from the θx i(t), θyi(t) vibration components.

A more rigorous derivation of (10.4.1-3) is too time consuming for presentation here. If
desired, the reader can verify its authenticity as an analytical exercise.

An equation for βmz/i (based on the (10.4.1-1) angular vibration input) is readily obtained by

inspection of the βmz result in Equations (10.3-20) (based on the (10.3-2) angular vibration

input):

βmz/i =
1
2

 ωi Bθx/i Bθy/i pVibo/i

2
 sin φθx/i - φθy/i 1 -

sin ωi Tm

ωi Tm

(10.4.1-4)

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-103

Then substituting (10.4.1-4) in (10.4.1-3) with rearrangement and application of (10.4-6) for

pVibo/i, we find for βmz:

βmz = ωi Bθx/i Bθy/i sin φθx/i - φθy/i 1 -
sin ωi Tm

ωi Tm

1

Δω

1
2

 aVibi

2
 + bVibi

2
 Δω∑

i = 0

∞

(10.4.1-5)

Equation (10.4.1-5) is now in a form in which we can account for random nature in pVib(t)

vibration through use of the expected value operator:

E βmz = ωi Bθx/i Bθy/i sin φθx/i - φθy/i 1 -
sin ωi Tm

ωi Tm

1

Δω

1
2

 E aVibi

2
 + bVibi

2
 Δω∑

i = 0

∞

(10.4.1-6)
where

E () = Expected value operator.

As an aside, we note that if the more general multi-axis pVib(t) model had been used with

independent components, the independence assumption would result in deleting all cross-axis
product terms in Equation (10.4.1-6), leaving a summation for each pVib(t) input axis

component of identical form as the Equation (10.4.1-6) summation term. Hence, the effect of
each independent pVib(t) input axis component can be determined individually, as in this
section, with the combined effect of all pVib(t) input axis components obtained as the linear

sum of the response for each.

As in Section 10.2.2, we now let T go to infinity in the limit which sets Δω to the

infinitesimal dω, and replace the i dependence in (10.4.1-6) by ω dependence. The result is:

E βmz = ω Bθx(ω) Bθy(ω) sin φθx(ω) - φθy(ω) 1

0

∞

 -
sin ω Tm

ω Tm

1

dω
 E

1
2

 aVib(ω)
2
 + bVib(ω)

2
 dω

(10.4.1-7)

Finally, with Equation (10.2.2-22), we identify the
1

dω
 E

1
2

 aVib(ω)
2
 + bVib(ω)

2
 term as the

pVib(t) random process power spectral density. Thus, (10.4.1-7) assumes the final form:

10-104 VIBRATION EFFECTS ANALYSIS

E βmz = ω Bθx(ω) Bθy(ω) sin φθx(ω) - φθy(ω) 1 -
sin ω Tm

ω Tm

 GpVib(ω) dω

0

∞

(10.4.1-8)

where

GpVib(ω) = Power spectral density for the pVib(t) random process.

In a typical INS technical specification, GpVib(ω) is a defined profile for test purposes. The

GpVib(ω) profile presented in such specifications was probably derived from a form of

Equation (10.2.2-21), with ϕpp(τ) computed from (10.2.2-9) using a representative ensemble
of pVib(t) samples.

For comparison with (10.4.1-8), let us now write the βmz discrete frequency result from

Equations (10.3-20):

βmz =
1
2

 Ω Bθx Bθy pVib 0

2
 sin φθx - φθy 1 -

sin ΩTm

ΩTm

(10.4.1-9)

Comparing (10.4.1-8) with (10.4.1-9) it should be obvious how to convert all of the summary
Equation (10.3-20) discrete frequency performance parameters to their equivalent expected

values under random vibration exposure; simply replace all Ω terms with ω, identify ω

dependency for the amplitude ratios and phase angles, replace the
1
2

 pVib0

2
 term with the power

spectral density equivalent GpVib(ω) dω, and integrate over the frequency spectrum from zero

to infinity. Except for the δRSF/Algo(t) response (treated separately in Section 10.4.2 to

follow), the overall random response result for the Equation (10.3-20) parameters is:

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-105

E ΦConz = ω Bθx(ω) Bθy(ω) sin φθx(ω) - φθy(ω) GpVib(ω) dω
0

∞

E βmz = ω Bθx(ω) Bθy(ω) sin φθx(ω) - φθy(ω) 1 -
sin ω Tm

ω Tm

 GpVib(ω) dω

0

∞

E βAlgo-m z = ω Bθx(ω) Bθy(ω) sin φθx(ω) - φθy(ω) 1 +
1
3

 1

0

∞

(10.4.1-10)

- cos ω Tl
sin ω Tl

ω Tl

 -
sin ω Tm

ω Tm

 GpVib(ω) dω

E δΦAlgo-m z = E δβAlgo-m z = ω Bθx(ω) Bθy(ω) sin φθx(ω) - φθy(ω) 1 +
1
3

 1

0

∞

- cos ω Tl
sin ω Tl

ω Tl

 - 1 GpVib(ω) dω

E vSF/Sculz
 = Bθx(ω) BaSFy(ω) cos φθx(ω) - φaSFy(ω)

0

∞

- Bθy(ω) BaSFx(ω) cos φθy(ω) - φaSFx(ω) GpVib(ω) dω

E ΔvScul-mz
 = Bθx(ω) BaSFy(ω) cos φθx(ω) - φaSFy(ω)

0

∞

- Bθy(ω) BaSFx(ω) cos φθy(ω) - φaSFx(ω) 1 -
sin ω Tm

ω Tm

 GpVib(ω) dω

(Continued)

10-106 VIBRATION EFFECTS ANALYSIS

E ΔvScul/Algo-mz = Bθx(ω) BaSFy(ω) cos φθx(ω) - φaSFy(ω)
0

∞

- Bθy(ω) BaSFx(ω) cos φθy(ω) - φaSFx(ω) 1 +
1
3

 1

- cos ω Tl
sin ω Tl

ω Tl

 -
sin ω Tm

ω Tm

 GpVib(ω) dω (10.4.1-10)
(Continued)

E δvSF/Algo-mz = E δΔvScul/Algo-mz = Bθx(ω) BaSFy(ω) cos φθx(ω) - φaSFy(ω)
0

∞

- Bθy(ω) BaSFx(ω) cos φθy(ω) - φaSFx(ω) 1 +
1
3

 1

- cos ω Tl
sin ω Tl

ω Tl

 - 1 GpVib(ω) dω

E f(t) = Bhx(ω) Bhy(ω) cos φhx(ω) - φhy(ω) GpVib(ω) dω
0

∞

E δaAcclG2 = LG2 BAcclInpt(ω) BAcclPend(ω) cos φaAcclInpt(ω)
0

∞

- φaAcclPend(ω) GpVib(ω) dω

E δaAcclAniso = LAniso BωIBAccl/Inpt(ω) BωIBAccl/Pend(ω) cos φωIBAccl/Inpt(ω)
0

∞

- φωIBAccl/Pend(ω) GpVib(ω) dω

(Continued)

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-107

E δvSF/Scul/SnsDynz
 = Bθx(ω) BaSFy(ω) BωARSx(ω) BaAccly(ω) cos φθx(ω)

0

∞

+ φωARSx(ω) - φaSFy(ω) - φaAccly(ω) - cos φθx(ω) - φaSFy(ω)
(10.4.1-10)
(Continued)

- Bθy(ω) BaSFx(ω) BωARSy(ω) BaAcclx(ω) cos φθy(ω) + φωARSy(ω) - φaSFx(ω)

- φaAcclx(ω) - cos φθy(ω) - φaSFx(ω) GpVib(ω) dω

We also note from Equation (10.2.2-24) that:

E pVib(t)2 = GpVib(ω) dω
0

∞

(10.4.1-11)

10.4.2 POSITION ALGORITHM ERROR RESPONSE TO
RANDOM SYSTEM VIBRATION INPUT

To find the position algorithm error response to random vibration inputs, we begin with

δRSF/Algo(t) from Equations (10.3-20) and revise it to an equivalent format based on analytical

equivalencies developed in Section 10.1.3.2.3. In particular, we first use Equations
(10.1.3.2.3-15) and (10.1.3.2.3-18) to write:

sin Ω′(t - t0) + Ω t0 + ψpVib + φaSF - sin (Ω t0 + ψpVib + φaSF)

= cos (Ω t0 + ψpVib + φaSF) sin Ω′(t - t0)

- sin (Ω t0 + ψpVib + φaSF) 1 - cos Ω′(t - t0) (10.4.2-1)

= Ω′(t - t0) cos Ω t0 + ψpVib + φaSF f1 Ω′(t - t0)

- sin (Ω t0 + ψpVib + φaSF) Ω′(t - t0) f2 Ω′(t - t0)

or the inverse:

cos Ω t0 + ψpVib + φaSF f1 Ω′(t - t0)

 - sin (Ω t0 + ψpVib + φaSF) Ω′(t - t0) f2 Ω′(t - t0)

=
1

Ω′(t - t0)
 sin Ω′(t - t0) + Ω t0 + ψpVib + φaSF

(10.4.2-2)

- sin (Ω t0 + ψpVib + φaSF)

10-108 VIBRATION EFFECTS ANALYSIS

We also know from (10.1.3.2.3-16) that:

f1(Ω′ Tl) =
sin Ω′ Tl

Ω′ Tl

(10.4.2-3)

Substituting (10.4.2-2) in the (10.3-20) δRSF/Algo(t) expression, and (10.4.2-3) in the first
1
12

expression in δRSF/Algo(t) , finds the alternate form:

δRSF/Algo(t) = - uVib
1

Ω2
 pVib0 BaSF

Ω

Ω′

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω

+
1

12
 Ω′ Tl sin Ω′ Tl sin Ω′(t - t0) + Ω t0 + ψpVib + φaSF

- sin (Ω t0 + ψpVib + φaSF) -
1

12
 Ω Tl cos Ω′(t - t0) + Ω t0 + ψpVib + φaSF

(10.4.2-4)

- cos (Ω t0 + ψpVib + φaSF) (1 - cos Ω′ Tl)

Ω′ = Ω -
2 π
Tl

Ω Tl

2 π Intgr

(10.4.2-5)

The reader should recognize the above process as a partial reversal of steps in Section

10.1.3.2.3 that led to the (10.1.3.2.3-19) singularity free δRSF/Algo(t) form (from which the

(10.3-20) δRSF/Algo(t) version was derived). Let us now define parameters (some used

previously) to simplify (10.4.2-4):

φ ≡ Ω t0 + ψpVib + φaSF β ≡ Ω Tl

D ≡
 Ω

Ω′

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -

 Ω′

Ω
 +

1
12

 Ω′ Tl sin Ω′ Tl

(10.4.2-6)

With (10.4.2-6), Equation (10.4.2-4) is:

δRSF/Algo(t) = - uVib
1

Ω2
 pVib0 BaSF D sin Ω′(t - t0) + φ - sin φ

 -
1

12
 β cos Ω′(t - t0) + φ - cos φ (1 - cos Ω′ Tl)

(10.4.2-7)

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-109

We now equate δRSF/Algo(t) to the sum of the responses to independent vibration inputs,
each along the same vibration axis uVib. Based on (10.4.2-5) - (10.4.2-7) we write:

δRSF/Algo(t) = δRSF/Algoi(t)∑
i

(10.4.2-8)

δRSF/Algoi(t) = - uVib
1

ωi
2

 pVib0/i BaSFi D i sin ωi′(t - t0) + φi - sin φi

 -
1

12
 βi cos ωi′(t - t0) + φi - cos φi (1 - cos ωi′ Tl)

βi = ωi Tl φi = ωi t0 + ψpVibi + φaSFi ωi′ = ωi -
2 π
Tl

ωi Tl

2 π Intgr

Di =
ωi

ωi′

f1 (ωi′ Tl)

2 f2 (ωi′ Tl)
 -

 ωi′

ωi

 +
1

12
 ωi′ Tl sin ωi′ Tl

(10.4.2-9)

where

δRSF/Algoi(t) = The response of δRSF/Algo(t) to the pVibi(t) vibration of Equation

(10.4-1) and (10.4-5) at frequency ωi.

ωi′ = Folded version of ωi.

The response of δRSF/Algo(t) to random inputs will be calculated in the form of the variance

about the mean of its “signed magnitude” which, with (10.4.2-8), is defined by:

δRSF/Algo(t) ≡ uVib ⋅ δRSF/Algo(t) δRSF/Algoi(t) ≡ uVib ⋅ δRSF/Algoi(t)

(10.4.2-10)
δRSF/Algo(t) = uVib ⋅ δRSF/Algoi(t)∑

i

 = δRSF/Algoi(t)∑
i

where

δRSF/Algo(t) , δRSF/Algoi(t) = The “signed magnitudes” of δRSF/Algo(t) and

δRSF/Algoi(t) defined as their projections along the vibration axis.

10-110 VIBRATION EFFECTS ANALYSIS

Using (10.4.2-8), and assuming that δRSF/Algo(t) has zero mean value (i.e., purely

oscillatory in (10.4.2-8) - (10.4.2-9) with random pVibi(t) phase angle ψpVibi), the variance of

δRSF/Algo(t) about its mean is from (10.4.2-10):

E δRSF/Algo
2

(t) = E δRSF/Algoi(t)∑
i

 δRSF/Algoj(t)∑
j

= E δRSF/Algoi

2
(t)∑

i

 + 2 ∑
i ≠ j

E δRSF/Algoi(t) δRSF/Algoj(t)∑
j

(10.4.2-11)

where

E () = Expected value operator defined as an average at the particular time t across the
ensemble of possible pVibi(t) vibration components (i.e., each i component
having a random possible amplitude and phase angle).

j = Dummy index for i.

We assume that the i vibration components are statistically independent from one another so
that the expected value of products between unequal i components is zero. Then (10.4.2-11)
simplifies to:

E δRSF/Algo
2

(t) = E δRSF/Algoi

2
(t)∑

i

(10.4.2-12)

At this point we make some assumptions regarding the statistical characteristics of the
(10.4-1) and (10.4-5) pVibi(t) vibration components. In particular, we define the pVib0/i

amplitude and ψpVibi phase to be statistically independent of one another so that we can write:

P(pVib0/i,ψpVibi) = P(pVib0/i) P(ψpVibi) (10.4.2-13)

where

P(pVib0/i,ψpVibi) = Joint probability density function associated with the random

parameters pVib0/i and ψpVibi. The probability that pVib0/i and

ψpVibi will lie in the infinitesimally small interval dpVib0/i and

dψpVibi over the range of possible pVib0/i and ψpVibi values,

equals P(pVib0/i,ψpVibi) dpVib0/i dψpVibi.

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-111

P(pVib0/i) , P(ψpVibi) = Individual probability density functions associated with

pVib0/i and ψpVibi. P(pVib0/i) dpVib0/i is the probability that

pVib0/i lies in the infinitesimally small interval dpVib0/i;

P(ψpVibi) dψpVibi is the probability that ψpVibi lies in the

infinitesimally small interval dψpVibi.

Based on the definition for P(pVib0/i,ψpVibi) , the expected value for an arbitrary function to

lie in the dpVib0/i and dψpVibi intervals equals the function multiplied by P(pVib0/i,ψpVibi)

dψpVibi dpVib0/i. Then the expected value of the function over the range of possible pVib0/i and

ψpVibi values is the double integral of the function multiplied by P(pVib0/i,ψpVibi) over these

ranges. We define the range of pVib0/i to be from zero to plus infinity and the range of ψpVibi

to be from - π to + π. For our case, the particular function we will be analyzing will be a

function of pVib0/i multiplied by a function of ψpVibi. Thus, using (10.4.2-13) we can write:

E f(pVib0/i) g(ψpVibi)

=
0

∞

f(pVib0/i) g(ψpVibi) P(pVib0/i) P(ψpVibi) dψpVibi dpVib0/i
- π

π

(10.4.2-14)

= f(pVib0/i) P(pVib0/i) dpVib0/i
0

∞

 g(ψpVibi) P(ψpVibi) dψpVibi
- π

π

where

f(), g() = General functions of the variable in brackets.

But from the definitions for P(pVib0/i) and P(ψpVibi) , the expected values for f(pVib0/i) and

g(ψpVibi) are the single integral terms in (10.4.2-14). Thus, (10.4.2-14) is:

E f(pVib0/i) g(ψpVibi) = E f(pVib0/i) E g(ψpVibi) (10.4.2-15)

with

E f(pVib0/i) = f(pVib0/i) P(pVib0/i) dpVib0/i
0

∞

(10.4.2-16)

10-112 VIBRATION EFFECTS ANALYSIS

E g(ψpVibi) = g(ψpVibi) P(ψpVibi) dψpVibi
- π

π

(10.4.2-17)

Using φi as defined in (10.4.2-9), we can also write:

g(ψpVibi) = h(φi) (10.4.2-18)

where

h(φi) = General function of φi that is independent of pVib0/i.

Based on (10.4.2-18), (10.4.2-15) is equivalently:

E f(pVib0/i) h(φi) = E f(pVib0/i) E h(φi) (10.4.2-19)

We can also write for P(ψpVibi) over the range of ψpVibi:

P(ψpVibi) dψpVibi
- π

π

 = 1 (10.4.2-20)

which states that the probability is one for ψpVibi to be in its defined range. Assuming that

ψpVibi has equal probability (i.e., constant probability density) of being anywhere in the - π to

+ π interval, (10.4.2-20) shows that:

P(ψpVibi) =
1

2 π
(10.4.2-21)

Using (10.4.2-21) for P(ψpVibi) , (10.4.2-17) becomes:

E g(ψpVibi) =
1

2 π
 g(ψpVibi) dψpVibi

- π

π

(10.4.2-22)

Using (10.4.2-22), we see that:

E sin (A + ψpVibi) = 0 E cos (A + ψpVibi) = 0

E sin (A + ψpVibi) cos (A + ψpVibi) = 0 (10.4.2-23)

E sin2(A + ψpVibi) =
1
2

E cos2(A + ψpVibi) =
1
2

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-113

where

A = General parameter that is independent of ψpVibi.

Equations (10.4.2-23) can be used to find the expected value of more complicated
expressions that we will need in developing our position error response to random vibrations.
For example, consider the function:

sin (B + φi) - sin φi cos (B + φi) - cos φi

= sin (B + φi) cos (B + φi) - sin (B + φi) cos φi

 - sin φi cos (B + φi) + sin φi cos φi

= sin (B + φi) cos (B + φi) - sin B cos2φi - cos B sin φi cos φi
(10.4.2-24)

- cos B sin φi cos φi + sin B sin2φi + sin φi cos φi

= sin (B + φi) cos (B + φi) + sin B (sin2φi - cos2φi) + (1 - 2 cos B) sin φi cos φi

in which φi is as defined in (10.4.2-9) and where

B = General parameter that is independent of φi.

Substituting φi from (10.4.2-9) in (10.4.2-24) finds:

sin (B + φi) - sin φi cos (B + φi) - cos φi

= sin (A + B + ψpVibi) cos (A + B + ψpVibi)

 + sin B sin2(A + ψpVibi) - cos2(A + ψpVibi)
(10.4.2-25)

+ (1 - 2 cos B) sin (A + ψpVibi) cos (A + ψpVibi)

in which

A = ωi t0 + φaSFi (10.4.2-26)

Taking the expected value of (10.4.2-25) then shows with (10.4.2-23) that:

E sin (B + φi) - sin φi cos (B + φi) - cos φi = 0 (10.4.2-27)

Consider the function sin (B + φi) - sin φi
 2

. First we note that:

sin (B + φi) - sin φi = sin B cos φi + cos B sin φi - sin φi

 = sin B cos φi - sin φi (1 - cos B)
(10.4.2-28)

so that

10-114 VIBRATION EFFECTS ANALYSIS

sin (B + φi) - sin φi
 2

 = sin2B cos2φi

 - 2 sin φi cos φi (1 - cos B) sin B + sin2φi (1 - cos B) 2 (10.4.2-29)

Substituting φi from (10.4.2-9) in (10.4.2-29), taking the expected value, and applying

(10.4.2-23) then obtains:

E sin (B + φi) - sin φi
 2

 =
1
2

 sin2B +
1
2

 (1 - cos B)2

 =
1
2

 sin2B + 1 - 2 cos B + cos2B = 1 - cos B
(10.4.2-30)

In a similar manner we find:

E cos (B + φi) - cos φi
 2

 = 1 - cos B (10.4.2-31)

We are now ready to apply our results in determining the expected value of δRSF/Algi

2
(t) .

First we write from (10.4.2-9) and (10.4.2-10):

δRSF/Algoi(t) = - F i Hi

Fi ≡
1

ωi
2

 pVib0/i BaSFi (10.4.2-32)

Hi ≡ Di sin ωi′(t - t0) + φi - sin φi

-
1

12
 βi cos ωi′(t - t0) + φi - cos φi (1 - cos ωi′ Tl)

2

from which we get:

δRSF/Algoi

2
(t) = f(pVib0/i) h(φi)

f(pVib0/i) ≡ Fi
2

 =
1

ωi
4

 pVib0/i

2
 BaSFi

2

h(φi) ≡ Hi
2

 = Di
2

 sin ωi′(t - t0) + φi - sin φi
 2

(10.4.2-33)

-
1
6

 D i β i sin ωi′(t - t0) + φi - sin φi cos ωi′(t - t0) + φi - cos φi (1 - cos ωi′ Tl)

+
1

144
 β

i
2
 cos ωi′(t - t0) + φi - cos φi

 2
 (1 - cos ωi′ Tl)

 2

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-115

The expected value of δRSF/Algoi

2
(t) in (10.4.2-12) is then found by applying (10.4.2-19) to

(10.4.2-33) with (10.4.2-27), (10.4.2-30) and (10.4.2-31):

E δRSF/Algoi

2
(t) =

1

ωi
4

 E (pVib0/i

2
) BaSFi

2
 Di

2

 +
1

144
 β

i
2
 (1 - cos ωi′ Tl)

2
 1 - cos ωi′(t - t0)

(10.4.2-34)

Returning to (10.4.2-9) for the Di definition, we write:

Di =
ωi

ωi′
 Ei +

1
12

 ωi′ Tl sin ωi′ Tl Ei ≡
f1 (ωi′ Tl)

2 f2 (ωi′ Tl)
 -

 ωi′

 ωi

(10.4.2-35)

Using (10.4.2-35) and the (10.4.2-9) βi definition, the middle term in (10.4.2-34) becomes:

Di
2
 +

1
144

 βi
2
 (1 - cos ωi′ Tl)

2

=
ωi

2

ωi′
2

 Ei
 2 + 2

ωi
2

ωi′
2

 Ei
1
12

 ωi′ Tl sin ωi′ Tl

 +
ωi

2

ωi′
2

1

144
 ωi

2
′ Tl

2
 sin2ωi′ Tl +

1
144

 βi
2
 (1 - cos ωi′ Tl)

 2

=
ωi

2

ωi′
2

 Ei
 2 + 2 Ei

ωi

ωi′

1
12

 βi sin ωi′ Tl

(10.4.2-36)

+
1

144
 βi

2
 sin2ωi′ Tl +

1
144

 βi
2
 (1 - cos ωi′ Tl)

 2

=
ωi

2

ωi′
2

 Ei
 2 +

1
6

 Ei
ωi

ωi′
 βi sin ωi′ Tl

+
1

144
 βi

2
 sin2ωi′ Tl + (1 - cos ωi′ Tl)

 2

The last bracketed term in (10.4.2-36) simplifies to:

sin2ωi′ Tl + (1 - cos ωi′ Tl)
 2

 = sin2ωi′ Tl + 1 - 2 cos ωi′ Tl + cos2ωi′ Tl

 = 2 (1 - cos ωi′ Tl)
(10.4.2-37)

Using (10.4.2-37), Equation (10.4.2-36) reduces:

10-116 VIBRATION EFFECTS ANALYSIS

Di
2
 +

1
144

 βi
2
 (1 - cos ωi′ Tl)

2

 =
ωi

2

ωi′
2

 Ei
 2 +

1
6

 Ei
ωi

ωi′
 βi sin ωi′ Tl +

1
72

 βi
2
 (1 - cos ωi′ Tl)

(10.4.2-38)

With (10.4.2-38) and (10.4.2-9) for βi, (10.4.2-34) becomes:

E δRSF/Algoi

2
(t) =

1

ωi
4

 E (pVib0/i

2
) BaSFi

2

ωi
2

ωi′
2

 Ei
 2

+
1
6

 Ei
ωi

2

ωi′
 Tl sin ωi′ Tl +

1
72

 (ωi Tl)
2
 (1 - cos ωi′ Tl) 1 - cos ωi′(t - t0)

(10.4.2-39)

Equation (10.4.2-39) is now in a convenient form for introducing the (10.1.3.2.3-16)

functions to eliminate ωi′ singularities. As in (10.1.3.2.3-17) and (10.1.3.2.3-18) we write:

sin ωi′ Tl = ωi′ Tl f1(ωi′ Tl) 1 - cos ωi′ Tl = (ωi′ Tl)
2
 f2(ωi′ Tl)

 1 - cos ωi′(t - t0 = ωi′ (t - t0)
 2

 f2 ωi′(t - t0)
(10.4.2-40)

Applying (10.4.2-40) in (10.4.2-39) with rearrangement yields the desired singularity free form

for E δRSF/Algoi

2
(t) :

E δRSF/Algoi

2
(t) = (t - t0)2 BaSFi

2

1

ωi
2

 Ei
 2 +

1
6

 (ωi′ Tl)
2
 Ei f1(ωi′ Tl)

 +
1

12
 (ωi′ Tl)

2
 f2(ωi′ Tl) f2 ωi′(t - t0) E (pVib0/i

2
)

(10.4.2-41)

We substitute (10.4.2-41) in (10.4.2-12) with (10.4-6) for pVib0/i to obtain for the

δRSF/Algo(t) variance:

E δRSF/Algo
2

(t) = (t - t0)2 BaSFi

2

1

ωi
2

 Ei
 2 +

1
6

 (ωi′ Tl)
2
 Ei f1(ωi′ Tl)

 ∑

i

+
1

12
 (ωi′ Tl)

2
 f2(ωi′ Tl) f2 ωi′(t - t0)

1

Δω
 E aVibi

2
 + bVibi

2
 Δω

(10.4.2-42)

RESPONSE TO RANDOM SYSTEM VIBRATION INPUT 10-117

in which Δω as has been defined previously in Section 10.4 by Equations (10.4-2). In the limit

as Δω → dω, (10.4.2-42) becomes:

E δRSF/Algo
2

(t) = (t - t0)2 BaSF
2

(ω)
2

ω2
 E(ω)

 2
+

1
6

 (ω′ Tl)
2

 E(ω) f1(ω′ Tl)

0

∞

+
1

12
 (ω′ Tl)

2
 f2(ω′ Tl) f2 ω′(t - t0)

1

dω
 E

1
2

 aVib
2

(ω) + bVib
2

(ω) dω

(10.4.2-43)

Finally, with Equation (10.2.2-22), we identify the
1

dω
 E

1
2

 aVib
2

(ω) + bVib
2

(ω) term as the

pVib(t) random process power spectral density so that with (10.4.2-35) and (10.4.2-9) in the

limit for E(ω) and ω′:

E δRSF/Algo
2

(t) = (t - t0)2 BaSF
2

(ω)
2

ω2
 E(ω)

 2
+

1
6

 (ω′ Tl)
2
 E(ω) f1(ω′ Tl)

0

∞

+
1

12
 (ω′ Tl)

2
 f2(ω′ Tl) f2 ω′(t - t0) GpVib(ω) dω (10.4.2-44)

ω′ = ω -
2 π
Tl

ω Tl

2 π Intgr

E(ω) =
f1 (ω′ Tl)

2 f2 (ω′ Tl)
 -
ω′

ω

The f1 and f2 functions in (10.4.2-44) are defined by Equations (10.1.3.2.3-16).

Equations (10.4.2-44) provide a singularity free version of the E δRSF/Algo
2

(t) response to

the GpVib(ω) random input vibration power spectrum for addition to the Equations (10.4.1-10)

overall random response performance summary list.

10.5 SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL

The results of Sections 10.3 and 10.4 summarized in Equations (10.3-20), (10.4.1-10) and
(10.4.2-44) are based on having knowledge of the INS sensor assembly dynamic response to

applied pVib(t) input vibrations as represented by the B(ω), φ(ω) amplitude-ratio/phase-angle

terms. Finding values for these terms can be a time consuming computer aided software design
process involving complex mechanical modeling of the INS structure and how it

10-118 VIBRATION EFFECTS ANALYSIS

mechanically couples to the pVib(t) vibration source. Due to its complexity, the process is

inherently prone to data input error that distorts results obtained. To provide a reasonableness
check on the results, simplified dynamic models are frequently employed for comparison that
lend themselves to closed-form analytical solutions. Once the detailed modeling results match
the simplified model within its approximation uncertainty, the detailed model is deemed valid

for use in estimating B(ω), φ(ω).

From a broader perspective, it must be recognized that it is virtually impossible to develop an
accurate mechanical dynamic model for an INS in a user vehicle due to variations in mechanical
structural properties between INS’s of a particular design (e.g., variations in stiffness/damping
characteristics of electronic circuit boards in their respective card guides, variations in
mechanical housings, variations in mounting interfaces, etc.), as well as variations in the
characteristics for a particular INS over temperature and time. On the other hand, for

performance analysis purposes, only “ball-park” accuracy is generally required for the B(ω),

φ(ω) dynamic characteristics. All things considered, it becomes reasonable to use the

simplified analytical models for B(ω), φ(ω), thereby eliminating the need for cumbersome
computerized modeling.

In this section we will develop simplified analytical models depicting the INS sensor
response to vibration excitation. These models will then serve as the basis for the simulation
analysis tool described in Section 10.6 for estimating numerical values of the Section 10.3 and
10.4 vibration performance parameters under prescribed system input vibration exposures.
Two simplified models will be considered; one based on the INS sensor assembly dynamic
response to a linear system input forcing function; the other based on the response to a rotary
input forcing function.

10.5.1 DYNAMIC MODEL RESPONSE TO LINEAR SYSTEM FORCING FUNCTION

The simplified dynamic model with linear system input forcing is based on the Figure
10.5.1-1 sketch illustrating the response of the INS sensor assembly to prescribed linear input
motion of the INS mount.

In Figure 10.5.1-1, the sensor assembly (round shaped object) is shown interfaced to the INS
mount (the vertical “wall”) through two elastomeric isolators with identified spring/damping
characteristics (k1, k2 and c1, c2). The sensor assembly has freedom to translate to the left and
right, and to rotate in the plane of the page. The mount interface “wall” has a prescribed
dynamic position displacement that drives the sensor assembly motion through the isolators.
Nominally, the isolators have equal spring damping characteristics, and are attached to the
sensor assembly at equal distances from the center of mass (i.e., what is known as a CG

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-119

k1

k2

c2

c1

x1

x2

x
xF

θ

δl
l

l

SENSOR
ASSEMBLY

MOUNT
INTERFACE

ACTUAL
CENTER OF

MASS

NOMINAL
CENTER OF

MASS

L

Figure 10.5.1-1 Sensor Assembly Dynamic Response to Linear Forcing

mount). For such an arrangement, translational motion of the mount wall generates no net
torque around the sensor assembly center of mass. Nominally, then, no rotation will be
generated under wall mount linear vibration. Sensor assembly rotation will be generated from
asymmetries in the isolators (variations in the spring/damping characteristics) and variations in
the lever arm distances between the isolators and the sensor assembly center of mass. Based on
the Figure 10.5.1-1 model and assuming small angle response, we write the classical
Newtonian equations relating the sensor assembly angular acceleration to applied torques
around the center of mass, and the sensor assembly center of mass acceleration to the applied
forces:

m
d2(x + θ δl)

dt2
 = - c1 x1 - xF - k1 x1 - xF - c2 x2 - xF - k2 x2 - xF (10.5.1-1)

J θ = - c1 x1 - xF + k1 x1 - xF l - δl + c2 x2 - xF + k2 x2 - xF l + δl (10.5.1-2)

with

10-120 VIBRATION EFFECTS ANALYSIS

x1 = x + l θ x2 = x - l θ (10.5.1-3)

where

xF = Linear distance movement of the sensor mount wall from its neutral position
under forced “F” input motion of the sensor mount interface wall. The neutral
position is defined as the position of the sensor mount interface wall under zero
dynamic wall motion.

θ = Sensor assembly angular response to xF from its neutral angular orientation. The
neutral angular orientation is defined as the orientation of the sensor assembly
under zero dynamic motion of the sensor mount interface wall.

x = Linear distance movement response to xF of the sensor assembly nominal center
of mass point from its neutral position. The neutral position is defined as the
position of the nominal center of mass point under zero dynamic motion of the
sensor mount interface wall.

x1, x2 = Linear distance movement response to xF of the sensor assembly isolator
attachment points from their neutral position. The sensor assembly isolator
attachment point neutral positions are defined as the position of the attachment
points under zero dynamic motion of the sensor mount interface wall.

k1, c1, k2, c2 = Spring, damping coefficients for the upper and lower isolators.

l = Nominal distance from each sensor-assembly isolator attachment point to the
nominal sensor assembly center of mass.

δl = Distance between the nominal and actual sensor assembly centers of mass.

J = Moment of inertia of the sensor assembly about its actual center of mass.

m = Mass of the sensor assembly.

Equations (10.5.1-1) - (10.5.1-2) assume that the axis of rotation is a principal moment of

inertia axis so that product of inertia terms do not appear (Reference 8 - Section 5-3). The θ δl
term in (10.5.1-1) is the small displacement of the actual relative to the nominal center of mass

(based on θ being small), thus x + θ δl is the actual center of mass total displacement. We

intuitively expect the θ δl term to be second order, hence, negligible, but will carry it for a while
to check our intuition. Now, let’s define:

 k ≡
1
2

 k1 + k2 c ≡
1
2

 c1 + c2

δk ≡ k2 - k1 δc ≡ c2 - c1

(10.5.1-4)

where

k, c = Average isolator spring, damping coefficients.

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-121

δk, δc = Spring/damping mismatch between the isolators.

From (10.5.1-4) we see that:

k1 = k -
1
2

 δk k2 = k +
1
2

 δk

c1 = c -
1
2

 δc c2 = c +
1
2

 δc
(10.5.1-5)

Substituting (10.5.1-3) and (10.5.1-5) into (10.5.1-1) and grouping terms gives:

m
d2(x + θ δl)

dt2
 = m x + m δl θ

= - c -
1
2

 δc x + l θ - xF - k -
1
2

 δk x + l θ - xF (10.5.1-6)

- c +
1
2

 δc x - l θ - xF - k +
1
2

 δk x - l θ - xF

= - 2 c x - xF - 2 k x - xF + δc l θ + δk l θ

or upon rearrangement:

m x + 2 c x + 2 k x = 2 c xF + 2 k xF - m δl θ + δc l θ + δk l θ (10.5.1-7)

Applying (10.5.1-3) and (10.5.1-5) to (10.5.1-2) and neglecting δ term products as second
order finds:

J θ = - c -
1
2

 δc x + l θ - xF + k -
1
2

 δk x + l θ - xF l - δl

+ c +
1
2

 δc x - l θ - xF + k +
1
2

 δk x - l θ - xF l + δl (10.5.1-8)

= - 2 c l2 θ - 2 k l2 θ + l δc x - xF + l δk x - xF + 2 c δl x - xF + 2 k δl x - xF

or upon rearrangement:

J θ + 2 c l2 θ + 2 k l2 θ = l δc + 2 c δl x - xF + l δk + 2 k δl x - xF (10.5.1-9)

To combine (10.5.1-7) and (10.5.1-9), it is advantageous to use their Laplace transform
equivalents:

10-122 VIBRATION EFFECTS ANALYSIS

m S2 + 2 c S + 2 k X(S) = 2 c S + 2 k XF(S) + - m δl S2 + δc l S + δk l ϑ(S)
(10.5.1-10)

J S2 + 2 c l2 S + 2 k l2 ϑ(S) = l δc + 2 c δl S + l δk + 2 k δl X(S) - XF(S)
(10.5.1-11)

where

S = Laplace transform parameter.

X(S), ϑ(S) , XF(S) = Laplace transforms of x(t), θ(t) and xF(t) .

The system input is generally specified as an acceleration rather than a position vibration. We
can also specify the linear response of the sensor assembly as an acceleration rather than
position displacement through the following definitions and Laplace transform equivalencies:

aF ≡ xF XF(S) =
1

S2
 AF(S)

a ≡ x X(S) =
1

S2
 A(S)

(10.5.1-12)

where

a, aF = Acceleration associated with x, xF.

A(S), AF(S) = Laplace transforms of a, aF.

Substituting (10.5.1-12) into (10.5.1-10) and rearranging then obtains for A(S):

A(S) =
2 c S + 2 k AF(S) + - m δl S2 + δc l S + δk l S2 ϑ(S)

m S2 + 2 c S + 2 k
 (10.5.1-13)

Equation (10.5.1-10) can be manipulated to develop an expression for the X(S) - XF(S) term

in (10.5.1-11). Dividing (10.5.1-10) by m S2 + 2 c S + 2 k, subtracting XF(S) from both sides
of the result with factorization, rearrangement, and substitution of (10.5.1-12) yields:

X(S) - XF(S) =
2 c S + 2 k

m S2 + 2 c S + 2 k
 - 1 XF(S) +

- m δl S2 + δc l S + δk l ϑ(S)

m S2 + 2 c S + 2 k

=
- m S2 XF(S) + - m δl S2 + δc l S + δk l ϑ(S)

m S2 + 2 c S + 2 k
(10.5.1-14)

=
- m AF(S) + - m δl S2 + δc l S + δk l ϑ(S)

m S2 + 2 c S + 2 k

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-123

Substituting (10.5.1-14) into (10.5.1-11) with factorization and neglecting products of δ terms
as second order then obtains:

J S2 + 2 c l2 S + 2 k l2 ϑ(S) =

 l δc + 2 c δl S + l δk + 2 k δl
- m AF(S) + - m δl S2 + δc l S + δk l ϑ(S)

m S2 + 2 c S + 2 k
(10.5.1-15)

≈ -
 l δc + 2 c δl S + l δk + 2 k δl m AF(S)

m S2 + 2 c S + 2 k

or, solving for ϑ(S) :

ϑ(S) = -
m l δc + 2 c δl S + l δk + 2 k δl

J S2 + 2 c l2 S + 2 k l2 m S2 + 2 c S + 2 k
 AF(S) (10.5.1-16)

From (10.5.1-16) we see as expected that ϑ(S) is proportional to the δ terms. Thus, the

ϑ(S) term in (10.5.1-13) multiplied by its δ term coefficient becomes second order, hence,
negligible. The result is the following simplified version of (10.5.1-13) for A(S):

A(S) =
2 c S + 2 k

m S2 + 2 c S + 2 k
 AF(S) (10.5.1-17)

Equations (10.5.1-16) and (10.5.1-17) describe the angular and linear response of the sensor

assembly (ϑ(S) and A(S)) as a function of the applied system input acceleration AF(S) . In

order to cast these equations into a more recognizable form, we now introduce the following
normalized error parameters and second order linear dynamic system parameter definitions (as
in Reference 7 - Section 6.2.3) based on the coefficient groupings in (10.5.1-16) and
(10.5.1-17):

 ωx ≡
2 k
m

 ζx ≡
c

m ωx

 ωθ ≡
2 k l2

J
 ζθ ≡

c l2

J ωθ

 εk ≡
δk
k

 εc ≡
δc
c

 L ≡ 2 l εl ≡
δl
L

(10.5.1-18)

10-124 VIBRATION EFFECTS ANALYSIS

where

ωx, ζx = Undamped natural frequency and damping ratio for the linear vibration
motion dynamic response characteristic.

ωθ, ζθ = Undamped natural frequency and damping ratio for the rotary vibration
motion dynamic response characteristic.

L = Distance between upper and lower isolators (See Figure 10.5.1-1).

εk, εc, εl = Normalized δk, δc, δl parameters as fractions of k, c, L.

Using the (10.5.1-18) definitions, individual terms in (10.5.1-16) and (10.5.1-17) become:

2 c S + 2 k = m 2
c
m

 S +
2 k
m

 = m 2 ζx ωx S + ωx
2

m S2 + 2 c S + 2 k = m S2 + 2
c
m

 S +
2 k
m

 = m S2 + 2 ζx ωx S + ωx
2

J S2 + 2 c l2 S + 2 k l2 = J S2 + 2
c l2

J
 S +

2 k l2

J
 = J S2 + 2 ζθ ωθ S + ωθ

2
(10.5.1-19)

 l δc + 2 c δl S + l δk + 2 k δl = c l
δc
c

 + 4
δl
2 l

 S + k l
δk
k

 + 4
δl
2 l

= 2
c l2

J
 εc + 4 εl S +

2 k l2

J
 εk + 4 εl

J
2 l

= 2 ζθ ωθ εc + 4 εl S + ωθ
2
 εk + 4 εl

J
L

Substituting (10.5.1-19) into (10.5.1-16) - (10.5.1-17) then obtains the equivalent dynamic
response relations in more familiar dynamic notation:

A(S) =
2 ζx ωx S + ωx

2

S2 + 2 ζx ωx S + ωx
2

 AF(S)

ϑ(S) = -
1
L

2 ζθ ωθ εc + 4 εl S + ωθ

2
 εk + 4 εl

S2 + 2 ζθ ωθ S + ωθ
2

 S2 + 2 ζx ωx S + ωx
2

 AF(S)

(10.5.1-20)

Equations (10.5.1-20) are now in a convenient form for defining the sensor assembly
angular and linear motion amplitude and phase responses to sinusoidal input acceleration aF.
As in Section 10.2.1, Equation (10.2.1-2), we first identify the transfer functions to aF input
from (10.5.1-20) as:

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-125

HA(S) =
2 ζx ωx S + ωx

2

S2 + 2 ζx ωx S + ωx
2

Hϑ(S) = -
1
L

2 ζθ ωθ εc + 4 εl S + ωθ

2
 εk + 4 εl

S2 + 2 ζθ ωθ S + ωθ
2

 S2 + 2 ζx ωx S + ωx
2

(10.5.1-21)

where

HA(S), Hϑ(S) = Transfer functions relating the A(S), ϑ(S) response to the AF(S)
input.

As in Section 10.2.1, we then substitute jω for S in HA(S), Hϑ(S) and group real and

imaginary terms (recognizing that j squared equals minus one by definition):

HA(jω) =
ωx

2
 + j 2 ζx ωx ω

ωx
2

 - ω2
 + j 2 ζx ωx ω

Hϑ(jω) = -
1
L

ωθ

2
 εk + 4 εl + j 2 ζθ ωθ εc + 4 εl ω

ωθ
2
 - ω2

 + j 2 ζθ ωθ ω ωx
2

 - ω2
 + j 2 ζx ωx ω

(10.5.1-22)

Using generalized Equation (10.2.1-31) as a template, we identify the individual numerator and
denominator polynomials in (10.5.1-22) as:

HNumA1(jω) = ωx
2

 + j 2 ζx ωx ω

HDenA1(jω) = ωx
2

 - ω2
 + j 2 ζx ωx ω

HNumϑ1(jω) = - ωθ
2
 εk + 4 εl - j 2 ζθ ωθ εc + 4 εl ω (10.5.1-23)

HDenϑ1(jω) = L ωθ
2
 - ω2

 + j 2 ζθ ωθ ω

HDenϑ2(jω) = ωx
2

 - ω2
 + j 2 ζx ωx ω

where

HNumAi(jω), HDenAi(jω), HNumϑi(jω), HDenϑi(jω) = Numerator and denominator

polynomials for HA(jω), Hϑ(jω).

10-126 VIBRATION EFFECTS ANALYSIS

Note in (10.5.1-23) that we have associated the minus sign in the (10.5.1-22) Hϑ(jω)

expression with HNumϑ1(jω), and the
1
L

 multiplier in Hϑ(jω) with HDenϑ1(jω).

From generalized Equation (10.2.1-32), we then convert (10.5.1-23) to the equivalent
amplitude-ratio/phase-angle form:

BNumA1(ω) = ωx
4

 + 4 ζx
2

 ωx
2

 ω2 φNumA1(ω) = tan -1
 2 ζx ω

ωx

BDenA1(ω) = ωx
2

 - ω2 2
 + 4 ζx

2
 ωx

2
 ω2 φDenA1(ω) = tan -1

 2 ζx ωx ω

ωx
2

 - ω2

BNumϑ1(ω) = ωθ
4
 εk + 4 εl

 2
 + 4 ζθ

2
 ωθ

2
 εc + 4 εl

 2
 ω2

φNumϑ1(ω) = π + tan -1
 2 ζθ εc + 4 εl ω

ωθ εk + 4 εl
(10.5.1-24)

BDenϑ1(ω) = L ωθ
2
 - ω2 2

 + 4 ζθ
2
 ωθ

2
 ω2

φDenϑ1(ω) = tan -1
 2 ζθ ωθ ω

ωθ
2
 - ω2

BDenϑ2(ω) = BDenA1(ω) φDenϑ2(ω) = φDenA1(ω)

where

BNumA1(ω), φNumA1(ω), BDenA1(ω), φDenA1(ω) = Amplitude ratios and phase angles

associated with HNumA1(jω), HDenA1(jω).

BNumϑ1(ω), φNumϑ1(ω), BDenϑ1(ω), φDenϑ1(ω), BDenϑ2(ω), φDenϑ2(ω) =

Amplitude ratios and phase angles associated

with HNumϑ1(jω), HDenϑ1(jω), HDenϑ2(jω).

The π offset in the (10.5.1-24) φNumϑ1 expression accounts for the negative real and negative

imaginary components in HNumϑ1 of Equations (10.5.1-23) which places φNumϑ1 in the “third

quadrant” of the real-imaginary plane.

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-127

Finally, we use (10.5.1-24) in generalized Equations (10.2.1-34) to obtain the amplitude

ratios and phase angles for the HA(jω), Hϑ(jω) transfer functions:

BA(ω) =
BNumA1(ω)

BDenA1(ω)
φA(ω) = φNumA1(ω) - φDenA1(ω)

(10.5.1-25)

Bϑ(ω) =
BNumϑ1(ω)

BDenϑ1(ω) BDenϑ2(ω)
φϑ(ω) = φNumϑ1(ω) - φDenϑ1(ω) - φDenϑ2(ω)

where

BA(ω), φA(ω), Bϑ(ω), φϑ(ω) = Amplitude ratios and phase angles associated with

HA(jω), Hϑ(jω).

Equations (10.5.1-25) with (10.5.1-24) define the amplitude ratio and phase angle dynamic
response of the Figure 10.5.1-1 sensor assembly to applied linear sinusoidal vibrations at

frequency ω, as a function of the sensor assembly isolation system dynamics, imbalances in the
isolator characteristics, and center of mass offset from the nominal CG balance point. The

BA(ω), φA(ω), Bϑ(ω), φϑ(ω) expressions in (10.5.1-25) represent the B(ω), φ(ω) amplitude-

ratio/phase-angle terms in the Sections 10.3 and 10.4 results summarized in Equations
(10.3-20) and (10.4.1-10). The input forcing function aF(t) for the (10.5.1-25) dynamic
response would correspond to the pVib(t) vibration source input to (10.3-20) and (10.4.1-10).

10.5.2 DYNAMIC MODEL RESPONSE TO ROTARY SYSTEM
FORCING FUNCTION

Our simplified dynamic model with rotary system input forcing is based on the Figure
10.5.2-1 sketch illustrating the response of the INS sensor assembly to prescribed rotary input
motion of the INS mount.

If we compare Figure 10.5.2-1 with the linear forcing model of Figure 10.5.1-1 we see
that they differ in the “wall” mount interface motion. In Figure 10.5.1-1, the wall translated
from left to right without rotation. In Figure 10.5.2-1, the wall has rotary motion with no net
translation, causing the upper and lower sensor assembly mount interfaces to undergo
differential linear left to right motion. In other respects, Figures 10.5.1-1 and 10.5.2-1 are
identical. Based on the Figure 10.5.2-1 model and assuming small angle response, we write the
classical Newtonian equations relating the sensor assembly angular acceleration to the applied

10-128 VIBRATION EFFECTS ANALYSIS

k1

k2

c2

c1

x1

x

θ

δl
l

l

yF

yF

ACTUAL
CENTER OF

MASS

NOMINAL
CENTER OF

MASS

SENSOR
ASSEMBLY

MOUNT
INTERFACE

θF

L

x2

Figure 10.5.2-1 Sensor Assembly Dynamic Response To Rotary Forcing

torques around the center of mass, and the sensor assembly center of mass acceleration to the
applied forces:

m
d2(x + θ δl)

dt2
 = - c1 x1 - yF - k1 x1 - yF - c2 x2 + yF - k2 x2 + yF (10.5.2-1)

J θ = - c1 x1 - yF + k1 x1 - yF l - δl + c2 x2 + yF + k2 x2 + yF l + δl (10.5.2-2)

with:

yF = l θF x1 = x + l θ x2 = x - l θ (10.5.2-3)

where

θF = Angular movement of the sensor mount wall from its neutral angular orientation
under forced “F” angular input motion of the sensor mount interface wall
(assumed small). The neutral angular orientation is defined as the orientation of
the sensor mount interface wall under zero dynamic wall motion.

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-129

yF = Linear movement of the top and bottom isolator wall mount attachment points

from their neutral position generated by θF. The isolator wall mount attachment
point neutral positions are defined as the position of the attachment points under
zero dynamic motion of the sensor mount interface wall.

Combining (10.5.2-3) finds:

x1 - yF = x + l θ - θF x2 + yF = x - l θ - θF (10.5.2-4)

As in Equations (10.5.1-4) and (10.5.1-5), we define :

 k ≡
1
2

 k1 + k2 c ≡
1
2

 c1 + c2

δk ≡ k2 - k1 δc ≡ c2 - c1

(10.5.2-5)

for which we have:

k1 = k -
1
2

 δk k2 = k +
1
2

 δk

c1 = c -
1
2

 δc c2 = c +
1
2

 δc
(10.5.2-6)

Substituting (10.5.2-4) and (10.5.2-6) into (10.5.2-1) then gives:

m x + θ δl = - c -
1
2

 δc x + l (θ - θF) - k -
1
2

 δk x + l (θ - θF)

- c +
1
2

 δc x - l (θ - θF) - k +
1
2

 δk x - l (θ - θF) (10.5.2-7)

= - 2 c x - 2 k x + δc l θ - θF + δk l θ - θF

or with rearrangement and grouping:

m x + 2 c x + 2 k x = - m δl θ + δc l (θ - θF) + δk l (θ - θF) (10.5.2-8)

Making the same substitutions in (10.5.2-2) while neglecting δ products as second order
obtains:

J θ = - c -
1
2

 δc x + l (θ - θF) + k -
1
2

 δk x + l (θ - θF) l - δl

+ c +
1
2

 δc x - l (θ - θF) + k +
1
2

 δk x - l (θ - θF) l + δl (10.5.2-9)

= - 2 c l2 (θ - θF) - 2 k l2 (θ - θF) + δc l x + δk l x + 2 c δl x + 2 k δl x

10-130 VIBRATION EFFECTS ANALYSIS

or after rearrangement and grouping:

J θ + 2 c l2 θ+ 2 k l2θ

 = 2 c l2 θF + 2 k l2 θF + (δc l + 2 c δl) x + (δk l + 2 k δl) x
(10.5.2-10)

If we take the Laplace transform of Equation (10.5.2-10) and add/subtract J S2 ϑF(s) on the

right, we can obtain with rearrangement, a solution for ϑ(S) - ϑF(S) as a function of ϑF(S)

and X(S). Taking the Laplace transform of Equation (10.5.2-8) and adding/subtracting

m δl S2 ϑF(S) on the right, would yield with rearrangement, a solution for X(S) as a function

of ϑF(S) and ϑ(S) - ϑF(S) . By then substituting the previous ϑ(S) - ϑF(S) solution (from

(10.5.2-10)) in the (10.5.2-8) X(S) result and rearranging, we can find a solution for X(S) as a

function of ϑF(S) . This procedure would show that x is on the order of l θF multiplied by δ
terms. Therefore, the x products with the delta terms in (10.5.2-10) are second order, and
(10.5.2-10) reduces to:

J θ + 2 c l2 θ + 2 k l2 θ = 2 c l2 θF + 2 k l2 θF (10.5.2-11)

The Laplace transform of (10.5.2-11) is:

J S2 + 2 c l2 S + 2 k l2 ϑ(S) = 2 c l2 S + 2 k l2 ϑF(S) (10.5.2-12)

where

ϑF(S) = Laplace transform of θF.

from which we obtain for ϑ(S) :

ϑ(S) =
2 c l2 S + 2 k l2

J S2 + 2 c l2 S + 2 k l2
 ϑF(S) (10.5.2-13)

Returning to Equation (10.5.2-8) for x, the Laplace transform gives:

m S2 + 2 c S + 2 k X(S) = - m δl S2 ϑ(S) + δc l S + δk l ϑ(S) - ϑF(S) (10.5.2-14)

The ϑ(S) - ϑF(S) term in (10.5.2-14) is from (10.5.2-13):

ϑ(S) - ϑF(S) =
- J S2

J S2 + 2 c l2 S + 2 k l2
 ϑF(S) (10.5.2-15)

Substituting (10.5.2-13) and (10.5.2-15) into (10.5.2-14) then yields:

SYSTEM DYNAMIC RESPONSE ANALYSIS MODEL 10-131

m S2 + 2 c S + 2 k X(S) = -
m δl 2 c l2 S + 2 k l2 + δc l S + δk l J

J S2 + 2 c l2 S + 2 k l2
 S2 ϑF(S)

(10.5.2-16)

or after rearrangement and use of (10.5.1-12) to represent linear motion response as an
acceleration:

A(S) = -
m δl 2 c l2 S + 2 k l2 + δc l S + δk l J S4

J S2 + 2 c l2 S + 2 k l2 m S2 + 2 c S + 2 k
 ϑF(S) (10.5.2-17)

The (10.5.2-13) and (10.5.2-17) results can be expressed in more familiar terms by
incorporating the (10.5.1-18) definitions for which particular terms become:

2 c l2 S + 2 k l2 = J 2
c l2

J
 S +

2 k l2

J
 = J 2 ζθ ωθ S + ωθ

2

J S2 + 2 c l2 S + 2 k l2 = J S2 + 2 ζθ ωθ S + ωθ
2

m δl 2 c l2 S + 2 k l2 + δc l S + δk l J

= m J 2 l 2
c l2

J
 S +

2 k l2

J

δl
2 l

 + m J l
c
m

δc
c

 S +
1
2

2 k
m

δk
k

(10.5.2-18)

= m J 2 l 2 ζθ ωθ S + ωθ
2

 εl +
1
2

 ζx ωx εc S +
1
2

 ωx
2

 εk

= m J L 2 ζθ ωθ εl +
1
2

 ζx ωx εc S + ωθ
2
 εl +

1
4

 ωx
2

 εk

m S2 + 2 c S + 2 k = m S2 + 2 ζx ωx S + ωx
2

from which (10.5.2-13) and (10.5.2-17) become:

ϑ(s) =
2 ζθ ωθ S + ωθ

2

S2 + 2 ζθ ωθ S + ωθ
2

 ϑF(s)

A(S) = - L
2 ζθ ωθ εl +

1
2

 ζx ωx εc S + ωθ
2
 εl +

1
4

 ωx
2

 εk S4

S2 + 2 ζθ ωθ S + ωθ
2

 S2 + 2 ζx ωx S + ωx
2

 ϑF(S)

(10.5.2-19)

As in Section 10.5.1, the Equation (10.5.2-19) results for ϑ(S), A(S) can be converted to the

equivalent amplitude-ratio/phase-angle response to ϑF(S) sinusoidal inputs using the Section

10.2.1 conversion process (left as an exercise for the curious reader). We note, however, that
vibration effects analysis is usually used to predict INS performance under

10-132 VIBRATION EFFECTS ANALYSIS

specified vibration inputs. Typical INS test specifications only dictate vibration performance
evaluation under prescribed linear acceleration vibration inputs (i.e., aF in Section 10.5.1).
Performance testing under specified angular vibrations is generally not required.

10.6 VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM

Sections 10.3 and 10.4 derived analytical formulas for calculating strapdown INS
performance parameters as a function of input vibration and the dynamic response of the
physical structure connecting the vibration source to the INS sensor assembly. Section 10.5
described simplified models for the structural dynamic characteristics. If the summary
equations in these sections are reviewed (i.e., Equations (10.3-20), (10.4.1-10), (10.4.1-11),
(10.4.2-44), (10.5.1-24), (10.5.1-25) and (10.5.2-19)), it should be apparent that the results lend
themselves nicely to programming into a computer software simulation program for numerical
vibration effects analysis. This section outlines the basic equations that might be incorporated in
such a simulation. For compatibility with typical INS test specifications, we will only address
the structure of a simulation program for analyzing INS performance under prescribed linear
acceleration input in a fixed direction in the B Frame. Thus, the Section 10.3 and 10.4 results
we use will be based on pVib(t) being an input vibration acceleration for which the Section
10.5.1 analytical model applies with pVib(t) identified as aF(t).

This section is divided into three parts, Sections 10.6.1, 10.6.2 and 10.6.3. Section 10.6.1
describes a simulation program for evaluating the attitude/velocity/position response of the
sensor assembly to sinusoidal and random vibration inputs. Due to their development
complexity, separate sections are provided (10.6.2 and 10.6.3) to describe the portion of the

simulation for evaluating the position algorithm error δRSF/Algo(t) response to input sinusoidal

vibration inputs, and the response to sinusoidal and random vibrations of the sculling error due

to sensor dynamics δvSF/Scul/SnsDynz
 .

10.6.1 SIMULATION PROGRAM FOR ATTITUDE/VELOCITY/POSITION
VIBRATION RESPONSE ANALYSIS

Section 10.5.1 defines the strapdown sensor assembly linear and angular amplitude-
ratio/phase-angle response to linear excitation for the simplified Figure 10.5.1-1 sensor

assembly mounting arrangement. Let us use these results to define the vSF/Sculz
 term in

(10.3-20) (repeated below) for our simulation program to be based on the Figure 10.5.1-1
vibration model.

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-133

vSF/Sculz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy

 - Bθy BaSFx cos φθy - φaSFx

(10.6.1-1)

For reference purposes, recall that vSF/Sculz
 was derived from Equation (10.1.2.1-13) and as

an extrapolation from (10.3-11) based on the (10.3-8) sensor assembly B Frame motion model.
We select the rotation axis in Figure 10.5.1-1 as representing the X axis for the Equation

(10.6.1-1) vSF/Sculz
 B Frame angular rate, and the acceleration input axis in Figure 10.5.1-1 as

representing the Y axis for the vSF/Sculz
 B Frame acceleration. Note that defining Y as the

vibration axis differs from the Figure 10.5.1-1 notation in which the linear vibration axis input
and linear response are identified as X. We also note that our Figure 10.5.1-1 model has a
linear response along only the acceleration input axis, hence, the acceleration response
perpendicular to this axis is zero. Thus we can write the equivalency between (10.6.1-1) and the
(10.5.1-24) - (10.5.1-25) amplitude-ratio/phase-angle response terms for a particular input

vibration frequency Ω as:

Bθx = Bϑ(Ω) φθx = φϑ(Ω)

BaSFy = BA(Ω) φaSFy = φA(Ω) (10.6.1-2)

BaSFx = 0 Bθy = 0

Using (10.6.1-2), we see from (10.5.1-25) that the φθx - φaSFy term in (10.6.1-1) is:

φθx - φaSFy = φϑ(Ω) - φA(Ω)

 = φNumϑ1(Ω) - φDenϑ1(Ω) - φDenϑ2(Ω) - φNumA1(Ω) + φDenA1(Ω)
(10.6.1-3)

But, from (10.5.1-24):

φDenA1(Ω) = φDenϑ2(Ω) (10.6.1-4)

Thus, (10.6.1-3) simplifies to:

φθx - φaSFy = φNumϑ1(Ω) - φDenϑ1(Ω) - φNumA1(Ω) (10.6.1-5)

or with (10.5.1-24) for the individual phase angle components:

φθx - φaSFy = π + tan -1
2 ζθ εc + 4 εl Ω

ωθ εk + 4 εl
 - tan -1

2 ζθ ωθ Ω

ωθ
2
 - Ω2

 - tan -1
2 ζy Ω

ωy

(10.6.1-6)

10-134 VIBRATION EFFECTS ANALYSIS

where

ζy, ωy = Damping ratio and undamped natural frequency associated with the linear Y
axis response of the sensor assembly to Y axis linear input vibration. Note

that the equivalent parameters in Equation (10.5.1-24) are identified as ζx, ωx
to correspond with the X axis input vibration axis definition in Figure
10.5.1-1.

From Equation (10.6.1-6) we see that φθx - φaSFy starts at π for Ω = 0 (corresponding to a

maximum magnitude for the cos φθx - φaSFy term in (10.6.1-1)), and then traces a complex

history as Ω increases from 0, depending on the values for the sensor assembly mount
imbalance and dynamic response characteristics. As a worst case analysis and to simplify the

simulation program being developed, we can approximate the magnitude of cos (φθx - φaSFy)

in (10.6.1-1) as unity over all Ω. While doing this, we also note that Equation (10.6.1-6) is
based on the simplified Figure 10.5.1-1, which only very approximately represents the response
of the actual sensor assembly, with the largest uncertainties usually occurring in the phase angle
response estimates. This further justifies the previous approximation, allowing that the actual
phase response may have a worse impact on (10.6.1-1) than predicted by the Figure 10.5.1-1
model. Based on these arguments, Equation (10.6.1-1) with (10.6.1-2) simplifies to the
following order of magnitude expression for our simulation program:

vSF/Sculz ≈
1
2

 Bϑ(Ω) BA(Ω) aVib0

2
 (10.6.1-7)

where

aVib0 = pVib0 now identified as the input sinusoidal acceleration amplitude.

with, from (10.5.1-24) - (10.5.1-25):

BA(Ω) =
ωy

4
 + 4 ζy

2
 ωy

2
 Ω2

ωy
2
 - Ω2 2

 + 4 ζy
2
 ωy

2
 Ω2

Bϑ(Ω) =
1
L

ωθ

4
 εk + 4 εl

 2
 + 4 ζθ

2
 ωθ

2
 εc + 4 εl

 2
 Ω2

ωθ
2
 - Ω2 2

 + 4 ζθ
2
 ωθ

2
 Ω2

 ωy
2
 - Ω2 2

 + 4 ζy
2
 ωy

2
 Ω2

(10.6.1-8)

with ζy and ωy as defined earlier. For a worst case estimate, the ε parameter values used in

(10.6.1-8) can all be set to have the same polarity.

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-135

Equations (10.6.1-7) - (10.6.1-8) are based on sculling along axis Z generated by angular
vibration around axis X coupled with linear vibration along axis Y, the X angular vibration
being the result of sensor assembly mounting imbalances (as in Figure 10.5.1-1) driven by the
Y linear vibration. However, in a three-dimensional world, mounting imbalances would also
produce angular vibrations around axis Z in response to the same linear vibration along Y. For
example, consider that the Figure 10.5.1-1 sensor assembly is cylindrical in shape with the
cylinder axis normal to the page (and to the applied acceleration), and that the top and bottom
isolators consist of two parallel sets, one set on each end of the cylinder. Consider that the
cylinder center-of-mass is nominally on the cylinder axis midway between the isolator mounts,
and that the actual center-of-mass may be displaced from the nominal along the cylinder axis
and (as shown in Figure 10.5.1-1), perpendicular to the cylinder axis. The sensor assembly will
then have an angular response in addition to that shown in Figure 10.5.1-1, that is normal to the
applied acceleration, about an axis parallel to the “wall” mount. The additional angular response
around the axis parallel to the “wall” mount (called axis Z for this sculling discussion) coupled
with the Y axis linear vibration, produces sculling along axis X.

Let us define the isolators on one end of the cylinder as set “a” and those on the other end as
set “b”. The spring/damping coefficients associated with these can then be identified as k1a,
c1a, k1b, c1b and k2a, c2a, k2b, c2b in which the “1” and “2” notation is the same as in Figure
10.5.1-1 denoting the “top” and “bottom” isolators. Using Equations (10.5.1-4) as a model
and the coordinate definitions in the previous paragraph, the net spring/damping coefficients for
the sensor assembly along the linear vibration input axis Y will b e

ky =
1
2

 k2a + k2b + k1a + k1b and cy =
1
2

 c2a + c2b + c1a + c1b with the “y” subscript

designating the resulting Y axis linear response. Based on the previous coordinate definitions,
angular vibration around axis X will be generated by imbalances between the bottom (“2”) and

top (“1”) isolators, or, as in (10.5.1-4), by δkx = k2a + k2b - k1a - k1b and

δcx = c2a + c2b - c1a - c1b with the “x” subscript designating the resulting X axis angular

response. Angular vibrations around Z will be generated by imbalances between the “a” and

“b” isolators, or by δkz = k1b + k2b - k1a - k2a and δcz = c1b + c2b - c1a - c2a with the “z”

subscript designating the resulting Z axis angular response. Similarly, under applied Y axis

linear vibration, mass imbalance along axis Z (δlz) will also produce angular vibration about X

(as depicted in Figure 10.5.1-1), and mass imbalance along X (δlx) will generate angular

vibration around Z.

If we assume equivalent dynamic characteristics and sensor assembly imbalances for Z and

X axis angular response to Y axis linear vibration (i.e., δkx = δkz = δk, δcx = δcz = δc,

δlx = δlz = δl and (10.5.1-18) for εk, εc, εl using k = ky), we can easily write the X axis sculling

equivalent to (10.6.1-7) for our simulation program as:

10-136 VIBRATION EFFECTS ANALYSIS

vSF/Sculx ≈
1
2

 Bϑ(Ω) BA(Ω) aVib0

2
 (10.6.1-9)

where

vSF/Sculx = Sculling along sensor assembly axis X generated by angular vibration
around axis Z caused by sensor assembly mounting asymmetries under Y
axis linear vibration.

with Bϑ(Ω) and BA(Ω) as given in (10.6.1-8).

Let’s apply a similar treatment to the δvSF/Algo-mz term in (10.3-20) repeated below:

δvSF/Algo-mz =
1
2

 pVib0

2
 Bθx BaSFy cos φθx - φaSFy

 - Bθy BaSFx cos φθy - φaSFx 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

(10.6.1-10)

To find the worst case magnitude of δvSF/Algo-mz in (10.6.1-10), we set cos (φθx - φaSFy)

equal to unity with sign corresponding to the sign of the 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1

term. Using (10.6.1-2) in (10.6.1-10), this is equivalent to:

δvSF/Algo-mz ≈
1
2

 Bϑ(Ω) BA(Ω) 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 aVib0

2
(10.6.1-11)

with Bϑ(ω), BA(ω) from (10.6.1-8).

As in (10.6.1-9), we can also identify an X axis sculling algorithm error under the Y axis
input vibration:

δvSF/Algo-mx ≈
1
2

 Bϑ(Ω) BA(Ω) 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 aVib0

2
(10.6.1-12)

where

δvSF/Algo-mx = Sculling algorithm error along sensor assembly axis X generated by
angular vibration around axis Z due to sensor assembly mounting
asymmetries under Y axis linear vibration.

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-137

Applying the same technique for coning rate analysis in our simulation program, we first

write for the coning rate from ΦConz in (10.3-20) using the revised coordinate frame

definitions:

ΦCony =
1
2

 Ω Bθx Bθz pVib0

2
 sin φθx - φθz (10.6.1-13)

where

ΦCony = Coning rate around axis Y (the linear vibration input axis) generated by the
angular response around axes X and Z produced by sensor assembly
imbalances.

Bθz, φθz = Amplitude ratio and phase angle relating input sinusoidal vibration inputs to
the angular response around sensor assembly axis Z.

For reference purposes, recall that ΦConz in (10.3-20) (repeated above as ΦCony for the new

coordinate definitions) was derived from Equation (10.1.1.1-13) and as an extrapolation from
(10.3-5) based on the (10.3-4) sensor assembly B Frame motion model. We note that in Figure
10.5.1-1, the angular response shown is around an axis that is normal to the applied acceleration
and normal to the plane of the page. Now consider as in the sculling discussion preceding
(10.6.1-9), that the Figure 10.5.1-1 linear vibration will also produce a second angular vibration
that is normal to the applied acceleration, but about an axis parallel to the “wall” mount. The

amplitude-ratio/phase-angle response for this second angular response (Bθz and φθz) will be of

the same form as Equations (10.5.1-24) - (10.5.1-25), but with parameter values corresponding
to the other axis. We selected the rotation axis shown in Figure 10.5.1-1 as representing the X

axis for the Equation (10.6.1-13) ΦCony B Frame angular rate, and the “second” rotation axis

(parallel to the Figure 10.5.1-1 wall mount) as representing the Z axis for the ΦCony B Frame

angular rate. For simplicity, let us also assume (as in the sculling discussion) that the sensor
assembly nominal angular vibration modes about the previously two defined angular vibration

axes have identical dynamic response characteristics (i.e., the same ζθ and ωθ). Then we can
write an equivalency between the (10.6.1-13) and (10.5.1-24) - (10.5.1-25) amplitude-

ratio/phase-angle response terms for a particular input frequency Ω as:

Bθx =
BNum/ϑ1x(Ω)

BDen/ϑ1x(Ω) BDen/ϑ2x(Ω)
Bθz =

BNum/ϑ1z(Ω)

BDen/ϑ1z(Ω) BDen/ϑ2z(Ω)

φθx = φNum/ϑ1x(Ω) - φDen/ϑ1x(Ω) - φDen/ϑ2x(Ω) (10.6.1-14)

φθz = φNum/ϑ1z(Ω) - φDen/ϑ1z(Ω) - φDen/ϑ2z(Ω)

10-138 VIBRATION EFFECTS ANALYSIS

BNum/ϑ1x(Ω) = ωθ
4
 εkx + 4 εlx

 2
 + 4 ζθ

2
 ωθ

2
 εcx + 4 εlx

 2
 Ω2

BNum/ϑ1z(Ω) = ωθ
4
 εkz + 4 εlz

 2
 + 4 ζθ

2
 ωθ

2
 εcz + 4 εlz

 2
 Ω2

φNum/ϑ1x(Ω) = π + tan -1 2 ζθ εcx + 4 εlx Ω

ωθ εkx + 4 εlx

φNum/ϑ1z(Ω) = π + tan -1 2 ζθ εcz + 4 εlz Ω

ωθ εkz + 4 εlz
(10.6.1-15)

BDen/ϑ1x(Ω) = BDen/ϑ1z(Ω) = L ωθ
2
 - Ω2 2

 + 4 ζθ
2
 ωθ

2
 Ω2

φDen/ϑ1x(Ω) = φDen/ϑ1z(Ω) = tan -1 2 ζθ ωθ Ω

ωθ
2
 - Ω2

BDen/ϑ2x(Ω) = BDen/ϑ2z(Ω) = ωy
2
 - Ω2 2

 + 4 ζy
2
 ωy

2
 Ω2

φDen/ϑ2x(Ω) = φDen/ϑ2z(Ω) = tan -1 2 ζy ωy Ω

ωy
2
 - Ω2

where

εkx, εcx, εlx = Values for the εk, εc, εl imbalances associated with the angular response
shown in Figure 10.5.1-1 (about the newly above defined X axis). Note

that εlx is caused by center-of-mass offset shown in Figure 10.5.1-1
along the newly above defined Z axis (parallel to the Figure 10.5.1-1 wall
mount).

εkz, εcz, εlz = Values for the εk, εc, εl imbalances associated with the additional angular
response (not shown in Figure 10.5.1-1) about the newly above defined

Z axis (parallel to the Figure 10.5.1-1 wall mount). Note that εlz is
caused by center-of-mass offset (not shown in Figure 10.5.1-1) along the
newly above defined X axis (a center-of-mass offset along the cylinder
axis perpendicular to the page of Figure 10.5.1-1).

BNum/ϑ1x(Ω), BNum/ϑ1z(Ω), φNum/ϑ1x(Ω), φNum/ϑ1z(Ω), BDen/ϑ1x(Ω), BDen/ϑ1z(Ω)

= Values for BNumϑ1(Ω), φNumϑ1(Ω), BDenϑ1(Ω)

associated with the B Frame X, Z axis angular response.

From (10.6.1-14) and (10.6.1-15), the φθx - φθz term in (10.6.1-13) is:

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-139

φθx - φθz = φNum/ϑ1x(Ω) - φNum/ϑ1z(Ω)

 = tan -1 2 ζθ εcx + 4 εlx Ω

ωθ εkx + 4 εlx
 - tan -1 2 ζθ εcz + 4 εlz Ω

ωθ εkz + 4 εlz

(10.6.1-16)

We see from (10.6.1-16) that φθx - φθz is zero for zero Ω and then varies with Ω depending on

the particular values for the X, Z sensor assembly imbalances. From Equation (10.6.1-13) we

see that the worst case value for φθx - φθz is
π
2

 for which the sine term is one and ΦCony is

maximum. Since the phase response in (10.6.1-16) is only a rough approximation of the actual
phase response, and since the sensor assembly imbalances vary between axes and sensor

assemblies, it is reasonable to approximate the phase as equal to
π
2

 for a worst case estimate of

ΦCony. Note that the φθx - φθz equal to
π
2

 approximation will always be incorrect near Ω = 0,

however, we see from (10.6.1-13) that the error is nullified by the Ω multiplier that sets ΦCony

equal to zero for Ω = 0. We can also assume from an amplitude ratio standpoint that the X, Z
imbalances are of the same magnitude so that we can write:

Bθx = Bθz = Bϑ(Ω) (10.6.1-17)

with Bϑ(Ω) as given in (10.6.1-8). Using the previous approximations, the worst case analysis
form of (10.6.1-13) becomes simply:

ΦCony ≈
1
2

 Ω Bϑ
2

(Ω) aVib0

2
(10.6.1-18)

Using the same procedure but choosing the sign of φθx - φθz to match the net sign of the Ω

terms, the worst case response for βmz in (10.3-20) would be (using the new coordinate axis

definitions):

βmy ≈
1
2

 Ω Bϑ
2

(Ω) 1 -
sin ΩTm

ΩTm

 aVib0

2
(10.6.1-19)

where

βmy = Sensor assembly Y axis component of βm as defined following Equation
(10.1.1.2.1-14).

10-140 VIBRATION EFFECTS ANALYSIS

It is also of interest to have the simulation program evaluate the magnitudes of the analytical
model sensor assembly angular and acceleration responses. We can use the generic f(t) in
Equations (10.3-20) for this purpose which, from (10.3-20) and (10.1.4.1-3), is:

f(t) = hx(t) hy(t)

f(t) =
1
2

 Bhx Bhy cos φhx - φhy pVib0

2
 (10.6.1-20)

For the angular and acceleration responses we choose the mean squared values as the
performance parameters of interest. Then, using the revised coordinate definitions, the
equivalency between these and the f(t) generic parameter in (10.6.1-20) is:

For Acceleration Response:

f(t) = aSFy(t)
2 hx(t) = hy(t) = aSFy(t)

φhx = φhy = φA Bhx = Bhy = BA

(10.6.1-21)
For Angular Response:

f(t) = θz or x(t)
2

hx(t) = hy(t) = θz or x(t)

φhx = φhy = φϑ Bhx = Bhy = Bϑ

where

aSFy(t) = Linear acceleration response of the sensor assembly along the Y axis due to
Y axis acceleration inputs.

θz or x(t) = Angular (integrated angular rate) response of the sensor assembly around
the Z or X axis due to Y axis acceleration inputs and sensor assembly
imbalance.

Identifying Ω frequency dependence and assuming comparable angular response around the
Z and X axes, we see from (10.6.1-20) and (10.6.1-21) that:

aSFy(t)2 =
1
2

 BA
2

(Ω) aVib0

2
 θz or x(t)

2
 =

1
2

 Bϑ
2

(Ω) aVib0

2
 (10.6.1-22)

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-141

where

aSFy(t)
2, θz or x(t)

2
 = Mean squared values for the sensor assembly acceleration

aSFy(t) and angular θz or x(t) response to the applied sinusoidal
input acceleration vibration.

with Bϑ(Ω), BA(Ω) provided from Equations (10.6.1-8).

The procedures leading to (10.6.1-7), (10.6.1-11), (10.6.1-18) and (10.6.1-19) can also be

used for the remaining terms in Equations (10.3-20) (with the exception of δRSF/Algo(t) and

δvSF/Scul/SnsDynz
 which are treated separately in Sections 10.6.2 and 10.6.3). Except for

δRSF/Algo(t) and δvSF/Scul/SnsDynz
, the following is a summary of the (10.3-20) terms based

on worst case analysis using (10.6.1-8) for Bϑ(Ω) and BA(Ω). For worst case analysis, the ε
terms in (10.6.1-8) can be set to have the same polarity.

ΦCony =
1
2

 Ω Bϑ
2

(Ω) aVib0

2

βmy =
1
2

 Ω Bϑ
2

(Ω) 1 -
sin ΩTm

ΩTm

 aVib0

2

βAlgo-m y =
1
2

 Ω Bϑ
2

(Ω) 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 aVib0

2

δΦAlgo-m y = δβAlgo-m y =
1
2

 Ω Bϑ
2

(Ω) 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 aVib0

2

vSF/Sculz or x =
1
2

 Bϑ(Ω) BA(Ω) aVib0

2
(10.6.1-23)

ΔvScul-mz or x =
1
2

 Bϑ(Ω) BA(Ω) 1 -
sin ΩTm

ΩTm

 aVib0

2

(Continued)

10-142 VIBRATION EFFECTS ANALYSIS

ΔvScul/Algo-mz or x =
1
2

 Bϑ(Ω) BA(Ω) 1 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 -
sin Ω Tm

Ω Tm

 aVib0

2

δvSF/Algo-mz or x = δΔvScul/Algo-mz or x =
1
2

 Bϑ(Ω) BA(Ω) 1

 +
1
3

 1 - cos Ω Tl
sin Ω Tl

Ω Tl

 - 1 aVib0

2

δaAcclG2 = LG2
1
4

 BA
2

(Ω) aVib0

2 (10.6.1-23)
(Continued)

δaAcclAniso = LAniso
1
2

 Ω2
 Bϑ

2
(Ω) aVib0

2

aSFy(t)
2 =

1
2

 BA
2

(Ω) aVib0

2

θz or x(t)
2
 =

1
2

 Bϑ
2

(Ω) aVib0

2

where

()z or x = Terms generated by angular vibrations around the sensor assembly Z and X
axes due to mounting imbalances under Y axis linear vibration. The same
equation applies for the Z or X axis response.

