

i

STRAPDOWN INERTIAL NAVIGATION

LECTURE NOTES

Paul G Savage

Strapdown Associates, Inc.

January 10, 2010

(Seventh Printing)

ii

The Material Presented In This Publication Was Prepared Exclusively
And Independently By Paul G. Savage. Reproduction Of Any Part Of This
Publication Without Permission From The Author Or Strapdown
Associates, Inc., Is Prohibited.

© Strapdown Associates, Inc. 1981, 1985, 1990, 1997, 2010

All Rights Reserved

Strapdown Associates, Inc.

4727 South Lake Sarah Drive
Maple Plain, Minnesota 55359

Telephone: (763) 479-1981

email: pgs@strapdownassociates.com

iii

FOREWORD

This Lecture Notes book is a compilation of strapdown inertial navigation material I
prepared from 1975 and 1985. The primary element of the book is a set of lecture notes I
used from 1977 - 1978 as handout material for an after hours course given while at
Honeywell on LINS (Laser Inertial Navigation System) analytical theory of operation. The
book also includes four technical papers presented from 1976 - 1984 on strapdown
systems, analytics, and sensors. The first two papers describes the state-of-the-art of
strapdown inertial navigation system and sensor technology in the 1976 - 1978 time frame,
before strapdown systems became operational on military and commercial aircraft. The last
two papers were prepared in 1984 - 1986 after strapdown inertial technology had been
accepted for general aircraft application; the first providing an update on the 1978 inertial
sensor paper, the second providing a detailed description of computational routines
embedded as software in typical strapdown systems to perform the
attitude/velocity/position inertial navigation computation functions. The 1976 systems
paper is particularly interesting because it contains sensor and system test data that
convinced many in the aerospace industry of the readiness of laser gyro strapdown inertial
navigation technology to enter the production development cycle.

Lecture Notes was prepared as background handout material for attendees of my
Introductory Course On Strapdown Inertial Systems offered to the aerospace industry from
1981 - 2009. Lecture Notes presents the theoretical basis for technical material overviewed
in the course on overhead slides, as also provided to course attendees in the book:

 Introduction To Strapdown Inertial Navigation Systems

Now that the Introductory Strapdown Course is no longer being offered, the Lecture Notes
and Introduction books can be purchased directly from my company Strapdown
Associates, Inc. by telephone (763-479-1918) or email (pgs@strapdownassociates.com).

Paul G Savage

iv

NOTES

v

CONTENTS

FOREWORD iii

CONTENTS v

EARLY PAPERS FOR BACKGROUND 1

1976 PAPER - LASER GYROS IN STRAPDOWN

INERTIAL NAVIGATION SYSTEMS 3
Strapdown compared to gimbaled inertial navigation systems. Strapdown
sensor performance requirements. The ring laser gyro principles of operation
and performance. The laser gyro compared to alternative momentum wheel
gyros.

1978 PAPER - STRAPDOWN SENSORS 35

Description of single-degree-of-freedom floated rate integrating gyro, tuned-
rotor gyro, electrostatic gyro, ring laser gyro and pendulous accelerometer. For
each sensor: the theory of operation, mechanization approach, analytical error
model, performance characteristics, advantages and limitations, application
areas. Torque-loop electronic design approaches are described for the torque-
rebalance sensors (floated gyro, tuned-rotor gyro, pendulous accelerometer).

LECTURES ON INERTIAL NAVIGATION EQUATIONS 83

LECTURE 1 84

The Coriolis equation. Coordinate frames utilized for inertial navigation. The
rate of change of velocity as a function of sensed acceleration and computed
gravity. Gravity and plumb-bob vertical.

LECTURE 2 90

Altitude and altitude rate through blending of inertially computed vertical
velocity/altitude and externally sensed barometric altitude. Azimuth wander,
free azimuth and latitude/longitude geographic navigation coordinate frames.
Horizontal position over the earth in terms of cosines of angles between earth
and navigation coordinates. Horizontal position direction cosine rates as a
function of horizontal motion over the earth.

LECTURE 3 98

Analytics of Euler angle rotations and the "Method of Least Work". Latitude,
longitude and wander angle as a function of computed position angle direction
cosines. Position angle direction cosine initialization in terms of initial latitude
and inertially derived earth rate measurements.

vi

LECTURE 4 107
Precessional rates of the wander azimuth navigation coordinate frame as a
function of computed horizontal velocity, earth rate components, altitude and
earth's oblateness effect. Plumb-bob gravity as a function of altitude and
latitude. Velocity components in North/East coordinates as a function of
wander azimuth frame velocity and wander angle. Summary of navigation
equations developed in Lectures 1 - 4.

LECTURES ON STRAPDOWN REFERENCE EQUATIONS 117

LECTURE 5 118

Digital integration of velocity rate equations. Inertial acceleration in navigation
coordinates as a function of strapdown accelerometer outputs and attitude
direction cosines relating body and navigation coordinate axes. Digital
integration of the calculated navigation frame acceleration components.
Acceleration rotation compensation and sculling compensation. The rate of
change of the body-to-navigation frame direction cosine matrix as a function of
inertial body rotation rates (sensed by strapdown gyros) and navigation frame
inertial rotation rates (computed from navigation data).

LECTURE 6 129

Digitally integrating the body attitude direction cosine matrix; division into low
speed update for navigation frame rotation rates and high speed update for
strapdown gyro sensed body rates. First order body rate updating algorithms
and associated problems.

LECTURE 7 135

Strapdown body attitude direction cosine updating algorithms. Low speed
update for navigation frame rotations. High speed update for gyro sensed body
rates; classical algorithm for pure non-coning rotational motion; truncated exact
Taylor series formula utilized in modern day systems.

LECTURE 8 142

Corrections to the non-coning body attitude updating algorithm to account for
sensed coning motion. Exact coning compensation equation. Simplified coning
compensation algorithm used in modern day systems.

LECTURE 9 151

Typical compensation terms utilized in strapdown computation algorithms;
normalization and orthogonalization algorithms for the direction cosine matrix,
gyro and accelerometer input signal compensation, gyro quantization
compensation, accelerometer size effect compensation. Interface between
navigation and strapdown reference equations. Attitude/heading output
computations. Use of the quaternion as an alternative for strapdown inertial
navigation attitude referencing and acceleration transformation. Summary of
strapdown reference equations discussed in Lectures 5- 9.

vii

LECTURE ON STRAPDOWN INS ERROR CHARACTERISTICS 177

LECTURE 10 178

Strapdown system analytical error model (based on model derived in Appendix
B). Schuler oscillations. Effect of uncompensated gyro/accelerometer errors
and initial attitude/heading error on attitude/heading, velocity and position
navigation error.

LECTURE ON STRAPDOWN INS INITIAL ALIGNMENT 197

LECTURE 11 198

Coarse leveling and fine alignment (leveling and heading) of the body attitude
direction cosine matrix prior to engaging the navigation mode. Fine alignment
analytical error model. Effects of static sensor errors on fine alignment
performance. Correlation between navigation and initial alignment errors
caused by gyro bias and accelerometer bias/misalignment.

LECTURE ON KALMAN FILTERING TECHNIQUES 215

LECTURE 12 216

Formulation of the strapdown fine alignment random noise filtering problem in
discrete digital form. Generalized filter formulation. Filter gain optimization
based on minimum error variance: the Kalman filter approach. Gain
determination in real systems: the suboptimal Kalman filter. Covariance error
analysis techniques for optimal and suboptimal Kalman filter systems.
Application of the Kalman filter for optimally blending data from multiple
navigation references (INS, Doppler radar, Omega).

LECTURE NOTES APPENDICES 257

APPENDIX A - DERIVATION OF STRAPDOWN INERTIAL

NAVIGATION EQUATIONS 259
Provides a more rigorous analytical development of the continuous form
strapdown inertial navigation attitude, velocity and position rate equations than
was provided in Lectures 1 - 6. Appendix B uses the Appendix A results as a
starting point for error equation development.

APPENDIX B - DERIVATION OF ERROR EQUATIONS

FOR STRAPDOWN INERTIAL NAVIGATION SYSTEMS 271
Derives the error equations associated with the Appendix A strapdown inertial
navigation equations in two forms; the form used in Lecture 10 that describes
the error behavior of the strapdown navigation attitude, velocity, position
computational parameters, and an alternate form more typically utilized in
Kalman filter design. Both forms describe error behavior in locally level
navigation coordinate axes.

viii

LATER PAPERS 291

1984 PAPER - ADVANCES IN STRAPDOWN SENSORS 293

This is an update on the 1978 Strapdown Sensors paper that also describes the
fiber optic rate sensor and vibrating quartz beam accelerometer.

1984 PAPER - STRAPDOWN SYSTEM ALGORITHMS 319

This paper provides a more rigorous derivation of the strapdown inertial
navigation attitude computation/acceleration transformation process and
associated algorithms than was provided in Lectures 5-8. Describes direction
cosine and quaternion attitude updating algorithms, acceleration transformation
algorithms, coning and sculling algorithms, orthogonality/normalization
corrections, Euler angle extraction algorithms and performance
evaluation/iteration rate selection for attitude updating, acceleration
transformation, coning computation and sculling computation.

EARLY PAPERS FOR BACKGROUND

1976 PAPER - LASER GYROS IN STRAPDOWN

INERTIAL NAVIGATION SYSTEMS

1978 PAPER - STRAPDOWN SENSORS

1

NOTES

2

LASER GYROS IN STRAPDOWN INERTIAL

NAVIGATION SYSTEMS

Paul G Savage

Staff Engineer, Navigation Systems

Honeywell Government and Aeronautical Products Division

1625 Zarthan Avenue

St. Louis Park, Minnesota 55416

Presented at the

IEEE Position Location and Navigation Symposium

Hilton Inn

San Diego, California

November 1-3, 1976

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

NOTES

34

STRAPDOWN SENSORS

Paul G Savage

Staff Engineer, Navigation Systems

Honeywell Avionics Division

2600 Ridgeway Parkway NE

Minneapolis, Minnesota 55413

Presented in the United Kingdom,

Italy, Norway, Germany and Denmark

as part of

AGARD Lecture Series No. 95

STRAPDOWN INERTIAL SYSTEMS -

THEORY AND APPLICATIONS

San Diego, California

June, 1978

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

NOTES

82

INERTIAL NAVIGATION EQUATIONS

LECTURE 1

LECTURE 2

LECTURE 3

LECTURE 4

83

NAV SEMINAR - LECTURE 1 NOTES

CORIOLIS EQUATION

In several of the developments to follow, the Coriolis equation is utilized to relate rates of
change of a vector’s components as viewed in two coordinate frames rotating relative to
one another. The Coriolis equation can be derived by considering an arbitrary vector N and
its derivative in two coordinate frames, A and B. Frames A and B can be considered to
have the same point of origin, but to be rotating relative to one another (B with respect to

A) at angular velocity ωAB.

We begin the development by defining a triad of orthogonal unit vectors fixed in coordinate
frame B as uX, uY, and uZ. Vector N can be decomposed into three components along
each of these unit vectors as:

N = NX uX + NY uY + NZ uZ

where

NX, NY, NZ = Scalar quantities representing the projections of N along uX, uY,
and uZ respectively.

We now take the derivative of N as defined above as viewed in coordinate frame A:

d
dt

 N
A

=
d
dt

 NX
A

 uX +
d
dt

 NY
A

 uY +
d
dt

 NZ
A

 uZ

+ NX
duX

dt A
 + NY

duY

dt A
 + NZ

duZ

dt A

(1)

Because the NX, NY, NZ quantities are scalars, their rates of change are equivalent in
coordinate frames A or B. Hence,

dNX

dt A
= NX

dNY

dt A
 = NY

dNZ

dt A
 = NZ (2)

where

() = The time derivative of the scalar quantity.

The rates of change of the unit vector terms in Equation (1) (viewed in the A frame) can be
defined by reference to the following figure.

84

Sin φ

φ

ui

dui

dt A

ωAB

ui

ωAB

•

The figure defines one of the unit vectors in question (ui with i = X, Y or Z) and the
angular rotation vector ωAB defining the rotational rate of B relative to A. The angle

between the two vectors is φ and the perpendicular distance from ui to ωAB is sin φ. Since
ui is a unit vector (constant amplitude) fixed to Frame B, it rotates with B relative to A at
ωAB so that its rate of change (as viewed from Frame A) is perpendicular to ui and ωAB

with magnitude equal to /wAB/sin φ (see figure). Mathematically, the rate of change is

equivalent to the cross-product between ui and ωAB, hence:

dui

dt A
= ωAB × ui

Substitution (with (2)) in (1) yields:

dN
dt A

= NX uX + NY uY + NZ uZ + NX ωAB × uX + NY ωAB × uY + NZ ωAB × uZ

= NX uX + NY uY + NZ uZ + ωAB × N

(3)

Because u is fixed in the B frame, the equivalent to (3) in the B Frame is:

dN
dt B

 = NX uX + NY uY + NZ uZ

Equation (3) thjereby reduces to:

dN
dt A

=
dN
dt B

 + ωAB × N (4)

85

Equation (4) is the general Coriolis equation that relates rates of change of an arbitrary
vector N as viewed in coordinate frames A and B of similar origin but rotating relative to
one another at ωAB. This equation will now be used to derive the differential equation
generally used to compute velocity in terrestrial cruise inertial navigation systems.

VELOCITY EQUATION

To derive the differential equation for determining velocity in terrestrial cruise inertial
navigation systems, three coordinate frames are utilized:

I = The inertial frame, defined to be non-rotating.

E = The earth frame, defined to be fixed to the earth, hence rotating at earth’s rate.

L = The local level frame, defined to have two of its axes parallel to the earth’s
surface beneath the vehicle. The third axis is parallel to the local vertical at
the vehicle position.

We now define the velocity of interest in navigating relative to the earth as the rate of
change of position as viewed in earth fixed (E) coordinates:

v =
Δ dR

dt E

where:

v = The velocity vector of interest.

R = The position vector to the vehicle (from earth’s center).

The components of v along local level (L) coordinates are of interest since these define the
horizontal and vertical components of velocity. It would be convenient if a differential
equation for v could be developed in L-frame coordinates so that its integral would directly

equal v . Specifically, we seek an expression for
dv
dt L

.

As will be apparent subsequently, such an expression is a function of the vehicle
acceleration sensed by on-board accelerometers. Through Newton’s law, accelerometers
sense rates of change of velocity in non-rotating inertial space. Hence, we might presume
that the relationship we seek for the local level frame velocity rate involves rates of change
of vectors in I-frame coordinates.

Using Coriolis Equation (4), the L-Frame derivative of v can be related to the rate of
change of v as viewed in the I-frame through:

86

dv
dt L

=
dv
dt I

 - ω × v (5)

where:

ω = The rotation rate of the local vertical frame relative to the inertial frame. It is
generated by vehicle motion over the earth, and earth’s angular rate.

The
dv
dt I

 term in (5) can be developed by first defining v in terms of the rate of change of

R as viewed in the I-frame. Again, using Coriolis,

v =
dR
dt E

 =
dR
dt I

 - Ω ×R (6)

where:

Ω = The rotation rate of the E frame relative to I (i.e., - earth’s rotation rate
vector).

Differentiating Equation (6) in the I-frame, and noting that Ω is constant in inertial space,
hence, its derivative is zero, yields:

dv
dt I

=
d2R

dt2
I

 - Ω ×
dR
dt I

Solving for
dR
dt I

 from Equation (6) and substituting in the latter
dv
dt I

 equation obtains:

dv
dt I

=
d2R

dt2
I

 - Ω × v + Ω × R =
d2R

dt2
I

 - Ω × v - Ω × Ω × R

We can now substitute the latter expression into Equation (5):

dv
dt L

=
d2R

dt2
I

 - Ω × Ω × R - Ω + ω × v

The
d2R

dt2
I
 term above represents the total inertial acceleration of the vehicle and is equal to

the sum of the local gravity vector (g) and the specific force acceleration vector asf sensed
by accelerometers:

87

d2R

dt2
I

= g + asf

Hence:

dv
dt L

= asf + g - Ω × Ω × R - Ω + ω × v (7)

We now observe that for a vehicle at rest relative to the earth, v and the rate of change of v
in the local level frame is zero. Under these conditions, Equation (7) reduces to:

asf + g - Ω × Ω × R = 0

or

asf = - g - Ω × Ω × R

We also note that a plumb bob suspended in the vehicle at rest will be directed along the
accelerometer sensed line of force. For this reason, the term in brackets in the latter
expression is referred to as plumb bob gravity. Because it is a function only of position, it
can be mapped and programmed into the system computer as a function of position. With
this definition for gravity, Equation (7) assumes the final form:

dv
dt L

= asf + g' - Ω + ω × v (8)

where g' is plumb bob gravity defined by:

g' = g - Ω × Ω × R (8A)

Equation (8) is continuously integrated in the inertial navigation computer in L-Frame
coordinates to evaluate v.

The components of the asf term in Equation (8) represent accelerations that would be
sensed by accelerometers with input axes directed along locally level navigation axes. In
gimbaled inertial navigation systems, a gyro stabilized mechanical platform is instrumented
and controlled to remain locally level and aligned with navigation axes. Accelerometers
mounted on this platform provide the asf components directly. In strapdown systems
where the accelerometers are mounted along vehicle axes, the components of asf must be
calculated analytically from the accelerometer measurements using computed attitude data
that defines the orientation of the orthogonal accelerometer axes (body axes) relative to
local level navigation axes. The details of the strapdown computations will be discussed in
a subsequent lecture.

The ω angular rate vector in (8) represents the total inertial rotation rate of the local level
navigation frame relative to inertial space. This parameter is used not only in Equation (8),

88

but also to maintain the level orientation of the navigation coordinate frame used for the asf

accelerometer reference. In the case of gimbaled systems, ω is used as a rotation rate
command to the gyro stabilized platform on which the accelerometers are mounted. In this
way the platform is controlled to rotate at ω, hence remain locally level. In the case of

strapdown systems, ω is used in conjunction with strapdown gyro signals to calculate the
orientation of the strapdown accelerometer axes (vehicle axes) relative to local level
navigation coordinates.

The ω vector used in Equation (8) and in maintaining the level orientation of the navigation
reference is calculated in the system computer as the sum of the angular rate of the local

level frame relative to the earth (ρ) plus the rotation rate of the earth relative to inertial space

(Ω):

ω = Ω + ρ (9)

The Ω earth rate vector in (9) is calculated as a function of computed vehicle position (i.e.,
the horizontal and vertical components depend on latitude). The horizontal components of

ρ in (9) are calculated from vehicle horizontal velocity (horizontal components of v

determined by integrating Equation (8)). The vertical component of ρ is selected to
simplify the position integration (to be discussed in a subsequent lecture).

The components of plumb-bob gravity (g´) in Equation (8) are calculated in the system
computer in local level navigation coordinates as a function of position. This computation
is simplified by noting that by good fortune, plumb bob vertical (the direction of g´) is also
perpendicular to the earth’s surface (within a few arc seconds). Hence, for a locally level
navigation frame with vertical defined as perpendicular to the local earth surface, the
horizontal components of g´ can be accurately approximated by zero; i.e., not calculated.
Such a vertical defined as being normal to the earth surface is called a geodetic vertical. A
vertical defined as lying along a line to the center of the earth is a geocentric vertical.
Because of earth’s oblateness, geocentric and geodetic verticals at the same point on the
earth surface can deviate by as much as 3 milliradians (depending on position location).
Geodetic vertical is typically instrumented in inertial navigation systems for the navigation
frame reference to simplify the gravity computation (as discussed above), and as will be
discussed subsequently, to also simplify the computation of latitude.

89

NAV SEMINAR - LECTURE 2 NOTES

INTEGRATION OF VERTICAL VELOCITY EQUATION

Integration of the vertical (z) component of Equation (8) generates the vertical velocity
component vz. Altitude can be obtained from vz by first defining an altitude vector (h) as
the distance along a perpendicular from the earth surface to the actual position:

h = h u = R - Rs

where

h = altitude.

u = Unit vector along the local vertical, perpendicular to the local earth surface.

Rs = Position vector from earth’s center to the local earth surface position.

Altitude rate can be obtained by applying Coriolis Equation (4) to rates of change of h as
viewed in the earth and local level frames:

dh
dt L

=
dh
dt E

 - ρ × h where

ρ = The angular rate of the L-frame relative to the E-Frame.

Substituting for h,

dh
dt L

= h u - h
du
dt L

 =
dh
dt E

 - h ρ × u

Because u is along the local vertical and L is a locally vertical coordinate frame, u is
constant in the L-Frame, and its rate of change in the L-Frame is zero. With this
substitution, taking the dot product of the above expression with u yields:

h = u •
dh
dt E

 = u •
dR
dt E

 - u •
dRs

dt E

or, with the definition for v:

h = u • v - u •
dRs

dt E

Because u is locally perpendicular to the earth surface, the rate of change of Rs has no
component along u. Hence, the dot product of the Rs derivative with u in the latter

90

expression is zero. The vertical component of v is vz, therefore, the final expression for
altitude rate is simply:

h = vz

A direct integration of the z component of
dv
dt L

 (from (8)) to obtain vz, and integration of

vz to obtain h, has a divergence characteristic to instrument and gravity modeling error due
to the decrease in the magnitude of g´ (see Equation (8)) with altitude. As a result, an
acceleration measurement error (in asf in Equation (8)), say in the upward direction, creates
an erroneous vz and h, also upward. The g´ term, which is calculated in the navigation
computer as a function of altitude, is thereby, reduced. From Equation (8), this further
increases the error in vz upward. The situation progressively worsens as the resulting
altitude error grows with an unbounded exponential divergence.

For short term flights (e.g., 5 minutes or less), the divergence characteristic of the vertical

channel is not pronounced, and h can be obtained as a double integration of vz. For long
duration (e.g., greater than 10 minutes) flights, however, the altitude divergence is generally
unacceptable, and means must be incorporated to attenuate the unbounded altitude error
growth. This is accomplished through use of a blending filter which slaves the z-channel
computed altitude to an external measurement of altitude (typically a barometric altimeter).
The following figure illustrates the concept.

(z-component
 of Eq. 8)

vz

•

• h (altitude)

+

+++

-
•

•

vz (altitude rate)

baro-altitude

nominally zero (for perfect sensors)

integral compensation (trim for accelerometer bias in)vz

× × ×

×

C1 C2 C3

∫ dt ∫dt

∫dt

From the figure, the inertially derived altitude is compared with the baro altitude to derive
an error signal which is fed back to the altitude and altitude rate integrators. The integrators
are, thereby, servoed to maintain the altitude error signal near zero (on the average),

91

thereby, preventing altitude divergence. The filter gains are low enough to prevent
amplifying noise from the baro signal, and high enough to attenuate inertial sensor errors

present on vz. Integral compensation is included in the error feedback path to prevent

build-up of an altitude offset in the servo loop due to accelerometer (hence, vz) bias.

Note, that under ideal conditions, vz and the baro altitude signal are error free, and no error
is generated in the feedback path. Thus, under these conditions, the feedback path, in

effect, is disengaged, and the altitude is derived as the ideal double integration of vz.
Hence, the feedback loops only operate under error conditions. As a result, the blending
filter displays the wide bandwidth performance of the inertially derived signal (double

integration of vz), the stable altitude characteristic of the baro altimeter, and through proper
gain selection, attenuates the baro altimeter noise so that the final altitude output signal is a
smooth measure of vehicle altitude.

INTEGRATION OF HORIZONTAL VELOCITY CHANNEL EQUATIONS

The integration of the horizontal velocity components (X, Y) is accomplished with an
appropriate integration algorithm to calculate the position of the vehicle over the earth.
Because position over the earth is typically measured in units of angular rotation over the
earth’s surface, the horizontal velocity components are first converted to their equivalent
angular rate form to represent the angular rotation rate of the local vertical as the vehicle
travels over the earth. The angular rate components are then used as inputs to the position
integration algorithm. Note that the vehicle transport angular rate components used for

position integration are identically the horizontal components of ρ in Equation (9) of
Lecture 1.

The following figure is a sketch of the earth illustrating latitude and longitude position for a
particular vehicle location. Also shown in the sketch is the local level navigation coordinate
frame. From the figure, it should be apparent that the angular orientation of the Z-axis
(vertical) of the navigation frame relative to earth polar/equatorial coordinates is defined by
latitude and longitude. Conversely, if the angular orientation of the Z-axis relative to earth
coordinates is known, latitude and longitude can be determined. Thus, the calculation of
vehicle position can be performed by calculating the angular orientation of the Z-axis of the
navigation frame relative to the earth.

92

•

Earth
Polar
Axis

Longitude
Reference
Meridian

Earth
Equatorial
Plane

Y

X Z

Local Level
Navigation
Coordinates

Current
Position

l = Latitude
L = Longitude

•

L

l

The calculation of the angular orientation of Z relative to earth coordinates is performed in
an inertial navigation system as part of a general computation of the relative orientation
between earth fixed and local level navigation axes. The angular attitude of the local level
frame relative to earth fixed coordinates is typically defined in terms of the cosines of the
angles between the axes of the two frames (i.e., direction cosines). The rate of change of

these cosines is a function of the components of ρ discussed previously. A continuous
integration of the cosine rate equations generates the local level navigation frame attitude
relative to the earth, hence, the data from which latitude/longitude position can be
analytically extracted. Additionally, the position direction cosines provide the data used in
determining the azimuth (heading) orientation of the navigation axes relative to geographic
North. As we shall see in a subsequent lecture, the azimuth angle is required to calculate
velocity and heading data relative to North/East axes for system outputs. (Note that the
horizontal velocity components generated by integrating Equation (8) are along local level
navigation axes. Since the local level navigation frame is not necessarily aligned with
North/East axes, a mathematical operation is required to generate the geographic
North/East data from the navigation axis components.)

The position direction cosine rate equations can be derived by applying Coriolis Equation
(4) to a unit vector Dj fixed to the earth along earth reference axes (along the Z polar axis or
X, Y equatorial axes of the earth, each designated in general as j):

dDj

dt E
= 0 =

dDj

dt L
 + ρ × Dj

93

In the above equation, the rate of change of vector Dj has been equated to zero in earth
coordinates because it is by definition fixed to the earth. The latter equation is equivalently:

dDj

dt L
= - ρ × Dj (10)

The components of each Dj (j = 1, 2, or 3 for each earth frame axis) along local level (L)
navigation axes are the cosines of the angles between Dj and navigation axes and are
denoted for each Dj as:

d11

d12

d13

d21

d22

d23

d31

d32

d33

The components of Equation (10) for j = 1 and 2 are given by:

d11 = d12 ρz - d13 ρy

d12 = d13 ρx - d11 ρz

d13 = d11 ρy - d12 ρx

d21 = d22 ρz - d23 ρy

d22 = d23 ρx - d21 ρz

d23 = d21 ρy - d22 ρx

(11)

Equations (11) are integrated in the inertial navigation system computer to continuously
evaluate the dji direction cosine elements. Inputs to Equations (11) are the components of

ρ.

As mentioned previously, the x, y horizontal components of ρ in Equation (11) are

calculated from computed vehicle horizontal velocity. The vertical component of ρ can be
arbitrarily selected to simplify the overall navigation equations. (Note that pz, the vertical

component of ρ, only rotates the horizontal axes of the navigation coordinate frame about
the vertical. The orientation of the vertical navigation frame axis relative to the earth is
unaffected by ρz. Since vehicle position is determined only from the orientation of the

vertical navigation frame axis relative to the earth (see previous figure), ρz is not an
inherent part of the position determination function, and can be selected based on other
criteria.)

94

A logical choice for ρz might be to rotate the navigation axes so as to maintain a parallel
alignment with earth North/East geographic axes. Such a navigation reference with X, Y
aligned North/East is denoted as a latitude/longitude or geographic local level navigation
coordinate frame. Velocity components calculated by integrating Equation (8) in local level
geographic navigation coordinates will automatically lie along North/East/Vertical axes, the
desired form for system output. Additionally, heading data defined by the azimuth
orientation of the vehicle axes relative to the navigation frame will be referenced to North,
another desirable feature for output. The geometry in the following figure demonstrates
that the required value of ρz for a latitude/longitude navigation frame is given by:

ρz = ρN tan l (12)

Earth
polar
axis

Equatorial
plane

E (East Into Paper)

l

X

l

ρN

ρE

To maintain the E axis east in the previous figure, the precessional rate of the local level

frame must be such that the component of ρ normal to E is parallel to the earth polar axis.

Since it is only the component of ρ perpendicular to E that precesses E, this assures that
the angular precession of E will occur in a plane parallel to the equator. If the E axis is also

maintained horizontal by the horizontal components of ρ, the E axis will thereby be forced

to remain East. From the figure, the vector sum of the N and Z components of ρ define

the component of ρ perpendicular to E. For the vector sum to be parallel to the polar axis,
Equation (12) must be satisfied.

Equation (12) reveals that a singularity exists in the vertical component of ρ for a
latitude/longitude frame near the poles (l = +90°). Thus, use of such a system must be
restricted to travel away from the poles to avoid introducing large errors in the local vertical
navigation frame rotation rate, and hence, the attitude reference.

95

If we arbitrarily set ρz to zero, the implementation is denoted as a “wander azimuth”

configuration. If ρz is set equal to - Ωz (i.e., ωz = 0, see Equation (9)) a “free azimuth”
implementation would result, so denoted from the gimbaled counter-part of not requiring
an inertial torquing rate for the azimuth gyro (letting it run free). For either the wander
azimuth or free azimuth approach, ρz is finite by definition for all locations on the earth.

Since ρx and ρy are also finite (equal to the horizontal component of vehicle angular

motion over the earth), no singularities exist for ρ, and the local level navigation frame

precession rate is completely defined for all earth trajectories. The ρ singularity condition
associated with the latitude/longitude local level frame approach is, thereby, avoided.

For the wander azimuth implementation, the azimuth rotation rate of the navigation frame

relative to the earth is zero when the vehicle is stationary (ρ = 0). For this condition, the
azimuth angle between North and navigation level axes remains constant. Under vehicle
translational motion, the azimuth orientation of the navigation frame wanders from North,
hence the term “wander azimuth”. The azimuth angle between navigation axes and
North/East geographic axes is known as the “wander angle”.

With ρz = 0, Equations (11) for the wander azimuth implementation assume the
simplified form:

d11 = - d13 ρy

d12 = d13 ρx

d13 = d11 ρy - d12 ρx

d21 = - d23 ρy

d22 = d23 ρx

d23 = d21 ρy - d22 ρx

(13)

Note in Equations (13) that the position direction cosine rates are well behaved functions
(dji’s, being cosines of angles, never exceed 1 in magnitude, and, as discussed previously,
the components of ρx and ρy are always finite.) Thus, the dji quantities can be calculated
from an integration of Equations (13) at all earth positions including the poles.

It should be noted at this point that a set of differential equations for latitude, longitude, and
wander angle can also be derived which when integrated yield latitude/longitude/wander
angle directly. Unfortunately, these equations suffer from a singularity condition at the
poles similar to the problem noted previously for the latitude/longitude local level
navigation frame implementation. Integration of these equations through a pole traversal
results in a lost longitude and azimuth reference that is irrecoverable. One of the reasons
for using direction cosines as the basic position reference parameters is to avoid

96

singularities for all earth positions, thereby providing a complete global navigation
capability.

The next two lectures will discuss how latitude, longitude, and wander angle are extracted
from the integral of position direction cosine rate Equations (13), and how the dji’s in
Equations (13) are initialized prior to engaging the integration function. Also to be
discussed are the calculations of ρx, ρy for Equations (9) and (13) from vx and vy, the

expressions for the Ωx, Ωy, Ωz earth rate components in Equations (8) and (9) as functions
of the dji’s, the calculation of the gravity term in Equation (8) as a function of altitude (h)
and position (dji), and the equations used for calculating North/East velocity components
from vx and vy using the wander angle data.

97

NAV SEMINAR - LECTURE 3 NOTES

METHOD OF LEAST WORK FOR TREATING
EULER ROTATION OPERATIONS

For a vector A with components Ax, Ay, Az in one coordinate frame, find the A
components in another frame (´) rotated from the first by angle ψ about the Z axis (i.e., -
the Z axes of both frames are coincident):

Y '
Y

ψ

A 'y
A 'x

A y

Ax

A

X '

X

ψ

Z, Z '

(Out of paper)

Given Ax, Ay, Az, find Ax´, Ay´, Az´. The solution is found by treating Ax, Ay, Az as
independent vectors, finding their components individually in (´) coordinates, and
summing the results:

Ax
' = Ax cos ψ + Ay sin ψ

Ay
' = Ay cos ψ - Ax sin ψ

Az
' = Az

(14)

This can be represented by the signal flow diagram:

98

Ay

Ax
ψ

Az

•

Az
′ = Az

Ax
′ = Ax cos ψ + Ay sin ψ

Ay
′ = Ay cos ψ - Ax sin ψ

which is interpreted as:

Ay

Ax

Az

•

•

- sin ψ

sin ψ

cos ψ

cos ψ

+

+

+

+

Az
′

Ay
′

Ax
′

×

×

The horizontal lines between the crossed lines are treated as transmission paths with a gain
of cos ψ. The crossed lines are treated as transmission paths with a gain of sin ψ. The dot

(.) indicates minus (-) sin ψ. The straight path alone has unity gain. The Ax´, Ay´, Az´ are
derived from the top diagram by multiplying the A´s on the left by the gains along all paths
to the A´s on the right. The result is Equations (14).

