
 1 

MOVING BASE INS ALIGNMENT WITH LARGE INITIAL HEADING ERROR 

 
Paul G. Savage 

Strapdown Associates, Inc. 
 

SAI-WBN-14006 
www.strapdownassociates.com 

October 3, 2014 
 
 

ABSTRACT 
 

Prior to inertial navigation mode engagement, an inertial navigation system (INS) 
executes Kalman filter attitude alignment operations, an estimation process based on 
minimizing a linearized model of INS attitude errors.  Kalman error model linearization 
places a constraint on INS initial attitude before initiating Kalman alignment operations: 
attitude errors at the start of Kalman alignment must be small enough that residual second 
order error effects from linearized modeling have negligible impact on alignment 
accuracy.  Under stationary alignment conditions, linearized Kalman error models have 
been commonly configured for large initial heading error with no second order heading 
induced errors, by representing heading error as inaccuracy in estimating horizontal earth 
rate components.  For non-stationary dynamic alignment conditions, however, the earth 
rate estimation alignment approach cannot be used directly.  The difficulty arises when 
forming the Kalman filter measurement input; a navigation data comparison between the 
INS and the equivalent data provided by a reference navigation device (e.g., GPS derived 
velocity).  The data measurement comparison must be made in a common coordinate 
frame which becomes problematic when INS heading is initially unknown.  Based on a 
recent INS alignment article for small initial heading error, this article shows how the 
Kalman filter measurement can be formulated so that large initial INS heading 
uncertainty generates negligible second order error impact on alignment accuracy under 
dynamic motion conditions. 
 
 
MATHEMATICAL NOTATION 
 

V = Vector without specific coordinate frame designation.  A vector is a 
parameter that has length and direction.  Vectors used in the paper are 
classified as “free vectors”, hence, have no preferred location in coordinate 
frames in which they are analytically described. 

 

V  or V = Magnitude of vector V. 
 

AV  = Column matrix with elements equal to the projection of V on coordinate 

frame A axes.  The projection of V on each frame A axis equals the dot 
product of V with a unit vector parallel to that coordinate axis. 
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AV ×( )  = Skew symmetric (or cross-product) form of AV  represented by the 

square matrix 

0 ZA−V YAV

ZAV 0 XA−V

YA−V XAV 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 in which XAV , YAV , ZAV  are the 

components of AV .  The matrix product of AV ×( )  with another A frame 

vector equals the cross-product of AV  with the vector in the A frame, 

i.e.: AV ×( ) AW = AV × AW . 

 

CA2

A1 = Direction cosine matrix that transforms a vector from its coordinate frame 

A2 projection form to its coordinate frame A1 projection form, i.e.: 

1AV =
2A
1AC 2AV .  The columns of CA2

A1 are projections on A1 axes of unit 

vectors parallel to A2 axes.  Conversely, the rows of CA2

A1 are projections on 

A2 axes of unit vectors parallel to A1 axes.  An important property of CA2

A1 

is that it's inverse equals it's transpose. 
 

1A 2Aω  = Angular rotation rate of coordinate frame A2 relative to coordinate 

frame A1.  Conversely, the angular rotation rate of coordinate frame A1 

relative to coordinate frame A2 is the negative of 
1A 2Aω

, i.e.,: 

2A 1Aω = −
1A 2Aω . 

 
.

( )  = 
d( )
dt

  =  Derivative with respect to time t. 

 

( ) = Computed value of parameter ( ) that, in contrast with the idealized error free 
value ( ), contains errors. 

 

( ) = Measured value of strapdown inertial sensor ( ) that, in contrast with the 
idealized error free value ( ), contains errors. 

 

δ   = Designation for errors that are small compared with  . 
 

Δ    = Designation for errors that can be as large as  . 
 
E = Expected value operator. 
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COORDINATE FRAMES 
 

N = INS locally level navigation coordinate frame (with Z axis up) used for 
attitude referencing and velocity/position integration operations.  By 
definition in this article, the initial heading of the N Frame is assumed to be 
nominal, i.e., error free.  Initial heading alignment of the N Frame relative to 
another known reference frame (N*) is accounted for by defining the N 
frame to be nominally misaligned from the N* frame. 

 

N* = Locally level navigation coordinate frame (with Z axis up) used by a 
reference aiding device to deliver position/velocity data to the INS being 
aligned.  The heading angle misalignment between the N and N* frames is 
the means to account for initial heading error in the INS attitude data at the 
start of alignment.  As defined, the Z axis of the N* frame is parallel to the Z 
axis of the N Frame. 

 

B = Strapdown inertial sensor coordinates (“body frame”) with axes parallel to 
nominal right handed orthogonal sensor input axes. 

 

I = Non-rotating inertial coordinate frame used as a symbolic reference for gyro 
angular rotation rate measurements. 

 

E = Coordinate (earth) frame aligned with axes fixed to the earth. 
 
 

PARAMETER DEFINITIONS 
 

Analytic parameters used in this article are defined following equations where they 
are first used. 
 
 
INTRODUCTION 
 

An important part of inertial navigation system (INS) operations is the initialization 
process in which the INS navigation parameters (angular orientation - attitude, velocity, 
and position) are initialized for integration functions to follow during inertial navigation.  
Initialization typically consists of two phases; Coarse Alignment followed by Fine 
Alignment, e.g., [3 - Chapt. 6].  During Coarse Alignment, the INS angular attitude is 
initialized to an approximately correct value.  Fine Alignment then ensues in which 
attitude is converged to inertial navigation grade accuracy and velocity/position are 
initialized, all generally implemented within a Kalman filter structure. 

 
 

General Inertial Aiding Structure 
 

Fine Alignment is a specialized application of Inertial Navigation Aiding (Figure 1), a 
dynamic process in which INS computed navigation data is periodically compared with 



 4 

equivalent reference navigation data (at cycle rate n), and used in feedback fashion to 

update INS error parameters.  Note in Figure 1 that all parameters are shown with a ( ) 
designation to indicate that they are computed estimates within the INS and reference 
navigation device of actual equivalent ( ) parameters.  The analytic details of the Figure 1 
operations are provided in [1, 2, 3 - Chapt. 15, 4 - pp. 415 - 457]. 

 

Kalman Gain Matrix 
Calculation

Linearized 
Observation Model

(Measurement)

INS Inertial 
Navigation
Integration 
Operations 

Inertially 
Computed
Navigation 

Data

INS Error 
Corrections

Reference 
Device 

Navigation 
Data

Compare

Observation
(Non-Linearized
Measurement)

Kalman Filter Operations

Calculate Measurement 
Residual

zn = Hn xn

zn

xn

Linearized Dynamic 
Error Model 

x
.

= Ax

xn = xn-1 + ∫tn-1

tn
x
.

dt  + u cn

ucn

Kn

Mn

zResn = Mn - zn

xn(+) = xn(-) + Kn zResn

zResn

 
 

Figure 1 - Inertial Navigation Aiding 
 

In Figure 1, the inertially-computed/reference-device navigation data comparison M 
("observation") is input to the Kalman filter where it is compared against a linearized 

estimate of M, known as the "measurement" z.  The equation for z is based on estimates 

of expected errors (embodied in an error state vector column matrix x) generated by a 
linearized dynamic error model of inertial navigation and reference device operations, 

and how they couple into the measurement (through the "measurement matrix" H).  (The 

error state dynamic matrix A in Figure 1 defines the dynamics of how x propagate from 
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the last n cycle to the current n cycle.)  The difference between the observation M and 

estimated measurement z (the "measurement residual" zRes), is multiplied by a Kalman 
gain matrix Kn to generate corrections to the Kalman filter error estimates.  The control 

vector uc formed from INS error estimates in x (including provisions for x computation 
delay) is used to correct the INS by subtraction from the equivalent INS parameter data.  

To account for the uc corrections applied to the INS, the uc vector is also used to update 

the Kalman x error model for the applied INS error correction. 
 
The Kn Kalman gain matrix in Figure 1 is computed at each n cycle from a statistical 

model of the expected uncertainty in the Figure 1 linearized updating process, a function 
of the error state covariance matrix P: 

 

 

Pn = Pn-1 + ∫  

tn-1

tn  P
.

 dt         P
.

 = A P + P A
T
 + GP QP GP

T

Kn = Pn(-) Hn
T
 Hn Pn(-) Hn

T
 + GMn RM GMn

T -1

Pn(+) = I - Kn Hn  Pn(-) I - Kn Hn
T
 + Kn GMn RM GMn

T
 Kn

T

 (1)

 
 

The P covariance is analytically defined as E xUncrnty xUncrnty
T

 where E is the expected 

value operator and xUncrnty is the uncertainty in the error state estimate x compared with 

the true value x.  The covariance matrix measures how initial uncertainties in x (at the 
start of Fine Alignment) are progressively reduced by the Figure 1 dynamic 

estimation/updating process, and how unaccounted for noise effects (in x propagation 
between updates and measurement updating) delay the convergence process.  Noise 
parameters incorporated in the (1) gain determination operations are the QP process noise 

matrix that accounts for random INS error buildup between n cycles, the GP matrix that 
couples the process noise into error state uncertainty components, the measurement noise 
matrix RM that accounts for random errors in the observation and in calculation of the 

measurement residual, and the GM matrix that couples the measurement noise into the 
measurement residual components [3 - Sect. 15.1] and [4 - pp. 428]. 