The
1
4

 term in the (10.6.1-23) δaAcclG2 expression arises based on considering the sensor

assembly response to vibration input as being along an axis in the B Frame X, Y plane that has
equal components along X, Y (i.e., at 45 degrees to X and Y). This produces an acceleration

amplitude pVib0 in the (10.3-20) δaAcclG2 expression of
1

2
 aVib0 along each of X and Y,

which produces
1
4

 aVib0

2
 in the (10.6.1-23) δaAcclG2 equation. The additional Ω2

 term in the

(10.6.1-23) δaAcclAniso expression arises because the B amplitude ratio terms for δaAcclAniso in

(10.3-20) represent angular rate responses, while Bϑ(Ω) in (10.6.1-8) is the angle response.
The angular rate response is the derivative of the angle response, hence, the angular rate based
transfer function equals S times the angle based transfer function. The associated angular rate

amplitude ratio is the (10.6.1-8) Bϑ(Ω) angle response amplitude ratio multiplied by Ω.

Equations (10.6.1-23) with (10.6.1-8) can be easily programmed into a digital computer
analysis program for worst case numerical evaluation of the vibration sensitive performance

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-143

parameters under a prescribed vibration input acceleration amplitude aVib0 and frequency Ω.

The sensor assembly mount characteristics would be additional program inputs (i.e.,

ωy, ζy, ωθ, ζθ, L, εk, εc and εl) that will vary for each application. Typical values used by the

writer for some of these parameters for a reasonably accurate strapdown INS have been

εk = 0.05, εc = 0.05, εl = 0.1 inch / L, ωy = 2 π 50 Hz, and ζy = 0.125. Generally the rotary

dynamic response undamped natural frequency and damping ratio (ωθ and ζθ) are not readily
available parameters. The writer has found that a reasonable approximation can be obtained as
follows based on the (10.5.1-18) definitions for which (using the revised coordinate axis
definitions):

ωθ
ωy

 =
m l2

J

ζθ
ζy

 =
m l2

J

ωy

ωθ
 =

m l2

J
(10.6.1-24)

If the sensor assembly were a solid cylinder of radius l, its moment of inertia J about the

cylinder axis would be
m l2

2
 for which

m l2

J
 in (10.6.1-24) would be 2. Thus, a

reasonable approximation for ωθ, ζθ is to set them equal to 2 times the linear response

equivalents ωy, ζy.

Equations (10.6.1-23) are based on a worst case approximation of Equations (10.3-20) for a
discrete frequency sinusoidal acceleration input. The identical methodology leading to
(10.6.1-23) can also be applied to Equations (10.4.1-10) - (10.4.1-11) to determine the
equivalent expressions for random acceleration vibration inputs. Equation (10.4.2-44) for the

position error variance response applies directly (with BaSF(ω) = BA(ω) and

GpVib(ω) = GaVib(ω)). Except for δvSF/Scul/SnsDynz
 (treated separately in Section 10.6.3),

the results are:

10-144 VIBRATION EFFECTS ANALYSIS

E ΦCony = ω Bϑ
2

(ω) GaVib(ω) dω
0

∞

E βmy = ω Bϑ
2

(ω) 1 -
sin ω Tm

ω Tm

 GaVib(ω) dω

0

∞

E βAlgo-m y = ω Bϑ
2

(ω) 1 +
1
3

 1 - cos ω Tl
sin ω Tl

ω Tl

 -
sin ω Tm

ω Tm

 GaVib(ω) dω

0

∞

E δΦAlgo-m y = E δβAlgo-m y

= ω Bϑ
2

(ω) 1 +
1
3

 1 - cos ω Tl
sin ω Tl

ω Tl

 - 1 GaVib(ω) dω

0

∞

E vSF/Sculz or x = Bϑ(ω) BA(ω) GaVib(ω) dω
0

∞

(10.6.1-25)

E ΔvScul-mz or x = Bϑ(ω) BA(ω) 1 -
sin ω Tm

ω Tm

 GaVib(ω) dω

0

∞

E ΔvScul/Algo-mz or x = Bϑ(ω) BA(ω) 1

0

∞

+
1
3

 1 - cos ω Tl
sin ω Tl

ω Tl

 -
sin ω Tm

ω Tm

 GaVib(ω) dω

(Continued)

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-145

E δvSF/Algo-mz or x = E δΔvScul/Algo-mz or x

= Bϑ(ω) BA(ω) 1 +
1
3

 1 - cos ω Tl
sin ω Tl

ω Tl

 - 1 GaVib(ω) dω

0

∞

E δRSF/Algo
2

(t) = (t - t0)2 BA
2

(ω)
2

ω2
 E(ω)

 2
 +

1
6

 (ω′ Tl)
2
 E(ω) f1(ω′ Tl)

0

∞

+
1

12
 (ω′ Tl)

2
 f2(ω′ Tl) f2 ω′(t - t0) GaVib(ω) dω

ω′ = ω -
2 π
Tl

ω Tl

2 π Intgr

E(ω) =
f1 (ω′ Tl)

2 f2 (ω′ Tl)
 -
ω′

ω

f1 and f2 defined by
Equations (10.1.3.2.3-16)

E δaAcclG2 = LG2
1
2

 BA
2

(ω) GaVib(ω) dω
0

∞

E δaAcclAniso = LAniso ω2
 Bϑ

2
(ω) GaVib(ω) dω

0

∞
(10.6.1-25)
(Continued)

E aSFy(t)
2 = BA

2
(ω) GaVib(ω) dω

0

∞

E θz or x(t)
2

 = Bϑ
2

(ω) GaVib(ω) dω
0

∞

E aVib(t)2 = GaVib(ω) dω
0

∞

where

GaVib(ω) = Random acceleration vibration input power spectral density.

E aVib(t)2 = Mean squared value of random vibration acceleration input.

Bϑ(ω), BA(ω) = Values for Bϑ(Ω), BA(Ω) in (10.6.1-8) with Ω = ω (and for worst

case analysis, ε’s set to have the same polarity).

10-146 VIBRATION EFFECTS ANALYSIS

Equations (10.6.1-25) with (10.6.1-8) can be easily programmed into the digital computer
analysis program for worst case numerical evaluation of vibration sensitive performance under

a prescribed random vibration input acceleration power spectral density GaVib(ω) provided as a

numerical function of frequency ω. The integration operations in (10.6.1-25) can be executed
with any simple digital integration algorithm (e.g., trapezoidal integration).

10.6.2 DEVELOPMENT OF THE δRSF/Algo(t) SINUSOIDAL INPUT

RESPONSE FOR WORST CASE SIMULATION ANALYSIS

In this section we develop an expression for worst case simulation analysis of δRSF/Algo(t)

under sinusoidal vibration exposure (in Equations (10.3-20)) starting with the equivalent

(10.4.2-4) form repeated below (using BA(Ω) from (10.6.1-8) for BaSF and aVib0 for pVib0):

δRSF/Algo(t) = - uVib
1

Ω2
 aVib0 BA(Ω)

Ω

Ω′

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω

+
1

12
 Ω′ Tl sin Ω′ Tl sin Ω′(t - t0) + Ω t0 + ψpVib + φaSF

- sin (Ω t0 + ψpVib + φaSF) -
1

12
 Ω Tl cos Ω′(t - t0) + Ω t0 + ψpVib + φaSF

(10.6.2-1)

- cos (Ω t0 + ψpVib + φaSF) (1 - cos Ω′ Tl)

As in an earlier discussion, we recognize that sensor assembly phase angle response
predictions using our simplified analytical models may be significantly in error, hence, we seek

the phase angle response φaSF that will maximize δRSF/Algo(t) as a worst case prediction. For

mathematical simplicity, let us first define:

A ≡ -
1

Ω2
 aVib0 BA(Ω)

Ω

Ω′

f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω
 +

1
12

 Ω′ Tl sin Ω′ Tl

B ≡
1

Ω2
 aVib0 BA(Ω)

1
12

 Ω Tl (1 - cos Ω′ Tl) (10.6.2-2)

φ ≡ Ω t0 + ψpVib + φaSF τ ≡ t - t0

so that using (10.4.2-10), Equation (10.6.2-1) becomes the simplified form for the signed

magnitude δRSF/Algo(τ):

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-147

δRSF/Algo(τ) = uVib ⋅ δRSF/Algo(τ)

 = A sin (Ω′ τ + φ) - sin φ + B cos (Ω′ τ + φ) - cos φ
(10.6.2-3)

To find the maximum (or minimum) of δRSF/Algo(τ) with phase angle φaSF, we take its

derivative with respect to φaSF (which from (10.6.2-2) is the same as the derivative with respect

to φ), and equate the result to zero:

d

dφ
 A sin (Ω′ τ + φ) - sin φ + B cos (Ω′ τ + φ) - cos φ

 = A cos (Ω′ τ + φ) - cos φ - B sin (Ω′ τ + φ) - sin φ = 0
(10.6.2-4)

From (10.6.2-4) we see that for maximum or minimum δRSF/Algo(τ):

cos (Ω′ τ + φ) - cos φ

sin (Ω′ τ + φ) - sin φ
 =

B
A

(10.6.2-5)

Substituting (10.6.2-5) in (10.6.2-3) then yields:

δRSF/Algo(τ) = A +
cos (Ω′ τ + φ) - cos φ

sin (Ω′ τ + φ) - sin φ
 B sin (Ω′ τ + φ) - sin φ

 = A +
B2

A
 sin (Ω′ τ + φ) - sin φ = 1 +

B
A

 2
 A sin (Ω′ τ + φ) - sin φ

(10.6.2-6)

The sinusoidal term in (10.6.2-6) is equivalently:

sin (Ω′ τ + φ) - sin φ = sin Ω′ τ cos φ - (1 - cos Ω′ τ) sin φ (10.6.2-7)

Substituting (10.6.2-7) in (10.6.2-6) and applying the (10.1.3.2.3-16) definitions yields a

singularity free version of δRSF/Algo(τ):

δRSF/Algo(τ) = 1 +
B Ω′

A Ω′

2

 A Ω′ τ
sin Ω′ τ

Ω′ τ
 cos φ - Ω′ τ

(1 - cos Ω′ τ)

(Ω′ τ)2
 sin φ

 = 1 +
B Ω′

A Ω′

2

 A Ω′ τ f1(Ω′ τ) cos φ - Ω′ τ f2(Ω′ τ) sin φ

(10.6.2-8)

The following general equalities will prove useful:

10-148 VIBRATION EFFECTS ANALYSIS

G = Sign(G) G Sign(G) 2 = 1 G Sign(G) = G

Sign
G
H

 =
Sign(G)
Sign(H)

 = Sign(G H) = Sign(G) Sign(H)

(10.6.2-9)

in which G and H are arbitrary parameters and where

Sign() = 1 for () ≥ 0 and - 1 for () < 0.

Using appropriate equalities from (10.6.2-9) we see that:

cos φ = Sign(cos φ) cos φ

sin φ = cos φ tan φ = cos φ Sign(tan φ) tan φ = cos φ Sign(tan φ)

sin φ

cos φ
 (10.6.2-10)

= Sign(cos φ) cos φ Sign(tan φ)
 sin φ

 cos φ

 = Sign(cos φ) sin φ Sign(tan φ)

With (10.6.2-10), Equation (10.6.2-8) is equivalently:

δRSF/Algo(τ) = 1 +
B Ω′

A Ω′

2

 A Ω′ τ Sign(cos φ) f1(Ω′ τ) cos φ

 - Sign(tan φ) Ω′ τ f2(Ω′ τ) sin φ
(10.6.2-11)

From basic trigonometry:

 sin φ =
1

1 + ctn2φ
 cos φ =

1

1 + tan 2φ
(10.6.2-12)

with which (10.6.2-11) becomes for the magnitude of the maximum or minimum

δRSF/Algo(τ):

 δRSF/Algo(τ) = 1 +
B Ω′

A Ω′

2

 A Ω′ τ
f1(Ω′ τ)

1 + tan 2φ

 - Sign(tan φ) Ω′ τ
f2(Ω′ τ)

1 + ctn2φ

 (10.6.2-13)

The tangent and cotangent functions in Equation (10.6.2-13) can be determined by
rearranging (10.6.2-4) as follows:

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-149

A cos (Ω′ τ + φ) - A cos φ - B sin (Ω′ τ + φ) + B sin φ = 0

= - A (1 - cos Ω′ τ) cos φ - A sin Ω′ τ sin φ (10.6.2-14)

 - B sin Ω′ τ cos φ + B (1 - cos Ω′ τ) sin φ

or

 B (1 - cos Ω′ τ) - A sin Ω′ τ sin φ - A (1 - cos Ω′ τ) + B sin Ω′ τ cos φ = 0 (10.6.2-15)

Applying the (10.1.3.2.3-16) formulas, Equation (10.6.2-15) shows that for the maximum

absolute δRSF/Algo(τ), the tan φ term in (10.6.2-13) is given by:

tan φ =
sin φ

cos φ
 =

A (1 - cos Ω′ τ) + B sin Ω′ τ

B (1 - cos Ω′ τ) - A sin Ω′ τ

=

A
(Ω′ τ)2

(Ω′ τ)2
 (1 - cos Ω′ τ) + B

Ω′ τ

Ω′ τ
 sin Ω′ τ

B
(Ω′ τ)2

(Ω′ τ)2
 (1 - cos Ω′ τ) - A

Ω′ τ

Ω′ τ
 sin Ω′ τ

(10.6.2-16)

=
A (Ω′ τ)2

 f2(Ω′ τ) + B Ω′ τ f1(Ω′ τ)

B (Ω′ τ)2
 f2(Ω′ τ) - A Ω′ τ f1(Ω′ τ)

or, after dividing by - A Ω′ τ and rearranging the denominator:

tan φ =

- Ω′ τ f2(Ω′ τ) -
B Ω′

A Ω′
 f1(Ω′ τ)

f1(Ω′ τ) -
B Ω′

A Ω′
 Ω′ τ f2(Ω′ τ)

(10.6.2-17)

The ctn φ term in (10.6.2-13) is the reciprocal of (10.6.2-17):

ctn φ =

f1(Ω′ τ) -
B Ω′

A Ω′
 Ω′ τ f2(Ω′ τ)

- Ω′ τ f2(Ω′ τ) -
B Ω′

A Ω′
 f1(Ω′ τ)

(10.6.2-18)

Using the second row formulas in (10.6.2-9), the Sign(tan φ) term in (10.6.2-13) can be
calculated from (10.6.2-17) as:

10-150 VIBRATION EFFECTS ANALYSIS

χ ≡ - Ω′ τ f2(Ω′ τ) -
B Ω′

A Ω′
 f1(Ω′ τ) f1(Ω′ τ) -

B Ω′

A Ω′
 Ω′ τ f2(Ω′ τ)

 Sign(tan φ) = Sign(χ)
(10.6.2-19)

Lastly, the A Ω′ and
B Ω′

A Ω′
 terms in (10.6.2-13) and (10.6.2-17) - (10.6.2-19) are from

(10.6.2-2) using the (10.1.3.2.3-16) f1 definition for sin Ω′ Tl:

B Ω′

A Ω′
 = -

1
12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 A Ω′ = -

1

Ω
 BA(Ω) F(Ω) aVib0

F(Ω) ≡
f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω
 +

1
12

 (Ω′ Tl)
2
 f1 (Ω′ Tl)

(10.6.2-20)

Summarizing, the maximum δRSF/Algo(t) is provided by Equation (10.6.2-13) with

(10.6.2-17) - (10.6.2-20) and with τ as defined in (10.6.2-2). In combination, the overall result
for addition to our simulation program discrete sinusoidal vibration performance parameter list
in Equations (10.6.1-23) is:

 δRSF/Algo(t) = (t - t0)
1

Ω
 BA(Ω) 1 +

1
144

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)

2

 F(Ω)
f1 Ω′(t - t0)

1 + tan2φ

- Sign(χ) Ω′(t - t0)
f2 Ω′(t - t0)

1 + ctn2φ
 aVib0

F(Ω) ≡
f1 (Ω′ Tl)

2 f2 (Ω′ Tl)
 -
Ω′

Ω
 +

1
12

 (Ω′ Tl)
2
 f1 (Ω′ Tl)

tan φ =

- Ω′(t - t0) f2 Ω′(t - t0) +
1
12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 f1 Ω′(t - t0)

f1 Ω′(t - t0) +
1

12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 Ω′(t - t0) f2 Ω′(t - t0)

(10.6.2-21)

ctn φ =

f1 Ω′(t - t0) +
1

12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 Ω′(t - t0) f2 Ω′(t - t0)

- Ω′(t - t0) f2 Ω′(t - t0) +
1
12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 f1 Ω′(t - t0)

(Continued)

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-151

χ = - Ω′(t - t0) f2 Ω′(t - t0) +
1

12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 f1 Ω′(t - t0) f1 Ω′(t - t0)

+
1

12

Ω′ Tl (1 - cos Ω′ Tl)

F(Ω)
 Ω′(t - t0) f2 Ω′(t - t0)

(10.6.2-21)
(Continued)

10.6.3 DEVELOPMENT OF THE δvSF/Scul/SnsDynz
 SINUSOIDAL AND RANDOM

INPUT RESPONSE FOR WORST CASE SIMULATION ANALYSIS

In this section we develop equations for worst case simulation analysis of the

δvSF/Scul/SnsDynz
 response to sinusoidal and random vibration input exposure. We begin with

the δvSF/Scul/SnsDynz
 expression in Equations (10.3-20) (which was duplicated from

(10.3-19)) repeated below:

δvSF/Scul/SnsDynz =
1
2

 pVib0

2
 Bθx BaSFy BωARSx

 BaAccly cos φθx

+ φωARSx - φaSFy - φaAccly - cos φθx - φaSFy (10.6.3-1)

- Bθy BaSFx BωARSy
 BaAcclx cos φθy + φωARSy - φaSFx - φaAcclx - cos φθy - φaSFx

As in our previous discussions, we recognize that the sensor assembly phase angle response
predictions using our simplified analytical models may be significantly in error, hence, we seek

the phase angle response that will maximize δvSF/Scul/SnsDynz
 as a worst case prediction. In

particular, the sensor assembly phase angle response terms having the uncertainty are

φθx, φθy, φaSFx, φaSFy which appear in (10.6.3-1) as φθx - φaSFy and φθy - φaSFx groupings.

We assume that the inertial sensor phase angle terms φωARSx, φωARSy, φaAcclx, φaAccly are

known accurately, hence, will not be adjusted for worst case study. For mathematical
simplicity, let us first define the sensor assembly phase angle terms of interest as:

Δφ1 ≡ φθx - φaSFy Δφ2 ≡ φθy - φaSFx (10.6.3-2)

Then the outer bracketed term in (10.6.3-1) (which we identify as Ψ) becomes:

Ψ = Bθx BaSFy Ψ1 - Bθy BaSFx Ψ2

Ψ1 ≡ BωARSx
 BaAccly cos Δφ1 + φωARSx - φaAccly - cos Δφ1 (10.6.3-3)

Ψ2 ≡ BωARSy
 BaAcclx cos Δφ2 + φωARSy - φaAcclx - cos Δφ2

10-152 VIBRATION EFFECTS ANALYSIS

δvSF/Scul/SnsDynz
 will be maximized if we find the Δφ1, Δφ2 that maximizes Ψ in

(10.6.3-3). The maximizing solution is determined by taking the partial derivative of Ψ with

respect to Δφ1 and Δφ2 and setting them to zero. From the form of (10.6.3-3) that finds Ψ1 and

Ψ2 independent (in terms of Δφ1 and Δφ2), we see that Ψ maximization can be accomplished

by maximizing Ψ1 and minimizing Ψ2 individually. Thus:

∂Ψ1

∂Δφ1

 = - BωARSx
 BaAccly sin Δφ1 + φωARSx - φaAccly + sin Δφ1 = 0 (10.6.3-4)

∂Ψ2

∂Δφ2

 = - BωARSy
 BaAcclx sin Δφ2 + φωARSy - φaAcclx + sin Δφ2 = 0 (10.6.3-5)

The solution to (10.6.3-4) is found by first expanding the leading sine term:

sin Δφ1 + φωARSx - φaAccly = sin Δφ1 cos φωARSx - φaAccly

 + cos Δφ1 sin φωARSx - φaAccly

(10.6.3-6)

Then, substituting (10.6.3-6) in (10.6.3-4) gives:

- BωARSx
 BaAccly cos φωARSx - φaAccly - 1 sin Δφ1

 - BωARSx
 BaAccly sin φωARSx - φaAccly cos Δφ1 = 0

(10.6.3-7)

which, upon rearrangement is:

BωARSx
 BaAccly cos φωARSx - φaAccly - 1

 = - BωARSx
 BaAccly sin φωARSx - φaAccly ctn Δφ1

(10.6.3-8)

or alternatively:

ctn Δφ1 =
1 - BωARSx

 BaAccly cos φωARSx - φaAccly

BωARSx
 BaAccly sin φωARSx - φaAccly

(10.6.3-9)

The (10.6.3-8) - (10.6.3-9) Ψ1 maximum relations are then used in (10.6.3-3) for Ψ1. First

we expand the leading cosine function in the (10.6.3-3) Ψ1 expression as:

cos Δφ1 + φωARSx - φaAccly =

 cos Δφ1 cos φωARSx - φaAccly - sin Δφ1 sin φωARSx - φaAccly

(10.6.3-10)

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-153

With (10.6.3-10), Ψ1 in (10.6.3-3) becomes:

Ψ1 = BωARSx
 BaAccly cos φωARSx - φaAccly - 1 cos Δφ1

 - BωARSx
 BaAccly sin φωARSx - φaAccly sin Δφ1

(10.6.3-11)

Substituting the (10.6.3-8) maximum relation in (10.6.3-11) yields:

Ψ1 = - BωARSx
 BaAccly sin φωARSx - φaAccly ctn Δφ1 cos Δφ1

- BωARSx
 BaAccly sin φωARSx - φaAccly sin Δφ1 (10.6.3-12)

= - BωARSx
 BaAccly sin φωARSx - φaAccly ctn Δφ1 cos Δφ1 + sin Δφ1

The Δφ1 trigonometric function in (10.6.3-12) can be condensed as:

ctn Δφ1 cos Δφ1 + sin Δφ1 = csc Δφ1 = ± 1 + ctn2Δφ1 (10.6.3-13)

Substituting the (10.6.3-9) maximum Ψ1 relation gives for 1 + ctn2Δφ1 in (10.6.3-13):

1 + ctn2Δφ1 = 1 +
1 - BωARSx

 BaAccly cos φωARSx - φaAccly

BωARSx
 BaAccly sin φωARSx - φaAccly

 2

=

BωARSx
 BaAccly sin φωARSx - φaAccly

 2

+ 1 - BωARSx
 BaAccly cos φωARSx - φaAccly

 2

BωARSx
 BaAccly sin φωARSx - φaAccly

 2
(10.6.3-14)

=

BωARSx
 BaAccly sin φωARSx - φaAccly

 2
 + 1

- 2 BωARSx
 BaAccly cos φωARSx

 - φaAccly + BωARSx
 BaAccly cos φωARSx

 - φaAccly
 2

BωARSx
 BaAccly sin φωARSx - φaAccly

 2

=
1 + BωARSx

2
 BaAccly

2
 - 2 BωARSx

 BaAccly cos φωARSx - φaAccly

BωARSx
 BaAccly sin φωARSx - φaAccly

 2

10-154 VIBRATION EFFECTS ANALYSIS

We substitute (10.6.3-13) with (10.6.3-14) (using the negative sign for the square root) into

(10.6.3-12) to find the maximum value for Ψ1:

Ψ1 = 1 + BωARSx

2
 BaAccly

2
 - 2 BωARSx

 BaAccly cos φωARSx - φaAccly (10.6.3-15)

The identical process for Ψ2 in (10.6.3-3) (but selecting the positive sign for the square root)

yields for the minimum:

Ψ2 = - 1 + BωARSy

2
 BaAcclx

2
 - 2 BωARSy

 BaAcclx cos φωARSy - φaAcclx (10.6.3-16)

Finally, we substitute (10.6.3-15) - (10.6.3-16) into the (10.6.3-3) Ψ expression and use the

result in (10.6.3-1) to obtain the worst case solution for δvSFScul/SnsDynz
 :

δvSF/Scul/SnsDynz = (10.6.3-17)

1
2

 pVib0

2
 Bθx BaSFy 1 + BωARSx

2
 BaAccly

2
 - 2 BωARSx

 BaAccly cos φωARSx - φaAccly

+ Bθy BaSFx 1 + BωARSy

2
 BaAcclx

2
 - 2 BωARSy

 BaAcclx cos φωARSy - φaAcclx

Equation (10.6.3-17) is now in a form that can be applied to our simulation program. As for
the sculling term analysis presented earlier, we use the Figure 10.5.1-1 simplified model for the
dynamic characteristics (as in Equation (10.6.1-2)) and approximate particular terms in
(10.6.3-17) as:

Bθx = Bϑ(Ω) BaSFy = BA(Ω) BaSFx = 0 (10.6.3-18)

Then the δvSF/Scul/SnsDynz
 response to discrete sinusoidal acceleration inputs is from

(10.6.3-18):

δvSF/Scul/SnsDynz = (10.6.3-19)

1
2

 aVib0

2
 Bϑ(Ω) BA(Ω)

1 + BωARSx

2
(Ω) BaAccly

2
(Ω)

- 2 BωARSx
(Ω) BaAccly(Ω) cos φωARSx(Ω) - φaAccly(Ω)

in which the Ω frequency dependence of the dynamic response terms has now been explicitly
identified. As in Section 10.6.1 we note that a similar result is obtained along axis X under the
same Y axis vibration due to Z axis angular rate sensor dynamic response characteristics:

VIBRATION EFFECTS ANALYSIS SIMULATION PROGRAM 10-155

δvSF/Scul/SnsDynx = (10.6.3-20)

1
2

 aVib0

2
 Bϑ(Ω) BA(Ω)

1 + BωARSz

2
(Ω) BaAccly

2
(Ω)

- 2 BωARSz
(Ω) BaAccly(Ω) cos φωARSz(Ω) - φaAccly(Ω)

where

δvSF/Scul/SnsDynx = B Frame X component of δvSF/SculSnsDyn.

BωARSz
(Ω), φωARSz(Ω) = Amplitude and phase dynamic frequency response

characteristics of the Z axis angular rate sensor.

Values for Bϑ(Ω), BA(Ω) in (10.6.3-19) would be provided from Equations (10.6.1-8).

The BωARSx
(Ω), BωARSz

(Ω), BaAccly(Ω), φωARSx(Ω), φωARSz(Ω), φaAccly(Ω) inertial

sensor dynamic response characteristics would be provided as a simulation program input (as a

function of Ω) or from an analytical model deemed representative of the inertial sensor dynamic
response. Equations (10.6.3-19) and (10.6.3-20) are now in the form that can be added to the
(10.6.1-23) list of performance parameters computed by the simulation for discrete frequency
vibration acceleration inputs.

The equivalent form of (10.6.3-19) - (10.6.3-20) for addition to our simulation program
random vibration performance parameter list in Equations (10.6.1-25) is:

E δvSF/Scul/SnsDynz
 =

Bϑ(ω) BA(ω)
1 + BωARSx

2
(ω) BaAccly

2
(ω)

- 2 BωARSx
(ω) BaAccly(ω) cos φωARSx(ω) - φaAccly(ω)

 GaVib(ω) dω

0

∞

(10.6.3-21)

E δvSF/Scul/SnsDynx =

Bϑ(ω) BA(ω)
1 + BωARSz

2
(ω) BaAccly

2
(ω)

- 2 BωARSz
(ω) BaAccly(ω) cos φωARSz(ω) - φaAccly(ω)

 GaVib(ω) dω

0

∞

10-156 VIBRATION EFFECTS ANALYSIS

11-1

11 Strapdown Algorithm Validation

11.0 OVERVIEW

A key aspect of the strapdown inertial navigation software design process is the validation of
the computational subroutines. In general this consists of operating the subroutines in a test
computer against simulated strapdown sensor inputs with a corresponding navigation parameter
profile (e.g., attitude, velocity, position). The navigation parameter solution generated with the
strapdown subroutines under test is compared numerically against the equivalent navigation
profile parameters to validate the subroutines.

The success of the validation depends on the accuracy of the reference navigation solution
profile accompanying the simulated sensor input data. Ideally, the reference solution should be
exact (i. e., completely error free). In addition, the reference solution profile(s) should be
designed to exercise all elements of the computational routines under test. In general, this
dictates reference profile(s) that do not represent realistic conditions encountered in normal
navigation system use. It also generally involves several simulation profiles, each designed to
exercise different groupings of the computational routines under test.

Algorithm validation simulators can be grouped into two classes; general simulators that
exercise groupings of algorithms based on characteristic motion that is independent of the
algorithm design, and specialized simulators based on particular design characteristics of the
algorithms to be validated. In some cases, a general simulator can also serve as a specialized
simulator for a particular algorithm evaluation.

This chapter provides examples of specialized and general simulators for validating
strapdown algorithms based on the author’s direct experience. Table 11.2-1 in Section 11.2 lists
the strapdown computational routines that can be validated with each general simulator
discussed.

11.1 SPECIALIZED VALIDATION SIMULATIONS

Specialized validation simulations are typically developed by the design engineer for
particular algorithm designs to assure that the developed algorithms are analytically correct and
in compliance with budgeted accuracy requirements. In this section we will provide some

11-2 STRAPDOWN ALGORITHM VALIDATION

examples of specialized validation techniques that might be used during the algorithm design
process, each of which would be executed using a specialized simulation designed for the
purpose.

For example, consider the (7.1.1.3-1) and (7.1.1.3-10) direction cosine matrix
orthogonality/normality correction algorithm and the quaternion normality correction algorithm
given by Equations (7.1.2.3-6) and (7.1.2.3-8). These algorithms can be verified by inputting a
direction cosine matrix and attitude quaternion that contain intentional orthogonality and
normality error. For the direction cosine matrix correction algorithm input, a non-

orthogonal/non-normal direction cosine matrix C can be calculated from a proper arbitrarily
selected reference direction cosine matrix C (without orthogonality/normality error) using
(3.5.1-1) with the error matrix E set to a small arbitrary symmetric matrix (See Section 3.5.1
ESYM discussion for rationale). For the quaternion correction algorithm input, a non-normal

quaternion q can be obtained from a proper arbitrarily selected reference quaternion q by
multiplying q by 1 plus an arbitrarily selected small constant. After applying (7.1.1.3-1),

(7.1.1.3-10) and (7.1.2.3-6), (7.1.2.3-8) to C and q, the result should be C and q (within the
second order error approximations used in the correction algorithm development).

An effective method for uncovering algorithm error is to compare the output of the algorithm
under test with that of another algorithm designed to perform the same basic function. For
example, the Equation (7.1.1.1-3) direction cosine matrix algorithm can be compared against
the equivalent (7.1.2.1-3) quaternion equivalent using (7.1.2.4-1) to convert the quaternion to the
equivalent direction cosine form for the comparison. Alternatively, (3.2.4.3-9) with (3.2.4.3-1)
can be used to convert the direction cosine matrix to the equivalent quaternion form for
comparison. The comparison should result in an error that is compatible with the truncation

error used in the algorithm power series expansion terms. The φm rotation vector input to

(7.1.1.1-3) and (7.1.2.1-3) for the test would be identical and set to some non-trivial arbitrary

value. For safety, the test should be repeated with different φm components and signs.

Another method of algorithm validation utilizes a reversibility routine to derive the algorithm
input from its output. An exact comparison of the derived input compared with the actual input
validates the algorithm under test and its inverse. For example, the output from the Equation
(7.1.1.1-3) direction cosine matrix algorithm can be input to inversion Equations (3.2.2.2-17) -

(3.2.2.2-19) to obtain the (7.1.1.1-3) input rotation vector φm. The φm vector calculated by the

inversion process should match the original input to (7.1.1.1-3) within the algorithm power

series truncation error. The original φm rotation vector input to (7.1.1.1-3) would be set to some

non-trivial arbitrary value. For safety, the test should be repeated with different φm components

and signs.

SPECIALIZED VALIDATION SIMULATIONS 11-3

Another example of the previous output inversion test method is validation of the Equation

(4.1.2-1) direction cosine matrix to φ, θ, ψ Euler angle extraction algorithm by calculating the
direction cosine matrix input to (4.1.2-1) with the (3.2.3.1-2) Euler angle to direction cosine

matrix routine. The (4.1.2-1) φ, θ, ψ output should match the (3.2.3.1-2) φ, θ, ψ input for

various arbitrarily selected values of φ, θ, ψ.

During the design of a new unfamiliar algorithm, it may be desirable that an unusual
analytical expression be validated by simulation. For example, consider Equations (8.2.1.1-7) -
(8.2.1.1-9) which form the basis for coning algorithm compensation of inertial sensor error.
Equations (8.2.1.1-7) - (8.2.1.1-9) can be validated by simulation comparison with the Equation
(8.2.1.1-6) equivalent, using arbitrarily defined values for the KMis angular rate sensor

misalignment matrix. A similar process can be used to validate the equivalent but more
complicated sculling algorithm sensor compensation terms in Section 8.2.2.1.

In some cases, the analytical form of an integration algorithm can be validated by comparison
with an exact closed-form integral of the fundamental equation from which it was derived. For

example, consider the (7.1.1.1-12) φm rotation vector computation for attitude updating using

input from B Frame integrated angular rate and coning algorithms (7.1.1.1.1-17) -
(7.1.1.1.1-18). Equations (7.1.1.1.1-17) - (7.1.1.1.1-18) were derived directly from Equation
(7.1.1.1-13) which, when combined with (7.1.1.1-12) is:

φm = ωIB
B

 +
1
2

 α t × ωIB
B

 dt
tm- 1

tm

(11.1-1)

α t = ωIB
B

 dτ
tm- 1

t

(11.1-2)

The Equation (7.1.1.1.1-17) - (7.1.1.1.1-18) algorithms were derived to be exact under general
linearly ramping angular rate:

ωIB
B

 = A + B (t - tm-1) (11.1-3)

where

A, B = Constants.

Equation (11.1-1) can be analytically integrated using (11.1-2) and (11.1-3) for input to yield:

φm = A (tm - tm-1) +
1
2

 B (tm - tm-1)2 +
1
12

 A × B (tm - tm-1)3 (11.1-4)

11-4 STRAPDOWN ALGORITHM VALIDATION

Equation (11.1-4) can now be used as a truth model for comparison with the algorithm

solution for φm computed from (7.1.1.1-12), (7.1.1.1.1-17) and (7.1.1.1.1-18). The result

should be an identical match for arbitrary values of A and B. The input Δαl to the algorithm for

this test would be from (11.1-3) and (7.1.1.1.1-17):

Δαl = ωIB
B

 dt
tl-1

tl

 = A (tl - t l-1) +
1
2

 B (tl - tm-1)2 - (tl-1 - tm-1)2 (11.1-5)

A similar procedure can be used to validate the analytical integrity of B Frame ΔvSFm

BI(m-1)
 and

ΔRSFm

B
 integration algorithms for velocity and position updating. The ΔvSFm

BI(m-1)
 algorithms

derive from Equation (7.2.2.2-5):

ΔvSFm

BI(m-1)
 = I + α(t) × aSF

B
 dt

tm-1

tm

(11.1-6)

with (11.1-2) for α t . The ΔvSFm

BI(m-1)
 algorithms presented in Section 7.2 were designed to be

analytically exact under general linearly ramping angular rate (e.g., as in (11.1-3)) and specific
force:

aSF
B

 = C + D (t - tm-1) (11.1-7)

where

C, D = Constants.

Analytically performing the (11.1-6) integration with input from (11.1-2), (11.1-3) and (11.1-7)

yields for a ΔvSFm

BI(m-1)
 truth model:

ΔvSFm

BI(m-1)
 = C (tm - tm-1) +

1
2

 D + A × C (tm - tm-1)2

 +
1
3

 A × D +
1
2

 B × C (tm - tm-1)3 +
1
8

 B × D (tm - tm-1)4
(11.1-8)

Two equivalent algorithm versions of ΔvSFm

BI(m-1)
 have been developed in Section 7.2 based on

the identically same general linearly ramping angular-rate/specific-force conditions; Equations
(7.1.1.1.1-17), (7.2.2.2-23), (7.2.2.2-25), (7.2.2.2.2-14), (7.2.2.2.2-15); and Equations

(7.1.1.1.1-17), (7.2.2.2-26), (7.2.2.2.2-23), (7.2.2.2.2-24). Inputs to these algorithms are Δαl

SPECIALIZED VALIDATION SIMULATIONS 11-5

and Δυl which, for the validation test, would be calculated with (11.1-5) and from

(7.2.2.2.2-14) with (11.1-7):

Δυl = aSF
B

 dt
tl-1

tl

 = C (tl - t l-1) +
1
2

 D (tl - tm-1)2 - (tl-1 - tm-1)2 (11.1-9)

The ΔvSFm

BI(m-1)
 algorithm solutions using (11.1-5) and (11.1-9) input should identically match

the Equation (11.1-8) result for arbitrary values of A, B, C, and D.

The ΔRSFm

B
 algorithm derives from Equations (7.3.3-4) and (7.2.2.2-5):

ΔRSFm

B
 = ΔvSF

B(m-1)(t) dt
tm - 1

tm

(11.1-10)

ΔvSF
B(m-1)(t) = I + α(τ)× aSF

B
 dτ

tm-1

t

(11.1-11)

with (11.1-2) for α t . Analytically performing the (11.1-10) integration with input from

(11.1-2), (11.1-3), (11.1-7) and (11.1-11) yields for the ΔRSFm

B
 truth model:

ΔRSFm

B
 =

1
2

 C (tm - tm-1)2 +
1
6

 D + A × C (tm - tm-1)3

 +
1

12
 A × D +

1
2

 B × C (tm - tm-1)4 +
1
40

 B × D (tm - tm-1)5
(11.1-12)

The algorithm versions for ΔRSFm

B
 developed in Section 7.3 are also based on general

linearly ramping angular-rate/specific-force conditions, and are provided by Equations
(7.1.1.1.1-17), (7.2.2.2.2-14), (7.2.2.2.2-15), (7.3.3-9), (7.3.3-11), and (7.3.3.2-18) -

(7.3.3.2-20). Inputs to these algorithms are Δαl and Δυl which, for the validation test, would

be calculated with (11.1-5) and (11.1-9). The ΔRSFm

B
 algorithm solution using (11.1-5) and

(11.1-9) input should identically match the Equation (11.1-12) result for arbitrary values of A,
B, C, and D.

As a final example, closed-form solutions can also be found similarly for the

velocity/position translation vectors (η and ζ) of Chapter 19, Section 19.1 based on continuous
form algorithm set c differential Equations (19.1.8-3). Assuming linearly ramping angular rate
and specific force as in (11.1-3) and (11.1-7), the integral of Equations (19.1.8-3) gives (in
addition to (11.1-4) for the rotation vector):

11-6 STRAPDOWN ALGORITHM VALIDATION

ηm = C (tm - tm-1) +
1
2

 D (tm - tm-1)2 +
1
12

 A × D - B × C (tm - tm-1)3

ζm =
1
2

 C (tm - tm-1)2 +
1
6

 D (tm - tm-1)3

 +
1

72
 2 A × D - 3 B × C (tm - tm-1)4 -

1
360

 B × D (tm - tm-1)5

(11.1-13)

Digital algorithms for calculating η and ζ provided in Equations (19.1.11-1) are also based

on general linearly ramping angular-rate/specific-force. Inputs to these algorithms are Δαl and

Δυl which, for the validation test, would be calculated with (11.1-5) and (11.1-9). The η, ζ
algorithm solution using (11.1-5) and (11.1-9) input should identically match the Equation
(11.1-13) result for arbitrary values of A, B, C, and D.

11.2 GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS

This section describes four general strapdown reference simulation routines for validating
particular groupings of strapdown inertial navigation computational routines. The simulator
routines are based on the author’s direct experience. Each simulator has the common
characteristic of having closed-form exact solution outputs that are analytical functions of the
time since simulation start. As such, their outputs are void of potential error produced by digital
integration (in contrast with the strapdown algorithms they are used to validate, which are
inherently digital integration routines by nature). The simulators to be described are denoted as:

SPIN-CONE - Simulates combined sensor frame spinning/coning angular motion.
Used to test the attitude integration routines associated with strapdown angular
rate sensor inputs under generalized dynamic spinning/coning conditions.

SPIN-ACCEL - Simulates constant angular rate spinning of the sensor and attitude
reference frame axes under constant sensor frame specific force acceleration
conditions. Used to test the attitude integration and acceleration transformation
routines for constant strapdown angular rate sensor and accelerometer inputs
(i.e., without coning and sculling).

SPIN-ROCK-SIZE - Simulates generalized spinning/rocking of the sensor frame from
an offset lever arm about a fixed rotation axis to create generalized
spinning/rocking/acceleration motion. Includes lever arms to three arbitrary
sensor frame locations to simulate accelerometer location and associated size
effect. Used to test the attitude integration, accelerometer size effect correction,
acceleration transformation and specific force acceleration integration/double-
integration routines for spinning/oscillating/accelerating sensor frame angular
rates and accelerations about a generalized non-rotating axis (i.e., with zero
coning but with non-zero sculling and scrolling).

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-7

GEN NAV - Simulates generalized motion over the surface of an ellipsoidal shaped
earth including acceleration to a specified velocity, climb maneuver to a specified
altitude, long term cruise at the specified altitude with specified oscillatory
altitude changes, and including a segment of constant (selectable) sensor frame
angular rate about an arbitrary (selectable) axis. Used to test the overall
integrated strapdown inertial navigation routines under generalized motion
(exclusive of coning/sculling/scrolling motion).

The validation test computer program that uses the above simulators would be structured to
call the strapdown routines being tested in the sequence and cycle rate they would normally be
processed in the actual INS navigation computer (e.g., Table 7.5-1). Each of the above
simulators would be programmed into the validation test program as an additional
computational subroutine called from the point in the strapdown routine call sequence that input
inertial sensor data is received. When called, the simulator subroutine would calculate and
deliver simulated angular rate sensor and accelerometer data to the strapdown routines under
test, in addition to the exact navigation parameters associated with the sensor data at that instant
of time. Comparison routines would then be utilized at strategically located points in the
strapdown routine call sequence to assess the accuracy of the strapdown routine generated
navigation parameters compared with the exact navigation parameter data.

Table 11.2-1 lists basic computational functions implemented in strapdown inertial
navigation software packages together with a list of representative computational routines (from
Tables 7.5-1 and 8.4-1) utilized for their implementation. Table 11.2-1 identifies (with a check

) the Table 7.5-1 strapdown navigation routines and Table 8.4-1 accelerometer size effect
compensation routines that can be validated with the simulators. The sub-sections following
Table 11.2-1 describe each of the simulators and the method used to compare their output
parameters against comparable data obtained from the strapdown routines under test.

Table 11.2-1 Strapdown Inertial Navigation System Computational Algorithms
Validated With Indicated Simulators

ALGORITHM FUNCTION EQUATION SIMULATOR USED FOR VALIDATION

SPIN-
CONE

SPIN-
ACCEL

SPIN-
ROCK-

SIZE

GEN NAV

HIGH SPEED CALCULATIONS

Integrated B Frame Angular Rate
 Increments

(7.1.1.1.1-17)

Integrated B Frame Acceleration
 Increments

(7.2.2.2.2-14)

(Continued)

11-8 STRAPDOWN ALGORITHM VALIDATION

ALGORITHM FUNCTION EQUATION SIMULATOR USED FOR VALIDATION

SPIN-
CONE

SPIN-
ACCEL

SPIN-
ROCK-

SIZE

GEN NAV

Coning Increment (7.1.1.1.1-18)

Sculling Increment (7.2.2.2.2-15)

Doubly Integrated B Frame Angular
 Rate And Acceleration Increments
 (For High Resolution Position
 Algorithm)

(7.3.3.2-18),
(7.3.3.2-19)

Scrolling Increment (For High
 Resolution Position Algorithm)

(7.3.3.2-20)

Accelerometer Size Effect Input
 Parameters

(8.1.4.1.4-5)

(With Δα′l = Δαl)

NORMAL SPEED CALCULATIONS

INERTIAL SENSOR COMPENSATION

Accelerometer Size Effect
 Compensation Term Components

(8.1.4.1.1.1-15)

Accelerometer Size Effect
 Compensation Terms

(8.1.4.1.1-11),
(8.1.4.1.2-13) (With ΔδυSizeCm = 0)

Integrated And Doubly Integrated B
 Frame Acceleration Increments
 Compensated For Accelerometer
 Size Effect

(8.1.2.2-4),
(8.1.2.2-6)

EARTH RELATED PARAMETERS

Earth Polar Axis Component Of
 Geodetic Vertical Unit Vector

(5.3-16)

Modified Radial Distance To Earth
 Surface Location

(5.1-10)

Radial Distance To Earth Surface
 Location

(5.2.1-4)

Radial Distance To Navigation Point (5.2.1-5)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-9

ALGORITHM FUNCTION EQUATION SIMULATOR USED FOR VALIDATION

SPIN-
CONE

SPIN-
ACCEL

SPIN-
ROCK-

SIZE

GEN NAV

Cosine Of Range Vector Polar
 Coordinate Angle

(5.2.2-3)

Modified Sine Of Range Vector Polar
 Coordinate Angle

(5.2.2-5)

Cosine And Modified Sine Of Difference
 Between Geocentric And Geodetic
 Latitudes

(5.2.3-5)

Local Earth Surface Point Radius Of
 Curvature In Latitude Direction

(5.2.4-25)

Local Navigation Point Radius Of
 Curvature In Latitude Direction

(5.2.4-37)

Curvature Matrix In The N Frame (5.3-18)

Vertical Transport Rate Component Section 4.5
For Options

N Frame Transport Rate Vector (5.3-17)

Gravity Components In Polar
 Coordinates

(5.4-1) &
(5.4-2)

North And Vertical Gravity Components (5.4-4)

North And Vertical Plumb-bob Gravity
 Components

(5.4.1-9)

N Frame Plumb-bob Gravity
 Components

(5.4.1-11)

N Frame Earth Rate Vector (4.1.1-3),
(4.1.1-4)

VELOCITY CALCULATIONS

B Frame Velocity Rotation
 Compensation (Exact Formulation)

(7.2.2.2.1-7),
(7.2.2.2.1-8)

B Frame Velocity Rotation
 Compensation (First Order
 Approximation Form)

(7.2.2.2-25)

11-10 STRAPDOWN ALGORITHM VALIDATION

ALGORITHM FUNCTION EQUATION SIMULATOR USED FOR VALIDATION

SPIN-
CONE

SPIN-
ACCEL

SPIN-
ROCK-

SIZE

GEN NAV

B Frame Integrated Specific Force
 Acceleration Increment

(8.1.4.1-14)

L Frame Integrated Specific Force
 Acceleration Increment

(7.2.2-2)

L Frame Rotation Vector (7.2.2.1-4) -
(7.2.2.1-7)

L Frame Rotation Matrix (First Order
 Form)

(7.2.2.1-1)

L Frame Rotation Compensation (7.2.2-4)

Integrated Coriolis Acceleration &
 Plumb-bob Gravity Increment

(7.2.1-1) -
(7.2.1-3)

N Frame Velocity Update (7.2-2)
With

Zero For
Coriolis

& Gravity

Vertical Channel Control Signals (7.2-6)

Vertical Velocity Divergence Control (7.2-5)

East, North, Up Velocity Component
 Outputs

(4.3.1-4)

POSITION CALCULATIONS

Position Rotation Compensation (High
 Resolution Position Algorithm - Exact
 Form)

(7.3.3.1-16)

Position Rotation Compensation (High
 Resolution Position Algorithm - First
 Order Accuracy Form)

(7.3.3-11)

Body Frame Position Increment Due To
 Specific Force Acceleration (High
 Resolution Position Algorithm)

(8.1.4.1-16)

N Frame Position Increment (High
 Resolution Position Algorithm)

(7.3.3-8)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-11

ALGORITHM FUNCTION EQUATION SIMULATOR USED FOR VALIDATION

SPIN-
CONE

SPIN-
ACCEL

SPIN-
ROCK-

SIZE

GEN NAV

N Frame Position Increment
 (Trapezoidal Position Algorithm)

(7.3.2-1)

Altitude Change (7.3.1.-3)

Position Rotation Vector (7.3.1-11),
(7.3.1-12)

Position Rotation Change Matrix (7.3.1-8)

Altitude Update (7.3.1-1)

Altitude Divergence Control (7.3.1-5)

Position Direction Cosine Matrix Update (7.3.1-6)

Latitude, Longitude Outputs And
 Wander Angle

(4.4.2.1-3)

ATTITUDE CALCULATIONS

B Frame Rotation vector (7.1.1.1-12)

B Frame Rotation Matrix (For Attitude
 Direction Cosine Matrix Updating)

(7.1.1.1-3)

B Frame Rotation Quaternion (For
 Attitude Quaternion Updating)

(7.1.2.1-3)

Attitude Update For B Frame Rotation
 (Direction Cosine Matrix Form)

(7.1.1.1-1)

Attitude Update For B Frame Rotation
 (Quaternion Form)

(7.1.2.1-1)

L Frame Rotation Vector (7.1.1.2.1-3),
(7.1.1.2.1-5)

L Frame Rotation Matrix For Attitude
 Direction Cosine Matrix Updating
 (Exact Form)

(7.1.1.2-3)

L Frame Quaternion For Attitude
 Quaternion Updating (Exact Form)

(7.1.2.2-3)

11-12 STRAPDOWN ALGORITHM VALIDATION

ALGORITHM FUNCTION EQUATION SIMULATOR USED FOR VALIDATION

SPIN-
CONE

SPIN-
ACCEL

SPIN-
ROCK-

SIZE

GEN NAV

Attitude Update For L Frame Rotation
 (Direction Cosine Matrix Form)

(7.1.1.2-1)

Attitude Update For L Frame Rotation
 (Quaternion Form)

(7.1.2.2-1)

Normalization And Orthogonalization
 Corrections (For Attitude Direction
 Cosine Matrix)

(7.1.1.3-1),
(7.1.1.3-10)

Normalization Corrections (For
 Attitude Quaternion)

(7.1.2.3-6),
(7.1.2.3-8)

Attitude Quaternion To Attitude
 Direction Cosine Matrix Conversion
 (For Attitude Quaternion As Basic
 Attitude Form)

(7.1.2.4-1)

Roll, Pitch, True Heading Euler Angle
 Outputs

(4.1.2-1),
(4.1.2-2)

11.2.1 SPIN-CONE SIMULATOR

The Spin-Cone simulator provides exact closed-form attitude and corresponding continuous
integrated body frame angular rates for a spinning body with coning motion. The difference
between integrated body rates at successive strapdown software sensor sampling cycles
simulate the inputs from strapdown angular rate sensors used in the attitude update routines for
the software under test. The Spin-Cone attitude direction cosine matrix is compared with the
strapdown software computed direction cosine matrix to establish strapdown software
algorithm attitude accuracy in terms of normality, orthogonality, and misalignment errors.

11.2.1.1 ANALYTICAL MODEL

The Spin-Cone simulator is based on a closed-form solution to the attitude motion described
by a body spinning at a fixed magnitude rotation rate and whose spin axis is rotating at a fixed
precessional rate. The geometry of the motion is described in Figure 11.2.1.1-1.

Figure 11.2.1.1-1 shows the spin-axis and precessional-axis to be separated by an angle β.
The spin axis rotates about the precessional axis which is defined to be perpendicular to a non-
rotating inertial plane. A set of body reference axes is implied in Figure 11.2.1.1-1 that rotates
relative to a defined set of non-rotating coordinates where:

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-13

L = Non-rotating coordinate frame that is fixed to the non-rotating plane with XL, YL
axes in the plane and the ZL axis perpendicular to the plane in the direction
opposite to the precessional rate vector.

R = Body “reference” coordinate axes fixed to the body with the X axis (XR) along the
spin axis. The R Frame is at a fixed orientation relative to the traditional sensor
assembly B Frame axes defined in Section 2.2. A distinction is made between the
B and R Frames so that the angular rate generated by the Figure 11.2.1.1-1 motion
can have selected projections on the B Frame sensor axes to test the general
response of the strapdown attitude algorithms.

β = Angle between the precessional axis and the R-Frame XR spin axis (the “cone
angle”) - considered constant.

ωs = Inertial rotation rate of the body about XR (“spin rate”) - considered constant.

ωc = Inertial precessional rate of the body XR axis about the precessional axis.

φ, θ, ψ = Roll, pitch, heading Euler angles of the body R Frame axes relative to the L
Frame (See Section 3.2.3 for the definition of Euler angles).

Precessional
Axis

Spin Axis

Inertial
Plane

θ

φ

β

ψ

(XR)

(XL - YL)

ZL

ωs
ωc

Figure 11.2.1.1-1 Spin-Cone Geometry

Note from the Figure 11.2.1.1-1 geometry, that:

θ = π / 2 - β = Constant (11.2.1.1-1)

11-14 STRAPDOWN ALGORITHM VALIDATION

The total inertial rotation rate of the body is the vector sum of the Euler angle rotation rate
effects. Generalized Equations (3.3.3.1-3) (with the R Frame in this section corresponding to

the B Frame and the A Frame rates set to zero as being inertially fixed) show that (with θ = 0
from Equation (11.2.1.1-1)) the R Frame inertial rotation rate components are given by:

ωXR = φ - ψ sin θ ωYR = ψ cos θ sin φ ωZR = ψ cos θ cos φ (11.2.1.1-2)

where

ωiR = R Frame i-axis component of inertial body rotation rate.

From the geometry in Figure 11.2.1.1-1 we also note that:

ωXR = ωs ψ = - ωc (11.2.1.1-3)

Combining (11.2.1.1-1) - (11.2.1.1-3) yields:

φ = ωs - ωc cos β ωXR = ωs

θ = 0 ωYR = - ωc sin β sin φ

ψ = - ωc ωZR = - ωc sin β cos φ

(11.2.1.1-4)

The integral of (11.2.1.1-4) provides the formulas for describing the body B Frame attitude
history and the integrated body rates that will form the basis for calculating simulated strapdown

angular rate sensor output signals. Recognizing from (11.2.1.1-4) and the definitions of ωs and

ωc, that the Euler angle rates are each constant, yields for the integral:

φ = ωs - ωc cos β t + α IωXR = ωs t

θ = π / 2 - β IωYR = ωc sin β
1

φ
 cos φ - cos α

ψ = - ωc t IωZR = - ωc sin β
1

φ
 sin φ - sin α

(11.2.1.1-5)

where

α = Initial value for φ. The initial value for ψ is assumed to be zero.

IωiR = Integral of ωiR from simulation start.

t = Time from simulation start.

The integral of the body R Frame rates over successive sample cycles is then computed as the
difference between the current and past values of IωiR:

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-15

ΔIωiRl = IωiRl - IωiRl-1 (11.2.1.1-6)

where

ΔIωiR = Integrated R Frame rotation rate component i over successive angular rate
sensor triad sample cycles (i.e., integrated rate increment).

l = Angular rate sensor triad sample time index.

The attitude of the R Frame relative to the L Frame corresponding with the Equation

(11.2.1.1-6) angular rate sensor signals is defined by the φ, θ, ψ Euler angles in Equations
(11.2.1.1-5), or from the equivalent direction cosine matrix using generalized Equations
(3.2.3.1-2):

CRL11 = cos θ cos ψ
CRL12 = - cos φ sin ψ + sin φ sin θ cos ψ
CRL13 = sin φ sin ψ + cos φ sin θ cos ψ

CRL21 = cos θ sin ψ
CRL22 = cos φ cos ψ + sin φ sin θ sin ψ (11.2.1.1-7)

CRL23 = - sin φ cos ψ + cos φ sin θ sin ψ

CRL31 = - sin θ
CRL32 = sin φ cos θ
CRL33 = cos φ cos θ

where

CRLij = Element in row i column j of the CR
L

 matrix defined below.

CR
L

 = Direction cosine matrix that transforms vectors from the R Frame to the

L Frame.

The ωs, ωc, β, α terms in Equations (11.2.1.1-5) are Spin-Cone simulator input parameters.

11.2.1.2 SIMULATED STRAPDOWN ANGULAR RATE SENSOR OUTPUTS

The strapdown angular rate sensor axes (B Frame) are assumed to be oriented relative to the
body reference axes (R Frame) by a fixed set of Euler angles, where:

11-16 STRAPDOWN ALGORITHM VALIDATION

JψR, JθR, JφR = Fixed Euler angles about Z, Y, X R Frame axes describing the body
angular rate sensor B Frame orientation relative to the body reference R
Frame.

The associated direction cosine matrix describing the B Frame attitude relative to the R Frame is
as defined by generalized Equations (3.2.3.1-2):

CBR11 = cos JθR cos JψR

CBR12 = - cos JφR sin JψR + sin JφR sin JθR cos JψR

CBR13 = sin JφR sin JψR + cos JφR sin JθR cos JψR

CBR21 = cos JθR sin JψR

CBR22 = cos JφR cos JψR + sin JφR sin JθR sin JψR (11.2.1.2-1)
CBR23 = - sin JφR cos JψR + cos JφR sin JθR sin JψR

CBR31 = - sin JθR

CBR32 = sin JφR cos JθR

CBR33 = cos JφR cos JθR

where

CBRij = Element in row i column j of CB
R

 defined below.

CB
R

 = Direction cosine matrix that transforms vectors from the B Frame to the R

Frame.

The body angular rate sensor axis (B Frame) components of body rotation rate are related to
the body reference axis R Frame components through:

ωB
 = CR

B
 ωR

(11.2.1.2-2)

where

ωB
 = B Frame (angular rate sensor axis) components of angular rotation rate.

ωR
 = Body reference R Frame components of angular rotation rate (X, Y, Z

components given by ωXR, ωYR, ωZR).

Because CR
B

 is constant, the integral of (11.2.1.2-2) over an inertial sensor data sample cycle is:

ΔIωB
 = CR

B
 ΔIωR

 = CB
R T

 ΔIωR
(11.2.1.2-3)

where

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-17

ΔIωR
 = Integrated R Frame rates between angular rate sensor triad sample cycles

(components i = X, Y, Z given by ΔIωiR in Equation (11.2.1.1-6)).

ΔIωB
 = Integrated B Frame angular rates between angular rate sensor triad sample

cycles.

The ΔIωB components from (11.2.1.2-3) represent the integrated B Frame angular rate
increments that simulate strapdown angular rate sensor outputs over a sensor sample cycle.
These signals are used as inputs to the strapdown attitude integration algorithms under test (e.g.,

representing the Δαl vector in Equations (7.1.1.1.1-17)).

11.2.1.3 ATTITUDE DIRECTION COSINE AND EULER ANGLE OUTPUTS

The simulated strapdown angular rate sensor axis B Frame direction cosine matrix relative to
the L Frame is given from the Equation (3.2.1-5) chain rule by:

CB
L

 = CR
L

 CB
R

(11.2.1.3-1)

where

CB
L

 = Direction cosine matrix that transforms vectors from the B Frame to the

L Frame.

The components of CR
L

 are defined by Equations (11.2.1.1-7) and the components of CB
R

 are

defined by Equations (11.2.1.2-1).

The Euler angles associated with CB
L

 are evaluated by application of generalized Equations

(3.2.3.2-1), (3.2.3.2-2) and (3.2.3.2-4):

θBL = tan -1
- C31

C32
2 + C33

2

For C31 < 0.999:

φBL = tan -1
C32

C33
ψBL = tan -1

C21

C11

For C31 ≤ - 0.999: (11.2.1.3-2)

ψBL - φBL = tan -1
C23 - C12

C13 + C22

For C31 ≥ 0.999:

ψBL + φBL = π + tan -1
C23 + C12

C13 - C22

11-18 STRAPDOWN ALGORITHM VALIDATION

where

Cij = Element in row i and column j of CB
L

.

φBL, θBL, ψBL = Roll, pitch, heading Euler angles associated with CB
L

.

11.2.1.4 STRAPDOWN ATTITUDE ALGORITHM ERROR EVALUATION

The error in the attitude data generated from the strapdown software algorithms under test

can be evaluated by comparison of the φ, θ, ψ software generated Euler angle output
parameters with the equivalent Euler angle data provided from the reference simulator (Spin-
Cone or other). Additionally, the attitude direction cosine matrix (DCM) calculated by the
algorithms under test can be compared with equivalent data from the reference simulator. This
section describes a computational routine that can be used to compare the DCM computed with
the strapdown inertial navigation algorithms under test against the reference DCM provided by
the Spin-Cone (or other) simulator. The comparison calculates normalization, orthogonality and
misalignment errors of the strapdown algorithm DCM.

The DCM comparison routine equations are based on generalized Equations (3.5.1-6) of
Section 3.5.1 which state that the error in a direction cosine matrix can be characterized by:

CALG = I + E CREF

E = CALG CREF
T

 - I

E = ESYM + ESKSYM

ESYM =
1
2

 E + ET ESKSYM =
1
2

 E - ET

(11.2.1.4-1)

where

CALG = Direction cosine matrix calculated with the strapdown algorithms under test.

CREF = Direction cosine matrix provided from the reference simulator (i.e., Spin-Cone
or other).

E = Matrix containing CALG errors.

ESYM = Symmetrical portion of E.

ESKSYM = Skew symmetrical portion of E.

I = Identity matrix.

Section 3.5.1 shows that the diagonal elements of ESYM equal the normality errors in the rows
of CALG and that the off-diagonal elements equal half the orthogonality errors between the rows
of CALG (See Equations (3.5.1-11), (3.5.1-12) and (3.5.1-14)). Section 3.5.1 also shows that
ESKSYM (to first order) is the skew symmetric form of the orientation error vector associated
with the misalignment of the CALG matrix from CREF.

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-19

Based on the previous understanding, we can now identify particular elements of ESYM and
ESKSYM as normalization, orthogonality and misalignment errors associated with the CALG
matrix:

Row 1 Normalization Error = ESYM11

Row 2 Normalization Error = ESYM22

Row 3 Normalization Error = ESYM33

Orthogonality Error Between Rows 1 And 2 = 2 ESYM12 = 2 ESYM21

Orthogonality Error Between Rows 1 And 3 = 2 ESYM13 = 2 ESYM31 (11.2.1.4-2)

Orthogonality Error Between Rows 2 And 3 = 2 ESYM23 = 2 ESYM32

Misalignment Error Around L Frame axis X = ESKSYM32 = - ESKSYM23

Misalignment Error Around L Frame axis Y = ESKSYM13 = - ESKSYM31

Misalignment Error Around L Frame axis Z = ESKSYM21 = - ESKSYM12

where

ESYMij, ESKSYMij = Elements in row i and column j of ESYM, ESKSYM.

11.2.2 SPIN-ACCEL SIMULATOR

The Spin-Accel simulator provides exact closed-form attitude, velocity and corresponding
body frame integrated angular rate and acceleration increments for a sensor assembly
undergoing a constant body frame linear-acceleration/angular-rate maneuver. The body frame
integrated angular rate and acceleration increments simulate inputs from strapdown angular rate
sensors and accelerometers used in the attitude-update/acceleration-transformation routines for
the software under test. The Spin-Accel direction cosine matrix represents the true body (B
Frame) attitude relative to an attitude reference L Frame. The Spin-Accel attitude direction
cosine matrix is compared with the strapdown software computed direction cosine matrix to
establish strapdown software attitude accuracy in terms of normality, orthogonality and
misalignment errors (as in Section 11.2.1.4). To verify acceleration transformation/integration
operations, the Spin-Accel velocity vector provided in the L Frame is compared against the
integrated transformed acceleration (B Frame to L Frame) obtained using the strapdown
software routines. The Spin-Accel simulator also provides for a user specified constant rotation
rate of the L Frame.

11.2.2.1 ANALYTICAL MODEL

The basic analytical function performed by the Spin-Accel simulator is to provide a closed-
form solution for the integral of transformed constant B Frame acceleration:

11-20 STRAPDOWN ALGORITHM VALIDATION

vSF
L

 = CB
L

 aSF
B

 dτ
0

t

 = CB
L

 dτ
0

t

 aSF
B

 (11.2.2.1-1)

where

t = Current time.

τ = Integration running time parameter.

B = Body (or strapdown inertial sensor) coordinate frame at time τ.

L = Attitude reference coordinate frame at time τ.

CB
L

 = Instantaneous direction cosine matrix at time τ that transforms vectors from
body to attitude reference coordinates.

aSF
B

 = Body frame specific force acceleration (constant).

vSF
L

 = Integrated specific force acceleration in the L Frame from simulation start time

t = 0 to the current time t.

The CB
L

 matrix in (11.2.2.1-1) can be decomposed as follows using the Equation (3.2.1-5)

chain rule:

CB
L

 = CL0

L
 CB0

L0 CB
B 0 (11.2.2.1-2)

where

B0 = B Frame orientation in non-rotating inertial space at simulation time t = 0.

L0 = L Frame orientation in non-rotating inertial space at simulation time t = 0.

The CB
B0 and CL0

L
 matrices in (11.2.2.1-2) can be expanded in terms of rotation vectors by

application of Equations (3.2.2-1) and (3.2.2.1-4) - (3.2.2.1-7):

CB
B0 = I + sin φ uφ

B× + (1 - cos φ) uφ
B× uφ

B×

CL0

L
 = CL

L0 T
 = I - sin ζ uζ

L× + (1 - cos ζ) uζ
L× uζ

L×

(11.2.2.1-3)

with

φ = φ uφ
B

 φ = φ ⋅ φ uφ
B

 = φ / φ

ζ = ζ uζ
L

 ζ = ζ ⋅ ζ uζ
L

 = ζ / ζ
(11.2.2.1-4)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-21

where

φ = Rotation vector describing the orientation of Frame B relative to Frame B0.

uφ
B

 = Unit vector along the φ rotation vector.

φ = Magnitude of φ.

ζ = Rotation vector describing the orientation of Frame L relative to Frame L0.

uζ
L

 = Unit vector along the ζ rotation vector.

ζ = Magnitude of ζ.

For the Spin-Accel simulator, the angular rates of the B Frame and L Frame relative to non-
rotating inertial space are constant. The integral solution from simulation time t = 0 to
generalized rotation vector rate Equation (3.3.5-14) under constant angular rate conditions (as
can be verified by substitution - See last paragraph in Section 7.1.1.1 for further explanation) is:

φ = ωφ τ ζ = ωζ τ (11.2.2.1-5)

where

ωφ = B Frame angular rate relative to non-rotating inertial space (constant).

ωζ = L Frame angular rate relative to non-rotating inertial space (constant).

Combining Equations (11.2.2.1-5) and (11.2.2.1-4) then provides:

ωφ = ω φ ⋅ ωφ φ = ωφ τ uφ
B

 = ωφ / ωφ

ωζ = ω ζ ⋅ ωζ ζ = ωζ τ uζ
L

 = ωζ / ωζ

(11.2.2.1-6)

where

ωφ = Magnitude of ωφ (constant).

ωζ = Magnitude of ωζ (constant).

Equations (11.2.2.1-6) also show that the uφ
B

, uζ
L

 vectors represent unit vectors along ωφ and ωζ,

which are constant because ωφ and ωζ are constant.

We now substitute the φ, ζ expressions from (11.2.2.1-6) into (11.2.2.1-3) to obtain:

CB
B0 = I + ΔCB

B0 CL0

L
 = I + ΔCL0

L
(11.2.2.1-7)

11-22 STRAPDOWN ALGORITHM VALIDATION

in which

ΔCB
B0 = sin ωφ τ uφ

B× + 1 - cos ωφ τ uφ
B× uφ

B×

ΔCL0

L
 = - sin ωζ τ uζ

L× + 1 - cos ωζ τ uζ
L× uζ

L×
(11.2.2.1-8)

With Equations (11.2.2.1-7) and (11.2.2.1-2), the CB
L integral in Equation (11.2.2.1-1)

becomes:

CB
L dτ

0

t

 = CB0

L0 t + CB0

L0 ΔCB
B0

0

t

 dτ + ΔCL0

L

0

t

 dτ CB0

L0

+ ΔCL0

L
 CB0

L0 ΔCB
B0 dτ

0

t
(11.2.2.1-9)

or

CB
L dτ

0

t

 = CB0

L0 t + ΔCφ + ΔCζ + ΔCζφ (11.2.2.1-10)

with

ΔCφ ≡ CB0

L0 ΔCB
B0

0

t

 dτ ΔCζ ≡ ΔCL0

L

0

t

 dτ CB0

L0

ΔCζφ ≡ ΔCL0

L
 CB0

L0 ΔCB
B0 dτ

0

t
(11.2.2.1-11)

In performing the integrations in (11.2.2.1-11) with (11.2.2.1-8) for ΔCB
B0 and ΔCL0

L
, it is

convenient to first define the following integral functional elements:

f1(ω t) = sin ω τ
0

t

 dτ =
1

ω
 1 - cos ω t

f2(ω t) = 1 - cos ω τ
0

t

 dτ = t -
1

ω
 sin ω t

(11.2.2.1-12)

where

f1(ω t), f2(ω t) = Generalized integral functional elements.

ω = Generalized angular rate argument.

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-23

Applying Equations (11.2.2.1-12) to ΔCφ and ΔCζ in (11.2.2.1-11) with (11.2.2.1-8) then
yields:

ΔCφ = CB0

L0 f1(ωφ t) uφ
B× + f2(ωφ t) uφ

B× uφ
B×

ΔCζ = - f1(ωζ t) uζ
L× + f2(ωζ t) uζ

L× uζ
L× CB0

L0
(11.2.2.1-13)

Evaluation of the ΔCζφ term in (11.2.2.1-11) is more involved and makes use of the
following trigonometric identities:

sin (α + β) = sin α cos β + cos α sin β

cos (α + β) = cos α cos β - sin α sin β
(11.2.2.1-14)

Proceeding from ΔCζφ in (11.2.2.1-11) with (11.2.2.1-8) and (11.2.2.1-14) then obtains:

ΔCζφ = - sin ωζ τ uζ
L× + (1 - cos ωζ τ) uζ

L× uζ
L× CB0

L0 sin ωφ τ uφ
B×

0

t

+ (1 - cos ωφ τ) uφ
B× uφ

B× dτ

= - sin ωζ τ sin ωφ τ dτ
0

t

 uζ
L× CB0

L0 uφ
B×

+ (1 - cos ωζ τ) sin ωφ τ dτ
0

t

 uζ
L× uζ

L× CB0

L0 uφ
B× (11.2.2.1-15)

- sin ωζ τ (1 - cos ωφ τ) dτ
0

t

 uζ
L× CB0

L0 uφ
B× uφ

B×

+ (1 - cos ωζ τ) (1 - cos ωφ τ) dτ
0

t

 uζ
L× uζ

L× CB0

L0 uφ
B× uφ

B×

= -
1
2

 cos (ωζ - ωφ) τ - cos (ωζ + ωφ) τ dτ
0

t

 uζ
L× CB0

L0 uφ
B×

+ sin ωφ τ -
1
2

 sin (ωζ + ωφ) τ - sin (ωζ - ωφ) τ dτ
0

t

 uζ
L×

 2
 CB0

L0 uφ
B×

(Continued)

11-24 STRAPDOWN ALGORITHM VALIDATION

- sin ωζ τ -
1
2

 sin (ωζ + ωφ) τ + sin (ωζ - ωφ) τ dτ
0

t

 uζ
L× CB0

L0 uφ
B× uφ

B× (11.2.2.1-15)
(Continued)

+ 1 +
1
2

 cos (ωζ - ωφ) τ + cos (ωζ + ωφ) τ - cos ωζ τ - cos ωφ τ dτ
0

t

 uζ
L×

 2
 CB0

L0 uφ
B×

 2

With (11.2.2.1-12), Equation (11.2.2.1-15) then becomes:

ΔCζφ =
1
2

 f2 (ωζ - ωφ)t - f2 (ωζ + ωφ)t uζ
L× CB0

L0 uφ
B×

+
1
2

 2 f1(ωφt) - f1 (ωζ + ωφ)t + f1 (ωζ - ωφ)t uζ
L×

 2
 CB0

L0 uφ
B× (11.2.2.1-16)

-
1
2

 2 f1(ωζt) - f1 (ωζ + ωφ)t - f1 (ωζ - ωφ)t uζ
L× CB0

L0 uφ
B× uφ

B×

-
1
2

 f2 (ωζ - ωφ)t + f2 (ωζ + ωφ)t - 2 f2(ωζt) - 2 f2(ωφt) uζ
L×

 2
 CB0

L0 uφ
B×

 2

Finally, we combine Equations (11.2.2.1-1) and (11.2.2.1-10) to obtain the closed-form

output expression for vSF
L

:

vSF
L

 = CB0

L0 t + ΔCφ + ΔCζ + ΔCζφ aSF
B

(11.2.2.1-17)

with CB0

L0 provided by user specification and ΔCφ, ΔCζ, ΔCζφ provided by Equations

(11.2.2.1-13) and (11.2.2.1-16). Inputs to ΔCφ, ΔCζ, ΔCζφ Equations (11.2.2.1-13) and

(11.2.2.1-16) are the user specified B Frame and L Frame angular rate vectors (ωφ, ωζ),

conversion Equations (11.2.2.1-6) for φ, uφ
B

, ζ, uζ
B

, user specified initial direction cosine matrix

CB0

L0 and the time since simulation start t.

The Spin-Accel simulator CB
L

 attitude direction cosine matrix at time t corresponding to vSF
L

in Equation (11.2.2.1-17) is given by Equation (11.2.2.1-2) using the CB0

L0 matrix specified by

the user and CB
B0, CL0

L
 as provided by Equations (11.2.2.1-3) and (11.2.2.1-5) (with τ = t). The

Euler angles associated with CB
L

 are evaluated as in Equations (11.2.1.3-2).

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-25

User specification of the CB0

L0 matrix is easily accomplished by definition of three Euler

angles describing the B Frame attitude relative to the L Frame at time t = 0 and then applying
generalized Equations (3.2.3.1-2):

C110 = cos θ0 cos ψ0

C120 = - cos φ0 sin ψ0 + sin φ0 sin θ0 cos ψ0

C130 = sin φ0 sin ψ0 + cos φ0 sin θ0 cos ψ0

C210 = cos θ0 sin ψ0

C220 = cos φ0 cos ψ0 + sin φ0 sin θ0 sin ψ0

C230 = - sin φ0 cos ψ0 + cos φ0 sin θ0 sin ψ0

(11.2.2.1-18)

C310 = - sin θ0

C320 = sin φ0 cos θ0

C330 = cos φ0 cos θ0

where

Cij0 = Element in row i, column j of CB0

L0.

φ0, θ0, ψ0 = Roll, pitch, heading Euler angles associated with CB0

L0.

11.2.2.2 SIMULATED STRAPDOWN INERTIAL SENSOR OUTPUTS

The Spin-Accel simulator must also provide B Frame integrated angular rate and specific
force acceleration increments to the strapdown algorithms under test at the algorithm iteration
cycle times to simulate the inputs from the strapdown angular rate sensors and accelerometers.
Since the angular rate and specific force acceleration are constant, these signals are given simply
by:

α = ωφ T υ = aSF
B

 T (11.2.2.2-1)

where

α = Simulated strapdown sensor assembly integrated angular rate sensor increment
vector.

υ = Simulated strapdown sensor assembly integrated accelerometer increment vector.

T = Strapdown algorithm attitude-update/acceleration-transformation time interval.

11-26 STRAPDOWN ALGORITHM VALIDATION

The α and υ vectors would then be used to represent the strapdown sensor inputs to the
strapdown attitude-integration/acceleration-transformation algorithms under test (i.e., for the

Chapter 7 and 19 (Section 19.1) algorithms, αm in Equation (7.1.1.1-12) with the coning term

βm set to zero, υm in Equation (7.2.2.2-23) with the sculling term ΔvSculm set to zero, αm, υm

for the rotation compensation term ΔvRotm as defined by Equation (7.2.2.2-25) or Equation

(7.2.2.2.1-7), αm for φm in Equations (19.1.5-9) (the equivalent to setting the coning term βm to

zero as discussed previously), and υm in the Equation (19.1.11-1) η velocity translation vector

expression with the δηScul sculling term set to zero for application in Equations (19.1.5-9)).

11.2.2.3 ATTITUDE REFERENCE FRAME ROTATION RATE OUTPUT

When evaluating the strapdown attitude-integration/acceleration-transformation algorithms
with the Spin-Accel simulator, the rotation rate for the algorithm attitude reference frame must

be set to match the user specified Spin-Accel L Frame rotation rate ωζ (e.g., setting ωIL
L

 to ωζ in

Equations (7.1.1.2-4) and (7.2.2.1-2)).

11.2.2.4 STRAPDOWN ALGORITHM ERROR EVALUATION

The accuracy of the strapdown software attitude-integration/acceleration-transformation
algorithms is evaluated with the Spin-Accel simulator by comparing the Spin-Accel attitude

matrix CB
L

 (and Euler angles) and the integrated L Frame specific force acceleration vSF
L

 with

the equivalent strapdown algorithm generated parameters at selected time points t.

The Spin-Accel simulator CB
L

 matrix and associated Euler angles at time t (from Equations

(11.2.2.1-2), (11.2.2.1-3), (11.2.2.1-5) and (11.2.2.1-18)) are compared with the CB
L

 matrix and

Euler angles calculated using the strapdown software attitude integration routines to assess the
strapdown algorithm attitude accuracy. Section 11.2.1.4 describes how the comparison is made

to evaluate strapdown algorithm CB
L

 error in terms of normality, orthogonality a n d

misalignment error parameters.