A similar derivation for X-axis (φ) and Y axis (θ) rotations yields:

Ay

Ax

Az

Ay

Ax

Az

A 'y

A 'x

A 'z

A 'y

A 'x

A 'z

=

=

=

=

=

=

Ay

Ax

Az

Ay

Ax

Az

cos φ + sin φAz

cos θ + sin θAx

φ

θ

•

• cos φ - Ay sin φ

cos θ - Az sin θ

99

A heading, pitch, roll Euler sequence, such as used for vehicle reference is given by:

φθ

•

ψ

Reference
Coordinates

(North/East/Down)

•

•
Vehicle

Coordinates

A vector A in the reference coordinate frame (x, y, z) has equivalent components in the
vehicle frame (x´, y´, z´) equal to inputs at the left multiplied by all paths to the right. For
example, for the y´ component:

Ay
'
 = Ax cos ψ sin θ sin φ - sin ψ cos φ

 + Ay sin ψ sin θ sin φ + cos ψ cos φ

 + Az cos θ sin φ

A similar set can be obtained for the Ax´, Az´ components. It should be apparent that the
terms in brackets represent the cosines of the angles between the two frames (i.e., between
x and y’, y and y’, z and y’ respectively). These are more commonly referred to as the
direction cosines between the two coordinate frames. The above procedure allows one to
easily derive an analytical expression between any left and right axis (any particular
direction cosine) by tracing and summing all gains between the two points. Nine such
elements exist. This is truly the method of least work for obtaining these expressions.
Moreover, it is fun.

An interesting application of the technique is the determination of body rates (roll, pitch,

yaw: p, q, r) from Euler angle rates (φ, θ, ψ). This is obtained by noting that p, q, r is the

net vector sum of each of the φ, θ, ψ effects acting simultaneously. By introducing each of

the φ, θ, ψ vectors into the diagram at points where their vector form is known, and then

tracing and summing to the right, p, q, r are determined. The φ, θ, ψ quantities are along
X, Y, Z respectively in the intermediate frames where their Euler angles are defined. Thus:

100

φθ

•

ψ

•

•

θ
•

φ
•

ψ
•

p

q

r

and

p = φ - ψ sin θ

q = θ cos φ + ψ cos θ sin φ

r = - θ sin φ + ψ cos θ cos φ

What could be simpler (or more fun)?

The diagram works in the inverse direction also, provided that the three outputs are
calculated at one coordinate frame position. The former diagram works (Ax, Ay, Az from

Ax´, Ay´, Az´). The latter diagram (φ, θ, ψ from p, q, r) is not directly reversible without
some trickery (left as an exercise).

APPLICATION TO THE NAVIGATION PROBLEM

The angular relationship between the local level coordinate frame and the earth fixed

equatorial coordinate frame can be described by the Euler sequence: Y(+ΔL), X(-l), Z(+α)
as illustrated by the diagram that follows and where:

ΔL = Longitude change since initiation of navigation.

l = Current latitude.

α = The wander angle between north and the local level frame Y-axis.

Lo = Initial longitude.

lo = Initial latitude.

101

lo

•

•
l

Earth
Fixed
Frame

Initialization
Point

(Start of Nav)

Prime
Reference
Meridian

Lo
ZE

YE

YL

α

XL ZL Local
Level
Frame

XE

Current
Position

Ground
Track

Equator

ΔL

Wander
Angle

Using the Method of Least Work:

•
•

•
l

Earth
Coords

Local
Leval

Azimuth
Wander

Coordinates

ΔL α

Note, the dot (.) is inverted on the l because it is a minus X rotation.

We can now easily obtain a set of equations for the dji’s (direction cosines) between the

earth frame and local level frame in terms of ΔL, l, α. These can then be equated to the d’s

(from the last lecture - Equations (13)), and the desired ΔL, l, α quantities calculated for
pilot display, etc. Using the “Method”:

102

d11 = cos ΔL cos α - sin ΔL sin l sin α

d12 = - cos ΔL sin α - sin ΔL sin l cos α

d13 = sin ΔL cos l

d21 = cos l sin α

d22 = cos l cos α

d23 = sin l

d33 = cos ΔL cos l

(15)

from which:

tan l =
sin l
cos l

 =
sin l

1 - sin2 l
 =

d23

1 - d232
 =

d23

d21
2

 + d22
2

tan α =
d21

d22

tan ΔL =
sin ΔL

cos ΔL
 =

d13

d33
 =

d13

d11 d22 - d21 d12

The latter equation (with 1 - d23
2

 replaced by d21
2

 + d22
2

 and d33 replaced by

d11 d22 - d21 d12) is used so that d33 need not be calculated (note its absence in Equations
(13)). The equality between d33 and the cross-product follows from the definition of D1,
D2 and D3 being orthogonal unit vectors along the Earth axes, and that, therefore,

D3 = D1 × D2

D2 . D2 = 1

The expressions for d33 and 1 - d23
2

 are obtained by carrying out the cross and dot
products in component form using:

D1 =

d11

d12

d13

 D2 =

d21

d22

d23

 D3 =

d31

d32

d33

The inverse trig functions give the desired results:

103

L = Lo + ΔL = Lo + tan-1
d13

d11 d22 - d21 d12

l = tan-1
d23

d21
2

 + d22
2

α = tan-1
d21

d22

(16)

Equations (16) are typically programmed in the navigation computer to evaluate L, l, and α
from the computer D matrix elements. Note in Equation (16) that longitude is determined
from an arc tan function of d13 divided by d33 (i.e., d33 = d11 d22 - d21 d12). From
Equation (15), both d13 and d33 approach zero at high and low latitudes (l = +90 deg or cos
l = 0). Hence, longitude at the poles is not defined. Thus, the equivalent of the singularity
condition at the poles noted previously for latitude/longitude navigation coordinates also
exists for longitude determination in the azimuth wander implementation. The key
difference, however, is that for the latitude/longitude coordinate frame approach, the
position reference is permanently destroyed; for the azimuth wander coordinate frame
concept, the basic position data (the position direction cosines) remain intact through pole
traversals, and longitude can again be read accurately after the traversal is completed. The
latter singularity condition simply emphasizes the fact that longitude at either pole (a single
point) is meaningless; latitude alone completely defines the pole position, and the latitude
determination equation for the azimuth wander system is deterministic at the poles.

A similar singularity situation exists in the wander azimuth system for the wander angle
extraction formula in Equations (16). Both d21 and d22 approach zero at high and low
latitude (l = +90°), hence, the wander angle becomes undefined at the poles. This is
because the concept of heading relative to North vanishes at the poles (i.e., at the North pole
all directions are South, and vise versa at the South pole). As for the longitude
determination function in the wander azimuth system, the wander angle data is once again
recoverable after the pole transversal is completed.

Returning to Equations (13), these are differential equations that must be integrated
continuously in the flight computer to determine the d’s. To begin the integration process,
the d’s must be initialized properly at entry into the navigate mode. The “Method” can be

used to derive the equations used for d initialization. At initialization time, ΔL = 0 (by

definition), l = lo and α = αo. A vector along the Y-axis of the Earth Frame, in particular,
the earth rate vector, then, at initialization time, is given in local level navigation coordinates
by:

104

•
•

0

0

Ωe

lo αo
Ωx = Ωe cos lo sin αo

Ωy = Ωe cos lo cos αo

Ωz = Ωe sin lo

Also, the d elements at this time, from Equations (15) (or directly from the above diagram)
are:

d11o = d11o = cos αo

d12o = d12o = - sin αo

d13o = d13o = 0

d21o = cos lo sin αo

d22o = cos lo cos αo

d23o = sin lo

(17)

Defining normalized earth rate components as:

Ω1 =
Ωx

Ωe

 = cos lo sin αo

Ω2 =
Ωy

Ωe

 = cos lo cos αo

we obtain the final expressions for the do’s in terms of Ω1, Ω2, and lo:

d11o =
Ω2

cos lo
 d21o = Ω1

d12o = -
Ω1

cos lo
 d22o = Ω2

d13o = 0 d23o = sin lo

(18)

Equations (18) are initialization equations that would be executed at completion of
alignment at the instant of entry into the navigate mode. The lo quantity is the initial latitude

105

entered into the display. The Ω1, Ω2 quantities are calculated as the primary output from
the alignment filter (and sometimes displayed to indicate alignment progress). It should be

noted that if the accuracy penalty is acceptable, lo can actually be computed from Ω1, Ω2
without requiring a latitude input from the display:

tan2 lo =
sin2 lo

cos2 lo
 =

1 - cos2 lo

cos2 lo
 =

1

cos2 lo
 - 1

=
1

cos2 lo cos2 αo + sin2 αo

 - 1 =
1

Ω1
2
 + Ω2

2
 - 1

 /lo/ = tan-1
1

Ω1
2
 + Ω2

2
 - 1

The sign of lo is obtained by either knowing which hemisphere one is in at takeoff (North

or South), or calculating Ω3, the normalized vertical component of earth rate, as an added

part of the alignment process (Ω3 =
Ωz

Ωe

 = sin lo) and using sign of Ω3 to determine lo

polarity. The Ω3 term cannot be estimated to the same accuracy as Ω1, Ω2, but it can
possibly be estimated to an accuracy sufficient for estimating its sign. The feasibility of the

above method for calculating lo breaks down near the equator where Ω1
2
 + Ω2

2
 equals one

and becomes insensitive to latitude variations. Near the equator, one may resort to the use

of Ω3 directly for latitude determination, and suffer some performance degradation due to

the reduced accuracy in estimating Ω3 (compared to Ω1, Ω2). The associated latitude
estimation equation is:

lo = tan -1
Ω3

Ω1
2
 + Ω2

2

The basic problem associated with the idea of inertially calculating initial latitude lies in the
added error produced in the system output. Since latitude is calculated using the system
gyro and accelerometer data, errors in these instruments produce an initial latitude error.
This is an additional error source that must now be accounted for in the system error
budget. (Normally, initial latitude error is essentially zero, based on an accurate input to the
system by the operator). For most applications, the added error is large enough to be
intolerable. The utility of the lo self estimating concept may, therefore, prove more
beneficial as a check against an erroneous pilot entry or to indicate a malfunctioning
system, than as an absolute reference.

106

NAV SEMINAR - LECTURE 4 NOTES

DERIVATION OF ρ AND Ω EXPRESSIONS FOR EQUATIONS (8), (9), AND (13)

The components of ρ (ρx and ρy; ρz = 0) are evaluated for the azimuth wander system by
first considering their form in North/East geographic coordinates, and then transforming
the result to azimuth wander coordinates. For geographic local level coordinates, the

horizontal components of ρ are given by:

ρN =
1
rL

 vE

ρE = -
1
rl

 vN

where:

ρN, ρE = North and East components of ρ.

vN, vE = North and East components of v.

rL, rl = The radii of curvature of the local horizontal in the East (rL) and
North (rl) directions. The local horizontal is defined as the plane at
the navigation altitude that is parallel to the earth’s surface below the
navigating vehicle. “Below” is defined as downward along a line
from the navigating vehicle that passes perpendicularly through the
earth’s surface.

The North/East geographic frame is rotated from the azimuth wander frame about the local

vertical Z-axis by the wander angle (α). Thus:

•

•
vx

vy

vE

vN

α

1____
rL

αρE

ρN

ρx

ρy

-
1
rl

From the diagram:

107

ρx = vx
sin α cos α

rL
 -

sin α cos α
rl

 + vy
- cos2 α

rl
 -

sin2 α
rL

 = vx sin α cos α
1
rL

 -
1
rl

 - vy
cos2 α

rl
 -

sin2 α
rL

If the earth were a perfect sphere, rL and rl would be equal to the radial distance from
earth’s center to the vehicle. Because the earth is an oblate spheroid, the expressions for rL
and rl are more complex. From Appendix B in Pittman - Inertial Guidance, the values for
rL and rl for zero altitude (on the earth’s surface) can be accurately approximated by:

rl = Ro 1 - e 2 - 3 sin2 l

rL = Ro 1 + e sin2 l

where

l = Vehicle geocentric latitude.

Ro = The equatorial earth radius.

e = The ellipticity of the ellipse formed by the intersection of a meridian plane
with the earth’s surface. I.e.; the earth’s surface is approximated as an
ellipsoid of revolution where the earth polar axis is both the axis of
symmetry of the ellipsoid and the minor axis of the ellipse used to generate
the ellipsoid. The major axis of the ellipse lies in the earth’s equatorial
plane. The earth’s surface is defined as the surface generated by revolving
the ellipse about the earth polar axis.

For flights above the surface of the earth, the latter expression is modified to first order by
setting the Ro term equal to Ro + h where:

h = Vehicle altitude.

Thus:

rl = Ro + h 1 - e 2 - 3 sin2 l

rL = Ro + h 1 + e sin2 l

Since e is small, and h is small relative to Ro, the
1
rl

 and
1
rL

 terms in the previous ρx

expression can be approximated by first order Taylor series expansions:

108

1
rl

≈ 1
Ro

 1 -
h

Ro
 + e 2 - 3 sin2 l

1
rL

≈ 1
Ro

 1 -
h

Ro
 - e sin2 l

and

1
rL

 -
1
rl

= -
1

Ro
 e sin2 l + 2 - 3 sin2 l

= -
2 e
Ro

 1 - sin2 l = -
2 e
Ro

 cos2 l

Substituting into the terms in the ρx equation yields:

sin α cos α
1
rL

 -
1
rl

= -
2 e
Ro

 sin α cos l cos α cos l

and

cos2α
rl

 +
sin2α

rL
 =

1
Ro

 cos2α 1 -
h

Ro
 + e 2 - 3 sin2l + sin2α 1 -

h
Ro

 - e sin2l

=
1

Ro
 cos2α + sin2α 1 -

h
Ro

 + e cos2α 2 - 2 sin2l - sin2l - e sin2α sin2l

=
1

Ro
 1 -

h
Ro

 + 2 e cos2α cos2l - e cos2α sin2l - e sin2α sin2l

=
1

Ro
 1 -

h
Ro

 + 2 e cos2α cos2l - e sin2l

=
1

Ro
 1 -

h
Ro

 + e - 2 cos2α cos2l + 1 - cos2l cos2α + sin2α

=
1

Ro
 1 -

h
Ro

 - e 1 - 3 cos α cos l
2
 - sin α + cos l

2

With the above terms, the ρx equation becomes:

ρx = -
vy

Ro
 1 -

h
Ro

 - e 1 - 3 cos α cos l
2
 - sin α cos l

2

 -
vx

Ro
 2 e sin α cos l cos α cos l

109

The bracketed trigonometric terms in the latter equation are functions of geocentric latitude.
Since each of these terms is multiplied by e, only a second order error (in e) is introduced

into ρx if they are approximated by their geodetic latitude derived counterparts as defined
by d21 and d22 in Equations (15). (Note: Although the same symbol l is used in
Equations (15) and for the ρx derivation above, l in Equations (15) represents geodetic

latitude while l in the ρx equation represents geocentric latitude. The difference between

geodetic and geocentric latitudes is on the order of e, hence, an e2 error is introduced in ρx
when geodetic latitude is used as an approximation.) Using d21 and d22 for the bracketed
terms, the ρx equation assumes the final form:

ρx = -
vy

Ro
 1 -

h
Ro

 - e 1 - 3 d22
 2

 - d21
 2

 -
vx

Ro
 2 e d21 d22 (19)

A similar derivation yields the following for ρy:

ρy =
vx

Ro
 1 -

h
Ro

 - e 1 - 3 d21
 2

 - d22
 2

 +
vy

Ro
 2 e d21 d22 (19A)

These are the desired expressions for the components of ρ in azimuth wander coordinates

for the navigation computer (with ρz = 0).

The expression for the Ω vector in Equations (8) and (9) in azimuth wander coordinates is

obtained by multiplying the earth rate vector magnitude (Ωe) by the cosines of the angles
between the earth polar axis (Y-axis in the earth frame) and the azimuth wander axes. The
cosines are the D2 direction cosines (d21, d22, d23).

Thus:

Ω =

d21 Ωe

d22 Ωe

d23 Ωe

(19B)

The ω vector in Equation (8) is the sum of Ω and ρ as shown in Equation (9). With

ρz = 0 for azimuth wander navigation coordinates, and Ω as defined above, ω is given by:

ω =

ωx

ωy

ωz

 =

ρx + d21 Ωe

ρy + d22 Ωe

d23 Ωe

(19C)

110

As discussed previously, plumb-bob gravity lies approximately along the geodetic vertical,
hence, for geodetic vertical navigation coordinates, g' in (8A) is:

g' =
0
0

-gD

where gD is the component of plumb-bob gravity downward along the geodetic vertical.
The components of asf and v in (8) can be defined as:

asf =
ax
ay
az

 v =
vx
vy
vz

Substitution of the latter expressions in (8) yields the equivalent component form in
azimuth wander local level navigation coordinates in terms of parameters calculated in the
navigation computer (or derived from measurements; i.e., - accelerations ax, ay, az).

vx = ax + 2 d23 Ωe vy - 2 d22 Ωe + ρy vz

vy = ay + 2 d21 Ωe + px vz - 2 d23 Ωe vx

vz = az - gD + 2 d22 Ωe + ρy vx - 2 d21 Ωe + ρx vy

(20)

CALCULATION OF PLUMB-BOB GRAVITY (GD) FOR EQUATION (20)

Newton’s Law of Gravitation tells us that the magnitude of gravitational attraction from a
point mass is inversely proportional to the square of the distance from the point mass. For
a sphere with uniform mass distribution, the same law applies above the sphere with the
distance factor measured to the center of the sphere. In the vicinity of a planet, such as the
earth, the law is slightly modified due to the mass asymmetry that always exists in any real
body. For the earth, the mass distribution is approximately symmetrical about the polar
axis and essentially oblate (i.e., symmetrical above and below the equatorial plane). From
Section 4.5 in Britting - Inertial Navigation Systems Analysis, earth’s gravitational
acceleration, as determined by satellite orbit observations, can be accurately approximated
for inertial navigation purposes by:

g =
μ

R2
 1 -

3
4

 J2 1 - 3 cos 2 l

where

R = The radial distance from earth’s center to the point where gravity is being
measured.

l = Geodetic latitude.

J2 = An empirical constant equal to 0.00108.

111

μ = The average value of gravity at the equator times earth’s equatorial radius
squared.

The downward or negative Z-axis navigation coordinate component of plumb-bob gravity

(gD in Equations (20)) equals g minus the vertical component of - Ω × (Ω × R) (See

Equation (8A)). Using (19B) with the dij’s as defined by (15), Ω can be written as:

Ω =

Ωe cos l sin α

Ωe cos l cos α

Ωe sin l

with in navigation coordinates,

R =
0
0
R

The vertical (Z) component of - Ω × (Ω × R) is:

R Ωe
 2

 cos2l

so that:

gD =
μ

R2
 1 -

3
4

 J2 1 - 3 cos 2 l - R Ωe
2
 cos2l

From Appendix B of Pittman - Inertial Guidance, R at the surface of the earth can be
accurately approximated as:

R = Ro 1 - e sin2l

where Ro and e are as defined previously in this lecture, and l is geocentric latitude (or
approximately geodetic latitude).

Including the effect of altitude above the earth, the above expression for moderate altitudes
(less than 100,000 feet) can be approximated as:

R = Ro 1 - e sin2l + h

Substituting in the gD equation, recognizing that e is small (approximately
1

298
) and that h

is much less than Ro, and applying appropriate trigonometric manipulations yields the
following:

112

gD =
μ 1 -

3
4

 J2 1 - 3 cos 2 l

Ro
2
 1 - e sin2l +

h
Ro

2
 - Ro 1 - e sin2l + h Ωe

2
 cos2l

≈
μ

Ro
2

 1 -
3
4

 J2 1 - 3 1 - 2 sin2l + 2 e sin2l - 2
h

Ro

- Ro Ωe
2
 1 - e sin2l +

h
Ro

 cos2l

=
μ

Ro
2

 1 +
3
2

 J2 1 - 3 sin2l + 2 e sin2l - 2
h

Ro

- Ro Ωe
2
 1 - e sin2l +

h
Ro

 cos2l

=
μ

Ro
2
 1 - 2

h
Ro

 + 2 e sin2l +
μ

Ro
2

3
2

 J2 1 - 3 sin2l

- Ro Ωe
2
 1 - e sin2l +

h
Ro

 cos2l

= G1 1 - 2
h

Ro
 + 2 e sin2l + G2 1 - 3 sin2l - G3 1 - e sin2l +

h
Ro

 cos2l

where

G1 =
μ

Ro
2

 = Average gravity magnitude at earth’s surface at the equator.

G2 =
3
2

 J2 G1 (20A)

G3 = Ro Ωe
2

Using d23 for sin l (from Equations (15)), the final expression for gD becomes:

gD = G1 1 - 2
h

Ro
 + 2 e d23

 2
 + G2 1 - 3 d23

 2
 - G3 1 - e d23

 2
 +

h
Ro

 1 - d23
 2

(20B)

113

VELOCITY COMPONENTS IN NORTH/EAST GEOGRAPHIC COORDINATES

Before summarizing, one additional set of expressions should be derived for output and
display: the equations for the horizontal velocity components in North/East geographic
coordinates. These can be expressed in two forms: as North/East components (vN, vE)
along North/East axes directly, or in polar coordinate form as the ground speed magnitude
(vG) and track angle (TK) of the horizontal velocity vector relative to North. The following
diagram illustrates the geometry involved. The relationship between vN, vE, TK, vG and

vx, vy, α from the diagram are given in Equations (21).

Y

N

E

X

Vertical (Up)

Azimuth
Wander
Coordinates

North/East
Coordinates

Vy

VG

Vx

VE

VN

ψ*
α TK

vN = vy cos α + vx sin α

vE = vx cos α - vy sin α

TK = ψ* - α

ψ* = tan-1
vx

vy

TK = tan-1
vx

vy
 - α

VG = vx
 2

 + vy
 2

(21)

114

NAVIGATION EQUATION SUMMARY

The block diagram that follows summarizes the total computations involved in computing
navigation data from acceleration (and baro altitude) measurements as given by Equations
(13), (16), (19), (19A), (19C), (20), (20A), (20B), and (21), with the baro altitude channel
from Lecture Notes 2, and initial conditions given by Equations (18) and vxo = vyo = 0.

115

v x

v y

INITIAL
ALIGNMENT }

INITIAL
PILOT

ENTRY}Lo

lo

NAVIGATION EQUATION SUMMARY

d11
d12
d13

d21
d22
d23

vx
v y
vz
h

L = Lo + tan-1
d13

d11 d22 - d21 d12
L

l

h

vN

vE

vz

SYSTEM

OUTPUTS

α
USED FOR
NAV FRAME NORTH
HEADING REFERENCE

INITIALIZATION

d11

d12

d13

d21

d22

d23

}
USED
FOR
NAV
REFERENCE
ROTATION

Ω1

Ω2

α = tan-1
d21

d22

vE = vx cos α - vy sin α

vN = vy cos α + vx sin α

ρx

ρy

d21

ρx

ρy

d22

d23

ωy

ωx

gD

a z

a y

a x

"0" INITIAL

"0" INITIAL

v x

vy

h

"0" INITIAL

BARO
ALTITUDE

C1 C2 C3

INITIAL

vz

h
+

-

+ +

+

- -

-

•

• ••

•vz = az - gD + 2 d22 Ωe + ρy vx - 2 d21 Ωe + ρx vy

vx = ax + 2 d23 Ωe vy - 2 d22 Ωe + ρy vz

vy = ay + 2 d21 Ωe + ρx vz - 2 d23 Ωe vx

× × ×

×

gD = G1 1 - 2 h/Ro + 2 e d23
 2

 + G2 1 - 3 d23
 2

 - G3 1 - e d23
 2

 + h/Ro 1 - d23
 2

dt∫dt

∫dt

∫dt

∫dt

∫dt

∫dt

∫dt

∫dt

∫dt

∫dt

l = tan-1 d23

d21
2

 + d22
2

ρy =
vx

Ro
1 -

h
Ro

 - e 1 - 3 d21
 2

 - d22
 2

 +
vy

Ro
2 e d21 d22

ρx = -
vy

Ro
1 -

h
Ro

 - e 1 - 3 d22
 2

 - d21
 2

 -
vx

Ro
2 e d21 d22

d11 = - d13 ρy

d12 = d13 ρx

d13 = d11 ρy - d12 ρx

d21 = - d23 ρy

d22 = d23 ρx

d23 = d21 ρy - d22 ρx

ωx = ρx + d21 Ωe

ωy = ρy + d22 Ωe

ωz = d23 Ωe ωz

d12o = - Ω1 sec lo d22o = Ω2

d11o = Ω2 sec lo d21o = Ω1

d13o = 0 d23o = sin lo

116

STRAPDOWN ATTITUDE REFERENCE EQUATIONS

LECTURE 5

LECTURE 6

LECTURE 7

LECTURE 8

LECTURE 9

117

NAV SEMINAR - LECTURE 5 NOTES

Equations (20) are integrated in the navigation computer to evaluate the components of v.
These equations have the following form:

vx = ax + (Slowly varying or small terms - SVOST)

vy = ay + (SVOST)

vz = az + (SVOST)

Their integrals can be written as:

vx = +

n

Computer
fast iteration
summation

Σ

Integrals over
fast iteration
period

Σ
m

Computer slower
iteration summation

Integrals over
slower iteration
period

axdt
tn

tn+1

SVOST dt
tm

tm+1

Similarly for vy, vz. The (SVOST) dt
tm

tm+1

 term is usually approximated by a simple

integration algorithm such as setting it equal to 1/2 the sum of the values of () at the start
and end of the iteration interval, times Δt the iteration period. The first term needs more
care in its evaluation for the case of strapdown systems because the ax, ay, az terms are
derived from body mounted accelerometers using computer derived attitude from the
strapdown gyros. The attitude may be changing rapidly, and the equations for

approximating
tn

tn+1

ax dt (i.e., the algorithms for evaluating the integrals on a discrete

basis in a digital computer) can be in error if care is not taken in their formulation. Neither
can the algorithm be too complicated or the computer will be loaded down at the high
iteration rate.

We wish to derive an algorithm for evaluating the integral of aL over the computation
interval. Define the quantity to be evaluated as:

118

Matrix
Vector
Notation

The vector of acceleration
in local level coordinates.

L refers to local level navigation coordinates

Δvn
L
 = aL dt

tn

tn+1

ax, ay, az

(22)

The a term is needed in local level navigation axes but it is measured in body axes. To
equate the components of a in these frames, we write:

Unit vectors and a components in the B frame (Body or Vehicle axes)

Unit vectors and a components in the L frame (Local Level axes)

a = aBx iB + aBy jB + aBz kB

= aLx iL + aLy jL + aLz kL

Taking the dot product of both sides of the above with iL yields:

aLx = a • iL = aBx iL • iB + aBy iL • jB + aBz iL • kB

The terms in brackets are the cosines of the angles between the indicated unit vectors in the
B and L frames. Identifying these as direction cosines we get,

aLx = C11 aBx + C12 aBy + C13 aBz

where C12 is the (direction) cosine between L frame axis 1 (iL) and B frame axis 2 (jB)
(and similarly for C11 and C13).

Similarly, for aLy and aLz:

aLy = C21 aBx + C22 aBy + C23 aBz

aLz = C31 aBx + C32 aBy + C33 aBz

or in matrix form:

aLx
aLy
aLz

=
C11 C12 C13
C21 C22 C23
C31 C32 C33

aBx
aBy
aBz

or in matrix notation:

119

a in
B frame axes

a in
L frame axes

Direction cosine
matrix from B to L

aL = CB
L

 aB

Returning to Equation (22), then:

Δvn
L

= aLdt
tn

tn+1

 = CB
L

tn

tn+1

 aB dt (22A)

The approximation can be made that CB
L
 in the latter equation can be approximated by its

value half way through the interval (this assumption should be checked under the expected

variations in CB
L

for the maneuver profiles expected). Hence:

Δvn
L

= CB
L

 tn+1/2 aBdt
tn

tn+1

 = CB
L

 tn+1/2 Δvn
B (23)

where

Δvn
B

= aBdt
tn

tn+1

=
The strapdown accelerometer pulse counts over the
iteration interval.

To derive a simple expression for CB
L

 tn+1/2, lets first review some simple direction cosine
matrix operations and identities.

For an arbitrary vector V and arbitrary coordinate frames D, E, and F,

vE = CD
E

 vD

vF = CE
F
 vE = CE

F
 CD

E
 vD

But vF = CD
F

 vD

Hence, CD
F

= CE
F
 CD

E (24)

and

120

vE = CD
E

 vD

vE T
= CD

E
 vD T

 = vD T
 CD

E T

v2 = v • v = vE • vE = vE T
 vE = vD T

 CD
E T

 CD
E

 vD

v2 = vD • vD = vD T
 vD

where T designates the transpose.

Thus, CD
E T

 CD
E

= I
(24A)

and

CD
E T

= CD
E -1

Using (24) with F = D:

CD
D

 = I = CE
D

 CD
E

Hence,

CE
D

= CD
E

 -1

and with (24A):

CD
E T

= CE
D

(25)

Returning to (23), using (24), and approximating L as constant over the iteration interval
yields,

CB
L
 tn+1/2 = CB(n)

L
 CB(n+1/2)

B(n) (26)

Now look at:

121

•

B(n)

•

•
q

r

p
α z α y α x

α x
•

α y
•

α z
•

B tn + t

We assume that the sample time period is short enough that the αx, αy, αz terms can be
represented as small Euler rotations from time tn due to body rates (p, q, r) or their

equivalents αx, αy, αz (with L assumed constant so all of the Euler motion can be
attributed to body rates). Then, from the diagram:

p = αx - αz sinαy

q = αy cosαx + αz cosαy sinαx

r = αz cosαy cosαx - αy sinαx

For a small sample period, αx, αy, αz are small and:

p ≈ αx

q ≈ αy

r ≈ αz

(27)

or

122

αxn = p dt
tn

tn+1

αyn = q dt
tn

tn+1

αzn = r dt
tn

tn+1

Also from the diagram, for small αx, αy, αz, the direction cosine matrix can be read by
inspection at tn+1:

CB(n+1)
B(n)

=

1 - αzn αyn

αzn 1 - αxn

- αyn αxn 1

(27A)

If the body rates are fairly constant over the iteration period, it can be assumed that at

(tn+1/2), half the angles (αxn, αyn, αzn) have been traversed. Hence:

CB(n+1/2)
B(n)

=

1 -
αzn

2

αyn

2

αzn

2
1 -

αxn

2

-
αyn

2

αxn

2
1

(28)

Returning to (23), with (26):

Δvn
L

= CB(n)
L

 CB(n+1/2)
B(n)

 Δvn
B

With (28):

123

CB(n+1/2)
B(n)

 Δvn
B
 =

1 -
αzn

2

αyn

2

αzn

2
1 -

αxn

2

-
αyn

2

αxn

2
1

Δvxn
B

Δvyn
B

Δvzn
B

=

Δvxn
B

Δvyn
B

Δvzn
B

 +
1
2

0 - αzn αyn

αzn 0 - αxn

- αyn αxn 0

Δvxn
B

Δvyn
B

Δvzn
B

= Δvn
B
 +

1
2

 αn
B
 × Δvn

B

where αn
B
 is the strapdown pulse count vector over the iteration interval:

αn
B
 =

αxn

αyn

αzn

 =

p dt
tn

tn+1

q dt
tn

tn+1

r dt
tn

tn+1

Thus,

Δvn
L

= CB(n)
L

 Δvn
B
 +

1
2

 αn
B
 × Δvn

B (29)

The cross-product term in Equation (29) has been denoted as “rotation compensation”.
Equation (29) is a valid approximation for Equation (22A) in applications where aB has
little or no high frequency content relative to the tn to tn+1 sampling frequency. For cases
where high vibration frequency components are prevalent (such as in high frequency
environment military applications) an alternate technique is required which can be derived
from (22A) as illustrated below.

124

We first equate the CB
L

term in Equation (22A) to the product of CB

L

at tn with the

transformation matrix relating body attitude at tn to body attitude at some general time t
within the interval from tn to tn+1:

CB
L

= CB(n)
L

 CB
B(n)

Equation (22A) then becomes:

Δvn
L

= CB(n)
L

tn

tn+1

 CB
B(n)

 aBdt = CB(n)
L

 CB
B(n)

tn

tn+1

 aBdt (29A)

The aBdt term in (29A) can be identified as a small increment of integrated body
acceleration, or the accelerometer output pulse vector dvB:

dvB = aBdt

Substituting into the integral in (29A) using (27A):

CB
B(n)

 aBdt = CB
B(n)

 dvB =

1 - αz αy

αz 1 - αx

- αy αx 1

 dvB

= dvB +

0 - αz αy

αz 0 - αx

- αy αx 0

 dvB = dvB + αB
 × dvB

where

125

αB
=

αx

αy

αz

 =

p dt
tn

t

q dt
tn

t

r dt
tn

t

 =

dαx
tn

t

dαy
tn

t

dαz
tn

t

 = dαB

tn

t

 (29B)

αB = Strapdown gyro pulse count vector from tn to general time t in the interval
from tn to tn+1.

dαB = A small increment of integrated body rate, or the instantaneous gyro output
pulse vector.

Substituting in (29A):

Δvn
L

= CB(n)
L

 dvB + αB
 × dvB

tn

tn+1

or

Δvn
L

= CB(n)
L

 Δv
B
 + αB

 × dvB

tn

tn+1

 (29C)

with

αB
= dαB

Tn

t

 (29D)

Equation (29C) is the equivalent of Equation (29) used in applications where the body
acceleration can have significant variations in the interval tn to tn+1. The integral term in
(29C) is denoted as sculling compensation. Note, that effective use of sculling
compensation implies that the accelerometers utilized have sufficient bandwidth to
accurately measure the high frequency components present in dvB. It should also be noted
that the implementation of Equations (29C) and (29D) in a strapdown system would be
accomplished as a high speed software function. In this manner, the high frequency
content of αB and dvB in the interval tn to tn+1 can be accurately accounted for.