 
The success of the Figure 1 process depends on the accuracy by which the Kalman 

filter linearized models match the actual operations in the INS and reference navigation 
device.  An important element in this regard is the impact of linearization on the 
measurement residual.  Second order components in the Figure 1 observation vector M 
are ignored in the Kalman filter linearized models, hence, will appear in the measurement 

residual zRes and modify x through the Kalman gains.  Since the gains do not account for 

second order errors, the result will add unknown errors to x.  To minimize the impact of 
second order errors on Kalman filter performance, it has been previous practice to assure 
that Coarse Alignment attitude errors are small enough that second order residuals 
become negligible.  However, in some applications, residual second order Kalman filter 
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modeling errors can still produce mis-estimation of INS errors under particular dynamic 
conditions [5, 6]. 

 
 

Application of Kalman Aiding To Velocity Matching INS Alignment 
 

Applications of the Figure 1 inertial aiding concept to INS Fine Alignment commonly 
use velocity for the INS/reference-device data comparison (so-called "velocity matching" 
alignment).  The associated inertial navigation integration operations in Figure 1 

(between Kalman filter applied uc control updates) are versions of the following: 
 

 

CBn
N

 = CBn-1
N

 + ∫ tn-1

tn
CB

N
 dt          CB

N
 = CB

N
 ωIB

B
  ×  - ωIN

N
 CB

N

ωIN
N

 = ωIE
N

 + ωEN
N

vn
N

 = vn-1
N

 + ∫ tn -1

tn v
N

 dt          v
N

 = CB
N

 aSF
B

 + gP
N

 - ωIN
N

 + ωIE
N

 × v
N

 (2)

 

 
where 
 

n = Subscript indicating value of the designated parameter at the Kalman filter 
update cycle time. 

 

ωIB
B

 = Angular rate of the strapdown inertial sensor B frame relative to the non-
rotating inertial I frame (IB subscript) measured in the B frame (superscript) 
by INS gyros 

 

CB
N

 = Direction cosine matrix that transforms vectors from the sensor body B 
frame to the locally level navigation N frame. 

 

ωIE
N

 =  Angular rate of the earth fixed E frame relative to the non-rotating I frame 
(IE) projected on N frame axes. 

 

ωEN
N

 =  Angular rate of the N frame relative to the E frame (EN) projected on N 
frame axes. 

 

vN
 = Velocity vector relative to the earth projected on N Frame axes. 

 

aSF
B

 = Specific force (non-gravitational) acceleration measured in the strapdown 
sensor B frame by INS accelerometers. 
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gP
N
 = Plumb-bob gravity in the N frame that equals the sum of earth's gravitational 

mass attraction plus earth's rotation centripetal acceleration effect.  Defined 
as such because gP lies along the direction of a plumb-bob under zero 
velocity conditions. 

 
Under dynamic velocity matching trajectory conditions, [5] shows that residual 

second order Kalman filter modeling errors can produce mis-estimation of small initial 
heading errors under mild maneuvering conditions.  Reference [5] shows how the second 
order error effects can be mitigated as part of Kalman gain matrix determination by 
modeling them into the Figure 1 measurement and process noise structure (within the 

Equation (1) QP, GP, RM and GM matrices).  As an alternate, [6] describes a Fine 
Alignment approach whereby second order errors can be minimized by using a modified 
form of the traditional velocity matching observation equation. 
 

Under the special case of quasi-stationary conditions (e.g., stationary ground 
alignment of an INS in an aircraft), [3 - Sects. 6.1.2 & 15.2.1] shows how a velocity 
matching observation can be structured to make large initial heading errors observable 
within a linearized structure that has no significant second-order errors.  The concept is 
based on (2) under zero velocity conditions: 
 

 

CBn
N

 = CBn-1
N

 + ∫ tn-1

tn
CB

N
 dt          CB

N
 = CB

N
 ωIB

B
  ×  - ωIE

N
 ×  CB

N

vHn
N

 = vHn-1
N

 + ∫ tn-1

tn
vH

N
 dt          vH0

N
 = 0          vH

N
 = - gPZN CB

N
 uZN

N
H

 (3)

 
 
where 
 
 H = Subscript indicating horizontal components of the designated vector. 
 

 uZN
N

 = Unit vector along the upward N Frame Z axis (ZN). 
 

gPZN = Component of computed plumb-bob gravity gP
N

 along the N frame upward 

Z axis (of negative sign). 
 
In forming (3) from (2) it has been recognized that under stationary conditions, the initial 

value of velocity v0H
N

 is zero, aSF
B

 in (2) is vertical to balance plumb-bob gravity, and ωEN
N

 

in (2) is proportional to velocity, hence, not present in (3).  The computed vH
N

 in (3) then 
becomes the Figure 1 observation (i.e., compared with the true zero value).  The (3) form 
allows the initial N frame to be nominally defined at any arbitrary heading, then used 

during Fine Alignment to estimate the N frame horizontal components of earth rate ωIE
N

.  
Using the principle that horizontal earth rate points north, the estimated earth rate 
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components are then used at Fine Alignment completion to determine the orientation of 
the selected N Frame relative to true north.   

 
Under moving-base INS alignment conditions, the (3) simplified quasi-stationary 

earth rate estimation concept cannot be implemented directly because of the non-zero 

velocity terms in the general (2) form.  Although the magnitude of initial velocity v0
N

 in 

(2) is known (from reference velocity input data magnitude), its vector direction has 
uncertainty in the N frame because of the initially unknown heading angle between the 
INS N frame and the reference data input data coordinate frame (identified herein as N*).  

The v0
N

 error in (2) thereby becomes part of the inertially computed velocity v
N

, 

generating error in ωEN
N

 (a function of v
N

), in CB
N

 from ωEN
N

, in adding to v
N

 error through 

CB
N

 coupling of aSF
B

 into v
N

, and by v
N

 input in (2) to the v
N

 Coriolis acceleration (the last 

term in v
N

).  The traditional method for implementing (2) has been to allow for a heading 

error component in CB
N

 for estimation in the Kalman filter linearized error model (in 

addition to CB
N

 tilt misalignment from vertical), thereby leading to the requirement for 
small initial tilt/heading errors (to minimize residual second order error effects).  In most 
applications, Coarse Alignment to small tilt errors is readily achievable over a fairly short 
time period (e.g., from roll/pitch attitude inputs from another device, or by using INS 
accelerometers as the measure of attitude to vertical under controlled non-accelerating 
trajectory conditions).  In some applications, Coarse Alignment to small heading error is 
not practical.  To accommodate large initial heading uncertainties in such applications, 
traditional Kalman alignment structures need to be reformulated for negligible second 
order error impact under dynamic conditions. 

 
This article extends the (3) quasi-stationary Fine Alignment large initial heading error 

approach to dynamic moving base conditions by using the [6] revised 
observation/measurement as a base.  The article begins with the horizontal form of the [6] 
revised observation equation.  Non-linear error equations are then developed for the 
observation and the (2) inertial navigation equations within a Figure 1 Fine Alignment 
structure.  From the non-linear error equations, a Kalman filter compatible linearized 
error version is then developed.  Lastly, the impact of linearization approximations on 
Fine Alignment performance is assessed by comparing the non-linear observation and 
linearized measurement equations forming the Figure 1 measurement residual.  It is 
shown that by virtue of the [6] revised observation approach, all significant residual 
second order errors are vertical, (i.e., not present on the horizontal measurement 
residual), hence, have no impact on Fine Alignment performance.  The article includes a 
summary of the equations developed to implement the large heading angle velocity 
matching alignment approach, including initialization of the (1) covariance matrix for 
Kalman gain calculations. 

 
For simplicity and clarity in the remainder of this article, "Velocity Matching Fine 

Alignment" will be referred to as "Alignment" or "Kalman Alignment". 
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OBSERVATION EQUATION 
 

The Observation Equation described in this article for the Kalman Alignment 
observation input in Figure 1 is the horizontal component of [6 - Eq. (28)]: 

 

 
Mn

N
 = vn

N
 - CN*n

N
 vRefn

N*
H 

(4)
 

where 
 

 Mn
N

 = Observation vector in N frame navigation coordinates. 

 

vRef
N*

 = Velocity relative to the earth provided in N* frame coordinates by the 
reference navigation device (see Figure 1) to the Kalman filter observation 

block (for reference comparison with v
N

 in (2)). 
 

CN*
N

 = Direction cosine matrix that transforms vectors from the N* to the N 

frame.  From the definition of N*, CN*
N

 represents a rotation around the 

upward vertical. 
 

Only the horizontal components in (4) are used in anticipation of potentially large second 
error propagation into the vertical observation, thereby mitigating potentially significant 
Kalman filter estimation errors in Figure 1.  Note - For simplicity in this article, (4) does 

not allow for differences in physical location between the v
N

 and vRef
N

 navigation points 

that would normally be included in an actual system design (e.g., due to physical 
separation between the INS and reference navigation device under vehicle angular 
motion, i.e., so-called "lever arm" effects [3 - Sect. 15.2.2.2]). 
 

Since CN*
N

 is a rotation transformation around the vertical, (4) is 
 

 
Mn

N
 = vHn

N
 - CN*n

N
 vRefH/n

N*
 (5) 

 

The vH
N

 vector in (5) is calculated for this application using the following form of (2) 
between Kalman updates. 
 

 

vHn
N

 = vHn-1
N

 + ∫ tn-1

tn
vH

N
 dt

vH
N

 = CB
N

 aSF
B

 + gP
N

 - ωIN
N

 + ωIE
N

 × vH
N

 + vZN uZ
N

H

 (6)
 

 

with CB
N

 determined by CB
N

 integration in (2), and where 
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 vZN = Vertical component of vN
. 