The Spin-Accel simulator integrated L Frame specific force acceleration vSF
L

 at time t

provided by Equation (11.2.2.1-17) is compared against the equivalent parameter calculated
with the strapdown software algorithms under test as the output from the software attitude-
integration/acceleration-transformation operations. For example, the L Frame integrated specific

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-27

force acceleration increment ΔvSFm

L
 calculated with the strapdown algorithms as in Equation

(7.2.2-4) would be summed at the m cycle transformation rate to obtain the equivalent to vSF
L

for Spin-Accel comparison. The Chapter 19 Equations (19.1.3-2) unified approach vm
N

 velocity

algorithm (with Δvgm

N
 set to zero and the velocity translation vector ηm provided by (19.1.11-1))

can also be validated with this simulator by comparing CN
L

 vm
N

 to ΔvSFm

L
.

11.2.3 SPIN-ROCK-SIZE SIMULATOR

The Spin-Rock-Size simulator provides exact closed form integrated angular rates, integrated
linear accelerations, attitude, velocity and position simulating a strapdown sensor assembly
undergoing spinning/sculling/scrolling dynamic motion with the individual accelerometers
mounted at specified lever arm locations within the sensor assembly (i.e., simulating size effect
separation). The integrated rates and accelerations are used as inputs to strapdown software
algorithms under test to compute body attitude, accelerometer size effect lever a rm
compensation to the body navigation reference center, transformation of compensated specific
force acceleration to navigation coordinates, and specific force acceleration integration to velocity
and position. The Spin-Rock-Size simulator evaluates the strapdown software algorithm
accuracy by comparing simulator computed position, velocity and attitude with the equivalent
data generated by the strapdown software algorithms under test.

11.2.3.1 ANALYTICAL MODEL

The Spin-Rock-Size simulator generates navigation and inertial sensor outputs under
dynamic motion around an arbitrarily specified and fixed rotation axis. The rotation axis is
defined to be non-rotating and non-accelerating. The dynamic motion is characterized as rigid
body motion around the specified axis with the specified axis located within the rotating rigid
body. The strapdown sensor assembly being simulated is located in the rigid body and has its
navigation reference center at a specified lever arm location from the rotation axis. Each
accelerometer within the sensor assembly is located at an arbitrarily selected lever arm position.
All accelerations measured by the accelerometers are created by the centripetal and tangential
acceleration effects produced by their lever arm displacement from the rotation axis under rigid
body dynamic angular motion around the rotation axis.

Based on the previous description, we define a fixed reference point located on the rotation
axis and a lever arm fixed to the rigid body, emanating from the reference point, and terminating
at an arbitrary point within the rigid body. The lever arm components can be analytically
defined in inertial and body fixed coordinates as follows:

11-28 STRAPDOWN ALGORITHM VALIDATION

lI = CB
I

 lB (11.2.3.1-1)

where

l = Lever arm from the reference point to an arbitrary point in the rigid body.

I = Inertial non-rotating coordinate frame.

B = Body frame defined to be aligned with the inertial sensor assembly axes.

CB
I

 = Direction cosine matrix that transforms vectors from the B Frame to the

I Frame.

Taking the first derivative of Equation (11.2.3.1-1) yields:

l
I
 = CB

I
 lB + CB

I
 l

B
(11.2.3.1-2)

Because l is defined as fixed in the B Frame, its rate of change in the B Frame is zero, hence,
Equation (11.2.3.1-2) simplifies to:

l
I
 = CB

I
 lB (11.2.3.1-3)

Generalized Equation (3.3.2-9) shows that:

CB
I

 = CB
I

 ωIB
B

× (11.2.3.1-4)

where

ωIB
B

 = Angular rate of the B Frame relative to inertial space projected on B Frame axes.

so that (11.2.3.1-3) becomes:

l
I
 = CB

I
 ωIB

B
× lB (11.2.3.1-5)

Taking the derivative of (11.2.3.1-5) and substituting (11.2.3.1-4) obtains:

l
I
 = CB

I
 ωIB

B
× lB + CB

I
 ωIB

B
× lB = CB

I
 ωIB

B
× ωIB

B
× lB + CB

I
 ωIB

B
× lB

= CB
I

 ωIB
B

× + ωIB
B

× ωIB
B

× lB
(11.2.3.1-6)

Because the l emanation point has been defined to be inertially non-accelerating, the second
derivative of l in the I Frame can be identified as the specific force acceleration at the end point
of the l vector:

aSF
I

 ≡ l
I

(11.2.3.1-7)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-29

where
aSF = Specific force acceleration of the end point of l (i.e., the acceleration that would

be measured by an accelerometer located at the l end point).

Substituting (11.2.3.1-7) into (11.2.3.1-6) and transforming the result to the B Frame then
shows that:

aSF
B

 = ωIB
B

× + ωIB
B

× ωIB
B

× lB (11.2.3.1-8)

Equation (11.2.3.1-8) can now be specialized to a particular accelerometer location within the
rigid body mounted strapdown sensor assembly. This is achieved by identifying a particular
location within the sensor assembly as the “navigation center” for sensor assembly
velocity/position determination with accelerometer locations defined relative to the navigation
center:

aSFi

B
 = ωIB

B
× + ωIB

B
× ωIB

B
× l 0

B
 + l i

B
(11.2.3.1-9)

where

l 0

B
 = Displacement vector of the sensor assembly navigation center from the fixed

reference point on the rotation axis.

l i
B

 = Displacement vector of accelerometer i (i = 1, 2 or 3) from the sensor assembly

navigation center.

aSFi

B
 = Specific force acceleration vector at the accelerometer i location.

We defined the rotation axis as itself non-rotating, hence, can write:

ωIB
B

 = γ uγ
B ωIB

B
 = γ uγ

B
(11.2.3.1-10)

where

uγ
B

 = Unit vector along the rotation axis.

γ = Angular displacement of the sensor assembly around the rotation axis.

For the Spin-Rock-Size simulator, the γ angle is specified analytically as:

γ = A t + B sin Ω t (11.2.3.1-11)

where

A, B, Ω = User selected constants.

11-30 STRAPDOWN ALGORITHM VALIDATION

11.2.3.2 SIMULATED STRAPDOWN INERTIAL SENSOR OUTPUTS

The simulated accelerometer i output is the component of aSFi

B
 along the accelerometer i input

axis direction:

aSFi = ui
B

 ⋅ aSFi

B
(11.2.3.2-1)

where

ui
B

 = Unit vector along the accelerometer i input axis.

aSFi
 = Accelerometer i input.

Combining Equations (11.2.3.2-1), (11.2.3.1-9) and (11.2.3.1-10) yields:

aSFi = ui
B

 ⋅ γ uγ
B× + γ

2
 uγ

B×
 2

 l 0
B

 + l i
B

 (11.2.3.2-2)

The output from accelerometer i is the integral of Equation (11.2.3.2-2) over a sensor
assembly sample period:

Δυil = ui
B ⋅ F1l uγ

B× + F2l uγ
B×

 2
 l 0

B
 + l i

B
 (11.2.3.2-3)

with

F1l ≡ γ
tl- 1

tl

 dt = f1(tl) - f1(tl-1) f1(t) ≡ γ dt = γ

F2l ≡ γ
2

tl- 1

tl

 dt = f2(tl) - f2(tl-1) f2(t) ≡ γ
2
 dt

(11.2.3.2-4)

where

Δυil = Accelerometer i output over the lth sensor assembly sample period.

tl, tl-1 = Time at the start and end of the lth sensor assembly sample period.

The f1(t), f2(t) integral functions in (11.2.3.2-4) are evaluated from the analytical expression for

γ in Equation (11.2.3.1-11).

The rate of change of γ is obtained as the time derivative of (11.2.3.1-11):

γ = A + B Ω cos Ω t (11.2.3.2-5)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-31

Since f1(t) is used in (11.2.3.2-4) as the difference between its value at tl and tl-1, the A term in
(11.2.3.2-5) cancels in the differencing operation, and f1 in (11.2.3.2-4) can be redefined for

simplicity as only containing the B term in (11.2.3.2-5).

f1(t) ≡ B Ω cos Ω t (11.2.3.2-6)

The f2(t) term in (11.2.3.2-4) is developed from the integral of the square of (11.2.3.2-5):

f2(t) = γ
2
 dt = A + B Ω cos Ω t

 2
 dt

 = A2 + 2 A B Ω cos Ω t + B2 Ω2
 cos2Ω t dt

(11.2.3.2-7)

or, after integration:

f2(t) = A2 +
1
2

 B2 Ω2
 t + 2 A B sin Ω t +

1
2

 B2 Ω sin Ω t cos Ω t (11.2.3.2-8)

The simulated strapdown angular rate sensor triad output is the integral of ωIB
B

 over a sensor

assembly sample period. Using (11.2.3.1-10) we find:

Δαl = ωIB
B

 dt
tl- 1

tl

= γ uγ
B

 dt
tl- 1

tl

(11.2.3.2-9)

or

Δαl = γ(tl) - γ(tl-1) uγ
B

(11.2.3.2-10)

where

Δαl = Strapdown angular rate sensor triad output vector over the lth sensor assembly
sample period.

The γ(t) parameter in Equation (11.2.3.2-10) is given by Equation (11.2.3.1-11).

The Δαl and Δυl simulated inertial sensor outputs given by Equations (11.2.3.2-10) and

(11.2.3.2-3) (with (11.2.3.2-4), (11.2.3.2-6) and (11.2.3.2-8)) are used to represent the
strapdown sensor inputs to the strapdown attitude integration, accelerometer size effect,
acceleration transformation, velocity update and position determination algorithms under test

(e.g., for the Chapter 7, 8 and 19 (Section 19.1) algorithms, Δαl and Δυl in Equations

(7.1.1.1.1-17), (7.2.2.2.2-14), (7.2.2.2.2-15), (7.3.3.2-18) - (7.3.3.2-20), (8.1.4.1.4-5) (with

Δα′l set to Δαl), and (19.1.11-1)).

11-32 STRAPDOWN ALGORITHM VALIDATION

11.2.3.3 REFERENCE ATTITUDE, VELOCITY AND POSITION

The Spin-Rock-Size attitude output is the orientation of the B Frame relative to a non-rotating
attitude reference coordinate frame, or in terms of direction cosines:

CB
L

= CB0

L
 CB

B0 (11.2.3.3-1)

where

L = Non-rotating attitude reference coordinate frame.

CB
L

 = Direction cosine matrix that transforms vectors from the B Frame to the

L Frame.

CB0

L
 = CB

L
 at time t = 0.

CB
B0 = Direction cosine matrix that transforms vectors from the B Frame at time t to

the B Frame attitude at time t = 0.

The CB
B0 matrix in (11.2.3.3-1) is a function of the angular position γ of the sensor assembly

since t = 0 around the rotation axis uγ
B

 or, considering γ uγ
B

 as a rotation vector defining the

orientation of the B Frame at time t relative to B at t = 0, from generalized Equation (3.2.2.1-4)
we can write:

CB
B0 = I + sin γ uγ

B× + 1 - cos γ uγ
B×

 2
(11.2.3.3-2)

with γ given by Equation (11.2.3.1-11).

User specification of the CB0

L
 matrix is easily accomplished by definition of three Euler

angles describing the B Frame attitude relative to the L Frame at time t = 0 and then applying

Equations (11.2.2.1-18) for CB0

L
. The roll, pitch and heading Euler angles associated with CB

L

are evaluated as in Equations (11.2.1.3-2).

The reference velocity output from the Spin-Rock-Size simulator is defined as the time rate
of change of the sensor assembly navigation center position as projected on the axes of a non-
rotating coordinate frame. Analytically, the velocity can be defined as the rate of change of the
l0 displacement vector defined in Section 11.2.3.1 in the non-rotating I Frame:

vI ≡ l 0
I (11.2.3.3-3)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-33

where

vI = Navigation center velocity in the I Frame.

The (11.2.3.3-3) I Frame derivative is given by Equation (11.2.3.1-5) with lB = l 0
B
.

Transforming (11.2.3.3-3) with Equation (11.2.3.1-5) and lB = l 0
B

 into the body B Frame gives

the velocity vector in sensor assembly B Frame coordinates:

vB = ωIB
B

 × l 0
B

(11.2.3.3-4)

where

vB = Navigation center velocity in the B Frame.

In a non-rotating navigation reference coordinate frame, Equation (11.2.3.3-4) can be written as:

vN = CL
N

 CB
L

 ωIB
B

 × l 0
B

(11.2.3.3-5)

where

vN = Navigation center velocity in the N Frame.

N = Non-rotating navigation reference coordinate frame.

CL
N

 = Constant direction cosine matrix that transforms vectors from the L Frame to the

N Frame.

The CL
N

 matrix in the Spin-Rock-Size simulator is defined as in Section 4.1.1 (based on the

Section 2.2 definitions for Frames L and N) as the transpose of Equation (4.1.1-2):

CL
N

 =
0 1 0
1 0 0
0 0 -1

(11.2.3.3-6)

Using (11.2.3.1-10) for ωIB
B

, Equation (11.2.3.3-5) becomes:

vN = γ CL
N

 CB
L

 uγ
B × l 0

B
(11.2.3.3-7)

with γ given by (11.2.3.2-5).

The navigation center position in the N Frame is simply the l0 vector projected onto the N
Frame:

RN = CL
N

 CB
L

 l 0
B

(11.2.3.3-8)

11-34 STRAPDOWN ALGORITHM VALIDATION

where

RN = Navigation center position vector in the N Frame.

11.2.3.4 STRAPDOWN ALGORITHM ERROR EVALUATION

The accuracy of the strapdown software attitude integration, accelerometer size effect
compensation, acceleration transformation, velocity update, position determination algorithms is
evaluated with the Spin-Rock-Size simulator by comparing the Spin-Rock-Size attitude matrix

CB
L and Euler angles, velocity vN and position RN with the equivalent strapdown software

algorithm generated parameters at selected time points t.

The Spin-Rock-Size simulator CB
L matrix and associated Euler angles at time t (from

Equations (11.2.3.1-11), (11.2.3.3-1) - (11.2.3.3-2), (11.2.2.1-18) and (11.2.1.3-2)) are

compared with the CB
L matrix and Euler angles calculated using the strapdown software attitude

integration routines to assess the strapdown algorithm attitude accuracy. Section (11.2.1.4)

describes how the comparison is made to evaluate strapdown algorithm CB
L error in terms of

normality, orthogonality and misalignment error parameters.

The Spin-Rock-Size simulator velocity vector vN at time t, provided by Equation

(11.2.3.3-7) with (11.2.3.2-5), (11.2.3.3-6) and CB
L (calculated per the previous paragraph), is

compared against the equivalent parameter calculated with the strapdown software algorithms
under test using the attitude integration, accelerometer size effect compensation, specific force
acceleration transformation, and velocity update operations. For example, for the Chapter 7

algorithms, vN would be calculated using the strapdown algorithm Equation (7.2-2) integration
routine but with the gravity/Coriolis term set to zero. The result can then be compared with the

Spin-Rock-Size generated vN to evaluate the strapdown algorithm accuracy in generating
integrated specific force acceleration in N Frame coordinates from the Spin-Rock-Size
simulated inertial sensor inputs. Similarly, for the Chapter 19 (Section 19.1) unified algorithms,

vN would be calculated using the Equations (19.1.5-9) and (19.1.11-1) integration routines with

the Δvg
N

 term set to zero. The result would then be compared with the Spin-Rock-Size

generated vN to evaluate the algorithm accuracy in generating integrated specific force
acceleration in N Frame coordinates from the Spin-Rock-Size simulated inertial sensor inputs.

The Spin-Rock-Size simulator position vector RN at time t provided by Equation
(11.2.3.3-8) is compared against the equivalent parameter calculated with the strapdown
software algorithms under test from the attitude integration, accelerometer size effect
compensation, specific force acceleration transformation, velocity update and position change

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-35

increment operations. For example, for the Chapter 7 algorithms, vN would be calculated using
the strapdown algorithm Equation (7.2-2) integration routine with the gravity/Coriolis term set

to zero and (for a high precision position updating routine) the ΔRm
N

 N Frame position change

increment would be calculated using Equation (7.3.3-8), but with the gravity, Coriolis and

ζn-1,m, ζn-1,m-1 L Frame rotation terms set to zero, and CL(n-1)

L(m-1) set to identity. The ΔRm
N

increment would then be summed at the m cycle transformation rate to obtain the equivalent to

RN for Spin-Rock-Size comparison. If a standard trapezoidal position integration algorithm is
being used in the software under test (rather than the high resolution version), the equivalent

ΔRm
N

 increment would be calculated using Equation (7.3.2-1), with the result then summed to

obtain RN. The Chapter 19 Equations (19.1.3-2) unified approach position algorithms can also

be validated with the Spin-Rock-Size simulator using RN from (19.1.3-2) with (19.1.11-1)

compared to RN from the simulator. The vN input to RN in (19.1.3-2) would be calculated with

Δvg
N

 set to zero.

11.2.4 GEN NAV SIMULATOR

The Gen Nav simulator provides a complete set of analytical closed-form navigation data at
user selected time points including a simulated strapdown angular rate sensor and accelerometer
output history whose processing in exact strapdown integration algorithms would generate the
identically same navigation data. The Gen Nav simulator is utilized to verify strapdown inertial
navigation software algorithms under test by operating the algorithms using the Gen Nav
simulator strapdown inertial sensor outputs and then comparing the navigation data generated
by the algorithms with the equivalent data provided by the Gen Nav simulator.

The Gen Nav simulator is structured around a user specified latitude/longitude/altitude
position profile that is analytically time differentiable so that the associated rates of change are
also analytic functions. The specified latitude/longitude/altitude functions (and their rates of
change) are used to calculate the position range vector from earth’s center, velocity and gravity
data in an inertial (non-rotating) coordinate frame. The computed velocity and gravity data are
then combined to calculate incremental changes in integrated specific force acceleration in the
inertial frame. An angular rate profile is also user specified for the strapdown sensor coordinate
axes (“body” B Frame), which is used to form the Gen Nav simulated strapdown angular rate
sensor output signals and to calculate B Frame attitude. The B Frame attitude is used to
transform the inertial integrated specific force acceleration increments to body frame axes to
generate the Gen Nav simulated strapdown accelerometer outputs. For the above operations,
analytically exact routines are used for the earth shape model and integration routines so that
Gen Nav outputs can be used as an accurate reference for the validation of high accuracy
strapdown inertial navigation software algorithms. The gravity model is selected to match that
used in the software algorithms under test.

11-36 STRAPDOWN ALGORITHM VALIDATION

The sections to follow present the analytical basis for the Gen Nav simulator computation
routines. Section 11.2.4.1 (and its subsections) defines the user specified
latitude/longitude/altitude analytic position parameters (and their analytic derivatives) used to
describe the reference trajectory profile, and converts these into position-range/velocity vector
data in inertial coordinates. Section 11.2.4.2 provides equations for converting the Section
11.2.4.1 position/velocity data into earth referenced latitude/longitude/altitude position location
and north/east/vertical velocity outputs. Section 11.2.4.3 and its subsections derive expressions
for the simulated strapdown inertial sensor outputs. Section 11.2.4.4 describes the equations
used to provide roll, pitch, true heading outputs.

In the subsections to follow we will be using the B, I, and E Frames as defined in Section 2.2
and where for more specificity:

I = Inertial non-rotating coordinate frame having the Y-axis along earth’s polar axis, X,
Z axes parallel to the earth’s equatorial plane, and the Z-axis in the plane of the earth
Greenwich longitude reference meridian at time t = 0.

E = Earth fixed coordinate frame having Y along the earth polar axis, Z, X in the earth
equatorial plane, with Z in the Greenwich England meridian plane. Note that from
the previous definition for the I Frame, that the I and E Frames are coincident at
simulation time t = 0.

11.2.4.1 POSITION AND VELOCITY PARAMETERS

The latitude/longitude/altitude input profile is specified in terms of analytic functions with
analytic time derivatives (i.e., rates of change of latitude/longitude/altitude) relative to a non-
rotating (inertial) geoid surface that is of identical shape to the ellipsoidal earth surface reference
geoid (See Section 5.1 for earth shape definition). Thus, the non-rotating inertial geoid is
tangent at all points to the rotating earth surface. From this definition, and the definitions for the
E and I Frames in Section 11.2.4, it should be clear that latitude and altitude relative to the
inertial geoid are identical to latitude/altitude relative to the rotating earth referenced geoid (i.e.,
desired Gen Nav outputs). Earth referenced longitude (for output), however, equals the
inertially defined longitude plus the rotation angle of the earth about its polar axis since
simulation start. The following subsections describe the analytical functions used in the Gen
Nav simulator for inertial latitude/longitude/altitude (and their derivatives), and their conversion
equations into the inertial frame position-range and velocity vectors.

11.2.4.1.1 Specified Latitude/Inertial-Longitude/Altitude And Their Derivatives

In principle, the latitude/inertial-longitude/altitude input parameters can be any analytically
differentiable time functions. For the Gen Nav simulator, they are selected to approximate a
general aircraft trajectory profile.

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-37

The horizontal position functions (latitude, inertial longitude) are each represented as an offset
negative cosine wave for one quarter of a cosine wave cycle, followed by a constant linear-with-
time ramp that matches the negative cosine function amplitude at the cosine function first
quarter cycle point. The ramp slope is selected to match the derivative of the negative cosine
function at the ramp start time (at the cosine function quarter cycle time). In the case of the
longitude function, the cosine/ramp function is augmented by an additional linear time-ramp
initiated at run time zero. By setting the slope of the additional ramp to earth’s rotation rate, the
specified inertial longitude negative-cosine/ramp function (relative to the inertial geoid)
simulates motion relative to the rotating earth. Having specified analytical functions for the
latitude and inertial longitude, their associated rates of change are easily calculated by analytical
differentiation. Thus, we write:

If (ωl t < π / 2), Then:

l = l0 + lAmp (1 - cos ωl t)

l = lAmp ωl sin ωl t

If (ωl t ≥ π / 2), Then:

l = l0 + lAmp (1 + ωl t - π / 2)

l = lAmp ωl
(11.2.4.1.1-1)

If (ωL t < π / 2), Then:

LI = L0 + L1 t + LAmp (1 - cos ωLt)

LI = L1 + LAmp ωL sin ωLt

If (ωL t ≥ π / 2), Then:

LI = L0 + L1 t + LAmp (1 + ωL t - π / 2)

LI = L1 + LAmp ωL

where

t = Time from simulator run start (sec).

l = Latitude relative to the inertial (and earth reference) geoid (rad).

l0 = Initial latitude (rad).

lAmp = Latitude cosine function amplitude (rad).

ωl = Frequency of latitude cosine function (rad/sec).

l = Rate of change of latitude (rad/sec).

LI = Inertial longitude relative to the inertial geoid (rad).

11-38 STRAPDOWN ALGORITHM VALIDATION

L0 = Initial longitude (rad). Because the E and I Frames have been defined to be
coincident at time t = 0, L0 is the initial value for both the inertial longitude LI and
earth referenced longitude relative to Greenwich.

L1 = Inertial longitude offset time ramp slope constant (rad/sec).

LAmp = Inertial longitude cosine function amplitude (rad).

ωL = Frequency of inertial longitude cosine function (rad/sec).

LI = Rate of change of inertial longitude (rad/sec).

The altitude function is defined as a half wave of an offset negative cosine function followed
by a second offset negative cosine function (at a different frequency) that matches the amplitude
and slope of the first at its first half wave point. The altitude rate is the analytical derivative of
the altitude function. Thus:

If (ωh1 t < π), Then:

h = h0 + hAmp1 (1 - cos ωh1 t)

h = hAmp1 ωh1 sin ωh1 t
(11.2.4.1.1-2)

If (ωh1 t ≥ π), Then:

h = h0 + 2 hAmp1 + hAmp2 1 - cos ωh2(t - π / ωh1)

h = hAmp2 ωh2 sin ωh2(t - π / ωh1)

where

h = Altitude above the inertial (and earth reference) geoid surface.

h0 = Initial altitude (ft).

hAmp1 = First altitude cosine function amplitude (ft).

ωh1 = Frequency of first altitude cosine function (rad/sec).

hAmp2 = Second altitude cosine function amplitude (ft).

ωh2 = Frequency of second altitude cosine function (rad/sec).

h = Rate of change of altitude (ft/sec).

Values for the coefficient parameters in (11.2.4.1.1-1) and (11.2.4.1.1-2) are set to simulate
typical aircraft profile characteristics. From the form of the latitude and altitude equations, we
see that the initial north/vertical velocity (i.e., latitude/altitude rate) are zero at time t = 0. The L1
coefficient in (11.2.4.1.1-1) is set equal to earth’s inertial angular rotation rate. The effect is to

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-39

simulate zero east velocity relative to the rotating earth at time zero (which corresponds to a
longitude rate over the non-rotating inertial geoid equal to earth’s rotation rate). Thus:

L1 = ωe (11.2.4.1.1-3)

where

ωe = Earth’s inertial rotation rate (rad/sec).

It is important to recognize (as discussed in Section 11.2.4.1) that by setting L1 to earth’s rate in
(11.2.4.1.1-3), the initial longitude (L0) and cosine function in Equations (11.2.4.1.1-1) then
represents the longitude profile relative to the rotating earth (as does the latitude function in
(11.2.4.1.1-1) and the altitude function in (11.2.4.1.1-2)). Visualization of the resulting
trajectory profile relative to the rotating earth is thereby simplified.

The lAmp and LAmp coefficients are set so that the latitude/inertial-longitude rates (l and LI) at

the first quarter wave cosine function time points correspond to typical application linear
horizontal cruise velocity component magnitudes (e.g., 1000 fps for an aircraft). Neglecting
earth’s ellipticity, we see from Equations (4.4.3-2), (4.4.3-5) and (4.4.3-6) that
latitude/longitude rates relative to the earth are in terms of north/east velocity components:

l = vY / (R0 + h) L = vX / (R0 + h) cos l (11.2.4.1.1-4)

where

L = Longitude relative to Greenwich in the earth fixed E Frame.

vX, vY = East/north velocity relative to the earth.

R0 = Earth’s equatorial radius.

We also know from previous paragraphs that:

L = LI - ωe (11.2.4.1.1-5)

Then, using (11.2.4.1.1-4) - (11.2.4.1.1-5) at the first quarter cycle cosine function time points,
we see from (11.2.4.1.1-1) with (11.2.4.1.1-3) that:

lAmp = VNorth / (R0 + h@t=π/(2ωl)) ωl

LAmp = VEast / (R0 + h@t=π/(2ωL)) ωL cos l@t=π/(2ωL)

(11.2.4.1.1-6)

where

11-40 STRAPDOWN ALGORITHM VALIDATION

VNorth , VEast = North and East cruise velocities (in fps) at the first quarter cycle

cosine function time points (i.e., at t = π / (2 ωl) for VNorth and

t = π / (2 ωL) for VEast).

@t=() = Subscript designation for parameter evaluated from Equations (11.2.4.1.1-1)
- (11.2.4.1.1-2) at the designated time points.

The frequencies for the l and LI cosine functions are set so that the first quarter wave end points
correspond to a time that is typical for the application (i.e., 900 sec for an airplane to reach
cruising altitude, corresponding to a full sine wave period of 3600 sec):

ωl = 2 π / T0 ωL = 2 π / T0 (11.2.4.1.1-7)

where

T0 = Time period for the latitude/inertial-longitude cosine wave functions.

The hAmp1 coefficient for the altitude function (Equations (11.2.4.1.1-2)) is set so that at the

first cosine half wave end point, h equals a typical application cruise altitude (e.g., 40,000 feet
for an aircraft). From (11.2.4.1.1-2), the associated initialization equation is:

hAmp1 =
1
2

 (HCruise - h0) (11.2.4.1.1-8)

where

HCruise = Selected nominal cruise altitude (ft).

The first altitude cosine function frequency is set so that the half wave end point corresponds to
the first quarter wave point for the latitude/inertial-longitude cosine functions. With
(11.2.4.1.1-7) this is given by:

ωh1 = 4 π / T0 (11.2.4.1.1-9)

The second altitude cosine function amplitude and frequency are set to provide a selected
oscillatory altitude during cruise that is above (or below) the nominal cruise altitude. From
(11.2.4.1.1-2):

hAmp2 =
1
2

 ΔhOsc ωh2 = 2 π / ThOsc (11.2.4.1.1-10)

where

ΔhOsc = Peak oscillatory altitude variation during cruise above (below) the nominal
cruise altitude.

ThOsc = Period for the oscillatory altitude variation during cruise.

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-41

11.2.4.1.2 Inertial Position Range And Velocity Vectors

We can use Equations (4.4.2.1-2) as representing a general set of relationships between
latitude, longitude, wander angle Euler angles and the elements of a general direction cosine

matrix CA2

A1 relating generalized coordinate frames A2 and A1 (with elements Dij as given in

(4.4.2.1-2)). Recall that Equations (4.4.2.1-2) are based on the definition of the direction cosine
matrix having the Z axis of the associated locally level navigation frame (the N Frame

corresponding to A2 of CA2

A1) along the upward vertical. Generalized Equations (3.2.1-6) show

that a column in a general direction cosine matrix CA2

A1 (say column i) represents a unit vector

along A2 Frame axis i projected on A1 Frame coordinate axes. Let us now consider Frame A1

as being the inertial I Frame and Frame A2 as having its Z axis along the upward vertical. Then
the unit vector along the upward vertical has I Frame components given by the third column of
the (4.4.2.1-2) direction cosine matrix. Thus:

uUp
I

 =

uUpXI

uUpYI

uUpZI

 =
sin LI cos l

sin l
cos LI cos l

(11.2.4.1.2-1)

where

uUp
I

 = Unit vector along the upward local geodetic vertical as projected on I Frame

axes.

uUpXI, uUpYI, uUpZI = I Frame X, Y, Z components of uUp
I

.

The equations developed in Sections 5.1 and 5.2.2 of Chapter 5 describe navigation
parameters in the earth fixed E Frame relative to an ellipsoidal earth referenced geoid surface.
Since the inertial geoid has been defined to be tangent at all points to the earth referenced geoid,
the equations developed in the previous sections can also be applied for I Frame defined
parameters relative to the inertial geoid. Thus, from equations (5.1-10) and (5.2.2-1), we can
quickly write for the position range vector:

RS
′ = R0 / 1 + uUpYI

2
 1 - e 2 - 1 (11.2.4.1.2-2)

RI =

uUpXI RS
′ + h

uUpYI 1 - e 2 RS
′ + h

uUpZI RS
′ + h

(11.2.4.1.2-3)

11-42 STRAPDOWN ALGORITHM VALIDATION

where

RS
′ = Modified distance parameter from earth’s center to the geoid surface.

RI = Position range vector from earth’s center to the current position location in
I Frame coordinates.

e = Ellipsoidal earth shape geoid model ellipticity.

R0 = Earth’s equatorial radius.

We also note that the linear distance from earth center to the current position location is the
magnitude of RI or:

R = RI ⋅ RI (11.2.4.1.2-4)

where

R = Magnitude of RI.

The velocity relative to the non-rotating I Frame is the derivative of (11.2.4.1.2-3), hence:

R
I
 =

uUpXI RS
′ + h + uUpXI RS

′
 + h

uUpYI 1 - e 2 RS
′ + h + uUpYI 1 - e 2 RS

′
 + h

uUpZI RS
′ + h + uUpZI RS

′
 + h

(11.2.4.1.2-5)

The derivative terms in (11.2.4.1.2-5) are obtained by analytic differentiation of Equations
(11.2.4.1.2-1) and (11.2.4.1.2-2):

uUpXI

uUpYI

uUpZI

 =

LI cos LI cos l - l sin LI sin l

l cos l

- LI sin LI cos l - l cos LI sin l

(11.2.4.1.2-6)

RS
′
 = - R0 uUpYI 1 - e 2 - 1 uUpYI 1 + uUpYI

2
 1 - e 2 - 1

 -
3

2 (11.2.4.1.2-7)

in which uUpYI for (11.2.4.1.2-7) is provided by (11.2.4.1.2-6), and the l, l, LI, LI, h, h

parameters in (11.2.4.1.2-5) and (11.2.4.1.2-6) are calculated by Equations (11.2.4.1.1-1) -
(11.2.4.1.1-2). Equation (11.2.4.1.2-7) can be simplified by applying (11.2.4.1.2-2):

RS
′
 = - uUpYI 1 - e 2 - 1

RS
′ 3

R0
2

 uUpYI (11.2.4.1.2-8)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-43

In summary, the RI, R and R
I
 vectors are calculated in the Gen Nav simulator through

Equations (11.2.4.1.2-3) - (11.2.4.1.2-5) using (11.2.4.1.2-1), (11.2.4.1.2-2), (11.2.4.1.2-6) and

(11.2.4.1.2-7), with l, l, LI, LI, h, h from Equations (11.2.4.1.1-1) - (11.2.4.1.1-2).

11.2.4.2 POSITION AND VELOCITY OUTPUT PARAMETERS

Section 11.2.4.1 showed how the position range and velocity vectors are calculated in the
non-rotating I Frame from user defined latitude/inertial-longitude/altitude analytical models. For
the Gen Nav simulator output, the equivalent data is required relative to the rotating earth.
Position outputs are required in terms of latitude, longitude, altitude relative to rotating earth
coordinates, and velocity outputs are required as the position rate of change relative to the
rotating earth along local north, east, vertical axes.

As discussed in Section 11.2.4.1, earth referenced latitude and altitude are identical to the
latitude/altitude (l, h) parameters defined analytically by the user in Equations (11.2.4.1.1-1) -
(11.2.4.1.1-2), and longitude relative to the earth is computed from I Frame inertial longitude
(LI) (defined by the user in Equations (11.2.4.1.1-1)) by subtracting the angular rotation of the
earth since Gen Nav simulator time t = 0.

Longitude relative to the earth E Frame is obtained from I Frame relative inertial longitude
(LI) by noting that the I and E Frames have identical Y axes, and that their X, Z axes are defined
to be coincident at simulation start time t = 0. Thus, using Figure 4.4.2.1-1 for longitude
definition, longitude in the E and I Frames will differ only by the angular displacement of the
earth around its polar axis since time t = 0, and we can write:

L = LI - ωe t (11.2.4.2-1)

where
L = Earth referenced longitude for Gen Nav simulator output.

From their fundamental definitions as Euler angles, latitude and longitude (l, L) can have

multiple values for a given CN
E

 matrix earth location (e.g., l = π, L = π corresponds to the same

CN
E

 as l = 0, L = π). Because of the method for calculating l and L from (11.2.4.1.1-1), it is

possible that the values may not fit the normal angle boundary constraints for these parameters

(i.e., l ≤ π / 2 and L ≤ π). A straight-forward method for converting to the standard format

is to first calculate the CN
E

 direction cosine matrix from l, L using Equations (4.4.2.1-2) with

zero wander angle (α), and then apply l, L extraction Equations (4.4.2.1-3) to the result. Since

11-44 STRAPDOWN ALGORITHM VALIDATION

Equations (4.4.2.1-3) are based on the normal l, L angle boundary definitions, the solution so

obtained will provide l, L that meets the angle boundary constraints for the same CN
E

 matrix.

North, east, and vertical components of velocity relative to the earth are calculated from R
I

using Equation (4.3-9), and projecting the resultant earth referenced velocity vector onto locally
north, east, and vertical axes. Using (4.3-9) we write in the I Frame:

vI = R
I
 - ωe

I
 × RI ωe

I
 = ωe uYI

I

vEast = vI ⋅ uEast
I

 vNorth = vI ⋅ uNorth
I

 vUp = vI ⋅ uUp
I

(11.2.4.2-2)

where

vI = Velocity relative to the earth projected on I Frame axes.

ωe
I
 = Earth rotation rate vector relative to inertial space projected on I Frame axes.

uYI
I

 = Unit vector along the I Frame Y axis (i.e., the earth polar axis).

uEast
I

, uNorth
I

, uUp
I

 = Unit vectors along local East, North, Up directions projected on

I Frame axes.

vEast, vNorth, vUp = Local East, North, Up components of vI. Outputs from the
Gen Nav simulator.

The I Frame X, Y, Z components of uUp
I

 are evaluated with (11.2.4.1.2-1) using (11.2.4.1.1-1)

for l and LI.

The uEast
I

, uNorth
I

 vectors in (11.2.4.2-2) are calculated from the I Frame version of

Equations (5.4.1-6).

uEast
I

 =
1

1 - uUpYI

2

uUpZI

0
- uUpXI

uNorth
I

 =
1

1 - uUpYI

2

- uUpXI uUpYI

1 - uUpYI

2

- uUpZI uUpYI

(11.2.4.2-3)

From the definition of the I Frame axes in Section 11.2.4 we can write for uYI
I

in (11.2.4.2-2):

uYI
I

 =
0
1
0

(11.2.4.2-4)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-45

11.2.4.3 SIMULATED STRAPDOWN INERTIAL SENSOR OUTPUTS

The simulated strapdown inertial sensor outputs from the Gen Nav simulator are based on
constant body B Frame integrated angular rate and specific force acceleration increments over
each attitude-update/acceleration-transformation cycle. Selection of the B Frame integrated
angular rate increment profile (i.e., simulated strapdown angular rate sensor outputs) is user
specified. The B Frame integrated specific force acceleration increment profile (i.e., simulated
strapdown accelerometer outputs) is calculated based on the B Frame attitude profile associated
with the selected angular rate profile, the derivative of the computed inertial position range rate

(R
I
), and the Gen Nav simulator gravity model. The details are provided in the following

subsections.

11.2.4.3.1 Simulated Strapdown Angular Rate Sensor Outputs

The Gen Nav simulator angular rate profile is based on a user specified inertial attitude
change profile for the sensor assembly over the acceleration-transformation/attitude-update cycle
(m) of the software under test. The inertial attitude change over the m cycle is represented by a

B Frame body rotation angle vector (φm). The Gen Nav simulator assumes a constant inertial

angular rate over each m cycle. Thus, according to Equation (7.1.1.1-14), the user specified φm

profile represents integrated inertial angular rate increments, hence, simulated strapdown angular

rate sensor output increments. Any easily definable function will suffice for φm. For example,

the φm vector can be set to a constant for 100 acceleration-transformation/attitude-update cycles

beginning at t = 200 seconds, and zero at all other times. This is easily achieved by setting the

φm vector magnitude (φm) and direction vector (uφ) to user selected constants (e.g., setting the

magnitude φm to 0.02 radians, the X, Y components of the direction vector uφ to +0.3, +0.55,

and the Z component to ± 1 - 0.32 - 0.552 to assure unity uφ magnitude).

The B Frame attitude corresponding to the selected φm profile is calculated in the Gen Nav

simulator utilizing the classical form given by generalized Equation (3.2.2.1-4) with the
(3.2.1-5) chain rule:

CBm

I
 = CBm-1

I
 CBm

Bm-1

CBm

Bm-1 = I + sin φm uφ× + (1 - cos φm) uφ× 2
(11.2.4.3.1-1)

where

CB
I

 = Direction cosine matrix that transforms vectors from B to I Frame coordinates.

11-46 STRAPDOWN ALGORITHM VALIDATION

11.2.4.3.1.1 Attitude Matrix Initialization

The CB
 I

 matrix in Equations (11.2.4.3.1-1) is initialized based on input starting roll, pitch,

heading relative to starting local East, North, Up geographic coordinates (Geo Frame) and the
starting orientation of the Geo Frame relative to the I Frame:

CB0

 I
 = CGeo0

 I
 CB0

Geo0 (11.2.4.3.1.1-1)

where

Geo = East, North, Up coordinates.

0 = Starting (initial) value.

The CB0

Geo0 matrix in (11.2.4.3.1.1-1) is calculated in terms of initial roll, pitch, true heading

using Equations (11.2.2.1-18) for CB0

Geo0 premultiplied by CL
N

. The CGeo0

 I
 matrix in

(11.2.4.3.1.1-1) is obtained from the Section 11.2.4 definitions for the I and E Frames being

coincident at simulation time t = 0, Equations (4.4.2.1-2) for the CN
E

 matrix with the wander

angle (α) set to zero (to make the N Frame equivalent to the Geo Frame), and the initial
latitude/longitude (l0, L0) set as used in (11.2.4.1.1-1):

CGeo0

 I
 =

cos L0 - sin L0 sin l0 sin L0 cos l0

0 cos l0 sin l0

- sin L0 - cos L0 sin l0 cos L0 cos l0

(11.2.4.3.1.1-2)

11.2.4.3.2 Simulated Strapdown Accelerometer Outputs

The simulated strapdown accelerometer outputs from the Gen Nav simulator are calculated
from I Frame integrated specific force acceleration increments converted to sensor assembly B
Frame coordinates.

11.2.4.3.2.1 Integrated I Frame Specific Force Acceleration Increments

Specific force acceleration is calculated in the Gen Nav simulator as integrated specific force
acceleration increments over the acceleration-transformation m cycle for the software under test.
The integrated specific force acceleration increment is computed in the I Frame as the change in

I Frame position rate (R
I
) over an m cycle, minus the integral of local gravity over the m cycle.

A trapezoidal algorithm is used for the gravity integrated increment. Symbolically:

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-47

ΔvSFm

 I
 = Rm

I
 - Rm-1

I
 -

1
2

 gm
I

 + gm-1
I

 Tm (11.2.4.3.2.1-1)

where

m = Acceleration transformation cycle time index.

ΔvSFm

 I
 = Integrated specific force acceleration in the I Frame over the m-1 to m

transformation cycle time.

Tm = Time interval from m-1 to m.

gm
I

 = Gravity vector in I Frame coordinates at time tm.

The R
I
 terms in (11.2.4.3.2.1-1) are obtained from Equation (11.2.4.1.2-5). The gm

I
 term is

selected in the Gen Nav simulator to match the gravity model used in the software under test. If
the Section 5.4 gravity model is used (as developed for positive altitude h in Reference 3 -
Section 4.4 and Reference 4, and in Section 5.4 for negative altitude) the components would be
as summarized in Equations (5.4-1) and (5.4-2) repeated below:

For h ≥ 0:

gr = -
μ

R2
 1 -

3
2

 J2
R0

R

 2
 3 cos2 φ - 1 - 2 J3

R0

R

 3
 cos φ 5 cos2 φ - 3 -

gφ

sin φ
 = 3

μ

R2

R0

R

 2
 J2 cos φ +

1
2

 J3
R0

R
 5 cos2 φ - 1 +

gθ ≈ 0 (11.2.4.3.2.1-2)

For h < 0:

gr =
R

RS
 grS

gφ

sin φ
 =

R
RS

gφ

sin φ

S

gθ ≈ 0

where

μ = Product of the mass of the earth with the universal gravitational constant.

J2, J3, etc. = Empirical constants that are a function of the mass distribution of the
earth.

φ = Angle from the earth polar axis to R (see Figure 5.2-1).

gr = Component of gravity along the R direction.

11-48 STRAPDOWN ALGORITHM VALIDATION

gφ = Component of gravity perpendicular to R in the local meridian plane (positive in

the positive φ direction).

gθ = Component of gravity perpendicular to R and perpendicular to the local meridian
plane.

R = Linear distance from earth’s center to the current position location.

grS,
gφ

sin φ

S

 = Values for gr and
gφ

sin φ
 calculated from the top set in Equations

(11.2.4.3.2.1-2) (i.e., for h ≥ 0), and with R set to RS defined below.

RS = Distance from the center of the earth to the point on the earth geoid surface that is
directly below (above) the R position vector location. The RS earth surface point
is defined such that a line from it to the R location point is perpendicular to a
plane tangent to the earth’s surface at the RS surface point.

The R parameter in (11.2.4.3.2.1-2) is provided from Equation (11.2.4.1.2-4), and RS is
provided by Equation (5.2.1-4) (repeated below with uUpYE equated to uUpYI as in

(11.2.4.1.2-2)) using (11.2.4.1.2-2) for RS
′ :

RS = RS
′ 1 + uUpYI

2
 1 - e 4 - 1 (11.2.4.3.2.1-3)

The equivalent gravity components in earth’s equatorial plane and along earth’s polar axis

(See Figure 5.2-1) are obtained by the transformation of gr, gφ components through the φ angle:

gEPA = gr cos φ - gφ sin φ gEq = gr sin φ + gφ cos φ (11.2.4.3.2.1-4)

where

gEPA, gEq = Components of gravity along earth’s polar axis and in the equatorial plane.
Note that from the symmetry assumed for the Section 5.4 gravity model
around earth’s polar axis, gEq is in the local meridian plane, and there is
no gravity component perpendicular to the local meridian plane.

Equations (11.2.4.3.2.1-4) can be rearranged to avoid singularities at high/low latitudes in
subsequent processing equations:

gEPA = gr cos φ -
gφ

sin φ

sin φ

1 - uUpYI

2

2

 1 - uUpYI

2

gEq

1 - uUpYI

2
 = gr

sin φ

1 - uUpYI

2
 +

gφ

sin φ

sin φ

1 - uUpYI

2
 cos φ

(11.2.4.3.2.1-5)

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-49

The gr and gφ / sinφ terms in (11.2.4.3.2.1-5) are provided by (11.2.4.3.2.1-2) and uUpYI is

obtained from Equations (11.2.4.1.2-1). The sin φ / 1 - uUpYI

2
 parameter in

(11.2.4.3.2.1-5) is evaluated using Equation (5.2.2-5) (repeated below):

sin φ

1 - uUpYI

2
 = RS

′ + h / R (11.2.4.3.2.1-6)

in which it is recognized that the I and E Frame Y axes are coincident, hence, uUpYE = uUpYI.

The cos φ term in (11.2.4.3.2.1-5) is evaluated from the definition of φ in Figure 5.2-1:

cos φ = RYI / R (11.2.4.3.2.1-7)

where

RYI = I Frame Y axis component of RI provided by Equation (11.2.4.1.2-3).

The geodetic vertical and north components of gravity are calculated based on the gEPA, gEq
components transformed through geodetic latitude (See Figure 5.2-1):

gNorth = gEPA cos l - gEq sin l gUp = gEPA sin l + gEq cos l (11.2.4.3.2.1-8)

where
gNorth , gUp = Horizontal north and geodetic vertical (up) gravity components.

l = Geodetic latitude from Equations (11.2.4.1.1-1).

From Equation (11.2.4.1.2-1):

sin l = uUpYI (11.2.4.3.2.1-9)

hence,

cos l = 1 - uUpYI

2
(11.2.4.3.2.1-10)

Substituting in (11.2.4.3.2.1-8) and rearranging to avoid subsequent singularities yields:

gNorth

1 - uUpYI

2
 = gEPA - uUpYI

gEq

1 - uUpYI

2

gUp = gEPA uUpYI +
gEq

1 - uUpYI

2
 1 - uUpYI

2
(11.2.4.3.2.1-11)

11-50 STRAPDOWN ALGORITHM VALIDATION

The desired I Frame components of gravity are the sum of the gNorth , gUp components

along their respective vector directions:

gI = gUp uUp
I

 + gNorth uNorth
I

 = gUp uUp
I

 +
gNorth

1 - uUpYI

2
 1 - uUpYI

2
 uNorth

I
(11.2.4.3.2.1-12)

where

gI = Gravity vector projected on I Frame coordinates.

Using (11.2.4.2-3) for uNorth
I

 we then find:

gI = gUp uUp
I

 +
gNorth

1 - uUpYI

2
 uNorth/Prm

I
(11.2.4.3.2.1-13)

with uNorth/Prm
I

 defined as:

uNorth/Prm
I

 ≡

- uUpXI uUpYI

1 - uUpYI

2

- uUpZI

 uUpYI

(11.2.4.3.2.1-14)

The uUpXI, uUpYI, uUpZI terms in (11.2.4.3.2.1-14) are provided from Equations (11.2.4.1.2-1).

11.2.4.3.2.2 Body Frame Integrated Specific Force Acceleration Increments

The integrated specific force acceleration increment is calculated in strapdown sensor or
“body” (B Frame) axes (to simulate accelerometer outputs) through a transformation inte-
gration algorithm that accounts for B Frame rotation over the update interval. The trans-
formation integration algorithm is based on the assumption that the B Frame specific force
acceleration and rotation rate over the update interval is constant.

The transformation integration algorithm is derived by expansion and inversion of the exact
equation:

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-51

ΔvSFm

 I
 = CB

I

t m-1

t m

 aSF
B

 dt (11.2.4.3.2.2-1)

where

tm-1, tm = Time at start and end of the acceleration transformation cycle interval.

CB
I

 = Direction cosine matrix that transforms vectors from the B Frame to the

I Frame.

aSF
B

 = Specific force acceleration in the B Frame (i.e. the vector sensed by the
strapdown B Frame mounted accelerometers).

ΔvSFm

 I
 = Integrated specific force in the I Frame over the tm-1 to tm time interval.

The CB
I

 matrix in (11.2.4.3.2.2-1) can be equated to its value at tm-1 multiplied by a body

rotation matrix within the tm-1 to tm interval:

CB
I

 = CBm-1

 I
 CB

Bm-1 (11.2.4.3.2.2-2)

where

CBm-1

 I
 = Value of CB

I
 at the start of the update interval (at tm-1).

CB
Bm-1 = Direction cosine matrix that transforms vectors from the B Frame at arbitrary

time t to the B Frame at t = tm-1.

Substituting (11.2.4.3.2.2-2) into (11.2.4.3.2.2-1) then gives:

ΔvSFm

 I
 = CBm-1

 I
 ΔvSFm

Bm-1 (11.2.4.3.2.2-3)

in which we have defined:

ΔvSFm

Bm-1 ≡ CB
Bm-1 aSF

B
 dt

t m-1

t m

(11.2.4.3.2.2-4)

where

ΔvSFm

Bm-1 = Integrated specific force over the tm-1 to tm time interval calculated in an

inertially fixed coordinate frame corresponding to the B Frame attitude at
time tm-1.

11-52 STRAPDOWN ALGORITHM VALIDATION

From Section 7.2.2, Equation (7.2.2-3), we see that ΔvSFm

Bm-1 is also the input to the Chapter 7

acceleration transformation algorithm. Based on the assumption of constant B Frame
acceleration and angular rate, Equations (7.2.2.2.1-5) and (7.2.2.2.1-8) show that
(11.2.4.3.2.2-4) is given by:

ΔvSFm

Bm-1 = Dm υm (11.2.4.3.2.2-5)

in which:

Dm ≡ I +
(1 - cos αm)

αm
2

 αm× +
1

αm
2

 1 -
sin αm

αm

 αm× 2

1 - cos αm

αm
2

 =
1

2 !
 -

αm
2

4 !
 +

αm
4

6 !
 - ⋅ ⋅ ⋅ ⋅ (11.2.4.3.2.2-6)

1

αm
2

 1 -
sin αm

αm

 =
1

3 !
 -

αm
2

5 !
 +

αm
4

7 !
 - ⋅ ⋅ ⋅ ⋅

where

I = Identity matrix.

υm = Integrated specific force acceleration in B Frame coordinates over the tm-1 to tm
time interval (i.e., the desired Gen Nav simulator integrated accelerometer output
increment).

αm, αm = Integrated B Frame inertial angular rate vector and its magnitude over the
tm-1 to tm time interval (i.e., the Gen Nav simulator integrated angular rate
sensor output increment). From Section 11.2.4.3.1 we see that for the

assumed constant angular rate over tm-1 to tm, the αm integrated angular rate

vector is the user specified φm rotation vector input.

Finally, Equations (11.2.4.3.2.2-3) and (11.2.4.3.2.2-5) are combined and inverted to find for

υm:

υm = CBm-1

 I
 Dm

-1
 ΔvSFm

 I
 (11.2.4.3.2.2-7)

The ΔvSFm

 I
 input to (11.2.4.3.2.2-7) is provided from Equation (11.2.4.3.2.1-1).

GENERAL STRAPDOWN ALGORITHM VALIDATION SIMULATORS 11-53

11.2.4.4 ROLL, PITCH, HEADING ATTITUDE OUTPUTS

Attitude outputs in a strapdown inertial navigation system are typically provided as roll, pitch,
heading Euler angles defining the orientation of the strapdown body B Frame relative to local
North, East, Down coordinates. The required direction cosine matrix is computed from:

CB
NED

 = CNED
 I T

 CB
I

(11.2.4.4-1)

where

NED = Local North, East, Down (X, Y, Z) coordinates.

CB
NED

 = Direction cosine matrix that transforms vectors from the B Frame to the NED

Frame.

The CB
I
 matrix for (11.2.4.4-1) is calculated from the body attitude update Equations

(11.2.4.3.1-1). The CNED
 I

 matrix is calculated using generalized Equations (3.2.1-6) with the I

Frame X, Y axis unit vectors (i.e., uEast
I

, uNorth
I

) from Equations (11.2.4.2-3) and the I Frame

Z axis unit vector (i.e., Down) equal to the negative of uUp
I

 from Equations (11.2.4.1.2-1).

CNED
 I

 = uEast
I

 uNorth
I

 - uUp
I

(11.2.4.4-2)

The roll, pitch, heading Euler angles are then extracted from CB
NED

 as in Equations

(11.2.1.3-2) with CB
L

 interpreted as CB
NED

.

11-54 STRAPDOWN ALGORITHM VALIDATION

12-1

12 Strapdown Inertial Navigation Error Equations

12.0 OVERVIEW

In this chapter, we derive time rate differential equations describing the propagation of
position, velocity and attitude errors in a strapdown inertial navigation system as a function of
input sensor errors and errors in the gravity model utilized in the system software. The chapter
begins with a refinement of the basic strapdown inertial navigation equations developed in
Chapters 4 and 5 into a format that is more compatible with error equation development. This
includes linearization of some of the Chapter 5 equations for earth ellipsoidal surface shape,
gravity mass distribution and earth rate centripetal acceleration effects. Three sets of reformatted
navigation equations are then developed; a set defined in earth fixed E Frame coordinates, a set
defined in the local level navigation N Frame, and a set defined in the inertial non-rotating I
Frame. Next, attitude, velocity and position error parameters are defined for each navigation
equation set including equivalencies between error parameters, followed by development of the
error parameter differential equations in several forms for each of the E, N and I Frame
navigation equation sets. A section is included describing the general modeling of inertial
sensor error terms appearing in the navigation error parameter differential equations. The
chapter concludes with a revision of the error parameter differential equations to facilitate inertial
sensor quantization noise modeling and to account for vibration effects.

The coordinate frames used in this chapter are the E, N, L, Geo and B Frames as defined in
Section 2.2, and where the I Frame is specialized to:

I Frame = Non-rotating inertial coordinate frame that serves as a stationary reference
for defining the angular rotation rates and specific force accelerations relative
to inertial space. For this chapter, the Y axis of the I Frame will be specified
to lie along the earth’s polar rotation axis.

12.1 STRAPDOWN INERTIAL NAVIGATION EQUATIONS

The basic navigation equations implemented in a typical strapdown inertial navigation
system are summarized in Table 4.7-1 with earth related parameter equations provided from
Table 5.6-1. For error analysis purposes it is advantageous to recognize that for the Table 5.6-1
equations, the earth ellipticity (e) is small (approximately 1/298), the earth mass distribution
coefficients (J2, J3, etc.) and earth rate contribution to plumb-bob gravity are small (on the order

12-2 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

of e) compared to the dominant earth mass attraction term, and the operating altitude for the
navigation system is generally small compared to the radius of the earth. As such, first order
approximations (linearization) can be applied to parameters containing these terms, as is
typically done for many strapdown inertial navigation system software configurations.

This section summarizes the pertinent navigation equation set from Table 4.7-1 and the earth
related parameter equation set from Table 5.6-1. Section 12.1.1 then applies the above
described linearization process to the Table 5.6-1 equations. Finally, Sections 12.1.2 - 12.1.4
combine the Table 4.7-1 and linearized Table 5.6-1 equation sets to define complete navigation
sets in the N, E, and I Frames suitable for error equation development in subsequent sections.

We first summarize the pertinent Table 4.7-1 navigation equations (i.e., Equations (4.1-1),

(4.1.1-1), (4.1.1-3), (4.1.1-4), (4.2-1), (4.2-3), (4.1.1-2), (4.4.1.2.1-1), (5.3-18) for uZN
N

,

(4.4.1.1-1) (with ρN
 = ωEN

N
), (4.4.1.2.1-2) and (4.4.1.2.1-3)):

CB
L

 = CB
L

 ωIB
B

× - ωIL
L

× CB
L

(12.1-1)

ωIL
L

 = CN
L

 ωIE
N

 + ωEN
N

(12.1-2)

ωIE
N

 = CN
E T

 ωIE
E

 (12.1-3)

ωIE
E

 = 0 ωe 0
 T (12.1-4)

aSF
L

 = CB
L

 aSF
B

(12.1-5)

aSF
N

 = CL
N

 aSF
L

(12.1-6)

CN
L

 =
0 1 0
1 0 0
0 0 -1

(12.1-7)

v
N

 = aSF
N

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(12.1-8)

uZN
N

 = 0 0 1 T (12.1-9)

CN
E

 = CN
E

 ωEN
N

× (12.1-10)

h = vN ⋅ uZN
N

 - evc2 (12.1-11)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-3

∂h = h - hPrsr

evc1 = evc3 + C2 ∂h evc2 = C3 ∂h evc3 = C1 ∂h
(12.1-12)

where

CB
L

, CL
N

, CN
E

 = Direction cosine matrices that transform vectors from the B to L, L to N

and N to E Frames.

ωIB
B

 = Angular rate of the B Frame relative to the I Frame as projected on B Frame
axes (i.e., the angular rate sensed by strapdown angular rate sensors).

ωIL
L

 = Angular rate of the L Frame relative to the I Frame as projected on L Frame
axes.

ωIE
N

 = Angular rate of the E Frame relative to the I Frame (i.e., earth’s angular rate
relative to inertial space) as projected on N Frame axes.

ωe = Magnitude of earth’s angular rate relative to inertial space.

ωEN
N

 = Angular rate of the N Frame relative to the E Frame (“transport rate”) as

projected on N Frame axes (identified as ρN
 in Equation (4.4.1.1-1)).

aSF
B

 = Specific force acceleration relative to inertial space as projected on B Frame axes
(i.e., the acceleration sensed by strapdown accelerometers which is total
acceleration exclusive of gravitational effects).

aSF
L

, aSF
N

 = Specific force acceleration projected on L and N Frame axes.

vN = Velocity of the navigation system relative to the earth as projected on
N Frame axes.

gP
N

 = Plumb-bob gravity as projected on N Frame axes.

uZN
N

 = Unit vector along the N Frame Z axis as projected on N Frame axes. From the

Section 2.2 definition of the N and L Frames, this vector lies along the local
geodetic upward vertical and the L Frame negative Z axis.

h = Altitude of the navigation system above the earth reference geoid surface.

hPrsr = Altitude as determined from a pressure transducer.

∂h = The difference between h and hPrsr used to control inertial navigation system
vertical channel error.

evc1, evc2, evc3 = Vertical channel control signals.

12-4 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

C1, C2, C3 = Vertical channel control gains.

We note for later use that the formal definition for v is given by Equation (4.3-1) in the E
Frame. Rearrangement of this equation and adding the Equation (4.4.1.2.1-2) vertical loop
control signal in the vertical direction obtains:

R
E

 = vE - evc2 uZN
E

(12.1-13)

where

RE = Position vector from earth’s center to the navigation system as projected on E
Frame axes.

uZN
E

 = Unit vector along the N Frame Z axis (local upward geodetic vertical) as

projected on E Frame axes.

We also note from Equation (4.3-16) with the (4.4.1.2.1-2) vertical channel control signal, that
the equivalent to Equation (12.1-8) in the E Frame is:

v
E

 = aSF
E

 + gP
E

 - 2 ωIE
E

 × vE - evc1 uZN
E

(12.1-14)

Next, we summarize the pertinent Table 5.6-1 earth related parameter equations with some
minor rearrangements (i.e., (5.3-16), (5.1-10), (5.2.1-4), (5.2.1-5), (5.2.4-25), (5.2.4-37),

(5.3-18), (5.3-17) with ρN
 = ωEN

N
, (5.2.2-3), (5.2.2-4), (5.4-1), (5.4-2), (5.2.3-5), (5.4-3) and

(5.4.1-9)), and in which uZN is substituted for uUp (the unit vector upward along the local
vertical). These equations will be modified in Section 12.1.1 for the linearization approximation
process.

uZNYE = D23 (12.1-15)

RS
′ = R0 / 1 + uZNYE

2
 1 - e 2 - 1 (12.1-16)

RS = RS
′ 1 + uZNYE

2
 1 - e 4 - 1 (12.1-17)

R2 = RS
2
 + 2 h R0

2
 / RS

′ + h2 (12.1-18)

rls =
 RS

′ 3

R0
2

 1 - e 2 (12.1-19)

rl = rls + h (12.1-20)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-5

FC
N

 =

FC11 FC12 0

FC21 FC22 0

0 0 0

FC11 =
1
rl

 1 + D21
2

 feh FC12 =
1
rl

 D21 D22 feh (12.1-21)

FC21 =
1
rl

 D21 D22 feh FC22 =
1
rl

 1 + D22
2

 feh

fe =
1 - e 2 - 1

1 + D23
2

 1 - e 2 - 1
fh =

1

1 + h / RS
′

feh = fe fh

ωEN
N

 = FC
N

 uZN
N

 × vN + ρZN uZN
N

(12.1-22)

cos φ = uZNYE 1 - e 2 RS
′ + h / R (12.1-23)

sin φ = 1 - uZNYE

2
 RS

′ + h / R (12.1-24)

For h ≥ 0:

gr = -
μ

R2
 1 -

3
2

 J2
R0

R

 2
 3 cos2 φ - 1 - 2 J3

R0

R

 3
 cos φ 5 cos2 φ - 3 -

gφ

sin φ
 = 3

μ

R2

R0

R

 2
 J2 cos φ +

1
2

 J3
R0

R
 5 cos2 φ - 1 + (12.1-25)

For h < 0:

gr =
R

RS
 grS

gφ

sin φ
 =

R
RS

gφ

sin φ

S

sin ∂l = uZNYE 1 - uZNYE

2
 1 - 1 - e 2 RS

′ / R

cos ∂l = 1 - uZNYE

2
 1 - 1 - e 2 RS

′ + h / R
(12.1-26)

12-6 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

gUp = gr cos ∂l - gφ sin ∂l

gNorth = - gφ cos ∂l - gr sin ∂l
(12.1-27)

gPNorth = gNorth - RS
′ + h ωe

2
 uZNYE 1 - uZNYE

2

gPUp = gUp + RS
′ + h ωe

2
 1 - uZNYE

2
(12.1-28)

where

uZNYE = Y axis component of uZN
E

.

D2j = Element in row 2, column j of CN
E

.

R0 = Earth’s equatorial radius.

e = Earth’s ellipticity.

RS = Distance from earth’s center to the point on the earth’s surface directly below
(above) the navigation system.

RS
′ = Modified RS parameter.

R = Distance from earth’s center to the navigation system.

rls = Radius of curvature of the earth’s surface in the latitude direction for a point on
the earth’s surface directly below (above) the navigation system.

rl = Equivalent to the rls radius of curvature, but at the navigation system altitude.

FC
N

 = Curvature matrix in the N Frame.

fe = Function of e.

fh = Function of h (and RS
′).

feh = Product of fe and fh.

ρZN = N Frame Z axis component of transport rate ωEN
N

 (See Section 4.5 for options).

φ = Angle from earth’s positive rotation (“polar”) axis to the line from earth’s center
to the navigation system (See Figure 5.2-1).

∂l = Angle from “geodetic vertical” (locally up, directly below (above) the navigation
system and perpendicular to the surface of the earth) to the line from earth’s center
to the navigation system (See Figure 5.2-1).

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-7

gr = Earth’s mass attraction gravity component along a line from the center of the
earth to the navigation system measured positive away from earth’s center.

gφ = Earth’s mass attraction gravity component in the plane of earth’s polar axis and
the line from earth’s center to the navigation system, and perpendicular to the line
from earth’s center to the navigation system (measured positive pointing away
from the earth’s positive polar axis).

grS,
gφ

sin φ

S

 = Values for gr and
gφ

sin φ
 calculated using the first set in Equations

(12.1-25) (for h ≥ 0) with R set to RS.

gUp = Earth’s mass attraction gravity component along the local geodetic vertical (i.e.,
along uZN which lies along the N Frame Z axis).

gNorth = Earth’s mass attraction gravity component along the local horizontal north
direction.(i.e., along the Geo Frame Y axis).

gPNorth, gPUp = Plumb-bob gravity components along the local horizontal North and
geodetic vertical Up directions (See Figure 5.2-1).

Equation (12.1-18) can be revised by substituting (12.1-16) and (12.1-17):

R2 = RS
2
 + 2 h R0

2
 / RS

′ + h2 = RS
2
 + 2 h

R0
2

RS
′ 2

RS

′

RS
 RS + h2

= RS
2

 + 2 h RS
1 + uZNYE

2
 1 - e 2 - 1

1 + uZNYE

2
 1 - e 4 - 1

 + h2 (12.1-29)

= RS
2
 + 2 h RS + h2 + 2 h RS

1 + uZNYE

2
 1 - e 2 - 1

1 + uZNYE

2
 1 - e 4 - 1

 - 1

or

R2 = RS + h 2 + 2 h RS
1 + uZNYE

2
 1 - e 2 - 1

1 + uZNYE

2
 1 - e 4 - 1

 - 1 (12.1-30)

A useful vector relation for uZN
E

 can be derived from Equation (5.2.2-1) repeated below:

12-8 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

RXE = uZNXE RS
′ + h

RYE = uZNYE 1 - e 2 RS
′ + h (12.1-31)

RZE = uZNZE RS
′ + h

In vector form, Equations (12.1-31) are:

RE = RS
′ + h uZN

E
 + 1 - e 2 - 1 uZNYE RS

′ uYE
E

(12.1-32)

with from the definition of the E Frame:

uYE
E

 = 0 1 0 T (12.1-33)

where

uYE
E

 = Unit vector along the E Frame Y axis (i.e., along earth’s polar rotation axis).

The converse of (12.1-32) is:

uZN
E

 =
1

RS
′ + h

 RE - 1 - e 2 -1 uZNYE
RS

′

RS
′ + h

 uYE
E

(12.1-34)

The classical definition of uZN
E

 will also be useful:

uZN
E

 = CN
E

 uZN
N

(12.1-35)

Finally, we will make use of a unit vector in the horizontal north direction defined in E Frame
coordinates by Equations (5.4.1-6) as:

uNorth
E

 =
1

1 - uZNYE

2

- uZNXE uZNYE

1 - uZNYE

2

- uZNZE uZNYE

(12.1-36)

where

uNorth
E

 = Unit vector along the local horizontal north direction as projected on

E Frame axes.

uZNXE, uZNYE, uZNZE = X, Y, Z components of uZN
E

.

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-9

12.1.1 APPLICATION OF THE LINEARIZATION PROCESS

We now apply the linearization process to the e terms in Equations (12.1-16), (12.1-17),
(12.1-19), (12.1-21) with (12.1-5) for D23, (12.1-26), (12.1-30) and (12.1-34). Successive
application of the binomial theorem to these terms while dropping terms of order e2 and higher
obtains :

1 / 1 + uZNYE

2
 1 - e 2 - 1 ≈ 1 / 1 - 2 uZNYE

2
 e ≈ 1 + uZNYE

2
 e

1 + uZNYE

2
 1 - e 4 - 1 ≈ 1 - 4 uZNYE

2
 e ≈ 1 - 2 uZNYE

2
 e

1 - e 2 ≈ 1 - 2 e (12.1.1-1)

1 - e 2 - 1

1 + uZNYE

2
 1 - e 2 - 1

 ≈ - 2 e

1 + uZNYE

2
 1 - e 2 - 1

1 + uZNYE

2
 1 - e 4 - 1

 - 1 ≈ 0

Applying Equations (12.1.1-1) and the binomial theorem to Equations (12.1-16), (12.1-17),

(12.1-19), (12.1-21), (12.1-26), (12.1-30) and terms containing RS
′ + h in (12.1-34), then

obtains upon appropriate combination and rearrangement:

RS
′ ≈ 1 + uZNYE

2
 e R0

RS ≈ 1 - 2 uZNYE

2
 e RS

′ ≈ 1 - uZNYE

2
 e R0

rls =
 RS

′ 3

R0
2

 1 - e 2 =
 RS

′ 2

R0
2

RS

′

RS
 RS 1 - e 2 (12.1.1-2)

≈
1 + 2 uZNYE

2
 e

1 - 2 uZNYE

2
 e

 1 - 2 e RS ≈ 1 + 4 uZNYE

2
 e - 2 e RS

= 1 + 2 2 uZNYE

2
 - 1 e RS

(Continued)

12-10 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

feh ≈ -
2 e

1 + h / RS
′

sin ∂l ≈ ∂l ≈ 2 e uZNYE 1 - uZNYE

2
 RS

′ / R

cos ∂l = 1 - sin2∂l ≈ 1

R ≈ RS + h ≈ R0 + h - e uZNYE

2
 R0

(12.1.1-2)
(Continued)

RS
′ + h = RS + h + RS

′ - RS ≈ R + 2 e uZNYE

2
 R0

1

RS
′ + h

 ≈
1

R + 2 e uZNYE

2
 R0

 =
1

R 1 + 2 e uZNYE

2

R0

R

 ≈
1
R

 1 - 2 e uZNYE

2

R0

R

Recall from Equation (5.2.3-1) that uZNYE equals the sine of geodetic latitude. Note that at 45

degrees latitude (an average operating latitude for many systems) the bracketed term in the
Equations (12.1.1-2) rls expression is, therefore, equal to zero. Thus, the average value for rls is
RS, which intuitively seems correct.

The gravity equations can be linearized by recognizing that the earth mass distribution
coefficients (J2, J3, etc.) are on the order of e or smaller. Then Equations (12.1-25) show that

gφ is much smaller than gr (by an order of e factor). Thus, with sin ∂l and cos ∂l from

(12.1.1-2), Equations (12.1-28) with (12.1-27) simplify to:

gPNorth = - gφ - gr 2 e uZNYE 1 - uZNYE

2
 RS

′ / R

- uZNYE 1 - uZNYE

2
 RS

′ + h ωe
2

(12.1.1-3)

= - gφ - uZNYE 1 - uZNYE

2
 2 e gr RS

′ / R + RS
′ + h ωe

2

gPUp = gr + 1 - uZNYE

2
 RS

′ + h ωe
2

(12.1.1-4)

The gPNorth expression can be further reduced by dropping mass distribution terms of J3 and

higher in gφ and dropping all mass distribution terms in gr as second order. We also note that

use of the RS
′ + h approximation from (12.1.1-2) in Equations (12.1-23) and (12.1-24) shows

that to zero order in e (i.e., dropping all power of e terms):

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-11

cos φ ≈ uZNYE 1 - 2 e RS
′ + h / R = uZNYE RS

′ + h - 2 e RS
′ / R

 ≈ uZNYE R + 2 e uZNYE

2
 R0 - 2 e RS

′ / R ≈ uZNYE (12.1.1-5)

sin φ ≈ 1 - uZNYE

2
 R + 2 e uZNYE

2
 R0 / R ≈ 1 - uZNYE

2

With (12.1-25) and (12.1.1-5), Equation (12.1.1-3) becomes for positive altitude h:

For h ≥ 0:

gPNorth ≈ - 3
μ

R2

R0

R

 2
 J2 sin φ cos φ

- uZNYE 1 - uZNYE

2
 - 2 e

μ

R2

RS

′

R
 + RS

′ + h ωe
2

(12.1.1-6)

≈ uZNYE 1 - uZNYE

2

μ

R2
 - 3

R0

R

2
 J2 + 2 e RS

′ / R - RS
′ + h ωe

2

It is readily verified by numerical substitution that for h on the order of RS
′ (or smaller) the

RS
′ + h ωe

2
 term in (12.1.1-6) is on the order of the terms on the left. Thus, with the RS

′ + h, R,

RS and RS
′ approximations from (12.1.1-2), Equation (12.1.1-6) to first order in e further

reduces to:

For h ≥ 0:

gPNorth ≈ uZNYE 1 - uZNYE

2

μ

R2
 - 3

R0

R

2
 J2 + 2 e R0 / R - R ωe

2

≈ uZNYE 1 - uZNYE

2

μ R0

R0 + h 3
 - 3

R0

R0 + h
 J2 + 2 e - R0 + h ωe

2
(12.1.1-7)

= uZNYE 1 - uZNYE

2

μ

R0
2

1

1 +
h

R0

3
 -

3

1 +
h

R0

 J2 + 2 e - R0 1 +
h

R0
 ωe

2

We now make the approximation that h will be small compared to R0 which is valid for

position locations in the earth’s atmosphere and for low altitude earth satellites. Then to first

order in
h

R0
, Equation (12.1.1-7) simplifies to:

12-12 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

For h ≥ 0:

gPNorth ≈ uZNYE 1 - uZNYE

2

μ

R0
2
 1 - 3

h
R0

 - 3 1 -
h

R0
 J2 + 2 e - R0 1 +

h
R0

 ωe
2

≈ uZNYE 1 - uZNYE

2

μ

R0
2
 2 e - 3 J2 - R0 ωe

2
 + 6

μ

R0
3
 2 J2 - e - ωe

2
 h (12.1.1-8)

An interesting fact of nature is that the horizontal plumb-bob gravity component on the
surface of the earth is almost zero (within approximately 20 micro-g’s). Scientists use this fact

as evidence of the earth’s surface floating on a molten core at the ωe spin rate. A spinning

molten mass that contains itself by its own gravity will reach a steady state condition in which
the horizontal specific force acceleration at the surface (i.e., the acceleration that will move the
surface fluid mass toward equilibrium) is zero. From Equation (12.1.1-8), we see that for

gPNorth to be zero on the earth’s surface (i.e., h = 0), the
μ

R0
2
 2 e - 3 J2 - R0 ωe

2
 term must be

zero. Using the values for μ, e, J2, R0 and ωe given in Table 5.6-1 of Chapter 5,

μ

R0
2
 2 e - 3 J2 - R0 ωe

2
 computes to be - 1.174 E-4 ft/sec2 or - 3.65 micro-g). Thus, Equation

(12.1.1-8) reduces to the simplified approximate form:

For h ≥ 0:

gPNorth ≈ uZNYE 1 - uZNYE

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h (12.1.1-9)

Using(12.1.1-2) for RS
′ + h, (12.1.1-5) for cos φ, and gr from (12.1-25) in Equation

(12.1.1-4), we also obtain for gPUp when altitude h is positive:

For h ≥ 0:

gPUp ≈ -
μ

R2
 1 -

3
2

 J2
R0

R

2
 3 cos2 φ - 1 + 1 - uZNYE

2
 RS

′ + h ωe
2

= -
μ

R2
 +

3
2

 J2
μ

R2

R0

R

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 RS

′ + h ωe
2

(12.1.1-10)

≈ -
μ

R2
 +

3
2

 J2
μ

R2

R0

R

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 R ωe

2

For plumb-bob gravity at negative altitudes, we apply the same approximation used in
formulating (5.4-2) for h < 0 (duplicated earlier in (12.1-25)), namely that the mass attraction

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-13

gravity components will be linearly proportional to the radial distance from earth’s center (R)
and will equal the values of the (12.1-25) h ≥ 0 gravity components at the earth geoid surface

(i.e., at h = 0). If we look at Equations (12.1-27) and (12.1-28), we see that plumb-bob gravity
is formed as a linear combination of the mass attraction components (gr and gφ) plus a

centripetal term proportional to RS
′ + h ωe

2
 (or approximately R ωe

2
; i.e., proportional to R). We

can conclude, therefore, that the plumb-bob gravity components can also be approximated for
negative altitudes as being linearly proportional to the distance from earth’s center, matching the
Equation (12.1.1-9) and (12.1.1-10) values for h = 0. Then Equations (12.1.1-9) and
(12.1.1-10) with the previous stated negative altitude approximation for the plumb-bob gravity
components form the following vector equivalent in the N Frame:

gP
N

 = - H(R) uZN
N

 + ∂gPUp uZN
N

 + ∂gPNorth CE
N

 uNorth
E

(12.1.1-11)

with

For h ≥ 0:

H(R) =
μ

R2

∂gPUp ≈
3
2

 J2
μ

R2

R0

R

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 R ωe

2

∂gPNorth ≈ uZNYE 1 - uZNYE

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h (12.1.1-12)

For h < 0:

H(R) =
R

RS

μ

RS
2

∂gPUp ≈
R

RS

3
2

 J2
μ

RS
2

R0

RS

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 RS ωe

2

∂gPNorth ≈ 0

where

H(R) = Gravity magnitude parameter that characterizes the fundamental difference
between gravity values above and below the earth’s surface.

∂gPUp = Small variation in the vertical component of plumb-bob gravity from the

nominal spherical earth uniform density approximation (i.e., - H(R)) due to
earth’s mass distribution and earth’s rotation centripetal acceleration effects.

12-14 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

∂gPNorth = Small variation in the north component of plumb-bob gravity from the
nominal spherical earth uniform density approximation (i.e., zero) due to
earth’s mass distribution and earth’s rotation centripetal acceleration effects.

Finally, the approximate first order equivalent to Equations (12.1-16) - (12.1-28) and

(12.1-30) (i.e., first order in e,
h

R0
 and earth mass distribution coefficients for selective terms) is

provided by incorporating Equations (12.1.1-2) and (12.1.1-11) - (12.1.1-12) with some minor
refinements:

RS
′ ≈ 1 + uZNYE

2
 e R0

RS ≈ 1 - 2 uZNYE

2
 e RS

′ ≈ 1 - uZNYE

2
 e R0

R ≈ RS + h

rls = 1 + 2 2 uZNYE

2
 - 1 e RS

rl = rls + h

∂GC
N

 = -
2 e

1 + h / RS
′

D21
2

D21 D22 0

D21 D22 D22
2

0

0 0 0

(12.1.1-13)

ωEN
N

 = ρZN uZN
N

 +
1
rl

 uZN
N

 × vN +
1
rl

 ∂GC
N

 uZN
N

 × vN

gP
N

 = - H(R) uZN
N

 + ∂gPUp uZN
N

 + ∂gPNorth CE
N

 uNorth
E

For h ≥ 0:

H(R) =
μ

R2

∂gPUp ≈
3
2

 J2
μ

R2

R0

R

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 R ωe

2

∂gPNorth ≈ uZNYE 1 - uZNYE

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h

(Continued)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-15

For h < 0:

H(R) =
R

RS

μ

RS
2

(12.1.1-13)
(Continued)

∂gPUp ≈
R

RS

3
2

 J2
μ

RS
2

R0

RS

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 RS ωe

2

∂gPNorth ≈ 0

where

∂GC
N

 = Portion of rl FC
N

 that accounts for earth’s oblateness.