126

Now, lets look at deriving an equation to compute CB
L
. Start with:

CB
L

 = CI
L

 CB
I

(30)

where I represents a non-rotating inertial coordinate frame. Look at CB
I
 first:

CB(n+1)
I

= CB(n)
I

 CB(n+1)
B(n)

= CB(n)
I

1 - αzn αyn

αzn 1 - αxn

- αyn αxn 1

 = CB(n)
I

 + CB(n)
I

0 - αzn αyn

αzn 0 - αxn

- αyn αxn 0

CB(n+1)
I

 - CB(n)
I

Δt
 = CB(n)

I

0 - αzn αyn

αzn 0 - αxn

- αyn αxn 0

1

Δt

where Δt is the time interval between tn and tn+1.. Letting Δt approach 0 in the limit:

αxn

Δt
=

p dt
tn

tn+1

Δt
 ≈ p

αyn

Δt
≈ q

αzn

Δt
≈ r

Therefore:

CB
I

= CB
I ΩIB

B

(31)

where B is the body frame, IB designates the angular rate of the B frame relative to the

non-rotating I frame, and ΩIB
B

 is the skew symmetric form of the angular rate vector ωIB
B

:

127

ΩIB
B

 =
Δ

0 - r q
r 0 - p

- q p 0
 = Skew symmetric form of ωIB

B
 =
Δ

p
q
r

Note:

(Ω)T = - Ω

Now look at CI
L
 in Equation (30). Start with the transpose. Using (25), the transpose is

CL
I
. By a derivation similar to that leading to Equation (31), it can be shown that:

CL
I
 = CL

I
 ΩIL

L

Taking the transpose:

CI
L

 = ΩIL
L T

 CI
L

 = - ΩIL
L

 CI
L

(32)

Taking the derivative of (30):

CB
L

 = CI
L

 CB
I

 + CI
L

 CB
I

Substituting (31) and (32),

CB
L

= - ΩIL
L

 CI
L

 CB
I
 + CI

L
 CB

I
 ΩIB

B

or, with (30)

CB
L

 = CB
L

 ΩIB
B

 - ΩIL
L

 CB
L

(33)

where

ΩIB
B

 = Skew symmetric form of the angular rate vector ωIB
B

ΩIL
L

 = Skew symmetric form of ω from navigation lecture notes (i.e., ω = ρ + Ω).

Solving Equation (33) on an incremental basis without introducing computation error has
been a key subject area for strapdown navigation. During the next lecture we’ll discuss
some of the solution approaches used.

128

NAV SEMINAR - LECTURE 6 NOTES

CB
L

= CB
L

 ΩIB
B

 - ΩIL
L

 CB
L (33)

How can the above equation be integrated incrementally? Can the first portion on the right

side be evaluated independently from the second portion? I.e., can the update of CB
L

be

divided into a high speed part associated with high body rates ΩIB
B

, and a low speed part

associated with local level frame rates ΩIL
L

?

From the previous lecture, the above equation is equivalent to:

CB
L

 = CI
L

 CB
I (34)

CB
I
 = CB

I
 ΩIB

B
 (35)

CI
L

 = - ΩIL
L

 CI
L (36)

We now solve for CB
I

and CI

L

independently. Integrating (35) and (36):

CB t
I

= CB(n)
I

 + CB(t)
I

tn

t

 ΩIB
B

 dt (36A)

CI
L(τ)

= CI
L(n)

 - ΩIL
L

tn

τ

 CI
L(τ)

 dτ (36B)

where

τ, t = Running time after tn.

(n), (t), (τ) = Indicator of the position of frames B or L at times tn, t or τ.

Define:

CB(t)
L(τ)

 = Orientation of frame L at time τ relative to frame B at time t.

Substituting from (36A) and (36B):

129

CB(t)
L(τ)

 = CI
L(τ)

 CB(t)
I

 = CI
L(n)

 - ΩIL
L

tn

τ

 CI
L(τ)

 dτ CB(t)
I

 = CI
L(n)

 CB(t)
I

 - ΩIL
L

tn

τ

 CI
L(τ)

 CB(t)
I

 dτ

 = CB(t)
L(n)

 - ΩIL
L

tn

τ

 CB(t)
L(τ)

 dτ

(36C)

Similarly, for CB(t)
L(n)

 in (36C), with (36A):

CB(t)
L(n)

 = CI
L(n)

 CB(t)
I

 = CI
L(n)

 CB(n)
I

 + CI
L(n)

tn

t

 CB(t)
I

 ΩIB
B

 dt

 = CB(n)
L(n)

 + CB(t)
L(n)

tn

t

 ΩIB
B

 dt

(36D)

Equations (36C) and (36D) can be interpreted as follows. Equation (36D) states that CB(t)
L(n)

can be calculated by integrating the first part of Equation (33) from tn to t (say tn+1).

Equation (36C) states that CB(t)
L(τ)

 (or CB(n+1)
L(τ)

) can then be obtained by taking the result of

the Equation (36D) integration and using it as the initial condition in integrating the second

part of Equation (33). The result after integrating to τ = tn+1 is CB(n+1)
L(n+1)

 which constitutes a

complete update of CB
L
. Thus, the integration of (33) can be performed in two steps if the

following procedure is followed:

1. CB(t)
Ln = CBn

Ln + CB(t)
Ln

tn

t

 ΩIB
B

 dt

CBn+1

Ln = CB(t)
Ln t = tn+1

2. CBn+1

L(t)
 = CBn+1

Ln - ΩIL
L

tn

t

 CBn+1

L(τ)
 dτ

CBn+1

Ln+1 = CBn+1

L(t)
 t = tn+1

130

The above process implies that during step 1, the ΩIL
L

 history in step 2 is being recorded so
that it may be played back into the second step integral after step 1 is complete. This is a

relatively simple matter because ΩIL
L

 can be approximated by a constant over the interval

when ΩIB
B

is being processed in step 1. The actual digital evaluation of step 2, then, is

usually accomplished by a simple integration algorithm assuming a constant value of ΩIL
L

over the update interval. Since ΩIL
L

is small, little error results.

Let us now discuss how step 1 may be performed digitally; i.e., how to digitally integrate
the following part of Equation (33) over an update interval in the digital computer:

CB
L

= CB
L

 ΩIB
B (37)

Let’s first expand (37) and note that its rows are independent:

Ci1 = Ci2 ω3 - Ci3 ω2

Ci2 = Ci3 ω1 - Ci1 ω3

Ci3 = Ci1 ω2 - Ci2 ω1

(38)

where

ω1, ω2, ω3 = Components of ωIB
B

Each row can be updated individually. Let’s look at row i in general.

Ci
T

= Ci
T

 ΩIB
B

where Ci
T

 ≡ Ci1, Ci2,Ci3 and Ci is the column vector formed from row i of C.

The transpose of Ci
T

 is:

Ci = ΩIB
B T

 Ci = - ΩIB
B

 Ci

Note: The transpose of ΩIB
B

equals its negative because it is skew symmetric.

We thereby obtain the Coriolis equivalent:

131

Ci = - ωIB
B

 × Ci (39)

Let’s look at the integration of (39). First note that the angular rate vector ωIB
B

 in (39) is not
available as a numerical value but only as integral counts from gyro pre-counters:

αP
B

= ωIB
B

tp

tp+1

 dt =
Δ

αx

αy

αz

(40)

where tp, tp+1 are gyro counter sample times. We might try the approximation that an
integral of (39) may be evaluated by summing the following differences:

Δ Cp+1 = - αP
B

 × Cp (41)

where the i has been dropped for convenience. Let’s evaluate how well (41) approximates
the true solution for the special case of αx = αy = 0 and αz = + ε for the first sample and -ε
for the second. For this special case, (41) becomes:

ΔC1p = C2p αzp = C2p ε

ΔC2p = - C1p αzp = - C1p ε

C1p+1 = C1p + ΔC1p = C1p + C2p ε

C2p+1 = C2p + ΔC2p = C2p - C1p ε

ΔC1p+1 = C2p+1 αzp+1 = - C2p ε + C1p ε2

ΔC2p+1 = - C1p+1 αzp+1 = C1p ε + C2p ε2

C1p+2 = C1p+1 + ΔC1p+1 = C1p

C2p+2 = C2p+1 + ΔC2p+1 = C2p

+ C1p ε2

+ C2p ε2
residual errors

Since the net rotation was zero, the correct values for C1 and C2 at p + 2 should be the
same as at p (i.e., C1p and C2p). The above algorithm, however, results in an error equal to
ε2 times C. Since C is on the order of 1, this is equivalent to an error on the order of 1/2 ε2

per iteration. On a drift rate basis:

132

Drift =
ε2

2 Δtp
 =

ε

2 Δtp
 ε =

1
2

 ω ε

in which ω represents the angular rate magnitude. To eliminate the drift rate effect under
limit cycle rate conditions, the use of a reversible first order algorithm has been used in the
past. (The algorithms we are discussing thus far are called first order because they only
contain α terms to the first power.) The reversible first order algorithm follows a
computation format similar to the one described previously. It differs in that C1 and C2 are
updated sequentially for αz with the order of update dependent on the sign of αz. The C2,

C3 and C3, C1 updates for αx, αy (see (38)) would be processed in a similar manner, with

the α’s being processed into the C update, also in sequential fashion (αx, then αy, then αz).

The update for αz is:

For αz Plus For αz Minus

ΔC1p = C2p αzp

C1p+1 = C1p + ΔC1p

ΔC2p = - C1p+1 αzp

C2p+1 = C2p + ΔC2p

ΔC2p = - C1p αzp

C2p+1 = C2p + ΔC2p

ΔC1p = C2p+1 αzp

C1p+1 = C1p + ΔC1p

Note: αzp includes sign in this nomenclature. i.e., αzp = - ε for a pulse of ε
magnitude in the negative sense.

It can be verified that for the sequence of αz consisting of +ε following by -ε, processing
the above algorithm (first the left side, then the right) returns the C states to their correct
initial conditions. In this respect, the reversible first order algorithm improves over the
algorithm discussed previously.

Under general high rate conditions, the drift error in all first order algorithms is on the

order of the formula given previously: 1/2 ω ε.

For a computer computation frequency of f, the value for ε when rotating at ω is:

ε =
ω
f

hence,

Drift = (
1
2

ω
f
) ω

133

Thus, the effect of the first order algorithm is to generate a scale factor type error equal to

1
2

ω
f
. At 200 deg/sec rotation rate, with a computation rate of 2 KHz , the equivalent scale

factor error is:

1
2

200 deg/sec

57.3 × 2000 Hz
 × 106 ppm = 873 ppm

Compared to typical high accuracy strapdown rate sensing scale factor accuracy
requirements of 5 ppm, this is clearly unacceptable. A higher iteration rate would reduce
the error, but would also increase the computer throughput requirements.

All first order algorithms suffer inaccuracy at high rates unless the iteration rate is increased
to an undesirably high level. The increased iteration rate, in turn, produces increased
computer round-off error. In modern strapdown systems, higher order algorithms are
used that have the combined effect of reversibility, high accuracy at high rates, and
reasonable repetition rates (e.g., 100 - 200 Hertz) to minimize computer loading and round-
off error build-up. The next lecture will develop the higher order attitude algorithms used
with typical modern-day strapdown systems.

134

NAV SEMINAR - LECTURE 7 NOTES

The update of the CB
L
 matrix for body inertial rotation (the ΩIB

B
 part of Equation (33)) is

typically accomplished over several intervals for each ΩIL
L

 update; i.e., the ΩIB
B

 portion

might be updated at 100 Hertz while the ΩIL
L

 portion is updated at 10 Hertz. The ΩIL
L

update can be approximated as:

CB n+1
L n+1

 = CB n+1
L n

 -
ΩIL

L
 n + ΩIL

L
 n+1 Tn

2
 CB n+1

L n
(42)

where

Tn = Update interval from tn to tn+1

As discussed in the previous lecture, this approximation typically results in an acceptably

small error because ωIL
L

 is small and slowly changing over the update period Tn.

The higher frequency update of CB
L
 due to body rates ΩIB

B
 calculates the value of CB

L
 at the

intermediate points between the tn and tn+1 low frequency update times. Denoting the
intermediate update times as tm, tm+1, tm+2, etc. we can write a general sequence for the
high frequency updating operation as:

CB m
L n

 = CB n
L n

 CB m
B n

CB m+1
L n

 = CB m
L n

 CB m+1
B m

CB m+2
L n

 = CB m+1
L n

 CB m+2
B m+1

CB n+1
L n

 = CB m+i
L n

 CB n+1
B m+i

(43)

I.e., the CB
L
 update for ΩIB

B
 consists of a series of intermediate updates of the form:

CB m+1
L n

= CB m
L n

 CB m+1
B m

The CB m
L n

 matrix is the value of CB
L

 from the last update; CB m+1
B m

 is the cosine matrix

generated by ΩIB
B

 that moves B from its orientation at tm to its orientation at tm+1. Let’s

135

find an expression for CB m+1
B m

 for an angular rotation defined about a space fixed axis u

through an angle φ. For such a rotation definition, we will now derive an equation for

CB m+1
B m

 in terms of u and φ*..

For the derivation, it is helpful to think of B(m) as a fixed reference frame R and the
B(m+1) frame as rotated relative to R which we will denote as B (for the body frame).
Hence:

CB m+1
B m

=
Δ

CB
R (43A)

Now, define an arbitrary vector ro
B

 as fixed in the body frame. Clearly, in the R frame, this

vector looks like:

ro
R

= CB
R

 ro
B (43B)

Now, look at the geometry in the figure to determine ro
R

 in terms of ro
B

 after a rotation φ
about the axis u.

u a

b

d

φ
c

The perspective in this
drawing is for this point
to be considered above
the page and the circle at
the right below the page.

ro
R

ro
B

As ro
B

 rotates about u through φ, it traces a cone about u. The tip of ro
B

 traces a circular arc

in the plane normal to u. The vector ro
R

 is equal to ro
B

 after it has rotated through φ into the

ro
R

 position (i.e., in the R frame, ro
B

 looks like it rotates to ro
R

. In the B-Frame, ro
B

 is constant

** Based on the geometrical method used by John E. Bortz, “A New Mathematical Formulation For
Strapdown Inertial Navigation”, IEEE Transactions On Aerospace and Electronic Systems, Volume
AE5-7, No. 1, January 1971.

136

by definition). We also define vectors b, c, d as radii to the circle with c, d intercepting ro
B

and ro
R

, and b perpendicular to c. Vector a is the projection of ro
B

 along u. Note that it is

also the projection of ro
R

 along u. Considering u to be a unit vector, we can now write:

ro
R

= a + d (44)

a = ro
B

 • u u (45)

c = ro
B

 - a = ro
B

 - ro
B

 • u u (46)

where a is the component of ro
B

 along u. From the diagram, b is defined to have the same
magnitude as c and perpendicular to c and u with the same magnitude as c. Thus, since u
is defined as a unit vector,

b = u × c

or with (46),

b = u × ro
B

(47)

Let’s find an expression for d in terms of b and c. Look into the circular plane:

φ

b
d

c

/d/ sin φ /d/ cos φ

Vector d can be broken up into two parts: /d/ cos φ along c, and /d/ sin φ along b. Thus,

d = /d/ sin φ
b
/b/

 + /d/ cos φ
c
/c/

 ↑ ↑
 unit unit
 vector vector
 along b along c

But since a, b, and c are radii of the same circle:

/b/ = /c/ = /d/

137

Thus:

d = b sin φ + c cos φ (48)

Combining (45) through (48) in (44):

ro
R

= ro
B

 ⋅ u u + u × ro
B

 sin φ + ro
B

 - ro
B

 ⋅ u u cos φ

= 1 - cos φ u u ⋅ ro
B

 + sin φ u × ro
B

 + cos φ ro
B

The vector triple product identity states:

A × B × C = A ⋅ C B - A ⋅ B C

Hence:

u u ⋅ ro
B

 = u × u × ro
B

 + u ⋅ u ro
B

 = u × u × ro
B

 + ro
B

Thus:

ro
R

= 1 - cos φ u × u × ro
B

 + ro
B

 + sin φ u × ro
B

 + cos φ ro
B

= ro
B

 + sin φ u × ro
B

 + 1 - cos φ u × u × ro
B

In matrix form,

ro
R

= ro
B

 + sin φ u × ro
B

 + 1 - cos φ u × u × ro
B

= I + sin φ u × + 1 - cos φ u × u × ro
B (49)

where

u × = Skew symmetric form of u, equivalent to a cross-product operator.

Comparing the above with (43B), we can write the equation for CB
R

 in terms of u and φ:

CB
R

= I + sin φ u × + 1 - cos φ u × u ×

If we define:

φ =
Δ

φ u u =
φ

φ

138

we obtain:

CB
R

= I +
sin φ

φ
 φ × +

1 - cos φ

φ2
 φ × φ × (50)

Equation (50) defines the direction cosine matrix equivalent to a rotation maneuver φ (φ

about a constant axis u). We can look at φ as another way of defining C through the (50)

relationship. That is, for every C, there is a φ that satisfies (50). This is a statement of the
fact that a body can be rotated from one orientation to any other through a single rotation

about a fixed axis in space. This combined axis rotation is defined by φ. Now, what if the

rotation maneuver that created CB
R

actually did occur as a fixed maneuver about a fixed

axis? (Note - This doesn’t have to be the case; CB
R

 could have been created by any

arbitrary maneuver. After CB
R

 is formed, φ is defined as that single axis maneuver that

would have generated the same CB
R

). For a real single axis maneuver, u is along ω (i.e. -

the vehicle angular velocity axis which is fixed for the maneuver). Then:

u =
ω

ω
 u ⋅ ω = ω

φ = ω dt
tm

tm+1

φ = u φ = u ω dt
tm

tm+1

 = ω dt
tm

tm+1

φ = ω dt
tm

tm+1

 = α = Gyro counts

Thus, for an actual rotation maneuver about a fixed axis, φ equals the gyro counts, and (50)

with α for φ gives an exact solution for updating the CB
L

matrix for the α rotation.

Looking at (50) in more detail:

139

φ =
Δ

φx

φy

φz

 φ2
= φx

2
 + φy

2
 + φz

2

sin φ = φ -
φ3

3!
 +

φ5

5!
 -

sin φ

φ
 = 1 -

φ2

3!
 +

φ4

5!
 - powers of φ2

cos φ = 1 -
φ2

2!
 +

φ4

4!
 -

φ6

6!
 +

1 - cos φ

φ2
 =

1
2!

 -
φ2

4!
 +

φ4

6!
 - powers of φ2

φ × =

o - φz φy

φz o - φx

- φy φx o

φ × φ × = φ × 2
 =

- φz
2
 + φy

2 φx φy φx φz

φx φy - φz
2
 + φx

2 φy φz

φx φz φy φz - φy
2
 + φx

2

And (50) is (with 43A):

CB m+1
B m

 = I + 1 -
φ2

3!
 +

φ4

5!

o - φz φy

φz o - φx

- φy φx o

 +
1
2!

 -
φ2

4!
 +

φ4

6!

- φz
2
 + φy

2 φx φy φx φz

φx φy - φz
2
 + φx

2 φy φz

φx φz φy φz - φy
2
 + φx

2

(51)

with

140

CB m+1
L n

= CB m
L n

 CB m+1
B m (51A)

The “order” of the algorithm depends on the number of terms carried in the series

expansions. A fifth order algorithm, for example, uses terms including the
φ4

5!
 and

φ2

4!
terms.

If (51) is used with the body rate integrals for φ, (51) has to be iterated fairly rapidly to

assure that the assumption of a non-rotating ω vector is valid (say 1000 Hertz). This
restriction can be removed if a compensation term is first added to the body rate integrals to

correct for ω rotation motion (coning). This is, in fact, the correct φ vector to use (the use

of the body rate integral for φ is only an approximation). For the next lecture, we will

develop an expression for evaluating φ in terms of ω, and show that it equals the integral of

ω plus terms proportional to φ × ω (i.e. - the portion of ω perpendicular to φ, which is the
coning effect).

141

NAV SEMINAR - LECTURE 8 NOTES

This lecture deals with a general derivation of the rate of change of φ without restrictions on

ω (such as in the last lecture where ω was assumed non-rotating and φ, under those

conditions, was shown to be equal to the integral of ω). We begin* with the expression for

CB
R

(Equation (50)):

C = I + f1 φ × + f2 φ × 2 (52)

where for simplicity, the following definitions have been introduced:

C =
Δ

CB
R f1 =

sin φ

φ
f2 =

1 - cos φ

φ2
(52A)

The transpose of (52) is:

CT = I + f1 φ × T
 + f2 φ × T

 φ × T

 = I - f1 φ × + f2 φ × 2

(53)

where use has been made that φ × is skew symmetric and, therefore,

φ × T
= - φ ×

Combining (52) and (53) yields an expression for φ× in terms of C and f1:

1
2

 C - CT = f1 φ × (54)

The C and φ × quantities can be viewed as continuous functions that are generated as the
body moves from B(m) (or R from last lecture) to B(m+1) through a continuous set of

attitudes determined by

ωIB

B
. The value for C and φ × at B(m+1), then equals the values

needed for the Equation (51) computer algorithm. The equation we seek for φ is a

differential equation defining how φ changes from m to m+1. Integration over the interval

* Based on similar a formulation by John E. Bortz, “A New Mathematical Formulation For Strapdown
Inertial Navigation”, IEEE Transactions On Aerospace and Electronic Systems, Volume AES-7, No.
1, January 1971.

142

from m to m+1 will yield the sought after general value of φ for (51). In general, φ will be

a function of the instantaneous values of ω and φ (or C from Equation (52)) at any given
time in the interval between m and m+1.

With this concept in mind, we differentiate (54) to obtain an expression for φ during the

interval m and m+1 (Remember that (52) was derived strictly as a function of φ without
fixing the time at m+1. Therefore, it is completely valid to consider (52) as a general

expression that defines how C is generated as φ evolves continuously from m to a general
running time in the interval from m to m+1):

1
2

 C - C
T

= f1 φ × + f1 φ × (55)

From the previous lecture, and extending to an arbitrary time point during the interval from
m to m+1 (say m+i where i is a running time variable from m):

CB m+i
L n

 = CB m
L n

 CB m+i
B m

(56)

The derivative of (56) with respect to running time from m is:

CB m+i
L n

 = CB m
L n

 CB m+i
B m

(57)

From Equation (37) which expresses the general rate of change CB
L
 due to ΩIB

B
:

CB m+i
L n

 = CB m+i
L n

 ΩIB
B

or, with (56)

CB m+i
L n

 = CB m
L n

 CB m+i
B m

 ΩIB
B

(58)

Equating (57) and (58):

CB m+i
B m

 = CB m+i
B m

 ΩIB
B

(59)

It should be clear from the last lecture and the definition of C given previously, that at m+i
in the interval between m and m+1,

CB m+i
B m

 = CB i
R

 = C (60)

Thus, with (59):

143

C = C ω × (61)

where, for simplicity, ω has been used for ωIB
B

, or in skew symmetric form:

ω × =
Δ

ΩIB
B

We can now use (61) to obtain an expression for
1
2

 C - C
T

 in Equation (55). Using (52)

for C in (61),

C = ω × + f1 φ × ω × + f2 φ × 2
 ω × (62)

The transpose of (62) is:

C
T

= - ω × + f1 ω × φ × - f2 ω × φ × 2 (63)

One half the difference between (62) and (63) is:

1
2 C - C

T = ω × +
1
2

 f1 φ × ω × - ω × φ ×

+
1
2

 f2 φ × 2
 ω × + ω × φ × 2

(64)

Equation (64) is an expression for the
1
2

 C - C
T

 term in (55). It can be simplified as

follows. First, remember the vector triple product identity:

A1 × A2 × A3 = A 1 ⋅ A3 A2 - A 2 ⋅ A3 A1

Now, look at the term multiplying
1
2

 f1 in (64), and multiply it by an arbitrary vector V:

φ × ω × V - ω × φ × V = φ × ω × V - ω × φ × V

Using the vector triple product identity for each of the latter terms:

φ × ω × V = - ω × V × φ = - ω ⋅ φ V + V ⋅ φ ω

ω × ω × V = - φ × V × ω = - φ ⋅ ω V + V ⋅ ω φ

Subtracting the previous expressions yields

144

φ × ω × V - ω × φ × V = V ⋅ φ ω - V ⋅ ω φ

or with the vector triple product identity:

φ × ω × V - ω × φ × V = φ × ω × V

and in matrix form:

φ × ω × V - ω × φ × V = φ × ω * V

where

()* = The skew symmetric form of the vector in brackets.

Since V is arbitrary,

φ × ω × - ω × φ × = φ × ω * (65)

The term multiplying
1
2

 f2 in (64) can be reduced in a similar manner:

φ× 2
 ω × V + ω × φ× 2

 V = φ × φ × ω × V + ω × φ× φ × V

φ × φ × ω × V = φ × - φ ⋅ ω V + φ ⋅ V ω

 = - φ ⋅ ω φ × V + φ ⋅ V φ × ω

ω × φ × φ × V = ω × - φ ⋅ φ V + φ ⋅ V φ

 = - φ2
 ω × V + φ ⋅ V ω × φ

 = - φ2
 ω × V - φ ⋅ V φ × ω

φ × φ × ω × V + ω × φ × φ × V = - φ ⋅ ω φ × V - φ2
 ω × V

or in matrix form:

φ × 2
 ω × V + ω × φ × 2

 V = - φ ⋅ ω φ × V - φ2
 ω × V

Since V is arbitrary:

φ × 2
 ω × + ω × φ × 2

 = - φ ⋅ ω φ × - φ2
 ω × (66)

145

Substituting (65) and (66) in (64) and (55):

1
2

 C - C
T

= ω × +
1
2

 f1 φ × ω * -
1
2

 f2 φ ⋅ ω φ × + φ2
 ω ×

= f1 φ × + f1 φ ×
(67)

Each term in (67) contains a scalar times a vector skew symmetric matrix. We can,
therefore, invert each element of the equation to find the equivalent vector form:

f1 φ + f1 φ = ω +
1
2

 f1 φ × ω -
1
2

 f2 φ ⋅ ω φ + φ2
 ω (68)

Equation (68) is almost to the form we are looking for relating ω and φ to φ. We can

simplify it further if we introduce the following definition for ω:

unit vector along φ

ω = ωφ φ / φ + Δω (69)

where:

ωφ = The component of ω along φ

Δω = The component of ω perpendicular to φ.

Substituting (69) in (68):

f1 φ + f1 φ = ω +
1
2

 f1 φ × Δω -
1
2

 f2 φ ωφ φ + φ ωφ φ + φ2
 Δω

= ω +
1
2

 f1 φ × Δω -
1
2

 f2 φ2
 Δω - f2 φ ωφ φ

(70)

In the previous equation, use was made by the definition of Δω that φ ⋅ Δω = 0. Also, that

φ × φ = 0 .

We now take the dot product of (70) with φ. Using (69) for ω:

f1 φ ⋅ φ + f1 φ2
 = φ ωφ - f2 φ3

 ωφ (71)

146

where use has been made of the fact that φ × Δω and Δω are perpendicular to φ and that,

therefore, their dot products with φ are zero. The φ ⋅ φ term can be reduced by:

φ ⋅ φ = φ2

(φ ⋅ φ) = φ ⋅ φ + φ ⋅ φ = 2 φ ⋅ φ = 2 φ φ

 φ ⋅ φ = φ φ

Also, using (52A) for f1:

f1 =
φ φ cos φ - φ sin φ

φ2

With (52A) for f1 and f2, and the latter identities, (71) becomes:

φ sin φ + φ φ cos φ - φ sin φ = φ ωφ - 1 - cos φ φ ωφ

or

φ φ cos φ = φ ωφ cos φ

or for cos φ ≠ 0

φ φ = φ ωφ (72)

Going back to (71), and introducing φ ⋅ φ = φ φ and (72):

f1 φ ωφ + f1 φ2
= φ ωφ - f2 φ3

 ωφ

or

φ ωφ 1 - f1 - f2 φ3
 ωφ - f1 φ2

 = 0 (73)

Now go back to (70) and rearrange:

147

f1 φ = f1 ω + 1 - f1 ω +
1
2

 f1 φ × Δω -
1
2

 f2 φ2
 Δω - f2 φ ωφ φ - f1 φ

= f1 ω + 1 - f1 ωφ φ / φ + Δω +
1
2

 f1 φ × Δω -
1
2

 f2 φ2
 Δω - f2 φ ωφ φ - f1 φ

= f1 ω +
1
2

 f1 φ × Δω + 1 - f1 -
1
2

 f2 φ2
 Δω + 1 - f1 φ ωφ - f2 φ3

 ωφ - f1 φ2
 φ / φ2

The large term in brackets is equal to zero from (73). Thus, dividing by f1:

φ = ω +
1
2

 φ × Δω - 1 -
1
f1

 +
f2 φ2

2 f1
 Δω (74)

Using (52A) for the large term in brackets,

1 -
1
f1

 +
f2 φ2

2 f1
= 1 -

2 - f2 φ2

2 f1
= 1 -

1 + cos φ
2 f1

= 1 -
1 + cos φ φ

2 sin φ
= 1 -

φ sin φ

2 1 - cos φ

(75)

 a trig identity
 manipulation

The Δω term can be expressed in terms of ω and φ. By definition,

Δω = ω - ωφ φ / φ = ω - ω ⋅ φ / φ φ / φ = ω - ω ⋅ φ φ / φ2

 =
1

φ2
 φ2

 ω - ω ⋅ φ φ

Using the triple vector product identity and φ ⋅ φ = φ2
:

Δω = -
1

φ2
 φ × φ × ω (76)

Using (75) and (76) in (74), then yields the final expression for φ:

φ = ω +
1
2

 φ × ω +
1

φ2
 1 -

φ sin φ

2 1-cos φ
 φ × φ × ω (77)

148

Equation (77) is the general equation for φ which when integrated over the interval from m

to m+1 yields the exact value of φ to use in Equation (51). Note, that as the integration

begins (with φ initially zero), φ is equal to the integral of ω (i.e., - the second and third

terms in the Equation (77) expression start out at zero). If ω is constant, φ will, therefore,

be generated along ω, and the cross-products of ω with φ in the second and third terms will

remain zero. Hence φ will equal the integral of ω for the entire interval. This is the

approximation we discussed during the last lecture (i.e.: φ ≈ ω dt = α). If the rotation

of ω during the generation of φ is to be taken into account, the other terms in (77) must be
utilized. Note that the third term is much smaller than the second term. If the
trigonometric terms are expanded in a Taylor series, it can be shown that the trigonometric

term in brackets times
1

φ2
 is equal to

1
12

 (to first order in φ2
). Thus,

1

φ2
 1 -

φ sin φ

2 1-cos φ
 φ × φ × ω =

1
12

 φ × φ × ω + higher order terms

This is an order of magnitude smaller than
1
2

 φ × ω , and much smaller than even this due

to the 1/12 (compared to 1/2) coefficient. Hence, the second term can be neglected in the

coning equation. An additional approximation that can be used is that φ × ω can be

approximated by α × ω where

α = ω dt
m

Thus, the φ equation can be approximated by:

α = ω dt
m

Δφ =
1
2

 α × ω dt

φ = α + Δφ

or,

149

α = dα

Δ φ =
1
2

 α × dα

φ = α + Δφ

(78)

where

dα = The gyro output count vector

Equations (78) would be approximated by a digital integration algorithm that is iterated at
high rate between the update intervals of Equation (51). This can be performed as a high
speed software function in the central strapdown navigation computer or a separate high
speed processor.

150

NAV SEMINAR - LECTURE 9 NOTES

One of the fine tuning compensation terms commonly utilized with strapdown attitude
reference algorithms is an orthonormality correction that corrects the direction cosine
matrix for residual errors that may cause its rows and columns to deviate from
orthogonality and normality. This could be caused, for example, by computer finite word
length effects or truncation of the Equation (51) Taylor series under high rate inputs. The
orthonormality correction is based on the fact that the rows (and columns) of the C matrix
(relating body to local level coordinates - Equation (51)) represent unit vectors in one
coordinate frame projected on the axes of another frame. Being unit vectors along
orthogonal coordinate axes, their dot products with one another should be zero; being unit
vectors, their dot products with themselves should equal one. Deviations from
orthogonality and normality indicate an error effect that can be compensated on a regular
basis to bring the C matrix elements into their nominally orthogonal/normal condition.

To derive the equation for the orthonormality update, we first write the relation for C (i.e.,

CB
L

) in terms of its rows Ci:

C =

C1

C2

C3

 Note : The bar under Ci represents a row vector in this
discussion which differs from the usual
convention where under-bar represent a
column vector.

Each Ci represents a three element row vector equal (theoretically) to the projection into the
body coordinate frame of a unit vector along local level coordinates. (e.g. - C1 represents a
unit vector along the X (axis 1) local level coordinate axis, C2 along Y (axis 2), etc.). For
the orthogonality condition to be met, the dot product of the Ci’s with one another should
be zero. Lets look at a non-orthogonal condition between C1 and C2 and determine a
correction that will achieve orthogonality.