 
Because the N and N* frame definitions make their Z vertical axes parallel, it is 

expedient during Alignment to set vZN in (6) to 

 
 vZN = vZN*Ref

 (7) 

 
where 
 

 vZN*Ref = Component of vRef
N*

 along the N* frame vertical Z axis. 

 

Additionally, to simplify error modeling, the gP
N

 gravity vector in (4) is first calculated in 
N* coordinates based on reference aiding device input position data, and then 
transformed to the N frame: 
 

 
gP

N
 = CN*

N
 gPRef

N*
 (8)

 
 
where  

gPRef
N*

 = Plumb-bob gravity calculated in N* coordinates using standard INS 
computation techniques (e.g., [3 - Sects. 5.4 & 5.4.1]), but based on N* 
frame navigation data provided to the Kalman alignment process by the 
reference navigation device. 

 
Similarly, for the angular rate terms in (2) and (6): 

 

 

ωIE
N*

 = ωIERef

N*
          ωEN

N*
 = ωENRef

N*

ωIE
N

 = CN*
N

 ωIE
N*

          ωEN
N

 = CN*
N

 ωEN
N*  (9)

 

where 
 

ωIERef

N*
, ωENRef

N*
 = Angular rates ωIE, ωEN calculated in N* coordinates using 

standard INS computation techniques (e.g., [3 - Sects. 4.1.1 & 5.3]), but 
based on N* frame navigation data provided to the Kalman alignment 
process by the reference navigation device. 

 

The N relative to N* attitude in (5) represented by CN*
N

, is a heading rotation (about 

the vertical) from N* to N through angle β.  Thus, from [1 - Eq. (3.2.2.1-4)], CN*
N

 
in (5) is 

 

 
CN*

N
 = I + sin β uZN

N
 ×  + (1 - cos β) uZN

N
 ×  uZN

N
 ×  (10) 



 11

where 
 

β = Constant angle measured positive around the upward defined N and N* frame 
Z axes. 

 
I = Identity matrix. 

 

Note in (10) that CN*
N

 is represented by the two scalar parameters sin β and cos β.  The 

error in these parameters will form part of the errors to be estimated by the Kalman 
alignment filter. This is directly analogous to the [3 - Sects. 6.1.2 & 15.2.1] stationary 
alignment technique that uses horizontal earth rate components to represent heading, 
equaling horizontal earth rate magnitude multiplied by the sine and cosine of N frame 
heading angle from north. 
 

Recognizing that the N frame selection maintains it at a fixed β alignment orientation 

relative to the N* frame, the CN*
N

 matrix is constant, hence, between Figure 1 Kalman 

updates, 
 

 

d
dt

cos β   =  0       
d
dt

sin β   =  0 (11)
 

 
It is also to be noted that a more general treatment would allow for differences between N 

and N* angular rates by representing CN*
N

 as a heading rotation (about the vertical) from 

N* to N through a time changing angle α followed by the previously defined constant 

angle β.  The α angle would be used to account for the difference in vertical rotation 

rates that may exist between the N and N* frames (e.g., a GPS type geographic local 
level east/north/up navigation frame implementation for frame N* versus a wander 
azimuth local level navigation N frame implementation [3 - Sect. 2.2]).  However, since 
design of the Kalman alignment process allow selection of the N frame during alignment, 
it is easily set to be the same as N*.  This simplifies the analytical development, allowing 
the N angular rate to be equated directly to the N* rate calculated from N* navigation 
parameter inputs (as previously shown). 
 
 
OBSERVATION AS A FUNCTION OF SYSTEM ERRORS 
 

Kalman filter theory requires that observation (5) be an unbiased error measurement 

so that the equivalent error free form of (5) is 
 

 Mn
N

 = vHn

N
 - CN*n

N
 vRefH/n

N*
 = 0 (12) 

 
Substituting for error definitions between (5) and (12) finds for (12) with (5): 
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Mn
N

 = vHn
N

 - ΔvHn

N
 - CN*n

N
 - ΔCN*n

N
 vRefH/n

N*
 - δvRefH/n

N*
 = 0

= vHn
N

 - ΔvHn

N
 - CN*n

N
 vRefH/n

N*
 + CN*n

N
 δvRefH/n

N*

+ ΔCN*n

N
 vRefH/n

N*
 - ΔCN*n

N
 δvRefH/n

N*

= Mn
N

 - ΔvHn

N
 + CN*n

N
 δvRefH/n

N*
 + ΔCN*n

N
 vRefH/n

N*
 - ΔCN*n

N
 δvRefH/n

N*

 (13)

 
 

in which the ΔCN*
N

, ΔvH
N

, and δvRefH
N*

 errors in CN*
N

, vH
N

, and vRefH
N*

 are defined as 

 

 
ΔCN*

N
 =
_ CN*

N
 - CN*

N
         ΔvH

N
 =
_ vH

N
 - vH

N
         δvRefH

N*
 =
_ vRefH

N*
 - vRefH

N*

 
(14)

 
 

The Δ    large error assignments to ΔCN*
N

 and ΔvH
N

 are made because of the large initially 

unknown heading error between N and N*, and (as will be apparent subsequently), vH
N

 is 
initialized at the start of Kalman alignment using N* frame velocity data. 
 

Then, from (13): 
 

 
Mn

N
 = ΔvHn

N
 - CN*n

N
 δvRefH/n

N*
 - ΔCN*n

N
 vRefH/n

N*
 + ΔCN*n

N
 δvRefH/n

N*
 (15)

 
 
The linearized form of (15) (including linearized inputs) will form the basis for the 

measurement equation used in forming z for Figure 1. 
 
 
Inputs To Observation Equation (15) 

 

The ΔCN*
N

 term in (15) is derived from the equivalent of (10) - (11) for the true value 

of CN*
N

: 
 

 
CN*

N
 = I + sin β uZN

N
 ×  + (1 - cos β) uZN

N
 ×  uZN

N
 ×  (16)

 

 

 

d
dt

cos β  = 0       
d
dt

sin β  = 0 (17)
 

 

From (14), the ΔCN*
N

 error in (15) is the difference between (10) - (11) and (16) - (17): 

 

 

ΔCN*
N

 = CN*
N

 - CN*
N

 = Δsin β uZN
N

 ×  - Δcos β uZN
N

 ×  uZN
N

 ×

Δcos β =
_ cos β - cos β         Δsin β =

_ sin β - sin β
 (18)
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with, between Figure 1 Kalman updates, 
 

 

d
dt

Δcos β  = 0       
d
dt

Δsin β  = 0 (19)
 

 

The ΔvH
N

 velocity error term in (15) includes Figure 1 control updates uc and, 

between updates, the integral of the horizontal velocity error rate: 
 

 
ΔvHn

N
 = ΔvHn-1

N
 + ∫ tn-1

tn ΔvH
N

 dt (20) 

 

in which ΔvH
N

 is the horizontal component of the Appendix A derived Δv
N

 general 
velocity error rate: 
 

 

Δv
N

 ≈ CB
N

 δaSF
B

 + aSF
N

 × γN
 + δgP

N

- ΔωIN
N

 + ΔωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × ΔvN

- 
1
2

 aSF
N

 × γN
 × γN

 - CB
N

 δaSF
B

 × γN
 + ΔωIN

N
 + ΔωIE

N
 × ΔvN

 (21)

  

in which 

 

ΔωIE
N

 =
_ ωIE

N
 - ωIE

N
          ΔωIN

N
 =
_ ωIN

N
 - ωIN

N

δgP
N

 =
_ gP

N
 - gP

N
          δaSF

N
 =
_ aSF

N
 - aSF

N
 (22)

 
 
and where 

γN
 = Small angular error vector in the CB

N
 attitude matrix (defined analytically in 

Appendix A). 
 
The horizontal component of (21) for (20) is derived in Appendix B.  The derivation 

follows from (7) and (9), showing that for this Kalman alignment approach, the Δω and 

Δv terms in (21) are horizontal: 
 

 

ΔωIEH

N
 = ΔCN*

N
 ωIEH

N*
         ΔωENH

N
 = ΔCN*

N
 ωENH

N*

ΔωINH

N
 = ΔωIEH

N
 + ΔωENH

N

ΔvN = ΔvH
N

 (23)

 
 
Applying (23) in (21), Appendix B then finds for horizontal velocity error rate in the (20) 
integrand: 
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ΔvH
N

 = 

CB
N

 δaSF
B

 + aSF
N

 × γN
 + δgP

N

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωINZN + ωIEZN  ΔvH

N

- 
1
2

 aSF
N

 × γN
 × γN

 - CB
N

 δaSF
B

 × γN

H

 (24)

 
 

Note that the second order ΔωIN
N

 + ΔωIE
N

 × ΔvN
 Coriolis term in (21) has vanished in 

(24) because from (23), it equals ΔωINH

N
 + ΔωIEH

N
 × ΔvH

N
 which is vertical.  This is a 

significant finding because, due to the large nature of its errors, ΔωIN
N

 + ΔωIE
N

 × ΔvN
 can 

be as large as the ωIN
N

 + ωIE
N

 × v
N

 term in the (2) and (6) velocity rate equations.  
Finding it to be vertical means that its large second order nature will not cause an error in 
the linearized model of (24) used in the Figure 1 Kalman filter design.  Thus, it will not 
impact the Kalman filter measurement residual in Figure 1, and not lead to error mis-
estimation. This is also a primary reason for selecting the horizontal form for observation 
Equation (4), i.e., to exclude the large second order vertical component of  

ΔωIN
N

 + ΔωIE
N

 × ΔvN
 in the velocity error rate integral. 