Additionally, the Equation (12.1-34) uZN
E

 expression is linearized to first order in e using the

1

RS
′ + h

, RS
′ , RS and R approximations from (12.1.1-2):

uZN
E

 =
1

RS
′ + h

 RE - 1 - e 2 -1 uZNYE
RS

′

RS
′ + h

 uYE
E

≈
1
R

 1 - 2 e uZNYE

2

R0

R
 RE + 2 e uZNYE

R0

R
 uYE

E
(12.1.1-14)

=
1
R

 RE - 2 e uZNYE
R0

R
 uZNYE

1
R

 RE - uYE
E

We will make use of (12.1.1-13) - (12.1.1-14) in subsequent sections.

12.1.2 NAVIGATION EQUATIONS FOR N FRAME ERROR ANALYSIS

For error analysis purposes we will analyze three sets of navigation equations; a set in which
errors are defined in the navigation N Frame, a set in which errors are defined in the earth E
Frame and a set in which errors are defined in the inertial I Frame. This section develops the N
Frame navigation equation set.

We begin by first eliminating the L Frame from the Section 12.1 basic navigation equations.

Recognizing from Equation (12.1-7) that CL
N

 is constant and applying the Equation (3.1.1-39)

similarity transformation rule for cross-product operators yields from Equation (12.1-1):

12-16 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

CL
N

 CB
L

 =
d
dt

 CL
N

 CB
L

 = CB
N

= CL
N

 CB
L

 ωIB
B

× - CL
N

 ωIL
L

× CB
L

(12.1.2-1)

= CL
N

 CB
L

 ωIB
B

× - CL
N

 ωIL
L

× CL
N T

 CL
N

 CB
L

= CB
N

 ωIB
B

× - ωIL
N

× CB
N

Since the L Frame is fixed relative to the N Frame we can write:

ωIL = ωIN (12.1.2-2)

where

ωIN = Angular rate of the N Frame relative to the inertial non-rotating I Frame.

With (12.1.2-2), Equation (12.1.2-1) becomes:

CB
N

 = CB
N

 ωIB
B

× - ωIN
N

× CB
N

(12.1.2-3)

Transforming Equation (12.1-2) to the N Frame obtains:

ωIN
N

 = ωIE
N

 + ωEN
N

(12.1.2-4)

Combining Equations (12.1-5) - (12.1-6) and substitution into (12.1-8) yields:

v
N

 = CB
N

 aSF
B

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(12.1.2-5)

Substituting Equations (12.1.2-3) - (12.1.2-5) for the equivalent terms in Equations (12.1-1)
- (12.1-12) and retention of applicable terms from Equations (12.1-1) - (12.1-12), (12.1.1-13),
and (12.1-35) - (12.1-36) then provides the desired N Frame navigation equation set for
subsequent error analysis:

CB
N

 = CB
N

 ωIB
B

× - ωIN
N

× CB
N

ωIN
N

 = ωIE
N

 + ωEN
N

(12.1.2-6)

ωIE
N

 = CN
E T

 ωIE
E

(Continued)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-17

ωIE
E

 = 0 ωe 0
 T

v
N

 = CB
N

 aSF
B

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

uZN
N

 = 0 0 1 T

CN
E

 = CN
E

 ωEN
N

×

h = vN ⋅ uZN
N

 - evc2

∂h = h - hPrsr

evc1 = evc3 + C2 ∂h evc2 = C3 ∂h evc3 = C1 ∂h

RS
′ ≈ 1 + uZNYE

2
 e R0

RS ≈ 1 - uZNYE

2
 e R0

(12.1.2-6)
(Continued)

R ≈ RS + h

rls = 1 + 2 2 uZNYE

2
 - 1 e RS

rl = rls + h

∂GC
N

 = -
2 e

1 + h / RS
′

D21
2

D21 D22 0

D21 D22 D22
2

0

0 0 0

ωEN
N

 = ρZN uZN
N

 +
1
rl

 uZN
N

 × vN +
1
rl

 ∂GC
N

 uZN
N

 × vN

gP
N

 = - H(R) uZN
N

 + ∂gPUp uZN
N

 + ∂gPNorth CE
N

 uNorth
E

(Continued)

12-18 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

For h ≥ 0:

H(R) =
μ

R2

∂gPUp ≈
3
2

 J2
μ

R2

R0

R

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 R ωe

2

∂gPNorth ≈ uZNYE 1 - uZNYE

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h

For h < 0:

H(R) =
R

RS

μ

RS
2

(12.1.2-6)
(Continued)

∂gPUp ≈
R

RS

3
2

 J2
μ

RS
2

R0

RS

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 RS ωe

2

∂gPNorth ≈ 0

uZN
E

 =

uZNXE

uZNYE

uZNZE

 = CN
E

 uZN
N

 =

D13

D23

D33

uNorth
E

 =
1

1 - uZNYE

2

- uZNXE uZNYE

1 - uZNYE

2

- uZNZE uZNYE

12.1.3 NAVIGATION EQUATIONS FOR E FRAME ERROR ANALYSIS

For E Frame error analysis, the equivalent to Equation (12.1-1) is from generalized Equation
(3.3.2-13):

CB
E

 = CB
E

 ωIB
B

× - ωIE
E

× CB
E

(12.1.3-1)

We also use Equation (12.1-14) with aSF
E

 replaced by its equivalent transformation from the B

Frame:

v
E

 = CB
E

 aSF
B

 + gP
E

 - 2 ωIE
E

 × vE - evc1 uZN
E

(12.1.3-2)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-19

The gP
E

 term in (12.1.3-2) is obtained as the E Frame version of the equivalent expression in

Equations (12.1.1-11):

gP
E

 = - H(R) uZN
E

 + ∂gPUp uZN
E

 + ∂gPNorth uNorth
E

(12.1.3-3)

With uZN
E

 from (12.1.1-14), Equation (12.1.3-3) becomes:

gP
E

 = -
H(R)

R
 RE + 2 e H(R) uZNYE

R0

R
 uZNYE

1
R

 RE - uYE
E

+ ∂gPUp uZN
E

 + ∂gPNorth uNorth
E

(12.1.3-4)

Components of uZN
E

 appearing in (12.1.3-4) and other equations are provided by a first order

(in e) Picard type approximation to (12.1.1-14) in which the uZN
E

 components in the term

multiplying e are approximated by the (12.1.1-14) zero order solution: uZN
E

 ≈ RE / R. With this

substitution, (12.1.1-14) becomes:

uZN
E

 =

uZNXE

uZNYE

uZNZE

 ≈
1
R

 RE - 2 e
RYE R0

R2

RYE

R2
 RE - uYE

E
(12.1.3-5)

where

RYE = E Frame Y axis component of RE.

Finally, the position parameter for E Frame navigation equation analysis will be the position

vector RE using Equation (12.1-13), hence, the position vector magnitude R is computed as:

R = RE ⋅ RE (12.1.3-6)

Substituting Equations (12.1.3-1) - (12.1.3-2) and (12.1.3-4) - (12.1.3-6) for the equivalent
terms in Equations (12.1-1) - (12.1-13) and (12.1.1-13), with retention of applicable terms from
Equations (12.1-1) - (12.1-13), (12.1-33), (12.1-36), and (12.1.1-13) then provides the desired
navigation equation set for subsequent E Frame error analysis:

12-20 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

CB
E

 = CB
E

 ωIB
B

× - ωIE
E

× CB
E

ωIE
E

 = 0 ωe 0
 T

v
E

 = CB
E

 aSF
B

 + gP
E

 - 2 ωIE
E

 × vE - evc1 uZN
E

R
E

 = vE - evc2 uZN
E

R = RE ⋅ RE

RS ≈ 1 - uZNYE

2
 e R0

h = R - RS

∂h = h - hPrsr

evc1 = evc3 + C2 ∂h evc2 = C3 ∂h evc3 = C1 ∂h (12.1.3-7)

gP
E

 = - H(R)
1
R

 RE + 2 e H(R) uZNYE
R0

R
 uZNYE

1
R

 RE - uYE
E

+ ∂gPUp uZN
E

 + ∂gPNorth uNorth
E

For h ≥ 0:

H(R) =
μ

R2

∂gPUp ≈
3
2

 J2
μ

R2

R0

R

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 R ωe

2

∂gPNorth ≈ uZNYE 1 - uZNYE

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h

(Continued)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-21

For h < 0:

H(R) =
R

RS

μ

RS
2

∂gPUp ≈
R

RS

3
2

 J2
μ

RS
2

R0

RS

2
 3 uZNYE

2
 - 1 + 1 - uZNYE

2
 RS ωe

2

∂gPNorth ≈ 0

uZN
E

 =

uZNXE

uZNYE

uZNZE

 ≈
1
R

 RE - 2 e
RYE R0

R2

RYE

R2
 RE - uYE

E (12.1.3-7)
(Continued)

uNorth
E

 =
1

1 - uZNYE

2

- uZNXE uZNYE

1 - uZNYE

2

- uZNZE uZNYE

uYE
E

 = 0 1 0 T

12.1.4 NAVIGATION EQUATIONS FOR I FRAME ERROR ANALYSIS

For error analysis purposes and for some specialized applications it is useful to have a set of
navigation equations based on motion relative to non-rotating inertial space (i.e., the I Frame).
In this section we develop such a set beginning with generalized equation (3.3.2-6) applied to B
Frame attitude determination relative to the I Frame:

CB
I

 = CB
I

 ωIB
B

× (12.1.4-1)

where

CB
I

 = Direction cosine matrix that transforms vectors from the B Frame to the

I Frame.

ωIB
B

 = Angular rate of the B Frame relative to the I Frame as projected on B Frame
axes (i.e., the angular rate sensed by strapdown angular rate sensors).

We define a velocity vector for I Frame analysis as the time rate of change of position
measured in the I Frame:

12-22 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

υI
 ≡ R

I
(12.1.4-2)

where

υI
 = Velocity relative to non-rotating inertial space (i.e., the I Frame) as projected

(superscript designator) on I Frame axes.

RI = Position vector from earth’s center to the navigation system projected on I Frame
axes.

In contrast, the velocity vector relative to the earth E Frame was defined by Equation (4.3-1)
as:

vE ≡ R
E

(12.1.4-3)

where

vE = Velocity relative to the earth (i.e., the E Frame) as projected on E Frame axes.

But we also know from generalized vector rate transformation Equation (3.4-6) that:

R
I
 = CE

I
 R

E
 + ωIE

I
 × RI (12.1.4-4)

Substitution of (12.1.4-2) and (12.1.4-3) into (12.1.4-4) provides the relationship between the υ
and v velocity parameters:

υI
 = vI + ωIE

I
 × RI (12.1.4-5)

The time rate of change of υI
 is determined from the time derivative of Equation (12.1.4-2):

υ
I
 = R

I
(12.1.4-6)

From Equation (4.3-11), the R
I
 term in (12.1.4-6) is given by:

R
I
 = gI + aSF

I
(12.1.4-7)

where

gI = Earth’s mass attraction gravity vector projected on I Frame axes.

aSF
I

 = Specific force acceleration projected on I Frame axes.

Equation (4.3-15) shows that:

gI = gP
I

 + ωIE
I

 × ωIE
I

 × RI (12.1.4-8)

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-23

where

gP
I

 = Plumb-bob gravity projected on I Frame axes.

The I Frame has been defined to have its Y axis along the earth’s polar (i.e., rotation) axis,

hence, we can write for ωIE
I

 in (12.1.4-8):

ωIE
I

 = 0 ωe 0
 T (12.1.4-9)

where

ωe = Earth’s inertial rotation rate magnitude.

With (12.1.4-7), (12.1.4-8) and expansion of aSF
I

, we obtain the desired expression for υ
I
.

Including vertical channel control as in (12.1-14), but in the I Frame, the result is:

υ
I
 = CB

I
 aSF

B
 + gP

I
 + ωIE

I
 × ωIE

I
 × RI - evc1 uZN

I
(12.1.4-10)

where

aSF
B

 = Specific force acceleration projected on B Frame axes (i.e., the acceleration
measured by strapdown accelerometers).

The uZNYE term appearing extensively in Equations (12.1.3-7) is defined as the E Frame Y

axis component of uZN, the unit vector along the N Frame Z axis (along the upward local

geodetic vertical). From their definitions, the E and I Frames have common Y axes (along the
earth’s polar axis), thus:

uYE = uYI uZNYE = uZNYI (12.1.4-11)

where

uYE, uYI = Unit vectors along the E and I Frame Y axes.

uZNYI = I Frame Y axis component of the uZN unit vector along the N Frame
Z axis.

Applying (12.1.4-11), the gP
I

 term in (12.1.4-10) is provided from Equations (12.1.3-7)

transformed to the I Frame:

12-24 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

gP
I

 = - H(R)
1
R

 RI + 2 e H(R) uZNYI
R0

R
 uZNYI

1
R

 RI - uYI
I

+ ∂gPUp uZN
I

 + ∂gPNorth uNorth
I

For h ≥ 0:

H(R) =
μ

R2

∂gPUp ≈
3
2

 J2
μ

R2

R0

R

2
 3 uZNYI

2
 - 1 + 1 - uZNYI

2
 R ωe

2
(12.1.4-12)

∂gPNorth ≈ uZNYI 1 - uZNYI

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h

For h < 0:

H(R) =
R

RS

μ

RS
2

∂gPUp ≈
R

RS

3
2

 J2
μ

RS
2

R0

RS

2
 3 uZNYI

2
 - 1 + 1 - uZNYI

2
 RS ωe

2

∂gPNorth ≈ 0

From its definition we also write:

uYI
I

 = 0 1 0 T (12.1.4-13)

Components of uZN
I

 appearing in (12.1.4-12) and other equations are determined by

transforming Equation (12.1.1-14) to the I Frame, applying (12.1.4-11), and approximating the

result as a first order Picard expansion (as in (12.1.3-5)) in which the uZN
I

 components in the

term multiplying e are approximated by the zero order solution: uZN
I

 ≈ RI / R. Thus:

uZN
I

 =

uZNXI

uZNYI

uZNZI

 ≈
1
R

 RI - 2 e
RYI R0

R2

RYI

R2
 RI - uYI

I
(12.1.4-14)

where

uZNXI, uZNYI, uZNZI = I Frame X, Y, Z components of uZN
I

.

RYI = I Frame Y axis component of RI.

STRAPDOWN INERTIAL NAVIGATION EQUATIONS 12-25

The uNorth
I

 term in (12.1.4-12) is derived in the I Frame using the I Frame version of uNorth
E

in Equation (12.1-36):

uNorth
I

 =
1

1 - uZNYI

2

- uZNXI uZNYI

1 - uZNYI

2

- uZNZI uZNYI

(12.1.4-15)

Finally, the I Frame position rate equation is provided simply by Equation (12.1.4-2)
including vertical channel control as in (12.1-13), but in the I Frame:

R
I
 = υI

 - evc2 uZN
I

(12.1.4-16)

with the magnitude of RI identified as R:

R = RI ⋅ RI (12.1.4-17)

In summary, the equations for subsequent I Frame navigation error analysis are given by
Equations (12.1.4-1), (12.1.4-9) - (12.1.4-10), and (12.1.4-12) - (12.1.4-17) with RS and h
calculated as in (12.1.3-7) using (12.1.4-11). The equations are repeated below for easy
reference:

CB
I

 = CB
I

 ωIB
B

×

υ
I
 = CB

I
 aSF

B
 + gP

I
 + ωIE

I
 × ωIE

I
 × RI - evc1 uZN

I

R
I
 = υI

 - evc2 uZN
I

ωIE
I

 = 0 ωe 0
 T (12.1.4-18)

R = RI ⋅ RI

RS ≈ 1 - uZNYI

2
 e R0

h = R - RS

(Continued)

12-26 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

∂h = h - hPrsr

evc1 = evc3 + C2 ∂h evc2 = C3 ∂h evc3 = C1 ∂h

gP
I

 = - H(R)
1
R

 RI + 2 e H(R) uZNYI
R0

R
 uZNYI

1
R

 RI - uYI
I

+ ∂gPUp uZN
I

 + ∂gPNorth uNorth
I

For h ≥ 0:

H(R) =
μ

R2

∂gPUp ≈
3
2

 J2
μ

R2

R0

R

2
 3 uZNYI

2
 - 1 + 1 - uZNYI

2
 R ωe

2

∂gPNorth ≈ uZNYI 1 - uZNYI

2
 6

μ

R0
3
 2 J2 - e - ωe

2
 h

For h < 0:

H(R) =
R

RS

μ

RS
2

(12.1.4-18)
(Continued)

∂gPUp ≈
R

RS

3
2

 J2
μ

RS
2

R0

RS

2
 3 uZNYI

2
 - 1 + 1 - uZNYI

2
 RS ωe

2

∂gPNorth ≈ 0

uZN
I

 =

uZNXI

uZNYI

uZNZI

 ≈
1
R

 RI - 2 e
RYI R0

R2

RYI

R2
 RI - uYI

I

uNorth
I

 =
1

1 - uZNYI

2

- uZNXI uZNYI

1 - uZNYI

2

- uZNZI uZNYI

uYI
I

 = 0 1 0 T

NAVIGATION ERROR PARAMETERS 12-27

12.2 NAVIGATION ERROR PARAMETERS

In this section we provide analytical definitions for several commonly used attitude, velocity
and position navigation error parameters, their relationship to the inertial navigation parameters
calculated by the inertial integration process, and analytical equivalencies between different error
parameters. We will also discuss analytical error forms of the gravity and transport rate vectors
for subsequent application in the derivation of navigation error parameter time rate differential
equations. The section concludes with a general discussion of the process of navigation
parameter selection for a particular application.

12.2.1 ANGULAR ERROR PARAMETERS

In typical strapdown inertial navigation systems, angular data (e.g., in the form of direction
cosine matrices) are calculated that relate the B Frame to the L Frame and the N Frame to the E
Frame. The direction cosine matrix relating the B and E Frames can also be computed as:

CB
N

 = CL
N

 CB
L

(12.2.1-1)

CB
E

 = CN
E

 CB
N

(12.2.1-2)

where

CB
L

 = Direction cosine matrix that transforms vectors from the B Frame to the

L Frame.

CL
N

 = Direction cosine matrix that transforms vectors from the L Frame to the

N Frame (a constant matrix as defined in Equation (4.1.1-2).

CN
E

 = Direction cosine matrix that transforms vectors from the N Frame to the

E Frame.

CB
E

 = Direction cosine matrix that transforms vectors from the B Frame to the

E Frame.

The error in the CB
E

 matrix can be defined as a rotation error vector by applying generalized

error Equations (3.5.2-27):

δCB
E

 = - ψE× CB
E

(12.2.1-3)

ψE× ≡ I - CB
E

 CB
E T

(12.2.1-4)

12-28 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

 = Designation for parameter calculated in the strapdown system computer that may

contain errors. The parameter without the is defined to be the idealized error
free value.

CB
E

 = Strapdown system computer calculated CB
E

 matrix (i.e., containing errors).

ψE
 = Rotation angle error vector associated with the CB

E
 matrix considering the

E Frame to be misaligned, as projected on Frame E axes.

δCB
E

 = Error in CB
E

 caused by misalignment.

Equations (12.2.1-3) - (12.2.1-4) are based on the assumption that the errors in CB
E

 are not

caused by orthogonality and/or normality error. This same assumption will be used throughout
this section for all attitude error parameters analyzed. Careful software design and validation
will assure this assumption to be valid. Section 3.5.1 discusses the general case in which the
direction cosine matrix may contain orthogonality, normality and misalignment errors.

Substituting (12.2.1-2) into (12.2.1-3) yields:

δCB
E

 = - CN
E

 CE
N

 ψE× CE
N T

 CB
N

(12.2.1-5)

or after identifying the middle term as a similarity transformation of ψE× (as in generalized
Equation (3.1.1-39)):

δCB
E

 = - CN
E

 ψN× CB
N

(12.2.1-6)

with

ψN
 = CE

N
 ψE

(12.2.1-7)

The system computer version of Equation (12.2.1-2) is:

CB
E

 = CN
E

 CB
N

(12.2.1-8)

where

CN
E

, CB
N

 = Computer calculated values for CN
E

, CB
N

 (containing errors).

NAVIGATION ERROR PARAMETERS 12-29

The error characteristics of CN
E

 and CB
N

 can also be defined by rotation error vectors through

application of generalized Equations (3.5.2-27) and (3.5.2-28):

δCB
N

 = - γN× CB
N

(12.2.1-9)

γN× = I - CB
N

 CB
N T

(12.2.1-10)

δCN
E

 = CN
E

 εN× (12.2.1-11)

εN× = CN
E T

 CN
E

 - I (12.2.1-12)

where

γN
 = Rotation angle error vector associated with the CB

N
 matrix considering the N

Frame to be misaligned, as projected on Frame N axes.

εN
 = Rotation angle error vector associated with the CN

E
 matrix considering the N

Frame to be misaligned, as projected on Frame N axes.

Equation (12.2.1-8) has the same form as general Equation (3.5.2-40) repeated below:

CD
A

 = CB
A

 CD
B

(12.2.1-13)

for which general Equation (3.5.2-45) applies as follows:

αD to A
A

 = αD to B
A

 + αB to A
A

(12.2.1-14)

or with general Equations (3.5.2-31):

αD to A
A

 = αD to B
A

 - βB to A
A

(12.2.1-15)

where

D, B, A = Arbitrary coordinate frames.

CD
A

, CB
A

, CD
B

 = Direction cosine matrices calculated in the strapdown system computer
that transform vectors from the D to A, B to A and D to B Frame.

αD to A
A

 = Rotation angle error vector associated with the CD
A

 matrix considering the A
Frame to be misaligned, as projected onto A Frame axes.

βB to A
A

 = Rotation angle error vector associated with the CB
A

 matrix considering the B
Frame to be misaligned, as projected onto A Frame axes.

12-30 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

αD to B
A

 = Rotation angle error vector associated with the CD
B

 matrix considering the B
Frame to be misaligned, as projected onto A Frame axes.

Applying general Equations (12.2.1-13) and (12.2.1-15) to Equation (12.2.1-8) and the

definitions for the associated rotation error vectors ψ, ε and γ finds that:

ψE
 = γE

 - εE
(12.2.1-16)

or in the N Frame:

ψN
 = γN

- εN
(12.2.1-17)

Equation (12.2.1-17) shows the equivalency between the ψ, ε and γ error angle vectors.

As an aside, it is noted that Equation (12.2.1-17) is equivalent to Equation (7.9) of Reference

15 (a chapter in one of the original inertial navigation textbooks). The δθ “computer angle

error”, φ “platform angle error” and ψ “angular error between computer and platform axes” of

Reference 15 have identical meanings as the ε, γ and ψ errors of this section (defined
analytically by Equations (12.2.1-3) - (12.2.1-4) and (12.2.1-9) - (12.2.1-12)).

For error analysis purposes, we will at times make use of error parameters defined in the

inertial non-rotating I Frame. We show here, that the ψ attitude error parameter defined in the E
Frame by Equation (12.2.1-4) is identical if defined in the I Frame. To do this, we temporarily
identify the attitude error defined in the I Frame as:

ϕI× ≡ I - CB
I

 CB
I T

(12.2.1-18)

where

CB
I

 = Direction cosine matrix that transforms vectors from the B Frame to the

I Frame.

CB
I

 = Strapdown system computer calculated CB
I

 matrix (i.e., containing errors).

ϕI
 = Rotation angle error vector associated with the CB

I
 matrix considering the

I Frame in CB
I

 to be misaligned (relative to the B Frame), as projected on
I Frame axes.

We also write:

CB
I

 = CE
I
 CB

E
CB

I
 = CE

I
 CB

E
(12.2.1-19)

NAVIGATION ERROR PARAMETERS 12-31

where

CE
I

 = Direction cosine matrix that transforms vectors from the E Frame to the

I Frame.

The CE
I

 matrix is created by the integrated effect of earth’s rotation rate which is constant in the

E and I Frames (along the E and I Frame Y axes that have been defined to be coincident).

Because earth rate is a known constant, there is no error in the system software value for CE
I

,

hence:

CE
I

 = CE
I

(12.2.1-20)

Substituting (12.2.1-20) and (12.2.1-19) into (12.2.1-18) gives:

ϕI× = I - CE
I
 CB

E
 CB

E T
 CE

I T
(12.2.1-21)

Multiplying (12.2.1-21) on the left by CE
I T

 and on the right by CE
I

, and using Equation

(3.2.1-3) then obtains:

CE
I T

 ϕI× CE
I

 = CI
E
 ϕI× CI

E T
 = I - CB

E
 CB

E T
(12.2.1-22)

or with (3.1.1-39):

ϕE× = I - CB
E

 CB
E T

(12.2.1-23)

Comparing (12.2.1-23) with (12.2.1-4) we see then as stipulated that:

ϕE
 = ψE

(12.2.1-24)

We conclude this section with a discussion of the errors in the Euler angles associated with

the CB
L

 matrix and their relationship with the other angle error parameters. As in Section 3.2.3

and 3.2.3.1, we first define the Euler angle sequence for CB
L

 in terms of three successive

rotations about intermediate frames:

CB
L

 = CL1

L
 CL2

L1 CB
L2 (12.2.1-25)

where

L1 Frame = Frame L after rotating it about axis Z through the heading Euler angle.

12-32 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

L2 Frame = Frame L1 after rotating it about axis Y through the pitch Euler angle.

B Frame = Strapdown sensor axis B Frame (as defined in Section 2.2) obtained by
rotating Frame L2 about the X-axis through the roll Euler angle.

Applying general Equations (3.5.2-27), (3.5.3-1), (3.5.3-25) - (3.5.3-26), (3.5.3-28) and
(3.5.3-35) to Equation (12.2.1-25) shows that:

αB to L
L

× = I - CB
L

 CB
L T

(12.2.1-26)

αB to L
L

 = - δψP uζL
L

 - δθ uζL1

L
 - δφ uζL2

L
(12.2.1-27)

δψP ≡ ψP - ψP δθ ≡ θ - θ δφ ≡ φ - φ

uζL1

L
 = CL1

L
 uζL1

L1 uζL2

L
 = CL1

L
 CL2

L1 uζL2

L2

uζL
L

 =
0
0
1

 uζL1

L1 =
0
1
0

 uζL2

L2 =
1
0
0

(12.2.1-28)

CL1

L
 =

cos ψP - sin ψP 0

sin ψP cos ψP 0

0 0 1

 CL2

L1 =

cos θ 0 sin θ

0 1 0

-sin θ 0 cos θ

CB
L2 =

1 0 0

0 cos φ -sin φ

0 sin φ cos φ

where

αB to L
L

 = Rotation angle error vector associated with CB
L

 considering the L Frame to be
misaligned, as projected on L Frame axes.

uζL2

L2 , uζL1

L1 , uζL
L

 = Unit vectors along the L2 Frame X-axis, L1 Frame Y-axis,

L Frame Z-axis.

NAVIGATION ERROR PARAMETERS 12-33

φ, θ, ψP = Roll, pitch, “platform” heading, Euler angles associated with CB
L

 around

uζL2

L2 , uζL1

L1 , uζL
L

. The term “platform” heading is commonly used to

describe this heading Euler angle which is referenced to local level L Frame
axes (as contrasted with “true” heading which is the heading relative to true
north). Platform heading is the heading of the B Frame relative to an L
Frame identified as “platform coordinates” (analogous to a gimbaled stable
platform aligned with the L frame - See Chapter 1).

δφ, δθ, δψP = Errors in the system computer calculated values for φ, θ, ψP.

Equation (12.2.1-26) can be converted to the equivalent N Frame form by pre-multiplying by

CL
N

, post-multiplying by CL
N T

, and applying Equation (3.2.1-3) and general similarity

transformation Equation (3.1.1-39) for cross-product operators:

CL
N

 αB to L
L

× CL
N T

 = αB to L
N

×

 = CL
N

 CL
N T

 - CL
N

 CB
L

 CB
L T

 CL
N T

 = I - CL
N

 CB
L

 CL
N

 CB
L T

(12.2.1-29)

But because CL
N

 is a constant, CL
N

 = CL
N

, and:

CL
N

 CB
L

 = CB
N

(12.2.1-30)

Hence, Equation (12.2.1-29) becomes:

αB to L
N

× = I - CB
N

 CB
N T

(12.2.1-31)

with

αB to L
N

 = CL
N

 αB to L
L

(12.2.1-32)

If we now compare Equations (12.2.1-31) and (12.2.1-10) it should be clear as might have been
expected that:

αB to L
N

 = γN
(12.2.1-33)

Substituting (12.2.1-33) and (12.2.1-27) into (12.2.1-32) then obtains the desired expression

for γN
 as a function of the Euler angle errors:

γN
 = - CL

N
 δψP uζL

L
 + δθ uζL1

L
 + δφ uζL2

L
(12.2.1-34)

12-34 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

with uζL
L

, uζL1

L
, uζL2

L
 as defined in Equations (12.2.1-28) and CL

N
 (the transpose of CN

L
) defined

from Equation (4.1.1-2) as:

CL
N

 =
0 1 0
1 0 0
0 0 -1

(12.2.1-35)

Equation (12.2.1-34) with (12.2.1-28) and (12.2.1-35) lends itself nicely for component
evaluation by the “Method of Least Work” technique described in Section 3.2.3.3 as provided
in Figure 12.2.1-1:

φθ

•

•

•

Frame
B

δθ

δφ

-1

Frame
L

Frame
L1

Frame
L2

•
Frame

N

-1

-1γXN

γYN

γZN

ψP

δψP

Figure 12.2.1-1 Rotation Angle Error As Function Of Euler Angle Errors

where

γXN , γYN , γZN = N Frame X, Y, Z components of γN
.

From Figure 12.2.1-1 we can immediately write:

γXN = - δφ cos θ sin ψP - δθ cos ψP

γYN = - δφ cos θ cos ψP + δθ sin ψP (12.2.1-36)

γZN = - δφ sin θ + δψP

The inverse of Equations (12.2.1-36) is obtained from Figure 12.2.1-1 by first writing the
node equations at Frame L1 for the X, Y components by reversing the arrows on the left of
Frame L1 and equating inputs from the left to inputs from the right:

NAVIGATION ERROR PARAMETERS 12-35

- γXN sin ψP - γYN cos ψP = δφ cos θ

- γXN cos ψP + γYN sin ψP = δθ
(12.2.1-37)

Equations (12.2.1-37) are easily inverted to find δφ, δθ as a function of the γN
 components.

The δψP Euler angle error is then obtained by substitution of the resulting δφ solution into the

Equations (12.2.1-36) γZN expression and rearranging. The result is:

δφ = - sec θ γXN sin ψP + γYN cos ψP

δθ = γYN sin ψP - γXN cos ψP (12.2.1-38)

δψP = γZN - tan θ γXN sin ψP + γYN cos ψP

True heading is defined as the angle around the local vertical (measured in the positive sense
for positive rotations around a downward vertical) from a horizontal true north pointing line
(i.e., toward the earth positive polar axis) to the vertical projection of the L Frame X-axis on the
local horizontal plane. For the special case when the X-axis of the L Frame points north, the

“platform heading” angle ψP would equal the true heading. In the general case, the angle from

true north to the L Frame X-axis (measured positive as a positive rotation about an upward
vertical) is denoted as the “wander angle”, and true heading is related to platform heading by the
Equation (4.1.2-2) expression:

ψT = ψP - α (12.2.1-39)

where

α = Wander angle equal to the angle about the local vertical (measured positive for
positive rotations about an upward vertical) from horizontal true north to the L
Frame X-axis.

ψT = True heading.

The error form of (12.2.1-39) is:

δψT = δψP - δα (12.2.1-40)

where

δψT, δα = Errors in the computer calculated true heading, wander angle parameters

ψT, α.

12-36 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Equations (12.2.3-37) (in subsequent Section 12.2.3) define δα as a function of the

components of εN
. Substituting δα from (12.2.3-37) and δψP from (12.2.1-38) into

(12.2.1-40) obtains an expression for δψT as a function of γN
 and εN

 components:

δψT = γZN - tan θ γXN sin ψP + γYN cos ψP - εZN

+ tan l εYN cos α + εXN sin α
(12.2.1-41)

where

εXN , εYN , εZN = N Frame X, Y, Z components of εN
.

Equation (12.2.1-17) can be used to also define error relationships between the Euler angle

errors and the errors in ψN
 and εN

. Equations (12.2.1-36), (12.2.1-38) and (12.2.1-41) with
(12.2.1-17) become:

ψXN = - δφ cos θ sin ψP - δθ cos ψP - εXN

ψYN = - δφ cos θ cos ψP + δθ sin ψP - εYN (12.2.1-42)

ψZN = - δφ sin θ + δψP - εZN

δφ = - sec θ ψXN + εXN sin ψP + ψYN + εYN cos ψP

δθ = ψYN + εYN sin ψP - ψXN + εXN cos ψP (12.2.1-43)

δψP = ψZN + εZN - tan θ ψXN + εXN sin ψP + ψYN + εYN cos ψP

δψT = ψZN - tan θ ψXN + εXN sin ψP + ψYN + εYN cos ψP

+ tan l εYN cos α + εXN sin α
(12.2.1-44)

where

ψXN , ψYN , ψZN = N Frame X, Y, Z components of ψN
. Note that although the

notation is similar, ψN
 and its components are not related to

ψP, ψT except through the previous error equation equivalencies.

Finally, it is instructive to note that from Equations (12.2.3-19) (in subsequent Section

12.2.3), the εXN , εYN terms in the previous expressions can be defined in terms of position

errors as:

NAVIGATION ERROR PARAMETERS 12-37

εXN = -
1
R

 δRYN εYN =
1
R

 δRXN (12.2.1-45)

where

δRXN , δRYN = N Frame X, Y (i.e., horizontal) components of the position error

vector δR
N

.

R = Distance from earth’s center to the navigation system (i.e., magnitude of the
position vector from earth’s center).

12.2.2 VELOCITY ERROR PARAMETERS

Velocity errors can be defined in several coordinate frames. In this section we will consider
velocity errors defined in the E and N Frames, viz.:

δVE ≡ v
E

 - vE (12.2.2-1)

δvN ≡ v
N

 - vN (12.2.2-2)

where

δV = Error in velocity relative to the earth measured (defined) in the E Frame.

δV
E

 = δV projected on E Frame axes.

δv = Error in velocity relative to the earth measured (defined) in the N Frame.

δv
N

 = δv projected on N Frame axes.

Note from the definition of the velocity vector v in Section 4.3 (by Equation (4.3-1)) that the
velocity errors defined in Equations (12.2.2-1) and (12.2.2-2) are errors in v, the velocity (or
position rate) relative to earth Frame E. In some applications, the concept of a velocity vector

relative to the inertial I Frame is useful (denoted herein as υ). At the end of this section we will

address the error in υ and its relationship to the above defined errors in v.

We now project the Equation (12.2.2-1) defined velocity error δV onto N Frame axes to
obtain:

δVN = CE
N

 δVE (12.2.2-3)

12-38 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

δV
N

 = Velocity error defined in the E Frame (by Equation (12.2.2-1)) and projected
(superscript designator) on N Frame axes.

Application of generalized Equations (3.5.4-10) defines the relationship between δV
N

 and δv
N

:

δVN = δvN + βN to E
N

 × vN (12.2.2-4)

where

βN to E
N

 = Rotation angle error vector associated with CN
E

 considering Frame N to be
misaligned, as projected on Frame N axes.

From the definition of εN
 in Section 12.2.1, we see that it is identical to βN to E

N
, hence,

(12.2.2-4) becomes:

δVN = δvN + εN
 × vN (12.2.2-5)

We next discuss the error in the inertially (I Frame) defined velocity vector υ and its
relationship to the error in v, the velocity vector relative to the earth fixed E Frame. Note from
Section 12.1.4 (Equation (12.1.4-2)) that the formal definition for the inertial frame relative

velocity vector υ is the time rate of change of position in the I Frame:

υI
 ≡ R

I
(12.2.2-6)

where

υI
 = Rate of change of position relative to non-rotating I Frame inertial space as

projected on I Frame axes.

In contrast, the v earth relative velocity vector is defined from Equation (4.3-1) as:

vE ≡ R
E

(12.2.2-7)

The υ and v velocity vectors are related in the E Frame according to the E Frame version of
Equation (12.1.4-5):

υE
 = vE + ωIE

E
 × RE (12.2.2-8)

where

ωIE
E

 = Angular rate of the E Frame relative to the I Frame (subscript designator) as
projected on E Frame axes (superscript designator).

NAVIGATION ERROR PARAMETERS 12-39

We now define the error in υ from the I Frame relation:

δυI
 ≡ υ

I
 - υI

(12.2.2-9)

where

δυ = Difference between the computed and true velocity relative to inertial space
measured (defined) in the I Frame.

δυI
 = δυ projected on I Frame axes.

The relationship between δυ and δV is developed by first rewriting (12.2.2-9) in the
equivalent form:

δυI
 = CE

I
 υ

E
 - CE

I
 υE

(12.2.2-10)

where

CE
I

 = Direction cosine matrix that transforms vectors from the E Frame to the

I Frame.

But from Equation (12.2.1-20):

CE
I

 = CE
I

(12.2.2-11)

Because ωIE
E

 is constant (See Equations (12.1.3-7)) we can also write:

ωIE
E

 = ωIE
E

(12.2.2-12)

Substituting (12.2.2-8), (12.2.2-11) and (12.2.2-12) into (12.2.2-10) yields:

δυI
 = CE

I
 v

E
 + ωIE

E
 × R

E
 - vE - ωIE

E
 × RE

 = CE
I
 v

E
 - vE + ωIE

E
 × R

E
 - RE

(12.2.2-13)

The error in the system computed position vector R is defined in the E Frame as:

δRE ≡ R
E

 - RE (12.2.2-14)

where

δRE = Error in R
E

.

Applying (12.2.2-1) and (12.2.2-14) to (12.2.2-13) then obtains:

12-40 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δυI
 = δVI + ωIE

I
 × δRI (12.2.2-15)

In the N Frame Equation (12.2.2-15) has the equivalent final form:

δυN
 = δVN + ωIE

N
 × δRN (12.2.2-16)

Equation (12.2.2-16) shows the relationship between the inertial and earth frame defined
velocity vector errors.

We conclude this section with a discussion of a velocity error δV defined in a locally level

geographic frame and its relationship with the E Frame defined velocity error δV and the N

Frame defined velocity error δv. First, we define the geographic frame velocity error as:

δV Geo ≡ v
 Geo

 - v Geo (12.2.2-17)

where

Geo = Locally level geographic coordinate frame defined with its Z axis upward along
the local geodetic vertical, Y axis north (and horizontal) with X axis east (and
horizontal).

δV = Difference between the computed and true velocity relative to the earth as
measured (defined) in the Geo Frame.

δV Geo = δV projected on Geo Frame axes.

The velocity vector relative to the earth v has components in the E and Geo Frames related
by:

vE = CGeo
E

 vGeo (12.2.2-18)

Application of generalized Equation (3.5.4-10) (rearranged) to (12.2.2-18) provides the

relationship between velocity error δV defined in the Geo Frame (i.e., Equation (12.2.2-17)) and

velocity error δV defined in the E Frame (by Equation (12.2.2-1)):

δV Geo = δV Geo - ϑGeo
 × v Geo (12.2.2-19)

where

ϑGeo
 = Rotation angle error associated with CGeo

E
 (considering the Geo Frame to be

misaligned) as projected on Geo Frame axes.

The δV Geo term for (12.2.2-19) can be calculated from the N Frame δV components, viz.:

NAVIGATION ERROR PARAMETERS 12-41

δV Geo = CN
Geo

 δVN (12.2.2-20)

The CN
Geo

 matrix in (12.2.2-20) is a transformation through the wander angle α as shown by the

transpose of (6.1.3-8):

CN
Geo

 =

cos α - sin α 0

sin α cos α 0

0 0 1

(12.2.2-21)

where

α = Wander angle defined as the angle between the N frame Y axis and true North,
measured positive around the local upward geodetic vertical (the Z axis of the N
Frame).

From their definitions in Section 2.2, the Geo Frame is equivalent to the N Frame with a zero

wander angle. Consequently, the CGeo
E

 matrix can be expressed in terms of latitude (l),

longitude (L) Euler angles as in Section 4.4.2.1 with the wander angle α set to zero. Then the

ϑGeo
 angle error vector in (12.2.2-19) can be equated to the latitude, longitude (l, L) Euler angle

error terms using generalized Equations (3.5.3-31) and Section 4.4.2.1 for definition of the l, L
Euler rotation angles and axes:

ϑGeo
 = δL uYE

Geo
 - δl uXGeo

Geo
(12.2.2-22)

where

uYE
Geo

 = Unit vector along the earth polar axis (the E Frame Y axis) projected on Geo

Frame axes (corresponding to the uζA axis in (3.5.3-31)).

uXGeo
Geo

 = Unit vector along the local horizontal east direction (the Geo Frame X axis)

projected on Geo Frame axes. uXGeo
Geo

 corresponds with the uζA1 axis in

(3.5.3-31).

Note the negative sign for the δl term in (12.2.2-22) because latitude is defined in Section
4.4.2.1 as a negative Euler angle rotation.

We equate uYE
Geo

 in (12.2.2-22) to the sum of its vertical and horizontal components; the

vertical component equals the cosine of the angle between the local vertical and the E Frame
earth polar Y axis (i.e., uUpYE in Section 5.2.3 defined in Equation (5.2.3-1) to equal the sine of

12-42 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

geodetic latitude); the horizontal component lies north along the Geo Frame Y axis with
magnitude equal to the complement of the vertical component (i.e., cos l):

uYE
Geo

 = cos l uYGeo
Geo

 + sin l uZGeo
Geo

(12.2.2-23)

The latitude, longitude errors in (12.2.2-22) can be expressed in terms of errors in the CN
E

matrix beginning with generalized Equation (3.5.3-31) transformed to the Geo Frame, and

Section 4.4.2.1 for definition of the L, l , α (longitude, latitude, wander angle) Euler rotations
and axes:

εGeo
 = δL uYE

Geo
 - δl uXGeo

Geo
 + δα uZGeo

Geo
(12.2.2-24)

where

εGeo
 = Rotation angle error associated with CN

E
 (considering the N Frame to be

misaligned) projected on Geo Frame axes.

δα = Error in the wander angle α.

uZGeo
Geo

 = Unit vector along the Geo and N Frame Z axes (corresponding to the

uζA2axis in (3.5.3-31)).

Substituting (12.2.2-23) into (12.2.2-24) finds after rearrangement:

εGeo
 = - δl uXGeo

Geo
 + δL cos l uYGeo

Geo
 + δα + δL sin l uZGeo

Geo
(12.2.2-25)

Latitude, longitude are then obtained from the dot product of (12.2.2-25) with uXGeo
Geo

, uYGeo
Geo

 and

rearrangement:

δl = - uXGeo
Geo

 ⋅ εH
Geo

δL = uYGeo
Geo

 ⋅ εH
Geo

 sec l (12.2.2-26)

where

εH
Geo

 = Horizontal component of εGeo
. The εH

Geo
 component of εGeo

 can be used in

(12.2.2-26) because the dot product of the vertical εGeo
 component with uXGeo

Geo

and uYGeo
Geo

 is zero.

The εH
Geo

 term for (12.2.2-26) can be calculated from the N Frame horizontal ε components,

viz.:

εH
Geo

 = CN
Geo

 εH
N

(12.2.2-27)

NAVIGATION ERROR PARAMETERS 12-43

With (12.2.2-26) and (12.2.2-23), Equation (12.2.2-22) for ϑGeo
 becomes:

ϑGeo
 = sec l uYGeo

Geo
 ⋅ εH

Geo
 uYE

Geo
 + uXGeo

Geo
 ⋅ εH

Geo
 uXGeo

Geo

 = εXGeo uXGeo
Geo

 + εYGeo uYGeo
Geo

 + εYGeo tan l uZGeo
Geo

(12.2.2-28)

where

εXGeo, εYGeo = X, Y components of εH
Geo

.

The εH
Geo

 term in (12.2.2-28) can also be expressed in terms of horizontal position error

(defined in (12.2.2-14)) using the horizontal component of Equation (12.2.3-19) (in the next
section) in Geo Frame coordinates. Then (12.2.2-28) with (12.2.3-19) becomes:

ϑGeo
 = -

1
R

 δRYGeo uXGeo
Geo

 +
1
R

 δRXGeo uYGeo
Geo

 +
1
R

 δRXGeo tan l uZGeo
Geo

(12.2.2-29)

where

δRXGeo, δRYGeo = X, Y components of δRH
Geo

, the horizontal components of the

Equation (12.2.2-14) defined δR position error vector, as projected
on Geo Frame axes.

The δRH
Geo

 components for (12.2.2-29) can be calculated from the N Frame horizontal δR

components via:

δRH
Geo

 = CN
Geo

 δRH
N

(12.2.2-30)

with CN
Geo

 provided by (12.2.2-21).

Summarizing for a moment, the previous development has shown that δV Geo can be

expressed as a function of δVGeo using (12.2.2-19) with ϑGeo
 calculated from horizontal ε

components (using (12.2.2.-28)) or from horizontal δR components (using (12.2.2-29)). The

Geo Frame horizontal components of δV, ε and δR for (12.2.2-19), (12.2.2-28) and (12.2.2-29)
can be calculated from the N Frame components using (12.2.2-20), (12.2.2-21), (12.2.2-27)
and (12.2.2-30).

12-44 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

We can also develop an equivalent set of expressions for δV Geo as a function of the Geo

Frame components of δv. Substituting the Geo Frame form of Equation (12.2.2-5) into
(12.2.2-19) yields:

δV Geo = δvGeo + εGeo
 - ϑGeo

 × vGeo (12.2.2-31)

Using the difference between (12.2.2-24) and (12.2.2-22) for εGeo
 - ϑGeo

 in (12.2.2-31) then
yields the desired form:

δV Geo = δvGeo + δα uZGeo
Geo

 × vGeo (12.2.2-32)

Equations (12.2.3-37) (in the next section) provides an expression relating the wander angle

error in (12.2.2-32) to the N Frame components of ε. The δvGeo term in (12.2.2-32) can be
calculated from the N Frame components using:

δvGeo = CN
Geo

 δvN (12.2.2-33)

with CN
Geo

 provided by (12.2.2-21).

12.2.3 POSITION ERROR PARAMETERS

The position error in an inertial navigation system can be defined as the error in the position
vector that describes the system position location relative to the earth:

δRE ≡ R
E

 - RE (12.2.3-1)

where

RE = Position vector from earth’s center to the navigation system as described in E
Frame axes.

R
E

 = Value for RE calculated in the navigation system computer.

δRE = Error in R
E

 as projected (superscript) on E Frame axes.

We can also describe δRE in the N Frame:

δRN ≡ CE
N

 δRE (12.2.3-2)

NAVIGATION ERROR PARAMETERS 12-45

where

δRN = Error in R
E

 as projected on N Frame axes.

Alternatively, as discussed in Section 4.4, navigation system position location relative to the
earth can be described by the angular orientation of the N Frame relative to the E Frame (e.g.,

latitude, longitude) and the altitude above the surface of the earth. Using the CN
E

 direction cosine

matrix to represent the N to E relative angular orientation leads (with Equations (12.2.1-11) and
(12.2.1-12)) to the following associated position errors:

δCN
E

 = CN
E

 εN× (12.2.3-3)

εN× = CN
E T

 CN
E

 - I (12.2.3-4)

δh = h - h (12.2.3-5)

where

εN
 = Rotation angle error vector associated with the CN

E
 matrix considering the

N Frame to be misaligned, as projected on Frame N axes.

δh = Error in the system computed altitude h.

Equivalencies between the δRN and εN
, δh position error parameters can developed from the

following approximate form:

RE ≈ R uZN
E

(12.2.3-6)

where

uZN
E

 = Unit vector upward along the local geodetic vertical (i.e., along the N Frame Z

axis) as projected on E Frame axes.

R = Distance from earth’s center to the navigation system (i.e., the magnitude

of RE).

Equation (12.2.3-6) approximates earth’s shape as a sphere rather than an ellipsoid of revolution
(with ellipticity e). For error analysis purposes this is generally an insignificant error. Taking
the differential of (12.2.3-6) then obtains:

δRE = δR uZN
E

 + R δuZN
E

(12.2.3-7)

with

δR ≡ R - R (12.2.3-8)

12-46 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

δR = Error in system computed value for R.

δuZN
E

 = Error in system computer version of uZN
E

.

We can also write:

uZN
E

 = CN
E

 uZN
N

(12.2.3-9)

where

uZN
N

 = Unit vector along the N Frame Z-axis as projected on N Frame axes.

Since uZN
N

 is known explicitly by definition (i.e., components of 0, 0, 1), the associated error in

the system computer version is zero, and the differential of (12.2.3-9) is:

δuZN
E

 = δCN
E

 uZN
N

(12.2.3-10)

Substituting Equation (12.2.3-3) into (12.2.3-10) then yields for δuZN
E

 in (12.2.3-7):

δuZN
E

 = CN
E

 εN× uZN
N

 = CN
E

 εN
 × uZN

N
(12.2.3-11)

The δR for Equation (12.2.3-7) is obtained from the R definition as in generalized Equations
(3.1.1-4) - (3.1.1-5) (with W = V):

R2 = RE ⋅ RE (12.2.3-12)

Taking the differential of (12.2.3-12) yields:

2 R δR = 2 RE ⋅ δRE (12.2.3-13)

Further refinement of Equation (12.2.3-13) is achieved by substituting (12.2.3-6) for RE:

δR = uZN
E

 ⋅ δRE (12.2.3-14)

We now substitute (12.2.3-11) for δuZN
E

 into Equation (12.2.3-7) to find:

δRE = δR uZN
E

 + R CN
E

 εN
 × uZN

N
(12.2.3-15)

or, after transforming to the N Frame:

NAVIGATION ERROR PARAMETERS 12-47

δRN = R εN
 × uZN

N
 + δR uZN

N
(12.2.3-16)

Equation (12.2.3-16) defines the δRN position error vector in terms of the equivalent εN
, δR

position error parameters.

The converse of (12.2.3-16) is obtained by taking the cross-product with uZN
N

:

uZN
N

 × δRN = R uZN
N

 × εN
 × uZN

N
(12.2.3-17)

To reduce (12.2.3-17) we make use of the Equation (3.1.1-16) vector triple product identity
with which Equation (12.2.3-17) becomes:

uZN
N

 × δRN = R εN
 - uZN

N
 uZN

N
 ⋅ εN

 (12.2.3-18)

Identifying the uZN
N

 ⋅ εN
 term in (12.2.3-18) as the Z (upward vertical) component of εN

 and

using (12.2.3-14) in the N Frame then, after rearrangement, allows us to define the εN
, δR

position error parameters in terms of δRN:

εN
 =

1
R

 uZN
N

 × δRN + εZN uZN
N

(12.2.3-19)

δR = uZN
N

 ⋅ δRN (12.2.3-20)

where

εZN = Z component of εN
.

Note in Equation (12.2.3-19), that because uZN
N

 is along the Z axis of the N Frame, its cross-

product with δRN produces zero contribution to εN
 from the δRN vertical component (δR).

However, the εZN vertical component must be provided from another source. Similarly, in

Equation (12.2.3-16), the vertical εZN component of εN
 has no effect on δRN, however, the

vertical δR component of δRN must be provided from another source.

The equivalent to Equations (12.2.3-16), (12.2.3-19) and (12.2.3-20) can also be obtained for

δRN in terms of εN
 / δh, and for εN

 / δh in terms δRN / εZN, by using the combined R, RS and
uZNYE expressions from Equations (12.1.2-6):

R = 1 - D23
2

 e R0 + h (12.2.3-21)

12-48 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

D23 = Element of CN
E

 in row 2, column 3.

The differential of (12.2.3-21) after rearrangement is:

δR = δh - 2 e D23 δD23 R0 (12.2.3-22)

Equation (12.2.1-11) shows that δD23 in (12.2.3-22) (an element of δCN
E

) is on the order of

εN
. Equation (12.2.3-19) shows that εN

 is on the order of δRN / R. Hence, δD23 R0 in

Equation (12.2.3-22) is on the order of (R0 / R) δRN. Since this term multiplies e in Equation

(12.2.3-22), we can conclude that it is negligible compared to the leading δR term. Thus,
Equation (12.2.3-22) simplifies to the approximate form:

δR ≈ δh (12.2.3-23)

With (12.2.3-23), Equations (12.2.3-16), (12.2.3-19) and (12.2.3-20) become the equivalent
forms:

δRN = R εN
 × uZN

N
 + δh uZN

N
(12.2.3-24)

and the converse:

εN
 =

1
R

 uZN
N

 × δRN + εZN uZN
N

(12.2.3-25)

δh = uZN
N

 ⋅ δRN (12.2.3-26)

Equations (12.2.3-24) - (12.2.3-26) define δRN in terms of εN
, δh, and define εN

, δh in terms

δRN, εZN.

For error analysis purposes, we will at times make use of error parameters defined in the I

Frame. We show here, that the δR position error parameter defined in the E Frame by
(12.2.3-1) is identical if defined in the I Frame. To do this, we temporarily identify the position
error defined in the I Frame as:

δrI ≡ R
I
 - RI (12.2.3-27)

where

δrI = Error in R
I
 as evaluated in the I Frame.

NAVIGATION ERROR PARAMETERS 12-49

The δr position error in the E Frame is with (12.2.3-27):

δrE = CI
E

 δrI = CI
E

 R
I
 - CI

E
 RI = CI

E
 R

I
 - RE (12.2.3-28)

where

CI
E

 = Direction cosine matrix that transforms vectors from the I Frame to the

E Frame.

But from Equation (12.2.1-20):

CI
E

 = CI
E

(12.2.3-29)

Substituting (12.2.3-29) in (12.2.3-28) then obtains:

δrE = CI
E

 R
I
 - RE = R

E
 - RE (12.2.3-30)

Comparing (12.2.3-30) with (12.2.3-1) we see then as stipulated that:

δrE = δRE (12.2.3-31)

We can also relate the εN
 and δRN position error parameters to errors in the Euler angles

typically used to describe the CN
E

 matrix for navigation purposes (i.e., from Section 4.4.2.1,

latitude, longitude and wander angle). This is achieved analytically by first defining the CN
E

matrix in terms of the intermediate direction cosine matrices that constitute the Euler angle
rotations. Applying general Equation (3.2.3.1-1) we have:

CN
E

 = CE1

E
 CE2

E1 CN
E2 (12.2.3-32)

where, from Section 4.4.2.1:

E1 Frame = Frame E (as defined in Section 2.2), but after rotating it about
E Frame axis Y through the longitude Euler angle.

E2 Frame = Frame E1 after rotating it negatively about E1 Frame axis X through the
geodetic latitude Euler angle.

N Frame = Navigation Frame (as defined in Section 2.2) obtained by rotating Frame
E2 about the E2 Frame Z-axis through the wander angle Euler rotation.

From the previous coordinate frame definitions and use of generalized Equations (3.2.3-3) -
(3.2.3-4) as a guide, we can also write:

12-50 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

CE1

E
 =

cos L 0 sin L
0 1 0

- sin L 0 cos L
 CE2

E1 =
1 0 0
0 cos l sin l
0 - sin l cos l

CN
E2 =

cos α - sin α 0

sin α cos α 0

0 0 1

(12.2.3-33)

uζE
E

 =
0
1
0

uζE1

E1 =
1
0
0

uζE2

E2 =
0
0
1

where

uζE
E

, uζE1

E1 , uζE2

E2 = Unit vectors along the E Frame Y-axis, E1 Frame X-axis and

E2 Frame Z-axis.

L = Longitude measured around uζE
E

 from the Greenwich meridian and positive for

positive rotations around uζE
E

.

l = Geodetic latitude measured around uζE1

E1 and positive for negative rotations

around uζE1

E1 .

α = Wander angle measured around uζE2

E2 and positive for positive rotations

around uζE2

E2 .

Note that the form of the CE2

E1 matrix in Equations (12.2.3-33) has an inverse sign

configuration from the generalized X-axis rotation matrix in Equations (3.2.3-4) (i.e., the φ
expression) because the latitude Euler angle l is defined to be a negative rotation about the E1
Frame X-axis.

We now apply generalized Equations (3.5.3-31) - (3.5.3-32) to obtain an expression for

the Equation (12.2.1-12) defined εN
 error in CN

E
 as a function of the errors in the associated

Euler angles:

εN
 = δL uζE

N
 - δl uζE1

N
 + δα uζE2

N

uζE
N

 = CE2

N
 CE1

E2 uζE
E

 uζE1

N
 = CE2

N
 uζE1

E1
(12.2.3-34)

NAVIGATION ERROR PARAMETERS 12-51

Note that the sign of the δl term is negative because the l Euler rotation has been defined to be

negative about axis uζE1

E1 .

Using Section 3.2.3.3, Equations (12.2.3-34) with (12.2.3-33) can then be formatted into the
Figure 12.2.3-1 “Method of Least Work” diagram:

•
L

•
•

l

δα

δL

α

Frame
E

Frame
E1

Frame
E2

Frame
N

- δl

εXN

εYN

εZN

Figure 12.2.3-1 Position Rotation Angle Error Vector As A Function
Of Latitude, Longitude, Wander Angle Errors

Direct reading of Figure 12.2.3-1 yields for the components of εN
:

εXN = δL cos l sin α - δl cos α

εYN = δL cos l cos α + δl sin α (12.2.3-35)

εZN = δL sin l + δα

The inverse of Equations (12.2.3-35) is obtained by first equating the X, Y Frame E2 node
inputs from the left to the inputs from the right obtained by reversing the arrow directions on the
right:

εXN cos α - εYN sin α = - δl

εYN cos α + εXN sin α = δL cos l
(12.2.3-36)

The simple inversion of Equations (12.2.3-36) with substitution and rearrangement of the

Equation (12.2.3-35) εZN expression then provides the desired inverse relationships:

12-52 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δL = sec l εYN cos α + εXN sin α

δl = εYN sin α - εXN cos α (12.2.3-37)

δα = εZN - tan l εYN cos α + εXN sin α

The equivalent relationships between latitude, longitude, wander angle errors and the δRN

position error vector components is determined from the X, Y components of Equation
(12.2.3-19):

εXN = -
1
R

 δRYN εYN =
1
R

 δRXN (12.2.3-38)

where

δRXN , δRYN = X, Y components of δRN.

Substituting Equations (12.2.3-38) into (12.2.3-35) and (12.2.3-37) then gives:

δRXN = R δL cos l cos α + δl sin α

δRYN = - R δL cos l sin α - δl cos α (12.2.3-39)

δRZN = Not related to δL, δl, δα.

δL =
1
R

 sec l δRXN cos α - δRYN sin α

δl =
1
R

 δRXN sin α + δRYN cos α (12.2.3-40)

δα = εZN -
1
R

 tan l δRXN cos α - δRYN sin α

where

δRZN = Z (upward vertical) component of δRN.

12.2.4 GRAVITY AND TRANSPORT RATE ERRORS

In this section we develop error expressions for the gP
N

, gP
E

 and gP
I

 plumb-bob gravity terms

in Equations (12.1.2-6), (12.1.3-7), and (12.1.4-18), and for the ωEN
N

 transport rate term in

Equations (12.1.2-6). These will be used in subsequent sections when developing the
differential equations for the navigation error parameters.

NAVIGATION ERROR PARAMETERS 12-53

Beginning with the gP
N

 expression in (12.1.2-6), we note (as discussed in Section 12.1.1) that

the ∂gPUp and ∂gPNorth terms are first order compared to the dominant zero order - H(R) uZN
N

leading term, hence, for error analysis purposes, the ∂gPUp and ∂gPNorth terms can generally be

neglected. In addition, we recognize that the gP
N

 expression in (12.1.2-6) is a truncated version

with linearization of the complete set of gravity equations provided by Equations (12.1-23) -
(12.1-28) and, furthermore, that the previous “complete” equation set is only an approximation
of earth’s actual gravitational acceleration with its local anomalies created by density and surface
shape irregularities. Based on the these considerations, and noting from Equations (12.1.2-6)

that uZN
N

 is constant, we write the N Frame plumb-bob gravity error as the differential of the

(12.1.2-6) gP
N

 expression, and substitute H(R) from (12.1.2-6) in the result:

δgP
N

 = -
d H(R)

dR
 uZN

N
 δR + δgMdl

N

d H(R)
dR

 = - 2
μ

R3
 = - 2

H(R)
R

For h ≥ 0 (12.2.4-1)

d H(R)
dR

 =
μ

RS
3

 =
H(R)

R
For h < 0

where

δgP
N

 = Error in gP
N

.

δgMdl
N

 = Modeling error in gP
N

 produced by variations in Equations (12.1-23) -

(12.1-28) from the true earth model, variations in the Equations (12.1.2-6)
gravity expression from Equations (12.1-23) - (12.1-28), and neglecting

∂gPUp and ∂gPNorth in Equations (12.1.2-6) as previously justified.

From the Equation (12.1.2-6) gP
N

 expression, H(R) is approximately equal to the magnitude

of gravity (Note that the difference between plumb-bob gravity and mass attraction gravity is in

the ∂gPUp and ∂gPNorth terms being neglected). Hence, with (12.2.3-23), Equation (12.2.4-1)

can be written in the equivalent form:

δgP
N

 ≈ F(h)
g
R

 uZN
N

 δh + δgMdl
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0
(12.2.4-2)

where

g = Magnitude of gravity at position RN.

12-54 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

F(h) = Gravity error coupling parameter that characterizes the fundamental difference
between gravity error values above and below earth’s geoid surface.

The error in gP
E

 is obtained from the differential of the gP
E

 expression in Equations (12.1.3-7)

using the same approximations discussed above for gP
N

 and dropping the e term as negligible

(because e is small):

δgP
E

 ≈ -
d H(R)

dR

1
R

 RE δR + H(R)
1

R2
 RE δR - H(R)

1
R

 δRE + δgMdl
E

(12.2.4-3)

where

δgP
E

 = Error in gP
E

.

δgMdl
E

 = Modeling error in gP
E

 produced by variations in Equations (12.1-23) -

(12.1-28) from the true earth model, variations in the Equations (12.1.3-7)
gravity expression from Equations (12.1-23) - (12.1-28), and neglecting

∂gPUp and ∂gPNorth in Equations (12.1.3-7).

Using the expressions for
d H(R)

dR
 from Equations (12.2.4-1) and substituting g for H(R),

Equation (12.2.4-3) becomes after combining like terms:

δgP
E

 = F(h)
g

R2
 RE δR -

g
R

 δRE -
1
R

 RE δR + δgMdl
E

(12.2.4-4)

with F(h) as defined in Equations (12.2.4-2). Applying (12.2.3-6), Equation (12.2.4-4) is
equivalently:

δgP
E

 = F(h)
g
R

 uZN
E

 δR -
g
R

 δRE - uZN
E

 δR + δgMdl
E

(12.2.4-5)

The bracketed term in (12.2.4-5) should be recognized as:

δRH
E

 = δRE - δR uZN
E

(12.2.4-6)

where

δRH
E

 = Horizontal component (subscript designator) of δRE in E Frame coordinates.

With (12.2.4-6), Equation (12.2.4-5) with F(h) from (12.2.4-2) becomes the final form:

NAVIGATION ERROR PARAMETERS 12-55

δgP
E

 ≈ -
g
R

 δRH
E

 + F(h)
g
R

 uZN
E

 δR + δgMdl
E

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0
(12.2.4-7)

A similar procedure applied to gP
I

 in Equations (12.1.4-18) leads to:

δgP
I

 ≈ -
g
R

 δRH
I

 + F(h)
g
R

 uZN
I

 δR + δgMdl
I

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0
(12.2.4-8)

where

δgP
I

 = Error in gP
I

.

δgMdl
I

 = Modeling error in gP
I

 produced by variations in Equations (12.1-23) -

(12.1-28) from the true earth model, variations in the Equations (12.1.4-18)
gravity expression from Equations (12.1-23) - (12.1-28) and neglecting

∂gPUp and ∂gPNorth in Equations (12.1.4-18).

The error in the ωEN
N

 transport rate term is derived from the ωEN
N

 expression in Equations

(12.1.2-6). From (12.1.2-6), the ∂GC
N

 term in this expression is smaller by a factor of e than the

other velocity term in this expression, hence, can be neglected for error analysis purposes. The
differential of the result then is:

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δvN -
1

rl
2

 uZN
N

 × vN δrl (12.2.4-9)

where

δvN = As defined by Equation (12.2.2-2).

From Equations (12.1.2-6), rl with the combined expressions for rls, RS and uZNYE is given by:

rl = 1 + 2 2 D23
2

 - 1 e 1 - D23
2

 e R0 + h ≈ 1 + 2
3
2

 D23
2

 - 1 e R0 + h (12.2.4-10)

The error in rl is obtained as the differential of (12.2.4-10):

δrl = 6 e D23 δD23 R0 + δh (12.2.4-11)

The rationale leading to Equation (12.2.3-23) showed that δ D23 R0 is on the order of

12-56 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

(R0 / R) δRN which, from (12.2.3-23), is on the order of δh. Thus, Equation (12.2.4-11)

simplifies to the approximate form:

δrl ≈ δh (12.2.4-12)

With (12.2.4-12), Equation (12.2.4-9) becomes:

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δvZN
N

 -
1

rl
2

 uZN
N

 × vN δh (12.2.4-13)

The δρZN term in Equation (12.2.4-13) depends on the selection of ρZN which, from Section

4.5, has several options. In this section, we will only address the “wander azimuth” and “free

azimuth” approaches for selecting ρZN.

From Section 4.5, for the “wander azimuth” implementation, ρZN = 0, hence:

δρZN = 0
For Wander Azimuth Implementation

(See Section 4.5)
(12.2.4-14)

For a “free azimuth” implementation, ρZN is set equal to the negative of the vertical earth

rate component. Analytically:

ρZN = - uZN
N

 ⋅ ωIE
N

(12.2.4-15)

or

ρZN = - uZN
N

 ⋅ CE
N

 ωIE
E For Free Azimuth Implementation

(See Section 4.5)
(12.2.4-16)

where

ωIE
N

 = Earth’s rotation rate relative to inertial space (i.e., the angular rate of the
E Frame relative to the I Frame) as projected onto N Frame axes.

ωIE
E

 = Earth’s rotation rate relative to inertial space as projected onto E Frame axes.

Recognizing from Equations (12.1.2-6) that uZN
N

 and ωIE
E

 are constant, the differential of

Equation (12.2.4-16) yields for δρZN:

δρZN = - uZN
N

 ⋅ δCE
N

 ωIE
E

(12.2.4-17)

NAVIGATION ERROR PARAMETERS 12-57

or, with the transpose of Equation (12.2.1-11) for δCE
N

 (and equating the transpose of εN× to

its negative):

δρZN = uZN
N

 ⋅ εN× CE
N

 ωIE
E

(12.2.4-18)

The desired expression for δρZN in the free azimuth system is the equivalent compressed form

of (12.2.4-18):

δρZN = - ωIE
N

 × εN
 ⋅ uZN

N For Free Azimuth Implementation
(See Section 4.5)

(12.2.4-19)

with

ωIE
N

 = CE
N

 ωIE
E

(12.2.4-20)

and from Equations (12.1.2-6):

uZN
N

 = 0 0 1 T ωIE
E

 = 0 ωe 0
 T (12.2.4-21)

where

ωe = Earth’s rotation rate magnitude relative to inertial space.

The component form of (12.2.4-19) is provided by substituting (12.2.4-20) and (12.2.4-21)

with the CE
N

 components equal to the transpose of CN
E

 as defined in Equations (4.4.1.1-2):

δρZN = D22 εXN - D21 εYN ωe
For Free Azimuth Implementation

(See Section 4.5)
(12.2.4-22)

The vertical transport rate error component δρZN in Equation (12.2.4-19) for the free

azimuth system can be expressed alternatively as a function of δRN. The derivation is achieved

by first defining ωIE
N

 and δRN as the sum of their horizontal and vertical components:

ωIE
N

 = ωIEH

N
 + ωIE

N
 ⋅ uZN

N
 uZN

N
(12.2.4-23)

δRN = δRH
N

 + δRN ⋅ uZN
N

 uZN
N

(12.2.4-24)

where

H = Subscript designating horizontal component of the indicated N Frame vector
which equals the vector with zero substituted for the vertical (Z) component.

12-58 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Using equivalency Equation (12.2.3-19) for εN
 in terms of δRN, application of the generalized

Equation (3.1.1-16) vector triple cross-product identity and substitution of (12.2.4-23) and

(12.2.4-24) then yields for the ωIE
N

 × εN
 term in (12.2.4-19):

ωIE
N

 × εN
 = ωIEH

N
 + ωIE

N
 ⋅ uZN

N
 uZN

N
 ×

1
R

 uZN
N

 × δRH
N

 + δRN ⋅ uZN
N

 uZN
N

 + εZN uZN
N

 =
1
R

 ωIEH

N
 ⋅ δRH

N
 uZN

N
 - ωIE

N
 ⋅ uZN

N
 δRH

N
 + εZN ωIEH

N
 × uZN

N
(12.2.4-25)

In developing (12.2.4-25) use was made of the fact that the dot product of the vertical unit

vector uZN
N

 with a horizontal vector is zero and the cross-product of uZN
N

 with itself is zero.

Substituting (12.2.4-25) into (12.2.4-19) and recognizing that ωIEH

N
 × uZN

N
 is perpendicular to

uZN
N

 (hence, has zero dot product with uZN
N

), then yields the desired expression for δρZN for the

free azimuth case in terms of δRN:

δρZN = -
1
R

 ωIEH

N
 ⋅ δRH

N

For Free Azimuth Implementation

(See Section 4.5)
(12.2.4-26)

The ωIEH

N
 term in (12.2.4-26) can be expressed from (12.2.4-20) as:

ωIEH

N
 = CE

N

H
 ωIE

E
(12.2.4-27)

where

CE
N

 H
 = Horizontal portion of CE

N
 defined as CE

N
 with row 3 (i.e., the vertical row) set

to zero.

The component form of (12.2.4-26) is determined using (12.2.4-27) with (12.2.4-21) for ωIE
E

and CE
N

 as the transpose of (4.4.1.1-2) (i.e., the transpose of CN
E

):

δρZN = -
1
R

 D21 δRXN + D22 δRYN ωe
For Free Azimuth Implementation

(See Section 4.5) (12.2.4-28)

where

δRXN , δRYN = N Frame X, Y components of δRN (and δRH
N

).

NAVIGATION ERROR PARAMETERS 12-59

12.2.5 BASIC NAVIGATION ERROR PARAMETER SELECTION

“Basic” navigation error parameters are defined herein as error parameters calculated by an
integration process, in contrast with other error parameters that are calculated from the basic
error parameters. The first step in inertial navigation system error analysis is the selection of a
set of basic error parameters that best describe the error characteristics of concern, and which
have no singularities in their integration process over the range of navigation conditions for
which they will be utilized. The basic error parameters must also be such that their differential
equations are completely defined in terms of the same basic parameters (and sensor error
inputs). In Sections 12.2.1 - 12.2.3, several error parameters have been introduced for
describing attitude/velocity/position navigation error. Classical error parameter groupings that

lend themselves to use as basic attitude/velocity/position error parameters are (γN
, δvN, εN

, δh),

(ψN
, δVN, δR

N
) and (ψN

, δυN
, δR

N
); each provides a complete definition of the

attitude/velocity/position error condition for which an independent set of differential equations
can be derived (as is done in Section 12.3); each is free of singularities for any

attitude/velocity/position condition. Other groupings are also possible, e.g., γN
, εZN, δVN, δR

N

discussed in Section 12.3.5. It is also possible to define the basic error parameters in coordinate
frames other than the N Frame; e.g., Section 12.3.7.1 describes treatment of I Frame defined
error parameters.

The selection of a particular set of basic error parameters depends on the unique requirements
for each application. A principal consideration is whether the associated error parameter
differential equations are to be applied analytically or by numerical integration techniques (e.g.,
in a computer as a simulation program or a Kalman filter application).

For analytical application, the choice of basic error parameters is typically based on whether
their differential equations can be easily solved analytically for the error effects of interest
(attitude, velocity or position) with minimum approximation. Occasionally, the requirement is
that the differential equations themselves can be combined in a form that readily displays
dynamic response characteristics without formal solution. Chapters 13 and 14 provide several
examples of analytical exercises using various error parameter sets to describe particular
strapdown inertial navigation system error performance characteristics under different
conditions (e.g., general response characteristics in Sections 13.2, 13.2.1 and 13.2.2, long term
approximate position error in Section 13.2.3, strapdown inertial sensor scale-
factor/misalignment error effects in Section 13.2.4, navigation solutions for up to two hour
cruise applications in Sections 13.3, 13.3.1 and 13.3.2, error effects during initial fine alignment
in Chapter 14, etc.).

For numerical integration application, the choice of basic error parameters is typically based
on whether the parameters (following determination by integration) can be converted into all
equivalent forms required for the application (using the Section 12.2.1 - 12.2.3 conversion

12-60 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

formulas), and the simplicity of the associated differential equations and required conversion
equations (including approximations to be used, the number of basic error parameters, and
required integration process execution rates to properly account for high frequency effects in the
differential equation coefficients). An important consideration is whether or not
integration/conversion software has been previously developed/validated for a particular error
parameter set. It is also important to recognize from the onset that the navigation error
parameters selected do not necessarily have to be direct representations of the errors in the
particular strapdown inertial navigation attitude/velocity/position integration parameters for a
given INS software configuration. Use of the Section 12.2.1 - 12.2.3 equivalency relationships
allows conversion of the basic navigation error parameters to other forms when needed. For

example, the γN
, δvN, εN

, δh error parameters directly represent errors in CB
N

, vN, CN
E

, h used

as the navigation integration parameters in some systems (See Equations (12.1.2-6)). If the

navigation integration parameters are different (e.g., CB
E

, vE, RE as in Equations (12.1.3-7)), the

γN
, δvN, εN

, δh errors can still be used as basic, with the Section 12.2.1 - 12.2.3 equivalency

relationships allowing their conversion to other parameter forms (including the ψE
, δVE, δRE

set directly associated with CB
E

, vE, RE).

In many numerical integration applications, the ψN
, δVN, δR

N
 set has been chosen as the

basic navigation error parameters. The rationale has been that the minimum number of
parameter components are utilized (9) to represent the attitude/velocity/position errors in three
dimensions, the associated differential equations have no singularities, the differential equations

are fairly simple compared to other error parameter sets (particularly for the ψN
 rate equation

which is only a function of ψN
 and angular rate sensor error - See Section 12.3.3), and direct

analytical equivalencies exist between ψN
, δVN, δR

N
 and other error parameters typically

required in most applications. One exception to the last named condition is the case when the

γN
, δvN, εN

, δh parameters are required (representing errors defined in the N Frame) for which

the εN
 vertical component (εZN) is included (in addition to ψN

, δVN, δR
N

). Thus, for complete

generality, the ψN
, δVN, δR

N
 parameters should include εZN (the differential equation for

which is provided in Equations (12.3.5-29) in terms of δR
N

). On the other hand, we can

compute ψN
, δVN, δR

N
 and any other navigation error parameter from γN

, δvN, εN
, δh. In

selecting ψN
, δVN, δR

N
 or γN

, δvN, εN
, δh as basic, it is important to note that εZN is generally

not a required output error parameter, and ψN
, δVN, δR

N
 can be converted to γN

, δvN, εH
N

, δh

(in which εH
N

 is the horizontal component of εN
), without εZN.

NAVIGATION ERROR PARAMETERS 12-61

Basic error parameter selection can be heavily influenced by particular numerical integration
application requirements when computer throughput/memory limitations are at issue. For
example, consider the case when attitude/velocity error is of paramount concern, position error
is of minor importance and the application navigation period is fairly short (e.g., less than 1
hour). From Section 13.2.2 we learn that 84 minute dynamic Schuler oscillations are a

characteristic part of the error behavior in all inertial navigation systems. In the ψN
, δVN, δR

N

parameter set, the Schuler dynamics are generated from δR
N

 coupling into the δVN differential

equation (see Equations (12.5.1-1)) while, for the γN
, δvN, εN

, δh error set, Schuler dynamics

are generated from δvN coupling into the γN
 differential equation (see Equations (12.5.2-1)).

To reduce throughput in this application, it is reasonable to neglect position error effects (based

on the assumed requirements) and only consider the attitude/velocity parameters (ψN
, δVN or

γN
, δvN) as basic error parameter sets. For the γN

, δvN set, Schuler dynamics would be

modeled, but for the ψN
, δVN set, Schuler dynamics would be absent (through elimination of

δR
N

 to conserve throughput/memory). Thus, for this particular case, the γN
, δvN error

parameters appear preferable over the ψN
, δVN set as better characterizing the Schuler

dynamics.

As a general rule in numerical integration applications, Euler angle type error parameters

(e.g., δφ, δθ, δψT roll/pitch/true heading error and δl, δL latitude/longitude error) and

parameters defined in locally level east/north/up geographic coordinates (e.g., the δV Geo

velocity error in Section 12.2.2) should be avoided in the basic error parameter set due to their
inherent singularities.

12.3 NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS

In this section we develop time rate differential equations for several groupings of the Section
12.2 navigation error parameters based on the Section 12.1 navigation equation sets. Section
12.3.1 describes general procedures for deriving the error parameter differential equations.
Sections 12.3.2 - 12.3.7 then apply the procedures to derive various forms of the error
parameter differential equations.