ΔC1

C1

ΔC2

C2

ε12

2

ε12

2

π
2

 + ε12

151

The figure shows C1 and C2 deviating from orthogonality (90 degrees) by the error angle
ε12. Since we have no reason to assume either C1 or C2 to be more likely in error, we
assume they are equally likely and apply a correction of equal amount to each. The

correction is to add a small vector amount (ΔC1 and ΔC2) to each that will rotate each by

half of ε12 so that a net ε12 rotation between the two will be applied. The result after the

rotations (dotted vectors) will achieve orthogonality. For small ε12, ΔC1 is parallel to C2

and ΔC2 is parallel to C1 so that:

ΔC1 =
ε12

2
 C2

ΔC2 =
ε12

2
 C1

The ε12 quantity is evaluated by taking the dot product of C1 with C2. The result, since
both C1 and C2 are unity in magnitude to first order, equals the cosine of the angle between
them:

C 1 ⋅ C2 = /C1/ /C2/ cos
π
2

 + ε12

 = - /C1/ /C2/ sin ε12 ≈ - /C1/ /C2/ ε12 = - ε12

Hence:

ΔC1 = -
1
2

 C 1 ⋅ C2 C2

ΔC2 = -
1
2

 C 1 ⋅ C2 C1

Similarly, to correct for non-orthogonality between C2, C3 and C3, C1:

ΔC2 = -
1
2

 C 2 ⋅ C3 C3

ΔC3 = -
1
2

 C 2 ⋅ C3 C2

 Correction for C2, C3 non-orthogonality

ΔC3 = -
1
2

 C 3 ⋅ C1 C1

ΔC1 = -
1
2

 C 3 ⋅ C1 C3

 Correction for C3, C1 non-orthogonality

152

The total orthogonality correction is the sum of the above three sets:

ΔC1 = -
1
2

 C 1 ⋅ C2 C2 -
1
2

 C 1 ⋅ C3 C3

ΔC2 = -
1
2

 C 2 ⋅ C3 C3 -
1
2

 C 2 ⋅ C1 C1

ΔC3 = -
1
2

 C 3 ⋅ C1 C1 -
1
2

 C 3 ⋅ C2 C2

(79)

To adjust for normality error, we want to find a correction that modifies the magnitude of
each Ci without altering its direction. The correction should be such that after its
application, the magnitude of Ci equals one. The correction, therefore, has the following
form:

ΔC = εii Ci (80)

For the magnitude of Ci to equal one after correction:

Ci + ΔCi ⋅ Ci + ΔCi = 1

or, substituting for ΔCi and assuming small εii:

Ci + εii Ci ⋅ Ci + εii Ci = 1 + εii C i ⋅ 1 + εii Ci

 = 1 + εii
 2

 C i ⋅ Ci ≈ 1 + 2 εii C i ⋅ Ci = 1

or

C i ⋅ Ci =
1

1 + 2 εii

 ≈ 1 - 2 εii

or

εii = -
1
2

 C i ⋅ Ci - 1

Substituting in (80), we obtain the normality correction for each Ci:

ΔC1 = -
1
2

 C 1 ⋅ C1 C1 - C1

ΔC2 = -
1
2

 C 2 ⋅ C2 C2 - C2

ΔC3 = -
1
2

 C 3 ⋅ C3 C3 - C3

(81)

153

The sum of (79) with (81) is the combined orthogonality/normality correction algorithm:

ΔC1 = -
1
2

 C1 C 1 ⋅ C1 + C2 C 1 ⋅ C2 + C3 C 1 ⋅ C3 - C1

ΔC2 = -
1
2

 C1 C 2 ⋅ C1 + C2 C 2 ⋅ C2 + C3 C 2 ⋅ C3 - C2

ΔC3 = -
1
2

 C1 C 3 ⋅ C1 + C2 C 3 ⋅ C2 + C3 C 3 ⋅ C3 - C3

or in matrix form:

ΔC1

ΔC2

ΔC3

= -
1
2

C1
C2
C3

C1

T C2
T C3

T C1
C2
C3

 -
C1
C2
C3

 = -
1
2

C1
C2
C3

C1

T C2
T C3

T

 - I
C1
C2
C3

where

I = The identity matrix =
1 0 0
0 1 0
0 0 1

or, in terms of C (see first equation in this set of notes):

ΔC =
1
2

 I - C CT C (82)

Equation (82) is the correction to be applied to the CB
L
 matrix to bring the rows into

orthogonality and normality. It is natural to ask if this is also the same expression that
would have been obtained if we had derived the relation to orthogonalize and normalize the
columns. The answer to this question is easily obtained by noting that the derivation of

(82) placed no restriction on C as being CB
L
. The same result would have been obtained for

any C, even the transpose of CB
L
. If the procedure was repeated for the rows of CB

L

transposed, we would derive the equation for orthonormalizing the rows of CB
L T

 or the

columns of CB
L
. Clearly, the result would equal (82), with C replaced by CT:

ΔC
T

 =
1
2

 I - CT CT T
 CT

154

or

ΔC
T

=
1
2

 I - CT C CT (83)

The transpose of the (83) is:

ΔC =
1
2

 C I - CT CT T
 (84)

or

ΔC =
1
2

 C I - CTC =
1
2

 C - C CTC =
1
2

 I - C CT C (85)

which is identical to (82). Hence (82) and (83) are equivalent and an orthonormalization of
the columns or rows of C produces the identically same result.

Some of the other compensations typically utilized in strapdown inertial navigation
systems are basic sensor error corrections, gyro quantization compensation and
accelerometer size effect compensation. Sensor compensation takes the sensor counts as
they enter the computer and corrects them for known sensor errors. For example, the x-
axis gyro (and accelerometer) sensor compensation equation typically looks like:

Δαx = K1 + K2 αx + K3 αy + K4 αz

where

K1 is the sensor bias correction.

K2 is the sensor scale factor correction

K3, K4 are sensor misalignment corrections

αx, αy, αz are sensor input counts

Δαx is the x-axis sensor error correction (to be added to αx)

For ring laser gyros, K1 in general is an analytically defined function of measured gyro
temperature, with the K2, K3, and K4 coefficients fixed. For very high angular rate/high
accuracy applications, the K2 scale factor coefficient may also include temperature sensitive
terms.

For the accelerometers, both K1 (bias), K2 (scale factor), and K3, K4 (misalignment)
coefficients are generally analytically defined functions of measured accelerometer
temperature. For high acceleration applications, the K2 scale factor coefficient for the

155

accelerometer may also contain acceleration sensitive terms based on accelerometer output
measurements (to account for scale factor nonlinearity).

A quantization correction can be incorporated for a laser gyro that compensates for
hysteresis and finite pulse size in the gyro readout logic. The average error introduced at
turn-around is the total deadband (d) minus the gyro pulse size (ε). The compensation is to
add this to the gyro count sample in the computer for each turn-around:

Δα =
d - ε

2
 sign αn - sign αn-1

where

αn is the gyro count sample

αn-1 is the previous gyro count sample

sign (αn) equals 1 for αn positive, and -1 for αn negative

For motion in one direction αn = αn-1 and the above effect is zero. For a change in

direction, the difference between the αn, αn-1 signs produce a “2” magnitude which when

multiplied by
d - ε

2
 produces the desired d - ε correction. The sense of the compensation is

also correct (positive for a negative turn-around: αn from + to - ; and negative for a positive
turn-around). Quantization compensation can also be incorporated for an accelerometer
depending on the type of accelerometer being used.

Accelerometer size effect compensation corrects for the fact that the three accelerometers
cannot physically occupy the same space, hence, measure acceleration at slightly different
points. Errors created by this effect are caused by angular motion and the resulting
differences in centripetal and angular acceleration between the accelerometer locations:

Δai = ui ⋅ ω × li + ω × ω × li

where

Δai = The correction for the ith accelerometer

ui = Unit vector along the ith accelerometer input axis

ω = Angular acceleration (computed from gyro sample differences)

li = Linear distance from the ith accelerometer to the sensor assembly reference
acceleration sensing point

156

ω = Gyro sensed angular rate

INTERFACE BETWEEN NAVIGATION AND STRAPDOWN
REFERENCE EQUATIONS

Thus far we have not made a distinction between local level axes used for the CB
L
 reference

and the local level axes used for navigation (i.e., the two frames have been assumed
identical). The two frames may differ, however, in the definition of their X, Y, Z axes.

Typically, the local level frame axes for CB
L
 are defined with Z down, while just the

opposite is typically the case for the navigation frame Z axis. The X, Y axes for the two

frames would be parallel, but X for the navigation frame would be the Y axis for the CB
L

reference frame, and Y for the navigation frame would be X for the CB
L
 reference. Both

frames, of course, are right handed.

The navigation coordinate frame selection in the above discussion is chosen so that
calculated navigation parameters are represented in the normal Z axis up convention
traditionally used in inertial navigation with positive wander angle defined as a rotation

about a Z up vertical. The CB
L
 reference frame selection in the above discussion is chosen

so that body angle reference data (described in the next section) follows normal
attitude/heading reference conventions (i.e., heading is traditionally defined as a rotation
about a Z down vertical).

Use of the two local level coordinate frame definitions does, however, cause some
confusion at the interface between the navigation and strapdown attitude reference
equations, requiring the following variable transformations:

ax

ay

az

=

ay

ax

-az

For navigation From strapdown
Equations (20) transformation Equation

 (29) or (29C)

ωx

ωy

ωz

=

ωy

ωx

-ωz

For CB
L
 update From Equation (19C) of

Equation (33) navigation computations

157

ATTITUDE/HEADING OUTPUTS

An important function in an inertial navigation system is its ability to provide
attitude/heading output data to other vehicle systems. In the case of a gimbaled inertial
system, this data is derived from resolvers mounted on the platform gimbal shafts. For a
strapdown system, the attitude/heading data is derived from the direction cosine matrix
relating body and Z down local level reference axes. The following diagram illustrates the
relationship between the Euler angles typically used to represent attitude/heading.

ψp θ φ

• •

•

Local
Level

Attitude
Reference

Axes

Vehicle
Body
Axes

In the diagram:

ψp = Vehicle heading angle relative to local level Z down reference axes (also
known as “platform heading”)

θ = Vehicle pitch angle

φ = Vehicle roll angle

The analytical relationship between ψp, θ, φ and the CB
L
 direction cosine matrix elements

can be written directly by inspection of the diagram as:

C11 = cos θ cos ψp

C12 = - cos φ sin ψp + sin φ sin θ cos ψp

C13 = sin φ sin ψp + cos φ sin θ cos ψp

C21 = cos θ sin ψp

C22 = cos φ cos ψp + sin φ sin θ sin ψp

C23 = - sin φ cos ψp + cos φ sin θ sin ψp

C31 = - sin θ

C32 = sin φ cos θ

C33 = cos φ cos θ

where

158

Cij = Element ij of CB
L
.

From the above,

cos θ = C32
2 + C32

2

So that the desired inverse relationships become:

φ = tan -1
C32

C33

θ = tan-1
- C31

C32
2 + C32

2

ψp = tan -1
C21

C11

In order to obtain heading relative to North rather than with respect to local level reference

axes, it is necessary to correct ψp for the wander angle (α). Thus ψN (vehicle true heading
relative to true North) is given by:

ψN = ψp - α

Note in the previous relationship, that the wander angle is subtracted from ψp to obtain ψN.
This is because the wander angle is defined relative to a Z up vertical (see Lecture 3) as

contrasted with ψN or ψp which are defined relative to a Z down vertical (see previous
section for further discussion on local level coordinate frame definitions).

It should also be noted that for pitch angles approaching ±90 degrees, both the numerator

and denominator of the φ and ψp arc tangent arguments approach zero, hence, φ and ψp
become undefined. This is simply a statement of the fact that for nose up or down
attitudes, roll and heading are indistinguishable (i.e., heading is measured about the vertical
and roll is measured about the vehicle longitudinal axis which is also vertical for θ = ±90

degrees). A typical implementation of the φ, ψ output functions for θ near ±90 degrees is

to hold them fixed at their last computed value until θ becomes once again sufficiently
removed from the ±90 degrees singularity condition.

QUATERNIONS

A course in strapdown navigation would not be complete without including a discussion
on Quaternions. Quaternion parameters have found popular usage in strapdown

159

applications for attitude referencing as contrasted with the direction cosine matrix attitude
reference parameters described previously.

The attitude reference quaternion is based on the concept of the Euler axis of rotation that
exists between two coordinate frames that have some arbitrary angular orientation relative
to one another. The Euler axis is defined as the axis of rotation about which one coordinate
frame can be rotated into the other. For any arbitrary attitude of one frame relative to the
other, one unique Euler axis exists. The attitude quaternion associated with two coordinate
frames is defined as a set of four parameters: three represent the components of a vector
directed along the Euler axis between the two frames; the fourth is a scalar quantity. The
length of the vector parameter equals the sine of β/2 where β is the angle of rotation about
the Euler axis that rotates one of the coordinate frames into the other; the scalar parameter
equals the cosine of β/2.

The discussion to follow describes how the attitude reference quaternion can be used as an
alternative to direction cosines in the strapdown attitude determination integration process,
and in the transformation operation that converts body sensed accelerations to their
equivalent local level navigation coordinate axis counterparts. Also to be addressed is a
comparison between the relative advantages and disadvantages between the quaternion and
the direction cosine matrix approaches for body attitude referencing in strapdown
navigation applications.

To introduce the quaternion concept, let’s begin the discussion in a somewhat unrelated
field: complex numbers (as in Morse and Feshbach, Methods of Theoretical Physics). A
complex number v is defined as having a real and imaginary part:

v = e i + h

where:

e, h = Scalar quantities

i = The imaginary number defined as the square root of minus one.

From the definition of i,

i i = -1

The complex number v can be thought of as a “two-vector” with components e and h in
the complex plane. We will now demonstrate that another complex number u can be
defined that can be used as an operator to rotate v through an angle φ in the complex plane.
We also note that a rotation of a vector is equivalent mathematically to a vector
transformation operation. Let’s define u in general as

u = a i + d

The product w of u with v is:

160

w = u v = a i + d e i + h = a e i i + a h i + d e i + d h

 = e d + h a i + h d - e a

Hence, the effect of the multiplication operation of u on v is to create a new complex
number w with a real component (h d - e a) and an imaginary component (e d + h a).

If the components of u were defined as

a = sin φ d = cos φ

The u v product w would be:

w = e cos φ + h sin φ i + h cos φ - e sin φ

From the latter expression it should be apparent that the u v product vector represents
vector v rotated by φ in the complex plane. Alternatively, w is equivalent to vector v

projected along the axes of a new complex plane rotated by φ from the original (see
following sketch).

φ

Original
Real

Original
Imaginary

 e cos φ
+ h sin φ

e

Rotated
Imaginary

φ

v

h

h cos φ
- e sin φ

φ

h

Real

Imaginary

 e cos φ
+ h sin φ

e

Rotated v

Original v

h cos φ
- e sin φ

Rotated
Real

Thus, u = i sin φ + cos φ can be considered as an operator that transforms vector v into a

new frame rotated by φ from the original frame.

Let’s try to extend this concept into the world of three-dimensional vectors. If we now
consider the i parameter to represent a unit vector along the x-axis of a three-dimensional
coordinate frame, we can extend the concept of v to also include the j and k components
(i.e., with y and z axis components) as a “four-vector”:

v = e i + f j + g k + h

161

where

e, f, g = The conventional components of a vector in an x, y, z three-dimensional
coordinate frame.

h = A fourth component (a scalar) which would normally be zero if v represented
a typical 3-component vector, but which is carried as a scalar quantity (e.g., in
a fourth dimension) for the present.

The u quantity is similarly expanded.

u = a i + b j + c k + d

We now define the rules of four-vector multiplication by extension of the complex number
concept using a right-handed vector cross-product convention:

i i = -1 j j = -1 k k = -1
i j = k j k = i k i = j
j i = -k k j = -i i k = -j

With the above definitions, the product w of u with v is now given by:

w = u v = a i + b j + c k + d e i + f j + g k + h

= a e i i + a f i j + a g i k + a h i
+ b e j i + b f j j + b g j k + b h j
+ c e k i + c f k j + c g k k + c h k
+ d e i + d f j + d g k + d h

= a h + d e + b g - c f i
+ b h + d f + c e - a g j
+ c h + d g + a f - b e k
+ d h - a e - b f - c g

or in “Four-vector” matrix form:

e'
f '
g'
h'

 =

d - c b a
c d - a b
- b a d c
- a - b - c d

e
f
g
h

(85A)

where

w =
Δ

e' i + f ' j + g' k + d'

To complete the analogy it would be ideal at this point if we could now equate the
components of u to a three-dimensional vector transformation operation and demonstrate

162

that the i, j, k components of w as defined above represent the transformed form of the i, j,
k components of v. Unfortunately, the analogy breaks down to a certain extent and such a
simple relationship for u is not quite possible. However, an equivalent expression for u
can be found that does possess the desired vector transformation property, if we modify
the u operation on v to be defined as

w = u v u* (85B)

where

u* is the complex conjugate of u defined by:

u* = - a i - b j - c k + d

Carrying out the v u* product in (85B) using the previously stated rules of four-vector
multiplication yields:

v u* = ei + fj + gk + h -ai - bj - ck + d

= ed - ha - fc + gb i
+ fd - hb - ga + ec j
+ gd - hc - eb + fa k
+ hd + ea + fb + gc

=

d -c b -a
c d -a -b
-b a d -c
a b c d

e
f
g
h

and for the newly defined w given by (85B) we find with (85A):

w = u v u* =

d -c b a
c d -a b
-b a d c
-a -b -c d

d -c b -a
c d -a -b
-b a d -c
a b c d

e
f
g
h

=

d2 + a2 - b2 - c2 2 ab - cd 2 ac + bd 0

2 ab + cd d2 + b2 - c2 - a2 2 bc - ad 0

2 ac - bd 2 bc + ad d2 + c2 - a2 - b2 0

0 0 0 a2 + b2 + c2 + d2

e
f
g
h

(85C)

We now equate the components of u to the previously defined quaternion rotation
parameters. If the Euler axis for the rotation operation in question is denoted as having i, j,
k components of l, m and n, and the rotation magnitude is φ, the four components of u are
given by:

a = l sin
φ
2

b = m sin
φ
2

c = n sin
φ
2

d = cos
φ
2

163

If we now define a vector φ as lying along the Euler axis with magnitude φ, we can also
write:

l =
φx

φ
m =

φy

φ
n =

φz

φ

where

φx, φy, φz = The components of φ.

Thus,

a =
φx

φ
 sin

φ
2

b =
φy

φ
 sin

φ
2

(85D)

c =
φz

φ
 sin

φ
2

d = cos
φ
2

Substitution of (85D) into (85C) after application of appropriate trigonometric identities
equates to:

w =

1 - φy
2+φz

2 1-cos φ

φ2
-

φz

φ
sinφ+φxφy

1-cos φ

φ2

φy

φ
sinφ+φxφz

1-cos φ

φ2
0

φz

φ
sinφ+φxφy

1-cos φ

φ2
1 - φx

2+φz
2

1-cos φ

φ2
-

φx

φ
sinφ+φyφz

1-cos φ

φ2
0

-
φy

φ
sinφ+φxφz

1-cos φ

φ2

φx

φ
sinφ+φyφz

1-cos φ

φ2
1 - φx

2+φy
2

1-cos φ

φ2
0

0 0 0 1

e
f
g
h

 (85E)

The upper left 3 × 3 elements in (85E) are equivalent to:

I +
sin φ

φ
 φ × +

1- cos φ

φ2
 φ × φ ×

This is identically the same expression derived in Lecture 7 (Equation (50)) for the
direction cosine matrix between two coordinate frame rotated relative to one another by the

rotation vector φ. It can be concluded that the quaternion operation defined by Equation
(85B) with (85D) is equivalent to a vector transformation operation on the three vector
components of v.

164

A Quaternion for Strapdown Body Attitude Referencing -- The previous discussion has
introduced the concept of the quaternion and its relationship to the direction cosine matrix.
For the strapdown attitude referencing problem, a quaternion representing the attitude
orientation between body and local level navigation axes is computed through an
integration process. The quaternion elements are then converted to their equivalent
direction cosine form when required for strapdown vector transformation operations, or to
evaluate Euler angle outputs.

If the quaternion relating body to local level navigation axes is defined as

qB
L

=

a
b
c
d

the equivalent to the CB
L
 direction cosine matrix was shown through equations (85C),

(85E), and (50) to be:

CB
L

=

d2 + a2 - b2 - c2 2 ab - cd 2 ac + bd

2 ab + cd d2 + b2 - c2 - a2 2 bc - ad

2 ac - bd 2 bc + ad d2 + c2 - a2 - b2

(85F)

As for the direction cosine updating operations discussed in Lecture 6, the quaternion
integration process can be divided into two steps: updates for body motion, and updates
for local level motion. The body motion updates are typically handled at a high rate (e.g.,
100 Hz) using a high order algorithm, while the quaternion updates for navigation frame
rotation can be accurately handled at a lower rate (e.g., 10 Hz) using a simpler first order
algorithm.

Attitude Reference Quaternion Updating for Body Motion -- For body motion updating,

let’s define qB
L
 at two different times, tm and tm+1, relative to the navigation frame attitude

at time tn. These values for qB
L
 will be denoted as qB(m)

L(n)
 and qB(m+1)

L(n)
 analogous to the

direction cosine nomenclature in Lecture 7. Further, let’s define another quaternion

hB(m+1)
B(m)

 relating the body attitude at the tm and tm+1 points. If the rotation angle vector φ
represents the Euler axis and angle relating the body attitude at times tm and tm+1 we can
write as in Equation (85D):

165

hB(m+1)
B(m)

=

φx

φ
 sin

φ
2

φy

φ
 sin

φ
2

φz

φ
 sin

φ
2

cos
φ
2

or in equivalent mixed vector/scalar notation,

hB(m+1)
B(m)

= φ / φ sin
φ
2

 + cos
φ
2

(85G)

where

φ = φx i + φy j + φz k

The components of φ for (85G) are evaluated from gyro body axis data exactly as
described in Lectures 7 and 8.

The problem we now pose for the quaternion body motion updating problem is: given

hB(m+1)
B(m)

 from Equation (85G), how does one calculate the updated attitude quaternion

qB(m+1)
L(n)

 from the previously calculated value qB(m)
L(n)

? The solution is obtained by

observing the effect of the quaternion operator on an arbitrary four-vector v. The four-
vector v can be defined in each of the coordinate frames of interest (L(n), B(m), and
B(m+1)) as vL(n), vB(m), and vB(m+1). The relationship between the components of v in
these frames is obtained by application of the quaternion transformation rule given by
Equation (85B):

vB(m) = hB(m+1)
B(m)

 vB(m+1) hB(m+1)
B(m) *

vL(n) = qB(m)
L(n)

 vB(m) qB(m)
L(n) *

or, in combination:

vL(n) = qB(m)
L(n)

 hB(m+1)
B(m)

 vB(m+1) hB(m+1)
B(m) * qB(m)

L(n) *

166

The following conjugate product rule for quaternions can be easily demonstrated by
component expansion and application of the four-vector product rules:

 hB(m+1)
B(m) * qB(m)

L(n) * = qB(m)
L(n)

 hB(m+1)
B(m) *

hence,

vL(n) = qB(m)
L(n)

 hB(m+1)
B(m)

 vB(m+1) qB(m)
L(n)

 hB(m+1)
B(m) *

but,

vL(n) = qB(m+1)
L(n)

 vB(m+1) qB(m+1)
L(n) *

therefore,

qB(m+1)
L(n)

 = qB(m)
L(n)

 hB(m+1)
B(m)

(85H)

Equations (85G) and (85H) define how the attitude quaternion qB
L
 is updated from cycle to

cycle in the system computer as a function of the body rotation angle vector φ determined
as in Lectures 7 and 8 from gyro input data.

Attitude Reference Quaternion Updating for Local Level Motion -- Let’s now define

rL(n+1)
L(n)

 as another rotation quaternion relating the local navigation frame attitude at times tn
and tn+1:

rL(n+1)
L(n)

= θ / θ sin
θ
2

 + cos
θ
2

(85I)

where θ is defined as the Euler axis rotation vector in local level coordinates that rotates the
L frame from its orientation at tn into its orientation at tn+1. We also note at this point that

the inverse quaternion rL(n)
L(n+1)

 is given by:

rL(n)
L(n+1)

= - θ / θ sin
θ
2

 + cos
θ
2

(85J)

The latter relationship becomes obvious when one recognizes that the Euler axis in frames
L(n) and L(n+1) have identical components (i.e., the Euler axis is the axis about which
L(n) revolves into L(n+1); hence, the Euler axis is stationary in the L frame as L rotates
from its tn orientation L(n) into its tn+1 orientation L(n+1)). The angle value for the
rotation from tn+1 to tn, of course, is the negative of the angle value for a rotation from tn to
tn+1. Thus, the justification for (85J) compared to (85I).

167

We now apply the test vector v (as for body motion updating) to q and r to determine the

relationship between qB(n)
L(n)

 and qB(n)
L(n+1)

 in terms of rL(n)
L(n+1)

 .

vL(n+1) = rL(n)
L(n+1)

 qB(n)
L(n)

 vB(n) rL(n)
L(n+1)

 qB(n)
L(n) *

but,

vL(n+1) = qB(n)
L(n+1)

 vB(n) qB(n)
L(n+1) *

therefore,

qB(n)
L(n+1)

= rL(n)
L(n+1)

 qB(n)
L(n) (85K)

Equation (85K) with (85J) shows how the quaternion qB
L
 is updated for local level frame

motion. The θ vector in (85J) can be approximated to first order (as in Lecture 7) as the
time interval Tn between tn and tn+1 times the average value of the local level navigation
frame angular rate over the tn to tn+1 interval:

θ = ωIL
L

(n) + ωIL
L

(n+1)
Tn

2 (85L)

Differential Equation for the Body Attitude Reference Quaternion - A differential equation
for the body attitude quaternion can also be derived from Equations (85G), (85H), (85J),

and (85K) by analyzing the case where qB
L
 is updated by a body rotation and navigation

frame rotation over a given time interval. From (85H), the change ΔB in qB
L
 due to the

body rotation h is:

ΔB qB
L

= qB(m)
L(n)

 hB(m+1)
B(m)

 - qB(m)
L(n)

= qB(m)
L(n)

 hB(m+1)
B(m)

 - 1

From Equation (85K), the change ΔL in qB
L
 due to navigation frame rotation is:

ΔL qB
L

= rL(n)
L(n+1)

 qB(n)
L(n)

 - qB(n)
L(n)

= rL(n)
L(n+1)

 - 1 qB(n)
L(n)

For the same time intervals (i.e., equivalencies between m and n), the total change Δ in qB
L

is the sum of the latter two expressions:

ΔqB
L

= qB(n)
L(n)

 hB(n+1)
B(n)

 - 1 + rL(n)
L(n+1)

 - 1 qB(n)
L(n) (85M)

168

We now return to equations (85G) and (85J) for h and r to evaluate the previous (h-1) and

(r-1) terms over a small time interval (tn to tn+1) such that φ and θ are small:

hB(n+1)
B(n)

 - 1 = φ / φ sin
φ
2

 + cos
φ
2

 - 1 ≈ φ / φ
φ
2

 + 1 - 1 =
1
2

 φ

rL(n)
L(n+1)

 - 1 ≈ -
1
2

 θ

Using the shorthand qB
L
 for qB(n)

L(n)
 , (85M) then becomes:

Δ qB
L

=
1
2

 qB
L

 φ -
1
2

 θ qB
L

We now divide the latter expression by the time interval for the qB
L
 change (Δt) and let Δt

go to zero in the limit to obtain an expression for qB
L
.

qB
L

=
1
2

 qB
L

 lim
1

Δt
 φ -

1
2

 lim
1

Δt
 θ qB

L

Δt → 0 Δt → 0

From Lectures 5 through 8 it should be clear that:

lim
1

Δt
 φ = ωIB

 B

Δt → 0

lim
1

Δt
 θ = ωIL

 L

Δt → 0

Therefore,

qB
L

=
1
2

 qB
L

 ωIB
B

 -
1
2

 ωIL
L

 qB
L (85N)

Equation (85N) is the differential equation describing the rate of change of the body attitude

quaternion in terms of strapdown gyro sensed rates ωIB
B

 and calculated local level

navigation frame rotation rates ωIL
L

. Equation (85N) directly parallels the equivalent

relationship for the CB
L
 direction cosine matrix rate given by Equation (33). Note that

Equation (85N) is a four-vector equation that must abide by the rules of four-vector

169

multiplication if it is to be expanded in terms of its components. As an exercise, it is
interesting to look at the component form of (85m). If we define:

ωIB
B

=

ωx

ωy

ωz

0

ωIL
L

=

ω1

ω2

ω3

0

with, as before:

qB
L

=

a
b
c
d

Equation (85N) becomes:

a

b

c

d

 =
1
2

d -c b a
c d -a b
-b a d c
-a -b -c d

ωx

ωy

ωz

0

 -
1
2

0 -ω3 ω2 ω1

ω3 0 -ω1 ω2

-ω2 ω1 0 ω3

-ω1 -ω2 -ω3 0

a
b
c
d

or

a

b

c

d

 =
1
2

d -c b
c d -a
-b a d
-a -b -c

ωx

ωy

ωz

 -
1
2

d c -b
-c d a
b -a d
-a -b -c

ω1

ω2

ω3

or equivalently:

a

b

c

d

 =
1
2

0 ωz + ω3 - ωy + ω2 ωx - ω1

- ωz + ω3 0 ωx + ω1 ωy - ω2

ωy + ω2 - ωx + ω1 0 ωz - ω3

- ωx - ω1 - ωy - ω2 - ωz - ω3 0

a
b
c
d

Comparisons Between Quaternion Parameters and Direction Cosines for Strapdown Body
Attitude Referencing -- The tradeoff between direction cosines versus quaternion
parameters as the primary attitude reference data in strapdown inertial systems has been a

170

popular area of debate between strapdown analysts in the past. In its original form, the
tradeoff centered on the relative accuracy between the two methods in accounting for body
angular motion. These tradeoffs invariable evolved from the differential equation form of
the direction cosine and quaternion updating Equations (33) and (85N) investigating the
accuracy of equivalent algorithms for integrating these equations in a digital computer
under hypothesized body angular motion. Invariably, the body motion investigated was
coning motion at various frequencies relative to the computer update frequency. For these
early studies, the tradeoffs generally demonstrated that for comparable integration
algorithms, the quaternion approach generated solutions that more accurately replicated the
true coning motion for situations where the coning frequency was within a decade of the
computer update frequency.

As presented in these lecture notes, both the quaternion and direction cosine updating

algorithms have been based on processing of a body angle motion vector φ which already
accounts for coning motion (as discussed in Lectures 7 and 8). These updating algorithms
(Equations (85H) with (85G) for the quaternion and (51A) with (51) for direction cosines)

represent exact solutions for the attitude updating process for a given input angle vector φ.
Consequently, the question of accuracy for different body motion can no longer be
considered a viable tradeoff area. The principle tradeoffs that remain between the two
approaches are the computer memory and throughput requirements associated with each in
a strapdown navigation system.

In order to assess the relative computer memory and throughput requirements for
quaternion parameters versus direction cosines, the composite of all computer
requirements for each must be assessed. In general, these can be grouped into four major
computational areas:

1. Basic updating algorithm

2. Normalization and orthogonalization algorithms

3. Algorithms for conversion to the direction cosine matrix form needed for
acceleration transformation and Euler angle extraction

4. Initialization algorithms

• Basic Updating Algorithms - The basic updating algorithm for the quaternion
parameter is somewhat simpler than for direction cosines as expansion of equations (85H)
and (85G) compared with (51A) and (51) would reveal. This results in both a throughput
and memory advantage for the quaternion approach. Part of this advantage arises because
only four quaternion elements have to be updated compared to nine for direction cosines.
The advantage is somewhat diminished if it is recognized that only two rows of direction
cosines (i.e., 6 elements) need actually be updated since the third row can then be easily
derived from the other two by a cross-product operation.

• Normalization And Orthogonalization Algorithms - The normalization and
orthogonalization operations associated with direction cosines are given by Equation (82).
For the quaternion parameters, a normalization operation can also be defined that maintains

171

the sum of the squares of the quaternion elements at unity (i.e., from Equation (85D), the
ideal quaternion has this property). It can be demonstrated following a procedure similar to
that leading to the normalization portion (Equation (81)) of the direction cosine
orthonormalization operations, that the quaternion normalization equation is given by:

Δq = -
1
2

 a2 + b2 + c2 + d2 - 1 q = -
1
2

 q q* - 1 q (85P)

where

a, b, c, d = The four quaternion elements

Δq = The correction to q which when added to q, normalizes q (i.e., sets the sum
of the squares of the elements to unity).

Equation (85P) for the quaternion is generally simpler to implement than Equation (82) for
direction cosines. If only two rows of the direction cosines matrix are updated (as
described in the previous section) Equation (82) reduces to three algebraic operations: the
dot product of each row with itself for normalization, and the dot product between the two
rows for orthogonalization. The resulting computations are half that dictated by (82), but
are still more than required by (85P) for the quaternion. Since the orthonormalization
operations would in general be iterated at low rate (as discussed in Lecture 7), no
throughput advantage results for the quaternion. Some memory savings may be realized,
however.

A key factor that must be addressed relative to orthonormalization tradeoffs is whether or
not orthonormalization is actually needed at all. Clearly, if the direction cosine or
quaternion updating algorithms were implemented perfectly, orthonormalization would not
be required. It is the author’s contention that, in fact, the accuracy requirements for
strapdown systems dictate that strapdown attitude updating software cannot tolerate any
errors whatsoever (compared to sensor error effects). Therefore, if the attitude updating
software is designed for negligible drift and scale factor error (compared to sensor errors) it
will also implicitly exhibit negligible orthogonalization and/or normalization errors.

• Algorithms For Conversion To The Direction Cosine Matrix - If the basic
calculated attitude data is direction cosines directly, no conversion process is required. For
cases where only two rows of direction cosines are updated, the third row must be
generated by the cross-product between the two rows calculated. For example:

C31 = C12 C23 - C13 C22

C32 = C13 C21 - C11 C23

C33 = C11 C22 - C12 C21

(85Q)

For quaternion parameters, Equations (85F) must be implemented to develop the direction
cosine matrix, a significantly more complex operation compared with (85P) for the two-
row direction cosine approach. Since direction cosine elements are generally required at

172

high rate (for acceleration transformation and Euler angle output extraction) both a
throughput and memory penalty is accrued for the quaternion approach.

• Initialization Algorithms - Initialization equations for direction cosines will be
discussed in Lecture 11. In general, the method to be described is based on a measurement
or a normalized acceleration vector, and equating this to the third row of the directional
cosine matrix. The other two rows are then initialized to be orthogonal to the third at an
attitude about the third that simplifies system testing. If the same technique were applied
when using quaternion parameters, the direction cosine elements would first be calculated
similarly, followed by an inverse of Equations (85F) (i.e., a direction cosine to quaternion
conversion). With this approach, the quaternion initialization process would be more
complex since it would include the same direction cosine initialization steps (or a good
portion thereof) plus the conversion to the quaternion format.