 

Based on the error in (8), the δgP
N

 term in (24) becomes 

 

 
δgP

N
 = ΔCN*

N
 gPRef/H

N*
 (25)

 
 

in which the minor gravity modeling error in gPRef/H

N*
 has been neglected.  The gPRef/H

N*
 

vector in (25) would then be calculated using standard techniques (e.g., [3 - Sects. 5.4 & 

5.4.1] using reference input position data.  Note that gPRef/H

N*
 is generally very small, on 

the order of one micro-g per thousand feet of altitude - The dominant one g component of 

gravity component is vertical.  However, because of the potentially large value for ΔCN*
N

 

in this application, (25) is included in the (21) velocity error rate model (i.e., not 
neglected) for Kalman alignment filter design, to properly account for its presence in the 
Kalman filter observation equation input. 
 

The γ
N

 attitude error term in (24) includes Figure 1 control updates uc and, between 

updates, the integral of the γ
N

 attitude error rate derived in Appendix C: 
 

 
γ

N
 ≈ - CB

N
 δωIB

B
 - ωIN

N
 × γN

 + ΔωINH

N
 + 

1
2

 CB
N

 δωIB
B

 + ΔωINH

N
 × γN

 (26)
 

 
γn

N
 = γn-1

N
 + ∫ tn-1

tn γ
N

 dt         γ0
N

 = γH0

N
 (27) 
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where 
 

0 = Subscript indicating the value of the designated parameter at the start of Kalman 
alignment.  

 

Note that the initial value for γ
N

 in (27) is horizontal (i.e., zero vertical component).  This 
is because the basic definition for the N Frame is to have a nominal initial heading, with 
initial heading misalignment accounted for as misalignment of the N frame relative to the 
N* frame. 
 
 
SUMMARY OF EQUATIONS FOR KALMAN ALIGNMENT IMPLEMENTATION 
 

The Figure 1 operations for Kalman alignment are or are derived from (1), (2), (5) - 
(11), (15), (18) - (20), and (23) - (27) as summarized next. 
 

The Figure 1 INS Inertial Navigation Integration Operations For Kalman alignment 
between updates are (2) and (6) - (11), resequenced and renumbered next: 
 

 

d
dt

cos β   =  0       
d
dt

sin β   =  0 (28) 

 

 
CN*

N
 = I + sin β uZN

N
 ×  + (1 - cos β) uZN

N
 ×  uZN

N
 ×  (29) 

 

 

ωIE
N*

 = ωIERef

N*
          ωEN

N*
 = ωENRef

N*

ωIE
N

 = CN*
N

 ωIE
N*

          ωEN
N

 = CN*
N

 ωEN
N*  (30)

 

 

 

ωIN
N

 = ωIE
N

 + ωEN
N

          CB
N

 = CB
N

 ωIB
B

  ×  - ωIN
N

 CB
N

CBn
N

 = CBn-1
N

 + ∫ tn-1

tn
CB

N
 dt

 (31)

 
 

 vZN = vZN*Ref
 (32) 

 

 
gP

N
 = CN*

N
 gPRef

N*
 (33)

 
 

 

vH
N

 = CB
N

 aSF
B

 + gP
N

 - ωIN
N

 + ωIE
N

 × vH
N

 + vZN uZ
N

H

vHn
N

 = vHn-1
N

 + ∫ tn-1

tn
vH

N
 dt

 (34)
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The Observation Equation For the Kalman alignment Compare operation in Figure 1 
is (5): 
 

 
Mn

N
 = vHn

N
 - CN*n

N
 vRefH/n

N*
 (35) 

with 

 
CN*0

N
 = I (36) 

 
The Linearized Dynamic Error Model operations between Kalman updates in Figure 

1 for Kalman alignment are the linearized forms of (18) - (20) and (23) - (27), 
resequenced and renumbered next: 

 

 

d
dt

Δcos β  = 0       
d
dt

Δsin β  = 0

ΔCN*
N

 = Δsin β uZN
N

 ×  - Δcos β uZN
N

 ×  uZN
N

 ×
 (37)

 
 

 

ΔωIEH

N
 = ΔCN*

N
 ωIEH

N*
         ΔωENH

N
 = ΔCN*

N
 ωENH

N*

ΔωINH

N
 = ΔωIEH

N
 + ΔωENH

N
 (38)

 
 

 
γLin

N

 = - CB
N

 δωIB
B

 - ωIN
N

 × γLin
N

 + ΔωINH

N  (39)
 

 

 
γLinn

N
 = γLinn-1

N
 + ∫ tn-1

tn γLin

N

 dt (40) 

 

 
δgP

N
 = ΔCN*

N
 gPRef/H

N*
 (41)

 
 

 

ΔvHLin

N
 = 

CB
N

 δaSF
B

 + aSF
N

 × γLin
N

 + δgP
N

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωINZN + ωIEZN  ΔvHLin

N
H

 (42)

 
 

 
ΔvHLin/n

N
 = ΔvHLin/n-1

N
 + ∫ tn-1

tn ΔvHLin

N
 dt (43) 

 
where 
 
 Lin = Subscript indicating linearized form of designated parameter. 
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The error parameters in (37), (39), (42), and for the δωIB
B

 and δaSF
B

 sensor error 

components, constitute the estimated error state vector x in Figure 1.  Reference [3 - Eqs. 
(12.5-6) & (12.5-12)] show that the estimated sensor error components can be modeled as 
 

 
δωIB

B
 = δKScal/Mis ωIB

B
 + δKBias           δaSF

B
 = δLScal/Mis aSF

B
 + δLBias (44)

 
 
where 
 

δKScal/Mis, δLScal/Mis = Estimated gyro and accelerometer scale-factor-
error/misalignment error matrices. 

 

δKBias, δLBias = Estimated gyro and accelerometer bias error vectors. 
 
The error parameter coefficients in (37), (39), (42), and (44) constitute the error state 

dynamic matrix A in Figure 1. 
 

The measurement equation for the Kalman alignment Linearized Observation Model 
operation in Figure 1 is the linearized form of (15): 
 

 
zn
N

 = ΔvHLin/n

N
 - CN*n

N
 δvRefH/n

N*
 - ΔCN*n

N
 vRefH/n

N*
 (45)

 
 
where 
 

 z = The Measurement (see Figure 1). 
 

The error parameter coefficients in (45) constitute the measurement matrix H in Figure 1. 
 
The Kalman gain matrix computations for the Kalman alignment Linearized 

Observation Model operation in Figure 1 are from (1): 
 

 

Pn = Pn-1 + ∫  

tn-1

tn  P
.

 dt         P
.

 = A P + P A
T
 + GP QP GP

T

Kn = Pn(-) Hn
T
 Hn Pn(-) Hn

T
 + GMn RM GMn

T -1

Pn(+) = I - Kn Hn  Pn(-) I - Kn Hn
T
 + Kn GMn RM GMn

T
 Kn

T

 (46)

 
 

Note that the error parameters in (37) - (46) are shown to be estimated by the Kalman 

filter (indicated with a ( ) notation), in contrast with the true ( ) values.  Note also that 
(37) - (46) are functions of error terms and parameters containing errors, the latter 
available in the INS computer.  This contrasts with the more typical error equations in 
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which the navigation parameters are represented by their ideal values.  Equations (37) - 
(46) are in the form that would actually be implemented in the INS for the Kalman filter 
used to estimate the error parameters during Kalman alignment.  This form arises because 
of the general derivation process followed in this article (and in [5, 6]) by which idealized 
error free equations were modified to be functions of computed minus error parameters. 
 
 
KALMAN ALIGNMENT INITIALIZATION 
 
Navigation Data Initialization 
 

The estimated attitude matrix CB
N

 in (31) is initialized prior to Kalman alignment 
initiation at a Coarse Alignment determined value with arbitrary heading relative to 
north.  Reference [3 - Sect. 6.1.1] illustrates a rapid Coarse Alignment method under 
stationary conditions.  A subsequent article will describe how the equivalent fast Coarse 
Alignment can be performed under dynamic moving base conditions. 

 

The estimated velocity vector vH
N

 in (34) is initialized at the horizontal velocity value 
provided in N* coordinates by the reference navigation device: 

 

 
vH0

N
 = vRefH/0

N*
 (47)

 
 

where it is recognized that the heading angle β between the N and N* frames is initially 
unknown, hence, assumed to be zero. 

 
 
Estimated Error State Initialization 
 

All error parameters in (37) - (45) are unknown at the start of Fine Alignment, hence, 

their estimated values within the Figure 1 estimated error state vector x would be 
initialized at zero. 

 
 

Covariance Matrix Initialization 
 

The estimated covariance matrix P in Figure 1 is initialized based on the uncertainty 

in the x estimated error states: 

 χ =
_ x - x (48) 

 
with the covariance matrix P defined as 
 

 P =
_  E χ χT

 (49) 
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where 
 

 χ = Uncertainty in x. 
 

 E = Expected value operator. 
 