12.3.1 PROCEDURES FOR DEVELOPING ERROR PARAMETER
DIFFERENTIAL EQUATIONS

In general, two methods can be used for developing differential equations for the navigation
error parameters; a formal method and a direct linear differential method.

12-62 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

In the formal method two sets of navigation parameter differential equations are first defined;
an idealized error free set, and a set of identical structure to the error free set which is
implemented in the strapdown system computer. The strapdown computer implemented set is
acknowledged to contain errors in the navigation parameters due to input and initialization errors
(software and computer finite-word-length errors are not addressed in this section). The
difference is then taken between the strapdown computer implemented differential equations
and the equivalent idealized error free equations. The difference is identified as the error
equations for the computer navigation parameters. In the differencing operation, error
parameter products are dropped as second order, i.e., negligible. The resulting linearized
differential error equation set is then reformatted to convert the derived navigation error
parameters to the basic error parameters selected for error analysis (e.g., the error in a direction
cosine matrix is typically converted to its equivalent rotation angle error vector equivalent such
as in Equation (12.2.1-3)).

In the direct linear differential method, the analytical differential of the theoretical idealized
error free navigation parameter differential equation is taken directly to obtain the linearized error
parameter differential equations directly. As with the formal method, the differential error
equations are then reformatted to convert the error parameters to the basic error parameters
selected for error analysis.

Both the formal and direct linear differential methods generate the same end result, provided
that the linearization process is carried out completely for the formal method. With the formal
method, however, the option exists to retain second order terms for second order error analysis.
While this is not generally required, there are those unusual cases when second order effects can
be appreciable. In the subsections to follow we will use the direct differential method for
simplicity. In this subsection, we provide an example of the formal method and its implications
regarding the analysis of second order error effects. The example we choose is the formal

method applied to the CB
N

 expression in Equations (12.1.2-6):

CB
N

 = CB
N

 ωIB
B

× - ωIN
N

× CB
N

(12.3.1-1)

The equivalent equation implemented in the strapdown navigation system computer is:

CB
N

 = CB
N

 ωIB
B

× - ωIN
N

× CB
N

(12.3.1-2)

where

 = Designation for actual parameter input to the system computer, hence, containing

errors. The input parameter without the designator is defined to be the idealized
version of the input parameter, hence, error free.

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-63

 = Designation for parameter calculated in the system computer, hence, containing

errors. The computed parameter without the designator is defined to be the
idealized version of the calculated parameter, hence, error free.

Equation (12.3.1-1) represents the idealized error free equation; Equation (12.3.1-2) with the

 , indicators is the system computer version containing errors. We define the relationship
between the Equation (12.3.1-2) and (12.3.1-1) parameters as follows:

CB
N

 = CB
N

 + δCB
N

(12.3.1-3)

ωIB
B

 = ωIB
B

 + δωIB
B

(12.3.1-4)

ωIN
N

 = ωIN
N

 + δωIN
N

(12.3.1-5)

where

δ = Error in the or parameter. The δ definition provided here also applies for
all subsections of Section 12.3.

Taking the difference between (12.3.1-2) and (12.3.1-1) and applying the (12.3.1-3)
definition yields:

δCB
N

 = CB
N

 ωIB
B

× - CB
N

 ωIB
B

× - ωIN
N

× CB
N

 - ωIN
N

× CB
N

(12.3.1-6)

Substituting (12.3.1-3) - (12.3.1-5) into (12.3.1-6) then gives:

δCB
N

 = CB
N

 + δCB
N

 ωIB
B

× + δωIB
B

× - CB
N

 ωIB
B

×

 - ωIN
N

× + δωIN
N

× CB
N

 + δCB
N

 - ωIN
N

× CB
N

 = δCB
N

 ωIB
B

× + CB
N

 δωIB
B

× - δωIN
N

× CB
N

 - ωIN
N

× δCB
N

 + δCB
N

 δωIB
B

× - δωIN
N

× δCB
N

(12.3.1-7)

Finally, the δ product terms in (12.3.1-7) are dropped as second order to obtain the linearized
form:

δCB
N

 ≈ δCB
N

 ωIB
B

× + CB
N

 δωIB
B

× - δωIN
N

× CB
N

 - ωIN
N

× δCB
N

(12.3.1-8)

Equation (12.3.1-8) is identical to the result that would have been obtained from the direct
analytical differential of Equation (12.3.1-1). From Equation (12.3.1-8), appropriate

12-64 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

substitutions are then made from Section 12.2 to generate the error differential equation in terms
of desired basic error parameters.

Alternatively, Equations (12.3.1-6) can be expanded around the computer software
navigation parameters by substitution of the converse of Equations (12.3.1-3) - (12.3.1-5) for
the error free parameters:

δCB
N

 = CB
N

 ωIB
B

× - CB
N

 - δCB
N

 ωIB
B

× - δωIB
B

×

 - ωIN
N

× CB
N

 - ωIN
N

× - δωIN
N

× CB
N

 - δCB
N

 = δCB
N

 ωIB
B

× + CB
N

 δωIB
B

× - δωIN
N

× CB
N

 - ωIN
N

× δCB
N

 - δCB
N

 δωIB
B

× + δωIN
N

× δCB
N

(12.3.1-9)

When second order terms are dropped, Equation (12.3.1-9) becomes:

δCB
N

 = δCB
N

 ωIB
B

× + CB
N

 δωIB
B

× - δωIN
N

× CB
N

 - ωIN
N

× δCB
N

(12.3.1-10)

Equations (12.3.1-8) and (12.3.1-10) are equivalent to first order (i.e., if the and
parameters in (12.3.1-10) are replaced by their error free equivalents, which introduces only
second order variations in the results). Note, however, that the second order terms in (12.3.1-9)
that have been neglected in Equation (12.3.1-10) are the negative of the second order terms in
(12.3.1-7) that were neglected in Equation (12.3.1-8). Thus, if second order error analysis is to
be performed, it is important to accurately account for the linearized error equation form to be
used (i.e., the Equation (12.3.1-10) form or the Equation (12.3.1-8) form). For simulation
analyses, the (12.3.1-8) linearized form (with its associated (12.3.1-7) second order version) is
usually appropriate because the idealized error free navigation parameters are usually available
for usage. On the other hand, for implementation in a real-time system computer (e.g., the error
propagation equations in a Kalman filter), only the computer version of the navigation
parameters are usually available, hence, the Equation (12.3.1-10) form is the more appropriate
version of the linearized error equations being utilized with its associated second order errors as
characterized in Equation (12.3.1-9).

12.3.2 E FRAME DEFINED ERROR PARAMETER DIFFERENTIAL EQUATIONS

In this section, we derive a set of navigation error differential equations for the ψ, δV, δR

attitude, velocity and position error parameters that were defined relative to the E Frame in
Sections 12.2.1 - 12.2.3, and which represent the errors in the Equation (12.1.3-7) navigation
parameters. In this section, the error equations will be developed in the E Frame. In the next

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-65

section, we will develop their transformed equivalents in the N Frame, the frame more
traditionally used for navigation error analysis.

We begin with the development of the ψ attitude error differential equation from the attitude
expression in Equations (12.1.3-7):

CB
E

 = CB
E

 ωIB
B

× - ωIE
E

× CB
E

(12.3.2-1)

Taking the analytical differential of (12.3.2-1), while recognizing from Equations (12.1.3-7) that
the earth rate term in the E Frame is constant, yields:

δCB
E

 = δCB
E

 ωIB
B

× + CB
E

 δωIB
B

× - ωIE
E

× δCB
E

(12.3.2-2)

in which the δ definition in Section 12.3.1 applies.

In order to reformat Equation (12.3.2-2) in terms of the ψ attitude error, we apply Equation

(12.2.1-3) repeated below for δCB
E

:

δCB
E

 = - ψE× CB
E

(12.3.2-3)

The formal definition of the ψ attitude error is given by Equation (12.2.1-4).

The derivative of (12.3.2-3) is:

δCB
E

 = - ψ
E

× CB
E

 - ψE× CB
E

(12.3.2-4)

or, with (12.3.2-1):

δCB
E

 = - ψ
E

× CB
E

 - ψE× CB
E

 ωIB
B

× - ωIE
E

× CB
E

 = - ψ
E

× CB
E

 - ψE× CB
E

 ωIB
B

× + ψE× ωIE
E

× CB
E

(12.3.2-5)

Substituting (12.3.2-5) and (12.3.2-3) into (12.3.2-2) yields:

- ψ
E

× CB
E

 - ψE× CB
E

 ωIB
B

× + ψE× ωIE
E

× CB
E

 = - ψE× CB
E

 ωIB
B

× + CB
E

 δωIB
B

× + ωIE
E

× ψE× CB
E (12.3.2-6)

or

- ψ
E

× CB
E

 + ψE× ωIE
E

× CB
E

 = CB
E

 δωIB
B

× + ωIE
E

× ψE× CB
E

(12.3.2-7)

12-66 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Multiplying (12.3.2-7) on the right by the negative inverse of CB
E

 and recognizing that the

inverse of an idealized direction cosine matrix equals its transpose then obtains after
rearrangement:

ψ
E

× = - CB
E

 δωIB
B

× CB
E T

 + ψE× ωIE
E

× - ωIE
E

× ψE× (12.3.2-8)

With (3.1.1-22) and (3.1.1-38), (12.3.2-8) becomes:

ψ
E

× = - CB
E

 δωIB
B

 × + ψE× ωIE
E

 × (12.3.2-9)

or with (3.1.1-8) in the equivalent vector form:

ψ
E

 = - CB
E

 δωIB
B

 - ωIE
E

 × ψE
(12.3.2-10)

Equation (12.3.2-10) is the E Frame error form of attitude rate Equation (12.3.2-1) in terms of

the ψ error parameter. The δωIB
B

 term in (12.3.2-10) represents the error in the strapdown

angular rate sensor input data to the strapdown inertial navigation system.

We now direct our attention at the development of the δV velocity error differential equation
from the Equations (12.1.3-7) velocity rate expression (and related inputs) repeated below:

v
E

 = CB
E

 aSF
B

 + gP
E

 - 2 ωIE
E

 × vE - evc1 uZN
E

(12.3.2-11)

∂h = h - hPrsr (12.3.2-12)

evc1 = evc3 + C2 ∂h (12.3.2-13)

evc3 = C1 ∂h (12.3.2-14)

The formal definition for the δV velocity error is given in the E Frame by Equation (12.2.2-1):

δVE ≡ v
E

 - vE (12.3.2-15)

Taking the analytical differential of Equation (12.3.2-11) and identifying the differential of vE

as δVE from (12.3.2-15) yields:

δV
E

 = CB
E

 δaSF
B

 + δCB
E

 aSF
B

 + δgP
E

 - 2 ωIE
E

 × δVE - δevc1 uZN
E

 - evc1 δuZN
E

(12.3.2-16)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-67

The δCB
E

 term in (12.3.2-16) is given by Equation (12.3.2-3). The δgP
E

 term in (12.3.2-16) is

given by Equations (12.2.4-7) with (12.2.3-14) and (12.2.4-6):

δgP
E

 ≈ -
g
R

 δRH
E

 + F(h)
g
R

 uZN
E

 δR + δgMdl
E

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0
(12.3.2-17)

with

δR = uZN
E

 ⋅ δRE (12.3.2-18)

δRH
E

 = δRE - δR uZN
E

(12.3.2-19)

The δuZN
E

 term in (12.3.2-16) is given by Equation (12.2.3-11) combined with εN
 × uZN

N
 from

the rearranged form of (12.2.3-16) in the E Frame. Including substitution from (12.3.2-19),
this finds:

δuZN
E

 =
1
R

 δRE - δR uZN
E

 =
1
R

 δRH
E

(12.3.2-20)

Substituting (12.3.2-17), (12.3.2-20) and (12.3.2-3) into (12.3.2-16) then obtains:

δV
E

 = CB
E

 δaSF
B

 - ψE× CB
E

 aSF
B

 -
g
R

 δRH
E

 + F(h)
g
R

 uZN
E

 δR + δgMdl
E

 - 2 ωIE
E

 × δVE - δevc1 uZN
E

 - evc1
1
R

 δRH
E

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.2-21)

The evc1
1
R

 δRH
E

 term in (12.3.2-21) can be shown to be negligible by noting an important

characteristic of the Equation (12.3.2-12) - (12.3.2-14) ∂h vertical loop control signal; namely

that ∂h is a direct measurement of first order altitude error effects. This is easily demonstrated

by recognizing that ∂h is actually the difference between the system calculated altitude and the
input pressure altitude (both containing errors):

∂h = h - hPrsr (12.3.2-22)

However, h and hPrsr can be defined as equal to the true altitude h plus variations (errors) in

h and hPrsr from the true altitude:

h = hTrue + δh hPrsr = hTrue + δhPrsr (12.3.2-23)

12-68 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

hTrue = Correct (error free) altitude.

δhPrsr = Error in the input pressure altitude signal.

Thus, with (12.3.2-23), Equation (12.3.2-22) becomes:

∂h = δh - δhPrsr (12.3.2-24)

On the other hand, from the differential of Equation (12.3.2-12), we also see that:

δ ∂h = δh - δhPrsr (12.3.2-25)

Therefore, from (12.3.2-24) and (12.3.2-25):

δ ∂h = ∂h (12.3.2-26)

Substituting (12.3.2-26) into the differential of (12.3.2-14) shows that:

δevc3 = C1 δ ∂h = C1 ∂h = evc3 (12.3.2-27)

or

δevc3 = evc3 (12.3.2-28)

Substituting (12.3.2-26), (12.3.2-28) and (12.3.2-13) into the differential of (12.3.2-13) then
gives:

δevc1 = δevc3 + C2 δ ∂h = evc3 + C2 ∂h = evc3 + evc1 - evc3 (12.3.2-29)

or

δevc1 = evc1 (12.3.2-30)

With Equation (12.3.2-30) in (12.3.2-21), it should be clear that the evc1
1
R

 δRH
E

 term is small

compared to the δevc1 uZN
E

 term. This forms the basis for dropping the evc1
1
R

 δRH
E

 term in

Equation (12.3.2-21) as negligible.

Finally, the differential of Equation (12.3.2-13) with (12.3.2-25) shows that:

δevc1 = δevc3 + C2 δ ∂h = δevc3 + C2 δh - δhPrsr (12.3.2-31)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-69

The δh altitude error term in (12.3.2-31) can be expressed in terms of δR error parameters using

the Equation (12.2.3-23) equivalency between altitude error and the vertical component of δR :

δh = δR (12.3.2-32)

Thus, in terms of the δR error parameter, δevc1 from Equation (12.3.2-31) becomes:

δevc1 = δevc3 + C2 δR - δhPrsr (12.3.2-33)

We now substitute (12.3.2-33) into (12.3.2-21), drop the evc1
1
R

 δRH
E

 term as negligible,

collect and condense terms to obtain the final form of the δVE velocity error rate equation:

δV
E

 = CB
E

 δaSF
B

 + aSF
E

 × ψE
 -

g
R

 δRH
E

 - 2 ωIE
E

 × δVE + δgMdl
E

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
E

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.2-34)

The δaSF
B

 term in (12.3.2-34) represents the error in the strapdown accelerometer signals input

to the strapdown inertial navigation system. The δevc3 term for (12.3.2-34) is obtained from

the differential of Equations (12.3.2-14) with (12.3.2-25) and (12.3.2-32):

δevc3 = C1 δR - δhPrsr (12.3.2-35)

It remains to determine the δRE position error differential equation. We begin with the E
Frame position rate expression and its contributor in Equations (12.1.3-7):

R
E

 = vE - evc2 uZN
E

(12.3.2-36)

evc2 = C3 ∂h (12.3.2-37)

Taking the differential of (12.3.2-36) yields:

δR
E

 = δVE - δevc2 uZN
E

 - evc2 δuZN
E

(12.3.2-38)

or, with (12.3.2-20):

δR
E

 = δVE - δevc2 uZN
E

 - evc2
1
R

 δRH
E

(12.3.2-39)

12-70 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Following the same rationale that led to Equation (12.3.2-28), we can show that:

δevc2 = evc2 (12.3.2-40)

From (12.3.2-40), we see that the evc2
1
R

 δRH
E

 term in (12.3.2-39) is small compared to the

δevc2 uZN
E

 term, hence, can be neglected. We also note from the differential of (12.3.2-37) with

(12.3.2-25) and (12.3.2-32) that:

δevc2 = C3 δR - δhPrsr (12.3.2-41)

Lastly, substituting (12.3.2-41) into (12.3.2-39) and neglecting evc2
1
R

 δRH
E

, we obtain the δRE

position error rate equation:

δR
E

 = δVE - C3 δR - δhPrsr uZN
E

(12.3.2-42)

In summary, the attitude, velocity and position error rate equations that characterize the errors
in navigation Equations (12.1.3-7) are given by Equations (12.3.2-10), (12.3.2-34), (12.3.2-35)
and (12.3.2-42) with (12.3.2-18) and (12.3.2-19). These equations are repeated below for easy
reference.

ψ
E

 = - CB
E

 δωIB
B

 - ωIE
E

 × ψE

δV
E

 = CB
E

 δaSF
B

 + aSF
E

 × ψE
 -

g
R

 δRH
E

 - 2 ωIE
E

 × δVE + δgMdl
E

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
E

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0 (12.3.2-43)

δR
E

 = δVE - C3 δR - δhPrsr uZN
E

δevc3 = C1 δR - δhPrsr

δRH
E

 = δRE - δR uZN
E

δR = uZN
E

 ⋅ δRE

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-71

12.3.3 E FRAME DEFINED ERROR PARAMETER DIFFERENTIAL EQUATIONS
TRANSFORMED TO THE N FRAME

Error Equations (12.3.2-43) had their error parameters (ψ, δV and δR) defined in the E
Frame (by Equations (12.2.1-4), (12.2.2-1) and (12.2.3-1)) and their differential rate equations

written in the E Frame. The integral of Equations (12.3.2-43) generates ψ, δV, δR in E Frame
coordinates. We can also transform Equations (12.3.2-43) to the N Frame to generate an

equivalent set of differential equations that when integrated in the N Frame, yield ψ, δV, δR as
projected on N Frame axes.

We begin with the ψ
E
 expression from Equations (12.3.2-43):

ψ
E

 = - CB
E

 δωIB
B

 - ωIE
E

 × ψE
(12.3.3-1)

Applying generalized Equation (3.4-6) to (12.3.3-1) obtains the transformed equivalent in the N
Frame:

ψ
N

 = CE
N

 ψ
E

 + ωNE
N

 × ψN

 = CE
N

 - CB
E

 δωIB
B

 - ωIE
E

 × ψ
E

 + ωNE
N

 × ψN

 = - CB
N

 δωIB
B

 - ωIE
N

 × ψ
N

 + ωNE
N

 × ψN

 = - CB
N

 δωIB
B

 - ωIE
N

 - ωNE
N

 × ψN

(12.3.3-2)

where

ωNE
N

 = Angular rate of Frame E relative to Frame N (subscript designation) as
projected on N Frame axes (superscript designation).

But we also know that:

ωNE
N

 = - ωEN
N

(12.3.3-3)

where

ωEN
N

 = Angular rate of Frame N relative to Frame E as projected on N Frame axes.

From (12.3.3-3), the bracketed angular rate term in (12.3.3-2) becomes:

ωIE
N

 - ωNE
N

 = ωIE
N

 + ωEN
N

 = ωIN
N

(12.3.3-4)

12-72 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

ωIE
N

 = Angular rate of Frame E relative to inertial Frame I (i.e., earth rate) as projected
on N Frame axes.

ωIN
N

 = Angular rate of Frame N relative to Frame I as projected on N Frame axes.

With (12.3.3-4), Equation (12.3.3-2) simplifies to the final form:

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψN
(12.3.3-5)

The same procedure can also be applied to the δV
E

 and δR
E

 expressions in Equations
(12.3.2-43) and their supporting expressions. The final result including Equation (12.3.3-5) is
summarized below:

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψN

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

+ F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0 (12.3.3-6)

δR
N

 = δVN - ωEN
N

 × δRN - C3 δR - δhPrsr uZN
N

δevc3 = C1 δR - δhPrsr

δRH
N

 = δRN - δR uZN
N

δR = uZN
N

 ⋅ δRN

Equations (12.3.3-6) represent the error form of navigation Equations (12.1.3-7) as projected
on N Frame axes.

12.3.4 N FRAME DEFINED ERROR PARAMETER DIFFERENTIAL EQUATIONS

In this section we develop the N Frame differential equations for the errors in navigation
Equations (12.1.2-6) as defined in the N Frame by attitude, velocity, position error parameters

γ, δv, ε, δh. We begin with the attitude rate expression and its supporting elements from
Equations (12.1.2-6):

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-73

CB
N

 = CB
N

 ωIB
B

× - ωIN
N

× CB
N

(12.3.4-1)

ωIN
N

 = ωIE
N

 + ωEN
N

(12.3.4-2)

ωIE
N

 = CE
N

 ωIE
E

(12.3.4-3)

Taking the differential of (12.3.4-1);

δCB
N

 = δCB
N

 ωIB
B

× + CB
N

 δωIB
B

× - δωIN
N

× CB
N

 - ωIN
N

× δCB
N

(12.3.4-4)

The δCB
N

 term in (12.3.4-4) is converted to its equivalent γ rotation angle error vector form

using Equation (12.2.1-9) repeated below:

δCB
N

 = - γN× CB
N

(12.3.4-5)

The γ rotation angle error vector is defined formally by Equation (12.2.1-10). Taking the

derivative of (12.3.4-5) and substituting CB
N

 from (12.3.4-1) gives for δCB
N

:

δCB
N

 = - γ
N

× CB
N

 - γN× CB
N

 = - γ
N

× CB
N

 - γN× CB
N

 ωIB
B

× + γN× ωIN
N

× CB
N

(12.3.4-6)

We now substitute (12.3.4-6) for δCB
N

 and (12.3.4-5) for δCB
N

 in Equation (12.3.4-4):

- γ
N

× CB
N

 - γN× CB
N

 ωIB
B

× + γN× ωIN
N

× CB
N

 = - γN× CB
N

 ωIB
B

× + CB
N

 δωIB
B

× - δωIN
N

× CB
N

 + ωIN
N

× γN× CB
N

(12.3.4-7)

or upon cancellation of like terms and rearrangement:

γ
N

× CB
N

 = - CB
N

 δωIB
B

× + γN× ωIN
N

× CB
N

 - ωIN
N

× γN× CB
N

 + δωIN
N

× CB
N

(12.3.4-8)

Multiplying (12.3.4-8) on the right by the inverse of CB
N

, recognizing that the inverse of an

idealized direction cosine matrix equals its transpose, and application of generalized Equations
(3.1.1-22) and (3.1.1-38) then yields:

12-74 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

γ
N

× = - CB
N

 δωIB
B

× CB
N T

 + γN× ωIN
N

× - ωIN
N

× γN× + δωIN
N

×

 = - CB
N

 δωIB
B

 × + γN× ωIN
N

 × + δωIN
N

×
(12.3.4-9)

or, with (3.1.1-8), in the equivalent vector form:

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + δωIN

N
(12.3.4-10)

The δωIN
N

 term in (12.3.4-10) is determined from the differential of Equations (12.3.4-2)

and (12.3.4-3). Recognizing from Equations (12.1.2-6) that ωIE
E

 is constant yields:

δωIN
N

 = δωIE
N

 + δωEN
N

(12.3.4-11)

δωIE
N

 = δCE
N

 ωIE
E

(12.3.4-12)

Substituting the transpose of δCN
E

 from (12.2.1-11) for δCE
N

 in (12.3.4-12), and equating the

transpose of the skew symmetric matrix εN× to its negative obtains:

δωIE
N

 = - εN× CE
N

 ωIE
E

 = - εN× ωIE
N

 = ωIE
N

 × εN
(12.3.4-13)

With (12.3.4-11) and (12.3.4-13), Equation (12.3.4-10) assumes the final form:

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

 (12.3.4-14)

The δωEN
N

 term in (12.3.4-14) is provided by Equation (12.2.4-13) with (12.2.4-14) and

(12.2.4-19) repeated below:

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δvN -
1

rl
2

 uZN
N

 × vN δh (12.3.4-15)

δρZN = 0 For Wander Azimuth Implementation (12.3.4-16)

δρZN = - ωIE
N

 × εN
 ⋅ uZN

N
For Free Azimuth Implementation (12.3.4-17)

Development of the N Frame defined δv velocity error rate equation begins with the velocity
expression and its supporting elements from Equations (12.1.2-6):

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-75

v
N

 = CB
N

 aSF
B

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(12.3.4-18)

∂h = h - hPrsr (12.3.4-19)

evc1 = evc3 + C2 ∂h = evc3 + C2 h - hPrsr (12.3.4-20)

evc3 = C1 ∂h = C1 h - hPrsr (12.3.4-21)

Taking the differential of (12.3.4-18) while recognizing from (12.1.2-6) that uZN
N

 is constant,

gives:

δv
N

 = CB
N

 δaSF
B

 + δCB
N

 aSF
B

 + δgP
N

 - δωEN
N

 + 2 δωIE
N

 × vN

 - ωEN
N

 + 2 ωIE
N

 × δvN - δevc1 uZN
N (12.3.4-22)

The δevc1 term in (12.3.4-22) is obtained from the differential of (12.3.4-20):

δevc1 = δevc3 + C2 δh - δhPrsr (12.3.4-23)

The δgP
N

 term in (12.3.4-22) is from Equation (12.2.4-2):

δgP
N

 ≈ F(h)
g
R

 uZN
N

 δh + δgMdl
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0
(12.3.4-24)

Substituting (12.3.4-23), (12.3.4-24), δCB
N

 from (12.3.4-5) and δωIE
N

 from (12.3.4-13) into

(12.3.4-22) then yields:

δv
N

 = CB
N

 δaSF
B

 - γN× CB
N

 aSF
B

 + F(h)
g
R

 uZN
N

 δh + δgMdl
N

- δωEN
N

 - 2 εN× ωIE
N

 × vN - ωEN
N

 + 2 ωIE
N

 × δvN

- δevc3 + C2 δh - δhPrsr uZN
N (12.3.4-25)

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

or after compression and rearrangement, the final form:

12-76 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δv
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 + vN × δωEN

N
 + 2 ωIE

N
 × εN

- ωEN
N

 + 2 ωIE
N

 × δvN + δgMdl
N

+ F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N (12.3.4-26)

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

The δωEN
N

 term in (12.3.4-26) is provided by Equations (12.3.4-15) - (12.3.4-17). The δevc3

term in (12.3.4-26) is provided by the differential of Equation (12.3.4-21):

δevc3 = C1 δh - δhPrsr (12.3.4-27)

Development of the ε, δh position error terms begins with a restatement of the position
matrix and altitude rate terms with their supporting elements from Equations (12.1.2-6):

CN
E

 = CN
E

 ωEN
N

× (12.3.4-28)

h = vN ⋅ uZN
N

 - evc2 (12.3.4-29)

evc2 = C3 ∂h = C3 h - hPrsr (12.3.4-30)

Taking the differential of (12.3.4-28):

δCN
E

 = δCN
E

 ωEN
N

× + CN
E

 δωEN
N

× (12.3.4-31)

The δCN
E

 term in (12.3.4-31) is from Equation (12.2.1-11):

δCN
E

 = CN
E

 εN× (12.3.4-32)

The δCN
E

 term in (12.3.4-31) is obtained from the time derivative of (12.3.4-32) with Equation

(12.3.4-28) for CN
E

:

δCN
E

 = CN
E

 εN× + CN
E

 ε
N

× = CN
E

 ωEN
N

× εN× + CN
E

 ε
N

× (12.3.4-33)

Substituting (12.3.4-32) and (12.3.4-33) into Equation (12.3.4-31) then yields:

CN
E

 ωEN
N

× εN× + CN
E

 ε
N

× = CN
E

 εN× ωEN
N

× + CN
E

 δωEN
N

× (12.3.4-34)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-77

or upon rearrangement:

CN
E

 ε
N

× = CN
E

 εN× ωEN
N

× - CN
E

 ωEN
N

× εN× + CN
E

 δωEN
N

× (12.3.4-35)

Multiplying (12.3.4-35) on the left by the inverse of CN
E

 and applying generalized Equation

(3.1.1-22) gives:

ε
N

× = εN× ωEN
N

× - ωEN
N

× εN× + δωEN
N

×

 = εN
 × ωEN

N
 × + δωEN

N
 ×

(12.3.4-36)

Equation (12.3.4-36) in vector form is the final result for the rate of change of εN
:

ε
N

 = - ωEN
N

 × εN
 + δωEN

N
(12.3.4-37)

The δωEN
N

 term in (12.3.4-37) is provided by Equations (12.3.4-15) - (12.3.4-17).

The δh altitude error rate equation is obtained from the differential of (12.3.4-29) with

(12.3.4-30) while recognizing from Equations (12.1.2-6) that uZN
N

 is constant:

δh = uZN
N

 ⋅ δvN - C3 δh - δhPrsr (12.3.4-38)

In summary, the attitude, velocity and position error rate equations that characterize the errors
in navigation Equations (12.1.2-6) are given by Equations (12.3.4-14), (12.3.4-26), (12.3.4-27),
(12.3.4-37) and (12.3.4-38) with (12.3.4-15) - (12.3.4-17). These equations are repeated below
for easy reference.

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

δv
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 + vN × δωEN

N
 + 2 ωIE

N
 × εN

(12.3.4-39)

- ωEN
N

 + 2 ωIE
N

 × δvN + δgMdl
N

+ F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(Continued)

12-78 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

ε
N

 = - ωEN
N

 × εN
 + δωEN

N

δh = uZN
N

 ⋅ δvN - C3 δh - δhPrsr

δevc3 = C1 δh - δhPrsr

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δvN -
1

rl
2

 uZN
N

 × vN δh
(12.3.4-39)
(Continued)

δρZN = 0 For Wander Azimuth Implementation

δρZN = - ωIE
N

 × εN
 ⋅ uZN

N
For Free Azimuth Implementation

12.3.5 MIXED E AND N FRAME DEFINED ERROR EQUATION SET
WRITTEN IN THE N FRAME

Equations (12.3.3-6) or (12.3.4-39) represent navigation error rate equations in N Frame
coordinates that characterize the errors in navigation equation set (12.1.3-7) or (12.1.2-6). The
attitude, velocity, position error parameters for these error equations are, respectively,

ψN
, δVN, δRN (for Equations (12.3.3-6)) and γN

, δvN, εN
, δh (for Equations (12.3.4-39)).

Sections 12.2.1 - 12.2.3 show the analytical equivalency between the two error parameter sets.
Once a particular error rate equation set is selected (and integrated) the integrated result can be
converted to the other error forms using Sections 12.2.1 - 12.2.3. This procedure underlies a
fundamental principle in error parameter selection for the error rate integration process (as
discussed in Section 12.2.5); namely that it is not necessary that the error parameters chosen for
error rate equation integration directly reflect the actual navigation equations implemented in the
strapdown system computer (e.g., Equation set (12.1.3-7) or (12.1.2-6)). The identical result is
obtained by direct integration of a particular set of error rate equations or by selection of an
alternate set and then converting the integrated result to generate the desired error parameters.

Based on the previous discussion, it is also possible to choose error parameters for

integration that are mixed combinations of the ψN
, δVN, δRN and γN

, δvN, εN
, δh parameters.

This section analyzes the process by which such a set of error equations can be developed using

the ψN
, δVN, δRN or γN

, δvN, εN
, δh rate equations as a starting point. For example, let us

consider the development of a self-consistent set of error rate equations for the γN
, δVN, δRN

error parameters. This can be achieved by modifying the γ
N

 expression from the

γN
, δvN, εN

, δh equation set and δV
N

 from the ψN
, δVN, δRN equation set to be functions of

γN
, δVN, δRN (Note - In the process, it will also be found that εZN, the Z component of εN

, is

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-79

required for the γN
, δVN, δRN set). The δR

N
 expression from the γN

, δVN, δRN equation set

is already compatible with the mixed γN
, δVN, δRN error equation set.

We begin by first defining the equivalency between δvN, εN
, δh and δVN, δRN from Section

12.2.2 Equation (12.2.2-5) and Section 12.2.3 Equations (12.2.3-20), (12.2.3-23) and
(12.2.3-25):

δvN = δVN - εN
 × vN (12.3.5-1)

εN
 =

1
R

 uZN
N

 × δRN + εZN uZN
N

(12.3.5-2)

δh ≈ δR (12.3.5-3)

δR = uZN
N

 ⋅ δRN (12.3.5-4)

Let us now substitute (12.3.5-2) for εN
 into the Equations (12.3.4-39) γ

N
 expression to

obtain the equivalent equation in terms of the δRN parameter:

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 +

1
R

 ωIE
N

 × uZN
N

 × δRN

 + ωIE
N

 × uZN
N

 εZN + δωEN
N

(12.3.5-5)

The δωEN
N

 term in (12.3.5-5) is obtained from Equations (12.3.4-39) by first using

(12.3.5-3) to replace δh:

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δvN -
1

rl
2

 uZN
N

 × vN δR (12.3.5-6)

The uZN
N

 × δvN term in (12.3.5-6) can be modified with Equation (12.3.5-1):

uZN
N

 × δvN = uZN
N

 × δVN - uZN
N

 × εN
 × vN (12.3.5-7)

The uZN
N

 × εN
 × vN term in (12.3.5-7) is expanded using the Equation (3.1.1-16) vector triple

cross-product rule:

uZN
N

 × εN
 × vN = εN

 vN ⋅ uZN
N

 - vN εN
 ⋅ uZN

N
 = vZN εN

 - εZN vN (12.3.5-8)

12-80 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

where

vZN = Vertical component of vN (i.e., along uZN
N

).

or with vN equated to the sum of its vertical and horizontal components, substitution of

(12.3.5-2) for εN
, and approximating R by rl as will be shown subsequently in Section 12.3.6.1,

Equation (12.3.6.1-26):

uZN
N

 × εN
 × vN = vZN

1
rl

 uZN
N

 × δRN - vH
N

 εZN (12.3.5-9)

where

vH
N

 = Horizontal component of vN (i.e., perpendicular to uZN
N

).

With (12.3.5-7) and (12.3.5-9), the Equation (12.3.5-6) δωEN
N

 expression becomes the form

desired for γ
N

 Equation (12.3.5-5):

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δVN - vZN
1

rl
2

 uZN
N

 × δRN

 +
1
rl

 vH
N

 εZN -
1

rl
2

 uZN
N

 × vN δR

(12.3.5-10)

The δρZN term in (12.3.5-10) is provided in terms of δRN by Equations (12.2.4-14) and

(12.2.4-26):

δρZN = 0 For Wander Azimuth Implementation
(12.3.5-11)

δρZN = -
1
R

 ωIEH

N
 ⋅ δRH

N
For Free Azimuth Implementation

The εZN term in (12.3.5-5) and (12.3.5-10) (i.e., the vertical component of εN
) is obtained in

terms of δRN from the Equations (12.3.4-39) εN
 rate expression:

ε
N

 = - ωEN
N

 × εN
 + δωEN

N
(12.3.5-12)

Substituting (12.3.5-2) for εN
 in (12.3.5-12) gives:

ε
N

 = -
1
R

 ωEN
N

 × uZN
N

 × δRN - ωEN
N

 × uZN
N

 εZN + δωEN
N

(12.3.5-13)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-81

or after applying the vector triple product rule (Equation (3.1.1-16)):

ε
N

 = -
1
R

 ωEN
N

 ⋅ δRN uZN
N

 - ωEN
N

 ⋅ uZN
N

 δRN - ωEN
N

 × uZN
N

 εZN + δωEN
N

(12.3.5-14)

The εZN component of εN
 is defined by, and from Equation (12.3.5-2), given by:

εZN = uZN
N

 ⋅ εN
(12.3.5-15)

Taking the time derivative of (12.3.5-15) (with uZN
N

 recognized to be constant) and substitution

of ε
N

 from (12.3.5-14) then yields:

εZN = -
1
R

 ωEN
N

 ⋅ δRN - ωEN
N

 ⋅ uZN
N

 uZN
N

 ⋅ δRN + uZN
N

 ⋅ δωEN
N

(12.3.5-16)

The uZN
N

 ⋅ δωEN
N

 term in (12.3.5-16) is from Equation (12.3.5-10):

uZN
N

 ⋅ δωEN
N

 = δρZN (12.3.5-17)

with δρZN from Equations (12.3.5-11).

The remaining terms in (12.3.5-16) can be simplified by incorporating the rearranged N
Frame version of Equation (12.2.4-6):

δRN = δRH
N

 + δR uZN
N

(12.3.5-18)

and the ωEN
N

 expression from Equations (12.1.2-6) in the compressed form:

ωEN
N

 = ωENH

N
 + ρZN uZN

N
(12.3.5-19)

where

ωENH

N
 = Horizontal portion of ωEN

N
.

With (12.3.5-18) and (12.3.5-19), particular terms in (12.3.5-16) become:

ωEN
N

 ⋅ δRN = ρZN δR + ωENH

N
 ⋅ δRH

N

ωEN
N

 ⋅ uZN
N

 uZN
N

 ⋅ δRN = ρZN δR

(12.3.5-20)

12-82 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Substituting (12.3.5-17) and (12.3.5-20) into (12.3.5-16) then yields the desired form of the

εZN equation:

εZN = -
1
R

 ωENH

N
 ⋅ δRH

N
 + δρZN (12.3.5-21)

Conversion of the Equations (12.3.3-6) δV
N

 velocity error rate expression to be in terms of

γN
, δR

N
 is facilitated by first approximating the gP

N
 plumb-bob gravity term in (12.1.2-6) (as

we did in Equation (12.2.4-2)) by:

gP
N

 ≈ - g uZN
N

(12.3.5-22)

where

g = Magnitude of gravity at position RN.

With (12.3.5-22), we now define aSF
N

 as the sum of a component to counteract gravity plus a

remainder (excess) attributable to maneuvering:

aSF
N

 = - gP
N

 + ΔaSF
N

 ≈ g uZN
N

 + ΔaSF
N

(12.3.5-23)

where

ΔaSF
N

 = Excess portion of aSF
N

 for maneuvering. The g uZN
N

 term in (12.3.5-23) is the

upward specific force acceleration contribution from aSF
N

 that counteracts the

plumb-bob gravitational acceleration gP
N

.

We also make use of equivalency Equation (12.2.1-17):

ψN
 = γN

 - εN
(12.3.5-24)

With (12.3.5-23) and (12.3.5-24), the aSF
N

 × ψN
 term in the Equations (12.3.3-6) δV

N

velocity error rate expression becomes:

aSF
N

 × ψN
 = aSF

N
 × γN

 - ΔaSF
N

 × εN
 - g uZN

N
 × εN

(12.3.5-25)

The g uZN
N

 × εN
 term in (12.3.5-25) is with (12.3.5-2), (12.3.5-4), (12.3.5-18) and the

(3.1.1-16) vector triple cross-product rule:

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-83

g uZN
N

 × εN
 =

g
R

 uZN
N

 × uZN
N

 × δR
N

 =
g
R

 uZN
N

 ⋅ δR
N

 uZN
N

 - δR
N

 = -
g
R

 δRH
N

(12.3.5-26)

We finally substitute (12.3.5-25) with (12.3.5-26) and (12.3.5-2) into the Equations

(12.3.3-6) δV
N

 velocity error rate expression to obtain the desired form:

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 - ΔaSF

N
 ×

1
R

 uZN
N

 × δR
N

 + εZN uZN
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

 + F(h)
g
R

 - C2 δR + C2 δ hPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.5-27)

The δevc3 term for Equation (12.3.5-27) and the δR
N

 equation are obtained unchanged from

Equations (12.3.3-6):

δR
N

 = δVN - ωEN
N

 × δRN - C3 δR - δhPrsr uZN
N

δevc3 = C1 δR - δhPrsr

(12.3.5-28)

In summary, the navigation error rate equations in terms of the γN
, δVN, δRN parameters are

given by Equations (12.3.5-4), (12.3.5-5), (12.3.5-10), (12.3.5-11), (12.3.5-18) rearranged,
(12.3.5-19) rearranged, (12.3.5-21), (12.3.5-23) rearranged, (12.3.5-27) and (12.3.5-28)
repeated below for easy reference.

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 +

1
R

 ωIE
N

 × uZN
N

 × δRN + ωIE
N

 × uZN
N

 εZN + δωEN
N

εZN = -
1
R

 ωENH

N
 ⋅ δRH

N
 + δρZN (12.3.5-29)

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 - ΔaSF

N
 ×

1
R

 uZN
N

 × δR
N

 + εZN uZN
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

 + F(h)
g
R

 - C2 δR + C2 δ hPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

δevc3 = C1 δR - δhPrsr

(Continued)

12-84 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δR
N

 = δVN - ωEN
N

 × δRN - C3 δR - δhPrsr uZN
N

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δVN - vZN
1

rl
2

 uZN
N

 × δRN

+
1
rl

 vH
N

 εZN -
1

rl
2

 uZN
N

 × vN δR
(12.3.5-29)
(Continued)

δρZN = 0 For Wander Azimuth Implementation

δρZN = -
1
R

 ωIEH

N
 ⋅ δRH

N
For Free Azimuth Implementation

δR = uZN
N

 ⋅ δRN

δRH
N

 = δRN - δR uZN
N

ωENH

N
 = ωEN

N
 - ρZN uZN

N

ΔaSF
N

 = aSF
N

 + gP
N

12.3.6 EQUIVALENCIES BETWEEN E FRAME AND N FRAME DEFINED
ERROR PARAMETER DIFFERENTIAL EQUATIONS

The rate equations developed in Section 12.3.3 for the ψN
, δVN, δRN navigation error

parameters could also have been derived from the Section 12.3.4 γN
, δvN, εN

, δh error
parameter rate equations using the Section 12.2.1 - 12.2.3 error parameter equivalencies.

Similarly, the ψN
, δVN, δRN error rate equations can be converted directly to the

γN
, δvN, εN

, δh error rate equations if the vertical component of εN
 is defined independently.

Section 12.3.6.1 discusses the former conversion process while Section 12.3.6.2 discusses the
latter conversion process. These sections can be viewed as an exercise or as a verification that
the final results match the equivalent results obtained in Sections 12.3.3 and 12.3.4 .

12.3.6.1 E FRAME DEFINED ERROR PARAMETER RATE EQUATIONS FROM
N FRAME DEFINED ERROR PARAMETER RATE EQUATIONS

In this section we derive the time rate equations for the ψN
, δVN, δRN navigation error

parameters beginning with the Section 12.3.4 differential equations for γN
, δvN, εN

, δh

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-85

(summarized in Equations (12.3.4-39)) and incorporating the Section 12.2.1 - 12.2.3

equivalencies between γN
, δvN, εN

, δh and ψN
, δVN, δRN.

We begin with the equivalency relationship between ψN
, γN

 and εN
 from Equation

(12.2.1-17):

ψN
 = γN

- εN
(12.3.6.1-1)

Taking the time derivative of (12.3.6.1-1):

ψ
N

 = γ
N

- ε
N

(12.3.6.1-2)

The γ
N

 term in (12.3.6.1-2) is from Equations (12.3.4-39):

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

(12.3.6.1-3)

The ωIN
N

 term in (12.3.6.1-3) equals earth rate ωIE
N

 plus transport rate ωEN
N

:

ωIN
N

 = ωIE
N

 + ωEN
N

(12.3.6.1-4)

Substituting (12.3.6.1-1) and (12.3.6.1-4) into (12.3.6.1-3) yields:

γ
N

 = - CB
N

 δωIB
B

 - ωIE
N

 + ωEN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

 = - CB
N

 δωIB
B

 - ωEN
N

 × γN
 - ωIE

N
 × γN

 - εN
 + δωEN

N
(12.3.6.1-5)

 = - CB
N

 δωIB
B

 - ωEN
N

 × γN
 - ωIE

N
 × ψN

 + δωEN
N

The ε
N

 term in (12.3.6.1-2) is from Equations (12.3.4-39):

ε
N

 = - ωEN
N

 × εN
 + δωEN

N
(12.3.6.1-6)

Substituting (12.3.6.1-5) and (12.3.6.1-6) into (12.3.6.1-2) gives:

ψ
N

 = γ
N

- ε
N

 = - CB
N

 δωIB
B

 - ωEN
N

 × γN
 - εN

 - ωIE
N

 × ψN
(12.3.6.1-7)

or with (12.3.6.1-1) and (12.3.6.1-4), the final result:

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψN (12.3.6.1-8)

12-86 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Equation (12.3.6.1-8) matches the result for ψ
N

 in Equations (12.3.3-6).

The δV
N

 equation is derived from δv
N

 in Equations (12.3.4-39) beginning with the
Equation (12.2.2-5) equivalency relation:

δVN = δvN + εN
 × vN (12.3.6.1-9)

The time derivative of (12.3.6.1-9) is:

δV
N

 = δv
N

 + ε
N

 × vN + εN
 × v

N
(12.3.6.1-10)

The δv
N

 term in (12.3.6.1-10) is from Equations (12.3.4-39):

δv
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 + vN × δωEN

N
 + 2 ωIE

N
 × εN

- ωEN
N

 + 2 ωIE
N

 × δvN + δgMdl
N

+ F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

(12.3.6.1-11)

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

The δh term in (12.3.6.1-11) is from Equation (12.2.3-23):

δh = δR (12.3.6.1-12)

The ε
N

 term in (12.3.6.1-10) is provided by Equation (12.3.6.1-6). The v
N

 term in Equation
(12.3.6.1-10) is from Equations (12.1.2-6):

v
N

 = CB
N

 aSF
B

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(12.3.6.1-13)

with

evc1 = evc3 + C2 h - hPrsr (12.3.6.1-14)

Substituting (12.3.6.1-6), (12.3.6.1-9) rearranged, and (12.3.6.1-11) - (12.3.6.1-14) into

(12.3.6.1-10) then obtains for δV
N

:

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-87

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 + vN × δωEN

N
 + 2 ωIE

N
 × εN

- ωEN
N

 + 2 ωIE
N

 × δVN - εN
 × vN + δgMdl

N

+ F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

 + - ωEN
N

 × εN
 + δωEN

N
 × vN

 + εN
 × CB

N
 aSF

B
 + gP

N
 - ωEN

N
 + 2 ωIE

N
 × vN - evc1 uZN

N

= CB
N

 δaSF
B

 + aSF
N

 × γN
 - εN

 + εN
 × gP

N
 - ωEN

N
 + 2 ωIE

N
 × δVN + δgMdl

N
(12.3.6.1-15)

+ F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

 - evc1 εN
 × uZN

N

+ vN × ωEN
N

 + 2 ωIE
N

 × εN
 + ωEN

N
 + 2 ωIE

N
 × εN

 × vN

- εN
 × ωEN

N
 + 2 ωIE

N
 × vN

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

We apply Equation (12.3.6.1-1) for the γN
- εN

 term in (12.3.6.1-15). The εN
 × uZN

N
 term

in (12.3.6.1-15) is obtained from Equations (12.2.3-16) and (12.2.4-6):

δRN = R εN
 × uZN

N
 + δR uZN

N
 = δRH

N
 + δR uZN

N
(12.3.6.1-16)

which shows that:

εN
 × uZN

N
 =

1
R

 δRH
N

(12.3.6.1-17)

As in Section 12.3.5 Equation (12.3.5-22) we also approximate the gP
N

 plumb-bob gravity term

in (12.3.6.1-15) as:

gP
N

 ≈ - g uZN
N

(12.3.6.1-18)

which, with (12.3.6.1-17), gives for εN
 × gP

N
 in Equation (12.3.6.1-15):

εN
 × gP

N
 = -

g
R

 δRH
N

(12.3.6.1-19)

Finally, the last three terms in Equation (12.3.6.1-15) can be shown to sum to zero by
application of generalized Equations (3.1.1-15) and (3.1.1-21):

12-88 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

vN × ωEN
N

 + 2 ωIE
N

 × εN
 + ωEN

N
 + 2 ωIE

N
 × εN

 × vN

- εN
 × ωEN

N
 + 2 ωIE

N
 × vN

= vN × ωEN
N

 + 2 ωIE
N

 × εN
 - ωEN

N
 + 2 ωIE

N
 × vN × εN

(12.3.6.1-20)

- vN × ωEN
N

 + 2 ωIE
N

 × εN

= vN× ωEN
N

 + 2 ωIE
N

 × εN
 - ωEN

N
 + 2 ωIE

N
 × vN× εN

- vN × ωEN
N

 + 2 ωIE
N

 × εN
 = 0

Substituting (12.3.6.1-1), (12.3.6.1-4), (12.3.6.1-17), (12.3.6.1-19) and (12.3.6.1-20) into

(12.3.6.1-15) then yields for δV
N

:

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

 - evc1
1
R

 δRH
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.6.1-21)

Equation (12.3.6.1-21) is identical to the δV
N

 expression in Equations (12.3.3-6) except for the

evc1
1
R

 δRH
N

 term. Recall, however, that δV
E

 from Equations (12.3.2-43) was used to derive

δV
N

 in Equations (12.3.3-6), and that in the derivation of δV
E

, a term evc1
1
R

 δRH
E

 was

dropped as negligible. If the evc1
1
R

 δRH
E

 term was carried, δV
N

 in Equations (12.3.3-6)

would identically match the Equation (12.3.6.1-21) result.

For completeness, we also drop the evc1
1
R

 δRH
N

 term in (12.3.6.1-21) as negligible to obtain

a final result which identically matches δV
N

 in Equations (12.3.3-6):

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.6.1-22)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-89

Development of the δR
N

 equation from ε
N

 and δh is somewhat more involved. We first

develop the horizontal component of the δR time derivative in the E Frame, transform the result

to the N Frame and add the vertical component of the δR N Frame time derivative to obtain

δR
N

. We begin with Equation (12.3.6.1-17) transformed to the E Frame:

εE
 × uZN

E
 =

1
R

 δRH
E

(12.3.6.1-23)

The time derivative of (12.3.6.1-23) is with (12.3.6.1-23):

ε
E

 × uZN
E

 + εE
 × uZN

E
 =

1
R

 δRH
E

 -
R

R2
 δRH

E
 =

1
R

 δRH
E

 -
R
R

 εE
 × uZN

E
(12.3.6.1-24)

Applying generalized Equation (3.3.1-2) to uZN
E

 in (12.3.6.1-24) while recognizing that uZN
E

is a constant unit vector in the N Frame gives:

uZN
E

 = ωEN
E

 × uZN
E

(12.3.6.1-25)

The ωEN
E

 term in (12.3.6.1-25) is, from navigation Equations (12.1.2-6), a function of the

radius of curvature term rl. From Equations (12.1.2-6), rl can be simplified for error analysis

purposes as follows:

rl = rls + h = 1 + 2 2 uZNYE

2
 - 1 e RS + h ≈ RS + h ≈ R (12.3.6.1-26)

With (12.3.6.1-26) for rl, the ωEN
E

 term is then obtained from Equations (12.1.2-6) transformed

to the E Frame, with the ∂GC term dropped as negligible for error analysis purposes:

ωEN
E

 ≈ ρZN uZN
E

 +
1
R

 uZN
E

 × vE (12.3.6.1-27)

The velocity vector vE in (12.3.6.1-27) can be decomposed into its vertical (along uZN
E

) and

horizontal (perpendicular to uZN
E

) components:

vE = vH
E

 + uZN
E

 ⋅ vE uZN
E

(12.3.6.1-28)

where

vH
E

 = Horizontal component of vE.

12-90 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

With (12.3.6.1-28), Equation (12.3.6.1-27) is equivalently:

ωEN
E

 ≈ ρZN uZN
E

 +
1
R

 uZN
E

 × vH
E

(12.3.6.1-29)

We also see then upon application of the general Equation (3.1.1-16) triple vector cross-
product rule that:

ωEN
E

 × uZN
E

 =
1
R

 uZN
E

 × vH
E

 × uZN
E

 =
1
R

 vH
E

(12.3.6.1-30)

Thus, with (12.3.6.1-30) and (12.3.6.1-25), uZN
E

 in Equation (12.3.6.1-24) is given by:

uZN
E

 =
1
R

 vH
E

(12.3.6.1-31)

The R term in (12.3.6.1-24) is determined from (12.1.3-6):

R2 = RE ⋅ RE (12.3.6.1-32)

Taking the derivative of (12.3.6.1-32) yields upon rearrangement:

R =
1
R

 RE ⋅ RE
(12.3.6.1-33)

which with R
E

 identified as vE from (4.3-1) and application of (12.2.3-6) for RE gives:

R = uZN
E

 ⋅ vE (12.3.6.1-34)

We now substitute (12.3.6.1-31) and (12.3.6.1-34) into (12.3.6.1-24) to obtain after

rearrangement for δRH
E

:

δRH
E

 = R ε
E

 × uZN
E

 + uZN
E

 ⋅ vE εE
 × uZN

E
 + εE

 × vH
E

 = R ε
E

 × uZN
E

 + εE
 × vH

E
 + uZN

E
 ⋅ vE uZN

E
(12.3.6.1-35)

or with (12.3.6.1-28):

δRH
E

 = R ε
E

 × uZN
E

 + εE
 × vE (12.3.6.1-36)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-91

The ε
E

 × uZN
E

 term in (12.3.6.1-36) is evaluated from the E Frame version of (12.3.6.1-6)

using generalized vector transformation Equation (3.4-6):

ε
E

 = δωEN
E

(12.3.6.1-37)

From Equations (12.3.4-39), the E Frame version of δωEN is with (12.3.6.1-26) for rl and

(12.3.6.1-12) for δh:

δωEN
E

 = δρZN uZN
E

 +
1
R

 uZN
E

 × δvE -
1

R2
 uZN

E
 × vE δR (12.3.6.1-38)

Substituting (12.3.6.1-38) in (12.3.6.1-37) and taking the cross-product with uZN
E

 gives:

ε
E

 × uZN
E

 =
1
R

 uZN
E

 × δvE × uZN
E

 -
δR

R

1
R

 uZN
E

 × vE × uZN
E

(12.3.6.1-39)

But, from the cross-product of (12.3.6.1-27) with uZN
E

 we see that:

1
R

 uZN
E

 × vE × uZN
E

 = ωEN
E

 × uZN
E

(12.3.6.1-40)

Also, following the same logic leading to Equation (12.3.6.1-30), we can write:

uZN
E

 × δvE × uZN
E

 = δvH
E

(12.3.6.1-41)

where

δvH
E

 = Horizontal component of δvE.

Substituting (12.3.6.1-39) with (12.3.6.1-40) and (12.3.6.1-41) into (12.3.6.1-36) then yields:

δRH
E

 = δvH
E

 + εE
 × vE - δR ωEN

E
 × uZN

E
 (12.3.6.1-42)

Equation (12.3.6.1-42) is now transformed to the N frame using generalized Equation
(3.4-6):

δRH
N

 = δvH
N

 + εN
 × vN - ωEN

N
 × δR uZN

N
 - ωEN

N
 × δRH

N

= δvH
N

 + εN
 × vN - ωEN

N
 × δR uZN

N
 + δRH

N
(12.3.6.1-43)

12-92 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

or with (12.3.6.1-16):

δRH
N

 = δvH
N

 + εN
 × vN - ωEN

N
 × δRN (12.3.6.1-44)

To complete the development, the equation for δR
N

 is obtained from (12.3.6.1-44) by
substituting the time derivative of Equation (12.3.6.1-16):

δR
N

 = δRH
N

 + δR uZN
N

(12.3.6.1-45)

The δR term in (12.3.6.1-45) is from (12.2.3-23) and δh in Equations (12.3.4-38):

δR = uZN
N

 ⋅ δvN - C3 δR - δhPrsr (12.3.6.1-46)

Substituting (12.3.6.1-44) and (12.3.6.1-46) into (12.3.6.1-45) then yields:

δR
N

 = δvH
N

 + εN
 × vN - ωEN

N
 × δRN + uZN

N
 ⋅ δvN - C3 δR - δhPrsr uZN

N

= δvH
N

 + uZN
N

 ⋅ δvN uZN
N

 + εN
 × vN - ωEN

N
 × δRN - C3 δR - δhPrsr uZN

N

or, identifying uZN
N

 ⋅ δvN uZN
N

 as the vertical component of δvN:

δR
N

 = δvN + εN
 × vN - ωEN

N
 × δRN - C3 δR - δhPrsr uZN

N
(12.3.6.1-47)

The final form of δR
N

 is obtained by substituting (12.3.6.1-9) for δvN + εN
 × vN:

δR
N

 = δVN - ωEN
N

 × δRN - C3 δR - δhPrsr uZN
N

(12.3.6.1-48)

Equation (12.3.6.1-48) is identical to the δR
N

 expression in Equations (12.3.3-6).

12.3.6.2 N FRAME DEFINED ERROR PARAMETER RATE EQUATIONS FROM
E FRAME DEFINED ERROR PARAMETER RATE EQUATIONS

In this section we derive the time rate equations for the γN
, δvN, εN

, δh navigation error

parameters beginning with the Section 12.3.3 differential equations for ψN
, δVN, δRN

(summarized in Equations (12.3.3-6)) and incorporating the Section 12.2.1 - 12.2.3

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-93

equivalencies between ψN
, δVN, δRN and γN

, δvN, εN
, δh. The development cannot create the

vertical component of ε
N

 which must be specified independently.

The development for εN
 begins in the E Frame and then is transformed to the N Frame. We

first formally specify εE
 as the sum of its horizontal and vertical components:

εE
 = εH

E
 + εZN uZN

E
(12.3.6.2-1)

where

H = Subscript designator for horizontal component of the associated vector quantity.

εH
E

 = Horizontal component of εE
 (i.e., perpendicular to the local vertical uZN

E
).

εZN = Vertical component of εE
 (i.e., parallel to the local vertical uZN

E
).

From Equations (12.3.6.2-1) and (12.2.3-25) in the E Frame we can write:

εH
E

 =
1
R

 uZN
E

 × δRE (12.3.6.2-2)

The derivative of (12.3.6.2-2) is:

εH
E

 =
1
R

 uZN
E

 × δR
E

 -
R

R2
 uZN

E
 × δRE +

1
R

 uZN
E

 × δRE (12.3.6.2-3)

or with (12.3.6.1-25) for uZN
E

 and (12.3.6.2-2):

εH
E

 =
1
R

 uZN
E

 × δR
E

 -
R
R

 εH
E

 +
1
R

 ωEN
E

 × uZN
E

 × δRE (12.3.6.2-4)

Using generalized vector rate transformation Equation (3.4-6), the δR
E

 term in (12.3.6.2-4)

can be replaced by the E Frame version of the Equations (12.3.3-6) δR
N

 expression with

(12.2.3-23) for δR:

δR
E

 = δVE - C3 δh - δhPrsr uZN
E

(12.3.6.2-5)

Equivalency Equation (12.2.2-5) is in the E Frame:

δVE = δvE + εE
 × vE (12.3.6.2-6)

12-94 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

With (12.3.6.2-5) and (12.3.6.2-6), the uZN
E

 × δR
E

 term in (12.3.6.2-4) is:

uZN
E

 × δR
E

 = uZN
E

 × δvE + uZN
E

 × εE
 × vE (12.3.6.2-7)

The uZN
E

 × εE
 × vE term in (12.3.6.2-7) can be expanded using the Equation (3.1.1-16) vector

triple cross-product rule, Equation (12.3.6.1-34) and (12.3.6.2-1):

uZN
E

 × εE
 × vE = εE

 uZN
E

 ⋅ vE - vE uZN
E

 ⋅ εE
 = R εE

 - εZN vE (12.3.6.2-8)

Substituting (12.3.6.2-7) with (12.3.6.2-8) into (12.3.6.2-4) and applying (12.3.6.2-1) then
yields:

εH
E

 =
1
R

 uZN
E

 × δvE +
R
R

 εE
 - εH

E
 -

εZN

R
 vE +

1
R

 ωEN
E

 × uZN
E

 × δRE

 =
1
R

 uZN
E

 × δvE +
R
R

 εZN uZN
E

 -
εZN

R
 vE +

1
R

 ωEN
E

 × uZN
E

 × δRE
(12.3.6.2-9)

With (12.3.6.1-34) and (12.3.6.1-30), the εZN terms in (12.3.6.2-9) combine as follows:

R
R

 εZN uZN
E

 -
εZN

R
 vE =

εZN

R
 R uZN

E
 - vE = - εZN

1
R

 vH
E

 = - εZN ωEN
E

 × uZN
E

(12.3.6.2-10)

The
1
R

 ωEN
E

 × uZN
E

 × δRE term in (12.3.6.2-9) can be expanded by noting that the vertical

component of ωEN
E

 has no contribution to the cross-product with uZN
E

, applying the Equation

(3.1.1-16) vector triple cross-product rule, and using Equation (12.3.6.1-16) in the E Frame:

1
R

 ωEN
E

 × uZN
E

 × δRE =
1
R

 ωENH

E
 × uZN

E
 × δRE

=
1
R

 uZN
E

 ωENH

E
 ⋅ δRE -

1
R

 ωENH

E
 uZN

E
 ⋅ δRE (12.3.6.2-11)

=
1
R

 ωENH

E
 ⋅ δRH

E
 uZN

E
 -

δR

R
 ωENH

E

where

ωENH

E
 = Horizontal component of ωEN

E
.

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-95

Substituting Equations (12.3.6.2-10) and (12.3.6.2-11) into (12.3.6.2-9) and applying
(12.3.6.1-27) then gives:

εH
E

 =
1
R

 uZN
E

 × δvE -
δR

R
 ωENH

E
 - εZN ωEN

E
 × uZN

E
 +

1
R

 ωENH

E
 ⋅ δRH

E
 uZN

E

 =
1
R

 uZN
E

 × δvE -
δR

R2
 uZN

E
 × vE - εZN ωEN

E
 × uZN

E
 +

1
R

 ωENH

E
 ⋅ δRH

E
 uZN

E
(12.3.6.2-12)

or with the horizontal component of Equation (12.3.6.1-38) for the two terms directly on the

right of the equal sign, and δρZN recognized as the vertical component of δωEN:

εH
E

 = δωENH

E
 - εZN ωEN

E
 × uZN

E
 +

1
R

 ωENH

E
 ⋅ δRH

E
 uZN

E
(12.3.6.2-13)

where

δωENH

E
 = Horizontal component of δωEN

E
.

Equation (12.3.6.2-13) is now transformed to the N Frame using generalized Equation (3.4-6),
recognizing the angular rate of the E relative to the N Frame as the negative of the angular rate
of N relative to E, and substituting (12.3.6.2-1) in the N Frame:

εH
N

 = δωENH

N
 - εZN ωEN

N
 × uZN

N
 +

1
R

 ωENH

N
 ⋅ δRH

N
 uZN

N
 + ωNE

N
 × εH

N

 = δωENH

N
 - ωEN

N
 × εH

N
 + εZN uZN

N
 +

1
R

 ωENH

N
 ⋅ δRH

N
 uZN

N
(12.3.6.2-14)

 = - ωEN
N

 × εN
 +

1
R

 ωENH

N
 ⋅ δRH

N
 uZN

N
 + δωENH

N

Equation (12.3.6.2-14) can be simplified by identifying the
1
R

 ωENH

N
 ⋅ δRH

N
 uZN

N
 term as the

vertical component of ωEN
N

 × εN
. This can be demonstrated by first expanding ωEN

N
 × εN

 as the

sum of its horizontal and vertical components using general vector cross-product equivalencies.
Consider the cross-product of two arbitrary vectors V1 and V2 with components along and

perpendicular to an arbitrary unit vector u:

V1 = V1⊥ + uN ⋅ V1 uN V 2 = V 2⊥ + uN ⋅ V 2 uN (12.3.6.2-15)

where

u = Arbitrary unit vector.

V1⊥, V 2⊥ = Components of V1, V 2 perpendicular to u.

12-96 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

With (12.3.6.2-15), the cross-product of V1 with V2 is:

V1 × V2 = V1⊥ × V2⊥ + uN ⋅ V1 uN × V2⊥ - uN ⋅ V2 uN × V1⊥

 = V1⊥ × V2⊥ + uN ⋅ V1 uN × V2 - uN ⋅ V2 uN × V1

(12.3.6.2-16)

From the definition of the cross-product, the uN × V1 and uN × V2 terms in (12.3.6.2-16) are
perpendicular to u. From their definition above, each of the V1⊥, V2⊥ terms lie in a plane

perpendicular to u, hence, their cross-product in (12.3.6.2-16) lies along u. We conclude that

the V1⊥ × V2⊥ term in (12.3.6.2-16) represents the component of V1 × V2 along u while the

remaining terms represent the V1 × V2 component perpendicular to u. Therefore:

V1 × V2 = V1 × V2

⊥
 + V1⊥ × V2⊥ (12.3.6.2-17)

where

V1 × V2

⊥
 = Component of V1 × V2 perpendicular to u.

We now apply general Equation (12.3.6.2-17) to ωEN
N

 × εN
 by identifying u as the unit

vector along the local vertical vector uZN
N

 and the ⊥ subscript as referring to the horizontal plane

H (i.e., perpendicular to the local vertical uZN
N

):

ωEN
N

 × εN
 = ωEN

N
 × εN

 H
 + ωENH

N
 × εH

N
(12.3.6.2-18)

The ωENH

N
 × εH

N
 term in (12.3.6.2-18) can be expanded using Equation (12.3.6.2-2) in the N

Frame and the Equation (3.1.1-16) vector triple cross-product identity:

ωENH

N
 × εH

N
 = ωENH

N
 ×

1
R

 uZN
N

 × δRN =
1
R

 ωENH

N
 ⋅ δRH

N
 uZN

N
(12.3.6.2-19)

which is the term of interest in Equation (12.3.6.2-14), and which from Equations (12.3.6.2-18)

and (12.3.6.2-19), represents the component of ωEN
N

 × εN
 along the local vertical uZN

N
 as

stipulated.

With (12.3.6.2-18) and (12.3.6.2-19), Equation (12.3.6.2-14) assumes the final form:

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-97

εH
N

 = - ωEN
N

 × εN

 H
 + δωENH

N
(12.3.6.2-20)

Equation (12.3.6.2-20) is the horizontal component of the ε
N

 expression in Equations
(12.3.4-39).

The vertical component of ε
N

 (i.e., εZN) cannot be derived from the ψN
, δVN, δRN rate

equations and must be developed independently. Also note that the complete εN
 vector

(including the vertical component) is required in the (12.3.6.2-20) εH
N

 equation. Equation

(12.3.5-21) provides the following version of εZN:

εZN = -
1
R

 ωENH

N
 ⋅ δRH

N
 + δρZN (12.3.6.2-21)

The δRH
N

 term in (12.3.6.2-21) is from Equation (12.3.6.1-16):

δRH
N

 = R εN
 × uZN

N
 = R εH

N
 × uZN

N
(12.3.6.2-22)

hence, (12.3.6.2-21) is equivalently:

εZN = - ωENH

N
 ⋅ εH

N
 × uZN

N
 + δρZN (12.3.6.2-23)

If Section 12.3.5 is reviewed, it will be remembered that Equation (12.3.6.2-21) is derived

from the full ε
N

 expression in Equations (12.3.4-39) which in turn was developed from basic
definitions. Thus, the combination of Equations (12.3.6.2-20) and (12.3.6.2-23) is the
Equations (12.3.4-39) expression:

ε
N

 = - ωEN
N

 × εN
 + δωEN

N
(12.3.6.2-24)

The equation for altitude error rate δh is derived from the δR
N

 equation by first writing the
derivative of equivalency Equation (12.2.3-23):

δh = δR (12.3.6.2-25)

The δR term in (12.3.6.2-25) is the derivative of the δR expression in (12.3.3-6):

δR = uZN
N

 ⋅ δR
N

(12.3.6.2-26)

12-98 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Combining (12.3.6.2-25), (12.3.6.2-26), the Equations (12.3.3-6) expression for δR
N

,

equivalency Equation (12.2.3-23) for δR, and equivalency Equation (12.2.2-5) for δVN gives:

δh = uZN
N

 ⋅ δvN - C3 δh - δhPrsr + uZN
N

 ⋅ εN
 × vN - uZN

N
 ⋅ ωEN

N
 × δRN (12.3.6.2-27)

The last two terms in (12.3.6.2-27) are now shown to equal zero. Beginning with the

uZN
N

 ⋅ εN
 × vN terms, we apply generalized Equation (12.3.6.2-17) to show that:

εN
 × vN = εN

 × vN

H
 + εH

N
 × vH

N
(12.3.6.2-28)

where

H = Designator for horizontal component (i.e., perpendicular to local vertical

vector uZN
N

).

With (12.3.6.2-28), we see then that:

uZN
N

 ⋅ εN
 × vN = uZN

N
 ⋅ εH

N
 × vH

N
(12.3.6.2-29)

The uZN
N

 ⋅ ωEN
N

 × δRN term in (12.3.6.2-27) is expanded by first applying Equation

(12.3.6.2-17) to ωEN
N

 × δRN :

ωEN
N

 × δRN = ωEN
N

 × δRN

 H
 + ωENH

N
 × δRH

N
(12.3.6.2-30)

Taking the dot product of (12.3.6.2-30) with uZN
N

 cancels the first term on the right of the equal

sign so that, with (12.3.6.2-22) for δRH
N

 and triple vector cross-product identity (3.1.1-16), we

obtain:

uZN
N

 ⋅ ωEN
N

 × δRN = R uZN
N

 ⋅ ωENH

N
 × εH

N
 × uZN

N

 = - R uZN
N

 ⋅ uZN
N

 ωENH

N
 ⋅ εH

N
 = - R ωENH

N
 ⋅ εH

N
(12.3.6.2-31)

The ωENH

N
 term in (12.3.6.2-31) is from Equation (12.3.6.1-27) in the N Frame:

ωENH

N
 =

1
R

 uZN
N

 × vN = -
1
R

 vH
N

 × uZN
N

(12.3.6.2-32)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-99

Substituting (12.3.6.2-32) into (12.3.6.2-31) and applying the Equation (3.1.1-35) mixed vector
dot/cross-product identity yields:

uZN
N

 ⋅ ωEN
N

 × δRN = vH
N

 × uZN
N

 ⋅ εH
N

 = uZN
N

 ⋅ εH
N

 × vH
N

(12.3.6.2-33)

Comparing (12.3.6.2-33) with (12.3.6.2-29), we see then as stipulated that:

uZN
N

 ⋅ εN
 × vN - uZN

N
 ⋅ ωEN

N
 × δRN = 0 (12.3.6.2-34)

Using (12.3.6.2-34), Equation (12.3.6.2-27) simplifies to :

δh = uZN
N

 ⋅ δvN - C3 δh - δhPrsr (12.3.6.2-35)

which is identical to the δh expression in Equations (12.3.4-39).

The δV
N

 equation is derived from δv
N

 starting with the Equation (12.2.2-5) equivalency:

δVN = δvN + εN
 × vN (12.3.6.2-36)

The derivative of (12.3.6.2-36) when rearranged gives:

δv
N

 = δV
N

 - ε
N

 × vN - εN
 × v

N
(12.3.6.2-37)

The v
N

 term in (12.3.6.2-37) is from Equations (12.1.2-6):

v
N

 = CB
N

 aSF
B

 + gP
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(12.3.6.2-38)

Using the Equation (12.3.6.1-18) approximation for gP
N

 in Equation (12.3.6.2-38), the εN
 × v

N

term in (12.3.6.2-37) becomes:

εN
 × v

N
 = εN

 × aSF
N

 - g uZN
N

 - ωEN
N

 + 2 ωIE
N

 × vN - evc1 uZN
N

(12.3.6.2-39)

The δV
N

 term in (12.3.6.2-37) is from Equations (12.3.3-6) using (12.2.3-23) for δR:

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

 + F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

 - evc1
1
R

 δRH
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.6.2-40)

12-100 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

with ωIN
N

 from Equation (12.3.6.1-4), δRH
N

 from (12.3.6.2-22), δVN from (12.3.6.2-36), and

the Equation (12.2.1-17) equivalency for ψN
:

ψN
 = γN

- εN
(12.3.6.2-41)

Note in Equation (12.3.6.2-40) that we have included the evc1
1
R

 δRH
N

 term which was dropped

in the development of δV
N

 from its E Frame equivalent as negligible (See discussion
surrounding Equation (12.3.2-34)).

An equation for ε
N

 in (12.3.6.2-37) has already been derived in this section as Equation
(12.3.6.2-24).

We now substitute (12.3.6.2-24), (12.3.6.2-39) and (12.3.6.2-40) with (12.3.6.2-41),

(12.3.6.1-4), (12.3.6.2-22) and (12.3.6.2-36) into (12.3.6.2-37) to obtain for δv
N

:

δv
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
- εN

 - g εN
 × uZN

N

- ωEN
N

 + 2 ωIE
N

 × δvN + εN
 × vN + δgMdl

N

+ F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

 - evc1 εN
 × uZN

N
(12.3.6.2-42)

 - - ωEN
N

 × εN
 + δωEN

N
 × vN + aSF

N
 × εN

 + εN
 × g uZN

N
 + ωEN

N
 + 2 ωIE

N
 × vN + evc1 uZN

N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

or after rearrangement and cancellation of corresponding terms of opposite sign:

δv
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 - ωEN

N
 + 2 ωIE

N
 × δvN + vN × δωEN

N

 + δgMdl
N

 + F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

+ ωEN
N

 × εN
 × vN + εN

 × ωEN
N

 + 2 ωIE
N

 × vN - ωEN
N

 + 2 ωIE
N

 × εN
 × vN

(12.3.6.2-43)

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

The terms on the last line of Equation (12.3.6.2-43) can be rearranged as follows:

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-101

ωEN
N

 × εN
 × vN + εN

 × ωEN
N

 + 2 ωIE
N

 × vN - ωEN
N

 + 2 ωIE
N

 × εN
 × vN

= ωEN
N

 × εN
 × vN + εN

 × ωEN
N

 × vN - ωEN
N

 × εN
 × vN (12.3.6.2-44)

+ 2 εN
 × ωIE

N
 × vN - ωIE

N
 × εN

 × vN

The first square bracketed term in Equation (12.3.6.2-44) can be shown to be identically zero by
rearrangement and application of generalized Equations (3.1.1-15) and (3.1.1-21):

ωEN
N

 × εN
 × vN + εN

 × ωEN
N

 × vN - ωEN
N

 × εN
 × vN

= ωEN
N

 × εN
 × vN - ωEN

N
 × εN× vN - εN× ωEN

N
 × vN = 0

(12.3.6.2-45)

The second square bracketed term in (12.3.6.2-44) can be compressed by application of
generalized Equations (3.1.1-15) and (3.1.1-21):

2 εN
 × ωIE

N
 × vN - ωIE

N
 × εN

 × vN = 2 εN× ωIE
N

× vN - ωIE
N

× εN× vN

= 2 εN
 × ωIE

N
 × vN = - 2 ωIE

N
 × εN

 × vN = 2 vN × ωIE
N

 × εN (12.3.6.2-46)

Finally, we substitute (12.3.6.2-45) and (12.3.6.2-46) in (12.3.6.2-44), and the result into

(12.3.6.2-43) to yield the desired expression for δv
N

:

δv
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 + vN × δωEN

N
 + 2 ωIE

N
 × εN

- ωEN
N

 + 2 ωIE
N

 × δvN + δgMdl
N

 + F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.6.2-47)

which is identical to the δv
N

 expression in Equations (12.3.4-39).

Development of the ψ
N

 equation from γ
N

 begins with the derivative of the rearranged
Equation (12.2.1-17) equivalency:

γ
N

 = ψ
N

+ ε
N

(12.3.6.2-48)

The ψ
N

 term in (12.3.6.2-48) is from Equations (12.3.3-6):

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψ
N

(12.3.6.2-49)

12-102 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

with ψ
N

 from Equation (12.3.6.2-41). The ε
N

 term in (12.3.6.2-48) equals the horizontal

component derived previously in this section plus a specified vertical component as given in
total by Equation (12.3.6.2-24).

Substituting (12.3.6.2-24) and (12.3.6.2-49) with (12.3.6.1-4) and (12.3.6.2-41) into
(12.3.6.2-48) then yields:

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
- εN

 - ωEN
N

 × εN
 + δωEN

N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + ωIN

N
 - ωEN

N
 × εN

 + δωEN
N

(12.3.6.2-50)

Application of Equation (12.3.6.1-4) for ωIN
N

 - ωEN
N

 in (12.3.6.2-50) then obtains the desired

final form for γ
N

:

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

(12.3.6.2-51)

which is identical to the γ
N

 expression in Equations (12.3.4-39).

12.3.7 I FRAME DEFINED ERROR PARAMETER RATE EQUATIONS

At times it is convenient to define a set of navigation error rate equations for which the error
parameters are defined relative to non-rotating inertial I Frame axes. This section develops such
an equation set in the I Frame in which the errors are defined, and then transforms these
equations to the N Frame.