Alternatively, a dynamic erection algorithm can be established that “closes-the-loop” on the
quaternion/conversion-to-cosines/acceleration-transformation equations by implementing

the ωIL
L

 vector term in equations (85N). The ωIL
L

 vector would be controlled to rotate q so
that the resulting horizontal components of the transformed acceleration vector are nulled.
When horizontal null is achieved, the quaternion attitude is leveled, hence, initialized. (It
should be noted that a similar technique can also be used with direction cosines rather than
the direct approach described in Lecture 11). The disadvantage with the servo dynamic
approach to initial erection is that it is somewhat slower than the direct approach described
in Lecture 11, and does not allow positive control of the azimuth orientation of the resulting
wander azimuth coordinate frame. Some inefficiencies are thereby produced in the process
of converting vector data from the resulting wander azimuth coordinates to a more tractible
frame for test data interpretation.

It can be concluded that the initialization algorithms for quaternion parameters are at best
equal to direction cosines (for the less preferred dynamic erection approach) and at worst,
more complex than direction cosines for the direct initial erection approach. The net result
is a memory penalty for the quaternion approach (throughput is not a handicap during
initialization operations).

• Tradeoff Conclusions - From the above qualitative discussion, it is difficult to
draw hard conclusions regarding a preference for direction cosines versus quaternion
parameters for attitude referencing in strapdown inertial systems. Pros and cons exist for
each in the different tradeoff areas. Quantitative comparisons based on actual software
sizing and computer loading studies have led to similar inconclusive results. Fortunately,
today’s computer technology is such that the slight advantage that one attitude parameter
approach may have over the other in any particular application is insignificant compared
with the composite total strapdown inertial system throughput and memory software
requirement. Hence ultimate selection of the attitude approach can be safely made based on
“analyst’s choice”. On this basis, it is the author’s opinion that the use of quaternion
parameters introduces an additional and unnecessary conceptual detail into the strapdown
computational process and that therefore, direction cosines, the attitude form ultimately
required for other computational operations, is the preferred attitude updating approach.

173

STRAPDOWN ATTITUDE REFERENCE EQUATION SUMMARY

The overall summary of the strapdown attitude update and accelerometer transformation
calculations based on direction cosine body attitude referencing is illustrated by the block
diagram on the following page. This portion of the software interfaces with the navigation
equation block diagram of Lecture 4. Its net effect is identical to the interface that a
gimbaled platform would have with the navigation equations. Hence, the term “electronic
gimbal” has been used to define this computational element. The diagram includes
representative iteration rates for the computational elements that might be utilized in
modern day strapdown inertial navigation systems. This diagram summarizes the material
presented in Lectures 5 to 9. For the next lecture we’ll discuss the effect of uncompensated
sensor errors and how they propagate into navigational errors in the system computer.

174

A
C

C
E

L
S

E
N

S
O

R
C

O
M

P
E

N
S

A
T

IO
N

10
0

H
Z

R
O

T
A

T
IO

N
C

O
M

P
E

N
S

A
T

IO
N

(U
S

E
D

 F
O

R
S

Y
S

T
E

M
S

 W
IT

H
O

U
T

S
C

U
L

L
IN

G
C

O
M

P
E

N
S

A
T

IO
N

)

• •

S
IZ

E
 E

F
F

E
C

T
C

O
M

P
E

N
S

A
T

IO
N

S
C

U
L

L
IN

G
C

O
M

P
E

N
S

A
T

IO
N

A
C

C
E

L
E

R
O

M
E

T
E

R
P

U
L

S
E

S

dv
B

S
A

M
P

L
E

10
0

H
Z

R
E

S
E

T
 1

00
 H

Z

S
C

U
L

L
IN

G
C

O
M

P
E

N
S

A
T

IO
N

•

P
R

E
C

O
U

N
T

E
R

G
Y

R
O

Q

U
A

N
T

IZ
A

T
IO

N
C

O
M

P
E

N
S

A
T

IO
N

G
Y

R
O

S
E

N
S

O
R

C
O

M
P

E
N

S
A

T
IO

N

X X X

• • •

G
Y

R
O

P
U

L
S

E
S

dα
B

R
E

S
E

T
 1

00
 H

Z

C
O

N
IN

G
C

O
M

P
E

N
S

A
T

IO
N

•

P
R

E
C

O
U

N
T

E
R

αB
α

B

F
R

O
M

N
A

V
 E

Q
. 1

9C
IN

 L
E

C
T

U
R

E
 4

XXX

A
C

C
E

L
E

R
A

T
IO

N
T

R
A

N
S

F
O

R
M

A
T

IO
N

-1

IN
T

E
G

R
A

L
 O

F

L
E

V
E

L
 A

X
IS

A

C
C

E
L

E
R

A
T

IO
N

S

O
V

E
R

 1
/1

00
 S

E
C

.
T

O
 N

A
V

 E
Q

. 2
0

O
F

 L
E

C
T

U
R

E
 4

A
S

 I
N

C
R

E
M

E
N

T
A

L
IN

T
E

G
R

A
L

S
 O

F
a x, a

y, a
z.

B
A

S
IC

 A
T

T
IT

U
D

E
 U

P
D

A
T

E

A
T

T
IT

U
D

E
 U

P
D

A
T

E
 F

O
R

M
O

T
IO

N
 O

F
 L

O
C

A
L

 V
E

R
T

IC
A

L

10
 H

Z

A
T

T
IT

U
D

E
 U

P
D

A
T

E
 F

O
R

O
R

T
H

O
N

O
R

M
A

L
IT

Y

1
H

Z

V
E

H
IC

L
E

A
T

T
IT

U
D

E
/

H
E

A
D

IN
G

O
U

T
P

U
T

S

α

F
R

O
M

N
A

V
 E

Q
. 1

6
IN

 L
E

C
T

U
R

E
 3

ST
R

A
P

D
O

W
N

 R
E

F
E

R
E

N
C

E
 E

Q
U

A
T

IO
N

 S
U

M
M

A
R

Y

αB

•

φ

dt dt

20
00

 H
z

C
O

N
IN

G
C

O
M

P
E

N
S

A
T

IO
N

20
00

 H
z

C
=

C
 +

 1 2

I
-

C
 C

T
 C

10
0

H
Z

10
0

H
Z

10
0

H
Z

10
0

H
Z

S
A

M
P

L
E

10
0

H
Z

10
0

H
Z

10
0

H
Z

10
0

H
Z

+ + + + + + + + + + + +

Δ
v x

Δ
v y

Δ
v z

x zy

ω
x

ω
y

ω
z

ω
ILL

C
 =

 C
 -

T
n 2

ω
IL

n
L

 +
 ω

IL
n+

1
L

×
 C

φ
 =

ta

n
-1

C
32

C
33

θ
 =

 ta

n
-1

-C
31

C
322

 +
 C

332

ψ
 =

 ta

n
-1

C
21

C
11

 -
 α

Δ
vL

 =
 C

Δ

vB
'

1 2
α

B
×

Δ
vB

α
B

×
d v

B

Δ
vB

'

1 2
α

B
×

d α
B

+

ω
ILL

 =

ω
y

ω
x

-
ω

z

Δ
vB

C
 =

 C

I
+

 si
n

φ
φ

φ×

+
 1

-
co

s
φ

φ2
φ×

2

175

NOTES

176

STRAPDOWN INS ERROR CHARACTERISTICS

LECTURE 10

177

NAV SEMINAR - LECTURE 10 NOTES

The previous nine lectures discussed the theory of strapdown inertial navigation assuming
that perfect measurements of rate and acceleration were attainable with the strapdown
gyro and accelerometer sensors. In reality, the sensors are not perfect and their actual
outputs are in error from the true rate and acceleration inputs. Since the strapdown
computer has no way of distinguishing perfect from imperfect measurements, it processes
the imperfect measurements, assuming that no errors exist (i.e., using the equations
developed in Lectures 1 - 9). As a result, the computer outputs deviate from the true
navigation solution. This lecture discusses the characteristics of the navigation errors
generated in the computer due to sensor input errors. Before proceeding, the definition of
sensor error must be clearly defined. By sensor error, we mean the unknown error in the
sensor output that is not corrected by the compensation terms discussed in Lecture 9.
These can be caused by sensor compensation errors (due to imperfect calibration
measurements), sensor error instabilities (unaccountable variations in the sensor errors
from turn-on to turn-on over long term, for example), or imperfect forms of the
compensation equations (errors in our basic understanding or modelability of the sensor
errors being compensated).

We begin by defining an analytical model for the computational process being performed
on the sensor signals (a composite of the basic strapdown navigation equations developed
in the previous lectures). Since we are considering the strapdown computation equations
as “transfer functions” for the sensor errors (into navigational error) we need only include
the dominant terms in the equations for error analysis purposes (e.g., small effects such as
earth’s oblateness can be neglected). To simplify the discussion, only horizontal short
term navigation errors will be considered, hence, inclusion of the vertical baro control
loop is omitted. The figure on the following page provides the analytical model. It
represents a summary of Equations (8), (13), and (33) developed previously with the
following changes in nomenclature:

CJ
K

 = The direction cosine matrix from J to K frame coordinates (i.e., transforms

a vector from the J-frame to the K-frame). In our case the direction

cosine matrices used are: CB
L

 from the B (body) frame to the L (local

level) frame and CL
E
 from the L-frame to the E (earth) frame (previously

identified as D in Lecture Notes 2).

ωJK
 L

 = The angular rate of frame K relative to frame J as seen in the L-frame.

Since ωJK is a vector quantity, it can be evaluated in any coordinate set
(say the L-frame) to obtain numerical values for its components in this

coordinate frame. For our case, the vectors we are dealing with are ωIB
B

,

ωIE
E

, ωIE
L

, ωEL
L

 (i.e., the body rate relative to inertial space as measured in
body axes sensed by gyros, the earth rate relative to inertial space as
measured in the earth and local level frames, and the rotation rate of the

178

G
Y

R
O

S

(
)

 d
t

IN
IT

IA
L

IZ
A

T
IO

N

A
C

C
E

L
S

aB

IN
IT

IA
L

IZ
E

A
T

 "
0"

(
)

 d
t

vL

•

C
BL

••

IN
IT

IA
L

IZ
A

T
IO

N

(
)

 d
t

C
LE

vL

•

C
BL

•
•

•

F
IG

U
R

E
 1

 -
 S

T
R

A
P

D
O

W
N

 N
A

V
IG

A
T

O
R

 C
O

M
P

U
T

A
T

IO
N

 F
L

O
W

•

ω
IBB

ω
IEL

ω
E

L
L

ω
E

L
L

 =

1 R
u RL

×
vL

ω
IEL

 =

C
LE

T
ω

IEE
C

BL
 =

 C
BL

Ω
IBB

 -
 Ω

IEL
 +

 Ω
E

L
L

C
BL

C
LE
 =

 C
LE

Ω
E

L
L

vL
 =

 C
BL

aB
 -

 2
 ω

IEL
 +

 ω
E

L
L

×
vL

 +
 g

L

179

local level frame relative to the earth frame as measured in the local level
frame.) The second and fourth quantities were previously identified (in

Lecture 2) as ρ and Ω.

aB = Specific force acceleration vector (sensed by accelerometers) as measured
in body axes (i.e., strapdown accels).

vL = Vehicle velocity relative to the earth as measured in local level axes (v in
Lecture 1).

gL = Apparent gravity in local level coordinates (g´ in Lecture 1).

ΩJK
L

 = Skew symmetric form of ωJK
L

.

R = Earth’s radius.

uR
L

 = Unit vector upward along the local vertical as measured in local level axes

(i.e., having x, y components of zero and z component of one).

The equation for ωEL
L

 in the figure is the simplified form of Equations (19) (e neglected)

with ρz = 0 (i.e., azimuth wander implementation). The equation for ωIE
 L

 in the figure is
the basic vector transformation relation used in the equations leading to Equation (20).

The ωIE
E

 vector is a known quantity (i.e., earth’s rate equals ωe along y and zero along x
and z in the earth frame - Lecture Notes 3).

In order to ascertain the effects of errors in ωIB
B

 and aB on the computational elements in
the previous figure, we must define actual gyro and accelerometer measurements of these
quantities (that include sensor errors) as:

ωIB
 B*

and aB*

with associated sensor errors as:

 δωIB
B

=
Δ

ωIB
 B*

- ωIB
B

Gyro Error Gyro Output Gyro Input

 δaB =
Δ

 aB* - aB

Accel Error Accel Output Accel Input

180

The computed navigation parameters in the actual system (with ωIB
 B*

 and aB* inputs) are
identical in form with those in the figure and will be denoted similarly, but superscripted
with an (*), i.e.:

CB
L* , vL* , CL

E* , etc.

The associated errors in these quantities are defined as the differences between them and

the correct values calculated with perfect (error free) sensor inputs (i.e., with ωIB
B

 and aB

as in the figure):

δCB
L

= CB
L*

 - CB
L δvL = vL* - vL etc.

A set of equations relating the sensor errors (δωB
 and δaB) to the navigation parameter

errors (δCB
L

, etc.) can be obtained by subtracting the equations in the diagram (the perfect
error free set) from the equivalent form of the same equations, (with the * parameters

containing errors and erroneous sensor inputs ωIB
 B*

, aB*), and introducing the definitions
given previously for the resulting differences (errors). The result can be put in block
diagram form as illustrated by Figure 2 representing the error model for the system. If
the error diagram is compared with the original total computation flow diagram it should
be apparent that the two equation sets are similar in form since the latter represents the
differential of the former. It should also be apparent that two new variables have been

introduced (φL
, eL) which represent the errors in the CB

L*
 and CL

E*
 matrices. These new

variables represent small angular error vector quantities. Their relationship with the
errors in the cosine matrices can be understood through the following example.

Consider an arbitrary vector V expressed in body axes (VB). Its form in local level axes
(VL) is:

VL = CB
L

 VB (86)

The computed form of the same relation in the navigation computer would be:

VL* = CB
L* VB* (87)

Defining computed errors (as before) as:

181

G
Y

R
O

 E
R

R
O

R

(
)

 d
t

A
C

C
E

L
 E

R
R

O
R

(
)

 d
tφL

•
••

(
)

 d
t

F
IG

U
R

E
 2

 -
 S

T
R

A
P

D
O

W
N

 N
A

V
IG

A
T

O
R

 E
R

R
O

R
 D

IA
G

R
A

M

•

•

•

δ ω
IEL

eL
 =

 e
L

×
ω

E
L

L
 +

 δ
ω

E
L

L
δω

E
L

L

δω
E

L
L

 =

1 R
u RL

×
δv

L
δv

L

δω
IEL

 =
 -

 e
L

×
ω

IEL

δv
L
 =

 -
 C

BL
δa

B
 +

 a
L

×
φL

-
2

ω
IEL

 +
 ω

E
L

L
×

δv
L

-
2

δω
IEL

 +
 δ

ω
E

L
L

×
vL

 +
 δ

gL

φL
 =

 -
 C

BL
δω

IBB
 -

 ω
IEL

 +
 ω

E
L

L
×

φL

+
 δ

ω
IEL

 +
 δ

ω
E

L
L

δω
IBB

δa
B

eL

182

δVL = VL* - VL

δVB = VB* - VB

δCB
L

= CB
L* - CB

L

Then

VL* = VL + δVL

VB* = VB + δVB

CB
L* = CB

L
 + δCB

L

(88)

Substituting (88) in (87) and introducing (86) obtains the expression for δVL in terms of

δVB and δCB
L

 (i.e., the error equation):

VL + δVL = CB
L

 + δCB
L

 VB + δVB

= CB
L

 VB + δCB
L

 VB + CB
L

 δVB

 + δCB
L

 δVB (second order and negligible)

= VL + δCB
L

 VB + CB
L

 δVB

or

δVL = δCB
L

 VB + CB
L

 δVB (89)

To obtain an equivalent expression for δCB
L
, we define CB

L* as the combination of CB
L

followed by an additional error rotation matrix:

CB
L* =

Δ
CL

L*
 CB

L
 (90)

where:

183

CL
L*

 = Small rotation direction cosine matrix relating the nominal level frame (L)

and the computed level frame (L*) orientation. For this case, B is assumed

fixed and L (or L*) is referenced to it. It is equally valid to consider L fixed

and B (or B*) defined relative to it. The choice depends on which
coordinate frame the error is more conveniently defined for error analysis
purposes.

Expanding (90):

CB
L* = (I - I + CL

L*
)CB

L
 = CB

L
 - (I - CL

L*
)CB

L

With (88),

δCB
L

= - (I - CL
L*

)CB
L (91)

In Lecture Notes 5, we observed that a small rotation direction cosine matrix could be
expressed as:

CL
L*

=

1 φz - φy

- φz 1 φx

φy - φx 1

 L

where

φx, φy, φz = Small angular rotations about the L-frame x, y, z axes between the L*

and L frames (the rotation of L* relative to L). Note that the signs

are inverted in the CL
L*

 expression above (compared to CB(n+1)
B(n)

 in

Lecture 5) because the angles now are from L to L* (compared with
the inverse of B(n) to B(n+1) in Lecture 5).

Alternatively, the above is:

184

CL
L*

=
1 0 0
0 1 0
0 0 1

 -

0 - φz φy

φz 0 - φx

- φy φx 0

 L

= I - φL
 × (92)

where

φL
 × = Skew symmetric cross product operator form of the vector φL

 where:

φL
=

φx

φy

φz

L

The cross-product convention is used because, as is easily verified by the above definition

of φL
 × , its product with an arbitrary vector VL is equivalent to the cross-product of the

vector with φL
:

φL
 × VL =

Δ
φL

 × VL (93)

Substituting (92) in (91):

δCB
L

= - I - I + φL
 × CB

L
= - φL

 × CB
L (94)

Now substitute (94) in (89):

δVL = - φL
 × CB

L
 VB + CB

L
 δVB

Which, with (86) and (93) is:

δVL = - φL
 × VL + CB

L
 δVB or

δVL = - φL
 × VL + CB

L
 δVB (95)

Equation (95) is the error form of (86) that is equivalent to (89). The difference is that

the angular error vector φL
 is used to represent the rotation error in CB

L
. From (95) it

185

should be apparent that this is equivalent to a rotation of the vector VL by the angle φL

(i.e., this is the effect of the cross-product operation) which is also the effect of rotating

VB through a CB
L

 that is in error.

The latter technique is utilized in deriving the error block diagram (shown previously)

from the basic navigation equations. The φL
 vector in the diagram represents the angular

error in the CB
L

 matrix, the eL vector represents the angular error vector in the CE
L
 matrix.

The δg
L
 term is the error in gL (due to local gravity anomalies and errors in the gravity

model used in the system, typically on the order of 20 μg’s). A complete derivation of
the error equations is contained in Appendix B at the end of these Lecture Notes.

We can now analyze the error block diagram to determine the system error response (δvL,

φL
, eL) to system input errors (δωIB

B
, δaB, δgL). In terms of navigation parameters:

δvL = Error in the system computed velocity.

φL
 = Error in the system computed attitude.

eL = Error in the system computed position in terms of angular deviation (arc
minutes or nautical miles for the horizontal components). The vertical

component of eL is related to the wander angle error and is not normally of
interest for error analysis purposes.

To investigate the principal short term (1-2 hour) characteristics of the system, most of
the terms in the error block diagram can be neglected to obtain the simplified form in the
following figure.

The associated error differential equations are:

φ
L

 = - CB
L

 δωIB
 B

 - ωIE
 L

 + ωEL
 L

 × φL
 + δωEL

 L

δv
L

 = CB
L

 δaB + aL × φL

δωEL
L

 =
1
R

 uR
L

 × δvL

ωEL
L

 =
1
R

 uR
L

 × vL

(96)

e
L

 = δωEL
L

186

GYRO ERROR

φL
ACCEL ERROR

•

•

FIGURE 3 - SIMPLIFIED STRAPDOWN NAVIGATOR
ERROR DIAGRAM

() dt

() dt

() dt

δωIB
B

δaB

δvL δωEL
L

δωEL
L

 =
1
R

uR
L

× δvL
eL

φ
L

= - CB
L

δωIB
 B

 - ωIE
 L

 + ωEL
 L

× φ
L
 + δωEL

 L

δv
L

= CB
L

δaB + aL × φ
L

187

Equations (96) can be rearranged to a form that lends itself more simply to qualitative

analysis. We first differentiate δωEL
L

 and substitute δv
L

:

δωEL
L

=
1
R

 uR
L

 × δv
L

 =
1
R

 uR
L

 × CB
L

 δaB + aL × φL

=
1
R

 uR
L

 × CB
L

 δaB + uR
L

 × aL × φL

Applying the triple vector product identity (see Lecture 8):

uR
L

 × aL × φL
= - aL × φL

 × uR
L

= - uR
L

 ⋅ aL φL
 + uR

L
 ⋅ φL

 aL

Hence:

δωEL
L

=
1
R

 uR
L

 × CB
L

 δaB + uR
L

 ⋅ φL
 aL - uR

L
 ⋅ aL φL (96A)

If we define δvL as having a vertical (δvR) and horizontal (δvH
L

) component, we can
write:

δvL = δvR uR
L

 + δvH
L

δωEL
L

 =
1
R

 uR
L

 × δvL =
1
R

 uR
L

 × δvH
L

(96B)

uR
L

 × δωEL
L

=
1
R

 uR
L

 × uR
L

 × δvH
L

 = -
1
R

 δvH
L

δvH
L

= - R uR
L

 × δωEL
L

Similarly,

ωEL
L

=
1
R

 uR
L

 × vH
L (96C)

where:

vH
L

 = The horizontal component of vL.

With (96A, B, C), (96) becomes equivalently:

188

φ
L

= - CB
L

 δωIB
 B

 - ωIE
 L

 + ωEL
 L

 × φL
 + δωEL

 L

δωEL
 L

=
1
R

 uR
L

 × CB
L

 δaB + uR
L

 ⋅ φL
 aL - uR

L
 ⋅ aL φL

(97)

δvH
L

 = R uR
L

 × δωEL
L

ωEL
L

 =
1
R

 uR
L

 × vH
L

e
L

= δωEL
L

We now introduce the idea of vertical and horizontal components for aL and φL
. If the

upward vertical component of aL is approximated by g (i.e., essentially horizontal flight),
we can write:

φL
= φR uR

L
 + φH

L

aL = g uR
L

 + aH
L

Vertical Components Horizontal Components

Application to the terms in (97) yields:

uR
L

 ⋅ φL
 aL - uR

L
 ⋅ aL φL

 = φR aH
L

 + g uR
L

 - g φH
L

 + φR uR
L

 = φR aH
L

 - g φH
L

ωEL
L

 × φL
 =

1
R

 uR
L

 × vH
L

 × φH
L

 + φR uR
L

 ≈
1
R

 uR
L

 × vH
L

 × φR uR
L

 =
1
R

 φR vH
L

ωIE
L

 × φL
= ωIE

L
 × φH

L
 + φR uR

L ≈ φR ωIE
L

 × uR
L

In the latter equations, the approximation has been made that φR (the vertical component

of φL
, or the heading error) is generally larger than φH

L
. Substituting into (97) then

obtains:

189

φ
L

= φH
L

 + φR uR
L

= - CB
L

 δωIB
 B

 - φR ωIE
L

 × uR
L

 -
1
R

 φR vH
L

 + δωEL
L

δωEL
L

 =
1
R

 uR
L

 × CB
L

 δaB + φR aH
L

 - g φH
L

It should be clear from the above that δωEL
 L

 is a horizontal vector (i.e., the uR
L

 × () term

is horizontal since it is perpendicular to uR
L

, and the other components are horizontal by

definition). Similarly, the ωIE
L

 × uR
L

 term in the φ
L
 equation is horizontal. With these

factors in mind, the φ
L
 equation can be divided into two parts by taking the dot product

with uR
L

 (for the vertical part), and subtracting this from the φ
L
 total equation to obtain the

horizontal part:

φR = - uR
L

 ⋅ CB
L

 δωIB
B

φH
L

 = - CB
L

 δωIB
B

 + uR
L

 ⋅ CB
L

 δωIB
B

 uR
L

 - φR ωIE
 L

 × uR
L

 -
1
R

 φR vH
L

 + δωEL
L

With the latter simplifications, (97) becomes the final form:

φR = - uR
L

 ⋅ CB
L

 δωIB
B

φH
L

 = - CB
L

 δωIB
B

 + uR
L

 ⋅ CB
L

 δωIB
B

 uR
L

 - φR ωIE
 L

 × uR
L

 -
1
R

 φR vH
L

 + δωEL
L

δωEL
L

 =
1
R

 uR
L

 × CB
L

 δaB + φR aH
L

 - g φH
L

 = δωELH

L
 (98)

δvH
L

 = - R uR
L

 × δωEL
L

 = - R uR
L

 × δωELH

L

e
L

 = δωEL
L

 = δωELH

L
 = eH

L

Equations (98) are shown in block diagram form on the next page. The block diagram is
now in a convenient form to analyze the characteristic response of the system errors.

We first observe that a closed dynamic loop exists containing two integrators with a
negative loop gain of g/R. This should be recognizable as an undamped oscillator with

natural frequency ωo given by:

ωo = g/R

190

G
Y

R
O

 E
R

R
O

R

C
BL X•

+

+

X-
-

X+

-

X
+ +

φ HL

•φ R
φ R

• •

φ HL

g

C
BL X

+
+

X
+

-

1 R
•

F
IG

U
R

E
 4

 -
 S

IM
P

L
IF

IE
D

 S
T

R
A

P
D

O
W

N
 N

A
V

IG
A

T
O

R
E

R
R

O
R

 A
N

A
L

Y
SI

S
D

IA
G

R
A

M

-
u RL
.

u RL

(
)

 d
t

ω
IE L

×
u RL

δω
IBB

A
C

C
E

L
 E

R
R

O
R

δa
B

1 R
v HL

u RL
×

a HL

(
)

 d
t

(
)

 d
t

(
)

 d
t

-
R

 u
RL

δv
HL

δω
E

L
H

L

e HL

191

Numerically, ωo =
2π
84

 radians per minute corresponding to a period of 84 minutes. This

is the so called Schuler frequency. The characteristic response of the errors in an inertial
navigation system contain the dynamics of the Schuler oscillation as remnants of
imperfections in the system operating through the navigation equations.

For the case of constant sensor errors and system parameters (vH
L

, ωIE
 L

), the response of

the horizontal system errors (φH
L

, δvH
L

, and eH
L

) can be obtained qualitatively from the
diagram by inspection, as illustrated by the qualitative response curves sketched on the
next following page.

The associated error equations (solutions to differential Equations (98)) can be shown to
be:

φH
L

 = φHo

L
 cosωot - φRo ωIE

L
 × uR

L

sinωot

ωo

 + δωELHo

L

sinωot

ωo

- CB
L

 δωIB
B

 - uR
L

 ⋅ CB
L

 δωIB
B

sinωot

ωo

+ uR
L

 ⋅ CB
L

 δωIB
B

 ωIE
L

 × uR
L

 +
1
R

 vH
L

1 - cosωot

ωo
2

+ uR
L

 × CB
L

 δaB
1
g

 1 - cosωot

δωEL
L

 = δωELo

L
cosωot - φHo

L
ωo sinωot + φRo ωIE

L
 × uR

L
 1 - cosωot +

1
R

vH
L

+ CB
L

 δωIB
B

 - uR
L

 ⋅ CB
L

 δωIB
B

 1 - cosωot

- uR
L

 ⋅ CB
L

 δωIB
B

 ωIE
L

 × uR
L

 +
1
R

 vH
L

 t -
sinωot

ωo

(99)

+ uR
L

 × CB
L

 δaB
ωo

g
 sinωot

eL = eo
L

 - φHo

L
 1 - cosωot + δωELo

L

sinωot

ωo

 + φRo ωIE
L

 × uR
L

 t -
sinωot

ωo

+
1
R

 vH
L

 t + CB
L

 δωIB
B

 - uR
L

 ⋅ CB
L

 δωIB
B

 t -
sinωot

ωo

- uR
L

 ⋅ CB
L

 δωIB
B

 ωIE
L

 × uR
L

 +
1
R

 vH
L

t2

2
 -

1 - cosωot

ωo
2

+ uR
L

 × CB
L

 δaB
1
g

 1 - cosωot

192

with

δvH
L

 = - R uR
L

 × δωEL
L

(99A)

δωELo

L
 =

1
R

 uR
L

 × δvHo

L

In generating the solutions to the Equations (98) differential equations it was assumed

that aH
L

 (see Figure 4 diagram) was such as to generate vH
L

 rapidly (instantaneously) at the
start of flight (t = 0) and from then on to equal zero (i.e., approximating an acceleration to

a cruise velocity vH
L

 and then maintaining vH
L

). The effect in the Figure 4 block diagram

is to immediately build up a signal on the δωEL
L

 value of φRo
1
R

 vH
L

 due to transmission of

φRo through aH
L

 at t = 0. The δωEL
L

 value of φRo
1
R

 vH
L

 is then fed back into the φH
L

integrator, canceling the φRo transmission to φH
L

 through the
1
R

 vH
L

 block. The result is

that the Schuler transient associated with φRo
1
R

 vH
L

 is effectively blocked and a constant

ramp is produced at eL (the effect on δvL is to produce a constant offset error).

By analyzing the Equations (99) solutions the following can be ascertained regarding the
behavior of the navigation system error characteristics. Again, it should be remembered
that these considerations are approximations and are valid for the early flight phases (first
hour or two).

1. The effect of horizontal gyro drift components (CB
L

 δωIB
B

 with the vertical

component removed) is to generate an unbounded position error (eL) with average
slope proportional to the gyro drift. Quantitatively, 0.01 degree per hour gyro

drift produces 0.01 × 60 arc min per hour or 0.6 nmph (nautical miles per hour)

position drift (eL). This is the reason that inertial navigation system require 0.01
degree per hour gyros to meet 1 nmh requirements.

2. Horizontal gyro drift produces an offset Schuler oscillation in the velocity error

(δωEL
L

 can be considered as the velocity error in arc min per hour or knots) with
the Schuler oscillation amplitude and offset both equal to the gyro drift (i.e., a
Schuler oscillation from zero to twice the gyro drift). For 0.01 degree per hour

drift, the peak velocity error is 0.01 × 2 × 60 = 1.2 knots, occurring at 42 minutes
from t = 0.

3. Horizontal gyro drift produces a sinusoidal error in the platform attitude with a
peak amplitude equal to the drift rate divided by the Schuler frequency (4.46

193

rad/hr). For a 0.01 degree per hour drift, attitude errors of 0.01 × 60/4.46 = 0.15

arc min are generated. Platform horizontal attitude errors (φH
L

), in general, are
insignificant compared, for example, to the error in knowing the attitude of the
sensor assembly relative to the vehicle axes (several arc min).

4. Vertical gyro drift rates generate a linear unbounded velocity error build-up

(δωEL
L

) and parabolic position error build-up. Typically (for 1-2 hr flights) the
effect is small compared to the effect of horizontal gyro drift. For example, for a

0.01 degree per hour drift rate, 600 knots cruise velocity (vH
L

), and 10 degree/hour

horizontal earth rate effect ωIE
L

 × uR
L

, the error in δωEL
L

 after 1 hour is

approximately (0.01/57.3) × 600 2 + 10 × 60
2

 × 1 hr ≈ 0.2 nmph. The

associated position error (eL) is 0.1 nm.

5. The effect of initial heading error is similar to gyro drift through a coupling of
earth’s rate and translational velocity effects (i.e., the navigation solution is

initially generated in an offset direction with the offset given by φRo).
Quantitatively, a 1 milliradian error with 600 knots vehicle velocity and 10 degree
per hour horizontal earth rate results in an equivalent gyro drift of

1 × 10-3 × 10 2 + 600/60 2 = 0.014 degree/hour. A heading alignment error of
1 milliradian or less is required for 1 nmph (0.01 degree per hour gyro) inertial
navigation accuracy.

6. The effect of accelerometer error is to generate bounded Schuler oscillations in

the attitude, velocity, and position errors. Quantitatively, a 50 μg accelerometer

bias generates a 0 to 100 μradian (100 × 10-6 × 57.3 × 60 = 0.36 arc min) Schuler

attitude and position (φH
L

, eL) oscillation and a (0.36/2) × 4.46 = 0.7 knot velocity

oscillation (ωo = 4.46 rad/hr). To keep velocity errors low, accelerometer errors

are typically selected to be less than 50 μg’s.

7. The effect of initial attitude errors (φHo

L
) is similar to the effect of accelerometer

error with a micro-g producing the same quantitative effect as a microradian.

Hence, good vertical alignment (order of 50 μrad) is required to keep velocity
errors down.

8. The effect of initial velocity errors is to produce a bounded Schuler oscillation in
the system errors that, for systems initialized at a stationary position (e.g., aircraft
at land based airports) is negligible compared to other error sources (because the
initial velocity error is typically very small (less than 0.1 fps) and its effect is
bounded in position growth).

194

One of the most serious error effects in strapdown navigation systems is the effect of
sensor-to-sensor misalignment errors. In the error diagram, these effects are wrapped up

in the basic sensor errors themselves (δωIB
B

, δaB). The effect of a gyro misalignment is to
introduce a coupling of rate from another axis (orthogonal to the gyro input axis) into the
gyro sensing axis. Under high rotation rates, a significant error can result. Since high
rate maneuvers are typically of short duration, it is better to think of the error in terms of

its net integrated effect over the maneuver period (i.e., the effect on φL
 in the error block

diagram due to the integration of CB
L

 δωIB
B

 when δωIB
B

 contains misalignment cross
coupling errors). In general, the effect of a misalignment is to introduce an error on the

order of the misalignment into φL
 each time the vehicle rotates through one radian.