For the Δsin β heading error parameter in (37), the χ component derives from β being 

initially unknown and equally likely to be plus or minus so that sin β0 = 0.  Then from the 

(18) definition for Δsin β0, 
 

 Δsin β0 = sin β0 - sin β0 = - sin β0 (50) 
 

Since x0 = 0 as stated previously, the initial uncertainty in Δsin β is zero, and the 

uncertainty in Δsin β is from (50): 
 

 
χΔsinβ0 = Δsin β0 - Δsin β0 = sin β0 (51)

 
 

Similarly, for Δcos β, 
 

 
Δcos β0 = - cos β0           χΔcosβ0 = cos β0 (52)

 
 

Assuming all values for β0 have equal likelihood over the - π to + π range of N* to N 
possible headings, the corresponding (51) - (52) initial covariance elements then become 
 

 

PΔsinβ Δsinβ 0
 = E sin2β0  = 

1

2 π
∫ - π

π
sin2β0 dβ0 dt = 

1
2

PΔcosβ Δcosβ 0
 = E cos2β0  = 

1

2 π
∫ - π

π
cos2β0 dβ0 dt = 

1
2

PΔsinβ Δcosβ 0
 = PΔcosβ Δsinβ 0

 = E sin β0 cos β0

= 
1

2 π
∫ - π

π
sin β0 cos β0 dβ0 dt = 0

 (53)

 

With velocity initialized as in (47), the initial uncertainty in vH0
N

 becomes a function 

of the unknown β0 between N and N*.  Recognizing the true value of vH0

N
 to be 

CN*0

N
 vRefH/0

N*
, the (14) error definition for ΔvH0

N
 then finds with (47) and linearization: 
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ΔvH0

N
 = vH0

N
 - vH0

N
 = CN*0

N
 vRefH/0

N*
 - CN*0

N
 vRefH/0

N*

= CN*0

N
 + ΔCN*0

N
 vRefH/0

N*
 - CN*0

N
 vRefH/0

N*
 - δvRefH/0

N*

= ΔCN*0

N
 vRefH/0

N*
 + CN*0

N
 δvRefH/0

N*

= ΔCN*0

N
 vRefH/0

N*
 + CN*0

N
 - ΔCN*0

N
 δvRefH/0

N*

≈ ΔCN*0

N
 vRefH/0

N*
 + CN*0

N
 δvRefH/0

N*

 (54)

 

 

Because all error state estimates are initially zero, CN*0
N

 = I and 

ΔCN*0

N
 = CN*0

N
 - CN*0

N
 = I - CN*0

N
.  Then (54) obtains for the linearized ΔvH0

N
 uncertainty: 

 

 
χΔvH/0 = ΔvH0

N
 - ΔvH0

N
 = - I - CN*0

N
 vRefH/0

N*
 - δvRefH/0

N*
 (55)

 
 
From (16),  
 

 
I - CN*0

N
 = - sin β0 uZN

N
 ×  - (1 - cos β0) uZN

N
 ×  uZN

N
 ×  (56)

 
 
so that (55) becomes 
 

 
χΔvH/0 = sin β0 uZN

N
 × vRefH/0

N*
 - (1 - cos β0) vRefH/0

N*
 - δvRefH/0

N*
 (57)

 
 
With (57), the horizontal velocity error initial covariance then is 
 

 

PΔvH/0 ΔvH/0 = E χΔvH/0 χΔvH/0

T

= uZN
N

 × vRefH/0
N*

 uZN
N

 × vRefH/0
N* T

 E sin2β0

+ vRefH/0
N*

 vRefH/0
N* T

 E 1 - cos β0
2
 + E δvRefH/0

N*
 δvRefH/0

N* T

 (58)

 
 

in which is has been assumed that β0 and δvRefH/0

N*
 are uncorrelated.  Over the - π to + π 

range of N* to N equally likely β0 headings, 
 

 
E sin2β0  = 

1
2

        E 1 - cos β0
2
 = E 1 - 2 cos β0 + cos2β0  = 

3
2

 (59)
 

 
Thus, (58) becomes 
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PΔvH/0 ΔvH/0 = 
1
2

 uZN
N

 × vRefH/0
N*

 uZN
N

 × vRefH/0
N* T

+ 
3
2

 vRefH/0
N*

 vRefH/0
N* T

 + E δvRefH/0

N*
 δvRefH/0

N* T
 (60)

 
 

With (51) - (52) and (57), the initial cross-correlations between χΔvH/0, χΔsinβ0, and 

χΔcosβ0 are obtained similarly: 
 

 

PΔvH Δsinβ 0
 = E χΔvH/0 χΔsin0  = E χΔvH/0 sin β0

= uZN
N

 × vRefH/0
N*

 E sin2β0  = 
1
2

 uZN
N

 × vRefH/0
N*

 

PΔsinβ ΔvH 0
 = E χΔsin0 χΔvH/0

T
 = E sin β0 χΔvH/0

T

= uZN
N

 × vRefH/0
N* T

  E sin2β0  = 
1
2

 uZN
N

 × vRefH/0
N* T

 (61)

 
  

 

PΔvH Δcosβ 0
 = E χΔvH/0 χΔcos0  = E χΔvH/0 cos β0

= vRefH/0
N*

 E cos2β0  = 
1
2

 vRefH/0
N*

 

PΔcos ΔvH 0
 = E χΔcos0 χΔvH/0

T
 = E cos β0 χΔvH/0

T

= vRefH/0
N* T

  E cos2β0  = 
1
2

 vRefH/0
N* T

 (62)

 

 

The initial uncertainty in attitude error γ
N

 recognizes that from the definition of the N 

frame, the vertical component of γ
N

 is zero, hence, the initial uncertainty in γ
N

 is 
horizontal, and 

 

 

χγ 0 = γ0
N

 - γ0
N

 = γ0
N

 - γH0

N
 = - γH0

N

Pγ 0 γ 0 = E χγ 0 χγ 0

T
 = E γH0

N
 γH0

N T
 = Ixy σγ H/0

2
 (63)

 
 

where 
 
 Ixy = Identity matrix with zero for the lower diagonal element. 

 

σγ H/0 = Standard deviation of the Coarse Leveling tilt uncertainty, assumed 

uncorrelated between horizontal axes. 
 
The remaining sensor error covariance elements are uncorrelated between axes. 
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NOISE PARAMETERS 
 

The Kalman Alignment filter linearized dynamic error models in Figure 1 derive from 
the general linear forms [3 - Sect. 15.1]: 

 

x = A x + GP nP        zn = Hn xn + GMn nMn (64) 
 

compared to the Figure 1 estimation equivalents 
 

 

x = A x        zn = Hn xn       zResn = Mn - zn

xn(+) = xn(-) + Kn zResn

 (65) 

 

The uncertainty equations corresponding to (65) are derived from the (48) uncertainty 
definition.  For uncertainty propagation between Kalman filter n cycle updates (and 
linearization): 
 

 χ = x - x = A x - A x - GP nP ≈ A x - A x - GP nP = A χ - GP nP (66)
 

 
For the error state updating operation (with linearization), at the Kalman n cycles: 
 

 

zResn = Mn - zn ≈ zn - zn = Hn xn + GMn nMn - Hn xn(-)

≈ Hn xn + GMn nMn - Hn xn(-) = - Hn χn(-) + GMn nMn

 (67)

 

From (65), 

 

xn(+) = xn(-) + Kn zResn

xn(+) - xn = xn(-) - xn + Kn zResn

 (68)

 
 

so that with (67) 

  

χn(+) = χn(-) + Kn zResn

= χn(-) + Kn - Hn χn(-) + GMn nMn

=  I - Kn Hn  χn(-) + Kn GMn nMn

 (69) 

 
Summarizing for the (66) and (69) uncertainty propagation and update equations: 

 

χ = A χ - GP nP

χn(+) = I - Kn Hn  χn(-) + Kn GMn nMn

 (70)

 
 

By applying covariance definition (49) to (70), the equivalent P and Pn(+) covariance 
forms of (46) are obtained.  The QP, RM process/measurement noise terms in (46) are, 
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respectively, the nP process noise density matrix, and the nM measurement noise 

covariance matrix E nM nM
T

, as discussed next. 

 
 
Process Noise 
 

For the Kalman Alignment application, the QP process noise matrix in (46) is 

produced by noise components in the (23) and (33) gyro/accelerometer error vectors δaSF
B

 

and δωIB
B

.  From [3 - Eqs. (12.5-6) & (12.5-12)], the actual inertial sensor errors are 
commonly modeled as: 

 

 

δωIB
B

 = δKScal/Mis ωIB
B

 + δKBias + δωRand
 

δaSF
B

 = δLScal/Mis aSF
B

 + δLBias + δaRand

 (71)

 

where 
 

 δωRand, δaRand  = Gyro and accelerometer random noise error components. 
 
The velocity and attitude error state uncertainties are 
 

 
χΔvH = ΔvH

N
 - ΔvH

N
        χγ  = γ

N
 - γN (72)

 
 
so that 

 
χΔvH = ΔvH

N
 - ΔvH

N
        χγ  = γ

N

 - γ
N (73)

 
 

Substituting (39) and (42) for γ
N

, ΔvH
N

 and their equivalent true value form from the 
linearized versions of (26) and (24), then finds from (73) with (44) and (71): 
 

 

χγ  = γ
N

 - γ
N

 = Aγ(woSens) χ + CB
N

 δωIB
B

 - δωIB
B

= Aγ  χ + CB
N

 δωRand

χΔvH = ΔvH
N

 - ΔvH
N

 = AΔvH(woSens) χ - CB
N

 δaSF
B

 - δaSF
B

= AΔvH χ - CB
N

 δaRand

 (74)

 
 

For δωRand, δaRand typically modeled as white noise, the associated (46) elements in QP 
would be along the diagonal and equal to the corresponding white noise densities [3 - 

Sect. 15.1.2.1.1].  From (74), the corresponding GP process noise coupling matrix would 
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be CB
N

.  Note, however, that because the transpose of a correctly computed direction 
cosine matrix equals its transpose, and because QP is diagonal (uncorrelated process 

noise elements in δωRand, δaRand), if the noise vector components have equal densities, 

the GP QP GP
T

 term in (46) would reduce to GP. 