12.3.7.1 I FRAME DEFINED ERROR PARAMETER RATE
EQUATIONS IN THE I FRAME

We now direct our attention at the development of differential equations for the inertial I

Frame defined error parameters ϕ, δυ and δr which have been defined by Equations
(12.2.1-18), (12.2.2-9) and (12.2.3-27):

ϕI× ≡ I - CB
I

 CB
I T

δυI
 ≡ υ

I
 - υI δrI ≡ R

I
 - RI (12.3.7.1-1)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-103

Equations (12.2.1-24) and (12.2.3-31) showed that ϕ and δr are identical to the ψ and δR error
parameters defined in the E Frame by Equations (12.2.1-4) and (12.2.3-1). Thus, Equations
(12.3.7.1-1) for I frame defined error effects can also be written as:

ψI× ≡ I - CB
I

 CB
I T

δυI
 ≡ υ

I
 - υI δRI ≡ R

I
 - RI (12.3.7.1-2)

The rate equation for ψI
 is easily obtained by multiplication of the ψ

E
 expression in

Equations (12.3.2-43) by CE
I

 and applying generalized vector rate transformation Equation

(3.4-6):

CE
I

 ψ
E

 = - CB
I

 δωIB
B

 - ωIE
I

 × ψ
I

ψ
I
 = CE

I
 ψ

E
 + ωIE

I
 × ψ

I
(12.3.7.1-3)

or in combination:

ψ
I
 = - CB

I
 δωIB

B
(12.3.7.1-4)

The rate equation for δRI can be obtained similarly from the δR
E

 expression in Equations

(12.3.2-43), application of Equation (12.2.2-15) for δVI, and use of generalized vector rate
transformation Equation (3.4-6):

CE
I

 δR
E

 = δVI - C3 δR - δhPrsr uZN
I

δVI = δυI
 - ωIE

I
 × δRI (12.3.7.1-5)

δR
I
 = CE

I
 δR

E
 + ωIE

I
 × δR

I

or in combination:

δR
I
 = δυI

 - C3 δR - δhPrsr uZN
I

(12.3.7.1-6)

Development of the δυI
 velocity error differential equation begins from the Equations

(12.1.4-18) velocity rate expression repeated below:

υ
I
 = CB

I
 aSF

B
 + gP

I
 + ωIE

I
 × ωIE

I
 × RI - evc1 uZN

I
(12.3.7.1-7)

The formal definition for the δυ velocity error is given in the I Frame by Equations
(12.3.7.1-2). Taking the analytical differential of Equation (12.3.7.1-7) and identifying the

differential of υI
 as δυI

 from (12.3.7.1-2) yields:

12-104 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δυ
I
 = CB

I
 δaSF

B
 + δCB

I
 aSF

B
 + δgP

I
 + ωIE

I
 × ωIE

I
 × δRI - δevc1 uZN

I
 - evc1 δuZN

I
(12.3.7.1-8)

The δCB
I

 term in (12.3.7.1-8) is obtained with Equation (12.2.1-3) as:

δCB
I

 = δ CE
I

 CB
E

 = CE
I
 δCB

E
 = - CE

I
 ψE× CB

E

 = - CE
I
 ψE× CI

E
 CB

I
 = - CE

I
 ψE× CE

I T
 CB

I
(12.3.7.1-9)

or with (3.1.1-39):

δCB
I

 = - ψI× CB
I

(12.3.7.1-10)

Equation (12.3.7.1-9) is based on the assumption that CE
I

 is error free. The CE
I

 matrix is a

function of time in navigation and earth’s inertial rotation rate magnitude. For this analysis we
are assuming that the system clock timer is error free, hence because earth rate is a known

constant (a very good approximation), CE
I

 is error free. With modern day crystal oscillators

being the inertial navigation timing source, the effect of timer error on navigation accuracy is
generally small compared to the effect of inertial sensor errors.

The δgP
I

 term in (12.3.7.1-8) is given by Equation (12.2.4-8):

δgP
I

 ≈ -
g
R

 δRH
I

 + F(h)
g
R

 uZN
I

 δR + δgMdl
I

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0
(12.3.7.1-11)

Following the same reasoning used to derive the Equation (12.2.4-1) δgP
N

 expression (i.e.,

neglecting ∂gPUp and ∂gPNorth), the ωIE
I

 × ωIE
I

 × δRI term in (12.3.7.1-8) can be dropped as

negligible compared to the δR term in δgP
I

 Equation (12.3.7.1-11). However, it should be noted

that the error is somewhat larger than neglecting the ∂gPNorth term because ∂gPNorth is based on

the excellent approximation that horizontal plumb-bob gravity is zero at the earth’s surface.

Neglecting ωIE
I

 × ωIE
I

 × δRI in Equation (12.3.7.1-8) ignores this higher accuracy assumption.

Following the same reasoning used to simplify Equation (12.3.2-21), the evc1 δuZN
I

 term in

(12.3.7.1-8) can be dropped as negligible compared to the δevc1 uZN
I

 term. The remaining

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-105

δevc1 uZN
I

 term is given by Equation (12.3.2-33):

δevc1 = δevc3 + C2 δR - δhPrsr (12.3.7.1-12)

Substituting (12.3.7.1-10) - (12.3.7.1-12) into (12.3.7.1-8) while neglecting

ωIE
I

 × ωIE
I

 × δRI and evc1 δuZN
I

 then obtains the I Frame form of the δυ rate equation:

δυ
I
 = CB

I
 δaSF

B
 + aSF

I
 × ψI

 -
g
R

 δRH
I

 + δgMdl
I

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
I

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.7.1-13)

The δevc3 term in (12.3.7.1-13) is obtained from Equations (12.3.2-35):

δevc3 = C1 δR - δhPrsr (12.3.7.1-14)

In summary, the I Frame version defined navigation error equations are given by Equations
(12.3.7.1-4), (12.3.7.1-6), (12.3.7.1-13) and (12.3.7.1-14) with definitions for appropriate terms
in Equations (12.3.2-43) transformed to the I frame:

ψ
I
 = - CB

I
 δωIB

B

δυ
I
 = CB

I
 δaSF

B
 + aSF

I
 × ψI

 -
g
R

 δRH
I

 + δgMdl
I

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
I

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0 (12.3.7.1-15)

δR
I
 = δυI

 - C3 δR - δhPrsr uZN
I

δevc3 = C1 δR - δhPrsr

δRH
I

 = δRI - δR uZN
I

δR = uZN
I

 ⋅ δRI

12-106 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

12.3.7.2 I FRAME DEFINED ERROR PARAMETER RATE
EQUATIONS IN THE N FRAME

The time rate differential equation in the N Frame for the ψ attitude error parameter is

identical to ψ
N

 in Equations (12.3.3-6). The time rate differential equations for the δυ, δR

velocity/position error parameters in the N frame are derived by transforming δυ
I
, δR

I
 in

(12.3.7.1-15) to the N frame using generalized vector rate transformation Equation (3.4-6). We

first find from (3.4-6) for δυ
I
:

δυ
N

 = CI
N

 δυ
I
 + ωNI

N
 × δυN

(12.3.7.2-1)

where

ωNI
N

 = Relative angular rate of the I Frame with respect to the N Frame as projected on
N Frame axes.

But we also know that:

ωNI
N

 = - ωIN
N

(12.3.7.2-2)

where

ωIN
N

 = Angular rate of the N Frame relative to the I Frame as projected on
N Frame axes.

Thus, Equation (12.3.7.2-1) is equivalently:

δυ
N

 = CI
N

 δυ
I
 - ωIN

N
 × δυN

(12.3.7.2-3)

With δυ
I
 from Equations (12.3.7.1-15) in (12.3.7.2-3) we then obtain for δυ

N
:

δυ
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIN
N

 × δυN
 + δgMdl

N

+ F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.3.7.2-4)

The δR
N

 equation is obtained similarly from δR
I
 in Equations (12.3.7.1-15):

δR
N

 = δυN
 - ωIN

N
 × δRN - C3 δR - δhPrsr uZN

N
(12.3.7.2-5)

NAVIGATION ERROR PARAMETER DIFFERENTIAL EQUATIONS 12-107

With (12.3.7.2-4), (12.3.7.2-5) and appropriate elements from Equations (12.3.3-6), the

ψ, δυ, δR rate equations in the N Frame then are summarized as follows:

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψ
N

δυ
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIN
N

 × δυN
 + δgMdl

N

+ F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0 (12.3.7.2-6)

δR
N

 = δυN
 - ωIN

N
 × δRN - C3 δR - δhPrsr uZN

N

δevc3 = C1 δR - δhPrsr

δRH
N

 = δRN - δR uZN
N

δR = uZN
N

 ⋅ δRN

Note that Equations (12.3.7.2-6) in the N Frame reduce to (12.3.7.1-15) (in the I Frame) if we

equate the N to the I Frame which sets ωIN
N

 to zero.

12.4 GENERAL STRAPDOWN INERTIAL SENSOR ERROR MODELS

The strapdown inertial navigation error equation sets derived in Section 12.3 (summarized in
the N Frame by Equations (12.3.3-6), (12.3.4-39), (12.3.5-29) and (12.3.7.2-6)) contain the

strapdown inertial angular rate sensor error term δωIB
B

 and accelerometer error term δaSF
B

. The

δωIB
B

 and δaSF
B

 inertial sensor errors are defined as the difference between the input to the

sensors (i.e., the true values that the sensor is measuring) and the compensated sensor output.
The implication is that if the compensation is perfect, the compensated output will match the
input, hence, there is no effective error that will impact navigation accuracy. In this section, we
develop analytical models for the inertial sensor error terms based on the Section 8.1.1.1 and
8.1.1.2 sensor error characteristics.

We begin with the Section 8.1.1.1 description of the relationship between the angular rate
sensor input and its uncompensated output as provided by Equation (8.1.1.1-2) and (8.1.1.1-3)
with (8.1.1.1-5) - (8.1.1.1-7):

12-108 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

ω′ = ΩWt ωPuls (12.4-1)

ω = ω′ - KMis ω′ - KBias - FAlgn
 -1

 ∂ωQuant - FAlgn
 -1

 δωRand (12.4-2)

where

ω = Strapdown angular rate sensor triad input vector.

ωPuls = Uncompensated angular rate sensor triad output pulse rate vector (pulses per
second).

ΩWt = Angular rate sensor triad diagonal output pulse weighting matrix (radians per
pulse).

FAlgn = Angular rate sensor triad alignment matrix.

KBias = Angular rate sensor effective bias vector.

KMis = Angular rate sensor effective misalignment matrix (KMis = I - FAlign
 -1

).

∂ωQuant = Angular rate sensor triad pulse quantization error vector. Note that the

quantization error is denoted here as ∂ωQuant while in Section 8.1.1.1 it is

denoted as δωQuant. The distinction has been made here to differentiate

errors that are partially correctable by compensation (the ∂ωQuant term)
from residual errors remaining after compensation has been applied (the

δωQuant term to be introduced subsequently).

δωRand = Angular rate sensor triad random error vector.

A more precise set of definitions for the Equation(12.4-1) and (12.4-2) parameters is provided
in Section 8.1.1.1.

The FAlgn matrix in (12.4-2) has, to first order, unity for its diagonal elements, and small

misalignment terms for the off-diagonal elements. Hence, for error analysis purposes,
Equation (12.4-2) can be approximated as:

ω ≈ ω′ - KMis ω′ - KBias - ∂ωQuant - δωRand (12.4-3)

At this point we introduce nomenclature to differentiate between idealized sensor error
compensation parameters and the compensation parameters actually utilized in the system

software. We also introduce the notation to indicate outputs from sensors (raw or
compensated) that contain errors. Thus, for the strapdown system software, the equivalent to
Equations (12.4-1) and (12.4-3) is:

GENERAL STRAPDOWN INERTIAL SENSOR ERROR MODELS 12-109

ω′ = ΩWt C ωPuls (12.4-4)

ω ≈ ω′ - KMisC ω′ - KBiasC - ∂ωQuantC (12.4-5)

where

ΩWt C , KMisC, KBiasC, ∂ωQuantC = Values for ΩWt, KMis, KBias, ∂ωQuant utilized for
angular rate sensor compensation in the strapdown system computer.

 = Designator for inertial sensor outputs based on actual (imperfect) compensation
applied in the strapdown system computer.

Equations (12.4-1) and (12.4-3) are considered to be the idealized version of Equations (12.4-4)
and (12.4-5) where we now refine our definitions for the compensation terms:

ΩWt, KMis, KBias, ∂ωQuant = Idealized values of ΩWt C , KMisC, KBiasC, ∂ωQuantC
(i.e., the perfect compensation parameters).

Note that the primary difference between computer compensation Equations (12.4-4), (12.4-5)

and the idealized (12.4-1), (12.4-3) equivalents, is the δωRand term which is inherently random

by definition, hence, unaccountable in the actual system computer.

In developing the sensor error equation associated with Equation (12.4-5), we recognize that

KMisC is small, hence, for first order error analysis purposes, its ω′ term multiplier can be

approximated by ω′ (the difference being δω′ which, when multiplied by KMisC, is second

order). With this approximation, the error in ω is now calculated as the difference between
Equations (12.4-5) and (12.4-3) or:

δω ≡ ω - ω = ω′ - ω′ + KMis - KMisC ω′ + KBias - KBiasC

 + ∂ωQuant - ∂ωQuantC + δωRand

(12.4-6)

where

δω = Residual error present in the compensated strapdown angular rate sensor triad
output vector.

The ω′ - ω′ term in (12.4-6) is the difference between Equations (12.4-4) and (12.4-1):

ω′ - ω′ = ΩWt C - ΩWt ωPuls (12.4-7)

But from (12.4-1):

12-110 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

ωPuls = ΩWt
-1

 ω´ (12.4-8)

With (12.4-8), Equation (12.4-7) becomes:

ω′ - ω′ = ΩWt C ΩWt
-1

 - I ω′ (12.4-9)

We introduce the following definitions for particular terms in (12.4-6) and (12.4-9):

δKScal ≡ ΩWt C ΩWt
-1

 - I δKMis ≡ KMis - KMisC

δKBias ≡ KBias - KBiasC δωQuant ≡ ∂ωQuant - ∂ωQuantC

(12.4-10)

where

δKMis, δKBias , δωQuant = Residual errors in KMis, KBias , ∂ ωQuant remaining after

applying compensation terms KMisC, KBiasC , ∂ ωQuantC.

δKScal = Normalized residual scale factor error remaining in ΩWt after applying the

ΩWt C scale factor matrix.

We also note that for error analysis purposes, ω´ in Equations (12.4-6) and (12.4-9) is, from

Equation (12.4-3), approximately (to first order) equal to ω. Thus, with (12.4-9) and (12.4-10),
Equation (12.4-6) to first order assumes the simpler form:

δω = δKScal ω + δKMis ω + δKBias + δωQuant + δωRand (12.4-11)

Combining the δKScal, δKMis terms in (12.4-11) and introducing the more definitive angular
rate notation of previous sections obtains the final form:

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωQuant + δωRand (12.4-12)

with

δKScal/Mis ≡ δKScal + δKMis (12.4-13)

where

δKScal/Mis = Effective residual scale-factor/misalignment error matrix remaining in

ΩWt and KMis after applying compensation terms ΩWt C and KMisC.

Equation (12.4-12) is the analytical model for δωIB
B

 in N Frame navigation error Equations

(12.3.3-6), (12.3.4-39), (12.3.5-29) and (12.3.7.2-6). The analytical models used for

GENERAL STRAPDOWN INERTIAL SENSOR ERROR MODELS 12-111

δKScal/Mis and δKBias in (12.4-12) depend on the angular rate sensor selected, its particular

error characteristics and the associated compensation terms. The δωRand term is typically

modeled as white noise. The δωQuant term is typically represented as the time derivative of

white noise which requires some revision in the navigation error equations (discussed in Section
12.5) for compatibility with standard random process equation formats (e.g., error state
dynamic equation format discussed in Section 15.1 in which all noise terms are represented as
white noise).

The steps that led to the Equation (12.4-12) δωIB
B

 analytical model for the angular rate sensor

triad error are identical to steps leading to the δaSF
B

 accelerometer triad error analytical model,

beginning with Equations (8.1.1.2-2), (8.1.1.2-3) and (8.1.1.2-5) - (8.1.1.2-7). For this
development we will assume that the accelerometer anisoinertia and size effect compensations
utilized are accurate enough that the residual error after compensation in Equation (8.1.1.2-3) is
negligible. With this approximation, the equivalent to Equation (12.4-12) for the accelerometer
triad becomes:

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaQuant + δaRand (12.4-14)

with

δLScal ≡ AWt C AWt
-1

 - I δLMis ≡ LMis - LMisC

δLScal/Mis ≡ δLScal + δLMis

δLBias ≡ LBias - LBiasC δaQuant ≡ ∂aQuant - ∂aQuantC

(12.4-15)

where
AWt = Idealized accelerometer triad scale factor diagonal matrix.

LBias = Idealized accelerometer triad effective bias compensation vector.

LMis = Idealized accelerometer effective misalignment compensation matrix.

∂aQuant = Uncompensated accelerometer triad pulse quantization error vector. Note

that the quantization error is denoted here as ∂aQuant while in Section

8.1.1.2 it is denoted as δaQuant. The distinction has been made here to
differentiate errors that are partially correctable by compensation (the

∂aQuant term) from residual errors remaining after compensation has been

applied (the δaQuant term).

δaRand = Accelerometer triad random error vector.

12-112 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

AWt C , LMisC , LBiasC , ∂aQuantC = Values for AWt, LMis, LBias, ∂aQuant utilized for
accelerometer compensation in the strapdown system computer.

δLMis, δLBias, δaQuant = Residual errors in LMis, LBias, ∂aQuant remaining after

applying compensation terms LMisC, LBiasC, ∂aQuantC.

δLScal = Normalized residual scale factor error remaining in AWt after applying the
AWt C scale factor matrix.

δ LScal/Mis = Effective residual scale-factor/misalignment error matrix remaining in
AWt and LMis after applying compensation terms AWt C and LMisC.

Equation (12.4-14) is the analytical model for δaSF
B

 in N Frame navigation error Equations

(12.3.3-6), (12.3.4-39), (12.3.5-29) and (12.3.7.2-6). The analytical models used for δLScal/Mis

and δLBias in (12.4-14) depend on the accelerometer selected, its particular error characteristics

and the associated compensation terms. The δaRand term is typically modeled as white noise.

The δaQuant term is typically represented as the time derivative of white noise which requires

some revision in the navigation error equations (discussed in Section 12.5) for compatibility
with standard random process equation formats (e.g., error state dynamic equation format
discussed in Section 15.1 in which noise terms are represented as white noise).

12.5 ERROR EQUATION REVISIONS TO ENHANCE
QUANTIZATION NOISE MODELING

The ∂ωQuant and ∂aQuant terms in strapdown inertial sensor error model Equations (12.4-10)

and (12.4-15) represent the quantization of the output pulse format from the angular rate sensors
and accelerometers. Each output pulse from a sensor signifies to the strapdown computer that
the integral of the sensor input (integrated angular rate or specific force acceleration) has
changed by a specified pulse size from the last output pulse. At a constant input to the sensor
the integrated sensor input is a linear ramp in time, hence, the output is a constant frequency
pulse train. Under dynamic input conditions, the pulse rate varies from instant to instant.

In Chapter 7 (and Chapter 19, Section 19.1) we found that the sensor inputs utilized in the
strapdown computer are integrated samples of the sensor outputs over each computer update
cycle. In practice, this is achieved by counting the sensor output pulses. We can imagine the
attitude and velocity parameters in the strapdown computer being generated as a repetitive
summing operation on the sensor count samples. For perfect inertial sensors, the complete
integrals so generated will be correct, but only to within a pulse, because the instantaneous pulse
output will in general, not occur exactly at the computer sample time instant. The associated

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-113

error effect is called pulse quantization which can be accurately modeled as a white uniform

random error process on each integrated sensor output. The ∂ωQuant and ∂aQuant terms in

Equations (12.4-10) and (12.4-15) represent instantaneous random errors on the direct (not

integrated) sensor outputs. Hence, ∂ωQuant and ∂aQuant represent the time derivative of the

white random quantization error process associated with the integrated output. The δωQuant and

δaQuant terms in (12.4-12) and (12.4-14) represent residual errors in ∂ωQuant and ∂aQuant after

applying quantization compensation (if any). Thus, δωQuant and δaQuant also represent the time

derivative of white noise processes. Because a white uniform random process on the
compensated integrated sensor outputs is easily defined mathematically, it is expeditious to

substitute for δωQuant and δaQuant:

δωQuant = δαQuant δaQuant = δυQuant (12.5-1)

where

δαQuant, δυQuant = Angular rate sensor and accelerometer white noise quantization
error effects associated with the quantization compensated integral
of angular rate sensor and accelerometer outputs.

Using δωQuant from Equations (12.5-1), let us substitute the Equation (12.4-12) δωIB
B

strapdown angular rate sensor triad error model into the Equations (12.3.4-39) γ
N

 expression to
obtain after rearrangement:

γ
N

 + CB
N

 δαQuant = - CB
N

 δKScal/Mis ωIB
B

 + δKBias + δωRand

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

(12.5-2)

We also note that:

CB
N

 δαQuant =
d
dt

 CB
N

 δαQuant - CB
N

 δαQuant (12.5-3)

so that (12.5-2) is equivalently:

d
dt

 γN
 + CB

N
 δαQuant = - CB

N
 δKScal/Mis ωIB

B
 + δKBias + δωRand + CB

N
 δαQuant

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

(12.5-4)

12-114 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

The form of (12.5-4) suggests the definition of revised attitude and angular rate sensor error
parameters:

γN
* ≡ γN

 + CB
N

 δαQuant (12.5-5)

δωIB
B

* ≡ δKScal/Mis ωIB
B

 + δKBias + δωRand (12.5-6)

where

δωIB
B

* = Angular rate sensor error exclusive of angular rate sensor quantization error
effects.

γN
* = Revised form of γN

 that neglects the CB
N

 δαQuant part of the γN
 quantization

error (which is the dominant quantization term affecting γN
). As will soon be

apparent from Equation (12.5-8) to follow, γN
* still contains angular rate

sensor quantization error input under applied angular rates.

The converse of Equation (12.5-5) will also be useful:

γN
 = γN

* - CB
N

 δαQuant (12.5-7)

Substitution of (12.5-5) - (12.5-7) into (12.5-4) gives:

γ
N

* = - CB
N

 δωIB
B

* - ωIN
N

 × γN
* + ωIE

N
 × εN

 + δωEN
N

 + CB
N

 + ωIN
N

× CB
N

 δαQuant
(12.5-8)

The CB
N

 + ωIN
N

× CB
N

 term in (12.5-8) can be reduced using CB
N

 from Equations (12.1.2-6):

CB
N

 + ωIN
N

× CB
N

 = CB
N

 ωIB
B

× - ωIN
N

× CB
N

 + ωIN
N

× CB
N

 = CB
N

 ωIB
B

× (12.5-9)

Substituting (12.5-9) into (12.5-8) then yields:

γ
N

* = - CB
N

 δωIB
B

* - ωIN
N

 × γN
* + ωIE

N
 × εN

 + δωEN
N

 + CB
N

 ωIB
B

 × δαQuant (12.5-10)

Note in Equation (12.5-10) that only white angular rate sensor noise appears (i.e., δαQuant and

δωRand in δωIB
B

*) and no angular rate sensor white noise derivatives.

Encouraged by these results we apply the identical procedure to the velocity and
accelerometer error terms in Equations (12.3.4-39) and (12.4-14), viz.:

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-115

δvN* ≡ δvN - CB
N

 δυQuant (12.5-11)

δaSF
B

* ≡ δLScal/Mis aSF
B

 + δLBias + δaRand (12.5-12)

δvN = δvN* + CB
N

 δυQuant (12.5-13)

where

δaSF
B

* = Accelerometer error exclusive of accelerometer quantization error effects.

δvN* = Revised form of δvN that neglects the CB
N

 δυQuant part of the δvN quantization

error (which is the dominant quantization term affecting δvN). As will soon

be apparent from Equation (12.5-15) to follow, δvN* still contains
accelerometer quantization error input under applied angular rates.

The derivative of (12.5-11) is:

δv
N

* = δv
N

 - CB
N

 δυQuant - CB
N

 δυQuant (12.5-14)

Substitution for δv
N

 with δωEN
N

 from Equations (12.3.4-39) and the Equation (12.4-14)

δaSF
B

 accelerometer error model into (12.5-14) with (12.5-12), substitution for δaQuant from

Equations (12.5-1), substitution for γN
, δvN from Equations (12.5-7) and (12.5-13), and

applying generalized Equation (3.1.1-15) then yields for δv
N

*:

δv
N

* = CB
N

 δaSF
B

* + aSF
N

 × γN
* + vN × δωEN

N
* + 2 ωIE

N
 × εN

- ωEN
N

 + 2 ωIE
N

 × δvN* + δgMdl
N

+ F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

- a
 SF
N

 × CB
N

 δαQuant +
1
rl

 vN× uZN
N × CB

N
(12.5-15)

- ωEN
N

 + 2 ωIE
N

 × CB
N

 - CB
N

 δυQuant

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

with

12-116 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δωEN
N

* ≡ δρZN uZN
N

 +
1
rl

 uZN
N

 × δvN* -
1

rl
2

 uZN
N

 × vN δh (12.5-16)

The - ωEN
N

 + 2 ωIE
N

 × CB
N

 - CB
N

 term in (12.5-15) can be expanded using CB
N

 from

Equations (12.1.2-6) with (12.3.6.1-4) for ωIN
N

 and generalized Equation (3.1.1-38):

- ωEN
N

 + 2 ωIE
N

 × CB
N

 - CB
N

 = - ωEN
N

× CB
N

 - 2 ωIE
N

× CB
N

 - CB
N

 ωIB
B

× - ωIE
N

× + ωEN
N

× CB
N

 = - CB
N

 ωIB
B

× - ωIE
N

× CB
N

 = - CB
N

 ωIB
B

× CB
N T

+ ωIE
N

× CB
N

 = - CB
N

 ωIB
B

 × + ωIE
N

× CB
N

 = - CB
N

 ωIB
B

 + ωIE
N

 × CB
N

(12.5-17)

Using (12.5-17) in (12.5-15) then obtains the final form for δv
N

*:

δv
N

* = CB
N

 δaSF
B

* + aSF
N

 × γN
* + vN × δωEN

N
* + 2 ωIE

N
 × εN

 - ωEN
N

 + 2 ωIE
N

 × δvN* + δgMdl
N

 + F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

 - aSF
N × CB

N
 δαQuant +

1
rl

 vN × uZN
N × - CB

NωIB
B

 + ωIE
N

 × CB
N

 δυQuant

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

(12.5-18)

Note in Equation (12.5-18) (with (12.5-12) and (12.5-16) for δaSF
B

*, δωEN
N

*) that all noise

terms are white in accordance with typical standard analytical formats.

The Equation (12.5-16) δωEN
N

* form can also be utilized in γ
N

* Equation (12.5-10) by

substituting for δωEN
N

 from Equations (12.3.4-39) and using δvN from (12.5-13). The result is:

γ
N

* = - CB
N

 δωIB
B

* - ωIN
N

 × γN
* + ωIE

N
 × εN

 + δωEN
N

*

 + CB
N

 ωIB
B

 × δαQuant +
1
rl

 uZN
N

 × CB
N

 δυQuant

(12.5-19)

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-117

Note in Equation (12.5-19) (with (12.5-6) and (12.5-16) for δωIB
B

*, δωEN
N

*) that all noise terms

are now white in accordance with typical standard analytical formats.

The ε
N

 and δh terms in (12.3.4-39) are revised similarly:

ε
N

 = - ωEN
N

 × εN
 + δωEN

N
* +

1
rl

 uZN
N

 × CB
N

 δυQuant

δh = uZN
N

 ⋅ δ vN* - C3 δh - δhPrsr + uZN
N

 ⋅ CB
N

 δυQuant

(12.5-20)

Equations (12.5-18) - (12.5-20) with (12.5-6), (12.5-12) and (12.5-16) are a complete

consistent set for the new (and old) variables γN
, δvN, εN

, δh that only contain white type
noise terms. These equations can be used in place of navigation error Equations (12.3.4-39) for

the γN
, δvN, εN

, δh error parameters.

The identical procedure can be utilized to obtain revised forms of navigation error Equations

(12.3.3-6), (12.3.5-29) and (12.3.7.2-6) for the ψN
, δVN, δRN , γN

, δVN, δRN, εZN and

ψN
, δυN

, δRN error parameter sets. As above, we first define revised forms as follows:

ψN
* ≡ ψN

 + CB
N

 δαQuant (12.5-21)

δVN* ≡ δVN - CB
N

 δυQuant (12.5-22)

δυN
* ≡ δυN

 - CB
N

 δυQuant (12.5-23)

and the converse:

ψN
 = ψN

* - CB
N

 δαQuant (12.5-24)

δVN = δVN* + CB
N

 δυQuant (12.5-25)

δυN
 = δυN

* + CB
N

 δυQuant (12.5-26)

where

ψN
* = Revised form of ψN

 that neglects the CB
N

 δαQuant part of the ψN
 quantization

error (which is the dominant quantization term affecting ψN
).

12-118 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δVN*, δυN
* = Revised forms of δVN, δυN

 that neglect the CB
N

 δυQuant part of the

δVN, δυN
 quantization errors (which is the dominant quantization term

affecting δVN, δυN
).

The equivalency relationships between the new error parameters (with the asterisk *) is easily
obtained by substituting (12.5-7), (12.5-13) and (12.5-24) - (12.5-26) into equivalency
Equations (12.2.1-17), (12.2.2-5) and (12.2.2-16). Not surprisingly, the results are:

ψN
* = γN

*- εN
(12.5-27)

δVN* = δvN* + εN
 × vN (12.5-28)

δυN
* = δVN* + ωIE

N
 × δRN (12.5-29)

We see then from Equations (12.5-27) - (12.5-29) that the form of the equivalency equations

for the new γN
*, ψN

, δvN, δVN*, δυN
* parameters is identical to Equations (12.2.1-17),

(12.2.2-5) and (12.2.2-16) for the original γN
, ψN

, δvN, δVN, δυN
 parameters. This leads us

to make the important generalization that we can convert the original error equations to the new
asterisk * versions, and then delete the asterisk * notation for simplicity. T h e

γN
, ψN

, δvN, δVN, δυN
 parameters so created will then be understood to not include

quantization noise and the original equivalency Equations (12.2.1-17), (12.2.2-5) and
(12.2.2-16) will remain applicable. We must understand, however, that any other error

parameters derived from this set (such as the attitude Euler angle errors δφ, δθ, δψP in

Equations (12.2.1-38)) will also not include quantization noise. Based on this generalization
and the development procedure utilized above, the following subsections summarize versions of
navigation error Equations (12.3.3-6), (12.3.4-39), (12.3.5-29) and (12.3.7.2-6) for the

ψN
, δVN, δRN , γN

, δvN, εN
, δh , γN

, δVN, δRN, εZN and ψN
, δυN

, δRN error parameter

sets that have been revised to exclude strapdown inertial sensor quantization noise in the

γN
, ψN

, δvN, δVN, δυN
 error parameters. The following subsections will also discuss the

structure of the typical error rate equations for the angular rate sensor and accelerometer error
parameters.

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-119

12.5.1 REVISED ERROR RATE EQUATIONS FOR E FRAME DEFINED
ERROR PARAMETERS PROJECTED ONTO THE N FRAME

The navigation error equations defined in the E Frame utilize the ψ, δV, δR error parameters.

Equations (12.3.3-6) summarize the rate equations for the ψ, δV, δR parameters projected in
the N Frame. Equations for the strapdown inertial sensor errors in (12.3.3-6) are given by
Equations (12.4-12), (12.4-14) and (12.5-1). Following the development procedure used in

Section 12.5 for the γ, δv, ε, δh parameters, a revised set of error equations can be developed

from Equations (12.3.3-6) in terms of the revised parameters ψ*
N

, δV*
N

, δRN of which

ψ*
N

, δV*
N

 are defined by Equations (12.5-21) and (12.5-22) as not containing sensor
quantization noise. Following the generalization plan in Section 12.5, the revised

ψ*
N

, δV*
N

, δRN rate equations can then be simplified by deleting the asterisk * notation. Such

a revised ψ, δV, δR equation set projected in the N Frame (revised from Equations (12.3.3-6))
is summarized below by Equations (12.5.1-1) together with remaining applicable elements of

(12.3.3-6). The ψN
, δV

N
 parameters in Equations (12.5.1-1) then, are the ψ*

N
, δV*

N
 terms

defined by Equations (12.5-21) and (12.5-22) with quantization noise removed, but with the

asterisk * notation deleted for simplicity (not to be confused with the ψN
, δV

N
 parameters in

Equations (12.3.3-6) which include quantization noise error). The equivalency relationships in

Sections 12.2.1 and 12.2.2 between the γ, ψ, δv, δV, δυ parameters in Equations (12.5.1-1) and
subsequent Equations (12.5.2-1), (12.5.3-1) and (12.5.4-1) remain valid as discussed in Section
12.5.

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψ
N

 + CB
N

 ωIB
B

× δαQuant

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωRand

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

+ F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

(12.5.1-1)

- aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 + ωIE

N
 × CB

N
 δυQuant

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaRand

(Continued)

12-120 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δR
N

 = δVN - ωEN
N

 × δRN - C3 δR - δhPrsr uZN
N

 + CB
N

 δυQuant

δevc3 = C1 δR - δhPrsr

δRH
N

 = δRN - δR uZN
N (12.5.1-1)

(Continued)

δR = uZN
N

 ⋅ δRN

12.5.2 REVISED ERROR RATE EQUATIONS FOR N FRAME DEFINED
ERROR PARAMETERS PROJECTED ONTO THE N FRAME

The navigation error equations defined in the N Frame utilize the γ, δv, ε, δh error
parameters. Following the generalization plan in Section 12.5 (i.e., deleting the asterisk *

notation), the revised γ, δv, ε, δh rate equations in the N Frame (revised from Equations
(12.3.4-39)) which have been derived in Section 12.5 (as Equations (12.5-18) - (12.5-20),
(12.5-6), (12.5-12), (12.5-16)), are summarized below by Equations (12.5.2-1), together with

remaining applicable elements of (12.3.4-39) . The γN
, δvN parameters in Equations (12.5.2-1)

are the γ*
N

, δv*N terms defined by Equations (12.5-5) and (12.5-11) with quantization noise
removed, but with the asterisk * notation deleted for simplicity (not to be confused with the

γN
, δvN parameters in Equations (12.3.4-39) which include quantization noise error). The

equivalency relationships in Sections 12.2.1 and 12.2.2 between the γ, ψ, δv, δV, δυ parameters
in Equations (12.5.1-1), (12.5.2-1) and subsequent Equations (12.5.3-1), (12.5.4-1) remain
valid as discussed in Section 12.5.

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 + ωIE

N
 × εN

 + δωEN
N

+ CB
N

 ωIB
B

 × δαQuant +
1
rl

 uZN
N

 × CB
N

 δυQuant (12.5.2-1)

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωRand

(Continued)

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-121

δv
N

 = CB
N

 δaSF
B + aSF

N
 × γN

 + vN × δωEN
N

 + 2 ωIE
N

 × εN

- ωEN
N

 + 2 ωIE
N

 × δvN + δgMdl
N

+ F(h)
g
R

 - C2 δh + C2 δhPrsr - δevc3 uZN
N

- aSF
N × CB

N
 δαQuant

+
1
rl

 vN × uZN
N × - CB

NωIB
B

 + ωIE
N

 × CB
N

 δυQuant
(12.5.2-1)

(Continued)

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaRand

ε
N

 = - ωEN
N

 × εN
 + δωEN

N
 +

1
rl

 uZN
N

 × CB
N

 δυQuant

δh = uZN
N

 ⋅ δvN - C3 δh - δhPrsr + uZN
N

 ⋅ CB
N

 δυQuant

δevc3 = C1 δh - δhPrsr

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δvN -
1

rl
2

 uZN
N

 × vN δh

δρZN = 0 For Wander Azimuth Implementation

δρZN = - ωIE
N

 × εN
 ⋅ uZN

N
For Free Azimuth Implementation

12.5.3 REVISED ERROR RATE EQUATIONS FOR MIXED E AND N FRAME
DEFINED ERROR PARAMETERS PROJECTED ONTO THE N FRAME

The mixed E and N Frame defined navigation error equations utilize the γ, δV, δR, εZN error

parameters. Equations (12.3.5-29) summarize the rate equations for the γ, δV, δR, εZN

parameters projected in the N Frame, . The equations for the strapdown inertial sensor errors in
Equations (12.3.5-29) are given by Equations (12.4-12), (12.4-14) and (12.5-1). Following the

development procedure used in Section 12.5 for the γ, δv, ε, δh parameters, a revised set of
error equations can be developed from Equations (12.3.5-29) in terms of the revised parameters

γ*
N

, δV*
N

, δRN, εZN of which γ*
N

, δV*
N

 are defined by Equations (12.5-5) and (12.5-22) as

not containing sensor quantization noise. Following the generalization plan in Section 12.5, the

revised γ*
N

, δV*
N

, δRN, εZN rate equations can then be simplified by deleting the asterisk *

12-122 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

notation. Such a revised γ, δV, δR, εZN equation set projected in the N Frame (revised from

Equations (12.3.5-29)) is summarized below by Equations (12.5.3-1) together with remaining

applicable elements of (12.3.5-29). The γ, δV parameters in Equations (12.5.3-1) then, are the

γ*
N

, δV*
N

 terms defined by Equations (12.5-5) and (12.5-22) with quantization noise
removed, but with the asterisk * notation deleted for simplicity (not to be confused with the

γ, δV parameters in Equations (12.3.5-29) which include quantization noise error). The

equivalency relationships in Sections 12.2.1 and 12.2.2 between the γ, ψ, δv, δV, δυ parameters
in Equations (12.5.1-1), (12.5.2-1), (12.5.3-1) and subsequent Equation (12.5.4-1) remain valid
as discussed in Section 12.5.

γ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γN
 +

1
R

 ωIE
N

 × uZN
N

 × δRN + ωIE
N

 × uZN
N

 εZN + δωEN
N

 + CB
N

 ωIB
B

 × δαQuant +
1
rl

 uZN
N

 × CB
N

 δυQuant

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωRand

εZN = -
1
R

 ωENH

N
 ⋅ δRH

N
 + δρZN (12.5.3-1)

δV
N

 = CB
N

 δaSF
B

 + aSF
N

 × γN
 - ΔaSF

N
 ×

1
R

 uZN
N

 × δR
N

 + εZN uZN
N

- ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

 + F(h)
g
R

 - C2 δR + C2 δhPrsr - δevc3 uZN
N

- aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 + ωIE

N
 × CB

N
 δυQuant

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaRand

δR
N

 = δVN - ωEN
N

 × δRN - C3 δR - δhPrsr uZN
N

 + CB
N

 δυQuant

δevc3 = C1 δR - δhPrsr

(Continued)

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-123

δωEN
N

 = δρZN uZN
N

 +
1
rl

 uZN
N

 × δVN - vZN
1

rl
2 uZN

N
 × δRN

+
1
rl

 vH
N

 εZN -
1

rl
2

 uZN
N

 × vN δR
(12.5.3-1)

(Continued)

δρZN = 0 For Wander Azimuth Implementation

δρZN = -
1
R

 ωIEH

N
 ⋅ δ RH

N
For Free Azimuth Implementation

δR = uZN
N

 ⋅ δRN

δRH
N

 = δRN - δR uZN
N

ωENH

N
 = ωEN

N
 - ρZN uZN

N

ΔaSF
N

 = aSF
N

 + gP
N

12.5.4 REVISED ERROR RATE EQUATIONS FOR I FRAME DEFINED
ERROR PARAMETERS PROJECTED ONTO THE N FRAME

The navigation error equations defined in the I Frame utilize the ψ, δυ, δR error parameters.

Equations (12.3.7.2-6) summarize the rate equations for the ψ, δυ, δR parameters projected in
the N Frame. The equations for the strapdown inertial sensor errors in Equations (12.3.7.2-6)
are given by Equations (12.4-12), (12.4-14) and (12.5-1). Following the development

procedure used in Section 12.5 for the γ, δv, ε, δh parameters, a revised set of error equations
can be developed from Equations (12.3.7.2-6) in terms of the revised parameters

ψ*
N

, δυ*
N

, δRN of which ψ*
N

, δυ*
N

 are defined by Equations (12.5-21) and (12.5-23) as not
containing sensor quantization noise. Following the generalization plan in Section 12.5, the

revised ψ*
N

, δυ*
N

, δRN rate equations can then be simplified by deleting the asterisk *

notation. Such a revised ψ, δυ, δR equation set projected in the N Frame (revised from
Equations (12.3.7.2-6)) is summarized below by Equations (12.5.4-1) together with remaining

applicable elements of (12.3.7.2-6). The ψ, δυ parameters in Equations (12.5.4-1) then, are the

ψ*
N

, δυ*
N

 terms defined by Equations (12.5-21) and (12.5-23) with quantization noise
removed, but with the asterisk * notation deleted for simplicity (not to be confused with the

ψ, δυ parameters in Equations (12.3.7.2-6) which include quantization noise error). The

equivalency relationships in Sections 12.2.1 and 12.2.2 between the γ, ψ, δv, δV, δυ parameters

12-124 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

in Equations (12.5.1-1), (12.5.2-1), (12.5.3-1) and (12.5.4-1) remain valid as discussed in
Section 12.5.

ψ
N

 = - CB
N

 δωIB
B

 - ωIN
N

 × ψ
N

 + CB
N

 ωIB
B

 × δαQuant

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωRand

δυ
N

 = CB
N

 δaSF
B

 + aSF
N

 × ψN
 -

g
R

 δRH
N

 - ωIN
N

 × δυN
 + δgMdl

N

 + F(h)
g
R

 - C2 δR - δevc3 + C2 δhPrsr uZN
N

- aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant (12.5.4-1)

F(h) = 2 For h ≥ 0 F(h) = - 1 For h < 0

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaRand

δR
N

 = δυN
 - ωIN

N
 × δRN - C3 δR - δhPrsr uZN

N
 + CB

N
 δυQuant

δevc3 = C1 δR - δhPrsr

δRH
N

 = δRN - δR uZN
N

δR = uZN
N

 ⋅ δRN

12.5.5 REVISED ERROR RATE EQUATIONS FOR I FRAME DEFINED
ERROR PARAMETERS PROJECTED ONTO THE I FRAME

The equivalent to Equations (12.5.4-1) in the I Frame (i.e., for ψI
, δυI

, δRI) is easily

obtained by equating N to I which sets ωIN to zero. The result is what would have been

achieved by converting Equations (12.3.7.1-15) directly to the * format and then deleting the *
notation.

12.5.6 INERTIAL SENSOR ERROR RATE EQUATIONS

Error equation sets (12.5.1-1), (12.5.2-1), (12.5.3-1) and (12.5.4-1) have common general
inertial sensor error models:

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-125

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωRand

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaRand

(12.5.6-1)

As discussed in Section 12.4, the δωRand and δaRand terms in (12.5.6-1) can be treated

analytically as white noise. The inertial sensor quantization noise terms δαQuant and δυQuant

(that are individually included in navigation error Equations (12.5.1-1), (12.5.2-1), (12.5.3-1)
and (12.5.4-1) as part of the navigation error parameter rate expressions) are also modeled as
white noise. The remaining residual sensor error terms in Equations (12.5.6-1)

(δKScal/Mis, δKBias, δLScal/Mis and δLBias) are modeled by differential equations to reflect the
principal error characteristics of the particular inertial sensors in the system following
calibration/compensation in the system computer. For some sensors (e.g., ring laser gyros) the
scale factor, misalignment and bias error residuals can be adequately modeled as unknown
constants with a slow random buildup. For example, the dominant “constant” contribution to

the angular rate sensor δKBias term might be modeled in differential equation format as:

δK0Bias = nK0Bias (12.5.6-2)

with an unknown initial value for δK0Bias and where:

δK0Bias = Contribution to δKBias modeled as an unknown initial value that changes
randomly from instant to instant.

nK0Bias = White noise vector representing the rate of change of δK0Bias. Each
component of nK0Bias is uncorrelated from its other components.

The form of each component of the (12.5.6-2) vector equation is known as a random walk
process due to the characteristic of the integral to wander randomly from instant to instant from
its previous value.

The model for δKBias vector might also include what is known as a first order Markov
process for each vector component which has the combined vector form:

δKMBias = - CKMBias δKMBias + nKMBias (12.5.6-3)

where

δKMBias = Portion of δKBias characterized as a vector first order Markov process.

12-126 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

CKMBias = δKMBias “correlation frequency” coefficient. A more general formulation

would have a distinct value of CKMBias for each of the δKMBias vector
components (i.e., CKMBias represented as a diagonal matrix with distinct
elements on the diagonal).

nKMBias = δKMBias Markov process input white noise vector. Each component of
nKMBias is uncorrelated from its other components.

The distinction between the Equation (12.5.6-2) and (12.5.6-3) processes is that the Markov
process reaches a steady state condition in which the statistical ensemble amplitude (i.e., the
root-mean-square (RMS) value over an ensemble of samples) is constant (see Section 16.2.3.1
for analytical discussion); for the random walk process, the average squared ensemble
amplitude value is unbounded, building linearly with time, hence, the RMS amplitude builds as
the square root of time. The above property of the random walk process can be easily seen
from (12.5.6-2) using generalized Equation (15.1-1) (compared with (12.5.6-2)), (15.1.2.1-5)
and (15.1.2.1.1-30).

In general, the angular rate δKBias term can be characterized as the sum of random walk,
Markov process and “other effects” that are unique to the particular sensor being analyzed. The
“other effects” might include residual terms that are linearly proportional to specific force
acceleration components (i.e., “g” sensitive errors) or proportional to products of specific force
acceleration components (e.g., “g-squared” sensitive errors such as discussed in Section 12.6).
The coefficients for the “other effects” would also be modeled as random walk processes plus
(if significant) Markov processes. The random walk process associated with a particular sensor
residual error coefficient is generally larger in magnitude (statistically) than the associated first
order Markov process. This provides the rationale in some applications for dropping the
Markov process terms as negligible. However, if Kalman filter aiding is incorporated in the
system and is used to correct the residual error in a particular sensor error coefficient, the
random walk term statistical amplitude might be reduced to a level at which the Markov process
term becomes significant. A simplified version of random-walk/Markov process Equations
(12.5.6-2) - (12.5.6-3) is also possible embodying both of the previous effects. With this

approach, δK0Bias and δKMBias would be merged into a combined single error state that uses

the δK0Bias model initially (when δK0Bias is large) and then switches to the δKMBias model

when the δK0Bias variance is reduced to the δKMBias initial uncertainty level by the Kalman

filter estimation process. A similar discussion applies to the δLBias term for the accelerometer.

In the case of the δKScal/Mis and δLScal/Mis scale-factor/misalignment residual error terms,

random walk processes are generally sufficient for analytical modeling, with Markov processes
sometimes included for aided systems in which the particular error terms are being estimated

ERROR EQUATION REVISIONS TO ENHANCE QUANTIZATION NOISE MODELING 12-127

and corrected by a Kalman filter. For inertial sensors having significant residual scale factor
non-linearity errors (e.g., accelerometers with electronic output pulse generators), these effects
may require additional random constant coefficients for modeling that are proportional to the
associated particular sensor input rectification effect (e.g., input squared or absolute value of
input). Regarding modeling of scale factor non-linearity error, it is important to consider the
effect of sensor input vibration which may be the dominant rectification error produced (See
Section 12.6 for example).

12.6 VIBRATION MODELING

Vibration effects (both angular and linear) appear as angular and linear vibration components

superimposed on ωIB and aSF in navigation error Equations (12.5.1-1), (12.5.2-1), (12.5.3-1)

and (12.5.4-1), and in the inertial sensor analytical models for vibration sensitive error effects in
these equations (as discussed in Section 12.5.6).

The following examples illustrate how vibration effects on X-axis inertial sensor models
might be handled for a conventional spinning wheel gyro with “g-squared” sensitive error (as in
Section 16.2.3.2) and for an accelerometer with scale factor asymmetry error:

δKG2BiasX = aVib
2

 + aIAX aSAX δωG2BiasX

δLSFAsymBiasX = aVib
2

 + aIAX

2
 δaSFAsymX

(12.6-1)

where
aVib = Root-mean-square specific force acceleration vibration amplitude per axis.

aIAX = Component of aSFMean

B
 (defined below) along the X-axis inertial sensor input

axis.

aSAX = Component of aSFMean

B
 (defined below) along the X-axis gyro spin axis.

aSFMean

B
 = Mean value portion of aSF

B
 (i.e., exclusive of vibration effects).

δKG2BiasX = Contribution to δKBias from the X-axis angular rate sensor caused by
residual (after compensation) g-squared error sensitivity.

δωG2BiasX = X-axis angular rate sensor residual g-squared bias error coefficient.

δLSFAsymBiasX = Contribution to δLBias from the X-axis accelerometer caused by
residual (after compensation) asymmetrical scale factor error
sensitivity.

12-128 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

δaSFAsymX = X-axis accelerometer residual scale factor asymmetry error coefficient.

The δωG2BiasX and δaSFAsymX residual sensor error coefficients in Equations (12.6-1)

would typically be modeled as unknown constants. Note, that for Kalman filter aided
applications, these coefficients would not be estimated by the Kalman filter because the aVib

term is typically not available in the system computer, and because the error model has some
degree of uncertainty. It might, however, be included in “optimal” Kalman filter simulation
analyses, but with the associated Kalman gains set to zero to account for the error but to not
estimate it (i.e., the “considered variable” approach). See Section 15.1.2.1.1 for more detail.

The effects of vibration on ωIB and aSF in navigation error Equations (12.5.1-1), (12.5.2-1),

(12.5.3-1) and (12.5.4-1) primarily affect the product of these terms with the inertial sensor

quantization noise δαQuant and δυQuant. A method that can be used for modeling this effect is

to treat ωIB and aSF multiplying δαQuant and δυQuant (which only occurs in the attitude and

velocity error rate equations) as the sum of vibration and “mean” effects, with the “mean”

effects identified using the same ωIB and aSF nomenclature. The remaining ωIB and aSF terms

in the navigation error equations would then be interpreted as representing the “mean” angular
rate and linear acceleration with vibration excluded. With this approximation, the sensor
quantization error effects in the Equations (12.5.1-1), (12.5.2-1), (12.5.3-1) and (12.5.4-1)
attitude and velocity error rate expressions would be replaced by:

 For ψ
N

 in Equations (12.5.1-1):

CB
N

 ωIB
B

× δαQuant → CB
N

 ωIB
B

× δαQuant + CB
N

 ωVib
B

 × δαQuant

(12.6-2)

 For δV
N

 in Equations (12.5.1-1):

- aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant →

 - aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant

 - CB
N

 aVib
B

 × δαQuant + ωVib
B

 × δυQuant

(12.6-3)

 For γ
N

 in Equations (12.5.2-1):

CB
N

 ωIB
B

 × δαQuant → CB
N

 ωIB
B

 × δαQuant + CB
N

 ωVib
B

 × δαQuant

(12.6-4)

VIBRATION MODELING 12-129

 For δv
N

 in Equations (12.5.2-1):

- aSF
N × CB

N
 δαQuant - CB

NωIB
B

 × CB
N

 δυQuant →

 - aSF
N × CB

N
 δαQuant - CB

NωIB
B

 × CB
N

 δυQuant

 - CB
N

 aVib
B

 × δαQuant + ωVib
B

 × δυQuant

(12.6-5)

 For γ
N

 in Equations (12.5.3-1):

CB
N

 ωIB
B

× δαQuant → CB
N

 ωIB
B

× δαQuant + CB
N

 ωVib
B

 × δαQuant

(12.6-6)

 For δV
N

 in Equations (12.5.3-1):

- aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant →

 - aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant

 - CB
N

 aVib
B

 × δαQuant + ωVib
B

 × δυQuant

(12.6-7)

 For ψ
N

 in Equations (12.5.4-1):

CB
N

 ωIB
B

× δαQuant → CB
N

 ωIB
B

× δαQuant + CB
N

 ωVib
B

× δαQuant

(12.6-8)

 For δυ
N

 in Equations (12.5.4-1):

- aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant →

 - aSF
N × CB

N
 δαQuant - CB

N
 ωIB

B
 × CB

N
 δυQuant

 - CB
N

 aVib
B

 × δαQuant + ωVib
B

 × δυQuant

(12.6-9)

where

ωVib
B

 = Angular rate vibration of B frame relative to inertial space as projected on B
Frame axes.

12-130 STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

aVib
B

 = Specific force acceleration vibration of the B Frame relative to inertial space as

projected on B Frame axes.

Equations (12.6-8) - (12.6-9) are also compatible with the I Frame version of Equations

(12.5.4-1) if we replace N with I. The equivalent to (12.5.4-1) (for ψI
, δυI

, δRI) is obtained by

equating N to I which sets ωIN to zero.

The Equation (12.6-1) - (12.6-11) vibration and noise effects (as well as the noise effects in
the overall navigation equation sets (12.5.1-1), (12.5.2-1), (12.5.3-1) and (12.5.4-1)) are
typically analyzed using covariance simulation analysis techniques as discussed in Chapter 16.

A-1

References

1. Bisplinghoff, R. L., Ashley, H. & Halfman, R. L., Aeroelasticity, Addison-Wesley, Reading
Mass., 1956.

2. Bortz J. E., “A New Mathematical Formulation for Strapdown Inertial Navigation”, IEEE
Transactions on Aerospace and Electronic Systems, Volume AES-7, No. 1, January
1971, pp. 61-66.

3. Britting, K. R., Inertial Navigation System Analysis, John Wiley and Sons, New York,
1971.

4. “Department Of Defense World Geodetic System 1984”, NIMA TR8350.2, Third Edition,
4 July 1997.

5. Downs, H. B., “A Lab Test To Find The Major Error Sources In A Laser Strapdown Inertial
Navigator”, 38th Annual Meeting of the ION, Colorado Springs, CO, June 15-17,
1982.

6. Gelb, A., Applied Optimal Estimation, The MIT Press, Cambridge Mass., London,
England, 1978.

7. Gille, J. C., Pelegrin, M. J., & Decaulne, P., Feedback Control Systems Analysis, Synthesis,
And Design, McGraw-Hill, New York, Toronto, London, 1959.

7a. Goodman, L.E. and Robinson, A.R., "Effects of Finite Rotations on Gyroscope Sensing
Devices", Journal of Applied Mechanics, Vol. 25, June 1958.

8. Halfman, R. L., Dynamics: Particles, Rigid Bodies, and Systems, Volume I, Addison-
Wesley, Reading Mass., Palo Alto, London, 1962.

9. Hills, F. B., “A Study Of Coordinate-Conversion Errors In Strapped-Down Navigation”,
MIT Electronics Systems Laboratory, E SL-4-244, Cambridge, MA, August 1965.

10. Holbrook, J. G., Laplace Transforms For Electronics Engineers, Pergamon Press, New
York, London, Paris, Los Angeles, 1959.

11. Ignagni, M. B., “Optimal Strapdown Attitude Integration Algorithms”, AIAA Journal Of
Guidance, Control, And Dynamics, Vol. 13, No. 2, March-April 1990, pp. 363-369.

11a. Ignagni, M.B., "On the Orientation Vector Differential Equation in Strapdown Inertial
Systems", IEEE Transactions On Aerospace and Electronic Systems, Vol. 30, No. 4,
October 1994, pp. 1076-1081.

A-2 REFERENCES

12. Ignagni, M. B., “Efficient Class Of Optimized Coning Compensation Algorithms”, AIAA
Journal Of Guidance, Control, And Dynamics, Vol. 19, No. 2, March-April 1996, pp.
424-429.

13. Ignagni, M. B., “Duality of Optimal Strapdown Sculling and Coning Compensation
Algorithms”, Journal of the ION, Vol. 45, No. 2, Summer 1998.

14. Jordan, J. W., “An Accurate Strapdown Direction Cosine Algorithm”, NASA TN-D-5384,
Sept.ember 1969.

15. Kachickas, G. A., “Error Analysis For Cruise Systems”, Inertial Guidance, edited by
Pitman, G. R., Jr., John Wiley & Sons, New York, London, 1962.

15a. Laning, J.H., Jr., "The Vector Analysis of Finite Rotations and Angles", Massachusetts
Institute of Technology, Cambridge, Instrumentation Laboratory Special Report 6398-
S-3, 1949.

16. Lawrence, Anthony, Modern Inertial Technology, Springer-Verlag New York, Inc., 1993.

17. Liepmann, H. W. & Roschko, A., Elements of Gasdynamics, John Wiley & Sons, New
York, and Chapman & Hall, London, 1957.

18. Litmanovich, Y. A., Lesyuchevsky, V. M. & Gusinsky, V. Z., “Two New Classes of
Strapdown Navigation Algorithms”, AIAA Journal Of Guidance, Control, And
Dynamics, Vol. 23, No. 1, January- February 2000.

19. Mark, J.G. & Tazartes, D.A., “On Sculling Algorithms”, 3rd St. Petersburg International
Conference On Integrated Navigation Systems, St. Petersburg, Russia, May 1996.

19a. Martin, William Ted and Reissner, Eric, Elementary Differential Equations, Addison-
Wesley, Cambridge Mass., 1956, Sec. 6-8.

20. Mckern, R. A., “A Study of Transformation Algorithms For Use In A Digital Computer”,
Massachusetts Institute of Technology, Master’s Thesis, Department of Aeronautics
and Astronautics, Cambridge, MA, January 1968.

21. Merhav, Schmuel, Aerospace Sensor Systems and Applications, Springer-Verlag New
York, Inc., 1996.

21a. Meriam, J. L., Mechanics Part II . Dynamics, John Wiley & Sons, 1951, 1952, pp. 664

22. Miller, R., “A New Strapdown Attitude Algorithm”, AIAA Journal Of Guidance, Control,
And Dynamics, Vol. 6, No. 4, July-August 1983, pp. 287-291.

23. Minor, J. W., “Low-Cost Strapdown-Down Inertial Systems”, AIAA/ION Guidance and
Control Conference, August 16-18, 1965.

REFERENCES A-3

24. Morrisson, N., Introduction to Sequential Smoothing and Prediction, Mcgraw-Hill, New
York, St. Louis, San Francisco, London, Sydney, Toronto, Mexico, Panama, 1969.

25. Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, Part 1, McGraw-Hill,
New York, Toronto, London, 1953.

26. Newton, G. C., Gould, L. A. & Kaiser, J. F., Analytical Design of Linear Feedback
Controls, John Wiley & Sons, New York, and Chapman & Hall, London, 1957.

27. Parkinson, B. W. & Spilker, Jr., J. J., Global Positioning System: Theory and
Applications, Volume I, American Institute of Aeronautics & Astronautics,
Washington DC, 1996.

28. Perkins, C. D. & Hage, R. E., Airplane Performance Stability and Control, John Wiley &
Sons, New York, and Chapman & Hall, London, 1957.

28a. Roscoe, K. M., “Equivalency Between Strapdown Inertial Navigation Coning and
Sculling Integrals/Algorithms”, AIAA Journal Of Guidance, Control, And Dynamics,
Vol. 24, No. 2, March-April 2001, pp. 201-205.

29. Savage, P. G., “A New Second-Order Solution for Strapped-Down Attitude
Computation”, AIAA/JACC Guidance & Control Conference, Seattle, Washington,
August 15-17, 1966.

30. Savage, P. G., “Calibration Procedures For Laser Gyro Strapdown Inertial Navigation
Systems”, 9th Annual Electro-Optics / Laser Conference and Exhibition, Anaheim,
California, October 25 - 27, 1977.

31. Savage, P. G., “Strapdown Sensors”, Strapdown Inertial Systems - Theory And
Applications, NATO AGARD Lecture Series No. 95, June 1978, Section 2.

32. Savage, P. G., “Advances In Strapdown Sensors”, Advances In Strapdown Inertial
Systems, NATO AGARD Lecture Series No. 133, May 1984, Section 2.

33. Savage, P. G., “Strapdown System Algorithms”, Advances In Strapdown Inertial Systems,
NATO AGARD Lecture Series No. 133, May 1984, Section 3.

34. Savage, P. G., “Strapdown Inertial Navigation System Integration Algorithm Design Part
1 - Attitude Algorithms”, AIAA Journal Of Guidance, Control, And Dynamics, Vol.
21, No. 1, January-February 1998, pp. 19-28.

35. Savage, P. G., “Strapdown Inertial Navigation System Integration Algorithm Design Part
2 - Velocity and Position Algorithms”, AIAA Journal Of Guidance, Control, And
Dynamics, Vol. 21, No. 2, March-April 1998, pp. 208-221.

A-4 REFERENCES

35a. Savage, P. G., "Analytical Modeling of Sensor Quantization in Strapdown Inertial
Navigation Error Equations", AIAA Journal Of Guidance, Control, And Dynamics,
Vol. 25, No. 5, September-October 2002, pp. 833-842.

35b. Savage, P. G., "A Unified Mathematical Framework For Strapdown Algorithm Design",
AIAA Journal Of Guidance, Control, And Dynamics, Vol. 29, No. 2, March-April
2006, pp. 237-249.

35c. Savage, P. G., "Reply by the Author to Y. Wu", AIAA Journal Of Guidance, Control, And
Dynamics, Vol. 29, No. 6, November-December 2006, pp. 1485-1486.

36. Shepperd, S. W., “Quaternion From Rotation Matrix”, AIAA Journal Of Guidance,
Control, And Dynamics, Vol. 1, No. 3, May- June 1978.

36a. Shuster, Malcolm D., "The Kinematic Equation for the Rotation Vector", IEEE
Transactions on Aerospace and Electronic Systems, Vol. 29, Issue 1, January 1993,
pp. 263-267

37. Sikolnikoff, I. S. & Redheffer, R. M., Mathematics of Physics and Modern Engineering,
McGraw-Hill, New York, Toronto, London, 1958.

38. Thomas, Jr., G. B., Calculus And Analytic Geometry, Addison-Wesley, Cambridge Mass.,
1955.

39. Turley, A. R., “A Solution For The Problems Of The No-Gimbal Inertial Navigator
Concept”, Air Force Avionics Laboratory, AFAL-TR-64-307, Wright Patterson AFB,
OH, January 1965.

40. United Aircraft Corporation, “A Study of Critical Computational Problems Associated
with Strapdown Inertial Navigation Systems”, NASA Report CR-968, April 1968.

40a. Wu, Y. "Comment on 'A Unified Mathermatical Framework for Strapdown Algorithm
Design' ", AIAA Journal Of Guidance, Control, And Dynamics, Vol. 29, No. 6,
November-December 2006, pp. 1482-1484.

B-1

Subject Index
(Subject Located By Section Number Unless Otherwise Indicated)

Acceleration (defined)
Gravitational, See Gravity
Measured by accelerometers, Following Fig.

1-1, Following Eq. (4.2-4), Following Eq.
(4.3-10)

Specific force, Following Fig. 1-1, 2.1,
Following (4.2-4), 19.3.3

Total, Following Fig. 1-1, Following Eq.
(4.2-4), 19.3.3

Acceleration transformation
Algorithm validation, See under Software

validation - Of strapdown inertial
navigation routines

Continuous form, 4.2
Correction for local level rotation, 7.2.2.1
Digital algorithms, 7.2.2, 7.2.2..
Effect of inertial sensor error on, 13.2.4
Error characteristics, 13.4.1.2

Accelerometer compensation
By vertical channel control gains, 4.4.1.2.1
For anisoinertia error, 8.1.4, 8.1.4.2
For position updating algorithms, 8.2.3,

8.2.3.1
For quantization error, 8.1.3, 8.1.3.
For scale-factor non-linearity, 8.1.1.3
For sculling algorithm, 8.2.2.1
For size effect in rotation-compensation/

sculling algorithm, 8.1.4.1.3
For size effect in sculling algorithm, 8.1.4.1.2
For size effect, 8.1.4, 8.1.4.1.

For velocity updating, 8.2.2, 8.2.2.
General formulas, 8.1.1.2
In strapdown sensor compensation summary,

Table 8.4-1
Integrated output algorithms, 8.1.2.2
Sensor level, 8.1.1.2.1
System level, 8.1.1.2.1
Updating from strapdown rotation test, 18.4.6

Accelerometer error characteristics, 8.1.1.2, 12.4,
12.5.6

Accelerometer (sensor definition), Following Fig.
1-1

Accelerometer (simulating), 11.2.1.2, 11.2.2.2,
11.2.3.2. 11.2.4.3.1, 17.3.1

Accelerometer (what it measures), 19.3.3
Aiding, See Kalman filtering

Algorithms (for INS)
Execution rate selection, 7.4
Response under vibration - See under

Vibration effects analysis
See Coning - Algorithms
See Direction cosine matrix - Update

algorithms
See Positioning - Position update algorithms
See Quaternion - Update algorithms
See Scrolling - Algorithms
See Sculling - Algorithms
See Unified framework for strapdown

algorithm design
See Velocity - Update algorithms
Selection, 7.4
Strapdown inertial navigation algorithm

summary, 7.5, Table 7.5-1
Alignment compensation

For accelerometers, See Accelerometer
compensation - Integrated output
algorithms, For position updating
algorithms, For sculling algorithm, For
size effect , Updating from strapdown
rotation test

For angular rate sensors, See Angular rate
sensor compensation - For coning
algorithm, Integrated output algorithms,
For position updating algorithms, For size
effect, Updating from strapdown rotation
test

For sensor assembly
Algorithm, 8.3
Coefficient updating from strapdown

rotation test, 18.4.5, 18.4.6
Altitude

Defined, 4.4, 5.2
From position vector, 4.4.2.3
Initialization, 6.4
Position vector from, 4.4.2.2
Rate equation, 4.4.1.2, 4.4.1.2.1, 7.3
Updating algorithm, 7.3.1

Angular rate sensor compensation
For attitude updating, 8.2.1, 8.2.1.
For coning algorithm, 8.2.1.1
For position updating algorithms, 8.2.3,

8.2.3.1

B-2 SUBJECT INDEX

Angular rate sensor compensation (Continued)
For quantization error, 8.1.3, 8.1.3.
For scale-factor non-linearity, 8.1.1.3
For size effect, 8.1.4.1.1, 8.1.4.1.1.2, 8.1.4.1.4,

8.1.4.1.5
General formulas, 8.1.1.1
In strapdown sensor compensation summary,

Table 8.4-1
Integrated output algorithms, 8.1.2.1
Sensor level, 8.1.1.1.1
System level, 8.1.1.1.1
Updating from strapdown drift test, 18.2.3
Updating from strapdown rotation test, 18.4.6

Angular rate sensor error characteristics, 8.1.1.1,
12.4, 12.5.6

Angular rate sensor (sensor definition), Following
Fig. 1-4

Angular rate sensor (simulating), 11.2.1.2, 11.2.2.2,
11.2.3.2, 11.2.4.3.1, 17.3.1

Angular rate sensor (what it measures), 19.3.2,
19.3.2.

Angular rate vector
Body rate (defined), Following Fig. 1-4
Earth rate (defined), After Eq. (4.1.1-2)
From Euler angle rates, 3.3.3.1
In general (defined), 2.1
Measured by angular rate sensors, Following

Fig. 1-4, 2.1
Transport rate, See under separate listing

Anisoinertia error (in pendulous accelerometers),
8.1.4.2, 10.1.4.1

Attitude
Algorithms (for INS)

Euler angle outputs, 4.1.2
See Coning - Algorithms
See Direction cosine matrix - Update

algorithms (for INS)
See Quaternion - Update algorithms (for

INS)
See Unified frmework for strapdown

algorithm design
Error characteristics, 3.5, 3.5.1, 3.5.2, 3.5.3,

11.2.1.4, 12.2.1
Initialization, See Initialization - Attitude
Parameters (defined)

Direction cosine matrix, 3.2.1
Euler angles, 3.2.3
Quaternion, 3.2.4, 3.2.4.1
Rotation vector, 3.2.2

Rate equations
Direction cosine matrix, 3.3.2, 4.1
Euler angles, 3.3.3, 3.3.3.2, 3.3.3.3
Quaternion, 3.3.4, 4.1
Rotation vector, 3.3.5, 19.1.5

Average of averages filter, 18.4.7.3

Bias
Accelerometer

Defined, 8.1.1.2
Error compensation, See Accelerometer

compensation
Angular rate sensor

Defined, 8.1.1.1
Error compensation, See Angular rate

sensor compensation
Body B Frame coordinates (defined), 2.2
Body rate (defined), Following Fig. 1-4
Calibration, See Compensation
CEP (defined), Following Equation (18.2.1-25)
Coarse leveling, See Initialization - Attitude -

Quasi-stationary
Compensation

See Accelerometer compensation
See Alignment compensation - For sensor

assembly
See Angular rate sensor compensation

Coning
Algorithms, 7.1.1.1.1, 19.1.8

Compensation for inertial sensor error,
8.2.1.1

Defined, 7.1.1.1
See Attitude, Algorithms

Continuous alignment test, 18.3.2, 18.3.2.
Control vector

For continuous form Kalman filter, 15.1.5.3.2
For discrete form Kalman filter, 15.1, 15.1.2,

15.1.2.3, 15.1.2.3.1, 15.2.1, 15.2.1.1
Coordinate frame(s)

Defined, 2.1
Principal frames used in book, 2.2
Used in book, Coordinate frame index (back

of book - See Table of Contents)
Coriolis effect

For vectors in rotating coordinate frames,
3.3.1, 3.4

In position update algorithms, 7.3.3
In velocity rate equation, 4.3
In velocity update algorithms, 7.2.1

Covariance matrix
Defined, 15.1.2.1
See Covariance simulation programs
See Kalman filtering - Covariance matrix

operations
Covariance simulation programs, 16.

Covariance operations
Numerical conditioning control,

15.1.2.1.1.4
Propagation timing, 16.2.6.5
Propagation, 16.2.6.1, 16.2.6.2
Resets, 16.2.6.1, 16.2.6.2

Error budget outputs, 16.2.4, 16.2.6.9

SUBJECT INDEX B-3

Covariance simulation programs (Continued)
Error models

Acceleration squared error effects,
16.2.3.2

General, 16.2.3
Gravity error models, 16.2.3.3
Inertial sensor errors, 12.5.5
Process noise, 16.2.3.1
Specification of, 16.2.6.7

Error state configuration, 16.2.6.3
Error state control configuration, 16.2.6.4
Estimation configuration, 16.2.6.4
Estimation timing, 16.2.6.6
For delayed control Kalman updates, 16.1.2,

16.1.2.
For idealized control Kalman updates, 16.1.1,

16.1.1.
For Kalman filter design, 16.2.7
For optimal Kalman filter performance

evaluation, 16.1.1.3, 16.1.2.1
For suboptimal Kalman filter performance

evaluation, 16.1.1.1, 16.1.1.4, 16.1.2,
16.1.2.2, 16.2, 16.2.

Initialization, 16.1.1.2, Following Eq.
(16.1.2-28)

Performance outputs, 16.2.5, 16.2.6.10
Program structure, 16.2.6, 16.2.6.
Sensitivity outputs, 16.2.4, 16.2.6.9
Simplified versions, 16.1.1.4, 16.1.2.2,

16.2.6.2
Trajectory generator interface, 16.2.6.8

Cross-product operator, 3.1.1
Curvature matrix, 5.2.4
Direction cosine matrix

Defined, 3.1
Error characteristics

Generalized, 3.5.1
In navigation parameters, 12.2.1, 12.2.3
Misalignment error from Euler angle

errors, 3.5.3
Misalignment error, 3.5.2

For vector coordinate frame transformation, 3.1
From Euler angles, 3.2.3.1, 4.4.2.1
From quaternion, 3.2.4.2, 7.1.2.4
From rotation vector, 3.2.2.1, 7.1.1.1, 7.1.1.2,

7.2.2.2, 7.3.1
From transformed vector components, 3.2.1.1
General properties, 3.1, 3.2.1
Rate equation

For INS, 4.1, 4.4.1.1, 7.3
Generic, 3.3.2

Update algorithms (for INS), 7.1.1, 7.1.1 , 7.3.1
For body frame rotation, 7.1.1.1, 7.1.1.1.1

Direction cosine matrix - Update algorithms (for
INS) (Continued)

For local level frame rotation, 7.1.1.2,
7.1.1.2.1

Normalization, 7.1.1.3
Orthogonalization, 7.1.1.3
See Coning - Algorithms

Earth coordinates (defined), 2.2
Earth referenced parameters

Altitude, 5.2, See also under separate listing
Curvature matrix, 5.2.4
Ellipticity, 5.1, See also under separate listing
Equatorial radius (numerical value), Table

5.6-1
Flattening, 5.6
Latitude angle parameters, 5.2.3
Navigation parameters, 5.2, 5.2.
Parameter summary, 5.6, Table 5.6-1
Polar coordinate angle parameters, 5.2.2
Position vector, 5.2, 5.2.1, See also under

separate listing
Radii of curvature, 5.2.4

Earth rotation rate (numerical value), Table 5.6-1
Ellipticity

Defined, 5.1
Equivalency with Flattening, 5.6
Numerical value, Table 5.6-1

Error Analysis
Accelerometer error characteristics, 8.1.1.2
Angular rate sensor error characteristics,

8.1.1.1
General inertial sensor error models, 12.4
See Attitude - Error characteristics
See Covariance simulation programs
See Initial alignment error analysis
See Navigation error analysis
See Vector - Error characteristics

Error state dynamic equation (defined), 15.1
Error state dynamic matrix (defined), 15.1
Error state transition matrix

Continuous form propagation, 15.1.1
Defined, 15.1.1
Discrete form propagation, 15.1.1,

15.1.2.1.1.1
Error state vector

Defined, 15.1
See Kalman filtering - Error state vector

operations
Euler angles

Defined, 3.2.3
From direction cosines, 3.2.3.2, 4.1.2
INS outputs, 4.1.2
Method of Least Work for analyzing, 3.2.3.3
Rate equations, 3.3.3, 3.3.3.2, 3.3.3.3

B-4 SUBJECT INDEX

Euler’s Theorem, Following Eq. (3.2.2-13),
Following Eq. (10.2.1-11)

Filtering
In INS vertical channel control, 4.4.1.2.1
In trajectory generators, 17.2.1
See Kalman filtering
To attenuate INS output jitter, 9.

Fine alignment, See Initialization - Attitude -
Quasi-stationary

Flattening (earth shape), Equivalency with
Ellipticity, 5.6

Folding
Impact on initial alignment, 7.4
In position update algorithm, 10.1.3.2.3,

10.1.5, 10.3, 10.4.2, 10.6.1, 10.6.2
In strapdown inertial integration algorithms,

10.1.3
Foreground

Defined, Preceding Eq. (15.1.2.3-16)
Initialization, 15.2.1.2, Following Eq.

(15.2.2.1-36)
Integrating and controlling, 15.2.1, 15.2.1.1,

Following Eq. (15.2.2.1-34), Following
Eq. (15.2.2.2-14)

Free azimuth coordinates (defined), 4.5
Frequency response analytics

For random inputs, 10.2.2
For sinusoidal inputs, 10.2.1

GEN NAV simulator, 11.2, 11.2.4, 11.2.4.
Geographic coordinates (defined), 2.2
GPS (Global positioning system)

 In Kalman filter aided INS, 15.2.4
 Simulated using trajectory generator, 17.3.2

Gravity
Field shape, 19.3.2.7.1
From mass attraction, 5.4, 12.1.1, 12.2.4,

16.2.3.3
Numerical coefficients for, Table 5.6-1

Plumb-bob gravity, 5.4.1
For error analysis, 12.2.4, 16.2.3.3
Linearized, 12.1.1

Gyro, See Angular rate sensor

Heading (Euler angle), 3.2.3, 3.2.3. , 4.1.2
Platform, 4.1.2
True, 4.1.2

Inertial coordinates (defined), 2.2
Inertial navigation equations, See Strapdown

inertial navigation equations
Inertial navigation system (defined)

Gimbaled, Following Fig. 1-2
Strapdown, Following Fig. 1-4

Inertial sensor compensation algorithms
See Accelerometer compensation
See Alignment compensation - For sensor assembly

Inertial sensor compensation algorithms (Continued)
See Angular rate sensor compensation

Inertial sensor error characteristics
General inertial sensor error models, 12.4,

12.5.6
See Accelerometer error characteristics
See Angular rate sensor error characteristics
See Covariance simulation programs - Error

models
See Quantization error (on inertial sensor

outputs)
Inertial sensor operations

In an INS, Chapter 1
What inertial sensors measure, 19.3.1
What gyros measure, 19.3.2, 19.3.2.
What accelerometers measure, 19.3.3

Inertial Space, 19.3.1, 19.3.2.3, 19.3.2.4
Initial alignment error analysis

Correlation with navigation errors, 14.5
For constant inertial sensor errors, 14.3
For ramping accelerometer error, 14.4
For random errors, 14.6, 14.6.

Inertial sensor noise, 14.6.4.
Measurement noise, 14.6.3
Summary, 14.6.4.4, 14.6.5, 14.6.5.

Quasi-stationary error rate equations, 14.2
Initialization

Attitude
Moving base, 15.2.2, 15.2.2.

Quasi-stationary, 6.1, 6.1.
Coarse leveling, 6.1.1
Error analysis, 14.
Fine alignment, 6.1.2, 14.1, 15.2.1,

15.2.1.
Removal of residual tilt, 6.1.3

For INS in general, 4.6
Kalman filter, See Kalman filtering -

Initialization
Position

Altitude, 6.4
Navigation frame orientation, 6.2, 6.2.

Under dynamic moving base conditions,
15.2.2, 15.2.2.

Velocity, 6.3
INS, See Inertial navigation system
Integrated velocity matching, 15.2.2, 15.2.2.
Jitter

Acceleration measurement, 9.2
Analytical description, 9.1
Angular rate measurement, 9.2
Filter for, 9.3
Removal from INS output data, 9.4, 9.5

SUBJECT INDEX B-5

Kalman filtering
Continuous form Kalman filter, 15.1.5.3,

15.1.5.3.
Control vector operations, 15.1, 15.1.2,

15.1.2.3, 15.1.2.3.1, 15.1.5.3.2
Covariance matrix operations

In continuous form Kalman filter
Combined propagation/Kalman-

updates, 14.6.1, 15.1.5.3.1
Kalman updates, 15.1.5.3.1
Propagation, 15.1.2.1.1, 15.1.5.3.1

In discrete form Kalman filter
Kalman updates, 15.1.2.1, 15.1.2.1.1
Propagation equation, 15.1.2.1.1,

15.1.2.1.1.3
Initialization, 15.2.1.2
Numerical conditioning control,

15.1.2.1.1.4
Covariance response characteristics

General, 15.1.5.4
General with zero measurement noise,

15.1.5.4.1
Quasi-stationary alignment 14.6, 14.6.

Design process, 15.1.3
Discrete form Kalman filter configuration,

15.1.2, 15.1.2. ,
Error reduction by external control, 15.1.2.3.1
Error state transition matrix computation,

15.1.2.1.1.1,
Error state vector operations

Continuous form combined propagation/
Kalman-updating, 15.1.5.3.2

Continuous form control resets, 14.6.1,
15.1.5.3.2

Continuous form Kalman updating,
15.1.5.3.2

Continuous form propagation, 14.6.1,
15.1, 15.1.5.3.2

Discrete form control resets, 15.1, 15.1.2,
15.1.2.3, 15.1.2.3.1, 15.2.1, 15.2.1.1

Discrete form Kalman updating, 15.1.2
Discrete form propagation, 15.1.1, 15.1.2,

15.1.2.1.1.3
Examples

Dynamic moving base alignment, 15.2.2,
15.2.2.

