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ABSTRACT

Prior to inertial navigation mode engagement, an inertial navigation system (INS)
executes Kalman filter attitude alignment operations, an estimation process based on
minimizing a linearized model of INS attitude errors. Kalman error model linearization
places a constraint on INS initial attitude before initiating Kalman alignment operations:
attitude errors at the start of Kalman alignment must be small enough that residual second
order error effects from linearized modeling have negligible impact on alignment
accuracy. Under stationary alignment conditions, linearized Kalman error models have
been commonly configured for large initial heading error with no second order heading
induced errors, by representing heading error as inaccuracy in estimating horizontal earth
rate components. For non-stationary dynamic alignment conditions, however, the earth
rate estimation alignment approach cannot be used directly. The difficulty arises when
forming the Kalman filter measurement input; a navigation data comparison between the
INS and the equivalent data provided by a reference navigation device (e.g., GPS derived
velocity). The data measurement comparison must be made in a common coordinate
frame which becomes problematic when INS heading is initially unknown. Based on a
recent INS alignment article for small initial heading error, this article shows how the
Kalman filter measurement can be formulated so that large initial INS heading
uncertainty generates negligible second order error impact on alignment accuracy under
dynamic motion conditions.

MATHEMATICAL NOTATION

V = Vector without specific coordinate frame designation. A vector is a
parameter that has length and direction. Vectors used in the paper are
classified as “free vectors”, hence, have no preferred location in coordinate
frames in which they are analytically described.

IV| or V = Magnitude of vector V.

yA = Column matrix with elements equal to the projection of V on coordinate

frame A axes. The projection of V on each frame A axis equals the dot
product of V with a unit vector parallel to that coordinate axis.



(yA ><) = Skew symmetric (or cross-product) form of yA represented by the
0 -Vza Vya
square matrix [ Vza 0 —Vxa | iInwhich Vxa, Vya, Vza arethe
-Vya Vxa 0
components of VA . The matrix product of (vA x) with another A frame
vector equals the cross-product of yA with the vector in the A frame,
i.e.:(yA ><) WA=VAX WA,

Cﬁé = Direction cosine matrix that transforms a vector from its coordinate frame
A2 projection form to its coordinate frame A1 projection form, i.e.:

VAL= Cﬁlz VA2, The columns of Cﬁé are projections on A1 axes of unit
vectors parallel to A2 axes. Conversely, the rows of Cﬁé are projections on

A2 axes of unit vectors parallel to A1 axes. An important property of Cﬁé
is that it's inverse equals it's transpose.

®a A, = Angular rotation rate of coordinate frame A2 relative to coordinate

frame A1. Conversely, the angular rotation rate of coordinate frame A1

relative to coordinate frame A2 is the negative of W, o, jo -

OArA; =~ 9A A,

() = ——= = Derivative with respect to time t.

~~

() = Computed value of parameter () that, in contrast with the idealized error free
value (), contains errors.

(m) = Measured value of strapdown inertial sensor () that, in contrast with the
idealized error free value (), contains errors.

3( ) = Designation for errors that are small compared with ().

A() = Designation for errors that can be as large as ( ).

E = Expected value operator.



COORDINATE FRAMES

N = INS locally level navigation coordinate frame (with Z axis up) used for
attitude referencing and velocity/position integration operations. By
definition in this article, the initial heading of the N Frame is assumed to be
nominal, i.e., error free. Initial heading alignment of the N Frame relative to
another known reference frame (N*) is accounted for by defining the N
frame to be nominally misaligned from the N* frame.

N* = Locally level navigation coordinate frame (with Z axis up) used by a
reference aiding device to deliver position/velocity data to the INS being
aligned. The heading angle misalignment between the N and N* frames is
the means to account for initial heading error in the INS attitude data at the
start of alignment. As defined, the Z axis of the N* frame is parallel to the Z
axis of the N Frame.

B = Strapdown inertial sensor coordinates (“body frame”) with axes parallel to
nominal right handed orthogonal sensor input axes.

I = Non-rotating inertial coordinate frame used as a symbolic reference for gyro
angular rotation rate measurements.

E = Coordinate (earth) frame aligned with axes fixed to the earth.

PARAMETER DEFINITIONS

Analytic parameters used in this article are defined following equations where they
are first used.

INTRODUCTION

An important part of inertial navigation system (INS) operations is the initialization
process in which the INS navigation parameters (angular orientation - attitude, velocity,
and position) are initialized for integration functions to follow during inertial navigation.
Initialization typically consists of two phases; Coarse Alignment followed by Fine
Alignment, e.g., [3 - Chapt. 6]. During Coarse Alignment, the INS angular attitude is
initialized to an approximately correct value. Fine Alignment then ensues in which
attitude is converged to inertial navigation grade accuracy and velocity/position are
initialized, all generally implemented within a Kalman filter structure.

General Inertial Aiding Structure

Fine Alignment is a specialized application of Inertial Navigation Aiding (Figure 1), a
dynamic process in which INS computed navigation data is periodically compared with



equivalent reference navigation data (at cycle rate n), and used in feedback fashion to

update INS error parameters. Note in Figure 1 that all parameters are shown with a ()
designation to indicate that they are computed estimates within the INS and reference
navigation device of actual equivalent () parameters. The analytic details of the Figure 1
operations are provided in [1, 2, 3 - Chapt. 15, 4 - pp. 415 - 457].
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Figure 1 - Inertial Navigation Aiding

In Figure 1, the inertially-computed/reference-device navigation data comparison M M
("observatlon") IS input to the Kalman filter where it is compared agalnst a linearized

estimate of M known as the "measurement” z The equation for z |s based on estimates

of expected errors (embodied in an error state vector column matrix 5) generated by a
linearized dynamic error model of inertial navigation and reference device operations,

and how they couple into the measurement (through the "measurement matrix" H). (The
error state dynamic matrix A in Figure 1 defines the dynamics of how x propagate from



the last n cycle to the current n cycle.) The difference between the observation M and

estimated measurement z (the "measurement residual” ZRes), is multiplied by a Kalman
gain matrix K, to generate corrections to the Kalman filter error estimates. The control

vector uc formed from INS error estimates in x (including provisions for X computation
delay) is used to correct the INS by subtraction from the equwalent INS parameter data.
To account for the e corrections applied to the INS, the uc vector is also used to update

the Kalman 5 error model for the applied INS error correction.

The K Kalman gain matrix in Figure 1 is computed at each n cycle from a statistical
model of the expected uncertainty in the Figure 1 linearized updating process, a function
of the error state covariance matrix P:

. . AN /\T ~ /\T
Pn=Pn-1+_[tt“1Pdt P=AP+PA +GpQpGp
n_

~T (-~ ~T A ~T V!
Ky = Pa(-) Fin [Hy Py(0) Hy + Git, Rt Gt (1)

Pa(+) = (I - Kn Hn) Pa() (1 - Kn Hn)' + Kn Gat, Ryt Gag, K-

. . . . T .
The P covariance is analytically defined as £ (zUncrmy §Uncmty) where £ is the expected

value operator and Xuncrnty 1S the uncertainty in the error state estimate x compared with

the true value x. The covariance matrix measures how initial uncertainties in x (at the
start of Fine Alignment) are progressively reduced by the Figure 1 dynamic

estimation/updating process, and how unaccounted for noise effects (in X propagation
between updates and measurement updating) delay the convergence process. Noise
parameters incorporated in the (1) gain determination operations are the Qp process noise

matrix that accounts for random INS error buildup between n cycles, the Gp matrix that
couples the process noise into error state uncertainty components, the measurement noise
matrix Rm that accounts for random errors in the observation and in calculation of the

measurement residual, and the Gy matrix that couples the measurement noise into the
measurement residual components [3 - Sect. 15.1] and [4 - pp. 428].