 
It is also to be noted that sensor quantization noise present on the sensor outputs is 

treated differently, predominantly modeled as random uncertainty in attitude (for gyro 
quantization) and velocity (for accelerometer quantization) [3 - Sect. 12.5].  As such, 
gyro quantization becomes predominantly a white noise input to the velocity error 
uncertainty rate equation, modeled as a white noise density in the QP process noise 
matrix [3 - Eq. (12.5-18)].  For accelerometer error, the comparable treatment models 
quantization as white noise input to the position error uncertainty rate equation, not 
implemented for the velocity matching alignment approach described herein.  However, 
accelerometer quantization noise does also become measurement noise for a velocity type 
measurement (described in the next section).  For the integrated velocity matching 
alignment approach described in [3 - Sect. 15.2.2], accelerometer quantization would be 
modeled as white process noise input to the integrated velocity matching measurement 
integrator. 
 
 
Measurement Noise 
 

For the Alignment Kalman filter gain design, the measurement residual in Figure 1 is 
from (45), (15), and [3 - Eq. (12.5-11)], with linearization 

 

zResn = Mn
N

 - zn
N

 ≈ zn
N

 - zn
N

 = - HwoΔvHn χwoΔvHn
(-) - ΔvHn

N
(-) - ΔvHn

N

= - Hn χn(-) + CBn
N

 δυQuant

 (75)

 
where 
 

 zn
N

 = Linearized form of Mn
N

 including linearized Mn
N

 components. 

 
Then, as in (69), 

 

χn(+) = χn(-) + Kn zResn = χn(-) + Kn - Hn χn(-) + CBn
N

 δυQuant

= I - Kn Hn  χn(-) + Kn CBn
N

 δυQuant

 (76)

 
where 
 
 δυQuant = accelerometer quantization noise. 
 

For δυQuant in (76) typically modeled as a white vector sequence, the (76) covariance 
equivalent in (46) sets the elements of measurement noise matrix RM equal to the 
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δυQuant covariance: E δυQuant δυQuant
T

.  From (76), the corresponding GMn 

measurement noise coupling matrix in (46) would be CB
N

.  Because the transpose of a 
correctly computed direction cosine matrix equals its transpose, and because RM is 

diagonal (uncorrelated measurement noise elements in δυQuant), if the noise vector 

components have equal variances, the GMn RM GMn
T

 term in (46) would reduce to RM. 

 
 

NAVIGATION MODE ENTRY AT ALIGNMENT COMPLETION 
 

Kalman alignment completion is defined as the time when Δsin β is reduced to an 
acceptable value (as manifested in the PΔsinβ Δsinβ covariance element of P).  This 

minimizes the error in CN*
N

 which then will accurately represent the heading orientation 

of the N frame relative to the N* frame.  Initialization of attitude for inertial navigation 

would proceed based on the values for CN*
N

 and CB
N

 at Kalman alignment completion.  

For example, attitude for inertial navigation could be initialized by resetting the CB
N

 

matrix to have its Y axis parallel to the N* frame Y axis using: 
 

 
CB

N
(+) = CN*

N
AlnEnd

T
 CB

N
(-)

  

 (77) 

where 

CB
N

(-) = CB
N

 at Kalman Alignment completion. 

 

CN*
N

AlnEnd
  

 = CN*
N

 at Kalman Alignment completion. 

CB
N

(+) = CB
N

 to initiate inertial navigation after rotating CB
N

(-) about the vertical so 

that the N frame Y axis aligns with the N* frame Y axis. 
 

Following navigation mode initialization at the end of alignment, the CB
N

 matrix would be 

updated as in (2) using normal methods typically employed (e.g., with the N frame 

defined as the azimuth wander type whereby the vertical component of ωIN
N

 would be set 

to the vertical component of earth rate, as in [3 - Sect. 4.5]). 
 
 
SECOND ORDER ERROR IMPACT ASSESSMENT 
 

The impact of second order errors on the Kalman alignment process can be assessed 
by analyzing the linear compared with the non-linear terms in the (15) observation 

equation.  To simplify the analysis, we will analyze (15) when the uc control vector is 
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zero.  This converts the Kalman filter in Figure 1 to a pure estimator in which the errors 
in the observation propagate in the normal manner without Kalman intervention.  To 
further simplify the analysis, sensor, reference input, and gravity error terms will be 
neglected to obtain from (15), (19), (20), (24), (26), and (27) for the relevant equations: 

 

 
γ

N
 ≈ - ωIN

N
 × γN

 + ΔωINH

N
 + 

1
2

 ΔωINH

N
 × γN

 (78) 

 

 
γN

 = γH0

N
 + ∫ 0

t
 γ

N
 dτ (79) 

 

ΔvH
N

 ≈ 

aSF
N

 × γN

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωINZN + ωIEZN  ΔvH

N

- 
1
2

 aSF
N

 × γN
 × γN

H 

(80) 

 
ΔvHn

N
 = ΔvH0

N
 + ∫ 0

tn ΔvH
N

 dt (81)
 

 

 

d
dt

Δcos β  = 0       
d
dt

Δsin β  = 0 (82)
 

 

 
Mn

N
 ≈ ΔvHn

N
 - ΔCN*0

N
 vRefH/n

N*
 (83)

 
 

Note in (83) that the initial value of ΔCN*
N

 is used based on (82) and the assumption of 

analysis without zero error controls in Figure 1. 
 

To analytically solve the equations, a first order Picard expansion approach is 

employed in which the γ
N

 term in (78) is approximated by its initial value.  Then (79) 
integrates to 

 

 

γN
 = γH0

N
 + ∫ 0

t
 γ

N
 dτ ≈ γH0

N
 + ∫ 0

t
 ΔωINH

N
 dτ + γH0

N
 × ∫ 0

t
 ωIN

N
 dτ

- 
1
2

 γH0

N
 × ∫ 0

t
 ΔωINH

N
 dτ

 (84)

 
 
Using the first order Picard expansion approach in (80) finds with (84): 
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ΔvH
N

 ≈ 

aSF
N

 × γN

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωZN + ωIE  ΔvH0

N

- 
1
2

 aSF
N

 × γH0

N
 × γH0

N

H

= 

aSF
N

 × 
γH0

N
 + ∫ 0

t
 ΔωINH

N
 dτ + γH0

N
 × ∫ 0

t
 ωIN

N
 dτ

- 
1
2

 γH0

N
 × ∫ 0

t
 ΔωINH

N
 dτ

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωINZN + ωIEZN  ΔvH0

N

- 
1
2

 aSF
N

 × γH0

N
 × γH0

N

H

= aSFZN uZ
N

 × γH0

N
 + ∫ 0

t
 ΔωINH

N
 dτ  + aSF

N
 × γH0

N
 × ∫ 0

t
 ωIN

N
 dτ H

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωINZN + ωIEZN  ΔvH0

N

- 
1
2

 aSF
N

 × γH0

N
 × ∫ 0

t
 ΔωINH

N
 dτ H - 

1
2

 aSFH
N

 × γH0

N
 × γH0

N

 (85)

 
 

The aSF
N

 × γH0

N
 × ∫ 0

t
 ωIN

N
 dt  term in (85) expands as 

 

 

aSF
N

 × γH0

N
 × ∫ 0

t
 ωIN

N
 dτ

= aSFH
N

 + aSFZN uZ
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ + ∫ 0

t
 ωINZN dτ  uZ

N

= aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  + aSFH

N
 × γH0

N
 × ∫ 0

t
 ωINZN dτ  uZ

N

+ aSFZN uZ
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  + aSFZN uZ

N
 × γH0

N
 × ∫ 0

t
 ωINZN dτ  uZ

N

= aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  + aSFH

N
 × γH0

N
 × ∫ 0

t
 ωINZN dτ  uZ

N

+ aSFZN uZ
N

 × γH0

N
 × ∫ 0

t
 ωINZN dτ  uZ

N

= aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  + aSFH

N
 × γH0

N
 × ∫ 0

t
 ωINZN dτ  uZ

N

- aSFZN ∫ 0
t
 ωINZN dτ  γH0

N

 (86)

 
 
so that 

 

aSF
N

 × γH0

N
 × ∫ 0

t
 ωIN

N
 dτ

H

= aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  - aSFZN ∫ 0

t
 ωINZN dτ  γH0

N
 (87)
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For the 
1
2

 aSF
N

 × γH0

N
 × ∫ 0

t
 ΔωINH

N
 dt H term in (85), using (23) for ΔωINH

N
 and 

ΔCN*
N

 = ΔCN*0

N
 due to no-control operation: 

 

 

1
2

 aSF
N

 × γH0

N
 × ∫ 0

t
 ΔωINH

N
 dt H = 

1
2

 aSFH
N

 × γH0

N
 × ΔCN*0

N
 ∫ 0

t
 ωINH

N*
 dτ  (88)

 
 

Then using (87) - (88) in (85), with (23) for ΔωINH

N
 , ΔωIEH

N
 and ΔCN*

N
 = ΔCN*0

N
 due to 

no-control operation, the (81) integration yields 
 

 

ΔvHn

N
 = ΔvH0

N
 + ∫ 0

tn ΔvH
N

 dt

 = ΔvH0

N
 + ∫ 0

tn aSFZN dt  uZ
N

 × γH0

N

+ ΔCN*0

N
 ∫ 0

tn aSFZN uZ
N

 × ∫ 0
t
 ΔωINH

N*
 dτ  dt

+ ∫ 0

tn aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  dt - ∫ 0

tn aSFZN ∫ 0
t
 ωINZN dτ  dt  γH0

N

+ uZ
N

 × ∫ 0

tn vZN ΔCN*0

N
 ΔωINH

N*
 + ΔωIEH

N*
 - ωINZN + ωIEZN  ΔvH0

N
 dt

- 
1
2

 ∫ 0

tn aSFH
N

 × γH0

N
 × ΔCN*0

N
 ∫ 0

t
 ωINH

N*
 dτ  dt

+ 
1
2

 γH0

N
 × ∫ 0

tn aSFH
N

 dt  × γH0

N

 (89)

 
 
Since the heading orientation between the N and N* frames is unknown at the start of 

Kalman alignment, CN*0
N

 = I, and without Figure 1 control updates, CN*
N

 = CN*0
N

 = I.  