However, because these effects add vectorially, and because of the distortion of CB
L

 to the

error before it is integrated to obtain φL
, the composite of several rotation maneuvers can

add or subtract. For example, a 180 degree rotation about a single vehicle axis generates

a net φL
 error equal to twice the misalignment error. A 360 degree rotation about a single

vehicle axis, on the other hand, results in zero net error, as would (+) followed by a (-)
rotation of equal magnitude about the same axis. A 360 degree rotation about an axis
skewed relative to the sensor axes (a simultaneous pitch/yaw rotation for example)

produces a net φL
 error due to sensor misalignment. A combination of sequential

maneuvers about different axes produces a composite of canceling and additive effects
that are a function of the maneuver history and misalignments. In general, the particular
maneuver profiles anticipated must be analyzed to determine the effects of particular

sensor misalignments, and to determine whether a net error in φL
 results in the vertical

axis (φR) or the more critical (from a velocity accuracy standpoint) horizontal axes (φH
L

).

Typical strapdown inertial navigation systems achieve 15 μrad alignment stabilities from

sensor-to-sensor axes. For a 180 degree maneuver, with 15 μrads misalignment, the
worst case effect is to generate a Schuler velocity oscillation of ± 0.6 fps. For
applications where extensive maneuvering may exist and where high velocity accuracy is

needed, the 15 μrad figure may be somewhat marginal. Future advancements in sensor

mount design may make it possible to achieve better than 15 μrad alignment accuracy
which, in turn, will broaden the spectrum of maneuvering application areas where
strapdown technology is viable.

195

NOTES

196

STRAPDOWN INS INITIAL ALIGNMENT

LECTURE 11

197

NAV SEMINAR - LECTURE 11 NOTES

In this lecture we will discuss the initial alignment process associated with strapdown
inertial navigation systems. These are the computational equations utilized after system

turn-on to establish the initial value for the C matrix (or CB
L
) in Lectures 5-9, and the

initial values of Ω1 and Ω2 (the estimated level earth rates components in the local level
frame) used in Lecture 3 to initialize the wander angle, hence, the D matrix.

The basic principal utilized with all inertial systems (strapdown or gimbaled) for quasi-
stationary self-alignment (without external inputs) is to align the vertical with sensed
acceleration, and to align the azimuth based on sensed earth rate. The assumption used is
that the vehicle carrying the inertial system is essentially stationary during the alignment
process so that sensed acceleration is basically along the local vertical (i.e., vehicle
disturbances are transitory and can be filtered out). Aligning the vertical of the reference
platform (the analytical C matrix in the case of a strapdown system) with the sensed
acceleration, therefore, levels the platform. The initial platform heading is established by
measuring earth rate in the leveled frame and using the knowledge that the plane
containing the local vertical and the sensed earth rate vector is a meridian plane (i.e., lies
North/South). Hence, the angle between the leveled reference frame and the computed
meridian plane defines the initial azimuth (or wander angle in a wander azimuth
implementation approach).

For most inertial navigation systems, leveling and heading initialization is divided into
two phases: coarse alignment and fine alignment. During coarse alignment, the platform
is rapidly erected to an approximately level condition (within a degree or so). Fine
alignment is the process of fine tuning the vertical alignment (to an accuracy of less than

50 μrad) and simultaneously determining the azimuth alignment by earth rate
measurements. For strapdown systems, coarse alignment can be performed extremely
rapidly since erection is an analytical process in the computer, unrestricted by finite
rotation rate limitations associated with real gimbaled platforms containing inertia and
gyro torquing rate limitations. The azimuth alignment process for both strapdown and
gimbaled systems can be virtually identical, with the exception of special filters in the
alignment estimation equations that may be tailored to handle noise effects peculiar to the
actual hardware elements in the system (e.g., random walk in laser gyros). The following
is a discussion of typical strapdown coarse and fine alignment techniques.

COARSE ALIGNMENT

Coarse alignment is achieved by measuring the components of the sensed acceleration

vector in vehicle axes and using this measurement to estimate the initial value of the CB
L

(or C) matrix in Lectures 5-9. Recall from Lectures 5-9 that the rows of C are equal to
unit vectors along local level frame (L) axes projected on body (vehicle axes). That is:

198

C =

C1
T

C2
T

C3
T

where Ci is a column vector whose components are the elements in C matrix row i. C3
represents the projection of a unit vertical vector on body axes. (Note: In these lectures,

the L Frame reference for CB
L
 is defined to have Z axis down whereas for navigation

velocity/position calculations, the L Frame is defined with Z axis up. See Lecture 9 -
Interface Between Navigation And Strapdown Reference Equations section for more
discussion.) The coarse alignment process uses measured body acceleration as sensed by
the accelerometers to develop a first estimate of C3. For a stationary vehicle the sensed

acceleration vector aB is along C3 and equal in magnitude to g (directed upward). Hence,
neglecting the effects of small vehicle vibrations, we can write:

aB ≈ - g C3

where C3 is defined as downward, hence the negative sign. Equivalently,

C3 ≈ -
1
g

 aB

The coarse alignment of C3 is based on the latter equation except that aB is estimated as

an integral of aB over a short time interval T divided by T. Hence, the initial estimate for
C3 is, in component form:

C31 = -
1

g T
 ax

o

T

 dt

C32 = -
1

g T
 ay

o

T

 dt

C33 = -
1

g T
 az

o

T

 dt

(100)

The initial course alignment values for C2 and C3 can be selected arbitrarily to satisfy
other desirable constraints (such as simplifying calibration measurements for example),
provided that the basic properties of C are maintained (i.e., orthogonality and normality).

199

A simple specification for defining the second direction cosine row (C2) is that the
component along the X-axis (C21) be zero. The advantage in this approach is that for
initial orientations of the strapdown sensor assembly with Y-axis or Z-axis down, C21
becomes a direct measure of Y or Z gyro integrated drift rate during fine alignment (and
navigation) under static conditions. That is, for either of these orientations, the cosine of
the angle between the level Y-axis and the computed body X-axis should remain at the
initial condition after coarse alignment (i.e, zero). A value differing from zero is due to
drift rate from the gyro along the vertical axis, and the value of C21 becomes equal to the
integrated gyro drift rate since coarse alignment completion. This is a useful relationship
for measuring gyro drift in the laboratory. Thus, the initial value for C21 is:

C21 = 0 (101)

For C2 to be perpendicular to C3, their dot product must be zero:

C2 ⋅ C3 = C21 C31 + C22 C32 + C23 C33 = C22 C32 + C23 C33 = 0 (102)

Equation (102) is satisfied by:

C22 = K C33

C23 = - K C32
(103)

Where K is a constant selected to normalize C2 (i.e., the sum of the squares of its
elements should be unity). Based on this criterion, it is easily verified that

K = C32
 2

 + C33
 2 so that the initial values for C2 are:

C21 = 0

C22 = C33 / C32
 2

 + C33
 2

C23 = - C32/ C32
 2

 + C33
 2

(104)

The coarse initialization of C1 is trivial once C2 and C3 is known. The cross-product of
C2 with C3 provides C1 directly (i.e., a unit vector perpendicular to C2 and C3):

C11 = C22 C33 - C23 C32

C12 = C23 C31 - C21 C33

C13 = C21 C32 - C22 C31

(105)

The above procedure for coarse leveling the C matrix works as long as C3 has
components along Y and Z (C32, C33), thereby defining non-zero values for C22 and C23

200

in Equations (104). If C32, C33 are near zero, the procedure breaks down because
Equation (104) becomes indetermanent (i.e., a singularity condition exists). Under these
conditions, a different set of logic must be used. It is easily verified from Equations
(100), that the C32 = C33 = 0 condition corresponds to the total acceleration vector being
directed along X (i.e., X up or down). From Equation (100), the test for encroachment on
this condition is that /C31/ be near unity. A /C31/ greater than 0.85 condition can be
utilized to signal the need for a revised set of erection logic. Under these conditions, C23
can be set to zero (rather than C21 as in (101)) and proceed as before:

C2 ⋅ C3 = C21 C31 + C22 C32 + C23 C32 = C21 C31 + C22 C32 = 0

Proceeding:

C21 = K C32

C22 = - K C31

C23 = 0

The initial C2 for the normalization routine, therefore, is:

C21 = C32 / C31
 2

 + C32
 2

C22 = - C31 / C31
 2

 + C32
 2

C23 = 0

(106)

Equation (105) is used as before to evaluate C3.

It should be noted that for X down, and C31 greater than 0.85 so that (106) is used for
initial C2), C23 becomes a direct measure of X-gyro drift (i.e., the movement of the
computed Z-body axis relative to the Y-level axis after completion of coarse alignment).
This was the motivation for specifying the C23 = 0 condition for C31 greater than 0.85.

FINE ALIGNMENT

The fine alignment process is, in a sense, the inverse of the navigation process. Referring
to Figure 1 of the previous lecture, the velocity (vL) is determined in an inertial
navigation system during the navigation mode by processing sensed gyro and
acceleration measurements, and computed earth rate and attitude matrix elements

(ωIE
L

, CB
L

). In the alignment process, the problem is to estimate the attitude matrix and

earth rate components such that the computed velocity (vL) satisfies known statistical
constraints imposed during alignment (i.e., for ground alignment, vL has zero average
horizontal components with short term fluctuations due to vehicle buffeting by wind, fuel
loading, etc.). Figure 4A on the next page illustrates this concept.

201

G
Y

R
O

S

C
BL

*

(
)

 d
t

A
L

IG
N

M
E

N
T

FI
L

T
E

R
X

+

+

A
C

C
E

L
S

aB*

(
)

 d
t

IN
IT

IA
L

IZ
E

A
T

 "
0"

ω
IEL

*
E

S
T

IM
A

T
E

ω
IBB

*

C
O

R
R

E
C

T
IO

N
S

FO
R

P
A

S
T

 E
S

T
IM

A
T

IO
N

E
R

R
O

R
S

•

X

+
+

FI
L

T
E

R
 I

N
PU

T

C
O

R
R

E
C

T
IO

N
S

FO
R

P
A

ST
 E

S
T

IM
A

T
IO

N
E

R
R

O
R

S

E
S

T
IM

A
T

E

E
S

T
IM

A
T

E
v H

o

L
*

v HL
*

F
IG

U
R

E
 4

A
 -

 F
IN

E
 A

L
IG

N
M

E
N

T
 L

O
O

P
 C

O
N

C
E

P
T

δC
B

o

L
*

C
BL• *

=
C

BL
*

Ω
IBB

*
 -

 Ω
IEL

*
C

BL
*

v HL• *
=

C
BL

*
H

aB*

IN
IT

IA
L

IZ
E

A
T

 C
BL

D
E

T
E

R
M

IN
E

D
D

U
R

IN
G

C
O

A
R

SE
A

L
IG

N
M

E
N

T

202

If we compare Figure 4A with Figure 1 of the previous lecture, we note that the
computations for the horizontal components of vL are identical, except that the earth rate

signals for CB
L

 update, the initial CB
L
 error (due to coarse leveling errors) at start of fine

alignment, and the initial value of horizontal velocity (vHo

L
) are now estimated by the

alignment filter based on the computed value of vH
L

 and its comparison (in the alignment
filter) against normally anticipated velocity conditions (approximately zero with random
variations). In addition, because the vehicle is stationary on the average during

alignment, the ωEL
L

 and vL terms in the Figure 1 CB
L
 and v

L
 equations are approximately

zero, hence, neglected in the equivalent Figure 4A computations. The alignment filter

also computes updates for the CB
L* and vH

L* integrators to compensate for the accumulated

effect of past errors in the ωIE
L*

 and δCBo

L* estimates generated by the alignment filter.

In Figure 4A, the (*) star notation has been utilized (as contrasted with Figure 1) to
indicate that the quantities so annotated are real measurements and associated
computation variables that contain sensor errors and their resulting effects on the
computation process. This notation will be expanded upon subsequently when we

analyze the effect of sensor errors on alignment accuracy. The CB
L*

H quantity in

Figure 4A represents the horizontal rows of CB
L* (i.e., - the two rows that generate the

horizontal level coordinate frame components of a body frame vector being transformed

through it). It should also be noted in Figure 4A that the estimate of initial velocity vHo
L*

is included in the alignment process, but is neglected in the navigation process (i.e., the
initial velocity for the navigation mode in Figure 1 of the previous lecture is equated to
zero). The reason for this is that for the navigation problem, the initial velocity under
ground alignment conditions is generally negligible compared with typical (2 - 3 fps)
velocity accuracy requirements. For the alignment problem where the output is a very
fine measurement of earth rate under noisy conditions, the same velocity error can affect
the azimuth alignment accuracy. Consequently, it is accounted for during the alignment
process to improve on azimuth determination accuracy. (It should be noted that the initial

value of velocity for navigation could be estimated from vH
L* (see Figure 4A) at

completion of alignment for a refinement in navigation accuracy.)

The implementation of the alignment filter in Figure 4A is accomplished using a linear
filter with time varying gains. The gain schedules are selected to minimize the reaction
time (settling time) of the alignment process on the one hand, and minimize alignment
errors due to system noise and vehicle acceleration disturbances on the other (i.e., the
classical filter noise/bandwidth tradeoff). Figure 5 is an analytical description of the
alignment filter (within the dotted lines) and its interface with the velocity determination

203

G
Y

R
O

S

C
BL

*

(
)

 d
t

X

A
C

C
E

L
S

aB*

(
)

 d
t

IN
IT

IA
L

IZ
E

A
T

 "
0"

ω
IBB

* •

X

+
+

v HL
*

F
IG

U
R

E
 5

 -
 M

O
D

IF
IE

D
 F

IN
E

 A
L

IG
N

M
E

N
T

 L
O

O
P

 A
N

A
L

Y
T

IC
S

ω
L

*

X
++

ω
IEL

*

X
+

+ +
+

V
E

R
T

IC
A

L
 C

O
M

P
O

N
E

N
T

O
F

 E
A

R
T

H
 R

A
T

E
B

A
S

E
D

 O
N

 I
N

P
U

T
 L

A
T

T
IT

U
D

E

K
φ

•

A
L

IG
N

M
E

N
T

F
IL

T
E

R

u RL
×

K
v

V
E

L
O

C
IT

Y
D

IS
T

U
R

B
A

N
C

E
F

IL
T

E
R

K
v F

•

v H
F

F *

(
)

 d
t

C
BL• *

=
C

BL
*

Ω
IBB

*
 -

 Ω
L

*
C

BL
*

v HL• *
=

C
BL

*
H

aB*

ω
IEL

*

H

ω
IEL

R

K
ω

IN
IT

IA
L

IZ
E

A
T

 C
BL

D
E

T
E

R
M

IN
E

D
D

U
R

IN
G

C
O

A
R

SE
A

L
IG

N
M

E
N

T

204

(vH
L*) computation (compare with Figure 4A). The comparison between Figures 4A and 5

show a small variation between the filter interfaces. The difference is that separate filter

outputs are shown in Figure 4A for compensating CB
L

 errors and correcting for past

estimation errors accumulating on the CB
L* and vH

L* integrators. In Figure 5, these functions

are applied through an addition to the inputs of the integrators through the Kφ and Kv

gains. In the case of Kφ, the corrections to CB
L* are achieved by augmenting the CB

L* level

axis frame rotation rate signal. It should be clear that the resulting resets of CB
L* and vH

L*

can be implemented to achieve the identical result in Figure 5 as in Figure 4A.

The internal structure of the alignment filter in Figure 5 contains a velocity disturbance
filter (to attenuate the effects of vehicle acceleration disturbances on alignment
accuracy), thereby allowing a higher loop gain (i.e., faster alignment time) for equivalent
performance. Also included is an integral controller to generate the level earth rate
estimate, the output from the alignment process for initial heading determination (see
Lecture 3). The vertical component of earth rate is then added to the horizontal

component estimate to obtain the total earth rate signal for CB
L

.
* input. The vertical earth

rate component is determined from the initial latitude insertion to the system (equal to
earth’s rate times sine latitude - see Lecture 3). A feedback around the velocity
disturbance filter is included to compensate for the build-up of errors created from

previous filter estimation errors propagating into vH
L* , hence into the filter. The

KΩ, Kφ, Kv, KvF gains in Figure 5 are time varying functions based on Kalman filter
theory (next lecture).

Assuming that filter convergence is achieved, the response of the Figure 5 estimation

loop will result in a leveling of CB
L*
 and a generation of ωIE

L*
 that maintains CB

L*
 stationary

(this has to be true for vH
L* to be stationary - i.e., which is the steady state). This condition

can only be achieved by the correct (leveled) value of CB
L*

 and the correct value of the

earth rate estimates.

To gain a deeper understanding of the dynamics of the alignment loop, the equivalent
error diagram associated with Figure 5 is shown in Figure 6. The indicated error
quantities are identical to the values introduced in the previous lecture (See Figures 2 and
4). The Figure 5 and 6 diagrams are equivalent. Figure 6 shows the response of the filter

loop in terms of the errors in CB
L

 (i.e., φH
L

, φR) and measured horizontal acceleration aH
L

205

INITIAL
HORIZONTAL

ATTITUDE
ERROR

GYRO ERROR

CB
L

X
+ +

•

"0"
INITIALIZATION

φR
φR

•

X
- -

X
+ +

X

φH
L

g

X
+

+ +

+

uR
L ×CB

L
H

INITIAL
HORIZONTAL

VELOCITY
ERROR

+ +
X

+

-

ACTUAL HORIZONTAL
EARTH RATE

uR
L ×

•

ALIGNMENT
FILTER

ACTUAL VEHICLE
HORIZONTAL

ACCELERATION
DISTURBANCE

Kv

KvF

•

•

X
+

+

FIGURE 6 - FINE ALIGNMENT LOOP ERROR DIAGRAM

INITIAL EARTH
RATE ESTIMATE

FIRST ORDER
LOW PASS

FILTER

() dt

() dt

() dt

() dt

φH
L

0

- uR
L .

ωIE
L

× uR
L

δωIB
B

δωIB
B

H

δaB

ACCEL
ERROR

aH
L

δaH
L

vH
L*δvH

L
0

ωIE
L

H

δ ωIE
L

H
ωIE

L*
H

Kω

Kφ

vH
L*

F

ωIE
L*

H0
 = 0

206

(i.e., δaH
L

), and their effect on the vH
L* input to the filter and associated filter response

outputs. In developing the Figure 6 diagram, the definitions of vH
L* and the horizontal

components of ωIE
L*

 were utilized:

vH
L* = vH

L
 + δvH

L
 = aH

L
 + δaH

L

ωIE
L*

H = ωIE
L

H + δωIE
L

H

Before analyzing the qualitative response of the Figure 6 loop, it is first noted that the

effect of the uR
L

 × operator is to rotate the input vector by 90 deg about the vertical (i.e.,
a horizontal vector east becomes a horizontal vector north with identical magnitude). The

effect of two successive uR
L

 × operations is to introduce a 180 deg vector rotation. This
is equivalent to reversing the direction of the input vector, or applying a gain of -1. If we

now look at Figure 6, it is to be noted that uR
L

 × appears twice as one traverses the closed
loop. Hence, the net effect is to produce a negative gain (-1) in the overall estimation
loop.

A qualitative inspection of Figure 6 reveals that the alignment loop is a fourth order
control loop (3 integrators and 1 first order filter) in each of the two horizontal axes. It
should be apparent that adequate flexibility exists in the estimation loop gains
KΩ, Kφ, Kv, KvF to achieve stable estimation loop performance (i.e., eliminating initial

leveling errors φH
L

 and reaching a steady state estimate for the earth term ωIE
L*

H). The
selection of these gains for optimum convergence will be discussed in the next lecture.
For now, we will assume that a set of stabilizing gains can be developed that will produce
a stable estimation loop that, therefore, will reach a steady state condition. The steady
state condition (after initial transients have decayed to zero) will contain random signals
(produced by sensor noise and vehicle acceleration disturbance inputs) superimposed on a
steady state solution created by fixed sensor errors. The remainder of this lecture deals
with the analysis of the steady state solution terms.

To determine the effects of constant sensor input errors on the steady state alignment, we
apply the principal of linear superposition and analyze the Figure 6 steady loop response
to each constant sensor input (i.e., the sensor noise and vehicle horizontal disturbance
effects are assumed to be zero). The effects of the noise and disturbance inputs can then
be analyzed separately (assuming zero constant sensor inputs) and the results combined
with the individual fixed sensor input results to obtain the total solution.

207

We begin by analyzing the steady state solution to all constant sensor inputs except for

the φR terms produced by vertical gyro drift (this will be discussed later). For φR
assumed zero, the steady state solution to Figure 6 with fixed sensor inputs will result in a
condition where the inputs to all the integrators are zero (i.e., the steady state is achieved

when the integrator outputs are constant or zero). The input to the ωIE
L*

H integrator being
zero is equivalent to:

vH
L*

 FSS = 0 Note: SS = Steady State

With the latter condition, the δvH
L

 integrator input equal to zero condition yields:

g uR
L

 × φH
L

SS + CB
L

H δa
B

 = 0

or, taking the cross-product with uR
L

 and remembering that uR
L

 × uR
L

 × = - 1, obtains:

- g φH
L

SS + uR
L

 × CB
L

H δaB = 0

or

φH
L

SS = uR
L

 ×
1
g

 CB
L

 δa
B (107)

Hence, the state leveling error φH
L

SS is equal to the horizontal accelerometer bias

component expressed in g’s, i.e., 15 μg accelerometer bias error produces 15 μrad initial
platform tilt.

Now, looking at the input to the φH
L

 integrator and equating it to zero in the steady state:

δωIE
L

H - δωIB
L

H = 0

or

δωIE
L

H = δωIB
L

H (108)

Hence, the steady state earth rate estimation error is equal to the horizontal component of
gyro drift. This translates into an initial heading error for the navigation mode due to use

of erroneous ωIE
L*

H estimates in determining the initial wander angle. Using the

208

nomenclature of Lecture 3, let’s calculate what the initial wander angle error is due to

erroneous ωIE
L*

H. We first write algebraic expressions for the horizontal components
including error effects:

Ωx
*

 = Ωx + δΩx = Ωx + δωx
*

Ωy
*

 = Ωy + δΩy = Ωy + δωy
*

(109)

where δωx
*

, δωy
*

 are components of δωIB
L

H (i.e., level axis gyro drift rate components).
From Lecture 3, the initial wander angle is established implicitly through the D matrix
initialization:

d21o
* = Ωx

*
/Ωe

d22o
* = Ωy

*
/ Ωe

The associated initial wander angle is:

αo
*

 = tan-1 d21o
* / d22o

* = tan-1 Ωx
*

 / Ωy
*

The differential of the latter expression yields the error in αo
*

 due to errors in Ωx
*

 / Ωy
*

:

δαo = δ tan-1 Ωx / Ωy =
1

1 + Ωx / Ωy
2
 δ Ωx / Ωy

(110)

=
1

1 + Ωx / Ωy
2

Ωy δΩx - Ωx δΩy

Ωy
 2

 =
Ωy δΩx - Ωx δΩy

Ωy
 2

 + Ωx
 2

From Lecture 3:

Ωx = Ωe cos lo sin αo

Ωy = Ωe cos lo cos αo

(111)

where

Ωe = Earth’s rate magnitude and lo is initial latitude.

209

With (111),

Ωx
2

 + Ωy
2

= Ωe
2
 cos2lo sin2αo + cos2lo cos2αo = Ωe

 2
 cos2lo

Ωy δΩx - Ωx δΩy = Ωe coslo δΩx cosαo - δΩy sinαo

Then (110) with (109) yields the desired expression of initial wander angle error in terms
of gyro horizontal fixed bias during alignment:

δαo =
δωx

*
 cosα0 - δωy

*
 sinαo

Ωe coslo
(112)

Equation (112) shows that the initial wander angle error (i.e., the error in knowing the L
Frame orientation relative to north, hence, also the negative of the initial heading error)
equals the east component of gyro bias (the numerator in (112)) divided by earth rate
times cosine latitude. Quantitatively, for east gyro bias of 0.01 degree per hr, and a 45
degree latitude, the initial wander angle error is:

0.01

0.707 × 15
≈ 1 milliradian

From the previous lecture, this error provides the equivalent of the 0.01 deg per hr gyro
bias acting during navigation.

We now return to the φR term in Figure 6 (vertical gyro drift rate) that was not included
in the above analysis. As can be seen from Figure 6, this term has the effect of a ramp

input to the alignment loop. The response of the earth rate estimation error δωIE
L

H is a
function of the loop gains. In general, as will now be illustrated, for typical alignment

times of 5 minutes, the effect of φR is small enough to be ignored. For example, for a

gyro drift of 0.01 deg/hr, φR after 5 minutes equals approximately 10 μrads. The cross-

coupling of this effect into the estimation loop (through ωIE
L

 × uR
L

) is to introduce a drift

rate with magnitude on the order of 10 μrad × 15 deg/hr ≈ 0.00015 deg/hr. Clearly, this

is negligible compared to a 0.01 deg per hr gyro bias in δωIB
L

. The 10 mrad error in φR
introduces a heading error in the direction cosine matrix which is also clearly negligible

compared to the 1 milliradian heading error developed from δωIB
L

 (Equation (112)).
Hence, the effect of vertical gyro drift on initial alignment is negligible as stipulated.

We conclude this lecture with a discussion of the correlation that exists between the
errors that are present during navigation (discussed in the last lecture), and the initial
alignment errors described in this lecture which also produce navigation error. Since

210

gyro and accelerometer bias directly determine the heading and vertical alignment
accuracy, we should expect that these initialization errors and their subsequent
propagation into navigation error are strongly related to the direct effects of gyro and
accelerometer bias during navigation.

We return to Equations (107) and (112) that define the final alignment errors. In order to

differentiate between the navigation and alignment phases of flight, the CB
L
 matrix is

designated as CBo

L
 during alignment (implies a stationary fixed attitude. Note - This is not

always true). With this nomenclature and the definition for δωIB
L

H as given in Figure 6,
these equations can be written in the equivalent form:

φH
L

o = uR
L

 ×
1
g

 CBo

L
 δao

B

δαo =
1

Ωe coslo
 uE

L
 ⋅ CBo

L
 δωIBo

B
(113)

Where uE
L

 is a unit vector in the easterly direction as seen in the local level frame (i.e., the

indicated dot product is the component of δωIB
L

 in the east direction as defined
algebraically by Equation (112)). The associated error in initializing the D matrix (see

Lecture 3) or eL (see previous lecture) is δαo around the vertical direction. Hence,

eo
L

 = δαo uR
L

 =
1

Ωe coslo
 uE

L
 ⋅ CBo

L
 δωIBo

B
 uR

L
(114)

Let’s now return to the basic strapdown navigator error diagram (Figure 2 of the last

lecture). With eL initialized as in (114), the initial value of δωIE
L

 generated during
navigation is given by:

δωIE0

L
 = - eo

L
 × ωIEo

L
 = -

1

Ωe coslo
 uE

L
 ⋅ CBo

L
 δωIBo

B
 uR

L
 × ωIEo

L

Defining ωIE
L

 as containing north and vertical components, the cross-product term can be
expanded as follows:

ωIEo

L
 = Ωe coslo uN

L
 + Ωe sinlo uR

L

uR
L

 × ωIEo

L
 = Ωe coslo uR

L
 × uN

L
 = - Ωe coslo uE

L

211

where uN
L

 and uE
L

 are unit vectors north and east, respectively. The previous development
recognizes that the cross-product between unit vectors in the north and vertical directions

is a unit vector along an easterly line. Now substituting in the δωIEo
L

 equation obtains:

δωIEo

L
 = uE

L
 ⋅ CBo

L
 δωIBo

B
 uE

L
(115)

Hence, the effect on the initial wander angle initialization error (initial heading error) is to
introduce a rotation rate error in the direction cosine rate equations during the first hour
or so of navigation equal to the east component of gyro drift during alignment. From

Figure 2, the net effective drift rate in the φ
L
 equation (the sum of the gyro error and δωIE

L

terms) is equal to:

- CB
L

 δωIB
B

 + uE
L

 ⋅ CBo

L
 δωIBo

B
 uE

L

If CB
L

 equals CBo

L
 (i.e., the vehicle attitude during navigation equals its attitude during

alignment) and δωIB
B

 equals δωIBo
B

 (no additional gyro errors are introduced as a result of

navigation), the net effect of the above expression is to cancel the easterly gyro error
effects on navigation error build-up. Since rate errors from the gyros are not constant, the
above effect is only partially true. Nevertheless it is an important characteristic of
strapdown inertial navigation systems that should be understood, particularly during
laboratory testing (i.e., for a stationary system, a large portion of the gyro drift east will
be canceled and the predominant error will be north causing an east-west velocity and
position error. Gyro random drift masks this effect to some extent).

A similar effect exists from the φH
L

o term (Equation (113)). If aL in Figure 2 is

approximated by g uR
L

, the cross-product with φL
 in the δv

L
 equation becomes initially

(with (113)):

aL × φL
 ≈ g uR

L
 × φo

L
 = g uR

L
 × φH

L
o = g uR

L
 × uR

L
 ×

1
g

 CBo

L
 δao

B
 = - CBo

l
 δao

B
H

In Figure 2, this term is added to the acceleration error in the δv
L

 equation. The sum of
the two terms, therefore, is:

CB
L

 δaB + aL × φL
 = CB

L
 δaB - CBo

L
 δao

B
H

As with the gyro drift, the net horizontal effect is zero if the attitude of the vehicle is the
same during navigation as during alignment (assuming the accelerometer error remains
the same). (The vertical error is not canceled, however, vertical navigation errors are
typically clamped by a baro-altimeter in inertial navigation systems). The result is that

212

horizontal navigation error build-up due to accelerometer error in strapdown systems is
canceled by the initial vertical alignment error, if the navigation orientation matches the
orientation during alignment. This characteristic is particularly important when
interpreting navigation errors in laboratory testing and for system calibration.

213

NOTES

214

KALMAN FILTERING TECHNIQUES

LECTURE 12

215

NAV SEMINAR - LECTURE 12 NOTES

This lecture deals with the design of the gains for the alignment filter discussed in the last
lecture. The method to be used is the “minimum variance” (Kalman filter) approach
which generates “optimal” gains that result in the lowest error (in a statistical) sense for
the variables in the estimation loops. In order to develop the gain equations, we return to
Figure 6 of the previous lecture and recast the problem into a discrete form for
compatibility with the discrete operations of the digital computer performing the
alignment function.

To analyze the filter in Figure 6 for optimal gain determination, it is convenient to think
of the estimation loop updating process as being composed of two basic steps: (1) The
propagation of errors around the loop between filter updates, and (2) The actual
measurement and updating of the loop variable estimates through application of the
alignment filter gains. These two steps occur on an iterative basis in the digital computer
performing the alignment function. The first step is an open loop propagation of the error
variables in the estimation loop (i.e., with gains of zero), the second step is an impulsive
correction to the variables, occurring at the filter iteration frequency. Step 1 is illustrated
in Figure 7.

Comparing Figure 7 to Figure 6, it should be apparent that both are equivalent for zero

gains (between filter updates) except that the φR portion of the Figure 6 diagram has been
eliminated in Figure 7 since its effect is negligible (see previous lecture). To simplify the

diagram, Figure 7 only shows the local level versions of the sensor input error (- δa
L

H

and δωIB
L

H). In addition, Figure 7 represents the earth rate estimation error δωIE
L

H as
the output of the free integrator (i.e., a constant). From Figure 6, this representation is
equivalent to the assumption that Kω (the earth rate estimation gain) is zero (between

filter updates), and that δωIE
L

H is constant. The latter condition is satisfied because the
alignment is being performed at a stationary location.

As discussed in the last lecture, the alignment loop gains are designed to reach steady
state conditions rapidly in the presence of random disturbances in the estimation loop.
The steady state condition is a function of fixed sensor errors (discussed in the previous
lecture) and is independent of the alignment gains. Consequently, in the gain
determination analysis, the only error effects that need be considered in Figure 7 are those
associated with initial vertical alignment uncertainties, initial earth rate component
estimation uncertainties and random noise. The dominant noise sources involved for ring
laser gyro strapdown inertial navigation systems are:

• Laser gyro - Laser gyro random noise and pulse quantization error.

• Accelerometer - Accelerometer pulse quantization error.

• Acceleration Disturbances - Vehicle wind buffeting and stores/fuel loading
effects that produce random accelerometer outputs.

216

X
-

+

g

uR
L ×

X

+

+ +
aH

L

vH
L*

vH
L*

F

FIGURE 7 - ERROR PROPAGATION BETWEEN
FILTER UPDATES

φH
L

X
+

- •

FIRST ORDER LOW
PASS FILTER

() dt

() dt

1

τF

() dt

() dt

δωIB
L

H

δωIE
L

H

δa
L

H

217

These effects can be introduced into the Figure 7 diagram as illustrated in Figure 8. (The
i.c. terms in Figure 8 refers to “initial conditions”.) If Figure 8 is compared with Figure 7

it will be noted that gyro random noise (nGR) is shown as a rate error entering the φH
L

integrator (as would be expected), but that the gyro quantization noise (nGQ) sums into

the φH
L

 integrator output. A similar effect is to be noted for the accelerometer

quantization noise (nAQ) which sums into the velocity integrator output (rather than the
input as may have been expected from Figure 7). Quantization noise is an error
associated with the digitization of the sensor output signals. The sensor digitization
process is actually an integration process; ie., the digitization outputs represent quantized
increments of integrated sensor input. The quantization noise represents the uncertainty
in the integrated sensor signal due to the quantization of the digitizer pulse size (i.e., until
a pulse is actually output, the integrated sensor signal is only known within a one pulse
resolution). The above discussion serves to illustrate that the quantization noise effect is
an uncertainty in the knowledge of integrated sensor input, hence, its effect is modeled in

Figure 8 as an uncertainty in the integrated sensor signals, or as errors in the φH
L

 and vH
L*

integrator outputs.

A model has also been incorporated in Figure 8 to account for the dynamics of the

vehicle random acceleration motion (aH
L

). As can be seen in the Figure, aH
L

 is modeled as
a second order response to a disturbance noise (nD) representing vehicle acceleration
noise due to wind gusts, stores/fuel loading, etc.. The KD, CD dynamic response
constants represent the aircraft/landing gear dynamics associated with “stationary”
vehicle response to the dynamic acceleration inputs. As shall be seen subsequently, the
model for the vehicle disturbances need only be approximately known, principally to
categorize the bandwidth and root-mean-square amplitude characteristics of the

disturbance velocity vH
L

. The simplified second order model in Figure 8 is sufficient for
our purposes of determining optimal filter gains.