The success of the Figure 1 process depends on the accuracy by which the Kalman
filter linearized models match the actual operations in the INS and reference navigation
device. An important element in this regard is the impact of linearization on the
measurement residual. Second order components in the Figure 1 observation vector M
are ignored in the Kalman filter linearized models, hence, will appear in the measurement

residual ZRes and modify x through the Kalman gains. Since the gains do not account for

second order errors, the result will add unknown errors to X. To minimize the impact of
second order errors on Kalman filter performance, it has been previous practice to assure
that Coarse Alignment attitude errors are small enough that second order residuals
become negligible. However, in some applications, residual second order Kalman filter



modeling errors can still produce mis-estimation of INS errors under particular dynamic
conditions [5, 6].

Application of Kalman Aiding To Velocity Matching INS Alignment

Applications of the Figure 1 inertial aiding concept to INS Fine Alignment commonly
use velocity for the INS/reference-device data comparison (so-called "velocity matching”
alignment). The associated inertial navigation integration operations in Figure 1

(between Kalman filter applied u, control updates) are versions of the following:

~N ~N ty AN AN AN (NB ) ~N AN
Cg,=Cp,; + J tn-ICB dt Cp =Cp |0 X/ - o Cp
~N ~N ~N
ON = )
WIN = OIE + WEN
~N ~N ty AN AN AN~B N [N ANY N
&1=&1-1+Jtn_lx dt v =Cpagp+gp-|\0OIN+OE/XV

where

n = Subscript indicating value of the designated parameter at the Kalman filter
update cycle time.

B

g = Angular rate of the strapdown inertial sensor B frame relative to the non-
rotating inertial | frame (1B subscript) measured in the B frame (superscript)
by INS gyros

N
Cg = Direction cosine matrix that transforms vectors from the sensor body B
frame to the locally level navigation N frame.

N
O = Angular rate of the earth fixed E frame relative to the non-rotating | frame
(IE) projected on N frame axes.

N
WpN = Angular rate of the N frame relative to the E frame (EN) projected on N
frame axes.

vN = Velocity vector relative to the earth projected on N Frame axes.

B
sk = Specific force (non-gravitational) acceleration measured in the strapdown
sensor B frame by INS accelerometers.



= Plumb-bob gravity in the N frame that equals the sum of earth's gravitational
mass attraction plus earth's rotation centripetal acceleration effect. Defined
as such because gp lies along the direction of a plumb-bob under zero
velocity conditions.

Under dynamic velocity matching trajectory conditions, [5] shows that residual
second order Kalman filter modeling errors can produce mis-estimation of small initial
heading errors under mild maneuvering conditions. Reference [5] shows how the second
order error effects can be mitigated as part of Kalman gain matrix determination by
modeling them into the Figure Al measurement and process noise structure (within the

Equation (1) Qp, Gp, R\ and Gwm matrices). As an alternate, [6] describes a Fine
Alignment approach whereby second order errors can be minimized by using a modified
form of the traditional velocity matching observation equation.

Under the special case of quasi-stationary conditions (e.g., stationary ground
alignment of an INS in an aircraft), [3 - Sects. 6.1.2 & 15.2.1] shows how a velocity
matching observation can be structured to make large initial heading errors observable
within a linearized structure that has no significant second-order errors. The concept is
based on (2) under zero velocity conditions:

~N  ~ t. AN AN AN([~B ~N ~N

C,=CB,; +J. " CB dt Cg =Cp (QIBX) '((DIE X) Cp

AN ~N J ~N ~N AN~ AN N )
VH, =VH,  +] ¢ ljdt VHy=0 VH = - gP,N|CB UznH

where

H = Subscript indicating horizontal components of the designated vector.

N
U7zN = Unit vector along the upward N Frame Z axis (ZN).

~ ~N
gpzn = Component of computed plumb-bob gravity gp along the N frame upward
Z axis (of negative sign).

In forming (3) from (2) it has been recognized that under stationary conditions, the initial
~B ~N
value of velocity VOH IS zero, agp in (2) is vertical to balance plumb-bob gravity, and Wgn

~N
in (2) is proportional to velocity, hence, not present in (3). The computed vy in (3) then
becomes the Figure 1 observation (i.e., compared with the true zero value). The (3) form

allows the initial N frame to be nominally defined at any arbitrary heading, then used
~N

during Fine Alignment to estimate the N frame horizontal components of earth rate ®[g.

Using the principle that horizontal earth rate points north, the estimated earth rate



components are then used at Fine Alignment completion to determine the orientation of
the selected N Frame relative to true north.

Under moving-base INS alignment conditions, the (3) simplified quasi-stationary
earth rate estimation concept cannot be implemented directly because of the non-zero

velocity terms in the general (2) form. Although the magnitude of initial velocity XISI in
(2) is known (from reference velocity input data magnitude), its vector direction has
uncertainty in the N frame because of the initially unknown heading angle between the
INS N frame and the reference data input data coordinate frame (identified herein as N*).

~N . . . .. "N
The vq error in (2) thereby becomes part of the inertially computed velocity v
~N ~N_ . ~N ~N ~N
generating error in ®gN (a function of v ), in Cg from wEN, in adding to v error through
~N ] ~B ~N ~N . ~N o ]
CB coupling of asrintov , and by v inputin (2) to the v Coriolis acceleration (the last

AN
term inv ). The traditional method for implementing (2) has been to allow for a heading
~N
error component in Cg for estimation in the Kalman filter linearized error model (in

addition to CE tilt misalignment from vertical), thereby leading to the requirement for
small initial tilt/heading errors (to minimize residual second order error effects). In most
applications, Coarse Alignment to small tilt errors is readily achievable over a fairly short
time period (e.g., from roll/pitch attitude inputs from another device, or by using INS
accelerometers as the measure of attitude to vertical under controlled non-accelerating
trajectory conditions). In some applications, Coarse Alignment to small heading error is
not practical. To accommodate large initial heading uncertainties in such applications,
traditional Kalman alignment structures need to be reformulated for negligible second
order error impact under dynamic conditions.

This article extends the (3) quasi-stationary Fine Alignment large initial heading error
approach to dynamic moving base conditions by using the [6] revised
observation/measurement as a base. The article begins with the horizontal form of the [6]
revised observation equation. Non-linear error equations are then developed for the
observation and the (2) inertial navigation equations within a Figure 1 Fine Alignment
structure. From the non-linear error equations, a Kalman filter compatible linearized
error version is then developed. Lastly, the impact of linearization approximations on
Fine Alignment performance is assessed by comparing the non-linear observation and
linearized measurement equations forming the Figure 1 measurement residual. It is
shown that by virtue of the [6] revised observation approach, all significant residual
second order errors are vertical, (i.e., not present on the horizontal measurement
residual), hence, have no impact on Fine Alignment performance. The article includes a
summary of the equations developed to implement the large heading angle velocity
matching alignment approach, including initialization of the (1) covariance matrix for
Kalman gain calculations.

For simplicity and clarity in the remainder of this article, "Velocity Matching Fine
Alignment" will be referred to as "Alignment"” or "Kalman Alignment".