Thus, ∫ 0

tn aSFH
N

 = vHn
N

 - vH0
N

 = CN*0
N

 vRefH/n
N*

 - vRefH/0
N*

 = vRefH/n
N*

 - vRefH/0
N*

 and, with (54) 

(neglecting reference velocity errors), (89) becomes 
 

 

ΔvHn

N
 = ΔCN*0

N
 vRefH/0

N*
 + ∫ 0

tn aSFZN dt  uZ
N

 × γH0

N

+ ΔCN*0

N
 ∫ 0

tn aSFZN uZ
N

 × ∫ 0
t
 ΔωINH

N*
 dτ  dt

+ ∫ 0

tn aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  dt - ∫ 0

tn aSFZN ∫ 0
t
 ωINZN dτ  dt  γH0

N

+ uZ
N

 × ∫ 0

tn vZN ΔCN*0

N
 ΔωINH

N*
 + ΔωIEH

N*
 - ωINZN + ωIEZN  ΔvH0

N
 dt

- 
1
2

 ∫ 0

tn aSFH
N

 × γH0

N
 × ΔCN*0

N
 ∫ 0

t
 ωINH

N*
 dτ  dt

+ 
1
2

 γH0

N
 × vRefH/n

N*
 - vRefH/0

N*
 × γH0

N

 (90)
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Finally, (90) is substituted into (83) to obtain for the observation: 
 

 

Mn
N

 ≈ ΔvHn

N
 - ΔCN*0

N
 vRefH/n

N*

= - ΔCN*0

N
 vRefH/n

N*
 - vRefH/0

N*
 + ∫ 0

tn aSFZN dt  uZ
N

 × γH0

N

+ ΔCN*0

N
 ∫ 0

tn aSFZN uZ
N

 × ∫ 0
t
 ωINH

N*
 dτ  dt

+ ∫ 0

tn aSFH
N

 × γH0

N
 × ∫ 0

t
 ωINH

N
 dτ  dt - ∫ 0

tn aSFZN ∫ 0
t
 ωINZN dτ  dt  γH0

N

+ uZ
N

 × ∫ 0

tn vZN ΔCN*0

N
 ωINH

N*
 + ωIEH

N*
 - ωINZN

N*
 + ωIEZN

N*
 ΔvH0

N
 dt

- 
1
2

 ∫ 0

tn aSFH
N

 × γH0

N
 × ΔCN*0

N
 ∫ 0

t
 ωINH

N
 dτ  dt

+ 
1
2

 γH0

N
 × vRefH/n

N*
 - vRefH/0

N*
 × γH0

N

 

(91)

 
 

The last two terms in (91) constitute the non-linearities that are not accounted for in the 
linearized Kalman filter equations.  Their impact on performance can be assessed by 
comparison with (91) linear terms having similar signatures. 

 

The last term in (91) is on the order of γH0

2
 vRefH/n

N*
 - vRefH/0

N*
 in magnitude.  The 

comparable linear term in (91) is ΔCN*0

N
 vRefH/n

N*
 - vRefH/0

N*
.  Clearly, 

γH0

2
 vRefH/n

N*
 - vRefH/0

N*
 is second order compared with ΔCN*0

N
 vRefH/n

N*
 - vRefH/0

N*
, hence, 

negligible in comparison.  Similarly, compared with the linear ΔCN*0

N
 vRefH/n

N*
 - vRefH/0

N*
 

term, the second to last term in (91) is on the order of 

1
2

 γH0 ∫ 0
t
 ωINH

N
 dτ  ΔCN*0

N
 vRefH/n

N*
 - vRefH/0

N*
 in magnitude, hence, also negligibly small 

(particularly since ∫ 0
t
 ωINH

N
 dτ is also small during Kalman alignment).  Thus, the impact 

of second order terms on the input observation should have negligible impact on 
linearized Kalman alignment performance. 

 
 

APPENDIX A - VELOCITY ERROR RATE EQUATION DERIVATION 
 

The idealized error free form of the velocity rate in (2) is 
 

 
v

N
 = CB

N
 aSF

B
 + gP

N
 - ωIN

N
 + ωIE

N
 × vN (A-1) 

 
The errors between the computed equivalents in (2) and (A-1) are defined as 
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δCB
N

 =
_ CB

N
 - CB

N
          ΔωIE

N
 =
_ ωIE

N
 - ωIE

N
          ΔωIN

N
 =
_ ωIN

N
 - ωIN

N

δgP
N

 =
_ gP

N
 - gP

N
          δaSF

N
 =
_ aSF

N
 - aSF

N
 (A-2)

 

 

in which the errors in ωIE
N

 and ωIN
N

 are anticipated to be comparable in magnitude to ωIE
N

 

and ωIN
N

 due to large heading uncertainties in their (9) computation.  In contrast, the error 

in gP
N

 is small relative to gP
N

 because it is primarily along the local vertical as is the 

equivalent in N* frame coordinates, hence is largely unaffected by the CN*
N

 

transformation in its (8) computation.  Based on the (A-2) definitions, (A-1) can be 
expanded as: 
 

 

v
N

 - Δv
N

 = CB
N

 - δCB
N

 aSF
B

 - δaSF
B

+ gP
N

 - δgP
N

 - ωIN
N

 + ωIE
N

 - ΔωIN
N

 - ΔωIE
N

 × v
N

 - ΔvN

= CB
N

 aSF
B

 - δCB
N

 aSF
B

 - CB
N

 - δCB
N

 δaSF
B

 + gP
N

 - δgP
N

- ωIN
N

 + ωIE
N

 × v
N

 + ΔωIN
N

 + ΔωIE
N

 × v
N

+ ωIN
N

 + ωIE
N

 × ΔvN - ΔωIN
N

 + ΔωIE
N

 × ΔvN

 (A-3)

 
 

or with v
N

 from (2) 
 

 

Δv
N

 = δCB
N

 aSF
B

 + CB
N

 δaSF
B

 + δgP
N

 - ΔωIN
N

 + ΔωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × ΔvN

- δCB
N

 δaSF
B

 + ΔωIN
N

 + ΔωIE
N

 × ΔvN

 (A-4)

 
 

The δCB
N

 error in (A-4) is derived from 

 

 
δCB

N
 =
_ CB

N
 - CB

N
 = I - CB

N
 CB

N T
 CB

N
 (A-5) 

 

Applying [3 - Eq. (3.5.2-8)] assigns the cause for the δCB
N

 error to misalignment of the N 

frame from its nominal error free value.  Identifying the misaligned N frame as N gives: 
 

 
CB

N
 = CB

N
 = CN

N
 CB

N (A-6)
 

or 



 31

 
CB

N
 = C

N

N
 CB

N
 (A-7)

 
 
hence, with (A-7) in (A-5), 
 

 
δCB

N
 = I - C

N

N
 CB

N (A-8)
 

 

Defining C
N

N

 
in terms of a rotation vector using the form of [3 - Eq. (19.1.3-3)] as a 

model: 
 

 

C
N

N
 = I + f1(γ) γN

 ×  + f2(γ) γN
 ×  γN

 ×

f1(γ) = 
sin γ

γ
 = 1 - 

γ2

3 !
 +           f2(γ) = 

1 - cos γ

γ2
 = 

1
2

 - 
γ2

4 !
 + 

 (A-9)

 
where 

γN
 = Rotation angle error vector associated with the CB

N
 matrix considering the N 

frame to be misaligned, as projected on frame N axes. 
 
Applying (A-9) in (A-8) yields with no approximations: 
 

 
δCB

N
 = - f1 γN

 ×  + f2 γN
 ×  γN

 ×  CB
N

 (A-10)
 

 

Using (A-10) for δCB
N

 in (A-4) finds with no approximations: 

 

 

Δv
N

 = CB
N

 δaSF
B

 + f1 CB
N

 aSF
B

 × γN
 + δgP

N

- ΔωIN
N

 + ΔωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × ΔvN

- f2 CB
N

 aSF
B

 × γN
 × γN

 - f1 CB
N

 δaSF
B

 × γN

+ ΔωIN
N

 + ΔωIE
N

 × ΔvN + f2 CB
N

 δaSF
B

 × γN
 × γN

 

 (A-11)

  
Then substituting f1 and f2 from (A-9) and neglecting terms with third order error 

products, (A-11) becomes: 
 

 

Δv
N

 ≈ CB
N

 δaSF
B

 + aSF
N

 × γN
 + δgP

N

- ΔωIN
N

 + ΔωIE
N

 × v
N

- ωIN
N

 + ωIE
N

 × ΔvN

- 
1
2

 aSF
N

 × γN
 × γN

 - CB
N

 δaSF
B

 × γN
 + ΔωIN

N
 + ΔωIE

N
 × ΔvN

 (A-12)
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Equation (A-12) is the error rate equation associated with the (2) velocity updating 
process. 
 