We now redraw Figure 8 to separate the contributions to vH
L*

F (the filtered value of vH
L*)

into two parts: those caused by system errors, and those caused by vehicle disturbances.
This separation will be useful later on when we will recognize that the vehicle
disturbance effects are only approximately modelable, and not accurately predictable.

Figure 9 is the redrawn version of Figure 8 with the above separation. The output vH
L*

F is
the input to the filter gains in Figure 6. This signal will hereafter be referred to as “the
measurement” for compatibility with optimal estimation theory nomenclature. Upon
comparison, it should be clear that Figures 8 and 9 are dynamically equivalent relative to
the effects on “the measurement.” The difference between the figures is that the
attenuation filter dynamics are shown applied separately to the system and vehicle
disturbance inputs in Figure 9 (rather than in total as in Figure 8). The individual

218

X
+

+
X

+

+

n G
R

φ HL

n G
Q

g
u RL

×
X

+ +
X

+

+

i.
c.

 =
 0

n a
Q

v HL *
F

A
IR

C
R

A
F

T
 D

IS
T

U
R

B
A

N
C

E
E

R
R

O
R

 M
O

D
E

L

•
X

+ -

C
D •

V
E

L
O

C
IT

Y

v HL
i.

c.
 =

 R
H

O

L

P
O

S
IT

IO
N

M
O

V
E

M
E

N
T

R
HL

K
DX

-+
n D

F
IG

U
R

E
 8

 -
 A

L
IG

N
M

E
N

T
 L

O
O

P
 E

R
R

O
R

S
B

E
T

W
E

E
N

 F
IL

T
E

R
 U

P
D

A
T

E
S

i.
c.

 =
 0

v HL *

a HL

1 τ F
(

)
dt

X
+ -

•
(

)
dt (
)

dt

(
)

dt

(
)

dt
(

)
dt

δω
IEL

H

i.c
.

=
v H

0

L

i.c
.

=

δω
IEL

H
0

i.c
.

=
 φ

H
0

L

219

X
+

+

+

n G
R

φ HL

X
+

n G
Q

g
u RL

×

i.
c.

 =
 v

H
O

L

•
X

+ -

C
D •

R
HL

K
DX

-+
n D

X
+

+

n a
Q

E
F

F
E

C
T

S
 O

N
 M

E
A

S
U

R
E

M
E

N
T

 D
U

E
 T

O
 S

Y
S

T
E

M
 U

N
C

E
R

T
A

IN
T

IE
S

X
+ +

v HL *
F

T
H

E
"M

E
A

SU
R

E
M

E
N

T
"

v HL
F

F
IG

U
R

E
 9

 -
 R

E
V

IS
E

D
 A

L
IG

N
M

E
N

T
 L

O
O

P
 E

R
R

O
R

 F
L

O
W

B

E
T

W
E

E
N

 F
IL

T
E

R
 U

P
D

A
T

E
S

v HL

(
)

 d
t

(
)

 d
t

(
)

 d
t

(
)

 d
t

(
)

 d
t

1 τ F
(

)
 d

t

1 τ F
(

)
 d

t
X

+

-
•

•
X

+

-

δv
HL

F

i.c
.

=
R

H
0

L

δω
IEL

H
δv

HL

i.c
.

=
 0

i.c
.

=
 0

i.c
.

=

δω
IEL

H
0

i.c
.

=
 φ

H
0

L
i.c

.
=

 -
 δ

v H
0

L

E
F

F
E

C
T

S
 O

N
 M

E
A

S
U

R
E

M
E

N
T

 D
U

E
 T

O
V

E
H

IC
L

E
 E

X
T

E
R

N
A

L
 D

IS
T

U
R

B
A

N
C

E
S

220

attenuation filter outputs in Figure 9 are denoted as δvH
L

F and vH
L

F. Their sum is the

Figure 8 filter output vH
L*

F or the "measurement".

STATE VECTOR NOTATION

In the analyses to follow, it is convenient to adopt a more compact nomenclature. To do
this we first write the differential equations that correspond to Figure 9:

δωIE
L

H
 = 0

φH
L

 = δωIE
L

H
 + nGR

δvH
L

 = g uR
L

 × φH
L

 + nGQ

δvH
L

F =
1

τF

 - δvH
L

F + δvH
L

 + naQ (116)

vH
L

 = - CD vH
L

 - KD RH
L

 + nD

RH
L

 = vH
L

vH
L

F =
1

τF

 - vH
L

F + vH
L

with the "measurement":

vH
L*

F = vH
L

F + δvH
L

F (117)

We now define the “state vector” as the vector of dynamic variables being analyzed.
Referring to Equations (116), the state vector X is defined as:

221

X =
Δ

δωIE
L

H

φH
L

δvH
L

δvH
L

F

vH
L

RH
L

vH
L

F

(117A)

We also define the "process noise" vector n as the driving function input to Equations
(116):

n =
Δ

nGR
nGQ
naQ
nD

(117B)

with the associates "state dynamic matrix" A and "process noise dynamic coupling
matrix" G defined as:

A =
Δ

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 g uR
L

 × 0 0 0 0 0

0 0
1

τF

-
1

τF

0 0 0

0 0 0 0 - CD - KD 0

0 0 0 0 1 0 0

0 0 0 0
1

τF

0 -
1

τF

(117C)

222

G =
Δ

0 0 0 0

I 0 0 0

0 g uR
L

 × 0 0

0 0
1

τF

 I 0

0 0 0 I

0 0 0 0

0 0 0 0

(117D)

where I is the identity matrix and:

X = A X + G n (118)

Equation (118) is the equivalent state vector form of Equation (116). Note, that Equation
(118) can also be viewed as a general differential equation set where X, A, n and G are
arbitrarily selected to represent the particular set of differential equations being analyzed.

We now introduce the concept of a generalized measurement of X as an input to an
estimation filter (in our case, the alignment filter). Denoting the measurement vector as
Z, we define:

Z = H X+ v (119)

where H is the "measurement matrix" that defines the combination of X elements that
comprises the "measurement", and v is the “measurement noise” vector. The
measurement noise is defined as the noise introduced in the process of making the
measurement. For our case (Equation (117)), the measurement vector is:

Z = vH
L

F + δvH
L

F (119A)

so that, with the definition of X given previously (and (119)):

H = 0 0 0 I 0 0 I (119B)

Equation (117) shows that our model has zero measurement noise. To keep the analysis a
little more general, however, we will utilize Equation (119) with v included. If you like,

223

you can consider v as computer round-off error associated with vH
L* in (117). This is a

legitimate measurement noise effect (however, in reality, it is small, and negligible in our

case compared, for example, with vH
L

).

DISCRETE PROPAGATION EQUATION FORM

Equations (118) and (119) define the propagation of the state vector variables between
filter updates, and the associated measurement for the filter at the time of update. Let us
now recast the differential state vector propagation Equation (118) into its equivalent
discrete form for compatibility with discrete computer operations. To do this, we define
X after the last filter update as Xn-1, and X just before the current filter update as Xn.
The equivalent discrete form of (118) relates Xn to Xn-1 and is given by:

Xn = Fn Xn-1 + wn (120)

In Equation (120), Fn is called the “state transition matrix.” Fn represents the normalized
homogeneous solution to Equation (118) (i.e., with n zero) at the current time (tn) due to
unity initial conditions at the last filter update (at tn-1). Multiplication by the known
initial conditions at tn-1 (namely Xn-1) generates the contribution to Xn due to the
dynamic propagation of Xn-1 through Equation (118). The wn term in (120) represents
the particular solution to (118) created by n acting over the interval from tn-1 to tn. It can
be shown that Fn and wn are related to the Equation (118) terms through:

F(t, τ) = A F(t, τ) F (τ, τ) = I

Fn = F tn, tn-1 (120A)

wn = F
tn-1

t

tn, τ G (τ) n (τ) dτ

Fn is the solution to the differential equation given above at tn with unity matrix initial

conditions at tn-1. Timeτ in the above expressions is an arbitrary time in the interval tn-1
to tn. The wn vector is the integrated effect at time tn of differential changes in X created

at time τ by n acting over the differential time dτ. Multiplication of G(τ) n(τ) dτ by

F tn, τ translates the resulting change in X at τ to its effect at tn (i.e., accounts for the

dynamical propagation of dX(τ) through the dynamics of differential Equation (118)).

Equation (120) is the discrete form of Equation (118) that relates X between discrete filter
update times tn-1 and tn. The measurement Equation (119) can be similarly stated as a
measurement at discrete (n) times. Hence, the discrete model for the propagation
dynamics between updates and the measurement can be summarized as:

224

Xn = Fn Xn-1 + wn
(121)

Zn = Hn Xn + vn

GENERALIZED FILTER STRUCTURE

Let us now synthesize a generalized updating equation for the alignment filter based on
the application of a generalized gain matrix to the measurement Z. The result will
ultimately be the filter gain matrix utilized by the alignment filter to correct X for the
current iteration cycle. In developing the generalized updating equation, however, let us
generalize a little bit further so that our results will be applicable to a broader class of
applications. To do this, we introduce the concept of an “estimate” as contrasted with a
“reset.” An “estimate” is an estimation of the state vector X based on the measurement Z
and past estimates of X. A “reset” is the modification of X based on the estimate. For
our case, since we wish X to be zero, the reset is simply a subtraction of the X estimate

from the computer quantities containing the X error (e.g., CB
L

 and vH
L

. See Figure 5 of the

last lecture). Hence, for this case, the estimated value of X becomes zero after the reset is
applied. For some applications, it may not be possible to directly reset some of the X
elements, or it may not be desirable to reset them to zero (e.g., control to a specified
offset condition may be required). To be more general, let us assume that X is updated as
a result of the X estimate by a general filter control variable u which we will select to fit
the requirements of the particular problem being analyzed. Hence, we can write that the
effect of the filter on X at each update time is to modify X as:

X = X + u

where u is the control variable based on filter measurements and other system constraints.
Hence, (121) becomes the modified form:

Xn = Fn Xn-1 + Fn un-1 + wn
(122)

Zn = Hn Xn + vn

Equation (122) includes the effect of system dynamics (Fn) translating the control change
in X applied at tn-1 (un-1) to present time tn, just prior to the tn filter update cycle.

We now introduce the concept of the “estimate” of X and the associated generalized
estimation and control equations:

Xn
*

 (-) = The estimate for Xn at the measurement time tn

Xn
*

 (+) = The improved estimate for Xn due to processing the measurement Zn in
the estimation filter we will be synthesizing.

225

We now synthesize the generalized estimation and control equations to be:

un-1 = f (Xn-1
*

 (+) and other command constraints)

Xn
*

 (-) = Fn Xn-1
*

 (+) + Fn un-1
(123)

Zn
*

 = Hn Xn
*

 (-)

Xn
*

 (+) = Xn
*

 (-) - Kn Zn
* - Zn

where

Zn
* = The estimate for Zn

Kn = Generalized estimation gain matrix.

If (123) is compared with (122), the principal for the filter structure should be apparent.

The estimate for Xn before the tn update (Xn
*

 (-)) is based on the value after the last

update (Xn-1
*

 (+)) modified by the state transition matrix, plus the transition effect at tn of
the control vector un-1 applied at tn-1 (after the last update). The un-1 vector is indicated

to be a function of the best estimate of X after the last update (Xn-1
*

 (+)) plus some other
command constraints peculiar to the particular problem at hand. From Equation (122),

the Xn
*

 (-) equation in (123) is clearly the best estimate for X at tn based on all available
information. Since wn is an unknown random vector in (122), its presence cannot be

accounted for in (123) prior to the tn measurement Zn. Hence, the Xn
*

 (-) estimation
equation does not include the effect of wn in (122) (i.e., our best estimate is to assume it
is zero or equally likely to be any positive or negative value). The Zn measurement

provides the additional information needed at tn to improve the Xn
*

 (-) estimate. The

estimate for Zn (i.e., Zn
*) in (123) is what we would expect Zn to be (see Equation (122))

based on our best estimate of X when we make the Zn measurement (Xn
*

 (-)). Since Zn

contains unpredictable measurement noise (vn), and because Xn
*

 (-) will differ from Xn

due to estimation errors, Zn
* will also differ from Zn. The difference between Zn

* and Zn

226

in Equations (123) is our measure of the accuracy in the estimation of X. Hence, the

measurement “residual” (Zn
* - Zn) is utilized in a negative feedback sense to update the X

*

estimate (generate Xn
*

 (+)). The gain matrix Kn amplifies and distributes the feedback

into the X
*

 elements to achieve some degree of optimality in the revised estimate (to be
discussed subsequently). The above sequence is summarized in Figure 10 (refer to
Equations (122) and (123)).

Note, in Figure 10 that if the control law is for un-1 to equal the negative of the X estimate

(un-1 = - Xn-1
*

), the revised estimate for X (after application of un-1) will be zero (i.e., the
best estimate for X will be controlled to zero). Under these conditions, the Fn and Hn
feedback paths in the filter portion of Figure 9 become zero. The result is that the Zn
measurement through the Kn gain becomes fed back directly to control the real X process
equations. This is the configuration we will ultimately use in the alignment problem for

the error parameters in the error state vector (δωIE
L

H, φH
L

, δvH
L

, δvH
L

F as in Figure 6).

For now, we will retain the Figure 10 un-1 control law configuration for generality.

OPTIMAL GAIN DETERMINATION

The filter design problem is to select the gain matrix in Equations (123) (and Figure 10)
such that the error in our estimate of X is minimized in a statistical sense. More

specifically, we seek a gain matrix that will minimize the variance in the error in X
*

 after
each update. To formulate the problem mathematically, we first define the estimation
error as simply:

ΔX =
Δ

 X* - X

At time tn, using the notation of the previous section, the estimation error before and after
the update is:

ΔXn (-) = Xn
*

 (-) - Xn

ΔXn (+) = Xn
*

 (+) - Xn

We now also define the covariance matrix associated with ΔXn as:

Pn =
Δ

 E ΔXn ΔXn
T

where

E = The expected value operator (i.e., average statistical value)

227

X
+

+

F
n

X
+

+X
n-

1
D

E
L

A
Y

•
X

n

v n

H
n

X
+

+
Z

n
X

+

+
K

n
X

+ +

•
X •

+
+

D
E

L
A

Y
H

n
F

n

•

• C
O

N
T

R
O

L
L

A
W

E
ST

IM
A

T
IO

N
 A

N
D

 C
O

N
T

R
O

L
 F

IL
T

E
R

F
IG

U
R

E
 1

0
-

G
E

N
E

R
A

L
IZ

E
D

 D
IS

C
R

E
T

E
 F

IL
T

E
R

 S
T

R
U

C
T

U
R

E

X
n

*
(-

)
X

n-
1

*
(+

)

X
n

*
(+

)

Z
n

*

u n
-1

w
n

228

Expanding the Pn definition finds:

Pn =

E ΔX1
2

E ΔX1 ΔX2 E ΔX1 ΔX3

E ΔX2 ΔX1 E ΔX2
2

E ΔX2 ΔX3

E ΔX3 ΔX1 E ΔX3 ΔX2 E ΔX3
2

n

where

ΔX1, ΔX2, etc. = The elements of ΔX.

The above expression for P shows that the diagonal elements equal the variances for the

elements of ΔX (i.e., the mean squared values) and the off-diagonal terms equal the
covariances. It should also be apparent that Pn is a symmetrical matrix, hence, it equals
its transpose:

Pn
T

= Pn (124)

The covariance matrix concept has been introduced as the measure of uncertainty in Xn
*

(i.e., the statistics of its error characteristics). The basis for selecting the gain matrix Kn
in Equations (123) will be to minimize Pn after the update. We now return to Equations
(123) to derive an expression for Pn(+) (Pn after the update) in terms of Pn(-) (Pn before
the update), the statistics of the measurement noise, and the general gain matrix Kn.

We begin by subtracting Xn from both sides of the Equations (123) update expression and
introduce (122) for Zn:

Xn
*

 (+) - Xn = Xn
*

 (-) - Xn + Kn Hn Xn + vn - Hn Xn
*

 (-)

= Xn
*

 (-) - Xn - Kn Hn Xn
*

 (-) - Xn + Kn vn

Introducing the definition for the estimation error ΔX as given previously:

ΔXn (+) = ΔXn (-) - Kn Hn ΔXn (-) + Kn vn

= I - Kn Hn ΔXn (-) + Kn vn

(124A)

We now utilize the definition for the ΔX covariance matrix to develop the statistical
equivalent of the above.

229

Pn(+) =
Δ

 E ΔXn(+) ΔXn(+)T

Substituting for ΔXn (+) and expanding:

Pn (+) = E I - Kn Hn ΔXn(-) + Kn vn I - Kn Hn ΔXn(-) + Kn vn
T

= E I - Kn Hn ΔXn(-) ΔXn
T

(-) I - Kn Hn
T

+ E Kn vn vn
T

 Kn
T

 + E I - Kn Hn ΔXn(-) vn
T

 Kn
T

+ E Kn vn ΔXn
T

(-) I - Kn Hn
T

= I - Kn Hn E ΔXn(-) ΔXn
T

(-) I - Kn Hn
T + Kn E vn vn

T
 Kn

T

+ I - Kn Hn E ΔXn(-) vn
T

 Kn
T

 + Kn E vn ΔXn
T

(-) I - Kn Hn
T

The E ΔXn(-) ΔXn
T

(-) expression above should be recognized as the ΔX covariance

matrix prior to the update Pn(-). The E vn vn
T

 expression is defined as the measurement
noise covariance matrix:

Rn =
Δ

 E vn vn
T

(124B)

In order to evaluate the ΔXn(-), vn product terms we have to specify the correlation
characteristics of the measurement noise vn. We assume that vn is a “white” sequence (in
n) (i.e., v at tn is uncorrelated with v at any other time tm). Mathematically:

E vn vm
T

 = Rn δnm

where

δnm is the Kronecker that, by definition, satisfies:

δnm = 0 for n ≠ m

= 1 for n = m

Since vn is uncorrelated from past values of vm, past measurements (Zn) are uncorrelated

with vn. Since the past measurements were used to generate Xn
* (-) (see Figure 10), we

can conclude that Xn
* (-) is also uncorrelated with vn. Hence:

230

E vn ΔXn
T

(-) = 0

E vn ΔXn
T

(-) = 0

With the latter results, the previous covariance update equation becomes the simplified
form:

Pn(-) = I - Kn Hn Pn(-) I - Kn Hn
T + Kn Rn Kn

T (125)

Equation (125) relates the uncertainty in X* after the update with the uncertainty before
the update as a result of applying an update using Kn with a measurement containing

noise. The X* uncertainty is represented by the covariance matrix Pn and the noise
characteristics of the measurement are contained in the Rn covariance matrix.

We can now pose the Kn design problem as the selection of Kn to minimize Pn(+) (i.e., to

minimize the uncertainty in X* after the update, or equivalently, minimize the variance of

the error in X* after the update).

To determine the optimal Kn that minimizes Pn(+) in (125), we first expand (125) as
follows:

Pn(+) = Pn(-) - Kn Hn Pn(-) - Pn(-) Kn Hn
T

+ Kn Hn Pn(-) Kn Hn
T + Kn Rn Kn

T

= Pn(-) + Kn Hn Pn(-) Hn
T + Rn Kn

T

- Kn Pn
T(-) Hn

T - Pn(-) Hn
T Kn

T

= Pn(-) + Kn Hn Pn(-) Hn
T + Rn Kn

T

- Kn Pn(-) Hn
T T

 - Pn(-) Hn
T Kn

T

In the previous expression, the substitution of Pn(-) equaling its transpose (Equation
(124)) was made. In order to simplify the algebra to follow we define An and Bn as the
coefficients in the latter equation:

An =
Δ

Hn Pn(-) Hn
T + Rn

(126)

Bn =
Δ

Pn(-) Hn
T

so that:

231

Pn(+) = Pn(-) + Kn An Kn
T - Kn Bn

T - Bn Kn
T (127)

We now make an observation on the form of (127) as contrasted, for example, with a
term of the form:

Kn - Dn Cn Kn - Dn
T = Kn Cn Kn

T- Kn Cn Dn
T - Dn Cn Kn

T + Dn Cn Dn
T

or, for Cn symmetrical such that Cn = Cn
T:

Kn - Dn Cn Kn - Dn
T

(128)

 = Kn Cn Kn
T - Kn Dn Cn

T- Dn Cn Kn
T + Dn Cn Dn

T

If (127) is compared with (128) it should be clear that the two are identical in form,

except for the Dn Cn Dn
T and Pn (-) terms. That is, for Cn and Dn defined as follows, the

two expressions are equivalent if (127) is corrected for Pn(-) and Dn Cn Dn
T.

Cn = An

Dn Cn = Bn
(129)

or

Dn = Bn Cn
-1

 = Bn An
-1

We must now check that Cn = An is symmetrical since the expansion form (128) assumed
this. A look at (126) reveals that this is indeed the case. An is composed of a
symmetrical matrix (the covariance matrix Rn) plus a symmetrical matrix (Pn(-))

modified by Hn and Hn
T. It is easily verified that Hn Pn(-) Hn

T is symmetrical by
proving that it equals its transpose:

Hn Pn(-) Hn
T T

 = Hn Pn(-)T Hn
T = Hn Pn (-) Hn

T

Hence, since both elements of An are symmetrical, An is symmetrical. We now use (129)
to rewrite (127) as:

Pn(+) = Pn(-) + Kn Cn Kn
T - Kn Dn Cn

T - Dn Cn Kn
T

which, with the (128) identity is:

Pn(+) = Pn(-) + Kn - Dn Cn Kn - Dn
T - Dn Cn Dn

T

With (129),

232

Pn(+) = Pn(-) - Bn Bn An
-1 T

 + Kn - Bn An
-1 An Kn - Bn An

-1 T
(130)

Equation (130) is in a form that can now be used to define the optimum Kn that
minimizes Pn(+) by inspection. Before this is done, however, the properties of the last
term must be understood. The form of this term is similar to the Pn term in An Equation
(126) discussed previously. We will soon show that this expression always has positive
terms along the diagonal. Hence, since it is added to Pn(-) in (130) to form Pn(+), it
increases the magnitude of the diagonal elements in Pn. Since the diagonal elements in

Pn represent the variances of the X* element errors, we wish the diagonal elements in
Pn(+) to be minimized through the updating process. Since the last term in (130) only
increases Pn(+), and since Kn only appears in this term in the Pn(+) equation, we can
conclude that the optimum value for Kn that minimizes Pn(+) is that value that sets the
last term in (130) to zero. From (130), this value is seen by inspection to be:

Kn = Bn An
-1

or with (126):

Kn = Pn(-) Hn
T Hn Pn(-) Hn

T + Rn
-1

(131)

Equation (131) is the optimal gain which will generate a minimum variance estimate for

X* after the update is applied (as specified in Equation (123) and Figure 10).

It is noted in passing, that if the gain for the filter is calculated according to Equation
(131), Equation (125) for Pn(+) can be simplified by expansion and substitution.
Beginning with the analytical expansion following Equation (125), and substituting
(131):

Pn(+) = Pn(-) + Kn Hn Pn(-) Hn
 T

 + Rn Kn
 T

 - Kn Pn(-) Hn
 T T

 - Pn(-) Hn
 T

 Kn
 T

= Pn(-) + Pn(-) Hn
 T

 Kn
 T

 - Kn Pn(-) Hn
 T T

 - Pn(-) Hn
 T

 Kn
 T

= Pn(-) - Kn Pn(-) Hn
 T T

Expanding the transposed term in brackets and recognizing that Pn(-) equals its transpose
yields:

Pn(+) = Pn(-) - Kn Hn Pn(-)

or

Pn(+) = I - Kn Hn Pn(-) (131A)

233

Equation (131A) is equivalent to Equation (125) for cases where Kn satisfies Equation (131).
In applying (131A), it is important to recognize that it is based on an exact application (and
computation) of (131). For the more general case where Kn is not exactly calculated according
to the optimal (131) expression, Equation (125) should be used. For the development to
follow, Equation (125) is used in general throughout (although (131A) could have been used in
some instances to simplify the equations).

We now go back a step and prove that the last term in (130) does indeed always have
positive diagonal elements as stipulated in our logic for selecting Kn. If we define the

Kn - Bn An
-1 term as Gn for simplicity, the last term in (130) is, with (126):

Kn - Bn An
-1 An Kn - Bn An

-1 T

= Gn An Gn
T = Gn Hn Pn(-) Hn

T + Rn Gn
T

= Gn Hn Pn(-) Hn
T Gn

T + Gn Rn Gn
T

= Gn Hn Pn(-) Gn Hn
T + Gn Rn Gn

T

Each of the two terms in the above expression consists of a covariance matrix (Pn(-) or

Rn) pre and post multiplied by a matrix and its transpose. Let’s look at the Gn Rn Gn
T

term as an example and reintroduce the definition for Rn:

Gn Rn Gn
T = Gn E vn vn

T Gn
T = E Gn vn Gn vn

T

The Gn vn term in the above expression is also a vector (say Yn) so that

Gn Rn Gn
T = E Yn Yn

T

If the above expression is expanded in component form (as we did for Pn previously) it
will be obvious that the diagonal elements are the variances (or mean squared values) of
the Yn elements. Hence, the diagonal elements are positive. A similar argument also

applies for the Gn Hn Pn(-) Gn Hn
T term, hence, its diagonal elements are also positive.

It is concluded that the sum of these terms (the last term in (130)) must, therefore, also
have positive diagonal elements, thereby, validating the assumption used previously in
selecting Kn.

In order to use (131) to determine Kn, we must know the values of Hn, Rn, and Pn(-). The
former two matrices represent our basic understanding of the measurement process; they
represent the model for the measurement and the measurement noise. The last term (Pn(-
)) is a dynamic variable that is the result of past filter updates since the filtering process
was initiated. In order to determine the value for Pn(-) we must keep track of these
changes in Pn that have been accrued over past filtering cycles. Changes in Pn occur
from three sources: 1. The filtering updating operation (as defined by Equation (125)), 2.
The change in Pn between filter update cycles due to the dynamical interaction between
the state vector elements, and 3. The effect of integrated process noise on the actual X

234

vector that is unknown by the filter between measurements (see Equations (122)). We
will now derive an equation for the second and third effects.

Equation (125) defines the change in Pn over an update cycle (Pn(+) as a function of
Pn(-)). What we now seek is an expression for Pn(-) in terms of Pn after the last filter
update (Pn-1(+)). To do this we return to Equations (123) and concentrate on the

expression defining the estimate of X before the update Xn
* (-) in terms of the estimate for

X after the last update Xn
* (+). The covariance matrix propagation associated with this

relationship is the equation we desire, linking Pn(-) to Pn-1(+). From Equations (123), the

estimate for Xn
* (-) is:

Xn
* (-) = Fn Xn-1

* (+) + Fn un-1

From (122), the actual X vector expression over the same interval is:

Xn = Fn Xn-1 + Fn un-1 + wn

Subtracting the latter two expressions yields:

Xn
*

(-) - Xn = Fn (Xn-1
* (+) - Xn-1) - wn

or, with the definition for the estimation error ΔX,

ΔXn(-) = Fn Δ Xn-1(+) - wn (131B)

The covariance matrix expression associated with the latter equation is:

Pn(-) = E ΔXn(-) ΔXn
T

(-)

= E Fn ΔXn-1(+) - wn Fn ΔXn-1(+) - wn
T

= Fn E ΔXn-1(+) ΔXn-1
T

(+) Fn
T + E wn wn

T

- Fn E ΔXn-1(+) wn
T

 - E wn ΔXn-1
T

(+) Fn
T

The first expected value term in the above expression should be recognized as the

covariance of ΔX after the last filter update (i.e., Pn-1(+)). The second term is the
covariance matrix associated with the integrated process noise from tn-1 to tn. We define:

Qn =
Δ

E wn wn
T

(131C)

235

Because wn represents the integrated effect of n process noise on ΔXn over the tn-1 to tn
time interval , it is uncorrelated with X and its uncertainty ΔX at time tn-1 or earlier.

Because n is white noise, it is uncorrelated with X and its uncertainty ΔX prior to or at
time tn-1. Hence,

E ΔXn-1(+) wn
T

 = 0

E wn ΔXn-1
T

(+) = 0

Substituting the above results into the Pn(-) expression yields the desired relationship
between Pn(-) and Pn-1(+):

Pn(-) = Fn Pn-1(+) Fn
T

 + Qn (132)

Equations (125) and (132) describe the propagation of Pn between updates and over an
update. With Equation (131) for Kn, this set enables the optimal gain matrix to be
calculated on a continuous basis for the estimation filter (Figure 10). These results are
summarized in Figure 11.

It is to be noted in Figure 11, that the optimal gain determination requires an open loop
updating of the covariance matrix P based on its value for the previous interval. An
integration process is implied by this operation that must be initialized at the start of the
filtering process. The initial value of P (i.e., Po) is determined by the best estimate (on a
root-mean-square basis) of the variances (and covariances) associated with the errors in
the state vector X at the start of alignment. One of the advantages (and shortcomings) of
the minimum variance approach is that it is based on knowing what the initial uncertainty
in X is (as manifested in Po). In addition, knowledge of the statistics of the process and
measurement noise (as manifested in Qn and Rn) is required. If these statistical
parameters are known (and they usually are), the Figure 11 gain formula yields excellent
filter performance. On the other hand, if Qn, Rn and Po are unknown (or have large
uncertainties), performance deficiencies can be introduced.

To be assured that reasonable performance will be achievable with the possible variations
that may be experienced in Rn, Qn, and Po from what was assumed in the filter design,
digital simulation analyses are required. Such simulation studies are designed to obtain a
set of Rn, Qn, Po that yield good filter performance over the range of anticipated
variations in these parameters that may actually be experienced in practice.

Another point should be noted regarding the form of Figure 11 for filter performance
analyses. The performance of the filter is completely characterized on a statistical basis
from instant to instant by the covariance matrix P. Hence, in the process of calculating
the gain, the covariance performance of all of the filter estimated states (the elements of
X), are also determined. Statistical analyses of the filter performance using a digital
simulation, therefore, need only simulate the Figure 11 loop. Note, that the Figure 11
covariance update equations are general for any gain Kn (see derivation), not only for the
optimal gain. Gains determined on the basis of off-nominal Qn, Rn, Po can also be

236

DELAY

Pn(+) = I - Kn Hn Pn(-) I - Kn Hn
T

+ Kn Rn Kn
 T

• Kn
TO ESTIMATION

FILTER (FIGURE 10)

FIGURE 11 - OPTIMAL GAIN DETERMINATION

Pn(-) = Fn Pn-1(+) Fn
T
 + Qn

Kn = Pn(-) Hn
T Hn Pn(-) Hn

T + Rn
-1

237

utilized in Figure 11 if the Kn block is replaced by the equivalent block for off-nominal
gain determination. Such an approach is illustrated in Figure 11A. The starred quantities
are the assumed off-nominal filter gain design parameters. The non-starred quantities
represent the actual statistics of the filter operation that would be experienced when
applying the off-nominal parameter based gains.

In the more general case, the analytical model used for the estimation filter in the flight
computer (Figures 10 and 11) may not only deviate from reality in Qn, Rn and Po, but
may also contain inaccuracies in its state dynamics matrix model (Fn), its measurement
matrix model (Hn), and in the number of states it accounts for. The analysis of these
effects deals with the performance characteristics of “suboptimal” filters (filters that have
the general optimal gain determination and estimation structure, but with inaccuracies in
the system model, either due to uncertainties in the actual model, or due to
approximations intentionally introduced to reduce the analytical complexity of the flight
software required for implementation). The equivalent to Figure 11A for determining
suboptional filter performance in the more general case can be derived following the
same methodology used in developing Equations (122) to (132).

We begin by defining the analytical model of the system states assumed in the flight
computer:

Xn
* (-) = F*xxn Xn-1

* (+) + F*xxn un-1
(132A)

where

X* = The flight computer estimation filter state vector before (-) and after (+) a
filter update.

F*xx = The state transition matrix for X* assumed in the flight computer.

u = The X control vector used to modify X at each Kalman update cycle

(following the X* update).

The estimation filter update equation is:

Z
*

 = Hxn
* Xn

* (-)

Xn
*

(+) = Xn
* (-) - Kn Zn

* - Zn

(132B)

where

Z = The actual measurement vector (obtained from actual system
measurements).

238

D
E

L
A

Y

•
K

n

K
n

=
 P

n* (
-)

 H
n T

H
n

P
n* (

-)
 H

n T
 +

 R
n*

-1

P
n* (

-)
 =

 F
n

P
n-

1
*

(+
)

F
n T

 +
 Q

n*

G
A

IN
D

E
T

E
R

M
IN

A
T

IO
N

IM
P

L
E

M
E

N
T

E
D

IN
FL

IG
H

T
C

O
M

P
U

T
E

R
D

E
L

A
Y

P
n* (

+
)

=

I
-

K
n

H
n

P
n* (

-)

I
-

K
n

H
n

T

+
 K

n
R

n*
K

n T

P
n(

+
)

=

I
-

K
n

H
n

P
n(

-)

I
-

K
n

H
n

T

+
 K

n
R

n
K

n T

A
C

T
U

A
L

FI
L

T
E

R
PE

R
FO

R
M

A
N

C
E

F
IG

U
R

E
 1

1A
 -

 F
IL

T
E

R
 P

E
R

F
O

R
M

A
N

C
E

 M
O

D
E

L
 W

IT
H

 O
F

F
-N

O
M

IN
A

L
G

A
IN

S
F

O
R

 S
IM

U
L

A
T

IO
N

 A
N

A
L

Y
SE

S

P
n(

-)
=

F
n

P
n-

1(
+

)
F

nT
 +

 Q
n

239

Z* = The flight computer estimate for the filter input measurement (based on the
assumed analytical model for X).