OBSERVATION EQUATION

The Observation Equation described in this article for the Kalman Alignment
observation input in Figure 1 is the horizontal component of [6 - Eq. (28)]:

~N [~N =N ~N#*
M; =\vn - CN#, VRef, JH (4)
where

~N . . " .
M, = Observation vector in N frame navigation coordinates.

VRef = Velocity relative to the earth provided in N* frame coordinates by the
reference navigation device (see Figure 1) to the Kalman filter observation

block (for reference comparison with QN in (2)).

N . . . .
Cn+ = Direction cosine matrix that transforms vectors from the N* to the N

frame. From the definition of N*, CE* represents a rotation around the
upward vertical.

Only the horizontal components in (4) are used in anticipation of potentially large second
error propagation into the vertical observation, thereby mitigating potentially significant
Kalman filter estimation errors in Figure 1. Note - For simplicity in this article, (4) does

: . . . ~N _ ~N I .
not allow for differences in physical location between the v - and vres navigation points
that would normally be included in an actual system design (e.g., due to physical

separation between the INS and reference navigation device under vehicle angular
motion, i.e., so-called "lever arm" effects [3 - Sect. 15.2.2.2]).

. ~N . . . . .
Since Cn+ is a rotation transformation around the vertical, (4) is

~N ~N AN ~N#
My = vH, - CN#, VRefyy, )

~N
The vy vector in (5) is calculated for this application using the following form of (2)
between Kalman updates.

~N ~N J» th ~N
mn:jn_l + tn_]XH dt

AN ~N ~B ~N [N ~N ~N -~ N
vH =|CB agp + gp - \OIN + O[E) X (VH + VZN Uy

(6)

H

~N AN
with Cg determined by Cg integration in (2), and where



vzN = Vertical component of v
Because the N and N* frame definitions make their Z vertical axes parallel, it is
expedient during Alignment to set vzy in (6) to
VZN = VZN*Ref (7

where

-~ ~N* . .
VZN#*g.s = Component of vgef along the N* frame vertical Z axis.

~N
Additionally, to simplify error modeling, the gp gravity vector in (4) is first calculated in
N* coordinates based on reference aiding device input position data, and then
transformed to the N frame:

~N AN ~N*

gP = CN* gPRes (8)
where

/\N*

8Pret = Plumb-bob gravity calculated in N* coordinates using standard INS
computation techniques (e.g., [3 - Sects. 5.4 & 5.4.1]), but based on N*
frame navigation data provided to the Kalman alignment process by the
reference navigation device.

Similarly, for the angular rate terms in (2) and (6):

QIE = QIERef QEN = QENRef
o = CN+ OF ®EN = CN* WEN
where

OIER.f, ®ENRf = Angular rates ®IE, ®EN calculated in N* coordinates using
standard INS computation techniques (e.g., [3 - Sects. 4.1.1 & 5.3]), but
based on N* frame navigation data provided to the Kalman alignment
process by the reference navigation device.

The N relative to N* attitude in (5) represented by CE*, is a heading rotation (about

the vertical) from N* to N through angle 3. Thus, from [1 - Eq. (3.2.2.1-4)], Eﬁ* in (5) is

~N
CN* =1+ Sil’lB (ggN X) + (1 - COS B) (EEN X) (HEN X

inf o |

(10)

10



where

B = Constant angle measured positive around the upward defined N and N* frame
Z axes.

| = Identity matrix.

—_—

Note in (10) that Cﬁ* is represented by the two scalar parameters sinf3 and cosf. The
error in these parameters will form part of the errors to be estimated by the Kalman
alignment filter. This is directly analogous to the [3 - Sects. 6.1.2 & 15.2.1] stationary
alignment technique that uses horizontal earth rate components to represent heading,
equaling horizontal earth rate magnitude multiplied by the sine and cosine of N frame
heading angle from north.

Recognizing that the N frame selection maintains it at a fixed B alignment orientation

. ~N - :
relative to the N* frame, the Cn+ matrix is constant, hence, between Figure 1 Kalman
updates,

%(c;sﬁ) =0 %(sﬁs) =0 (11)

It is also to be noted that a more general treatment would allow for differences between N
and N* angular rates by representing CE* as a heading rotation (about the vertical) from

N* to N through a time changing angle o followed by the previously defined constant

angle B. The o angle would be used to account for the difference in vertical rotation
rates that may exist between the N and N* frames (e.g., a GPS type geographic local
level east/north/up navigation frame implementation for frame N* versus a wander
azimuth local level navigation N frame implementation [3 - Sect. 2.2]). However, since
design of the Kalman alignment process allow selection of the N frame during alignment,
it is easily set to be the same as N*. This simplifies the analytical development, allowing
the N angular rate to be equated directly to the N* rate calculated from N* navigation
parameter inputs (as previously shown).

OBSERVATION AS A FUNCTION OF SYSTEM ERRORS

Kalman filter theory requires that observation (5) be an unbiased error measurement
so that the equivalent error free form of (5) is

N N N N
M, = vy, - Cnx, VRefyy), = 0 (12)

Substituting for error definitions between (5) and (12) finds for (12) with (5):

11



N N AN* N*

AN N 2N N* N*
N*
+ACN* VR efI_I/ ‘ACN* SVRefH/
/\N*

~N ~N
in which the ACN*, AVH, and SVRef errors in Cnx*, VH and efH are defined as

N N N N N N ~N* N*
ACN* = CN* - CN* AXH =VH- Vg 8VRefH VRefH - VRefH (14)

. N N I
The A() large error assignments to ACy« and Avy are made because of the large initially

unknown heading error between N and N*, and (as will be apparent subsequently), vH is
initialized at the start of Kalman alignment using N* frame velocity data.

Then, from (13):
AN AN
The linearized form of (15) (including linearized inputs) will form the basis for the

measurement equation used in forming z for Figure 1.

Inputs To Observation Equation (15)

The ACE* term in (15) is derived from the equivalent of (10) - (11) for the true value

of ag*
AN i ( N ) N N
N# = L+ sinf \u x|+ (1 - cosB) (QZN ><) (EZN x) (16)
d ~ d(. o
&(COSB) =0 &(smﬁ) =0 (17)

From (14), the ACE* error in (15) is the difference between (10) - (11) and (16) - (17):

~N
ACE* = CN* - CE* = Asinf3 (EEN ><) - Acosf3 (EEN ><) (9;\1 ><)

Acosf = cosf - cosP Asinf} = sinf - sinf3

(18)

12



with, between Figure 1 Kalman updates,

%(Acosﬁ) =0 %(Asinf)) =0 (19)

N . . .
The Avy velocity error term in (15) includes Figure 1 control updates Yc and,
between updates, the integral of the horizontal velocity error rate:

N N th ‘N
Avy =Avy +] 0 Avpyr (20)

. . N . . . ‘N
in which Avy is the horizontal component of the Appendix A derived Av ~ general
velocity error rate:

‘N 2N ~N
AXN =~ Cp 6@1531: + agp X XN + 8§§
N N ~N ~N ~N 21
-(A@NM@[E)XV-OJNWIE)MVN ey
AN ~N N N
- ;(aSF X XN) X XN - (CB 5@5}) X XN + (AQIN + AQ{E) x AvN
in which
N "N N N N N
Ao = OF - O Ao = OIN - 0N 22)
5 N ~N N 5 N N N
gp = &P - &p gk = AQF - AgR
and where

. ~N . . . . .
XN = Small angular error vector in the Cg attitude matrix (defined analytically in
Appendix A).