 

APPENDIX B - HORIZONTAL VELOCITY ERROR RATE EQUATION 
DERIVATION 

 
This appendix derives the horizontal form of the (A-12) general velocity error 

expression for the Equation (20) integrand. 
 

The ΔωIE
N

 term in (A-12) is derived by expanding from the error free version of ΔωIE
N

 

in (9): 
 

 

ωIE
N

 = CN*
N

 ωIE
N*

 = ωIE
N

 - ΔωIE
N

 = CN*
N

 - ΔCN*
N

 ωIE
N*

 - δωIE
N*

= CN*
N

 ωIE
N*

 - ΔCN*
N

 ωIE
N*

 - CN*
N

 - ΔCN*
N

 δωIE
N*

 (B-1) 

 

Substituting ωIE
N

 from (9) in (B-1) and neglecting the minor δωIE
N*

 error in the reference 

derived data then finds 
 

 
ΔωIE

N
 = ΔCN*

N
 ωIE

N*
 (B-2)

 
 

which also shows the ωIE
N

 error to be of the large Δ type.  Finally, because CN*
N

 is a 

rotation around the vertical Z axis, ΔCN*
N

 has no Z axis components, and (B-2) simplifies 

to 

 
ΔωIE

N
 = ΔωIEH

N
 = ΔCN*

N
 ωIEH

N*
 (B-3)

 
 
It can be shown similarly that  
 

 
ΔωEN

N
 = ΔωENH

N
 = ΔCN*

N
 ωENH

N*
 (B-4)

 
 

Recognizing that ωIN
N

 satisfies ωIN
N

 = ωIE
N

 + ωEN
N

 (and similarly for the true value), from 

(9) with (B-3) and (B-4), the error in ωIN
N

 for (A-12) is 
 

 

ΔωIN
N

 = ΔωIE
N

 + ΔωEN
N

 = ΔωIEH

N
 + ΔωENH

N
 = ΔωINH

N

= ΔCN*
N

 ωIEH

N*
 + ωENH

N*
 = ΔCN*

N
 ωINH

N*  (B-5)
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Neglecting the minor error in the reference data sets the error value in vertical 

velocity equation (7) to zero so that ΔvN in (A-12) becomes 
 

 
ΔvN = ΔvH

N
 (B-6)

 
 

Substituting the horizontal properties of (6) and (B-4) - (B-6) into (A-12), then finds 

for ΔvH
N

 in (20): 

 

 

ΔvH
N

 = 

CB
N

 δaSF
B

 + aSF
N

 × γN
 + δgP

N

+ uZ
N

 × vZN ΔωINH

N
 + ΔωIEH

N
 - ωINZN + ωIEZN  ΔvH

N

- 
1
2

 aSF
N

 × γN
 × γN

 - CB
N

 δaSF
B

 × γN

H

 (B-7)

 
 
Equation (B-7) is the horizontal velocity error rate integrated by (20) into the (15) 
observation equation. 
 
 

APPENDIX C - ATTITUDE ERROR RATE EQUATION DERIVATION 
 

The idealized error free form of the attitude rate in (2) is 
 

 CB
N

 = CB
N

 ωIB
B

  ×  - ωIN
N

 ×  CB
N

 (C-1) 
 

Substituting the (A-5) and (A-2) definitions into (C-1) yields: 
 

 

CB
N

 - δCB
N

 = CB
N

 - δCB
N

 ωIB
B

 - δωIB
B

  ×  - ωIN
N

 - ΔωIN
N

 ×  CB
N

 - δCB
N

= CB
N

 ωIB
B

  ×  - CB
N

 δωIB
B

 ×  - δCB
N

 ωIB
B

  ×  + δCB
N

 δωIB
B

 ×

- ωIN
N

 ×  CB
N

 + ωIN
N

 ×  δCB
N

 + ΔωIN
N

 ×  CB
N

 - ΔωIN
N

 ×  δCB
N

 (C-2)

 
 
in which 

 δωIB
B

 =
_ ωIB

B
 - ωIB

B  (C-3)
 

 

Substituting (2) for CB
N

 in (C-2) finds 

 

 

δCB
N

 = CB
N

 δωIB
B

 ×  + δCB
N

 ωIB
B

  ×  - δCB
N

 δωIB
B

 ×

- ωIN
N

 ×  δCB
N

 - ΔωIN
N

 ×  CB
N

 + ΔωIN
N

 ×  δCB
N

 (C-4) 
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The δCB
N

 term in (C-4) is the derivative of (A-10) with (2) for CB
N

: 

 

 

δCB
N

 = - 
f1  γ

N
 ×  + f1 γN

 ×

+ f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×
 CB

N

- f1 γN
 ×  + f2 γN

 ×  γN
 ×  CB

N

 
 (C-5) 

 

= - 
f1  γ

N
 ×  + f1 γN

 ×

 + f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×
 CB

N

- f1 γN
 ×  + f2 γN

 ×  γN
 ×  CB

N
 ωIB

B
  ×  - ωIN

N
 ×  CB

N
 

 
Then substituting (A-10) and (C-5) into (C-4) obtains after rearrangement: 
 

 

f1  γ
N

 ×  + f1 γN
 ×

 + f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×

- f1 γN
 ×  + f2 γN

 ×  γN
 ×  ωIN

N
 ×

= - CB
N

 δωIB
B

 ×  - f1 γN
 ×  + f2 γN

 ×  γN
 ×  CB

N
 δωIB

B
 ×

- ωIN
N

 ×  f1 γN
 ×  + f2 γN

 ×  γN
 ×  + ΔωIN

N
 ×

+ ΔωIN
N

 ×  f1 γN
 ×  + f2 γN

 ×  γN
 ×

 (C-6)

 
 

From its definition, the cross-product matrix operator form of a vector is skew-
symmetric (i.e., the element in row i column j equals the negative of the element in row j 
column i).  It follows that the transpose of a cross-product operator matrix equals the 
negative of the matrix.  Based on this property, the transpose of (C-6) is: 

 

 

- f1 γ
N

 ×  - f1 γN
 ×

+ f2 
d
dt

 γN
 ×  γN

 ×  + f2 γN
 ×  γN

 ×

+ ωIN
N

 ×  - f1 γN
 ×  + f2 γN

 ×  γN
 ×

=  CB
N

 δωIB
B

 ×  + CB
N

 δωIB
B

 ×  - f1 γN
 ×  + f2 γN

 ×  γN
 ×

+ - f1 γN
 ×  + f2 γN

 ×  γN
 ×  ωIN

N
 ×  - ΔωIN

N
 ×

- - f1 γN
 ×  + f2 γN

 ×  γN
 ×  ΔωIN

N
 ×

 (C-7)
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Subtracting (C-7) from (C-6), dividing by 2, and rearranging obtains 
 

 

f1 γ
N

 ×  = - CB
N

 δωIB
B

 ×  + ΔωIN
N

 ×

+ f1 - ωIN
N

 + 
1
2

 ΔωIN
N

 + 
1
2

 CB
N

 δωIB
B

 ×  γN
 ×

- f1 γN
 ×  - ωIN

N
 + 

1
2

 ΔωIN
N

 + 
1
2

 CB
N

 δωIB
B

 ×

+ 
1
2

 f2 γN
 ×  γN

 ×  ΔωIN
N

 - CB
N

 δωIB
B

 ×

+ 
1
2

 f2 ΔωIN
N

 - CB
N

 δωIB
B

 ×  γN
 ×  γN

 ×  - f1 γN
 ×

 (C-8)

 
 
or, after applying [3 - (3.1.1-22)]: 
 

 

f1 γ
N

 ×   = - CB
N

 δωIB
B

 ×  + ΔωIN
N

 ×

+ f1 - ωIN
N

 + 
1
2

 ΔωIN
N

 + 
1
2

 CB
N

 δωIB
B

 × γN
 ×

+ 
1
2

 f2 γN
 ×  γN

 ×  ΔωIN
N

 - CB
N

 δωIB
B

 ×

+ 
1
2

 f2 ΔωIN
N

 - CB
N

 δωIB
B

 ×  γN
 ×  γN

 ×  - f1 γN
 ×

 (C-9)

 
 
But from (A-9) and (C-9), 
 

 
f1 = 1 - 

γ2

3 !
 +  = order of γ2

         f1 = - 
γ
3

 γ +  = order of γ ΔωIN (C-10)
 

 
Hence, 

 

γ
N

 ×   = - CB
N

 δωIB
B

 ×  + ΔωIN
N

 ×

+ - ωIN
N

 + 
1
2

 ΔωIN
N

 + 
1
2

 CB
N

 δωIB
B

 × γN
 ×

+ order of γ2
 ΔωIN + order of γ2

 δωIB

 (C-11)

 
 
Therefore, 
 

 
γ

N
 = - CB

N
 δωIB

B
 - ωIN

N
 - 

1
2

 ΔωIN
N

 - 
1
2

 CB
N

 δωIB
B

 × γN
 + ΔωIN

N
 +  (C-12)

 
 
or with (B-5): 
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γ

N
 ≈ - CB

N
 δωIB

B
 - ωIN

N
 × γN

 + ΔωINH

N
 + 

1
2

 CB
N

 δωIB
B

 + ΔωINH

N
 × γN

 (C-13)
 

Equation (C-13) is the error rate equation associated with the (2) attitude updating 
processes performed in the INS computer. 
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