GPS aiding, 15.2.4
Quasi-stationary alignment, 15.2.1,

15.2.1.
Velocity sensor aiding, 15.2.3

Initialization, 15.2.1.2, Following Eq.
(15.2.2.1-36)

Integrated process noise matrix computation,
15.1.2.1.1.2, 15.1.2.1.1.3

Kalman filtering (Continued)
Kalman gain calculation, 15.1.2.1, 15.2.1. ,

15.1.5.2
Measurement (continuous form), 14.6.1,

15.1.5.3.2
Measurement (discrete form), 15.1, 15.1.2,

15.1.2.2, 15.2.1, 15.2.2.1
Observation equation, 15.1, 15.1.2.2, 15.2.1,

15.2.2.1
Software validation, 15.1.4
Suboptimal Kalman filters

Covariance performance evaluation
16.1.1.1, 16.2, 16.2.

Defined, 15.1.3
Synchronization, 15.1.2.4
Timing, 15.1.2.4

Latitude
Defined, 4.4.2.1, 5.2
Error equation, 12.2.3
From position direction cosine matrix, 4.4.2.1
From position vector, 4.4.2.3
Latitude angle parameters (general equations

for), 5.2.3
Position vector from, 4.4.2.2
Rate equation, 4.4.3

Local level angular rate, 4.1.1
Local level coordinate frame options, 4.5
Longitude

Defined, 4.4.2.1
Error equation, 12.2.3
From position direction cosine matrix, 4.4.2.1
From position vector, 4.4.2.3
Position vector from, 4.4.2.2
Rate equation, 4.4.3

Mathematical notation (used in book), 2.1
Mathematical symbols (used in book), Table 2.1-1
Matrix

Covariance, See Covariance matrix
Curvature, 5.2.4
Direction cosine, See Direction cosine matrix
Measurement noise, See Measurement noise

matrix
Measurement, See Measurement matrix
Process noise, 15.1.2.1.1, 15.1.2.1.1.2,

15.1.2.1.1.3
Process noise density, See Process noise

density (matrix)
Skew-symmetric (defined), 3.5.1
State dynamic, See Error state dynamic matrix
State transition, See Error state transition

matrix
Symmetric (defined), 3.5.1

Matrix inversion lemma, 15.1.5.1
Measurement equation, 15.1, 15.1.2.2

B-6 SUBJECT INDEX

Measurement matrix
Defined, 15.1
In continuous form Kalman filter, 15.1.5.3.1,

15.1.5.3.2
In discrete form Kalman filter, 15.1.2

Measurement noise matrix
In continuous form Kalman filter, 15.1.5.3.1
In discrete form Kalman filter, 15.1.2.1,

15.1.2.1.1
Measurement noise vector

In continuous form Kalman filter, 15.1.5.3.1
In discrete form Kalman filter, 15.1, 15.1.2.1

Measurement vector (defined), 15.1
Method of Least Work (for Euler angle analysis),

3.2.3.3, 3.3.3.3
Moving base alignment, 15.2.2, 15.2.2.
Navigation error analysis

Attitude errors defined, 12.2.1
Basic error parameter selection, 12.2.5
Gravity errors, 12.2.4
Of navigation algorithms, See Simulation

programs - For navigation software
validation

Position errors defined, 12.2.3
Position/velocity/attitude error rate equations,

12.3, 12.3. , 12.5.
For constant altitude with constant sensor

errors, 13.3
Inertial sensor error models, 12.4
Procedures for developing, 12.3.1
Vibration effects modeling, 12.6

Transport rate errors, 12.2.4
Velocity errors defined, 12.2.2
Vibration effects analysis, See under separate

listing
Navigation error analytical solutions

General characteristics, 13.2, 13.2.
High rate spinning about fixed axis, 13.4.1,

13.4.1.
High rate spinning about rotating axis, 13.4.2
Horizontal channel response, 13.2.2
Horizontal circular trajectory (general), 13.4.3
Horizontal circular trajectory at Schuler

frequency, 13.4.4
Inertial sensor misalignment effect, 13.2.4
Inertial sensor scale-factor error effect, 13.2.4
Long term approximation, 13.2.3, 13.5
Short term with free vertical channel, 13.3.1
Short term with random errors, 13.6.2
Two hours with controlled vertical channel,

13.3.2
Two hours with random errors, 13.6.1
Vertical channel response, 13.2.1

Noise
Process noise error models, 16.2.3.1
Process noise matrix, 15.1.2.1.1, 15.1.2.1.1.2,

15.1.2.1.1.3
Process noise vector (integrated), 15.1.1,

15.1.2.1.1
Process noise vector, 15.1
See Measurement noise matrix
See Measurement noise vector
See Process noise density (matrix)

Normalization
Of direction cosine matrix, 3.5.1, 7.1.1.3,

11.2.1.4
Of Quaternion, 7.1.2.3

Observation equation, 15.1, 15.1.2.2
Orthogonalization (of direction cosine matrix),

3.5.1, 7.1.1.3, 11.2.1.4
Parameters used in book (definitions), 2.5,

Parameter index (back of book - See Table of
Contents)

Pitch (Euler angle), 3.2.3, 3.2.3. , 4.1.2
Platform heading (defined), 4.1.2
Plumb-bob gravity, See Gravity - Plumb-bob

gravity
Position direction cosine matrix

Defined, 4.4
Error equations, 12.2.3
From latitude, longitude, wander angle,

4.4.2.1
In INS software algorithms, 7.3.1
Latitude, longitude, wander angle from,

4.4.2.1
Rate equation, 4.4.1.1, 4.5, 7.3

Positioning
Error parameters (defined), 12.2.3
Error rate equations, See Navigation error

analysis - Position/velocity/attitude error
rate equations

Position errors, See under Navigation error
analysis

Position parameter equivalencies
General, 4.4
Latitude/longitude from position direction

cosines, 4.4.2.1
Latitude/longitude/altitude from position

vector, 4.4.2.3
Position vector from latitude, longitude,

altitude, 4.4.2.2
Position parameters, 4.4, 5.2, 5.2.1, 5.2.2,

5.2.3
Position rate equations

Altitude, 4.4.1.2, 4.4.1.2.1, 7.3
Latitude/longitude, 4.4.3
Position direction cosine matrix, 4.4.1.1,

4.5, 7.3

SUBJECT INDEX B-7

Positioning - Position rate equations (Continued)
Position translation vector, 19.1.5

Position update algorithms, 7.3, 7.3.
Based on trapezoidal integration, 7.3.2
Body frame integration algorithms,

7.3.3.2
Compensation for inertial sensor error,

8.2.3, 8.2.3.1
General, 7.3.1
High resolution, 7.3.3, 7.3.3.
Initialization, See Initialization - Position
Position rotation compensation

Exact form, 7.3.3.1
Linearized form, 7.3.3

See Scrolling - Algorithms
See Unified framework for strapdown

algorithm design
Vertical channel control, 4.4.1.2.1

Position translation vector, See Translation vectors
Position vector, 4.3, 4.4.2.3, 5.2, 5.2.1, 12.1,

12.1.3, 12.1.4
Power spectral density

Defined, 10.2.2
Equivalency with process noise density,

Following Eq. (15.1.2.1.1-30)
Process noise density (matrix), 15.1.2.1.1,

15.1.2.1.1.3, 15.1.5.3.1
Equivalency with power spectral density,

Following Eq. (15.1.2.1.1-30)
Process noise error models, 16.2.3.1
Process noise matrix, 15.1.2.1.1, 15.1.2.1.1.2,

15.1.2.1.1.3
Process noise vector (integrated), 15.1.1, 15.1.2.1.1
Process noise vector, 15.1, 15.1.1
Quantization error (on inertial sensor outputs)

Compensation for, 8.1.3, 8.1.3.3
Residual pulse compensation, 8.1.3.1
Turn-around dead-band compensation,

8.1.3.2
Defined, 8.1.1.1, 8.1.1.2, 18.4.7.3, 19.2.3
Error Models, 15.2.1.2, 16.2.3.1, 19.2,

19.2.
Filtering, 18.4.7.3

Quaternion
Coordinate frame transformations, 3.2.4,

3.2.4.1
Defined, 3.2.4
From direction cosines, 3.2.4.3
From rotation vector, 3.2.4.4
Operations, 3.2.4.1
Rate equation

Generic, 3.3.4
INS, 4.1

Update algorithms (for INS), 7.1.2, 7.1.2.

Quaternion - Update algorithms (for INS) (Continued)
For body frame rotation, 7.1.2.1
For local level frame rotation, 7.1.2.2
Normalization, 7.1.2.3
See Coning - Algorithms

Radii of curvature, 5.2.4
References used in book, Back of book (See Table

of Contents)
Repeated Alignment Test, 18.3.1, 18.3.1.

Roll (Euler angle), 3.2.3, 3.2.3. , 4.1.2
Rotation compensation

Position rotation compensation, 7.3.3, 7.3.3.1
Velocity rotation compensation, 7.2.2.2,

7.2.2.2.1
Rotation vector

Applied to INS updating algorithms, 7.1.1.1,
7.1.1.2, 7.2.2.2, 7.3.1, 19.1.4, 19.1.5

Defined, 3.2.2, 19.1.4
From direction cosines, 3.2.2.2
From quaternion, 3.2.4.5
Rate equation, 3.3.5

Scale factor
Accelerometer

Defined, 8.1.1.2
Error compensation, See Accelerometer

compensation
Angular rate sensor

Defined, 8.1.1.1
Error compensation, See Angular rate

sensor compensation
Non-linearity, 8.1.1.3

Schuler, Dr. Maximilian, 13.2.2
Schuler frequency (defined), 13.2.2
Schuler Pump Test, 18.1, 18.1.
Scrolling

Algorithms, 7.3.3.2, 19.1.5-19.1.13
Compensation for inertial sensor error,

8.2.3.1
Defined, 7.3.3, 19.1.5
See Positioning,Position update algorithms,

High resolution
See Unified framework for strapdown

algorithm design
Sculling

Algorithms, 7.2.2.2.2, 19.1.5-19.1.13
Compensation for inertial sensor error,

8.2.2.1, 8.2.2.2
Defined, 7.2.2.2, 19.1.5
See Unified framework for strapdown

algorithm design
See Velocity, Update algorithms

Senescence error, 15.2.2.1, 15.2.2.2
Simulated strapdown inertial sensor outputs,

11.2.1.2, 11.2.2.2, 11.2.3.2, 11.2.4.3.1, 17.3.1

B-8 SUBJECT INDEX

Simulation programs
Covariance, See Covariance simulation

programs
For navigation software validation, 11.

GEN NAV, 11.2, 11.2.4, 11.2.4.
Specialized, 11.1
SPIN-ACCEL, 11.2, 11.2.2, 11.2.2.

SPIN-CONE, 11.2, 11.2.1, 11.2.1.

SPIN-ROCK-SIZE, 11.2, 11.2.3, 11.2.3.

For vibration effects analysis, 10.6, 10.6.
Trajectory generators, See under separate

listing
Size effect

Defined, 8.1.4
Error (and compensation for), 8.1.4.

Skew symmetric form of vector, 3.1.1
Software validation

Of Kalman filters, 15.1.4
Of strapdown inertial navigation routines

Acceleration transformation, See
SPIN-ACCEL and SPIN-CONE
simulators

Accelerometer size effect, See
SPIN-ROCK-SIZE simulator

Attitude algorithm errors, 11.2.1.4
Attitude updating, See SPIN-CONE

simulator
General purpose simulators, 11.2, 11.2.
Overall, See GEN NAV simulator
Position updating, See SPIN-ROCK-SIZE

and GEN NAV simulators
Specialized simulations, 11.1
Summary of routines validated by

simulators, Table 11.2-1
Specific force (defined), Following Fig. 1-1, 2.1,

Following Eq. (4.2-4)
SPIN-ACCEL simulator, 11.2, 11.2.2, 112.2.2.

SPIN-CONE simulator, 11.2, 11.2.1, 11.2.1.

SPIN-ROCK-SIZE simulator, 11.2, 11.2.3, 11.2.3.
State dynamic equation, See Error state dynamic

equation
State dynamic matrix, See Error state dynamic

matrix
State transition matrix, See Error state transition

matrix
State vector, See Error state vector
Strapdown drift test, 18.2, 18.2.
Strapdown inertial navigation equations

Continuous form, 4.1.

Linearized versions, 12.1.

Strapdown inertial navigation equations (Continued)
Summary (continuous form), 4.7, Table 4.7-1, 12.1
See Unified framework for strapdown algorithm

design
Strapdown inertial sensor compensation

See Accelerometer compensation
See Alignment compensation
See Angular rate sensor compensation
Summary, 8.4, Table 8.4-1
System and sensor components, 8.

Strapdown rotation test, 18.4, 18.4.1.
Strapdown sensor B Frame coordinates (defined),

2.2
Surface altitude rate term analysis, 5.5
Testing of strapdown inertial navigation systems,

18.
Accelerometer error evaluation by, 18.1,

18.1. , 18.4, 18.4.
Angular rate sensor error evaluation by,

18.
Angular rate sensor noise evaluation by, 18.3,

18.3.
See Continuous alignment test
See Repeated alignment test
See Schuler pump test
See Strapdown drift test
See Strapdown rotation test
Sensor assembly misalignment evaluation by,

18.4.5
Tilt residual removal at alignment completion,

6.1.3
Timing error, See Senescence error
Trajectory generators, 17.

Aerodynamic effects, 17.1.2.3, 17.1.2.3.1,
17.2.3.2.1

High frequency effects, 17.2.3.2.3
Lever arm effects, 17.2.3.2.2
Trajectory regeneration, 17.2, 17.2.

Trajectory shaping, 17.1, 17.1.
End-of-segment data generation, 17.1.3
Quick- look projection, 17.1.2, 17.1.2.
Segment parameter selection, 17.1.1,

17.1.1.
Trajectory smoothing, 17.2.1
Use in aided strapdown INS simulations, 17.3,

17.3.
Use in simulating GPS receiver, 17.3.2
Use in simulating strapdown INS errors,

17.3.1
Wind gust effects, 17.2.3.2.1

Transfer alignment, See Moving base alignment

SUBJECT INDEX B-9

Translation vectors
Applied to INS updating algorithms, 19.1.4-

19.1.13
Defined, 19.1.4

Transport rate
Analytical description, 5.3
Defined, Following Eq. (4.1.1-5)

True heading (defined), 4.1.2
Unified framework for strapdown algorithm design,

19.1, 19.1.
Validation (of software), See Software validation
Vector

Angular rate, See Angular rate vector
Control, See Control vector
Coordinate frame transformations of, 3.1,

3.1.1
Defined, 3.1
Dot/cross-product identity, Eq. (3.1.1-35)
Error characteristics, 3.5.4
Measurement noise, See Measurement noise

vector
Measurement, See Measurement vector

(defined)
Position, 4.3, 4.4.2.3, 5.2, 5.2.1, 12.1, 12.1.3,

12.1.4
Process noise (integrated), 15.1.1, 15.1.2.1.1
Process noise, 15.1
Product operators, 3.1.1
Rates of change in rotating coordinates, 3.4
Rotation, See Rotation vector
State, See Error state vector
Triple cross-product identity, Eq. (3.1.1-16)
Useful vector relationships, 13.1

Velocity
Defined, 4.3, 12.1.4
INS outputs, 4.3.1
Rate equation, 4.3, 4.4.1.2, 4.4.1.2.1

Velocity translation vector rate, 19.1.5
Update algorithms, 7.2, 7.2.

Body frame specific force increment,
7.2.2.2

For Coriolis, 7.2.1
For gravity, 7.2.1
Integrated acceleration, 7.2.2.2.2
See Sculling - Algorithms
Velocity rotation compensation

Exact form, 7.2.2.2.1
Linearized form, 7.2.2.2

See Unified framework for strapdown
algorithm design

Velocity errors, See under Navigation error
analysis

Vertical channel control, 4.4.1.2.1
Velocity matching, 15.2.2, 15.2.2.3
Velocity translation vector, See Translation vectors

Vibration effects analysis, 10.
Attitude response

INS algorithm response to random system
vibration, 10.4.1

INS algorithm response to sinusoidal
sensor angular vibration, 10.1.1.2,
10.1.1.2.1, 10.1.1.2.2

INS algorithm response to sinusoidal
system vibration, 10.3

To random system vibration, 10.4.1
To sinusoidal angular vibration, 10.1.1,

10.1.1.1
To sinusoidal system vibration, 10.3

Induced folding effects in position algorithms,
10.1.3.2.3

Induced inertial sensor errors, 10.1.4, 10.1.4.1,
10.1.4.2

Inertial sensor dynamic rectification error,
10.1.4, 10.1.4. , 10.1.5, 10.3, 10.4.1

INS dynamic analysis model, 10.5, 10.5.
INS performance under random system inputs,

10.4, 10.4.
INS vibration effects simulation program,

10.6, 10.6.
Position response

INS algorithm response to random system
vibration, 10.4.2

INS algorithm response to sensor linear
vibration, 10.1.3.2, 10.1.3.2.

INS algorithm response to sinusoidal
system vibration, 10.3

To random system vibration, 10.4.1
To sinusoidal linear vibration, 10.1.3,

10.1.3.1
To sinusoidal system vibration, 10.3

Process noise model, 16.2.3.1
Velocity response

INS algorithm response to random system
vibration, 10.4.1

INS algorithm response to sinusoidal
sensor angular/linear vibration,
10.1.2.2, 10.1.2.2.1, 10.1.2.2.2

INS algorithm response to sinusoidal
system vibration, 10.3

To random system vibration, 10.4.1
To sinusoidal angular/linear vibration,

10.1.2, 10.1.2.1
To sinusoidal system vibration, 10.3

Wander angle
Defined, 4.4.2.1
Error equivalencies, 12.2.3
From direction cosines, 4.4.2.1
In calculating north/east velocity, 4.3.1

B-10 SUBJECT INDEX

Wander angle (Continued)
In INS attitude/position initialization, 6.2.1,

6.2.2
In true heading determination, 4.1.2
Rate of change, 4.4.3

Wander azimuth coordinates (defined), 4.5

C-1

Coordinate Frame Index

Coordinate
Frame

Preceding
Equation, Figure,

Or Section No.

Coordinate
Frame

Preceding
Equation, Figure,

Or Section No.

A (3.1-1)

A (3.4-1)

A (3.5.3-1)

A (3.5.4-1)

A (12.2.1-15)

A (13.2.4-17)

A Sect. No. 3.2.3

A Sect. No. 3.3.1

A (3.5.2-7)

A1 (3.5.1-7)

A1 (3.5.3-1)

A1 (4.4.2.1-1)

A1 Sect. No. 3.2.3

A2 (3.5.1-7)

A2 (3.5.3-1)

A2 (4.4.2.1-1)

A2 Sect. No. 3.2.3

AC Sect. No. 17.1.2.3

ACVar (17.2.3.2-13)

B (3.1-2)

B (3.4-1)

B (3.5.3-1)

B (3.5.4-1)

B (11.2.2.1-1)

B (11.2.3.1-1)

B (12.2.1-15)

B (12.2.1-25)

B (15.1.2.2-4)

B (18.1.1-2)

B Sect. No. 2.2

B Sect. No. 3.2.3

B Sect. No. 3.3.1

B Sect. No. 8.3

B (3.5.2-14)

B0 (11.2.2.1-2)

B0 (13.2.4-16)

B0 (13.4.1.2-4)

B0 (13.4.3-4)

B1 (3.3.4-1)

B1 (18.4.7-14)

B2 (3.3.4-1)

B2 (18.4.7-14)

BI(m) Sect. No. 7.1.1

BI(m) Sect. No. 7.1.2

BVar (17.2.3.2-12)

D (3.1-21)

D (3.5.2-38)

D (12.2.1-15)

E Fig. 13.5-1

E Sect. No. 2.2

E Sect. No. 4.0

E Sect. No. 5.0

E Sect. No. 6.0

E Sect. No. 11.2.4

C-2 COORDINATE FRAME INDEX

E Sect. No. 15.1.2.2

E1 (12.2.3-32)

E2 (12.2.3-32)

G0 Fig. 13.5-1

Geo (6.1.3-8)

Geo (11.2.4.3.1.1-1)

Geo (12.2.2-17)

Geo (17.1.2.3-9)

Geo (18.4.7.4-1)

Geo Sect. No. 2.2

I (3.3.2-7)

I (3.3.4-16)

I (8.1.4.1-1)

I (11.2.3.1-1)

I Fig. 13.5-1

I Sect. No. 2.2

I Sect. No. 11.2.4

I Sect. No. 12.0

L (11.2.2.1-1)

L (11.2.3.3-1)

L (17.1.1.1-1)

L (18.2.1-1)

L (18.4-1)

L Fig. 11.2.1.1-1

L Sect. No. 2.2

L Sect. No. 8.3

L+ (6.2.2-1)

L0 (11.2.2.1-2)

L1 (6.1.3-1)

L1 (12.2.1-25)

L2 (6.1.3-1)

L2 (12.2.1-25)

LI(n) Sect. No. 7.1.1

LI(n) Sect. No. 7.1.2

LVar (17.2.3.2-15)

M (15.1.2.2-4)

M (18.4.5-1)

M (18.4.7.4-1)

M Sect. No. 8.3

M1 (18.4.5-1)

M1 (18.4.7.4-7)

M2 (18.4.5-1)

M2 (18.4.7.4-7)

MARS (18.4.5-1)

MARS (18.4.7.4-3)

MARS1 (18.4.5-1)

MARS1 (18.4.7.4-7)

MARS2 (18.4.5-1)

MARS2 (18.4.7.4-7)

N (11.2.3.3-5)

N (12.2.3-32)

N (15.1.2.2-1)

N (18.1.1-2)

N Fig. 13.5-1

N Sect. No. 2.2

N+ (6.2.2-1)

N+ (14.1-3)

N+ (14.2-35)

N0 Fig. 13.5-1

N1 (6.1.3-1)

N2 (6.1.3-1)

NE(n) (7.3.1-5)

NED (11.2.4.4-1)

NVar (17.2.3.2-2)

P (13.4.2-1)

⊥ Fig. 13.4.2-1

R Fig. 11.2.1.1-1

REF (4.4.2.2-2)

COORDINATE FRAME INDEX C-3

UV (9.1-4)

V Sect. No. 17.1.1

V F (17.2.1-6)

V F (17.2.3.2.1-4)

VRF (15.1.2.2-4)

VRF Sect. No. 8.3

V W (17.1.2.3.1-1)

V W Sect. No. 17.1.2.3

V W0 (17.1.2.3.1-1)

V WF (17.2.3.2.1-2)

C-4 COORDINATE FRAME INDEX

D-1

Parameter Index

Parameter
Preceding

Equation, Figure,
Or Section No.

Parameter
Preceding

Equation, Figure,
Or Section No.

0 (11.2.4.3.1.1-1)

0 (13.3-13)

0 (15.2.2.1-42)

0 (15.2.2.1-5)

0 (16.1.1.2-1)

0+ (13.3-13)

0.0 S + (18.1.1-21)

0.25 S (18.1.2-6)

0.5 S + (18.1.1-21)

0.5 S - (18.1.1-21)

0.5 S (18.1.2-6)

0.75 S (18.1.2-6)

1 (18.1.1-3)

1 (18.2.2-4)

1 (18.4.5-1)

()1 (8.2.2.1-21)

1.0 S + (18.1.1-21)

1.0 S - (18.1.1-21)

1.5 S + (18.1.1-21)

1.5 S - (18.1.1-21)

2 (18.1.1-3)

2 (18.2.2-4)

2 (18.4.5-1)

()2 (8.2.2.1-21)

2x1 (15.2.1-6)

2x2 (15.2.1-6)

2x3 (15.2.1-6)

3 (18.1.1-3)

()3 (8.2.2.1-21)

A (4.4.1.2.1-7)

A (7.1.1.1.1-7)

A (7.2.2.2.2-6)

A (7.3.3.2-2)

A (8.2.2.1-14)

A (8.2.2.1-18)

A (10.2.1-4)

A (10.4.2-23)

A (11.1-3)

A (11.2.3.1-11)

A (14.6.1-1)

A (15.1.5.1-2)

a (3.2.4-3)

a (3.2.4-8)

a (7.1.2.4-1)

a (10.5.1-12)

a (14.6.2-26)

a Sect. No. 16.1.1.4

A(S) (10.5.1-12)

A(t) (15.1-1)

A(t) (15.1.5.3.1-23)

A(t) (18.3-5)

A(t) (10.1.1.1-2)

A(t) (10.1.2.1-2)

a) - h) (14.6.2-6)

D-2 PARAMETER INDEX

A*(t) (15.1.5.4.1-3)

a1
L

(18.4.5-1)

a1
L

(18.4.7.4-18)

a2
L

(18.4.5-1)

a2
L

(18.4.7.4-18)

Aa (15.2.1.1-3)

aAccl (8.1.4.1-8)

aAccl(t) (10.1.4.2-2)
aAccl0Inpt (10.1.4.1-2)

aAccl0Pend (10.1.4.1-2)

aAccl0x (10.3-14)

aAccl0y (10.1.4.2-2)

aAccl0y (10.3-14)

aAcclInpt(t) (10.1.4.1-2)

aAcclPend(t) (10.1.4.1-2)

Ab (15.2.1.1-3)
AδKBias (13.5-21)

aF (10.5.1-12)

AF(S) (10.5.1-12)

Aγ (t) (18.3-6)

aH1
L

(18.4.7-14)

aH2
L

(18.4.7-14)

aH
L

(18.4.7-12)

AH
N

(13.1-1)

Ai (8.2.2.1-14)

ai (10.2.2-1)

ai, bi, etc. (14.6.2-20)
aIA X (12.6-1)

aL (18.4-1)

aL (18.4.7-1)

a
 L

(18.4.5-1)

a
 L

(18.4.7.4-16)

Algo (10.1.3.2.2-3)

()Algo (10.1.1.2.2-1)

()Algo (10.1.2.2.2-1)

Align (14.5-10)

α (3.5.2-10)

α (4.1.2-2)

α (4.3.1-1)

α (4.4.2.1-1)

α (5.3-8)

α (8.1.4.1-10)

α (11.2.1.1-5)

α (11.2.2.2-1)

α (12.2.1-39)

α (12.2.2-21)

α (12.2.3-33)

α (17.1.2.3-13)

α Fig. 13.4.2-1

α(t) (7.1.1.1-9)

α(t) (7.2.2.2-7)

α(t) (10.1.1.2-1)

α(t) (10.1.2.2-1)

α(τ) (7.3.3.1-2)

α0 (13.4.2-22)

α0 (17.1.2.3-25)

α1 (6.1.3-8)

αA1 to A
A

(3.5.3-34)

αA2 to A1

A1 (3.5.3-34)

αA to B
B

(3.5.2-37)

αB to A2

A2 (3.5.3-34)

αB to A
A

(3.5.2-26)

αB to A
A

(3.5.3-34)

PARAMETER INDEX D-3

αB to A
A

(3.5.4-5)

αB to A
B

(3.5.2-26)

αB to A
B

(3.5.4-8)

αB to L
L

(12.2.1-28)

αCnt (8.2.3.1-2)

αCnt (t) (8.2.1.1-5)

αCnt (t) (8.2.2.1-11)

αCntm (8.1.2.1-1)

αCntm (8.1.3.3-6)

αCnt m (17.3.1-1)

αCntRes (l : m) -1 (8.1.3.3-3)

αCntResl (8.1.3.3-3)

αCntResm (8.1.3.3-3)

αCntX(t) (8.2.2.1-25)

αCntXl (8.2.2.1-37)

αCntY(t) (8.2.2.1-25)

αCntYl (8.2.2.1-37)

αCntZ(t) (8.2.2.1-25)

αCntZl (8.2.2.1-37)

αD to A
A

(3.5.2-40)

αD to A
A

(12.2.1-15)

αD to B
A

(12.2.1-15)

αD to B
B

(3.5.2-42)

αFlaps (17.1.2.3-25)

αi Sect. No. 18.4.3

αkm (8.1.4.2-4)

αLo-f (8.1.4.1.2-2)

αm (7.3.3.1-5)

αm (8.2.1-1)

αm (8.2.2-2)

αm (8.2.3-1)

αm (10.1.1.2-1)

αm (10.1.2.2-1)

αm (11.2.4.3.2.2-6)

αm (11.2.4.3.2.2-6)

αm (17.3.1-1)

αpm (8.1.4.2-4)

αQuantm (17.3.1-2)

αRandm (17.3.1-1)

αStart (17.1.1.4-4)

αTot (17.2.3.2.1-7)

αVarm (17.2.3.2-17)

αVib (8.1.4.1.2-2)

αWand (17.1.2.3-10)

α′X(t) (8.2.2.1-23)

α′Y(t) (8.2.2.1-23)

α′Z(t) (8.2.2.1-23)

AM*(t) (15.1.5.4.1-3)

AMM(t) (15.1.5.4.1-3)

AN (13.1-1)

aOut (16.2.5-2)

aOut/Meas (16.2.5-14)

aOut/Proc (16.2.5-14)
aOutTr (16.2.5-23)

Aψ0 (13.5-21)

APuls Sign (8.1.1.3-12)

aRMSVibIn (16.2.3.1-25)

aRMSVibIn (16.2.3.2-3)
aRMSVibIn i, j, k (16.2.3.2-3)

aSAX (12.6-1)

aSF (6.1.1-2)

aSF (7.2.2.2-10)

aSF (8.1.1.2-1)

D-4 PARAMETER INDEX

aSF (8.2.2-2)

aSF (8.2.3-1)

aSF (9.1-1)

aSF (11.2.3.1-7)

aSF (17.2.3.2.3-2)

aSF (18.4.7.4-3)

aSFi
″ (8.1.1.3-11)

aSF(t) (10.1.2-3)

aSF(t) (10.3-3)
aSF(t) (10.1.3-1)

aSF
* (8.1.1.2.1-2)

aSF0 (7.4.1-1)

aSF0 (10.1.3-1)

aSF0y (10.1.2-3)

aSFAvg

V
(17.1.1.2-10)

aSF
B

(4.2-4)

aSF
B

(7.2-1)

aSF
B (11.2.2.1-1)

aSF
B

(11.2.4.3.2.2-1)

aSF
B

(12.1-12)

aSF
B

(12.1.4-10)

aSF
B

(18.3-1)

aSF
 B

(18.4.7.4-10)

aSF
I

(12.1.4-7)

aSFi (8.1.1.3-15)

aSFi (11.2.3.2-1)

aSFi (16.2.3.2-9)

aSFiAC (17.2.3.2.3-19)

aSFiAC (17.2.3.2.3-5)

aSFiAC-l (17.2.3.2.3-31)

aSFiAC-m (17.2.3.2.3-31)

aSFi

B
(11.2.3.1-9)

aSFiB (18.4.7.1-3)

aSFiV (17.1.1.5-7)

aSFk (8.1.4.1-7)

aSFk

I
(8.1.4.1-3)

aSF
L

(4.2-4)

aSF
L

(12.1-12)

aSF
L

(18.4.7-1)

aSFMean

B
(12.6-1)

aSF-Puls i (8.1.1.3-20)

aSF
N

(12.1-12)

aSF+Puls (8.1.1.3-20)

aSF-Puls (8.1.1.3-20)

aSF+Puls i (8.1.1.3-20)

aSFPuls (8.1.1.2-1)

aSFPuls (8.1.2.2-1)

aSFPuls (8.2.2.1-5)

aSFPuls (9.3-1)

ASFPulsSign

1
(18.4.5-1)

ASFPulsSign

1
(18.4.7.4-18)

ASFPulsSign

2
(18.4.5-1)

ASFPulsSign

2
(18.4.7.4-18)

aSFPulsi (8.1.1.3-12)

ASFPulsSign (18.4.5-1)

ASFPulsSign (18.4.7.4-14)

aSFPulsX (8.2.2.1-25)

aSFPulsY (8.2.2.1-25)

aSFPulsZ (8.2.2.1-25)

aSFRef (8.1.4.1-7)

PARAMETER INDEX D-5

aSFRef

I
(8.1.4.1-3)

ASFSign (18.4.7.4-10)

aSFTot (8.1.4.1-10)

aSFTot j (16.2.3.2-8)

aSFTotk (16.2.3.2-8)

aSFUV (9.1-4)

aSFx(t) (10.3-3)

aSFXForm

A
(13.2.4-17)

aSFy(t) (10.3-3)

aSFy(t) (10.6.1-21)

aSFy(t) 2 (10.6.1-22)

aSFz(t) (10.3-3)

aSF
′ (8.1.1.2-3)

aSF
′ * (8.1.1.2.1-2)

aSFX
′ (8.2.2.1-23)

aSFY
′ (8.2.2.1-23)

aSFZ
′ (8.2.2.1-23)

ASign (8.1.1.3-15)

ASign
″ (8.1.1.3-11)

@t=() (11.2.4.1.1-6)

Avg (16.2.3.2-11)

aVib (12.6-1)
aVib0 (10.6.1-7)

aVib
B

(12.6-9)

aVib
B

(14.2-16)

aVibi (10.4-1)

aVibi (16.2.3.2-9)

AWt (8.1.1.2-7)

AWt (8.2.2.1-5)

AWt (9.3-1)

AWt (12.4-15)

AWt 0 (8.1.1.2-1)

AWtC (12.4-15)
AWt i (8.2.2.1-27)

AWt i- (8.2.2.1-46)

AWt i+ (8.2.2.1-46)

AWt - (8.1.1.3-20)

AWt + (8.1.1.3-20)

Ax ′(t) (18.3-6)

aZL (18.4.7-12)

aZL
1

(18.4.7-14)

aZL
2

(18.4.7-14)

AZN (13.1-1)

B (7.1.1.1.1-7)

B (7.2.2.2.2-6)

B (7.3.3.2-2)

B (8.2.2.1-14)

B (8.2.2.1-18)

B (10.4.2-24)

B (11.1-3)

B (11.2.3.1-11)

B (13.2.1-6)

B (14.6.1-9)

B (15.1.2.1.1.3-28)

B (15.1.5.1-2)

B (16.2.5-2)

b (3.2.4-3)

b (3.2.4-8)

b (7.1.2.4-1)

b (14.6.2-26)

b Sect. No. 16.1.1.4

B(ω) (10.2.1-16)

B0 (3.2.2-15)

BA(ω) (10.5.1-25)

D-6 PARAMETER INDEX

BA(ω) (10.6.1-25)

BA(ω) (16.2.3.1-22)
BaAcclx (10.3-16)

BaAccly (10.3-16)

BAccl Inpt (10.3-20)

BAcclPend (10.3-20)

BaSF (10.3-20)
BaSFx (10.3-3)

BaSFy (10.3-3)

BaSFz (10.3-3)

Bc (3.2.2-15)

BDen/ϑ1x(Ω) (10.6.1-15)

BDen/ϑ1z(Ω) (10.6.1-15)

BDenA1(ω) (10.5.1-24)

BDeni(ω) (10.2.1-32)

BDenϑ1(ω) (10.5.1-24)

BDenϑ2(ω) (10.5.1-24)

β (3.5.2-17)

β (3.5.3-10)

β (17.1.2.3-13)

β Fig. 13.4.2-1

β ′(t) (8.2.1.1-9)

β0 Fig. 13.5-1

βA1 to A
A

(3.5.3-5)

βA2 to A1

A
(3.5.3-5)

βA2 to A1

A1 (3.5.3-6)

βAlgo-m z (10.3-20)

βAlgo m (10.1.1.2.2-28)

βA to B
A

(3.5.2-33)

β Fig. 11.2.1.1-1

βB
(13.4.1.1-4)

βB to A2

A
(3.5.3-5)

βB to A2

A2 (3.5.3-6)

βB to A
A

(3.5.2-26)

βB to A
A

(3.5.3-5)

βB to A
A

(3.5.4-10)

βB to A
A

(12.2.1-15)

βB to A
B

(3.5.2-26)

βB to A
B

(3.5.4-10)

βCnt (t) (8.2.1.1-13)

βi (18.4.7.2-13)

βl-1 (7.1.1.1.1-3)

βm (7.1.1.1-13)

βm (8.2.1-1)

βm (10.1.1.2-3)

βm (10.1.1.2.1-14)

βmz/i (10.4.1-3)

βmy (10.6.1-19)

βmz (10.3-5)

βN to E
N

(12.2.2-4)

βTot (17.2.3.2.1-7)

Bhx (10.3-20)

Bhy (10.3-20)

Bi (8.2.2.1-14)

bi (10.2.2-1)

bi (17.2.1-3)

BNum/ϑ1x(Ω) (10.6.1-15)

BNum/ϑ1z(Ω) (10.6.1-15)

BNumA1(ω) (10.5.1-24)

BNumi(ω) (10.2.1-32)

PARAMETER INDEX D-7

BNumϑ1(ω) (10.5.1-24)

BωARSx
(10.3-16)

BωARSy
(10.3-16)

BωIBAccl/Inpt (10.3-20)

BωIBAccl/Pend
(10.3-20)

Bs (3.2.2-15)

Bϑ(ω) (10.5.1-25)

Bϑ(ω) (10.6.1-25)

Bϑ(ω) (16.2.3.1-22)
Bθx (10.3-3)

Bθx/i (10.4.1-1)

Bθy (10.3-3)

Bθy/i (10.4.1-1)

Bθz (10.3-3)

Bθz (10.6.1-13)

Bθz/i (10.4.1-1)

bVibi (10.4-1)

C (3.5.3-7)

C (7.2.2.2.2-6)

C (7.3.3.2-2)

C (8.2.2.1-18)

C (9.1-3)

C (11.1-7)

C (15.1.5.1-2)

C (17.2.3.2.3-10)

C Sect. No. 3.5.1

c (3.2.4-8)

c (7.1.2.4-1)

c (10.5.1-4)

c (15.2.1-33)

c (15.2.1.2-6)

c (15.2.4-2)

C Sect. No. 3.5.1

C H0 (14.3-11)

C H1 (14.3-11)

C1 (4.4.1.2.1-3)

C1 (7.2-6)

C1 (12.1-12)

C1 (13.3.2-10)

c1 (10.5.1-3)

C2 (4.4.1.2.1-3)

C2 (7.2-6)

C2 (12.1-12)

C2 (13.3.2-10)

c2 (10.5.1-3)

C3 (4.4.1.2.1-3)

C3 (7.2-6)

C3 (12.1-12)

C3 (13.3.2-11)

C4 (13.3.2-11)

CA1

A
(3.5.3-1)

CA2

A1 (3.5.3-1)

CA
A

(3.5.2-8)

CA
B

(3.1.1-24)

CA
B

(3.2.1-8)

CACEnd

ACStart (17.1.2.3-6)

CAC
V F

 m
(17.2.2-8)

CAC
V F

 m
(17.2.2-9)

CALG (11.2.1.4-1)

CB(m-1)

L(n-1) (7.3.3-3)

CB(t)
BI(m-1) (7.1.1.1-2)

CB0

L
(11.2.3.3-1)

D-8 PARAMETER INDEX

CB
A

(3.1-10)

CB
A

(3.1-12)

CB
A

(3.1.1-24)

CB
A

(3.2.1-8)

CB
A

(3.4-1)

CB
A

(3.5.2-1)

CB
A

(3.5.2-1)

CB
A

(3.5.3-1)

CB
A

(3.5.4-1)

CB
A

(3.5.4-4)

CB
A

(12.2.1-15)

CB
A2 (3.5.3-1)

C
B

B
(3.5.2-15)

CB
B0 (11.2.3.3-1)

CB
B0 (13.4.3-4)

CB
Bi (18.4.7.2-16)

CB
Bm-1 (11.2.4.3.2.2-2)

CB
E

(12.2.1-2)

CB
E

(12.2.1-4)

CB
I

(3.3.2-7)

CB
I

(8.1.4.1-4)

CB
I

(11.2.3.1-1)

CB
I

(11.2.4.3.1-1)

CB
I

(11.2.4.3.2.2-1)

CB
I

(12.1.4-1)

CB
I

(12.2.1-18)

CB
I

(12.2.1-18)

CBI(m)

BI(m-1) (7.1.1-1)

CBI(m)

LI(n) (7.1.1-1)

CBI(m-1)

LI(n-1) (7.1.1-1)

CBi

Ni (13.6.1-4)

CBi

Ni

 H
(13.6.1-4)

CB
L

(4.1-2)

CB
L

(6.2.2-1)

CB
L

(7.2-1)

CB
L

(9.1-1)

CB
L

(11.2.1.3-1)

CB
L (11.2.2.1-1)

CB
L

(11.2.3.3-1)

CB
L

(12.1-12)

CB
L

(12.2.1-2)

CB
L

(18.4.7.4-16)

CB
L+

(6.2.2-1)

CB
L1 (6.1.3-1)

CB
L2 (6.1.3-1)

CBi

L
(18.4.7.2-16)

CBOut

L
(15.1.2.3.1-1)

CBm-1

 I
(11.2.4.3.2.2-2)

CB
N

(12.2.1-8)

CB
N

(18.3-1)

CB
N+

(14.1-3)

CB
NED

(11.2.4.4-1)

PARAMETER INDEX D-9

CB
N

 H
(14.2-15)

CB
R

(11.2.1.2-1)

CBRij (11.2.1.2-1)

CB
UV

(9.1-5)

CCnstrnt (17.2.3.2.1-13)

CD (17.1.2.3-24)

CD
A

(3.1-23)

CD
A

(3.2.1-8)

CD
A

(3.5.2-38)

CD
A

(3.5.2-40)

CD
A

(12.2.1-15)

CD
B

(3.1-21)

CD
B

(3.2.1-8)

CD
B

(3.5.2-38)

CD
B

(3.5.2-40)

CD
B

(12.2.1-15)

CDf (17.1.2.3-25)

CDthk (17.1.2.3-25)

CE
I

(12.2.1-19)

CE
I

(12.2.2-10)

CE
N

 H
(12.2.4-27)

CE
REF

(4.4.2.2-3)

Cftr11(t) (14.6.2-16)
Cγ Z0 (14.3-11)

Cγ Z1 (14.3-11)

CGeo
N

(6.1.3-8)

CGeo
N1 (6.1.3-8)

χ (16.1.1.3-1)

χ (16.1.2.1-3)

χj (18.4.7.3-6)

χ (16.1.1.3-10)

χ (16.1.2.1-9)

Ci (7.1.1.3-2)

ci (17.2.3.2.3-44)

ci
1

Sect. No. 18.4.3

ci
2

Sect. No. 18.4.3

CI
A

(3.3.2-7)

CI
E

(12.2.3-28)

Cij (11.2.1.3-2)
CI J (3.1-7)

CI J (3.2.1-8)

Cij0 (11.2.2.1-18)

CI
P

(13.4.2-2)

Cj,k (10.1.1.2.2-10)

Cj,k (10.1.2.2.2-11)

CJTR (9.1-14)

CKMBias (12.5.6-3)

CL (17.1.2.3-24)

CL(n-1)

L(m) (7.3.3-3)

CL(n-1)

L(m-1) (7.3.3-3)

CL1

N1 (6.1.3-1)

CLα (17.1.2.3-25)

CLI(n-1)

L(t)
(7.1.1.2-2)

CLI(n-1)

LI(n) (7.1.1-1)

CLm-1

Lm (17.2.3.1-28)

CL
N

(6.1.3-1)

CL
N

(7.2-1)

D-10 PARAMETER INDEX

CL
N

(11.2.3.3-5)

CL
N

(12.1-12)

CL
N

(12.2.1-2)

CN(t)
NE(n-1) (7.3.1-7)

CN0E(i,j) (13.5-10)

CN1

N2 (6.1.3-1)

CN2

L2 (6.1.3-1)

CN
E

(12.1-12)

CN
E

(12.2.1-2)

CN
E

(12.2.1-8)

CNE(n)

E
(7.3.1-6)

CNE(n)

NE(n-1) (7.3.1-6)

CNE(n-1)

E
(7.3.1-6)

CNINS

E
(15.1.2.2-1)

CNINS

E T

 H
(15.1.2.2-7)

CNOut

E
(15.1.2.3.1-1)

CN
E T

 H
(15.1.2.2-31)

CN
I

(13.5-3)

CNI(i,j) (13.5-6)

CN
L

(4.1.1-1)

CN
L

(6.1.3-1)

CN
N+

(14.1-3)

Cnt (8.1.3.1-1)

Cnt (8.1.4.1.4-1)

Cntl (8.1.3.1-2)

CntRes (8.1.3.1-1)

CntRes0 (8.1.3.1-1)

CntResAvg (8.1.3.2-1)

CntResl (8.1.3.1-2)

CntResm (8.1.3.1-7)

Coef (15.2.2.1-36)

Coni (16.2.3.2-1)

ConNorm (16.2.3.2-6)

COsc/Mark (15.2.4-16)

cosh (13.2.1-11)

CPI(l,m) (13.4.2-34)

CP
⊥ (13.4.2-13)

CREF (11.2.1.4-1)

CR
L (11.2.1.1-7)

CRLij (11.2.1.1-7)

Crnt (17.2.1-2)
CSdβ (17.1.2.3-25)

CSide (17.1.2.3-24)

CV Fm

Vm (17.2.1-9)

CVRF
N

 H
(15.1.2.2-31)

CWndGst (17.2.3.2.1-9)
cxi (10.2.1-1)

cyi (10.2.1-1)

D (7.2.2.2.2-6)

D (7.3.3.2-2)

D (8.1.1.1.1-21)

D (8.2.2.1-18)

D (9.4-3)

D (11.1-7)

D (17.2.3.2.3-11)

d (3.2.4-8)

d (7.1.2.4-1)

D23 (12.2.3-21)

D2j (5.3-18)

D2j (12.1-28)

PARAMETER INDEX D-11

dα (7.1.1.1.1-18)

dα′i (8.1.4.1.1.1-6)

dα +Cnt (8.1.2.1-10)

dα -Cnt (8.1.2.1-10)

dαCnt (8.1.2.1-1)

dαCnt (8.2.1.1-14)

dαCnt (8.2.2.1-34)

dαCnt (8.2.3.1-2)

dαiCnt (8.1.4.1.4-1)

dαi-Cnt (8.1.4.1.4-7)

dαi+Cnt (8.1.4.1.4-7)

dα -Cnt (8.2.1.1-22)

dα +Cnt (8.2.1.1-22)

δαQuantC l : m (8.1.4.1.4-10)

dba (8.1.3.3-6)

dbω (8.1.3.3-6)

d δgMdl (16.2.3.3-1)

dΔRScrlCnt (8.2.3.1-2)

∂aQuant (12.4-15)

∂aQuantC (12.4-15)

ΔRREFn
E

(15.2.2.1-40)

∂GC
N

(12.1.1-13)

∂gPNorth (12.1.1-12)

∂gPUp (12.1.1-12)

∂h (4.4.1.2.1-3)

∂h (12.1-12)

∂l (12.1-28)

∂l Fig. 5.2-1

∂ωQuant (12.4-2)

∂ωQuant (12.4-5)

∂ωQuantC (12.4-5)

∂PjknTrans

'
(16.2.4-15)

δ (15.2.4-3)

Δ (18.4.6-1)

δ() (4.4.1.2.1-4)

δ (12.3.1-5)

δ() (14.2-1)

δ() (15.2.1-3)

δ(τα - τβ) (15.1.2.1.1-27)

Δ1-2 () (18.2.2-8)

δa′Size (8.1.4.1.1-8)

δa′Size/Xk (8.1.4.1.1.2-2)

δa′Size/Zk (8.1.4.1.1.2-2)

δa′Sizek (8.1.4.1.1-8)

δa′SizeX (8.1.4.1.1.2-2)

δa′SizeY (8.1.4.1.1.1-2)

δa′SizeZ (8.1.4.1.1.2-2)

δaAniso
* (8.1.1.2.1-2)

δaQuant
* (8.1.1.2.1-2)

δaSize
* (8.1.1.2.1-2)

δaAcclAniso(t) (10.1.4.1-2)

δaAcclAniso (10.1.4.1-9)

δaAcclG2(t) (10.1.4.1-2)

δaAcclG2 (10.1.4.1-9)

ΔaSF
N

(13.2.2-18)

δaAniso (8.1.1.2-1)

δaAniso (8.2.2.1-5)

δaAnisok (8.1.4.2-1)

δaBias (8.1.1.2-1)

ΔaH
L

(18.4.7-14)

Δai Sect. No. 18.4.3

D-12 PARAMETER INDEX

δaSFScal/Mis

B
(13.2.4-6)

ΔaJTR
B

(9.1-12)

ΔaJTR
N

(9.1-12)

δα (12.2.1-40)

δα (12.2.2-24)

δα (14.2-20)

δa″Size (8.1.4.1.2-5)

Δα′ il (8.1.4.1.1.1-6)

Δα′il (8.2.1.1-23)

Δα′im (8.1.4.1.1.1-6)

Δα′ im+ (8.1.4.1.1.1-6)

Δα′ im-1 (8.1.4.1.1.1-6)

Δα′ i(m-1)+ (8.1.4.1.1.1-6)

Δα′m (8.1.3.3-9)

Δα′(l : m) -1 (8.1.3.3-9)

Δα′Qim (8.1.4.1.4-10)

ΔαCnt (l : m) -1 (8.1.3.3-6)

ΔαCntl (8.1.3.3-6)

ΔαCntl (8.2.2.1-37)

ΔαCntm (8.1.3.3-6)

ΔαCntXl (8.2.2.1-37)

ΔαCntYl (8.2.2.1-37)

ΔαCntZl (8.2.2.1-37)

ΔαiCnt l (8.2.1.1-23)

Δαl (11.2.3.2-10)

δαψQuant (16.2.3.1-6)

δαψVQuant (16.2.3.1-6)

δαQuant (12.5-1)

δαQuant (18.2.1-3)

δαQuant (18.3-5)

δαQuant/ZN j (18.3.1.2-7)

δαQuantCm (8.1.2.1-6)

δαQuantH (14.6.1-8)

δαQuantH
L

(18.2.1-3)

δαQuanti (16.2.3.1-13)

ΔαQuantm (17.3.1-1)

δαQuantNi (15.2.1.1-3)

δαQuantZL (18.2.1-3)

δαQuantZL (18.2.2-1)

δaQuant (8.1.1.2-1)

δaQuant (12.4-15)

δaRand (8.1.1.2-1)

δaRand (12.4-15)

δaRand (18.3-5)

δaRandNi (15.2.1.1-3)

δaSensBias (8.1.1.2.1-2)

δaSFAsymX (12.6-1)

δaSF
B

(18.1.1-2)

δaSF
B

* (12.5-13)

δaSFCnst

B
(18.3-5)

δaSFH0East (18.1.2-9)

δaSFH0

N
(18.1.1-5)

δaSFH0North (18.1.2-9)

δaSFH

N
(13.3.1-3)

δaSF
L

(18.4.7-3)

ΔaSF
N

(12.3.5-23)

δaSF
N

(13.3.1-2)

δaSFOther

B
(13.2.4-24)

δaSFZN (4.4.1.2.1-4)

δaSFZN (13.2.1-16)

PARAMETER INDEX D-13

δaSFZN (13.3.1-3)

δASFZN(S) (4.4.1.2.1-13)

δaSize (8.1.1.2-1)

δaSize (8.1.4.1-9)

δaSize (8.2.2.1-5)

δaSizek (9.3-2)

δaSizeLo-f/ω
2 (8.1.4.1.2-5)

δCBComp

A
(3.5.1-20)

δβAlgo-m z (10.3-20)

δβAlgo m (10.1.1.2.2-6)

δβAlgo m (10.1.1.2.2-28)

Δbi Sect. No. 18.4.3

δc (10.5.1-4)

δCB
A

(3.5.2-1)

δCB
E

(12.2.1-4)

δCBComp

L
(7.1.1.3-14)

Δχ (16.1.1.3-13)

Δχ (16.1.2.1-12)

δCi (7.1.1.3-2)

ΔCntl (8.1.3.1-2)

ΔCntl =(m-1) k - 1 (8.1.3.2-8)

ΔCntl = m k (8.1.3.2-8)

ΔCntm (8.1.3.2-8)

ΔCntm-1 (8.1.3.2-8)

δConAlgi (16.2.3.2-1)

δConAlgNorm (16.2.3.2-6)

δConi (16.2.3.2-1)

ΔvScul-mz (10.3-9)

ΔδaSize (8.1.4.1.1-10)

ΔδFj
V

 (17.1.2.3-32)

δδωARS/Cnst/East 1 (18.2.2-8)

δΔψT1-2 (18.2.2-8)

δΔRH (14.6.1-8)

δΔRH
N

(18.3-5)

δΔRNi (15.2.1.1-3)

ΔδυSizeCm (8.1.4.1.1-12)

Δδϑj (17.1.2.3.1-12)

δΔυSizeCXm (8.1.4.1.1.2-5)

δΔυSizeCYm (8.1.4.1.1.2-5)

δΔυSizeCZm (8.1.4.1.1.2-5)

δΔRRefH

N
(15.2.1-7)

δΔvScul/Algo-mz (10.3-20)

δΔvScul/Algom (10.1.2.2.2-22)

δΔvScul/Algom (10.1.2.2.2-7)

Δηijl (8.1.4.1.1.1-11)

δFj
V

 (17.1.2.3-29)

δfOsc (15.2.4-15)

δfOsc/Mark (15.2.4-16)

δfOsc/RndCnst (15.2.4-16)

ΔFWndGst (17.2.3.2.1-1)

δγH1East (18.1.2-9)

δγH1North (18.1.2-9)

ΔγHi

N
(13.6.1-4)

δγHi

N
(18.1.1-4)

ΔγN+
(14.2-37)

δγUp0

N
(18.1.1-10)

δγUpi (18.1.1-4)

ΔγZNi (13.6.1-4)

δgMdl
E

(12.2.4-3)

D-14 PARAMETER INDEX

δgMdl
I

(12.2.4-8)

δgMdl
N

(12.2.4-1)

δgP
E

(12.2.4-3)

δgP
I

(12.2.4-8)

δgP
N

(12.2.4-1)

δh (4.4.1.2.1-4)

δh (12.2.3-5)

δH(S) (4.4.1.2.1-13)

ΔhOsc (11.2.4.1.1-10)

δhPrsr (4.4.1.2.1-4)

δhPrsr (12.3.2-23)

δHPrsr (S) (4.4.1.2.1-13)

δi (16.2.3.2-8)

ΔiδVH
N

(t) (13.6.1-5)

ΔInteg l (8.1.3.1-2)

ΔIωB (11.2.1.2-3)

ΔIωiR (11.2.1.1-6)

ΔΙωR (11.2.1.2-3)

δJc (15.1.2.3-2)

δk (10.5.1-4)

δK0Bias (12.5.6-2)

δKBias (12.4-10)

δKBiasH

G0 (13.5-32)

δKBiasZG0 (13.5-32)

δKScal/Mis (13.2.4-1)

δKG2BiasX (12.6-1)

δKii (13.2.4-1)

δKij (13.2.4-1)

δKMBias (12.5.6-3)

δKMis (12.4-10)

δKOrth (13.2.4-5)

δKScal (12.4-10)

δKScal (13.2.4-5)

δKScal/Mis (12.4-13)

δKScal/Orth (13.2.4-2)

δKTMis (13.2.4-2)

δKTMis (13.2.4-4)

δKTMis× (13.2.4-4)

δL (18.1.1-22)

δl (10.5.1-3)

δLBias (12.4-15)

δlHE

E
(15.1.2.2-13)

ΔlHiF
AC

(17.2.3.2.2-1)

δLMis (12.4-15)

δLOrth (13.2.4-5)

δLScal (12.4-15)

δLScal (13.2.4-5)

δLScal/Mis (12.4-15)

δLScal/Mis (13.2.4-1)

δLScal/Orth (13.2.4-2)

δlStat
VRF

(15.1.2.2-25)

δlStatc

VRF
(15.1.2.3-2)

δLTMis (13.2.4-2)

δLTMis (13.2.4-4)

δLTMis× (13.2.4-4)

δlVib
VRF

(15.1.2.2-25)

δlVRF
VRF

(15.1.2.2-15)

δM0
E

(15.2.2.1-41)

ΔMFuel (17.1.2.3-27)

ΔMJtsn (17.1.2.3-27)

δNorm i (3.5.1-13)

PARAMETER INDEX D-15

Δω (10.2.2-1)

δω (12.4-6)

δω*Quant (8.1.1.1.1-2)

δωARS/CnstEast (18.2.2-1)

δωARS/CnstEast (18.3.1.2-9)

δωARS/CnstH
L

(18.2.1-6)

δωARS/CnstH
N

(18.3-21)

δωARS/CnstZL (18.2.1-6)

δωARS/CnstZL (18.2.2-1)

δωARS/CnstZN (18.3-21)

δωBias (8.1.1.1-1)

δωENH

E
(12.3.6.2-13)

δωG2BiasX (12.6-1)

δωIA
A

(3.5.1-31)

δωIB (13.2.4-10)

δωIB (13.4.1.1-4)

δωIB
B

(3.5.1-31)

δωIB
B

(18.1.1-2)

δωIB
B

(18.2.1-3)

δωIB
B

* (12.5-6)

δωIBCnst

B
(18.3-5)

δωIBH00East (18.1.2-9)

δωIBH00

N
(18.1.1-7)

δωIBH00North (18.1.2-9)

δωIBH0East (18.1.2-9)

δωIBH0

N
(18.1.1-7)

δωIBH0North (18.1.2-9)

δωIBH

N
(13.3.1-3)

δωIBi

B
(18.4.7.2-9)

δωIB
N

(13.3.1-2)

δωIBScal/Mis (13.2.4-11)

δωIBScal/Mis

B
(13.2.4-6)

δωIBUp0 (18.1.1-7)

δωIBUp00 (18.1.1-7)

δωIBZN (13.3.1-3)

δωIE/East/Resid j (18.3.1.2-9)

δωIE/East Resid (18.2.2-1)

δωIE/ExpH

N
(18.3-13)

δωIE/ExpH

N
(t) (18.3-13)

δωIE/H/Residj

N
(18.3.1.1-2)

δωIE/H0 (18.3-11)

δωIE/HResid

N
(t) (18.3-13)

δωIEExp

N
(18.3-5)

δωIEH (14.6.1-8)

δωIEH (18.3-6)

δωIEH(t) (18.3-7)

δωIENi (15.2.1.1-3)

δωILH

L
(18.2.1-3)

ΔωJTR
B

(9.1-27)

δωQuant (8.1.1.1-1)

δωRand (8.1.1.1-1)

δωRand (12.4-2)

δωRand (18.3-5)

δωRandH (14.6.1-8)

δωRandH(t) (18.3-6)

δωRandNi (15.2.1.1-3)

D-16 PARAMETER INDEX

δωSensBias (8.1.1.1.1-2)

δωQuant (12.4-10)

δOrth ij (3.5.1-12)

ΔφHi

L
(18.4.7.2-8)

δφ (12.2.1-28)

δΦAlgo-mz (10.3-20)

δΦAlgom (10.1.1.2.2-5)

δΦAlgom (10.1.1.2.2-28)

ΔφCntrlj (17.1.2.3.1-5)

δφH (18.2.1-18)

ΔφH
L

(18.4.7-14)

δφH
L

(18.2.1-18)

ΔφL
(18.4.7.2-3)

Δφl bndji (17.2.3.2.3-5)

Δφl ibnd
AC

(17.2.3.2.3-6)

ΔΦm (10.1.1.2-1)

ΔPj (17.1.2.3-32)

ΔPKm (15.1.5.3.1-2)

ΔPΦQm (15.1.5.3.1-2)

ΔψH
N

(14.5-5)

ΔψN
(14.5-5)

ΔψOrth
B

(13.2.4-20)

ΔψOther
B

(13.2.4-20)

δψP (12.2.1-28)

ΔψRoll (17.1.1.5-10)

δψT (12.2.1-40)

δψT (18.1.1-22)

ΔψT1-2 (18.2.2-7)

ΔψT2 (18.2.2-8)

ΔψTMis
I

(13.2.4-16)

δψP (18.1.1-19)

ΔψTurn (17.1.1.5-12)

ΔψZN (14.5-5)

ΔPzl (17.2.3.2.3-26)

δq (7.1.2.3-1)

ΔqB
A

(3.3.4-2)

δQuantl (8.1.3.1-6)

δQuantm (8.1.3.1-7)

ΔR (4.4.2.2-1)

δR (12.2.3-8)

δR (13.2-7)

δR0 (13.2.1-11)

δR0 (13.2.1-11)

δaRandH (14.6.1-8)

ΔRAttm

N
(17.2.3.1-29)

ΔRSFn

N
(15.2.2.3-8)

δRE (12.2.2-14)

δRE (12.2.3-1)

δRForce (13.2.1-3)

δRH0

G0 (13.5-31)

δRH0

N
(13.2.2-7)

δRH0

N
(13.4.3-31)

δRH0

N
(13.2.2-7)

δRH
E

(12.2.4-6)

δRHForce

N
(13.2.2-3)

δRHHmg

N
(13.2.2-7)

δRHLngTrm

N
(13.5-1)

δRHmg (13.2.1-6)

PARAMETER INDEX D-17

δRHmgTot (13.2.1-11)

ΔRH
N

(18.3-1)

δRH
N

(13.2-7)

δRHLngTrm

N
(13.2.3-4)

δrI (12.2.3-27)

δRINS/H c

N
(15.1.2.3-2)

ΔRINS
E

(t) (15.2.2.1-5)

ΔRJTR
N

(9.1-5)

ΔRl bnd
AC

(17.2.3.2.3-6)

ΔRl bndji (17.2.3.2.3-5)

ΔRN (6.1.2-1)

δRN (12.2.3-2)

ΔRNX (15.2.1.1-17)

ΔRNY (15.2.1.1-17)

δROTHH

E
(15.1.2.2-14)

ΔRREF
E

(t) (15.2.2.1-5)

ΔRRefH

N
(14.1-1)

ΔRRefH

N
(15.2.1-2)

δΔRRefH

N
(14.2-1)

ΔRRot m (7.3.3-11)

ΔRRot m (8.2.3-1)

δRScrlA l (7.3.3.2-9)

δRScrlBl (7.3.3.2-9)

ΔRScrlCnt (8.2.3.1-2)

ΔRScrlm (7.3.3-11)

ΔRScrlm (8.2.3-1)

δRSF/Algo (t) (10.4.2-10)

δRSF/Algo i(t) (10.4.2-10)

δRSF/Algo i(t) (10.4.2-9)

δRSF/AlgoM (10.1.3.2.4-1)

ΔRSF/Typm
B(m-1) (7.4-2)

ΔRSFm (8.2.3-1)

ΔRSFm (10.1.3.1-3)

ΔRSFm
L

(7.3.3-2)

ΔRTrueH

N
(15.2.1-8)

ΔRTrueH

N
(14.2-2)

ΔRVarm

NVar
(17.2.3.2-8)

ΔRVibH

N ♦
(14.2-3)

ΔrVibH (14.6.1-12)

ΔRVibH

N
(15.2.1-9)

ΔRVib
N♦

(18.3-5)

ΔrVibNX (15.2.1.1-9)

ΔrVibNY (15.2.1.1-9)

ΔRvm

N
(17.2.3.1-28)

δRXGeo (12.2.2-29)

δRXN (12.2.1-45)

δRXN (12.2.3-38)

δRXN (12.2.4-28)

δRYGeo (12.2.2-29)

δRYN (12.2.1-45)

δRYN (12.2.3-38)

δRYN (12.2.4-28)

δRZN (12.2.3-40)

δSculAlgi (16.2.3.2-1)

δSculAlgij (16.2.3.2-3)

δSculAlgik (16.2.3.2-3)

δSculAlgNorm (16.2.3.2-6)

δSculi (16.2.3.2-1)

D-18 PARAMETER INDEX

δLSFAsymBiasX (12.6-1)

ΔaSF
N

(14.5-2)

ΔSυ/Algol (10.1.3.2.2-3)

ΔT (18.3.2.1-2)

Δτi (13.6.1-19)

δτSen (15.2.2.1-21)

δtf (15.2.4-15)

δϑ (17.1.2.3.1-10)

δθ (12.2.1-28)

ΔθARS/Rnd/Easti (18.3.2.2-1)

ΔθARS/Rnd/H-ki (18.3.2.1-7)

ΔθARS/Rnd/H-ki (18.3.2.1-9)

ΔθARS/Rnd/Hi

N
(18.3.2.1-1)

ΔθJTR
B

(9.1-5)

δuω
B

(13.4.1.1-8)

δuφH
L

(18.2.1-18)

δυ (12.2.2-9)

δυ″SizeC (8.1.4.1.2-5)

 Δυ′il (8.2.2.1-46)

δυ′SizeCm (8.1.4.1.1-12)

δυ′SizeCXm (8.1.4.1.1.1-15)

δυ′SizeCYm (8.1.4.1.1.1-15)

δυ′SizeCZm (8.1.4.1.1.1-15)

δυ′SizeCX/km (8.1.4.1.1.2-5)

δυ′SizeCY/km (8.1.4.1.1.2-5)

δυ′SizeCZ/km (8.1.4.1.1.2-5)

δυ′SizeC/km (8.1.4.1.1.2-5)

δυAnisoCkm (8.1.4.2-2)

δυAnisoCm (8.1.2.2-6)

ΔυCntl (8.1.3.3-6)

ΔυCntl (8.2.2.1-37)

ΔυCntm (8.1.3.3-6)

ΔυCntXl (8.2.2.1-37)

ΔυCntYl (8.2.2.1-37)

ΔυCntZl (8.2.2.1-37)

δυForce (13.2.1-3)

δυHForce

N
(13.2.2-3)

δυH
N

(13.2-7)

δυI
(12.2.2-9)

ΔυiCntl (8.2.2.1-46)

Δυil (11.2.3.2-4)

Δυl (10.1.3.2.2-4)

δυN
* (12.5-26)

δυQuant (12.5-1)

δυQuant (18.3-5)

δυQuantCm (8.1.2.2-6)

ΔυQuantm (17.3.1-1)

δυQuantNi (15.2.1.1-3)

δυR (13.2-7)

δυSizeC (8.1.4.1-12)

δυSizeCim (8.1.4.1.3-7)

δυSizeCm (8.1.2.2-6)

δυSizeCLo-f/ω
2 (8.1.4.1.2-5)

δυSnsr0

I
(13.4.1.2-20)

δυSnsr
I

(13.4.1.2-3)

δυVQuant (16.2.3.1-11)

δυVRQuant (16.2.3.1-11)

δυQuantH (14.6.1-8)

δuZN
E

(12.2.3-8)

Δv (17.2.3.2.3-1)

PARAMETER INDEX D-19

δV (12.2.2-2)

δV (12.2.2-17)

δv (12.2.2-2)

δVA
A

(3.5.4-3)

ΔvAvg (18.4.7.3-3)

ΔvAvg
L

(18.4-1)

δVB
A

(3.5.4-1)

ΔvSFn

N
(15.2.2.3-4)

δV
E

(12.2.2-2)

ΔVFm (17.2.1-3)

δV Geo (12.2.2-17)

δvH (14.6.1-8)

δVH0

N
(13.4.3-28)

δVH0

N
(13.4.3-28)

δvH
E

(12.3.6.1-41)

δVHHmg

N
(13.3.2-10)

ΔδVHi

N
(13.6.1-4)

δvH
N

(18.3-5)

δVHPrt

N
(13.3.2-11)

δVHPrt

N
(13.4.3-22)

Δvj (18.4.7.3-2)

ΔvJTR
N

(9.1-5)

ΔVm (17.1.3-10)

ΔVm (17.2.1-1)

Δvm (18.4.7.3-2)

Δvm
L

(18.4-1)

δV
N

(12.2.2-3)

δv
N

(12.2.2-2)

δvN (12.2.4-9)

δVN* (12.5-26)

δvN* (12.5-13)

δvNi (15.2.1.1-3)

δVRef/Other
E

(15.2.2.1-20)

δVRef/Sen
E

(15.2.2.1-20)

δvRot/Scul-SizeCm (8.1.4.1-20)

δvRot/Scul-SizeCXm (8.1.4.1.3-7)

δvRot/Scul-SizeCYm (8.1.4.1.3-7)

δvRot/Scul-SizeCZm (8.1.4.1.3-7)

ΔvRot/Sculm (7.2.2.2-27)

ΔvRot/Sculm (8.2.2-2)

ΔvRotm (7.2.2.2-25)

ΔvRotm (8.2.2-2)

ΔVS Sect. No. 17.1.1

ΔvScul(t) (7.3.3-4)

ΔvScul(t) (8.2.3-1)

δvScul-SizeCm (8.1.4.1-15)

δvScul-SizeCXm (8.1.4.1.2-13)

δvScul-SizeCYm (8.1.4.1.2-13)

δvScul-SizeCZm (8.1.4.1.2-13)

ΔvScul/Algo-mz (10.3-20)

ΔvScul/Algom (10.1.2.2.2-22)

ΔvSculCnt (8.2.3.1-2)

ΔvSculCnt (t) (8.2.2.1-24)

ΔvSculi (10.1.2.2-3)

ΔvSculm (7.2.2.2-25)

ΔvSculm (8.2.2-2)

ΔvSculm (10.1.2.2.1-11)

δvSF/Algo-mx (10.6.1-12)

δvSF/Algo-mz (10.3-20)

D-20 PARAMETER INDEX

δvSF/Algom (10.1.2.2.2-22)

ΔvSF/Algoi (10.1.3.2.2-3)

δvSF/Algom (10.1.2.2.2-6)

δvSF/Scul/SnsDynx (10.6.3-20)

δvSF/Scul/SnsDynz (10.3-14)

δvSF/SculSnsDyn (10.1.4.2-5)

ΔvSFm

Bm-1 (11.2.4.3.2.2-4)

ΔvSFH

N
(13.3-13)

ΔvSFm
 I

(11.2.4.3.2.2-1)

ΔvSFm
 I

(11.2.4.3.2.1-1)

ΔvSF
L

(18.4-1)

ΔvSFm (8.2.2-2)

ΔvSFm

L
 (7.2-4)

ΔvVar (17.2.3.2.1-1)

δVXN (13.6.1-10)

δVYN (13.6.1-10)

δvZN (4.4.1.2.1-4)

δVZN(S) (4.4.1.2.1-13)

ΔvScul
 ′ (t) (8.2.2.1-13)

Δx (14.6.1-4)

Δx (15.1.2.1-1)

Δx (16.1.1-13)

Δx (17.2.3.2.3-1)

Δx*(t) (15.1.5.4.1-5)

Δx** (14.6.4.2-5)

Δx1 (15.1.2.1-5)

Δx2 (15.1.2.1-5)

Δx3 (15.1.2.1-5)

ΔxM(t) (15.1.5.4.1-5)

ΔxOpt (16.1.1.3-21)

Δy (16.1.1-26)

ΔyOpt (16.1.1.3-21)

δζ (3.5.3-20)

δζ1 (3.5.3-25)

δζ2 (3.5.3-25)

δζ3 (3.5.3-25)

Δzl (17.2.3.2.3-25)

∂x'TrnTrans (16.2.4-13)

Δx* (14.6.4-5)

Di (10.2.1-7)

di (17.2.3.2.3-44)

Diag() (8.1.1.1.1-14)

()♦ (14.6.1-1)

DL (9.2-1)

dRH
E

(5.2.4-13)

dRHE
Geo

(5.2.4-29)

dRSEEast (5.2.4-22)

dRSE
Geo

(5.2.4-21)

dRSENorth (5.2.4-23)

ds (16.2.3.3-1)

dϑENEast (5.2.4-23)

dϑENH

E
(5.2.4-4)

dϑENNorth (5.2.4-22)

Dtr () (15.1.5.4.1-4)

Dtr(t) (14.6.2-16)

Dtr(t) (14.6.3-6)

Dtr(t) (14.6.4.1-7)

Dtr(t) (14.6.4.2-17)

Dtr(t) (14.6.5.1-15)

dυ (7.2.2.2.2-15)

dυ +Cnt (8.1.2.2-10)

dυ -Cnt (8.1.2.2-10)

PARAMETER INDEX D-21

dυCnt (8.1.2.2-1)

dυCnt (8.2.2.1-34)

dυCnt (8.2.3.1-2)

duUp
E

(5.2.4-4)

duUpE
Geo

(5.2.4-29)

E () (14.6.1-5)

E () (14.6.4-5)

E () (10.2.2-6)

E () (10.4.1-6)

E () (10.4.2-11)

E (3.5.1-1)

E (8.1.1.1.1-21)

E (8.2.2.1-18)

E (11.2.1.4-1)

e (3.2.4-1)

e (3.2.4-7)

e (4.4.2.2-5)

e (5.1-1)

e (5.3-18)

e (11.2.4.1.2-3)

e (12.1-28)

E' (3.5.1-16)
E'SYM (3.5.1-17)

E'SYM (7.1.1.3-11)

E () (13.6.1-9)

E () (15.1.2.1-4)

E () (15.2.1.1-5)

E () (18.3.1.1-3)

E () (18.3.2.1-4)

E aSF(t)2 (16.2.3.1-22)

E aVib(t)2 (16.2.3.1-22)

E aVib(t)2 (16.2.3.2-7)

E aVib(t)2 (10.6.1-25)

E δΦAlgo-m z (16.2.3.2-7)

E ΔθARS/Rnd/H-k i

2
(18.3.2.1-7)

E δvSF/Algo-m z (16.2.3.2-7)

E εaRndi

2
(13.6.1-15)

E εωRndi

2
(13.6.1-15)

E ω(t)
2

(16.2.3.1-23)

E ωIEH

N

 k
(18.3.1.1-8)

E ΦConz (16.2.3.2-7)

E φH-ki (18.3.2.1-10)

E θ(t)
2

(16.2.3.1-22)

E θARS/Rnd/H-k
2

(18.3.1.1-7)

E θARS/Rnd/H-k j

2
(18.3.1.1-6)

E vSF/Sculz (16.2.3.2-7)

Ei (10.2.1-7)

ej
M

(15.1.2.1.1.3-26)

End (17.1.1.1-1)

End (18.2.1-10)

εa (18.4.7.3-6)

εα (15.2.1.2-18)

εaRndi (13.6.1-4)

εc (10.5.1-18)

εc
N

(15.1.2.3-11)

εcx (10.6.1-15)

εcy (10.6.1-15)

εGeo
(12.2.2-24)

εH
E

(12.3.6.2-1)

εH
Geo

(12.2.2-26)

D-22 PARAMETER INDEX

εii (7.1.1.3-2)

εij (16.2.6.1-1)

εij (3.5.1-15)

εij (7.1.1.3-4)

εk (10.5.1-18)

εkx (10.6.1-15)

εky (10.6.1-15)

εl (10.5.1-18)

εlx (10.6.1-15)

εly (10.6.1-15)

εN
(12.2.1-12)

εN
(12.2.3-5)

εN
(15.1.2.3-7)

εωRndi (13.6.1-4)

εq (7.1.2.3-4)

ευ (15.2.1.2-18)

εXGeo (12.2.2-28)

εXN (12.2.1-41)

εYGeo (12.2.2-28)

εYN (12.2.1-41)

εZG0 (13.5-31)

εZN (12.2.1-41)

εZN (12.2.3-20)

εZN (12.3.6.2-1)

εZN (18.1.1-23)

ESKSYM (3.5.1-6)

ESKSYM (11.2.1.4-1)
ESKSYMij (11.2.1.4-2)

ESYM (3.5.1-6)

ESYM (7.1.1.3-1)

ESYM (11.2.1.4-1)
ESYM ij (11.2.1.4-2)

ηai, j, kVib (16.2.3.2-3)

ηijm (8.1.4.1.1.1-10)

evc1 (4.4.1.2.1-3)

evc1 (12.1-12)

evc1n (7.2-6)

evc2 (4.4.1.2.1-3)

evc2 (12.1-12)

evc2n (7.2-6)

evc2n (7.3.1-5)

evc3 (4.4.1.2.1-3)

evc3 (12.1-12)

evc3n (7.2-6)

E SθARS/Rnd/ZN j
 2

(18.3.1.1-10)

F (8.2.2.1-18)

F (9.2-1)

F (17.1.2.3-20)

f (3.2.4-1)

f (3.2.4-7)

f() (10.4.2-14)

f() (15.1-3)

F(h) (12.2.4-2)

F(S) (17.2.3.2.3-34)

f(t) (10.1.4.1-4)

f(t) (10.1.4.1-5)

f(τ) (10.2.2-12)

f1(ωt) (11.2.2.1-12)

f1(ϑ) (10.1.3.2.3-16)

f1-2 (17.2.2-9)

f2(ωt) (11.2.2.1-12)

f2(ϑ) (10.1.3.2.3-16)

FAero
V WF

(17.2.3.2.1-3)

FAlgn (8.1.1.1-1)

FAlgn (12.4-2)

PARAMETER INDEX D-23

FAlgn Off-Diag (8.1.1.1.1-14)

fAtt/Att (16.2.3.1-18)

fAtt/Vel (15.2.1.2-18)

fAtt/Vel (16.2.3.1-21)

FCS
Geo

(5.2.4-28)

FC
Geo

(5.2.4-34)

FC
N

(4.1.1-6)

FC
N

(5.3-18)

FC
N

(5.3-7)

FC
N

(7.3.1-10)

FC
N

(12.1-28)

FCVarm

N
(17.2.3.2-2)

FDrag (17.1.2.3-22)

fe (12.1-28)

feh (12.1-28)

fh (12.1-28)

Fij (3.5.1-5)

FLift (17.1.2.3-22)

FLP() (9.2-1)
fOsc0 (15.2.4-12)

fOsc (15.2.4-14)

fφCntrl (17.2.2-8)

fψCntrl (17.2.2-8)

FScal (8.1.1.1-1)