The horizontal component of (21) for (20) is derived in Appendix B. The derivation
follows from (7) and (9), showing that for this Kalman alignment approach, the A® and
Av terms in (21) are horizontal:

Ao, = AC\+ OEy ANy = ACN+ WENY

N N N
Aoy = AWR, + AOENy (23)

N N
Av' = Avy

Applying (23) in (21), Appendix B then finds for horizontal velocity error rate in the (20)
integrand:

13



~N_.B ~N N N
Cp dagp +asp Xy +dgp

~ N N - - N
vZN (Ao, + A@IEH) - (O)INZN + (o[EZN) Avy

' ;(agﬂs )N (CF a1

N
Avyg=|+uy X (24)

H

N N N . _ _ _
Note that the second order |A®y + A®g) X AV Coriolis term in (21) has vanished in
N N N
(24) because from (23), it equals (A@NH + A@EH) X Avy which is vertical. This is a

significant finding because, due to the large nature of its errors, (AQIHI\I + AQII\]IE x AN can
~N  ~N\|
be as large as the (0)1N+0)1E sz term in the (2) and (6) velocity rate equations.
Finding it to be vertical means that its large second order nature will not cause an error in
the linearized model of (24) used in the Figure 1 Kalman filter design. Thus, it will not
impact the Kalman filter measurement residual in Figure 1, and not lead to error mis-
estimation. This is also a primary reason for selecting the horizontal form for observation
Equation (4), i.e., to exclude the large second order vertical component of

N N
Ao + Ao) x AvN in the velocity error rate integral.

. N .
Based on the error in (8), the dgp term in (24) becomes

~N*

N N
= ACN+ 8PResH (25)

dgp

: : : : : N ~N*
in which the minor gravity modeling error in &pg ¢y has been neglected. The gpPr.rn

vector in (25) would then be calculated using standard techniques (e.g., [3 - Sects. 5.4 &

N
5.4.1] using reference input position data. Note that &pgsyy IS generally very small, on
the order of one micro-g per thousand feet of altitude - The dominant one g component of

. . : . N
gravity component is vertical. However, because of the potentially large value for ACy

in this application, (25) is included in the (21) velocity error rate model (i.e., not
neglected) for Kalman alignment filter design, to properly account for its presence in the
Kalman filter observation equation input.

N . . . .
The Y attitude error term in (24) includes Figure 1 control updates Uc and, between

‘N
updates, the integral of they attitude error rate derived in Appendix C:

N N_.B N y N 1(aN. B N N

Yy =-Cpompg - ON XY +A9[NH+5CB591B+A9[NH><X (26)
N N tp N N N

Xn=Xn-1+.[ tn1 dt Yo = TH, (27)

14



where

0 = Subscript indicating the value of the designated parameter at the start of Kalman
alignment.

Note that the initial value for Y in (27) is horizontal (i.e., zero vertical component). This
is because the basic definition for the N Frame is to have a nominal initial heading, with
initial heading misalignment accounted for as misalignment of the N frame relative to the
N* frame.

SUMMARY OF EQUATIONS FOR KALMAN ALIGNMENT IMPLEMENTATION

The Figure 1 operations for Kalman alignment are or are derived from (1), (2), (5) -
(11), (15), (18) - (20), and (23) - (27) as summarized next.

The Figure 1 INS Inertial Navigation Integration Operations For Kalman alignment
between updates are (2) and (6) - (11), resequenced and renumbered next:

d(— d(~ 5
cosPp/ =0 sinB) = 0
&( B) 3( B) (28)
~N - -
Cn# =1+ sinf (ggN x) + (1 - cosP) (ggN x) (g%\] x) (29)
WE = QIER £ WEN = QENR f
o = CN+ OF ®EN = CN* WEN
~N ~N ~N AN N(~B ~N N
WIN = O[E + OEN Cp =Cp 0B X/ - o\ CB
~N -~ t, AN (31)
Cp,=Cp,; + J tn-ICB dt
VZN = /\;ZN*Ref (32)
~N ~N ~N#*
gp = CN* ZPres (33)
AN |AN-B  ~N (AN AN) N ~ N
vH =|CB agg + gp - \OIN + O[E) X |VH + VZN Uy ||H
~N ~N ty ~N (34)
VJ'In:J'In—l-i_J.tn] dt

15



The Observation Equation For the Kalman alignment Compare operation in Figure 1
is (5):

~N ~N AN ~N#
My = vH, - CN#, VRefy, (35)

with
~N
CN*O =1 (36)
The Linearized Dynamic Error Model operations between Kalman updates in Figure

1 for Kalman alignment are the linearized forms of (18) - (20) and (23) - (27),
resequenced and renumbered next:

%(Acos B) =0 %(Asinﬁ) =0

(37)
ACE* = Asinf} (EgN x) - Acosf3 (EgN ><) (9%\1 ><)
N N N N N M
Aopy =ACN: Oy A®png = ACy+ WENy
H H (38)
N N N
A(L)[NH = AQ[EH + AQENH
2 ~N. B "N ~N N
YLin = - CB @B - OIN X YLin + AQNy, (39)
~N AN t AN
YLin, = YLing | + J . YLin dt (40)
N N ~N
dgp = ACN« 8PRes/H (41)
N_B N N _N
N Cs 8@51: + aSF X YLip t 8&3 42)
Avy . = — =\ R
—H[ in N ~ N N N
+ U, X |VzZN A(L}[NH + AQ[EH - ((DINZN + (’OIEZN) AXHLin H
N N th . N
AVHL i = AVHL i T j tn 1 AVHjp ¢ (43)

where

Lin = Subscript indicating linearized form of designated parameter.
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B
The error parameters in (37), (39), (42), and for the dwg and SQISSF sensor error

components, constitute the estimated error state vector X in Figure 1. Reference [3 - Eqgs.
(12.5-6) & (12.5-12)] show that the estimated sensor error components can be modeled as

— —
~ —

—

B B ~B
dwg = 0Kscal/Mis OB + OKBias 8341: = 8Lscal/Mis agF + OLBias (44)

where

OKscal/Mis, OLscal/Mis = Estimated gyro and accelerometer scale-factor-
error/misalignment error matrices.

—

OKBias, OLBias = Estimated gyro and accelerometer bias error vectors.

The error parameter coefficients in (37), (39), (42), and (44) constitute the error state
dynamic matrix A in Figure 1.

The measurement equation for the Kalman alignment Linearized Observation Model
operation in Figure 1 is the linearized form of (15):

In = AXHLin/n ) CN*H SXRefH/n ) ACN*H VRefHm (45)

where

Z = The Measurement (see Figure 1).

The error parameter coefficients in (45) constitute the measurement matrix H in Figure 1.

The Kalman gain matrix computations for the Kalman alignment Linearized
Observation Model operation in Figure 1 are from (1):

Pn=Pn-1+Jttn Pdt P=AP+PA +GpQpGp
n-1
~T [~ ~T ~T |1
Kn =Py(-) Hy (Hn Pn(-) Hp + GMm, Rm GMm,, (46)

T
n

Pa(+) = (I - Kn Hn) Po() (I - Kn Hn)' + Ko Gar, Ryt G, K

Note that the error parameters in (37) - (46) are shown to be estimated by the Kalman

filter (indicated with a () notation), in contrast with the true (') values. Note also that
(37) - (46) are functions of error terms and parameters containing errors, the latter
available in the INS computer. This contrasts with the more typical error equations in
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which the navigation parameters are represented by their ideal values. Equations (37) -
(46) are in the form that would actually be implemented in the INS for the Kalman filter
used to estimate the error parameters during Kalman alignment. This form arises because
of the general derivation process followed in this article (and in [5, 6]) by which idealized
error free equations were modified to be functions of computed minus error parameters.

KALMAN ALIGNMENT INITIALIZATION

Navigation Data Initialization

The estimated attitude matrix CE in (31) is initialized prior to Kalman alignment
initiation at a Coarse Alignment determined value with arbitrary heading relative to
north. Reference [3 - Sect. 6.1.1] illustrates a rapid Coarse Alignment method under
stationary conditions. A subsequent article will describe how the equivalent fast Coarse
Alignment can be performed under dynamic moving base conditions.

. . ~N . C . .
The estimated velocity vector vy in (34) is initialized at the horizontal velocity value
provided in N* coordinates by the reference navigation device:

AN ~N*
VH( = VRefy/o (47)

where it is recognized that the heading angle B between the N and N* frames is initially
unknown, hence, assumed to be zero.

Estimated Error State Initialization

All error parameters in (37) - (45) are unknown at the start of Fine Alignment, hence,

their estimated values within the Figure 1 estimated error state vector X would be
initialized at zero.

Covariance Matrix Initialization

The estimated covariance matrix P in Figure 1 is initialized based on the uncertainty
in the x estimated error states:

“x (48)

1
[

4

with the covariance matrix P defined as

p=zxy) (49)
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where
X = Uncertainty in X.

E = Expected value operator.

For the Asinf3 heading error parameter in (37), the X component derives from B being

initially unknown and equally likely to be plus or minus so that sinBo = 0. Then from the
(18) definition for Asin o,

—

AsinBg = sin - sinfg = - sinPg (50)

Since x0 = 0 as stated previously, the initial uncertainty in Asinf} is zero, and the

uncertainty in Asinp is from (50):

XAsinBo = Asinfo - AsinBg = sin g (51)

Similarly, for Acosp,

AcosBg = - cosPo XAcosBg = €0sBo (52)

Assuming all values for Bo have equal likelihood over the - T to + 7 range of N* to N
possible headings, the corresponding (51) - (52) initial covariance elements then become

(Pasin asinp), = E (sin2Bo) = 21} ™ sin2Bo Py dt = ;
Y

(53)

N | —

(PACOSB AcosB)O =E (COSZB()) = 21J. _1:5 COSZB() dBp dt =
T

(Pasinp Acosp), = (Pacosp asing), = E (sinBo cosBo)
=1—J.T;t sinfo cosPp dBp dt =0

2n
~N
With velocity initialized as in (47), the initial uncertainty in VH, becomes a function

N
of the unknown o between N and N*. Recognizing the true value of Vg, to be

N N* I N : : L
CN# VRefyyo the (14) error definition for Avy, then finds with (47) and linearization:
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~N N N ~N* N
AVH = VH, - Vg, = CN#o v efH/o‘CN* VRefp/o

CN* +ACN* VRefy/g - CN* VRefn/0 - OVRefyg
o (54)

- ACN”’ efH/O + CN* 8VRefH/()

= ACN*O VRefyso + CN*O 8!RefH/()

. - ~N
Because all error state estimates are initially zero, Cnx, = I and
ACN, = CNseg - CN, =1-CN, . Then (54) obtains for the linearized Avy inty:
Cnxy = O - Cy = I- Cx#,- Then (54) obtains for the linearized AVyy, uncertainty:

—

XAvy) = AYEO - AYEO (I CN* AN:fH/o SVEZfH/O (55)
From (16),

I- Cg*o =-sinfo (QgN x) - (1 -cosPBo) (gI;N x) (EgN x) (56)
so that (55) becomes

XAvyyo = SinPo (ugN X XgefH/o) (1 - cosBo) ilEZfH/o - SYg:fH/O (57)
With (57), the horizontal velocity error initial covariance then is

PAvio Avao =F (XAVH/O LXVH/O)
= (EEIN X ingH/O) (EEN X igZfH/o)T Z (Sin230) (58)
+ ingH/O (;JI‘HZfH/o)T (1 - cosBo) +E SXE:fH/Q 8VR;:ka/O)T

k
in which is has been assumed that Bo and SXEGfH/O are uncorrelated. Overthe-mTto+ 7

range of N* to N equally likely Bo headings,

E (sinBo) = E(1-cosof’ = £(1 -2 cos By + cos’o) = (59)

N | =
N | W

Thus, (58) becomes
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PAVH/() Avyio = > UyN X VRefyyo) \UzN X YRefy/o

! {ue ¢ VRt (b ¢ VRet)
3 ~N* NG T (60)
+ 5 YRefo \VRef/o +Z

N* N T
SXRefH/o SXRefH /0

With (51) - (52) and (57), the initial cross-correlations between Y Avy, o, X AsinBg, and
X Acosp are obtained similarly:

(PAVH AsinB)O =E (lAXH/O XAsino) =E (LA!H/O SinBO)
= (EZN X XRefH/o) Z (Sm BO) = 5 UzN X VRefnyo

T . T (61)
(PAsinB AVH)O =E (XAsin() LAVHIO) =% (SmBO ZAVHIO)

N _oNs Ny (NN T
=\uyN X VRefyyyo)] E (Sln BO) = 5 U7n X VRefy/q

(PAVH ACOSB)O =E (lA\LH/O XACOSO) =E (lAXH/O COs BO)
AN ’ 1 ~N*
= VRefyo E (COS B()) = 2 VRefy/o

T T (62)
(PAcos AVH)O =E (XACOSO XJVH/O) =E (COS Bo ZAVH/())
AN T 1 (~N* T
= (ﬂ{efH/o) g2 (COSZBO) ) (XRefH/o)
~N
The initial uncertainty in attitude error Y recognizes that from the definition of the N
AN ~N
frame, the vertical component of Y is zero, hence, the initial uncertainty inY is
horizontal, and

"N Ny "N xN N
LY0=XO';YO=XO'XH()=_J{()

T (63)
T N [N 2

Pyovo=% (Xvo Xyo) =% &HO (ﬁ{o) } = Ixy Oy 0

where

Ixy = Identity matrix with zero for the lower diagonal element.

Oyyo = Standard deviation of the Coarse Leveling tilt uncertainty, assumed
uncorrelated between horizontal axes.

The remaining sensor error covariance elements are uncorrelated between axes.
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NOISE PARAMETERS

The Kalman Alignment filter linearized dynamic error models in Figure 1 derive from
the general linear forms [3 - Sect. 15.1]:

x=Ax+Gpnp  zy=Hyxy+Gwm,nm, (64)

compared to the Figure 1 estimation equivalents

>

A~ A~

=AX  zp=HpXn  ZRes,=Mn-2y

[ )

-~ ~ (65)
Xn(+) = Xn(-) + Kp ZRes,

The uncertainty equations corresponding to (65) are derived from the (48) uncertainty
definition. For uncertainty propagation between Kalman filter n cycle updates (and
linearization):

Zzg-ﬁzgg'AK'GPEP’“KE'RK'GPEP:KL-GPQP (66)
For the error state updating operation (with linearization), at the Kalman n cycles:

= Hp xp + Gm, M, - Hn Xn(-)

LResn=Mn‘anﬁl - n
Xn(-) = - Hp xn(-) + Gm,, M,

Z,
o . - (67)
~ Hp X + GMm,, M, - Hn
From (65),

Xn(+) = Xn(-) + Kp ZRes,
N (68)

Xn(+) - Xn = Xn(-) - Xn + Kp ZRes,

so that with (67)
() =1n() +Kn ZRes,
= () +Kn (- Hn a(-) + G, i, (69)
= (I'- Ky Ho) gn(-) + Kn Gy,

Summarizing for the (66) and (69) uncertainty propagation and update equations:

%=Ax-Gpnp
N R (70)
%) = (1 - Ky Hy) xn(-) + Ky Gy, iy,

By applying covariance definition (49) to (70), the equivalent P and Pn(+) covariance
forms of (46) are obtained. The Qp, Rm process/measurement noise terms in (46) are,
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respectively, the np process noise density matrix, and the "M measurement noise

. . T .
covariance matrix £ (QM EM), as discussed next.