FScalLin (8.1.1.3-8)

FScalNonLin (8.1.1.3-8)

FSensAlgn (8.1.1.1.1-2)

FSensScal (8.1.1.1.1-2)

FSensScalAsym (8.1.1.3-22)

FSensScalLin (8.1.1.3-8)

FSensScalNonLin (8.1.1.3-8)

FSide (17.1.2.3-22)

fSize (8.1.4.1.1.1-6)

Fst (15.1.5.3.1-6)
fθCntrl (17.2.2-8)

FTotAero
V WF

(17.2.3.2.1-3)

fVel/Pos (15.2.1.2-18)

g (3.2.4-7)

g (12.2.4-2)

g (12.3.5-22)

g (14.2-16)

g (14.5-2)

g (17.1.1.2-8)

g (17.2.3.2.3-1)
g (5.4.1-1)

g() (10.4.2-14)

G(ω) (10.2.2-21)

G(ω) (15.1.2.1.1-32)

G(ω) (17.2.3.2.3-33)

Ga/a (16.2.3.1-26)

gAid() (15.1-5)

GAlgn (8.1.1.2-1)

GAlgnk

T
(8.1.4.1-7)

GAlgnOff-Diag (8.1.1.2.1-14)

GAlign (8.2.2.1-5)
GαRVarm (17.2.3.2-21)

GαvVarm (17.2.3.2-21)

γ (10.1.3.2.2-25)

γ (11.2.3.1-10)

γ+
N+

(14.2-35)

γc
N

(15.1.2.3-11)

γEastOffset (18.2.1-23)

γEastOffset (18.2.2-1)

D-24 PARAMETER INDEX

γEastOffset (18.3.1.2-9)

γH (14.6.1-8)

γH0

G0 (13.5-31)

γH0

N
(13.4.3-28)

γHAvg

N
(18.3-24)

γHForce

N
(13.2.2-17)

γH
L

(18.2.1-3)

γH
N

(13.3-6)

γH
N

(14.2-11)

γHOffset

L
(18.2.1-5)

γH (t) (18.3-6)

γijm (8.1.4.1.1.1-3)

γim (8.1.4.1.1.1-3)

γk Fig. 18.4.3-3

γm
V

 (17.2.1-10)

γN (12.2.1-12)

γN (14.2-37)

γN (15.1.2.3-7)

γN* (12.5-6)

γNi (15.2.1.1-3)

γNorthOffset (18.2.1-23)

γNorthOffset (18.2.2-1)

γNorthOffset (18.3.1.2-9)

γN (18.3-5)

γXN Fig. 12.2.1-1

γYN Fig. 12.2.1-1

γZG0 (13.5-31)

γZL (18.2.1-3)

γZN (13.3-8)

γZN (14.2-11)

γZN (18.3.1.2-3)

γZN Fig. 12.2.1-1

γZN0 (13.4.3-15)

γZN0 (14.3-39)

γZN0 (14.4-3)

γZNj (18.3.1.2-6)

gPAvg iV (17.1.1.2-26)

gPAvg

V
(17.1.1.2-10)

GaVib(ω) (10.6.1-25)

GaVib(ω) (16.2.3.1-22)

GDL() (9.2-1)

gEPA (11.2.4.3.2.1-4)

gEq (11.2.4.3.2.1-4)

gI (4.3-11)

gI (11.2.4.3.2.1-12)

gI (12.1.4-7)

Gij (3.5.1-5)

gINS() (15.1-5)

gk
I

(8.1.4.1-3)

GM (14.6.1-1)

GM (15.1-2)

GM (15.1.5.2-1)

GM(t) (18.3-5)

gm
I

(11.2.4.3.2.1-1)

GMRev (14.6.4.2-1)

GMRev (t) (15.1.5.4.1-25)

gNorth (5.4-3)

gNorth (11.2.4.3.2.1-8)

gNorth (12.1-28)
gNorth

1 - uUpYE

2
(5.4.1-9)

PARAMETER INDEX D-25

Gω /a (16.2.3.1-26)

GP (14.6.1-1)

gP (6.1.1-1)

gP (6.1.3-3)
gP (5.4.1-1)

gP (9.1-1)

GP(t) (15.1-1)

GP(t) (15.1.5.3.1-23)

GP(t) (18.3-5)

GP*(t) (15.1.5.4.1-3)
GPa (15.2.1.1-3)

GPa QPDens/a GPa

T
(15.2.1.1-8)

GPb (15.2.1.1-3)

GPb QPDens/b GPb

T
(15.2.1.1-8)

gφ (5.4-1)

gφ (12.1-28)
gφ

sin φ

S

(5.4-2)

gφ

sin φ

S

(11.2.4.3.2.1-2)

gφ

sin φ

S

(12.1-28)

gφ (11.2.4.3.2.1-2)

gP
I

(4.3-16)

gP
I

(12.1.4-8)

GPM(t) (15.1.5.4.1-3)

gP
N

(7.2-1)

gP
N

(12.1-12)

gPNorth (5.4.1-9)

gPNorth (6.1.3-8)

gPNorth (12.1-28)

GPψV (16.2.3.1-8)

GPSAnt (17.3.2-2)
gPUp (5.4.1-9)

gPUp (6.1.3-8)

gPUp (12.1-28)

GpVib(ω) (10.4.1-8)
GPVR (16.2.3.1-11)

gr (5.4-1)

gr (11.2.4.3.2.1-2)

gr (12.1-28)

gRef
I

(8.1.4.1-3)

grS (5.4-2)

grS (12.1-28)

grS (11.2.4.3.2.1-2)

GS/DL() (9.4-1)

GScal (8.1.1.2-1)
GScalAsym (8.1.1.3-11)

GScalLin (8.1.1.3-1)

GScalNonLin (8.1.1.3-1)

GSDL() (9.4-1)

GSensAlgn (8.1.1.2.1-2)

GSensScal (8.1.1.2.1-2)
GSensScalAsym (8.1.1.3-14)

GSensScalLin (8.1.1.3-2)

GSensScalNonLin (8.1.1.3-2)

gθ (5.4-1)

gθ (11.2.4.3.2.1-2)

gTst (18.4-1)

gTst (18.4.5-1)

gTst (18.4.7.4-16)

gTst (18.4.7.4-5)

gUp (5.4-3)

gUp (5.4.1-9)

D-26 PARAMETER INDEX

gUp (11.2.4.3.2.1-8)

gUp (12.1-28)

H (4.4.1.1-6)

H (6.1.2-1)

H (6.1.3-9)

H (12.2.4-24)

H (12.3.6.2-1)

H (12.3.6.2-28)

H (13.1-1)

H (13.2.2-3)

H (13.3-13)

H (13.4.2-8)

H (13.4.3-14)

H (14.5-4)

H (14.6.1-1)

H (15.1-2)

H (15.1.2.2-1)

H (15.1.5.2-1)

H (15.2.1.1-11)

H (18.1.1-2)

h (3.2.4-7)

h (4.4.1.2-1)

h (4.4.2.2-2)

h (5.3-18)

h (9.4-2)

h (11.2.4.1.1-2)

h (12.1-12)

h Fig. 5.2-1

H' (16.1.1-28)
()

H
(18.4.7-12)

h(φi) (10.4.2-18)

H(R) (12.1.1-12)

H(S) (10.2.1-3)

H(S) (17.2.3.2.3-39)

H(t) (18.3-5)

h0 (11.2.4.1.1-2)
h0x (10.1.4.1-4)

h0y (10.1.4.1-4)

h1 (17.1.1.2-22)

h2 (17.1.1.2-22)
h2ψ (17.1.3-10)

h3 (17.1.2.2-14)
h3ψ (17.1.3-10)

h4 (17.1.2.2-14)
h4ψ (17.1.3-10)

h5 (17.1.2.2-14)
h5ψ (17.1.3-10)

HA(S) (10.5.1-21)

γHOffset

N
(18.3-28)

hAmp1 (11.2.4.1.1-2)

hAmp2 (11.2.4.1.1-2)

HCruise (11.2.4.1.1-8)

HDen(S) (17.2.3.2.3-40)

HDenAi(jω) (10.5.1-23)

HDeni(S) (10.2.1-30)

HDenϑi(jω) (10.5.1-23)

h (11.2.4.1.1-2)

Hi(S) (10.2.1-27)

HM(t) (15.1.5.4.1-3)

hN (4.4.1.2-1)

HNum(S) (17.2.3.2.3-40)

HNumAi(jω) (10.5.1-23)

HNumi(S) (10.2.1-30)

HNumϑi(jω) (10.5.1-23)

HP (13.4.2-1)

H⊥ (13.4.2-8)

hPrsr (4.4.1.2.1-3)

PARAMETER INDEX D-27

hPrsr (12.1-12)
hPrsr n (7.2-6)

hREF (4.4.2.2-2)

HRev (14.6.4.2-1)

HRev(t) (15.1.5.4.1-25)

HRW (16.2.3-3)

Hϑ(S) (10.5.1-21)

hTrue (12.3.2-23)

Hx (16.1.1-5)

hx(t) (10.1.4.1-4)

HXP (13.4.2-7)

Hy (16.1.1-5)

hy(t) (10.1.4.1-4)

I (3.1-14)

I (3.1-20)

I (3.3.4-8)

I (3.5.1-1)

I (7.1.1.1-2)

I (7.3.3.1-9)

I (8.1.1.1-1)

I (8.1.1.2-1)

I (11.2.1.4-1)

I (11.2.4.3.2.2-6)

I (13.6.1-15)

I (15.1.2.1.1.3-32)

I (15.1.5.1-3)

I (15.2.1-17)

i (3.2.4-1)

i (3.2.4-7)

i (8.1.4.1.1.1-3)

i (10.1.1.2-1)

i (10.1.2.2-1)

i (10.1.3.2.2-3)

i (10.2.2-1)

i (15.2.4-1)

i (18.1.1-4)

i Rate Sensor Fig. 18.4.3-3

I ' (16.1.1-28)

()i (18.3.2.1-2)

i, j (16.1.1.4-2)

I2x2 (15.2.1-16)

I2x3 (15.2.1-6)

iB Fig. 18.4.3-3

ICN
I

(13.5-12)

ICNI(i,j) (13.5-17)

IEst (16.1.1-37)

IH (13.1-7)

IH (13.4.3-8)

IH (13.6.1-16)

IH (15.2.1-5)

Im(ω) (10.2.1-14)

iMARS Fig. 18.4.3-3

ImDeni(ω) (10.2.1-32)

ImNumi(ω) (10.2.1-32)

In (17.2.3.2.3-39)

In (17.2.3.2.3-46)

INS (15.1.2.2-1)

INS (17.3.2-3)

Integ (8.1.3.1-1)

Integl (8.1.3.1-2)

()Intgr (10.1.3.2.3-2)

IωiR (11.2.1.1-5)

IOptEst (16.1.1.3-18)

Ix (16.1.1-16)

Iy (16.1.1-28)

J (3.1-17)

J (8.3-2)

D-28 PARAMETER INDEX

J (8.3-2)

J (10.5.1-3)

J (15.1.2.1.1.4-5)

J (15.1.2.2-21)

j (3.2.2-12)

j (3.2.4-7)

j (4.4.1.2.1-17)

j (7.1.1.2.1-4)

j (7.2.1-3)

j (7.2.2.1-6)

j (7.3.1-4)

j (10.1.1.2.2-10)

j (10.1.2.2.2-11)

j (10.1.3.2.2-10)

j (10.2.1-7)

j (10.2.2-3)

j (10.4.2-11)

j (13.3.2-8)

j (15.1.2.1.1.3-26)

j (16.2.3.2-3)

j (17.1.2.3-29)

j (18.3.1.2-6)

j (18.4.7.3-2)

j Rate Sensor Fig. 18.4.3-3

J2 (5.4-1)

J2 (11.2.4.3.2.1-2)

J3 (5.4-1)

J3 (11.2.4.3.2.1-2)

jB Fig. 18.4.3-3

JCA (13.4.2-4)

Jii (15.1.2.1.1.4-6)

jMARS Fig. 18.4.3-3

JP (13.4.2-1)

JφR Sect. No. 11.2.1.2

JψR Sect. No. 11.2.1.2

JSA (13.4.2-4)

JθR Sect. No. 11.2.1.2

K (6.1.1-6)

K (7.2.2.2-10)

K (15.1.5.2-1)

k (3.2.4-7)

k (7.4.1-1)

k (8.1.3.1-7)

k (10.1.1.2.2-10)

k (10.1.2.2.2-11)

k (10.1.3.2.3-2)

k (10.5.1-4)

k (15.2.1.2-6)

k (16.2.3.2-3)

k (17.1.1.1-3)

k (18.4.7.3-3)

K' (16.1.1-28)

K* (15.2.1.1-13)

K1 (6.1.2-2)

K1 (18.3-1)

k1 (10.5.1-3)

K2 (6.1.2-2)

K2 (18.3-1)

k2 (10.5.1-3)

K3 (6.1.2-2)

K3 (18.3-1)

K4 (6.1.2-2)

K4 (18.3-1)

KAniso (8.1.4.2-1)

κAsym (18.4.7.2-12)

κii Sect. No. 18.4.3

κij Fig. 18.4.3-3

κij Sect. No. 18.4.3

PARAMETER INDEX D-29

κji Fig. 18.4.3-3

κLinScal (18.4.7.2-12)

κMis (18.4.7.2-12)

κSystBias (8.1.1.1.1-5)

κSystScal/Mis (8.1.1.1.1-5)

κSystScalAsym (8.1.1.3-22)

κSystScalLin/Mis (8.1.1.3-8)

κSystScalNonLin (8.1.1.3-8)

kB Fig. 18.4.3-3

KBias (8.1.1.1-7)

KBias (8.2.1.1-2)

KBias (8.2.2.1-5)

KBias (12.4-2)

KBias (12.4-5)

KBiasC (12.4-5)
KδΔR (15.2.1.1-19)

KδωIE (15.2.1.1-19)

Kδv (15.2.1.1-19)

K♦ (14.6.1-1)

K♦ (14.6.1-2)

K♦′(t) (18.3-6)

K♦(t) (18.3-5)

Km
♦ (15.1.5.3.2-10)

KRev
♦ (t) (15.1.5.4.1-26)

KDInd/L (17.1.2.3-25)

KDInd/Sd (17.1.2.3-25)

KFst (15.1.5.3.1-1)

KFuel (17.1.2.3-27)

Kγ (15.2.1.1-19)
Kjki (16.2.3.2-8)

kMARS Fig. 18.4.3-3

KMis (8.1.1.1-7)

KMis (8.2.1.1-2)

KMis (8.2.2.1-5)

KMis (12.4-2)

KMis (12.4-5)

KMisC (12.4-5)
KMisij (8.1.4.1.1.2-1)

KMisij (8.2.1.1-9)

KMisij (8.2.2.1-31)

Kn (15.1.2-13)

Kω
♦′(t) (18.3-7)

KOpt (16.1.1.3-10)

KOpt (16.1.2.1-9)
Kφρl bndji (17.2.3.2.3-5)

KPsConi (16.2.3.2-1)

KResConi (16.2.3.2-6)

KRρl bndji (17.2.3.2.3-5)

L (3.2.2-10)

L (4.4.2.1-1)

L (10.5.1-18)

L (11.2.4.1.1-4)

L (11.2.4.2-1)

L (12.2.3-33)

L (18.1.1-24)

l (4.4.2.1-1)

l (6.1.2-2)

l (6.1.3-8)

l (7.1.1.1.1-3)

l (7.3.3.2-1)

l (8.1.4.1.1.1-6)

l (8.1.4.1.2-3)

l (10.1.3.2.2-3)

l (10.5.1-3)

l (11.2.1.1-6)

l (11.2.3.1-1)

D-30 PARAMETER INDEX

l (11.2.4.1.1-1)

l (11.2.4.3.2.1-8)

l (12.2.3-33)

l (13.4.2-34)

l (14.1-2)

l (14.5-3)

l (15.1.2.2-3)

l (17.2.3.2.2-1)

l (17.2.3.2.3-24)

l (18.1.1-22)

l (18.3-1)

l bnd (17.2.3.2.3-5)

l Fig. 5.2-1

l k (9.3-2)

L0 (3.2.2-13)

L0 (11.2.4.1.1-1)

l0 (11.2.4.1.1-1)

l0 Fig. 13.5-1

l0
AC

(17.2.3.2.2-1)

l 0
B

(11.2.3.1-9)

L1 (3.2.2-13)

L1 (11.2.4.1.1-1)

L2 (3.2.2-13)

λ (3.2.2-10)

λ (4.4.1.2.1-7)

λ (13.2.1-6)

λ (14.6.2-1)

λ(0) (15.1.5.4-8)

λ(t) (15.1.5.4-2)

λ*(t) (15.1.5.4.1-13)

λAsym (18.4.5-1)

λAsym (18.4.7.1-3)

λAsym (18.4.7.4-18)

λBias (18.4.5-1)

λBias (18.4.7.1-3)

λBias (18.4.7.4-10)

λBias (18.4.7.4-18)

Λi (14.6.2-6)

Λi (14.6.5.1-2)

λi (14.6.2-2)

λi0 (14.6.2-6)

λii Sect. No. 18.4.3

λiii Sect. No. 18.4.3

λij Sect. No. 18.4.3

λLinScal (18.4.5-1)

λLinScal (18.4.7.4-10)

λLinScal (18.4.7.4-18)

λLinScal/Mis (18.4.7.1-3)

λM(t) (15.1.5.4.1-13)

λMis (18.4.7.4-10)

λm
N

(17.2.3.2-2)

λSystBias (8.1.1.2.1-5)

λSystScal/Mis (8.1.1.2.1-5)

λSystScalAsym (8.1.1.3-15)

λSystScalLin/Mis (8.1.1.3-2)

λSystScalNonLin (8.1.1.3-2)

LAmp (11.2.4.1.1-1)

lAmp (11.2.4.1.1-1)

LAniso (10.1.4.1-2)

LBias (8.1.1.2-7)

LBias (8.2.2.1-5)

LBias (12.4-15)

LBias
* (8.2.2.1-5)

LBiasC (12.4-15)

l
 Cnst
B

(15.2.2.1-14)

PARAMETER INDEX D-31

l (11.2.4.1.1-1)

lE (15.2.2.1-1)

l
E

(15.2.4-4)

l
 Flex
B

(15.2.2.1-14)

lg (16.2.3.3-1)

LG2 (10.1.4.1-2)

LI (11.2.4.1.1-1)

l i
B

(11.2.3.1-9)

LI (11.2.4.1.1-1)

LINS (18.1.1-24)

l INS/GPS
AC

(17.3.2-3)

l k
I

(8.1.4.1-1)

LMis (8.1.1.2-7)

LMis (8.2.2.1-5)

LMis (12.4-15)

LMisC (12.4-15)
LMis ij (8.1.4.1.1.2-1)

LMis ij (8.2.2.1-31)

LMisk

T
(8.1.4.1.1-5)

lφ Fig. 5.2-1
LPsSculi (16.2.3.2-1)

LREF Fig. 4.4.2.2-1

lREF Fig. 4.4.2.2-1
LResSculi (16.2.3.2-6)

Lx (16.1.1-20)
lXk (8.1.4.1.1.1-1)

lYk (8.1.4.1.1.1-1)

lZk (8.1.4.1.1.1-1)

M (10.1.3.1-4)

M (14.6.4-2)

M (17.1.2.3-26)

M (17.2.3.2.1-1)

M j (15.1.2.1.1.3-26)

m (7.2-4)

m (8.1.4.1.1.1-3)

m (8.2.1-1)

m (8.2.2-2)

m (8.2.3-1)

m (10.1.1.2-1)

m (10.1.2.2-1)

m (10.1.3.1-3)

m (10.5.1-3)

m (11.2.4.3.2.1-1)

m (13.4.2-34)

m (15.1.2.1.1.1-1)

m (15.1.5.3.1-1)

m (16.2.4-2)

m (17.1.3-3)

m (17.2.1-1)

m (17.2.2-4)

m (18.4-1)

m Sect. No. 7.1.1

m Sect. No. 7.1.2

m-1/2 (7.2.1-1)

m-1/2 (17.3.2-11)

M/M (14.6.4.2-2)

M0 (17.1.2.3-27)

mEven (18.1.1-21)

mOdd (18.1.1-21)

μ (5.4-1)

μ (10.1.3.2.2-26)

μ (11.2.4.3.2.1-2)

μaiVib (16.2.3.1-21)

μaiVib (16.2.3.2-13)

μij (18.4.3-4)

D-32 PARAMETER INDEX

μl bndi (17.2.3.2.3-5)

μm (17.2.1-21)

μMis (18.4.5-1)

μMis (18.4.7.4-18)

μω iVib (16.2.3.1-18)

μωYVib (16.2.3.1-16)

μωZVib (16.2.3.1-16)

n (3.1.1-3)

n (7.2-6)

n (7.2.1-3)

n (7.3.1-2)

n (13.4.2-34)

n (13.6.1-8)

n (14.6.1-12)

n (15.1-2)

n (15.1.2.4-11)

n (15.1.5.2-1)

n (15.2.4-12)

n (18.3.1.1-8)

n (18.3.2.1-10)

n (18.3.2.2-2)

n Sect. No. 7.1.1

n Sect. No. 7.1.2
 n (15.1-2)

n+c (15.1.2.4-11)

n+s (15.1.2.4-11)

n+u (15.1.2.4-11)

n-1+c (15.1.2.4-11)
n-1,m

2
(7.2.2.1-3)

n-1/2 (7.1.1.2.1-2)

n-1/2 (7.3.1-10)
()n/xM (15.1.5.4.1-4)

n/xM (15.1.5.4.1-4)

nARS/RndH

L
(18.2.1-6)

nARS/RndH

N
(18.3-21)

nARS/RndZL (18.2.1-6)

nARS/RndZN (18.3-21)

nδg (16.2.3.3-1)

Next (17.2.1-2)
nK0Bias (12.5.6-2)

nKMBias (12.5.6-3)

nM (15.1-2)
nM/Rev n (15.1.5.4.1-29)

nM
♦ (14.6.1-1)

nM
♦ (14.6.1-12)

nM

♦
(t) (18.3-5)

nM

♦
(t) (15.1.5.3.1-25)

nM

♦
(t) (15.1.5.4.1-3)

nMRev
♦ (14.6.4.2-1)

nMFstm (15.1.5.3.2-6)

nMn (14.6.1-12)

nMn (15.1.5.3.1-29)

nMRev

♦
(t) (15.1.5.4.1-26)

North (18.2.1-24)

nOsc/Mark (15.2.4-16)

nOsc/RndCnst (15.2.4-16)

nP (14.6.1-1)

nP (18.3-5)

n′P (14.6.1-8)

nP(t) (15.1-1)
nP* (14.6.1-9)

nP*(t) (15.1.5.4.1-3)
nPa (15.2.1.1-3)

PARAMETER INDEX D-33

nPb (15.2.1.1-3)

nPi (15.1.2.1.1-25)

nPj (15.1.2.1.1-25)

nPM(t) (15.1.5.4.1-3)

nP
N

(15.2.1.1-4)

nSFiRnd (17.2.3.2.3-19)

nt (15.2.4-15)

nTrans (16.2.4-4)

ν (14.6.1-1)
nVibi (15.2.1.2-6)

nWndGst
Geo

(17.2.3.2.1-9)

NX (15.2.1.1-3)

NY (15.2.1.1-3)

Off Diag () (8.1.1.1.1-14)

Ω (7.4.1-1)

Ω (10.1.1.1-10)

Ω (10.1.3-1)

Ω (10.1.4.1-2)

Ω (10.1.4.2-1)

Ω (10.3-1)

Ω (11.2.3.1-11)

ω (4.4.1.2.1-17)

ω (7.2.2.2-7)

ω (7.3.3.1-4)

ω (8.1.1.1-1)

ω (8.1.4.1-7)

ω (8.2.1-1)

ω (8.2.2-2)

ω (8.2.3-1)

ω (10.2.1-4)

ω (11.2.2.1-12)

ω (12.4-2)

ω (17.2.3.2.3-33)

Ω′ (7.4.1-1)

Ω′ (10.1.3.2.3-2)

ω′ (8.1.1.1-3)

ω′ (8.1.4.1.1-6)

ω′im (8.1.4.1.1.1-4)

ω′im-1 (8.1.4.1.1.1-4)

ω′Q (8.1.4.1.4-9)

ω′X (8.1.4.1.1.1-1)

ω′Y (8.1.4.1.1.1-1)

ω′Z (8.1.4.1.1.1-1)

ω* (8.1.1.1.1-2)

ωAB2
B2 (3.3.4-11)

ωAB
A

(3.4-6)

ωAB
A

Sect. No. 3.3.1

ωAB
B

(3.3.1-4)

ωAB
B

(3.3.2-3)

ωAB
B

(3.3.4-15)

ωAB
B

(3.4-4)

ωAB
B
× (3.3.2-4)

ωABXB (3.3.2-4)

ωABYB (3.3.2-4)

ωABZB (3.3.2-4)

ωARS(t) (10.1.4.2-2)

ωARS0x (10.1.4.2-2)

ωB
(11.2.1.2-2)

ωB0B
B

(13.4.1.2-5)

ωB1B2
B2 (3.3.4-10)

ωBA
B

(3.3.1-3)

ωB
B

(9.1-3)

D-34 PARAMETER INDEX

ωBI
P

(13.4.2-2)

ωc Fig. 11.2.1.1-1

ωe (4.1.1-4)

ωe (5.4.1-1)

ωe (5.4.1-4)

ωe (6.1.2-2)

ωe (11.2.4.1.1-3)

ωe (12.1-12)

ωe (12.1.4-9)

ωe (12.2.4-21)

ωe (14.5-3)

ωe (18.3-1)

ωe Fig. 13.5-1

ωEAC (17.3.2-8)

ωEB (13.4.3-2)

ωEB
B

(13.4.3-2)

ωe
I

(11.2.4.2-2)

ωEN (9.1-1)

ωEN
E

(5.2.4-1)

ωENH

E
(12.3.6.2-11)

ωENH

E
(5.2.4-3)

ωEN
N

(4.1.1-1)

ωEN
N

(7.2-1)

ωEN
N

(12.1-12)

ωEN
N

(12.3.3-3)

ωEN
N

(14.5-2)

ωENH

N
(12.3.5-19)

ωh1 (11.2.4.1.1-2)

ωh2 (11.2.4.1.1-2)

ωHi (17.2.3.2.3-18)

ωi′ (10.4.2-9)

ωIA
A

(3.3.2-10)

ωIA
A

(3.5.1-19)

ωIA
A

(3.5.1-20)

ωIA
A
× (3.3.2-10)

ωIB (9.1-1)

ωIB (13.2.4-9)

ωIB (13.4.1.1-1)

ωIB (13.4.1.2-6)

ωIB(t) (10.1.1-2)

ωIB(t) (10.1.2-3)

ωIB(t) (10.1.3-1)

ωIB0Accl/Inpt (10.1.4.1-2)

ωIB0Accl/Pend (10.1.4.1-2)

ωIBAccl/Inpt(t) (10.1.4.1-2)

ωIBAccl/Pend(t) (10.1.4.1-2)

ωIB
B

(3.3.2-10)

ωIB
B

(3.5.1-19)

ωIB
B

(3.5.1-20)

ωIB
B

(4.1-2)

ωIB
B

(4.1-2)

ωIB
B

(7.1.1.1-4)

ωIB
B

(11.2.3.1-4)

ωIB
B

(12.1-12)

ωIB
B

(12.1.4-1)

ωIB
B

(18.3-1)

ωIB
B
× (3.3.2-10)

PARAMETER INDEX D-35

ωIB
I

(8.1.4.1-4)

ωIBiB (18.4.7.2-12)

ωIBi

B
(18.4.7.2-13)

ωIB
P

(13.4.2-1)

ωIBXP (13.4.2-4)

ωIBYP (13.4.2-4)

ωIBZP (13.4.2-4)

ωIE/East j (18.3.1.2-8)

ωIE/H-kj (18.3.1.1-8)

ωIE/H i

N
(18.3.2.1-2)

ωIE/H j

N
(18.3.1.1-2)

ωIE (9.1-1)

ωIE
E

(12.2.2-8)

ωIE
E

(12.2.4-16)

ωIEExp

N
(18.3-2)

ωIEH (6.2.1-5)

ωIEH (18.2.1-17)

ωIEH (18.3-28)

ωIEH (18.3.1.2-3)

ωIEH/1 (6.1.3-8)

ωIEH/1

N1 (6.1.3-8)

ωIEH/2

N2 (6.1.3-9)

ωIEH

N
(13.2-3)

ωIEH

N
(13.3-8)

ωIEH

N
(14.1-2)

ωIEH

N
(t) (18.3-14)

ωIE
N

(4.1.1-1)

ωIE
N

(7.2-1)

ωIE
N

(12.1-12)

ωIE
N

(12.2.4-16)

ωIE
N

(12.3.3-4)

ωIE
N

(14.5-2)

ωIE
N

(18.3-1)

ωIENorth (18.1.2-9)

ωIEUp (18.2.1-3)

ωIEUp (18.3-21)

ωIEZN/1 (6.1.3-9)

ωIL (9.1-1)

ωIL
L

(4.1-2)

ωIL
L

(4.1-2)

ωIL
L

(12.1-12)

ωIN (12.1.2-2)

ωIN H

N
(13.2-5)

ωIN
N

(12.3.3-4)

ωIN
N

(12.3.7.2-2)

ωIN
N

(14.5-2)

ωiR (11.2.1.1-2)

ωk (8.1.4.2-1)

ωL (11.2.4.1.1-1)

ωl (11.2.4.1.1-1)

ωL/INS-AC (17.3.2-9)

ωLACAvg

AC
(17.1.2.3-7)

ωnl bnd (17.2.3.2.3-5)

ωLo (17.2.3.2.3-18)

ωLo-f (8.1.4.1.2-2)

ωLo-f (8.1.4.1.2-3)

D-36 PARAMETER INDEX

ω-Puls (8.1.1.3-22)

ω-Pulsi (8.1.1.3-22)

ωn (4.4.1.2.1-10)

ωn (15.2.1.2-7)

ωn (15.2.2.3-5)

ωN/INS-AC (17.3.2-9)

ωNE
N

(12.3.3-2)

ωNI
N

(12.3.7.2-1)

ωNV (17.1.1.2-17)

ωNV
V

 (17.1.1.2-3)

ωp (8.1.4.2-1)

ωφ (11.2.2.1-5)

ωφ (11.2.2.1-6)

ωPI
P

(13.4.2-2)

ω+Puls (8.1.1.3-22)

ω+Pulsi (8.1.1.3-22)

ωPuls (8.1.1.1-1)

ωPuls (8.1.2.1-1)

ωPuls (8.2.1.1-2)

ωPuls (8.2.2.1-5)

ωPuls (9.3-1)

ωPuls (12.4-2)

ωPuls i (8.1.1.3-22)

ωPulsX (8.2.2.1-25)

ωPulsY (8.2.2.1-25)

ωPulsZ (8.2.2.1-25)

ωR
(11.2.1.2-2)

ωSpin (13.4.2-6)

ωARS0x (10.3-14)

ωARS0y (10.3-14)

ωs Fig. 11.2.1.1-1

ωθ (10.5.1-18)

ωTilt
N

(6.1.2-2)

ωTilt
N

(18.3-1)

ωUV (9.1-4)

ΩVib (8.1.4.1.2-3)

ωVib (8.1.4.1.2-2)

ωVib
B

(12.6-9)

ωVib
B

(14.2-14)

ωVib
B

(18.2.1-3)

ωVib
B

(18.3-21)

ωVibi (16.2.3.1-13)

ΩWt i- (8.1.4.1.4-7)

ΩWt i+ (8.1.4.1.4-7)

ΩWt (8.1.1.1-7)

ΩWt (8.2.1.1-2)

ΩWt (8.2.2.1-5)

ΩWt (9.3-1)

ΩWt (12.4-2)

ΩWt (12.4-5)

ΩWt 0 (8.1.1.1-1)

ΩWt C (12.4-5)

ΩWt i (8.1.4.1.4-3)

ΩWt i (8.2.1.1-13)

ΩWt i (8.2.2.1-27)

ΩWti- (8.2.1.1-23)

ΩWt i+ (8.2.1.1-23)

ΩWt - (8.1.1.3-22)

ΩWt + (8.1.1.3-22)

Ωx (10.1.1-2)

Ωx (10.1.2-3)

PARAMETER INDEX D-37

ωx (10.5.1-18)

ωXGeo Fig. 4.4.3-1

Ωy (10.1.1-2)

Ωy (10.1.2-3)

ωy (10.6.1-6)

ωYGeo Fig. 4.4.3-1

ωζ (11.2.2.1-5)

ωζ (11.2.2.1-6)

ωZGeo Fig. 4.4.3-1

ω′ * (8.1.1.1.1-2)

ω′X (8.2.2.1-23)

ω′Y (8.2.2.1-23)

ω′Z (8.2.2.1-23)

Out (17.2.3.2.3-38)

P (14.6.1-5)

P (15.1.2.1-4)

P (17.1.2.3-30)

P ′ (14.6.2-13)

P' (16.1.1.1-1)

P ′0 (14.6.2-13)

Pii
'

(16.2.4-11)

Pjk0

'
(16.2.4-8)

P'Meas (16.2.5-16)

PMeas/iim

'
(16.2.4-9)

P'Proc (16.2.5-16)

PProc/iil
'

(16.2.4-9)

P(+) (15.1.5.3.1-1)

P(-) (15.1.5.2-1)

P(-) (15.1.5.3.1-1)

P(0) (15.1.5.4-9)

P(ψpVibi) (10.4.2-13)

P(pVib0/i) (10.4.2-13)

P(pVib0/i,ψpVibi) (10.4.2-13)

P(t) (15.1.2.1.1-16)

p(t) (10.2.2-1)

p(t) 2 (10.2.2-2)

P(t1) (15.1.2.1.1-16)

P* (14.6.4-5)

P* (14.6.4.2-5)

P* (15.2.1.1-13)

P* (16.1.1-37)

P*(t) (15.1.5.4.1-12)

P** (14.6.4.2-5)

P***0 (14.6.4.3-8)

P**0 (14.6.4.2-7)

P*0 (14.6.4-7)

P*0 (15.2.1.2-2)

PaOut (16.2.5-4)

PaOut/ii (16.2.5-21)

PaOut/Meas (16.2.5-16)
PaOut/Meas/iim (16.2.5-21)

PaOut/Measm (16.2.5-18)

PaOut/Proc (16.2.5-16)
PaOut/Proc/iil (16.2.5-21)

PaOut/Procl (16.2.5-18)

PaSFiAC (17.2.3.2.3-23)

PδΔR/H 0 (15.2.1.2-2)

PδΔRδv/H0 (15.2.1.2-2)

Pδg (16.2.3.3-3)

PδgStdSt (16.2.3.3-6)

Pδω IE/H 0 (15.2.1.2-2)

Pδv/H0 (15.2.1.2-2)

PδvδΔR/H 0 (15.2.1.2-2)

Pγ /H0 (15.2.1.2-2)

Φ (15.1.5.3.1-1)

φ (3.1-3)

D-38 PARAMETER INDEX

φ (3.2.1.1-10)

φ (3.2.2-1)

φ (3.2.2-1)

φ (3.2.3-1)

φ (3.5.3-26)

φ (4.4.2.1-1)

φ (5.4-1)

φ (7.1.1.1-4)

φ (11.2.2.1-4)

φ (11.2.2.1-4)

φ (11.2.4.3.2.1-2)

φ (12.1-28)

φ (12.2.1-28)

φ (13.4.1.2-6)

φ (13.4.3-3)

φ (17.1.1.2-16)

φ (17.1.1.5-6)

φ Fig. 5.2-1

φ Fig. 13.4.2-1

Φ' (16.1.1-28)

φ(ω) (10.2.1-16)

Φ(t) (10.1.1.1-2)

φ(t) (7.2.2.2-1)

φ(t) (7.2.2.2-1)

Φ(t, t1) (15.1.1-3)

Φ(t, tm-1) (17.2.3.2.3-10)

Φ(ti,tj) (15.1.1-7)

Φ* (15.2.1.1-13)

φ0 (11.2.2.1-18)

φ0 (13.4.2-22)

φ1
L

(18.4.7.2-3)

φA(ω) (10.5.1-25)

ϕaAcclInpt (10.1.4.1-2)

ϕaAcclPend (10.1.4.1-2)

φaAcclx (10.3-16)

ϕaAcclx (10.3-14)

φaAccly (10.3-16)

ϕaAccly (10.1.4.2-2)

ϕaAccly (10.3-14)

φAC/V (17.1.2.3.1-9)

φaAcclInpt (10.3-20)

φaAcclPend (10.3-20)

ϕaSF (10.1.3-1)

φaSF (10.3-20)

φaSFx (10.3-3)

φaSFy (10.3-3)

φaSFz (10.3-3)

φBL (11.2.1.3-2)

φCntrl (17.1.2.3.1-2)

ΦCon (10.1.1.1-13)

ΦCony (10.6.1-13)

ΦConz (10.3-20)

φDenA1(ω) (10.5.1-24)

φDeni(ω) (10.2.1-32)

φDenϑ1(ω) (10.5.1-24)

φDenϑ2(ω) (10.5.1-24)

φ Fig. 11.2.1.1-1

φH (18.2.1-14)

φH (18.2.1-14)

φH1

L
(18.4.7-14)

φH2

L
(18.4.7-14)

PARAMETER INDEX D-39

φHiFlevm

AC
(17.2.3.2.2-2)

φH
L

(18.2.1-12)

φHi

N
(18.3.2.1-3)

ϕhx (10.1.4.1-4)

φhx (10.3-20)

ϕhy (10.1.4.1-4)

φhy (10.3-20)

ϕI
(12.2.1-18)

φi (18.3.2.2-1)

φH-ki (18.3.2.1-10)

φL
(18.4.7-7)

φL
(18.4.7.2-2)

Φλλ(t) (14.6.4.1-4)

Φλλ(t) (15.1.2.1.1.3-12)

Φλλ(t) (15.1.5.4-8)

Φλλ
j

(15.1.2.1.1.3-28)

Φλλm (15.1.2.1.1.3-7)

Φλy(t) (14.6.4.1-4)

Φλy(t) (15.1.2.1.1.3-12)

Φλy(t) (15.1.5.4-8)

Φλy
j

(15.1.2.1.1.3-28)

Φλym (15.1.2.1.1.3-7)

Φm (10.1.1.2-1)

Φm (15.1.2.1.1.3-28)

φm (7.1.1.1-3)

φm (7.1.1.1-3)

φm (7.1.2.1-3)

φm (7.1.2.1-3)

φm (8.2.1-1)

φm
V

 (17.1.3-5)

Φn,n-1+c (15.1.2.4-11)

Φn-1+c,n-1 (15.1.2.4-11)

φNum/ϑ1x(Ω) (10.6.1-15)

φNum/ϑ1z(Ω) (10.6.1-15)

φNumA1(ω) (10.5.1-24)

φNumi(ω) (10.2.1-32)

φNumϑ1(ω) (10.5.1-24)

ϕωARSx (10.1.4.2-2)

ϕωARSx (10.3-14)

φωARSx (10.3-16)

ϕωARSy (10.3-14)

φωARSy (10.3-16)

φωIBAccl/Inpt (10.3-20)

ϕωIBAccl/Inpt (10.1.4.1-2)

ϕωIBAccl/Pend (10.1.4.1-2)

φωIBAccl/Pend (10.3-20)

ϕpp(t,τ) (10.2.2-9)

ϕpp(t,τ) (17.2.3.2.3-32)

φS (17.1.1.2-16)

φSiV (17.1.1.2-26)

φS
V

 Sect. No. 17.1.1

φϑ(ω) (10.5.1-25)

ϕθx (10.1.2-3)

ϕθx (10.1.1-2)

φθx (10.3-3)

φθx/i (10.4.1-1)

ϕaSFy (10.1.2-3)

ϕθy (10.1.1-2)

φθy (10.3-3)

D-40 PARAMETER INDEX

φθy/i (10.4.1-1)

φθz (10.3-3)

φθz (10.6.1-13)

φθz/i (10.4.1-1)

φVarm (17.2.3.2-14)

φVarm (17.2.3.2-14)

ΦVH k(t,τi) (13.6.1-7)

φX (3.2.2.2-17)

φx (3.2.4-18)

Φxx (16.1.1-5)

Φxy (16.1.1-5)

φY (3.2.2.2-17)

φy (3.2.4-18)

Φyλ(t) (14.6.4.1-4)

Φyλ(t) (15.1.2.1.1.3-12)

Φyλ(t) (15.1.5.4-8)

Φyx (16.1.1-5)

Φyy (16.1.1-5)

Φyy(t) (14.6.4.1-4)

Φyy(t) (15.1.2.1.1.3-12)

Φyy(t) (15.1.5.4-8)

Φyym (15.1.2.1.1.3-7)

φZ (3.2.2.2-17)

φz (3.2.4-18)

pi(t) (10.2.2-1)

Pii (15.1.2.1.1.4-1)
PiiMax (15.1.2.1.1.4-4)

PiiMin (15.1.2.1.1.4-1)

Pij (15.1.2.1.1.4-2)

φAC
(17.1.2.3-7)

pjk (10.1.1.2.2-14)

pjk (10.1.2.2.2-14)

PΩ (14.6.2-16)
PΩ0 (14.6.2-13)

PΩ0 (18.3-9)

PΩαQuant/aRand (14.6.4.2-20)

PΩωRand (14.6.4.3-11)

PΩRVib (14.6.3-9)

PΩSimult (14.6.5.2-1)

PΩSum (14.6.5.2-3)

PΩυQuant (14.6.4.1-10)

POpt (16.1.1.3-16)

POpt (16.1.2.1-15)

pOut(t)
2 (17.2.3.2.3-38)

PRHLngRHLng (13.6.1-30)

PRVib H (14.6.1-12)

PRVib H (15.2.1-27)

PRVib H (15.2.1.1-9)

PSen/Mrk (15.2.2.1-38)

PSen/Mrk/Std (15.2.2.1-38)

ψ (3.2.3-1)

ψ (3.5.3-26)

ψ (10.2.1-4)

ψ0 (11.2.2.1-18)

ψ0
A

(13.2.4-20)

ψ0
I

(13.4.1.2-12)

ψ0
I

(13.5-7)

ψ0
N

(14.5-5)

ψAvgi (13.4.2-41)

ψBiasl (13.4.2-34)

ψBL (11.2.1.3-2)

ψDesired (17.1.1.5-12)

ψE
(12.2.1-4)

PARAMETER INDEX D-41

ψFm

V
 (17.2.1-3)

ψGC/StartP (17.1.1.4-3)

ψGC/StartTrue (17.1.1.4-4)

ψH0

N
(14.5-5)

ψH
N

(13.5-1)

ψH
N

(14.3-5)

ψH
N

(14.5-2)

ψI
(13.2.4-8)

ψP/INS (18.1.1-21)

ψm
V

 (17.1.3-10)

ψm
V

 (17.2.1-1)

ψN
* (12.5-26)

ψc
N

(15.1.2.3-2)

ψP (12.2.1-28)

ψP (18.1.1-24)

ψPlatform (4.1.2-2)

ψpVib (10.3-1)

ψpVibi (10.4-3)

ψS/Ml (13.4.2-34)

ψStart (17.1.1.5-12)

ψT (12.2.1-39)

ψT (18.1.1-24)

ψT (18.2.2-1)

ψT (18.2.2-1)

ψT (18.3.1.2-1)

ψT/INS (18.1.1-24)

ψTi (18.3.2.2-1)

ψTj (18.3.1.2-9)

ψTMis
I

(13.2.4-13)

ψTrue (4.1.2-2)

ψXN (12.2.1-44)

ψ Fig. 11.2.1.1-1

ψYN (12.2.1-44)

ψZN (12.2.1-44)

ψZN (14.3-5)

ψZN (14.5-2)

ψZN (18.1.1-22)

ψZN0 (14.5-5)

Pulsl (8.1.3.2-4)

Pulslast (8.1.3.2-1)
PVHVH(t) (13.6.1-9)

PVib (15.2.1.2-10)

pVib(t) (10.3-1)

pVib(t) (10.4-1)
pVib0 (10.3-1)

pVib0/i (10.4-3)

pVibi(t) (10.4-1)

PWndGstim (17.2.3.2.1-11)

PwSFiRnd (17.2.3.2.3-26)

Pz (17.2.3.2.3-21)

Q (15.1.5.3.1-1)

q (17.1.2.3-24)

Q' (16.1.1-34)

Q* (15.2.1.1-13)

q1 (3.3.4-4)

q1 (7.1.2.1-2)
Q1m (15.1.2.1.1.3-35)

q2 (14.6.1-13)

q3 (14.6.1-13)

q4 (14.6.1-13)
qαQuant (14.6.1-12)

qαQuant (15.2.1-17)

D-42 PARAMETER INDEX

qaRand (14.6.1-12)

qaRand (15.2.1-17)

qaRnd(τ) (13.6.1-20)

qB(t)
BI(m-1) (7.1.2.1-2)

qBI(m)

BI(m-1) (7.1.2-1)

qBI(m)

LI(n) (7.1.2-1)

qBI(m-1)

LI(n-1) (7.1.2-1)

qB
L

(4.1-2)

QδgDens (16.2.3.3-3)

Qij (15.1.2.1.1.4-4)

QIn (17.2.3.2.3-42)

qLI(n-1)

L(t)
(7.1.2.2-2)

qLI(n-1)

LI(n) (7.1.2-1)

Qm (15.1.2.1.1.3-28)

Qn (15.1.2.1.1-10)
qωRand (14.6.1-12)

qωRand (15.2.1-17)

qωRand (18.3-9)

qωRnd(τ) (13.6.1-20)

QP*Dens (15.2.1.1-11)

QP*Dens(t) (15.1.5.4.1-3)

qPDens (15.1.2.1.1-33)
QPDens (14.6.1-6)

QPDens(t) (15.1.5.3.1-23)

QPDens(τβ) (15.1.2.1.1-28)

QPDens/a (15.2.1.1-7)

QPDens/b (15.2.1.1-7)

QPDens/Assoc(t) (15.1.2.1.1.3-32)

qPDensi(τβ) (15.1.2.1.1-27)

qPDensl (16.2.4-9)

QPDens

N
(15.2.1.1-6)

QPM Dens(t) (15.1.5.4.1-3)

qψαVibQuantij (16.2.3.1-18)

QψVαQuant (16.2.3.1-9)

qψVαQuant (16.2.3.1-5)

qVRυQuant (16.2.3.1-5)

QRW (16.1.1.3-16)

QSen/Mrk (15.2.2.1-38)
QSFiRnd (17.2.3.2.3-21)

qTot (17.2.3.2.1-5)
qυQuant (14.6.1-12)

qυQuant (15.2.1-17)

qVαVibQuantij (16.2.3.1-21)

qVib/Dens (15.2.1.2-10)
qVυVibQuantij (16.2.3.1-21)

QWndGstim (17.2.3.2.1-11)

R (4.1.1-5)

R (4.4.2.2-1)

R (5.2.1-2)

R (5.4-1)

R (5.4.1-1)

R (9.1-1)

R (9.4-3)

R (11.2.4.1.2-4)

R (11.2.4.3.2.1-2)

R (12.1-28)

R (12.2.1-45)

R (12.2.3-6)

R (15.1.5.2-1)

R Fig. 5.2-1

r (3.2.4-25)

r (7.2.1-3)

r (7.2.2.1-5)

PARAMETER INDEX D-43

r (10.1.3.2.2-3)

r (14.6.1-13)

r (15.1.5.3.1-16)

r (16.2.3.1-11)

r (17.2.3.2.3-31)

r (18.4.7.3-2)

R0 (4.4.2.2-5)

R0 (5.1-1)

R0 (5.4-1)

R0 (11.2.4.1.1-4)

R0 (11.2.4.1.2-3)

R0 (12.1-28)

r0 (7.3.3-5)

r1 (7.3.3-5)

r2 (7.3.3-5)

ra (17.2.1-20)

RAvg (17.1.1.4-6)

rb (17.2.1-20)

R♦ (14.6.1-12)

R♦ (14.6.1-6)

R♦ (15.1.5.3.1-15)

R♦(t) (15.1.5.3.1-23)

RE (4.3-1)

RE (12.1-13)

RE (12.2.3-1)

R
E

(12.2.3-1)

R
E

(15.2.4-4)

Re(ω) (10.2.1-14)

ReDeni(ω) (10.2.1-32)

ReNumi(ω) (10.2.1-32)

REq (5.2.2-2)

REq (5.4.1-2)
RFst m (15.1.5.3.1-6)

RGPSAnt
E

(17.3.2-1)

ρ (10.1.3.2.2-25)

ρ (17.1.2.3-24)

ρ Fig. 13.5-1

ρGPSi (15.2.4-1)

ρH
Geo

(5.3-4)

ρi (15.2.4-1)

ρi (17.3.2-1)

ρi
E

(15.2.4-4)

ρi
E

(17.3.2-1)

ρl bndi (17.2.3.2.3-5)

ρN
(4.1.1-5)

ρN
(5.3-18)

ρN
(5.5-4)

ρN
(7.3-2)

ρXN Fig. 4.4.3-1

ρYN Fig. 4.4.3-1

ρZN (4.1.1-5)

ρZN (5.3-18)

ρZN (12.1-28)

ρZN Fig. 4.4.3-1

RI (11.2.4.1.2-3)

RI (12.1.4-2)

ri (10.2.1-7)

RINS
E

(15.2.2.1-1)

RINS
E

(17.3.2-3)

Rk
I

(8.1.4.1-1)

rL (5.2.4-37)

rl (5.2.4-37)

rl (5.3-18)

D-44 PARAMETER INDEX

rl (12.1-28)

rLs (5.2.4-25)

rls (5.2.4-25)
rls (12.1-28)

rMeasm (16.2.4-9)

RN (4.4.1.2-1)

RN (11.2.3.3-8)

Rn (15.1.2.1-13)

RREF (4.4.2.2-1)

RREF
E

(15.2.2.1-1)

RRef
I

(8.1.4.1-1)

RRev
♦ (t) (15.1.5.4.1-25)

RS (4.4.2.2-2)

RS (5.1-1)

RS (5.2.1-2)

RS (11.2.4.3.2.1-2)

RS (12.1-28)

RS
′ (5.1-6)

RS
′ (5.3-18)

RS
E

(5.2.4-6)

RSF(t) (10.1.3.1-1)
RSFM (10.1.3.1-4)

RSi
E

(15.2.4-4)

RSi
E

(17.3.2-1)

RS
N

(4.4.1.2-1)

RSREF (4.4.2.2-2)

RSXE (5.1-1)

RSYE (5.1-1)

RSZE (5.1-1)

RS
′ (11.2.4.1.2-3)

RS
′ (12.1-28)

RVibi (15.2.1.2-6)

RXE (4.4.2.3-4)

RYE (4.4.2.3-8)

RYE (12.1.3-5)

RYI (11.2.4.3.2.1-7)

RYI (12.1.4-14)

RZE (4.4.2.3-4)

S (4.4.1.2.1-13)

S (10.2.1-3)

S (10.5.1-11)

S (14.6.2-6)

S (14.6.5.1-2)

S (17.1.2.3-24)

S (17.2.3.2.3-34)

s (3.2.4-25)

s (10.1.1.2.2-7)

s (10.1.2.2.2-8)

s (18.4.7.3-3)

(S) (17.2.3.2.3-47)

Sα (7.3.3-5)

SαCnt (8.2.3.1-2)

SαCnt m (8.1.2.1-1)

Sαm (8.2.3-1)

SaOut/IC (16.2.5-14)
SaOut/IC ij (16.2.5-21)

SaOut/Tr ij (16.2.5-26)

Sculi (16.2.3.2-1)

Sculij (16.2.3.2-3)

Sculik (16.2.3.2-3)

SculNorm (16.2.3.2-6)

SDL (9.4-1)

SensErr (15.2.2.1-32)

SI C (16.2.4-2)
SI Ci (16.2.4-5)

PARAMETER INDEX D-45

SI Cij (16.2.4-7)

∑
 1 - 3

(18.4.7.3-17)

∑
4 - 8

(18.4.7.3-17)

∑
9 - 11

(18.4.7.3-17)

σaiVib (16.2.3.1-21)

σajVib (16.2.3.2-12)

σakVib (16.2.3.2-12)

σaOut/Tr i (16.2.5-26)

σaOuti (16.2.5-21)

σARS/H/Rnd-k (18.3.1.1-6)

σARS/Rnd (18.2.1-25)

σARS/Rnd (18.2.2-8)

σARS/Rnd/East (18.3.1.2-11)

σARS/Rnd/East (18.3.2.2-2)

σARS/Rnd/Eastn (18.3.2.2-3)

σARS/Rnd/H-k (18.3.2.1-7)

σARS/Rnd/H-k n (18.3.2.1-11)

σARS/Rnd/ZN (18.3.1.1-10)

σaVib (16.2.3.1-21)

σaVib (16.2.3.2-13)

σχ (18.4.7.3-8)

σΔvAvg (18.4.7.3-8)

σΔv (18.4.7.3-13)

σMeasm (16.2.4-9)

σMisci (16.2.4-11)

σω iVib (16.2.3.1-15)

σωVib (16.2.3.1-16)

σPDensl (16.2.4-9)

∑
Total

(18.4.7.3-17)

σWndGstim (17.2.3.2.1-12)

σx' i (16.2.4-6)

σx'j 0 (16.2.4-8)

σx'j nTrans (16.2.4-15)

σx'Tr i (16.2.4-14)

Sijn (16.2.4-1)

sinh (13.2.1-11)
Sjn (16.2.4-1)

(18.3-2)

* (14.6.4-2)

** (14.6.4.2-2)

Start (17.1.1.1-1)

Start (18.2.1-4)

SθARS/ωVib-αQuant/ZN j (18.3.1.1-2)

SθARS/ωVib-αQuantZL (18.2.2-1)

SθARS/ωVib-αQuantZN(t) (18.3-26)

SθARS/Rnd/ZN j (18.3.1.1-2)

SθARS/RndZL (18.2.2-1)

SθARS/RndZN(t) (18.3-26)

STr (16.2.4-4)
STri (16.2.4-13)

STrij (16.2.4-15)

Sυ (7.3.3-5)

SυCnt (8.2.3.1-2)

SυCnt m (8.1.2.2-1)

Sυm (8.2.3-1)

Sυm (10.1.3.1-8)

SVarm

N
(17.2.3.2-1)

SvREF
E

(tREF) (15.2.2.1-40)

SWndGst
N

(17.2.3.2.3-6)

T (10.1.4.1-5)

T (10.2.2-1)

D-46 PARAMETER INDEX

T (10.4-2)

T (11.2.2.2-1)

T (18.2.1-10)

t (11.2.1.1-5)

t (11.2.2.1-1)

t (11.2.4.1.1-1)

t (13.2.1-12)

t (14.3-11)

t (15.2.2.1-40)

t (17.1.1.2-17)

t (17.1.1.2-7)

t (17.1.2.3-28)

t (17.2.1-1)

t Fig. 13.5-1

T0 (11.2.4.1.1-7)

t0 (10.1.1.1-2)

t0 (10.1.2.1-2)

t0 (10.1.4.1-5)

TAlign (7.4.1-4)

TAlign (18.2.2-1)

TAlign (18.3.1.1-2)

τ (4.4.1.2.1-10)

τ (7.1.1.1-5)

τ (10.1.1.1-3)

τ (10.2.2-7)

τ (11.2.2.1-1)

τ (13.2.1-12)

τ (17.1.2.2-7)

τ (17.2.3.2.3-32)

τ (18.2.1-4)

τα (15.1.2.1.1-22)

τβ (15.1.2.1.1-22)

τFilt (17.2.1-21)

τi (13.6.1-5)

TFin/Crnt (17.2.1-2)

tGPSi (15.2.4-2)

ϑ (17.1.2.3.1-9)

θ (3.2.3-1)

θ (3.5.3-26)

θ (10.5.1-3)

θ (12.2.1-28)

θ (17.1.2.2-14)

θ (17.2.3.2.3-24)

ϑ(S) (10.5.1-11)

θ(t) (10.1.1-2)

θ(t) (10.3-3)

θ0 (11.2.2.1-18)

θ0x (10.1.1-2)

θ0x (10.1.2-3)

θ0y (10.1.1-2)

θARS/ωVib-αQuant/East j (18.3.1.2-9)

θARS/ωVib-αQuant/H j

N
(18.3.1.1-2)

θARS/ωVib-αQuantEast (18.2.2-1)

θARS/ωVib-αQuantH
N

(t) (18.3-26)

θARS/ωVib-αQuantZL (18.2.2-1)

θARS/Rnd/East j (18.3.1.2-9)

θARS/Rnd/H-k j (18.3.1.1-6)

θARS/Rnd/H j

N
(18.3.1.1-2)

θARS/RndEast (18.2.2-1)

θARS/RndH

N
(t) (18.3-26)

θARS/RndZL (18.2.2-1)

θBL (11.2.1.3-2)

ϑF(S) (10.5.2-12)

θF (10.5.2-3)

θGC/Range (17.1.1.4-5)

PARAMETER INDEX D-47

ϑGeo
(12.2.2-19)

Θi (14.6.5.1-10)

θi (18.4.7.2-18)

θi(t) (10.4.1-1)

θi(t) (14.6.2-15)

θi(t) (14.6.5.1-10)

θ(t) (10.1.2-3)

θ Fig. 11.2.1.1-1

θThrst (17.1.2.3-21)

θVib (8.1.4.1.2-3)

θx(t) (10.3-3)

θxi(t) (10.4.1-1)

θy(t) (10.3-3)

θyi(t) (10.4.1-1)

θz(t) (10.3-3)

θzi(t) (10.4.1-1)

θz or x(t)
2
 (10.6.1-22)

θz or x(t) (10.6.1-21)

ThOsc (11.2.4.1.1-10)

Thrsh - (8.1.3.2-1)

Thrsh+ (8.1.3.2-1)

Thrst (17.1.2.3-20)

Thrst (17.1.2.3-28)

ti (18.3.2.1-1)

Tl (7.1.1.1.1-10)

Tl (7.2.2.2.2-9)

Tl (7.3.3.2-6)

Tl (7.4.1-1)

Tl (10.1.3.2.2-7)

Tl (17.2.3.2.3-24)

tl (7.3.3.2-1)

tl (11.2.3.2-4)

tl-1 (7.3.3.2-1)

tl-1 (11.2.3.2-4)

Tm (7.1.1.2.1-6)

Tm (7.2.1-1)

Tm (7.2.2.1-5)

Tm (8.1.2.1-6)

Tm (8.1.4.1-16)

Tm (8.1.4.1.2-3)

Tm (10.1.1.2.1-6)

Tm (10.1.3.1-8)

Tm (11.2.4.3.2.1-1)

Tm (15.1.2.1.1.1-9)

Tm (15.1.2.1.1.3-23)

Tm (15.1.5.3.1-15)

Tm (17.1.3-3)

Tm (17.2.1-1)

Tm (17.2.2-4)

Tm (18.4-1)

tM (10.1.3.2.2-39)

tm (11.2.4.3.2.2-1)

tm (17.1.3-3)

tm-1 (8.1.4.1-10)

tm-1 (11.2.4.3.2.2-1)

Tn (7.1.1.2.1-4)

Tn (7.2-6)

Tn (7.3.1-5)

Tn (14.6.1-12)

Tn (15.1.2.1.1.3-38)

Tn (15.1.5.3.1-18)

Tn (15.2.1-18)
TOsc0 (15.2.4-12)

Tr (3.2.4.3-3)

tRECi (15.2.4-2)

tREF (15.2.2.1-40)

D-48 PARAMETER INDEX

TS Sect. No. 17.1.1

TS/GC (17.1.1.4-6)

tStart (18.2.1-4)

t' (10.2.2-11)

U (3.2.1.1-2)

u (10.2.2-5)

u (12.3.6.2-15)

u* (3.2.4-14)

u1 (3.5.1-10)

u1A
B

(3.1.1-30)

u1A
B

(3.2.1-8)

u1B
A

(3.2.1-8)

u1L
B

(4.1-7)

u2 (3.5.1-10)

u2A
B

(3.1.1-30)

u2A
B

(3.2.1-8)

u2B
A

(3.2.1-8)

u2L
B

(4.1-7)

u3 (3.5.1-10)

u3A
B

(3.1.1-30)

u3A
B

(3.2.1-8)

u3B
A

(3.2.1-8)

u3L
B

(4.1-7)

ua (7.2.2.2-10)

uc (16.1.1-5)
uca (15.2.1.1-16)

ucb (15.2.1.1-16)

uc
♦ (14.6.1-2)

uc
♦(t) (15.1.5.3.2-4)

ucFst (15.1.5.3.2-1)

ucn (15.1-4)

ucOpt (16.1.1.3-4)

ucOpt (16.1.2.1-3)
ucOutn (15.1.2-28)

uEast
E

(5.2.4-10)

uEast
I

(11.2.4.2-2)

uEast
L

(18.2.1-23)

uEast
N

(14.2-34)

uEast
N

(14.5-12)

uEast
N

(18.1.1-12)

uEast
N

(18.3-28)

uEast
N

(18.3.1.2-3)

uγ
B

(11.2.3.1-10)

uGC
N

(13.3-1)

uGen
N

(13.1-9)

ui (3.5.1-13)

ui (3.5.1-12)

ui
B

(11.2.3.2-1)

uij
B

(18.4.7.2-13)

uJA
B

(3.3.2-1)

uk (8.1.4.1-8)

uk (9.3-2)

uMAX (3.2.2.2-18)

uNorth Fig. 5.2-1

uNorth
E

(5.2.4-9)

uNorth
E

(12.1-36)

uNorth
I

(11.2.4.2-2)

uNorth
L

(18.2.1-17)

PARAMETER INDEX D-49

uNorth
N

(14.2-33)

uNorth
N

(18.1.1-12)

uNorth
N1 (6.1.3-8)

uω (7.2.2.2-7)

uω (7.3.3.1-2)

uω
B

(13.4.1.1-1)

uω
B

(13.4.1.2-7)

uω
B

(13.4.3-2)

uω
B

(13.4.3-3)

uω
B0 (13.4.1.2-17)

Up (18.1.1-2)

u⊥ (13.4.2-8)

uφ (3.2.2-1)

uφ (4.4.2.1-1)

uφ
A2 (3.2.1.1-10)

uφ
B

(11.2.2.1-4)

uφH
L

(18.2.1-14)

uφ
V

 (17.1.1.2-16)

υ (11.2.2.2-1)

υ(t) (7.2.2.2-6)

υ(t) (10.1.2.2-1)

υ* (8.1.4.1-12)

υCnt (8.2.3.1-2)

υCnt (t) (8.2.2.1-11)

υCntm (8.1.2.2-1)

υCntm (8.1.3.3-6)

υCntm (17.3.1-1)

υCntResl (8.1.3.3-3)

υCntResm (8.1.3.3-3)

υCntX(t) (8.2.2.1-25)

υCntXl (8.2.2.1-37)

υCntY(t) (8.2.2.1-25)

υCntYl (8.2.2.1-37)

υCntZ(t) (8.2.2.1-25)

υCntZl (8.2.2.1-37)

υI
(12.1.4-2)

υI
(12.2.2-6)

υij (18.4.3-3)

υm (8.2.2-2)

υm (8.2.3-1)

υm (10.1.2.2-1)

υm (11.2.4.3.2.2-6)

υm (17.3.1-1)

υQuantm (17.3.1-2)

υRandm (17.3.1-1)

υRef (8.1.4.1-10)

υVarm (17.2.3.2-20)

υ′X(t) (8.2.2.1-23)

υ′Y(t) (8.2.2.1-23)

υ′Z(t) (8.2.2.1-23)

uR
N

(4.1.1-5)

uSpin (13.4.2-8)

uThrst (17.1.2.3-20)

uUp Fig. 5.1-1

uUp
E

(5.1-2)

uUp
I

(11.2.4.1.2-1)

uUp
I

(11.2.4.2-2)

uUpOTH

E
(15.1.2.2-3)

uUpXE (5.1-8)

uUpXI (11.2.4.1.2-1)

uUpYE (5.1-8)

D-50 PARAMETER INDEX

uUpYE (6.1.3-8)

uUpYI (11.2.4.1.2-1)

uUpZE (5.1-8)

uUpZI (11.2.4.1.2-1)

uVib (10.1.3-1)
()

UV
(9.1-4)

()UV (9.1-4)

ux (10.1.1-2)

ux (10.1.2-3)

uXA (3.1-1)

uXA (3.1.1-1)
uXA 1 (4.4.2.1-1)

uXA 2 (3.2.3-1)

uXB (3.1-2)

uXE
N

(6.2.1-3)

uXE
N

(14.2-23)

uXN+
N

(6.2.2-3)

uXG0

G0 (13.5-30)

uXG0

G0 ×

 H
(13.5-30)

uXGeo
Geo

(12.2.2-22)

uXL
B

(6.1.1-3)

uXN1

N1 (6.1.3-8)

uXV F
V F

(17.2.1-6)

uXV
V

 (17.1.1.2-6)

uXV W0 (17.1.2.3.1-2)

uXV W
V W

(17.1.2.3-12)

uy (10.1.1-2)

uy (10.1.2-3)

uYA (3.1-1)

uYA (3.1.1-1)

uYA 1 (3.2.3-1)

uYAC (17.1.2.3.1-9)

uYB (3.1-2)

uYE (12.1.4-11)
uYE (4.4.2.1-1)

uYE
E

(5.2.4-6)

uYE
E

(5.5-1)

uYE
E

(12.1-33)

uYE
Geo

(12.2.2-22)

uYE
N

(6.2.1-2)

uYE
N

(6.2.1-3)

uYE
N

(14.1-2)

uYE
N

(14.2-23)

uYN+
N

(6.2.2-3)

uYI (12.1.4-11)

uYI
I

(11.2.4.2-2)

uYL
B

(6.1.1-3)

uYN1

N1 (6.1.3-8)

uZA (3.1-1)

uZA (3.1.1-1)

uZA (3.2.3-1)
uZA2 (4.4.2.1-1)

uZB (3.1-2)

uZE
N

(14.2-23)

uZN+
N

(6.2.2-3)

uζ (3.5.3-7)

uζA1

A1 (3.5.3-25)

uζA2

A2 (3.5.3-25)

uζA
A

(3.5.3-25)

PARAMETER INDEX D-51

uζE1

E1 (12.2.3-33)

uζE2

E2 (12.2.3-33)

uζE
E

(12.2.3-33)

uζL1

L1 (12.2.1-28)

uζL2

L2 (12.2.1-28)

uζL
L

(12.2.1-28)

uζ
L

(11.2.2.1-4)

uZGeoEnd (17.1.1.4-1)

uZGeo
Geo

(12.2.2-24)

uZL (6.1.1-1)

uZL
B

(6.1.1-3)

uZLiB (18.4.7.1-5)

uZL
L

(18.2.1-3)

uZL
L

(18.4-1)

uZL
L

(18.4.5-1)

uZL
L

(18.4.7.4-16)

uZL
M

(18.4.5-1)

uZL
M

(18.4.7.4-5)

uZL
V

(17.1.1.5-2)

uZN (4.4.2.2-2)
uZN/GPSAntiE (17.3.2-2)

uZN1

N1 (6.1.3-9)

uZN
B

(13.4.1.2-14)

uZN
E

(4.4.1.1-5)

uZN
E

(12.1-13)

uZN
E

(12.2.3-6)

uZN
E

Sect. No. 15.1.2.2

uZNEnd

NStart (17.1.1.4-1)

uZNINS

E
(15.1.2.2-1)

uZN
N

(4.1.1-6)

uZN
N

(4.4.1.2-1)

uZN
N

(5.3-18)

uZN
N

(6.1.2-2)

uZN
N

(9.4-2)

uZN
N

(12.1-12)

uZN
N

(12.2.3-9)

uZN
N

(13.1-1)

uZN
N

(13.3-1)

uZN
N

(14.5-2)

uZN
N

(18.3-1)

uZNOTH

E
(15.1.2.2-1)

uZNVar
NVar

(17.2.3.2-8)

uZNXE (4.4.2.2-4)

uZNXE (12.1-36)

uZNXI (12.1.4-14)

uZNYE (4.4.2.2-4)

uZNYE (12.1-28)

uZNYE (12.1-36)

uZNYI (12.1.4-11)

uZNYI (12.1.4-14)

uZNZE (4.4.2.2-4)

uZNZE (12.1-36)

uZNZI (12.1.4-14)

uZREF (4.4.2.2-2)
uZREFXE (4.4.2.2-4)

uZREFYE (4.4.2.2-4)

D-52 PARAMETER INDEX

uZREFZE (4.4.2.2-4)

uZV (17.1.2.3.1-9)

uZE
N

(6.2.1-3)

u' (10.2.2-11)

V (3.1-1)

V (3.1-3)

V (3.1.1-1)

V (3.2.1.1-15)

V (3.2.2-8)

V (3.4-1)

V (8.2.2.1-14)

V Sect. No. 17.1.1

v (9.1-1)

v (13.3-1)

v (16.2.3.3-4)

v (17.2.3.2.3-1)

V(t) (10.1.2.1-2)

V1 (3.1.1-16)

V1 (3.1.1-35)

V1
A

(3.1.1-15)

V1 × V2

⊥
(12.3.6.2-17)

V1⊥ (12.3.6.2-15)

V2 (3.1.1-16)

V2 (3.1.1-35)

V2
A

(3.1.1-15)

V2⊥ (12.3.6.2-15)

V3 (3.1.1-16)

V3 (3.1.1-35)

V3
A

(3.1.1-15)

VA (3.1-12)

VA (3.2.1-8)

VA (3.4-1)

vA (3.2.4.1-3)

VA× (3.1.1-13)

VA ⋅ (3.1.1-11)

Var (17.2.3.2-1)

vArspd (17.1.2.3-11)

vArspd Sect. No. 17.1.2.3
vArspd iAC (17.1.2.3-13)

vAvgWnd (17.2.3.2.1-4)

vAvgWnd
V

(17.1.2.3-8)

VB (3.1-12)

VB (3.2.1-8)

VB (3.4-1)

VB (3.5.4-1)

vB (3.2.4.1-3)

V
B

(3.5.4-1)

vB (11.2.3.3-4)

VCnstA
B

(3.3.1-3)

VCnstB
A

Sect. No. 3.3.1

VCnstB
A

(3.3.1-1)

vE (4.3-1)

vE (12.1.4-3)

VEast (11.2.4.1.1-6)

vEast (11.2.4.2-2)

VEnd (17.1.1.1-2)

vEnd
N

(18.4.7.3.1-1)

VF (17.2.1-5)

VGC (17.1.1.4-6)

vH
E

(12.3.6.1-28)

vH
Geo

(5.3-3)

vH
N

(12.3.5-9)

vH
N

(18.3-1)

PARAMETER INDEX D-53

vI (11.2.3.3-3)

vI (11.2.4.2-2)

vINS
E

(15.2.2.1-5)

VINSEast() (18.1.2-9)

VINSH(t) (18.1.1-18)

VINSNorth() (18.1.2-9)

vM(t) (15.1.5.3.1-25)

vN (4.1.1-5)

vN (5.3-18)

vN (6.1.2-1)

vN (7.2-1)

vN (11.2.3.3-5)

vN (12.1-12)

v
N

(15.2.2.1-7)

VNorth (11.2.4.1.1-6)

vNorth (11.2.4.2-2)
VPDens/Assoc(t) (15.1.2.1.1.3-32)

V⊥

(3.1.1-44)

Vφ (3.2.1.1-13)

vREF
E

(15.2.2.1-5)

vSF(t) (10.1.2.1-2)

vSF(t) (10.1.3.1-1)

vSF/Sculx (10.6.1-9)

vSF/Sculz (10.3-20)

vSF/SculSnsDyn (10.1.4.2-4)

vSF
L (11.2.2.1-1)

vSFm (10.1.2.2-1)

vSFm-1 (10.1.3.1-6)

vSFScul (10.1.2.1-13)

VStart (17.1.1.1-2)

vStart
N

(17.1.2.2-7)

vStart
N

(18.4.7.3.1-1)

vTotArspd (17.2.3.2.1-4)

vTotArspd (17.2.3.2.1-4)
vTotArspdiAC (17.2.3.2.1-7)

vUp (11.2.4.2-2)
vVibi (15.2.1.2-6)

vWndGst (17.2.3.2.1-4)
vWndGst/iGeom (17.2.3.2.1-10)

vX (11.2.4.1.1-4)

VXA (3.1-1)

VXA (3.1.1-1)

VXA (3.2.1-8)

VXB (3.1-2)

VXB (3.2.1-8)

vXN (4.4.3-7)

vY (11.2.4.1.1-4)

VYA (3.1-1)

VYA (3.1.1-1)

VYA (3.2.1-8)

VYB (3.1-2)

VYB (3.2.1-8)

vYN (4.4.3-7)

VZA (3.1-1)

VZA (3.1.1-1)

VZA (3.2.1-8)

VZB (3.1-2)

VZB (3.2.1-8)

vZN (12.3.5-8)

W (3.1-3)

W (3.1.1-1)

w (18.4.7.3-5)

w' (16.1.1-28)

w(t,t1) (15.1.1-13)

wGC
LStart (17.1.1.4-2)

D-54 PARAMETER INDEX

wGCXLStrt (17.1.1.4-3)

wGCYLStrt (17.1.1.4-3)

wSFiRndl (17.2.3.2.3-24)

Wt (8.1.3.1-1)
wWndGst/iGeom (17.2.3.2.1-10)

wx (16.1.1-5)

WXA (3.1.1-1)

wy (16.1.1-5)

WYA (3.1.1-1)

WZA (3.1.1-1)

x (3.2.2-14)

x (10.1.4.1-4)

x (10.5.1-3)

x (14.6.1-2)

x (16.1.1-5)

x (18.3-5)

x ′ (14.6.1-8)

x' (16.1.1-28)

x ′ (18.3-6)

x'0 (16.2.4-5)

x'i (16.2.4-5)

x'Measi (16.2.4-5)

xn
'
(+e) (16.1.1-30)

xn
'
(+e) (16.1.2-25)

x'Proci (16.2.4-5)

x'Tri (16.2.4-13)

X(S) (10.2.1-3)

X(S) (10.5.1-11)

x(t) (10.2.1-1)

x(t) (15.1-1)

x* (16.2.3-6)

x* (14.6.1-9)

x*(t) (15.1.5.4.1-3)

x1 (10.5.1-3)

x2 (10.5.1-3)

xa (15.2.1.1-3)

xb (15.2.1.1-3)

xcn(+e) (15.1.2.3-1)

xF (10.5.1-3)

XF(S) (10.5.1-11)

xHmg (17.2.3.2.3-9)

xHmg(t,t1) (15.1.1-1)

xHmg(ti) (15.1.1-7)

ξ (5.1-1)

ξAid (15.1-3)

ξAid/Outn(+c) (15.1.2-28)

ξINS (15.1-3)

ξ INS/Outn(+c) (15.1.2-28)

ξJTRSDL

N
(9.4-3)

ξn (7.3.1-8)

ξn (7.3.1-8)

xM(t) (15.1.5.4.1-3)

xPrt (17.2.3.2.3-9)

xPrt(t,t1) (15.1.1-1)

xRW (16.2.3-3)

x (14.6.1-2)

xCntrld (15.2.2.1-34)

y (10.1.4.1-4)
y (14.6.2-1)

y (16.1.1-5)

y(0) (15.1.5.4-8)

Y(S) (10.2.1-3)

y(t) (10.2.1-1)

y(t) (15.1.5.4-2)

y*(t) (15.1.5.4.1-13)

yF (10.5.2-3)

PARAMETER INDEX D-55

Yi (14.6.2-6)

Yi (14.6.5.1-2)

yi (14.6.2-2)
yi0 (14.6.2-6)

yM(t) (15.1.5.4.1-13)

y (16.1.1-26)

yx(t) (10.2.1-26)

z (15.1-2)
()

Z
(18.4.7-12)

z* (16.2.3-6)

z1 (17.2.3.2.3-18)

za (15.2.1.1-9)

zb (15.2.1.1-9)

z♦ (14.6.1-12)

z♦ (14.6.1-2)

z♦′(t) (18.3-6)

z♦(t) (15.1.5.3.2-14)

z♦(t) (18.3-5)

zRev
♦ (14.6.4-4)

zRev2
♦ (14.6.4.2-4)

ζ (4.4.1.2.1-10)

ζ (11.2.2.1-4)

ζ (14.6.1-1)

ζ (15.2.1.2-7)

ζ1 (3.5.3-25)

ζ1 (3.5.3-25)

ζ2 (3.5.3-25)

ζ2 (3.5.3-25)

ζ3 (3.5.3-25)

ζ3 (3.5.3-25)

ζj (18.4.7.3-6)

ζl bnd (17.2.3.2.3-5)

ζn (7.1.1.2-3)

ζn (7.1.2.2-3)

ζθ (10.5.1-18)

ζvm (17.2.3.1-28)

ζx (10.5.1-18)

ζy (10.6.1-6)

ζ (3.5.3-7)

ζ (11.2.2.1-4)

zFst (15.1.5.3.2-6)

zFst (15.1.5.3.2-6)

zHi (17.2.3.2.3-18)

zi (15.2.4-3)

zIn (17.2.3.2.3-18)

ZN (13.3-13)

ZN (13.4.3-14)

ZN (14.1-1)

zn (14.6.1-12)

ZObs (15.1-3)

ZObs (15.2.2.1-7)

ZObs/a (15.2.1.1-17)

ZObs/b (15.2.1.1-17)

ZObs/i (15.2.4-1)

ZObs
♦ (t) (18.3-5)

()z or x (10.6.1-23)

zOut (17.2.3.2.3-18)

ZPOS (15.1.2.2-1)

zRev
♦ (t) (15.1.5.4.1-28)

zRevn (15.1.5.4.1-29)

ZVel/Obsn (15.2.2.3-1)

zVeln (15.2.2.3-2)

NOTES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