Process Noise

For the Kalman Alignment application, the Qp process noise matrix in (46) is
. . B
produced by noise components in the (23) and (33) gyro/accelerometer error vectors dagg

B
and d®B. From [3 - Egs. (12.5-6) & (12.5-12)], the actual inertial sensor errors are
commonly modeled as:

B B
dwg = 0Kscal/Mis Org + OKBias + OWRand
B B (71)
8341: = OLscal/Mis agp t OLBias + 0aRand

where

dWRand, 0aRand = Gyro and accelerometer random noise error components.

The velocity and attitude error state uncertainties are

~N N "N N
Xave=AVH-Avy gy =Y - (72)
so that
~N N ANCN
Yavu=AVH-AVy Xy =Y - (73)

N

ANAN
Substituting (39) and (42) for Y , Avg and their equivalent true value form from the
linearized versions of (26) and (24), then finds from (73) with (44) and (71):

. AN N~ /\N( ~B B )
Xy=Y -Y =AywoSens) X +CB SR - 0wy

~ ~N
= Ay X + CB 0®Rand (74)

' ANCN A ~N(.B B
XAvy = AvH - Avy = AAvg(woSens) X - CB |0asF - dag:

~ ~N
= Aavg X -CB daRand
For 0®Rand, 9arand typically modeled as white noise, the associated (46) elements in Qp

would be along the diagonal and equal to the corresponding white noise densities [3 -
Sect. 15.1.2.1.1]. From (74), the corresponding Gp process noise coupling matrix would
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/\N - .
be Cg. Note, however, that because the transpose of a correctly computed direction
cosine matrix equals its transpose, and because Qp is diagonal (uncorrelated process

noise elements in dWRand, 0aRand), if the noise vector components have equal densities,
~ /\T ) ~
the Gp Qp Gp term in (46) would reduce to Gp.

It is also to be noted that sensor quantization noise present on the sensor outputs is
treated differently, predominantly modeled as random uncertainty in attitude (for gyro
quantization) and velocity (for accelerometer quantization) [3 - Sect. 12.5]. As such,
gyro quantization becomes predominantly a white noise input to the velocity error
uncertainty rate equation, modeled as a white noise density in the Qp process noise
matrix [3 - Eq. (12.5-18)]. For accelerometer error, the comparable treatment models
quantization as white noise input to the position error uncertainty rate equation, not
implemented for the velocity matching alignment approach described herein. However,
accelerometer quantization noise does also become measurement noise for a velocity type
measurement (described in the next section). For the integrated velocity matching
alignment approach described in [3 - Sect. 15.2.2], accelerometer quantization would be
modeled as white process noise input to the integrated velocity matching measurement
integrator.

Measurement Noise

For the Alignment Kalman filter gain design, the measurement residual in Figure 1 is
from (45), (15), and [3 - Eq. (12.5-11)], with linearization

~N ~N N ~N N N
AXHH(‘)'AXH

ZRes, = Mn - Zn = 7, - Zn = - HwoAvy, XwoAvy (-) -
Hn n

N N ) (75)
=-Hp %n(-) + CBrl 8EQuant
where
N_ . . ~N. . . =N
z, = Linearized form of M,, including linearized M,, components.

Then, as in (69),

i~ ~N
Xn(+) = Yn(-) + Ky ZRes, = %n(-) + Kp (‘ Hp xn(-) + CBrl 8EQuant

X . (76)
= (I -K, Hn) An(-) + Kp CBn SQQuant

where
dVQuant = accelerometer quantization noise.

For dvQuant in (76) typically modeled as a white vector sequence, the (76) covariance
equivalent in (46) sets the elements of measurement noise matrix Ry equal to the
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T N
dVQuant covariance: E |8VQuant 80Quant. From (76), the corresponding G,

. . . ~N
measurement noise coupling matrix in (46) would be Cg. Because the transpose of a
correctly computed direction cosine matrix equals its transpose, and because Ry is

diagonal (uncorrelated measurement noise elements in dVQuant), if the noise vector

. ~ ) .
components have equal variances, the Gy, Rm Gwm,, term in (46) would reduce to Rm.

NAVIGATION MODE ENTRY AT ALIGNMENT COMPLETION

Kalman alignment completion is defined as the time when Asinf is reduced to an
acceptable value (as manifested in the Pasingasin covariance element of P). This

minimizes the error in aﬁ* which then will accurately represent the heading orientation
of the N frame relative to the N* frame. Initialization of attitude for inertial navigation

would proceed based on the values for aﬁ* and GE at Kalman alignment completion.

For example, attitude for inertial navigation could be initialized by resetting the GE
matrix to have its Y axis parallel to the N* frame Y axis using:

~ ~N \T ~
chen = (), g CHO (77)

where

~N ~N . .

Cg(-) = Cp at Kalman Alignment completion.

~N ~N . .
(CN*)AlnEnd = Cn= at Kalman Alignment completion.

~N AN . . ~N .
Cgp(+) = Cg to initiate inertial navigation after rotating Cg(-) about the vertical so
that the N frame Y axis aligns with the N* frame Y axis.

. N L . ~N .
Following navigation mode initialization at the end of alignment, the Cg matrix would be

updated as in (2) using normal methods typically employed (e.g., with the N frame
~N

defined as the azimuth wander type whereby the vertical component of wpy would be set

to the vertical component of earth rate, as in [3 - Sect. 4.5]).

SECOND ORDER ERROR IMPACT ASSESSMENT
The impact of second order errors on the Kalman alignment process can be assessed

by analyzing the linear compared with the non-linear terms in the (15) observation
equation. To simplify the analysis, we will analyze (15) when the uc control vector is
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zero. This converts the Kalman filter in Figure 1 to a pure estimator in which the errors
in the observation propagate in the normal manner without Kalman intervention. To
further simplify the analysis, sensor, reference input, and gravity error terms will be
neglected to obtain from (15), (19), (20), (24), (26), and (27) for the relevant equations:

N N N N 1. N N
Y = ONXY T+ ANy + o Aoy XY (78)
N N t N
Y o=+ oy dv (79)
- NN _
asf XY
N ~ N N ~ ~
Avg=|+ QN X |vzN |A + A® - O v + OIE A!N
7 ONy + AVE, ZN 7ZN) AVH (80)
1 (AN N) N
-—\asp XY | XY
L 2 JH
t N
Avyy =Avgy + ]t Avg dt (81)
d d
AcosPB)=0 Asinf3)=0 2
lacosp)=0 *(Asinp) (82)
~N N N N
M, = AKHH - ACN*O VRefyn (83)

. - N . .
Note in (83) that the initial value of ACy is used based on (82) and the assumption of
analysis without zero error controls in Figure 1.

To analytically solve the equations, a first order Picard expansion approach is

N
employed in which theY term in (78) is approximated by its initial value. Then (79)
integrates to

N N t °N N t N N t °N
Y =XHO+J0X drzm0+fo A@NHdT+XHO><J091NdT
1 N

LN (84)
_EJJOXJO AQ[NHdT

Using the first order Picard expansion approach in (80) finds with (84):
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~AN N
asF XYy

~ ~

N N
ZN (A ut A@EH) (OJZN + u)IE) AXHO

1 N N

2 asfF X mO X XH()

-N N
Avg=|+uy X

N t N N t N
~AN XHO"‘.[O AQ{NHdT+XHO><JO N dt
agf X

VZN (AQI[II\IH + Aﬁll\liiﬁ) - (mINZN + O)IEZN) AVE(J )

B N
=| +uy, X

e
_Easpxmo XXHO "

A N (N t N ~N N t °N
= agF N Uy X IH()JFIO A@NHdr + | agF X XH()XJ.O N dt/|g

~ ~

N_|o N N N
+ U, X|VZN AQINH + A0, | - (0N + coIEZN AVHO

1|~N '[ 1
=) asE X |V J{OX OAgNHdT H - EaSFHXXHo ><XH0

AN ~N
The asF X ( X ,[0 OIN dt) term in (85) expands as

N
aSFX(J_IOXJ.O OIN dr)

= (;S\IFH + Z‘S FzN Eg) {XHO [-[ 0 Oy dt+ (I (; ;\OINZN dT) ug} /

~N N J-tAN N J-tA N
= agfy X mox 0 Oy dT +§SFHX YHy X \J o OINZN dt)u,

J A N [N (Jt ~ ) N
+aSFZN uZ 0 X Jo ®INg ]+ asF; Uy X | YH, X \J g OINzy dT)uy (86)

J- /\N ~N B N J-t ~ N
= aSFH 0 X Jo OINg AT/ + asFy X Yo X \J o ©OINzN dt uz |

N N th N
+aSFZNEZX YHy X 0 OINzN dT)uy

~N N JtAN ~N "N JtA
= asFy X \YHy X J o OINg dT) + asFy X | Yry X \J g OINzy dT) Uz

~

(T omzn dt) iy
- asFzn \J o OINzn dT) Yh,

so that
~N
|:aSF X (J'IO X _[0 WOIN dT)i|

(87)
= aSFH ( X jo Cl)INH dT) aSFzN (-[0 OINZN dT)V
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~N N t N . . N
For the ;[asp X (XHO X Jo Aoy dt)}H term in (85), using (23) for A®Ny and
ACE* = ACE*O due to no-control operation:
A~N*

1|~N N t N 1~N N N t

. . . N N N N
Then using (87) - (88) in (85), with (23) for A®Ny , A®E, and ACy. = ACyx,, due to
no-control operation, the (81) integration yields

t N
Agﬁn = AVE + _[ . Avyy dt
N th~ N
= AyHO + (IO aSFzN dt) uy X XHO
N (&[>
+ ACy, IO“ (aSFZN u, X Jo AQINH dr) dt

/\N ~ ~
+ J. [aSFH (JI?II() X J.(; OINy dt)} dt- J(;n [aSFZN (J-(; OINzN dT) dt} 'ﬂIjII()

~ ~

N N* N* N
on vzN AC\« 0 (A@NH + A@[EH) - (mINZN + (OIEZN) AXHO

(89)

dt

+uy XJ.
/\N>l<

i l {aSFH [ﬁo x (ACE*O [ ong dt)}} dt

1 jt n~N )
2 J'IOX aSFHdt XmO

Since the heading orientation between the N and N* frames is unknown at the start of

. ~N . : ~N N
Kalman allgnment Cn#, = I, and without Figure 1 control updates, Cn+ = Cn#, = L.

AN AN AN [ANE ANE ANF AN
Thus,j aSFH—J{ - VH, = CN¥ (JefH,n JefH/o) VRefpyy - VRefyyo and, with (54)

(neglectmg reference velocity errors), (89) becomes

AV = Ack, WY (Jt a d) N
VH - N*q VRefH/() 0 aSFzN tjuy ><XHO

t
+ ACN*O jon (aSFZN uz X J.o A%NH dT) dt
N t ~°N ta [~ t " N
+ I [aSFH (XHO x| 0 OINg d«:)} dt-| 0 [aSFZN (J 0 OINzy dT) dt} THo  (g0)

A~ A~

dt

N N* N*# N
+ Ez X -[ on vZN ACyx (A%NH + AQIEH) - (‘DINZN + (’)IEZN) Avy,

~N*

i l {aSFH [ﬁo x(Ac§*0 [ ong dr)}} dt

N* N* N
XRefH/n - XRf:fH/() X XH()

1| N
+§XH0X
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Finally, (90) is substituted into (83) to obtain for the observation:

M = AVH ACNX jelen

- ACN* ( VRefyyn - XRefH/o) + (-[ 0 aSFZN dt) Uz X XHo
tn ~ N

+ J [aSFH (J—IO X .[o Q)INH dT)} dt - U 5 ZlSFZN (-[(; cADINZN dT) dt} l(lljo (91)
N* N* ) ~N* o\

Ja
+uy X f VZN ACN* (@NH + Oy OJlNzN + O,y

AVH(J dt

= J 0 \aSFH [ YHy X (ACN* J 0 ooINH dr)}} dt

1 ~N¥* ~N* ﬂ N

+ 5 {XHO X (XRefH/n - VRefpyo)| X THy

The last two terms in (91) constitute the non-linearities that are not accounted for in the
linearized Kalman filter equations. Their impact on performance can be assessed by
comparison with (91) linear terms having similar signatures.

2 [N AN
The last term in (91) is on the order of Yy, (VjefH,n - jefH/o) in magnitude. The
. . . ~N* ~N*
comparable linear term in (91) is ACE* (XRefH/n - XRefH/O). Clearly,

2 [~N* AN AN AN
YHo \VRefy, - VRefpy o/ IS second order compared with ACN* VRefpy, - VRefpy/o) NENCE,

~N* /\N*
negligible in comparison. Similarly, compared with the linear ACN* (J{efH/n jefH/O)

term the second to last term in (91) is on the order of

YHo (Io OINyg dT) ACN* ( VRefys, - YRefy/o) In magnitude, hence, also negligibly small

(particularly since Io oolNH dt is also small during Kalman alignment). Thus, the impact

of second order terms on the input observation should have negligible impact on
linearized Kalman alignment performance.

APPENDIX A - VELOCITY ERROR RATE EQUATION DERIVATION
The idealized error free form of the velocity rate in (2) is

: N N
XNZCE%WF%E‘(%\#Q{E)XXN (A-1)

The errors between the computed equivalents in (2) and (A-1) are defined as
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N ~N N
8Cp =Cp - Cp AOE = O - O Ao = ON - O (A2)
N ~N N N ~N N
dgp =gp - gp dagp = agF - Agp

~N ~N N
in which the errors in @[ and ®N are anticipated to be comparable in magnitude to ®[g

N
and O\ due to large heading uncertainties in their (9) computation. In contrast, the error

~N N . ) )
in gp is small relative to 8p because it is primarily along the local vertical as is the

. . . . ~N
equivalent in N* frame coordinates, hence is largely unaffected by the C
transformation in its (8) computation. Based on the (A-2) definitions, (A-1) can be
expanded as:

AN ~N ~B
v - =[G - 50 ag - 3

~N ~N ~N ~N
+gp - Ogp N ((01N+c015 A@N A@E ><( -AVN)
~N ~B
=Cp agf - SCB jF (CB SCB) SaSF + gp 8 (A-3)
~N ~N A N
-loN + O/ X v +(A9]N+A@E)><V
~N ~N N
+ |OIN + O x AVN (AQIN+A9[E)><AX

AN
or withv from (2)

: B AN
AVN:SCga F+CB SaBF+8 N
~N [N ~N
A@N+AQ[E)><V - o + oE) x AVY (A-4)
- SCB S%F + (A@N + AQ{E) x AvN

The 6C§ error in (A-4) is derived from

5Ch=Ch - Ch = {1 NN kg (A-5)

Applying [3 - Eg. (3.5.2-8)] assigns the cause for the ch error to misalignment of the N
frame from its nominal error free value. Identifying the misaligned N frame as N gives:

/\N N N
Cp =Cp = Cy Cy (A-6)

or
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N ~N
Cp =Cy Ch (A7)
hence, with (A-7) in (A-5),

5Cy = (1 CA) Cp (A-8)

N
Defining Cﬁ in terms of a rotation vector using the form of [3 - Eq. (19.1.3-3)] as a

model:
N N N N
Cy=1+f1 (1( ><)+f2(Y) (1( X)(X X)
, 2 (A-9)
sn 1 cos 1
Y : ¥ '
where

: : : ~N : I
XN = Rotation angle error vector associated with the Cg matrix considering the N
frame to be misaligned, as projected on frame N axes.

Applying (A-9) in (A-8) yields with no approximations:
SCE =- {fl (XN ><) + (XN ><) (XN xﬂ 61];1 (A-10)

Using (A-10) for 6C§ in (A-4) finds with no approximations:

‘N 2N ~N ~B
AV =Cp 8£F +1 (CB aSF) X YN + 5§§
~N ~N

~N
WIN + u)IE) X AV

(AQI&I\I+A(D )><V -
1 [ ) x ™ - 1 (O 8B x

+(AgN+AQ[E)><AX +f2{(CB SESF)XX }xl(

(A-11)

Then substituting f; and f, from (A-9) and neglecting terms with third order error
products, (A-11) becomes:

‘N 2N ~N
AVNzCB 6&153F+8.SFXYN+8 N
N ~N [N ~N
(A@N + A@E) XV -|oN + oE) X AVN (A-12)

_;(QIS\Iny )Xl( -(CB SQSF)XX +(A9[N+AQIE)><AXN
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Equation (A-12) is the error rate equation associated with the (2) velocity updating
process.

APPENDIX B - HORIZONTAL VELOCITY ERROR RATE EQUATION
DERIVATION

This appendix derives the horizontal form of the (A-12) general velocity error
expression for the Equation (20) integrand.

N ~N
The Awys term in (A-12) is derived by expanding from the error free version of Awg
in (9):
N N+ N N [aN ~N* N
o = Ce O =91E-A9[E=(CN* 'ACE*)((DIE - 59[15)
~N N* ~N* (AN N (B'l)
=CN* OE - ACE* O[E - (CN* - ACE*) RIONS
~N NG
Substituting @i from (9) in (B-1) and neglecting the minor dwg error in the reference
derived data then finds

N N
Aoy = ACN: OI (B-2)

which also shows the o[ error to be of the large A type. Finally, because Cn= is a
rotation around the vertical Z axis, ACyx has no Z axis components, and (B-2) simplifies

to
AN

N N N
Ao = Ao, = ACN+ OEy (B-3)
It can be shown similarly that
N N N ON*
AWpN = A“)ENH = AC\x WENy (B-4)
~N ~N ~N ~N
Recognizing that wN satisfies @ = O + OpN (and similarly for the true value), from

~N
(9) with (B-3) and (B-4), the error in o for (A-12) is

N N N N N N
Ao = Ao + Awgy = AQE, + A®pN, = AON,
OEy + OENY| = ACN+ OINy

32



Neglecting the minor error in the reference data sets the error value in vertical
velocity equation (7) to zero so that AvN in (A-12) becomes

AVN = Axﬁ (B-6)

Substituting the horizontal properties of (6) and (B-4) - (B-6) into (A-12), then finds
N
for Avyy in (20):

~N_.B ~N N N
Cp dagp +asp Xy +dgp

~ N N - - N
vZN (Aopy, + A@IEH) - (O)INZN + (o[EZN) Avy

' ;(agﬂs - (CF a1

N
Avyg=|+uy X (B-7)

H

Equation (B-7) is the horizontal velocity error rate integrated by (20) into the (15)
observation equation.

APPENDIX C - ATTITUDE ERROR RATE EQUATION DERIVATION

The idealized error free form of the attitude rate in (2) is

¢} = Cp ot ] -[omex| 3 ©D

Substituting the (A-5) and (A-2) definitions into (C-1) yields:

&8N =[N -5 s - 50t - o - s (€ -ac)]
-Cp (éﬁs ><) -Cp (SQFB X) -8y (53?3 X) +5Cy (59{33 X) (C-2)

(oo 8+ o 5 + (o) 5 - (ap)

in which
B B B
dWIR = WIB - OB (C-3)

AN
Substituting (2) for Cg in (C-2) finds

3¢ = N (o] + 503 o x) - 55 (50 (C-4)
oo ach - (oo &5 + (2o ach
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. AN
The 8C§ term in (C-4) is the derivative of (A-10) with (2) for Cg:

(C-5)

o oo (©5)

((;IIN\IX) {fl (Y ><) +12 (V ><) (YN XH + AQIEI\IX)
+[aomex) 1 (75 + 12 (7 ) (¥

From its definition, the cross-product matrix operator form of a vector is skew-
symmetric (i.e., the element in row i column j equals the negative of the element in row j
column i). It follows that the transpose of a cross-product operator matrix equals the
negative of the matrix. Based on this property, the transpose of (C-6) is:

-fi (Y ><) f] (Y ><)

e A ol
NER RIS ) o

e » e @Bmfﬁ s x>< y
Y AR I AR [ A ﬂ(wINX) |Aonx)
AN )+fz LYNX) 7 ) (aonx]

|
TRy
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Subtracting (C-7) from (C-6), dividing by 2, and rearranging obtains

" x) €5 Soms) < + [aon]

K ON + — Agl[\f\ﬁ CBSQIBX(V x)

fly x){( O + Aglal\]+16]3 89[]3) } (C-8)
+1fz(v <) X){(A@N-CB 5913) }

+ fZ{(AQEI\I Ch 5@3) } )(XN X)'fl (XNX)

or, after applying [3 - (3.1.1-22)]:

) = (6N soti| + (2w
+f1{( (1)1N+;A9[N+1 Cs EQB)XYN} X} (C-9)

s L [N (Y X){(AQIN -Ch 8@13) }

Ao - Ch S| () [y x)- i (¥ )

[\)"d!—\

j—

1
—f
_—
But from (A-9) and (C-9),

2 .
f1:1-;+---:orderofyz f1:-§y+---:order0fyA(olN (C-10)

Hence,

") =-[e sofa) + (a0
+\ (AI)HN\I+;A9[1\L+;6B89[B xy x/ (C-11)
+ order of y AmN + order of y dwB

Therefore,
‘N - ~N ~N
Yy =- CI];,I 69{3]3 (oaIN 1 AQ[I\IL l Cgp 69[]3) X y + AQ[N +- (C-12)

or with (B-5):
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N N.B N N N I(aN.B N\ N
Yy =-Cpomp - OIN XY +A9mH+Q’CB&ﬁB+A9mHXX (C-13)

Equation (C-13) is the error rate equation associated with the (2) attitude updating
processes performed in the INS computer.
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