Hx
*

 = The flight computer model for the measurement matrix.

K = The “optimal” gain matrix used in the computer estimation filter, typically
calculated as shown in the left hand portion of Figure 11A.

We now define the actual system analytical model as:

Xn = Fxxn Xn-1 + Fxyn Yn-1 + wxn + Fxxn un-1

Yn = Fyyn Yn-1 + Fyxn Xn-1 + wyn + Fyxn un-1

Zn = Hxn Xn + Hyn Yn + vn

(132C)

where:

X = The actual state vector (approximated by X* in the flight computer estimation
filter).

Y = The vector of additional actual states not accounted for in the flight
computer filter.

Fxx, Fxy, Fyx, Fyy = X, Y state dynamic matrix elements (Fxx is approximated

by F*xx in the flight computer).

wx, wy = X, Y state integrated input process noise vectors.

v = Measurement noise.

Hx, Hy = Actual system measurement matrices (Hx is approximated by H
*

x and
Hy is assumed to be zero in the flight computer filter).

The error in the flight computer X estimate is defined as before (in the steps leading to
Equation (124A)):

 ΔX =
Δ

 X* - X

The value for ΔX immediately following an update is derived by combining equations
(132B) and the Z measurement formula from Equations (132C):

240

ΔXn(+) = Xn
* (+) - Xn = Xn

* (-) - Kn (Zn
* - Zn) - Xn

= Xn
* (-) - Xn + Kn Hxn Xn + Hyn Yn + vn - Hxn

*
 Xn
* (-)

= ΔXn(-) + Kn - Hxn
*

 Xn
* (-) + Hxn

*
 Xn - Hxn

*
 Xn + Hxn Xn + Hyn Yn + vn

= ΔXn(-) + Kn - Hxn
*

 ΔXn(-) - (Hxn
*

 - Hxn) Xn + Hyn Yn + vn

or

ΔXn(+) = (I - Kn Hxn
*) ΔXn(-) + Kn vn - Kn (Hxn

*
 - Hxn) Xn + Kn Hyn Yn (132D)

where

I = The identity matrix with the same dimension as X or ΔX

The error immediately preceding an update is derived by combining Equation (132A)
with the dynamic propagation formulas in Equations (132C):

ΔXn(-) = Xn
* (-) - Xn = Fxxn

* Xn-1
* (+) + Fxxn

* un-1 - Fxxn Xn-1

- Fxyn Yn-1 - wxn - Fxxn un-1

= Fxxn
* ΔXn-1(+) + (Fxxn

* - Fxxn) Xn-1 - Fxyn Yn-1 - wxn

+ (Fxxn
* - Fxxn) un-1

(132E)

It is convenient at this point to hypothesizes a form for the control vector u. For inertial
navigation estimation problems u is typically a linear function of the estimated state

vector X*:

u = - L X* = - L X + ΔX

where

L = The control matrix.

Substituting in (132E) yields the final form:

241

ΔXn(-) = Fxxn
*

 ΔXn-1(+) + (Fxxn
*

 - Fxxn) Xn-1 - Fxyn Yn-1 - wxn

- (Fxxn
*

 - Fxxn) Ln Xn-1 + ΔXn-1(+)

or

ΔXn(-) = Fxxn
* - (Fxxn

* - Fxxn) Ln ΔXn-1(+)

+ (Fxxn
* - Fxxn) (I - Ln) Xn-1 - Fxyn Yn-1 - wxn

(132F)

The X, Y dynamic propagation formulas can also be expanded using the latter definition
for u:

Xn = Fxxn - I - Ln Xn-1 + Fxyn Yn-1 - Fxxn Ln ΔXn-1(+) + wxn

Yn = Fyyn Yn-1 + Fyxn I - Ln Xn-1 - Fyxn Ln ΔXn-1(+) + wyn

(132G)

Equations (132D), (132F) and (132G) can now be converted to a more familiar form if
we define an augmented state vector with associated dynamics, integrated process noise
increment, measurement model, and update gain matrix as follows:

X´ =

ΔX

X

Y

w´ =
wx

- wx
- wy

F´ =

[Fxx
* - (Fxx

* - Fxx) L] (Fxx
* - Fxx) I - L - Fxy

- Fxx L Fxx I - L Fxy

- Fyx L Fyx I - L Fyy

(132H)

H´ = Hx (H
*

x - Hx) - Hy K´ = J K J =
I
0
0

Using the above definitions, Equations (132D), (132F) and (132G) simplify to the
following familiar forms:

X´n(-) = F´n X´n-1 (+) - w´n

X´n(+) = I´ - K´n H´n X´n(-) + K´n vn

(132I)

242

where

I´ = The identity matrix with the same dimension as X´

Equations (132I) are identical in form to Equations (124A) and (131A). Hence, the
covariance equivalents of (132I) should also be identical in form to Equations (125) and
(132) (the covariance equivalents of (124A) and (131A)). Thus, from (124A) and
(131A):

Pn
´
(-) = Fn

´
 Pn-1

´
(+) Fn

´ T
 + Qn

´

Pn
´
(+) = I´ - Kn

´
 Hn

´
 Pn

´
(-) I´ - Kn

´
 Hn

´ T
 + Kn

´
 Rn Kn

´ T
(132J)

where

R = E v vT

Q´ = E w´ w´T = E
wx

- wx
- wy

wx
T - wx

T - wy
T

 = E

wxwx
T -wxwx

T -wxwy
T

-wxwx
T wxwx

T wxwy
T

-wywx
T wywx

T wywy
T

 =

Qxx - Qxx - Qxy

- Qxx Qxx Qxy

- Qxy
T

Qxy
T

Qyy

(132K)

Qxx = E wx wx
T

Qyy = E wy wy
T

Qxy = E wx wy
T

P´ = E X´ X´T = E

ΔX

X

Y

ΔX
T

 XT YT

(Continued)

243

 = E

ΔX ΔX
T ΔX X

T ΔX Y
T

X ΔX
T

X XT X YT

Y ΔX
T

Y XT Y YT

=

PΔXΔX PXΔX PYΔX

PXΔX PXX PXY

PYΔX
T PXY

T PYY

(132K)

PΔXΔX = E ΔX Δ XT

PXΔX = E X ΔXT

PYΔX = E Y ΔXT

PXX = E X XT

PXY = E X YT

PYY = E Y YT

(Concluded)

The performance of the suboptimal filter is defined by the covariance of the error vector

ΔX (i.e., by PΔXΔX = E ΔX Δ XT , the upper diagonal elements in the Equations (132K)
P´ matrix formula). Symbolically,

PΔXΔX = JT P´ J (132L)

where J is as defined in Equations (132H).

Figure 11B depicts Equations (132J) with (132L) in block diagram form. The Kn gain
matrix is shown being generated as in Figure 11A from the reduced state flight computer

filter model estimate for the system covariance characteristics (the assumed statistics of X*

with its assumed state transition matrix, input noise matrix, measurement matrix,
measurement noise matrix, and covariance matrix initialization).

An alternate to the Figure 11B suboptimal analytical configuration separates the control
from the error propagation equations such that Equations (132A) and (132C) become
equivalently:

Xn-1
* (++) = Xn-1

* (+) + un-1

Xn
* (-) = Fxxn

*
 Xn-1
* (++)

(132M)

Xn-1(++) = Xn-1 + un-1

Yn-1(++) = Yn-1
(132N)

Xn = Fxxn Xn-1(++) + Fxyn Yn-1(++) + wxn

Yn = Fyyn Yn-1(++) + Fyxn Xn-1(++) + wyn

where

244

D
E

L
A

Y

D
E

L
A

Y

•
K

n

G
A

IN
D

E
T

E
R

M
IN

A
T

IO
N

IM
PL

E
M

E
N

T
E

D
IN

F
L

IG
H

T
C

O
M

P
U

T
E

R

A
C

T
U

A
L

FI
L

T
E

R
PE

R
FO

R
M

A
N

C
E

F
IG

U
R

E
 1

1B
 -

 G
E

N
E

R
A

L
IZ

E
D

 S
U

B
O

P
T

IM
A

L
 K

A
L

M
A

N
 F

IL
T

E
R

 P
E

R
F

O
R

M
A

N
C

E
M

O
D

E
L

 F
O

R
 S

IM
U

L
A

T
IO

N
 A

N
A

L
Y

SE
S

P
n' (-

)
=

F
n'

P
n-

1
'

(+
)

F
n' T

 +
 Q

n'

P
n' (+

)
=

I' -
 K

n'
H

n'
P

n' (-
)

I' -
 K

n'
H

n'
T

+
 K

n'
R

n
K

n' T

•

K
n' =

 J
 K

n
K

n'

P
n* (

+
)

=

I
-

K
n

H
x

n
*

P
n* (

-)

I
-

K
n

H
x

n
*

T

+
 K

n
R

n*
K

nT

P
n* (

-)
 =

 F
xx

n
*

P
n-

1
*

F
xx

n
*

 T
 +

 Q
n*

K
n

=
 P

n* (
-)

 H
x

n
*

T
H

x
n

*
P

n* (
-)

 H
x

n
*

T +
 R

n*
-1

P
Δ

X
Δ

X
=

JT
P

' J

245

(++) = Reference to conditions immediately after application of the control
vector which is immediately after the Kalman estimate is made.

The X equations in (132M) and (132N) can then be combined using the previous

definition for ΔX = X* - X to obtain:

ΔXn-1(++) = ΔXn-1(+)
(132O)

ΔXn(-) = Fxxn
* Xn-1

* (++) - Fxxn Xn-1(++) - Fxyn Yn-1(++) - wxn

= Fxxn
* ΔXn-1

* (++) + (Fxxn
* - Fxxn) Xn-1(++) - Fxyn Yn-1(++) - wxn

Introducing u = - L X* = - L X + ΔX , Equations (132N) with (132O) become:

ΔXn-1(++) = ΔXn-1(+)

Xn-1(++) = - Ln ΔXn-1(+) + I - Ln Xn-1(+)

Yn-1(++) = Yn-1(+)
(132P)

ΔXn(-) = F*xxn ΔXn-1(++) + (F*xxn - Fxxn) Xn-1(++) - Fxyn Yn-1(++) - wxn

Xn(-) = Fxxn Xn-1(++) + Fxyn Yn-1(++) - wxn

Yn(-) = Fyyn Yn-1(++) + Fyxn Xn-1(++) + wyn

Using definitions similar to those employed in Equations (132H), Equations (132P) can
be written in the augmented form:

X'n-1(++) = Fn
" X'n-1(+)

(132Q)

X'n(-) = Fn
"'
 X'n-1(++) - w'n

where

246

X´ =

ΔX

X

Y

w´ =
wx

- wx
- wy

F" =
I 0 0

- L I - L 0
0 0 I

(132R)

F"' =

F*xx (F* xx - Fxx) - Fxy

0 Fxx Fxy

0 Fyx Fyy

The companion covariance propagation equations are:

P'n-1(++) = Fn
"
 P'n-1(+) F"n

T

(132S)

P'n(-) = F"'n P'n-1(++) F"'n
T + Q'n

where P´ and Q´ are as defined previously in Equations (132K).

Equations (132S) with the covariance update equation in (132J) form an alternate to the
(132J) suboptimal covariance matrix propagation equations. Figure 11C illustrates how
the actual filter performance would be evaluated with this approach using the actual
system calculated gain Kn (as in Figure 11B).

Figures 11B or 11C with Equations (132H), (132K), and (132R) can be used to evaluate
the suboptimal covariance performance (PΔxΔx) of an estimation and control filter
implemented in flight software for the general case where the flight computer state vector
model differs from the “real world” in its dynamic characteristics, measurement
characteristics, number of states in the overall model, as well as variations in the process
noise and initial covariance amplitudes.

Figures 10 and 11 define the general structure of the classical discrete Kalman filter with
state variable control. Figures 11A, 11B, and 11C define covariance methods that are
useful for analyzing the performance of such Kalman filters in “real world”
environments.

Kalman filtering is a general estimating technique that is not only applicable to the
specific inertial navigation alignment problem we are addressing; as we shall see at the
end of this lecture, it is a general concept that can be applied to a large class of estimating
problems encountered with digital systems including the broader problem of inertial
navigation system aiding.

247

ACTUAL
FILTER

PERFORMANCE DELAY

Pn
'
(+) = I' - Kn

'
Hn

'
Pn

'
(-) I' - Kn

'
Hn

' T

 + Kn
'

Rn Kn
' T

Pn
'
(++) = F n

''
Pn

'
(+) F n

'' T

•

Kn
'
 = J Kn

Kn
'

Kn

GAIN
CALCULATED

IN
FLIGHT

COMPUTER

FIGURE 11C - ALTERNATE GENERALIZED SUBOPTIMAL KALMAN FILTER
PERFORMANCE MODEL FOR SIMULATION ANALYSES

Pn
'
(-) = F n

'''
Pn-1

'
(++) F n

''' T
 + Qn

'

PΔXΔX = JT P' J

248

APPLICATION TO THE FINE ALIGNMENT PROBLEM

Let us now return to our problem of performing the strapdown fine alignment function
and apply the Figure 10 and 11 Kalman filter optimal gain approach developed in the
previous paragraphs. Returning to Equation (117A) which defines the state vector for the
fine alignment problem, we note that the top four state vector elements are system
induced errors, whereas the bottom three are environmentally induced effects (see Figure
9). We also recall that the environmentally induced effects are only approximately
modelable, as contrasted with the system induced errors, which are accurately
understood, hence, modelable. In addition, the externally induced effects generally have
wider bandwidth characteristics than the system errors, which are, therefore, attenuated to

a larger extent by the pre-filter installed in the system software that operates on vH
L*

, the
sum of the system and environmentally induced effects (see Figures 5 and 6). This, of
course, was the reason for inserting the pre-filter: so that “the measurement” is a stronger
measure of system errors (the quantities of interest) rather than external effects (i.e., to
increase signal-to-noise ratio). The above discussion sets forth the rationale for not
attempting to estimate the environmentally induced effects as part of the alignment filter
operations (i.e., not estimating the last three elements in Equation (117A)). It can be
verified that if the model we assume for the environmental disturbance is accurate,
neglecting to estimate the disturbance state variables adds virtually no error to our filter
performance results. On the other hand, if our model for the disturbance state variables is
inaccurate, not estimating the disturbance effects avoids the potential of significant filter
inaccuracies caused by a bad mismatch between the actual disturbance and the model we
are using for the external environment.

Not estimating the disturbance effects does not mean that we neglect their presence
completely. We still account for their presence on a statistical sense in the covariance
matrix (P) used in Figure 11 to determine the optimal gains. The way we implement the
“no estimate” constraint is simply to set the gain elements associated with the disturbance
estimates to zero in Figure 11. Since there is no coupling between the system and
environmentally induced state variables between filter updates (see Figure 9), setting the
update gain for the environmental state estimates to zero completely uncouples their
effects in Figure 10 from the estimates of the system error states. Consequently,
estimated environmental state variables in Figure 10 can be eliminated without changing
the filter performance results.

The final simplification is to set the control vector un-1 equal to the negative of the X
estimate at (n-1) (i.e., correcting the X states being estimated to zero so that the best
estimate for them is controlled to zero continuously). With this philosophy, from
Equations (117A), the control law sets:

δωIE
L*

H = 0 φH
L*

 = 0 δvH
L*

 = 0 δvH
L*

F = 0

Since, based on all the available information these are the best estimates for the system
error variables, we can conclude that this is our best control of the actual system error
states.

249

With the latter simplifications, Figures 10 and 11 can be put into the equivalent Figure 12
form. Comparing Figure 12 with 11 it is to be noted that the Figure 10 estimation filter
dynamics Fn and Hn within the filter are absent in Figure 12. This, of course, is due to

our selection of un-1 to equal - Xn-1
*

 (see Figure 10). The prime (´) notation for X
signifies those elements of X being estimated. Hence:

X´ =

δωIE
L

H

φH
L

δvH
L

δvH
L

F

(133)

The double prime (") indicates the elements of X not being estimated (i.e., the disturbance
state variables:

X" =

vH
L

RH
L

vH
L

F

(134)

The associated state transition and integrated process noise vectors Fn
´ , Fn

", wn
´ , wn

" are

those elements of Fn and wn in Equation (120) associated with X´ and X " Since X´ and
X " are uncoupled, such a separation is readily achievable. The measurement matrices

Hn
´ , H"n are compatible with (133), (134), and (119A), and are given by:

Hn
´ = 0 0 0 1

Hn
" = 0 0 1

(135)

The Kn
´ gain matrix is the optimal gain matrix of Figure 11 associated with the X´ states

being estimated. The J matrix equates the elements of Kn (in Figure 11) associated with
X" to zero. The J´ matrix discards the zero elements of Kn associated with X " so that the

remainder Kn
´ is only for updating X´. Hence:

250

A
L

IG
N

M
E

N
T

 F
IL

T
E

R

F
IG

U
R

E
 1

2
-

F
IN

E
 A

L
IG

N
M

E
N

T
 D

IS
C

R
E

T
E

 K
A

L
M

A
N

 F
IL

T
E

R

S
Y

S
T

E
M

 E
R

R
O

R
 S

T
A

T
E

 D
Y

N
A

M
IC

S

X
+

+

F
n'

X
D

E
L

A
Y

D
E

L
A

Y

X
n'

•
X

-+

+

+ +

v n

Z
n

P
n(

+
)

=

I
-

K
n

H
n

P
n(

-)

I
-

K
n

H
n

T

+
 K

n
R

n
K

n T

D
E

L
A

Y

K
n' =

 J
' K

n

K
n'•

P
n(

-)
 =

 F
n

P
n-

1(
+

)
F

n T
 +

 Q
n

K
n

=
J

P
n(

-)
 H

n T
H

n
P

n(
-)

H
n T

 +
 R

n
-1

v HL
n

H
n'

X
+

+

D
E

L
A

Y

•

F
n''

X
n''

D
IS

T
U

R
B

A
N

C
E

 S
T

A
T

E
 V

A
R

IA
B

L
E

 D
Y

N
A

M
IC

S

H
n"

w
n"

w
n'

δv
HL

F
n

251

J =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

J´ =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

(136)

The other matrices in the alignment filter are those described previously in Equations
(119B), (121), (124A), and (131A). Since there is no significant “measurement” noise
for the alignment problem as formulated, the measurement noise vector vn and covariance
matrix Rn can be equated to zero. If Figure 12 is compared with Figure 6 (and 7) it
should be apparent that Figure 12 is the equivalent discrete form of Figure 6, and that the
Kn matrix of Figure 12 is the Figure 6 KΩ, Kφ, KV, KVF gain array utilized in the flight
computer.

One final note regarding the implementation of Figure 12 in the flight computer. If
Equations (136), (119B), (121), (124A), (131A), (117A,B,C), (118), and (120A) are
reviewed, it is to be noted that the matrices involved in the Figure 12 gain determination
are constant (except for P and K which are the dependent variables generated as a time
function from the fixed matrices and the initial conditions set for P). Hence, the Figure
12 gain determination loop will generate the same gains as a function of time for all
alignments. It can be concluded that if the resulting gains are determined once on a
laboratory computer as a function of time, they can then theoretically be programmed into
the flight computer as a time scheduled function with equivalent flight computer
alignment filter results. It should be realized, however, that in more general Kalman filter
applications, the gain determination will depend on variable navigation parameters for
which the stored gain schedule approach is no longer valid.

GENERALIZED KALMAN FILTER APPLICATIONS

The general Kalman filter structure as represented in Figures 10 and 11 can be applied to
a variety of problems, not only to the alignment problem we have been dealing with. One
of the principal advantages of the approach is that it allows the blending of information
from several different sources to develop the optimum estimate from all sources
combined. One of the classical applications of this latter approach has been in the
blending of navigational information from several different sources on a vehicle to obtain
an optimum navigational estimate. The result is a navigation estimate that has all of the
high accuracy qualities of the input navigational devices, but with many of the poorer
performance characteristics removed. When an inertial navigation system is one of the
sources of navigational data feeding the Kalman filter, the total integrated system is
known as a Kalman aided inertial system, or a hybrid aided inertial system.

As an example of a Kalman aided system, consider a system composed of an inertial
navigator (INS), a doppler radar, and an Omega receiver. The INS provides self
contained low noise wide bandwidth data; however, due to sensor errors, the position
errors present in the output are unbounded, and velocity errors are present with Schuler
oscillations that tend to build in amplitude with mission time. The doppler radar, on the

252

other hand, generally has high quality bounded velocity information (typically in error by
0.1% of actual velocity), but the data is noisy and needs filtering. As a result, bandwidth
characteristics are degraded. In addition, the doppler data is erroneous during
maneuvering flight, and for a military application, doppler radar is radiating and not
desirable for security reasons as an operating condition over unfriendly territory.

Navigational position data obtained by integrating the doppler velocity data (a heading
reference is implied in the doppler system output) also has an unbounded characteristic
on the same order as the INS. The Omega receiver, on the other hand, has bounded
position errors (on the order of one mile), but without direct velocity data as an output.
Deriving velocity data from Omega position changes yields too noisy an output, even
with filtering. (Stand alone Omega systems may utilize a heading reference and air speed
as the basic velocity reference, with the Omega position data used to update the velocity
signal in a blending filter similar to the one we utilized for the vertical INS channel using
the baro altimeter). A disadvantage of Omega is the possibility of black-out periods for
extended times during the mission due to low signal to noise ratios from the Omega
receiver.

A Kalman aided system utilizing the above three navigational devices would have the
wide bandwidth low noise characteristics of the INS, the high quality velocity accuracy of
the doppler (with noise removed) and the bounded position error characteristics of the
Omega receiver. If an accurate model for the INS sensor errors (as well as the
attitude/position/velocity error model - see Lecture 10) is incorporated for the Kalman
filter states, the filter will estimate the INS sensor errors, which can then be utilized
(through the un-1 control vector in Figure 10) to calibrate the sensors in flight. With the
INS calibrated, improved INS performance is achievable if the Omega becomes too noisy
to be usable, or the doppler data cannot be used due to vehicle maneuvering, or because it
is shut down for security reasons. Under these conditions, the integrated system can
operate with only the INS in a pure inertial mode, until the other sensor data is restored.
The Hn measurement matrix in Figure 10 would be controlled by the filter software to
reflect which (if any) measurements from the three navigation devices are being
processed. The Kalman filter covariance matrix would be updated in Figure 11 with the
Hn as configured throughout the mission, thereby providing an accurate indication of the
error conditions in all navigation devices, even when they are not being measured.

With the Kalman filter providing the blending function as described above, it should also
be apparent that the integrated system achieves a degree of optimality from a redundancy
standpoint. Each navigation device can also be considered as a back-up for the Omega.
When all are operating, the Kalman filter provides the optimum estimate for the
navigational state based on all estimates. For the case where one device (or two) fails, the
filter will continue to provide the best navigation estimate based on the data available
from the remaining operating input devices.

Figure 13 is a generalized diagram for the above described integrated Kalman aided
inertial system. The measurement for the Kalman filter is obtained by subtracting
navigation signals between the input devices so that a measure of the device errors is
input to the filter (recall that the measurement vector Zn is used as a measure of system
errors. If the system is perfect, Zn should be zero, except for measurement noise).

253

INS

KALMAN
FILTER

DOPPLER
RADAR

OMEGA
RECEIVER

SENSOR
CALIBRATION,

POSITION,
VELOCITY,
ATTITUDE

RESETS

INS POSITION

INS VELOCITY

•

•

XMEASUREMENT
VECTORS

+

+

-

-

DOPPLER VELOCITY

OMEGA POSITION

INTEGRATED
NAVIGATION

DATA

FIGURE 13 - EXAMPLE OF A HYBRID AIDED
INERTIAL NAVIGATION SYSTEM

X

Note in Figure 13 that the INS is being updated (with un-1) from the filter so that its
output becomes the best estimate directly. In this type of implementation, the INS is
considered the primary reference that is updated by the other devices. The Kalman filter
for such an approach, may be a part of the INS computer. Depending on the application,
other configurations are obviously possible. The Kalman filter structure in Figure 13, of
course, would be as shown in Figures 10 with 11 for the gain determination. The error
models used for the gain determination would account for all of the significant error
states and noise variables in the sensing devices, and in the measurement process.

One final note regarding the Figure 13 configuration. With the Kalman aided inertial
configuration indicated, the inertial system is in a continual state of being updated in
terms of sensor calibration as well as position, velocity, and attitude accuracy (assuming
that measurements are being processed). With this arrangement, therefore, the initial
alignment process described previously can also be included. Hence, the initial
alignment would become another filter submode, with the measurement brought in as
indicated in Figure 13. Thus, the distinction between the alignment and navigation
modes would disappear. All modes would be navigation modes, with the measurement
and Kalman filter state variables configured to handle the particular mission assignment
(initial alignment, pure inertial, Doppler-inertial, Omega-inertial, doppler-Omega-inertial
etc.). A doppler dead-reckoning mode could also be implemented by augmenting the
doppler in Figure 13 with a position integration, and updating the doppler
position/velocity readings with Kalman estimates of the errors in these quantities
determined during prior aided operations. Note, that an in-air alignment mode is also
achievable with this system by merely entering the doppler-inertial mode with the initial

254

covariance matrix in the Kalman filter set to correspond to the larger uncertainty in a
misaligned platform. The Kalman update cycle will then reset the INS attitude along
with the other parameters to achieve the proper attitude reference accuracy, hence,
achieve alignment.

255

NOTES

256

LECTURE NOTES APPENDICES

APPENDIX A - DERIVATION OF STRAPDOWN
INERTIAL NAVIGATION EQUATIONS

APPENDIX B - DERIVATION OF ERROR EQUATIONS FOR
STRAPDOWN INERTIAL NAVIGATION SYSTEMS

257

NOTES

258

APPENDIX A

DERIVATION OF STRAPDOWN INERTIAL NAVIGATION EQUATIONS

This appendix provides a rigorous derivation of the continuous form strapdown inertial
navigation differential equations.

Nomenclature

The following general nomenclature is used in this appendix:

A, A1, A2, A3 = Arbitrary coordinate frames.

E Frame = Earth fixed coordinate frame used for position location definition.

L Frame = Navigation coordinate frame having its Z axis parallel to the upward
vertical at the local earth surface referenced position location point on the
earth’s surface. Used for integrating acceleration into velocity, for defining
the angular orientation of the local vertical in the E Frame and for
describing the strapdown sensor coordinate frame orientation.

B Frame = Strapdown inertial sensor coordinates (“body frame”) with axes
parallel to nominal right handed orthogonal sensor input axes.

I Frame = Non-rotating inertial coordinate frame used as the reference for
angular rate sensor measurements.

V = Vector without specific coordinate frame designation.

VA = Column matrix with elements equal to the projection of V on Frame A axes.

CA2

A1 = Direction cosine matrix that transforms a vector from its A2 Frame

projection form to its A1 Frame projection form.

ωA1A2 = Angular rate of coordinate Frame A2 relative to coordinate Frame A1.

When A1 is the inertial I Frame, ωA1A2 is the angular rate measured by
angular rate sensors mounted on Frame A2.

ΩA1A2

A3 = Skew symmetric (or cross-product) form of ωA1A2

A3 represented by the

square matrix

0 - ωZ12

3
ωY12

3

ωZ12

3
0 - ωX12

3

- ωY12

3
ωX12

3
0

 where ωX12

3
, ωY12

3
, ωZ12

3
 are the

259

components of ωA1A2

A3 . The matrix product of ΩA1A2

A3 with another A3

Frame vector equals the cross-product of ωA1A2

A3 with the vector in the A3

Frame. Because ΩA1A2

A3 is skew symmetric, its transpose equals its

negative.

 =
d
dt

 = Derivative with respect to time.

General Coriolis Relationship Between Unit Vectors In Rotating Coordinate Frames

Consider a unit vector uA1 along one of the axes of a coordinate Frame A1. Define its

components in another coordinate Frame A2 as the column vector uA1

A2. Now, assume that

coordinate Frame A1 is rotating relative to Frame A2 at angular velocity ωA2A1. Define

the components of ωA2A1 in Frame A2 as the column vector ωA2A1

A2 . Further, assume that

the angle between uA1

A2 and ωA2A1

A2 is α. Figure A-1 depicts the geometry involved as

viewed in Frame 2.

sin α

α

FIGURE A1 - GEOMETRY INVOLVED

ωA2A1

A2

uA1

A2

The magnitude of the rate of change of uA1

A2 is equal to the component of uA1

A2 perpendicular

to ωA2A1

A2 times the magnitude of ωA2A1

A2 . From Figure A-1, since uA1

A2 is a unit vector,

its component perpendicular to ωA2A1

A2 is sin α and:

 uA1

A2 = ωA2A1

A2 sin α

260

From Figure A-1, the direction of uA1

A2 is perpendicular to ωA2A1

A2 and uA1

A2, into the plane

of the paper. From the definition of the cross-product between two vectors, the above

magnitude and direction properties of uA1

A2show that:

uA1

A2 = ωA2A1

A2 × uA1

A2

Defining the rotation rate of Frame A2 relative to Frame A1 as ωA1A2

A2 , and noting that:

ωA1A2

A2 = - ωA2A1

A2

allows us to write the equivalent form:

uA1

A2 = - ωA1A2

A2 × uA1

A2 (A-1)

Equation (A-l) is the fundamental Coriolis relationship defining the rates of change of the

components of a unit vector uA1

A2 (fixed in one coordinate Frame A1) as measured in

another coordinate Frame A2 rotating relative to A1 at angular velocity ωA1A2

A2 .

Body Direction Cosine Rate Equation

The direction cosine matrix relating body to local level navigation coordinates is defined as

CB
L

, which can be related to an inertial non-rotating coordinate frame (I) through:

CB
L

 = CI
L

 CB
I

where

CI
L

, CB
I

 = Direction cosine matrices relating the inertial (I) frame to the local level
frame (L) and the body frame (B).

The derivative of the latter expression is:

CB
L

 = CI
L

 CB
I
 + CI

L
 CB

I (A-2)

261

The rows of CB
I

 represent unit vectors along the I Frame coordinate axes as projected into
the B Frame:

CB
I
 =

uI1
B T

uI2
B T

uI3
B T

 = uI1
B

, uI2
B

, uI3
B

T

(A-3)

where

uIj
B

 = The column vector whose elements represent the B Frame components of a

unit vector along the jth I Frame coordinate axis.

Taking the derivative of (A-3) obtains:

CB
I
 = uI1

B
, uI2

B
, uI3

B

T

Applying (A-1):

uIj
B

 = - ωIB
B

 × uIj
B

or

uIj
B

 = - ΩIB
B

 uIj
B

Substituting:

CB
I

= - ΩIB
B

 uI1
B

, uI2
B

, uI3
B

T

= - uI1
B

, uI2
B

, uI3
B

T

 ΩIB
B T

= uI1
B

, uI2
B

, uI3
B

T

 ΩIB
B

where use has been made of the fact that the transpose of a skew symmetric matrix equals
the negative of the matrix.

With (A-3),

CB
I

= CB
I

 ΩIB
B (A-4)

262

A similar development for CL
I

obtains:

CL
I

= CL
I

 ΩIL
L

Taking the transpose yields the CI
L
 term in (A-2):

CI
L

= - ΩIL
L

 CI
L (A-5)

Substituting (A-4) and (A-5) into (A-2) yields:

CB
L

= CI
L
 CB

I
 ΩIB

B
 - ΩIL

L
 CI

L
 CB

I

or, upon recombining the matrix elements:

CB
L

= CB
L

 ΩIB
B

 - ΩIL
L

 CB
L (A-6)

Equation (A-6) relates the rate of change of the body-to-local level navigation frame
direction cosine matrix to inertial rotation rates of the body as measured in body axes (by
strapdown gyros) and inertial rotation rates of the navigation frame as computed in
navigation frame axes.

Position Direction Cosine Rate Equation

The horizontal position of an inertial navigation system (INS) over the earth can be defined

in terms of a direction cosine matrix CL
E

 relating earth fixed axes (E) to the locally level

navigation coordinate frame axes (L). The rate of change of CL
E

 is related to the rotation
rate of L with respect to the E Frame. Following the development procedure utilized for

the body axis direction cosine rates, the CL
E

 rate equation can be similarly obtained:

CL
E

= uE1
L

, uE2
L

, uE3
L

T

CL
E

= uE1
L

, uE2
L

, uE3
L

T

uEj
L

= - ΩEL
L

 uEj
L

CL
E

= - ΩEL
L

 uE1
L

, uE2
L

, uE3
L

T

 = uE1
L

, uE2
L

, uE3
L

T

 ΩEL
L

263

CL
E

= CL
E

 ΩEL
L (A-7)

Angular Rates Of The Earth And Local Level Frames

The inertial angular rate of the local level frame (ωIL
L

 in Equation (A-6)) is computed as the
sum of the angular rate of L relative to E and the rotation rate of E relative to I:

ωIL
L

= ωIE
L

 + ωEL
L (A-8)

The ωIE
L

 term in (A-8) represents the earth rotation rate vector as seen in local level
coordinates. It is related to the equivalent component vector in earth coordinates through

the direction cosine matrix relating local level and earth coordinates axes (CL
E

):

ωIE
L

= CE
L

 ωIE
E

 (A-9)

The ωEL
L

 term in (A-8) is equal to the sum of its horizontal and vertical components. The
vertical component is a function of the type of local level navigation frame utilized (e.g.,
wander azimuth, free azimuth, or North/East geographic). The horizontal component of

ωEL
L

 is produced by the translation of the local level navigation frame over the earth. For a
spherical earth, the magnitude of the associated angular rotation rate of the local vertical (the

horizontal component of ωEL
L

) equals the horizontal component of velocity divided by the
distance from earth's center to the vehicle. The direction of the horizontal angular rate
vector is perpendicular to the velocity vector. The above effects can be expressed
analytically as:

ωEL
L

 =
1
R

 uR
L

 × vL + ρR uR
L

(A-10)

where

v = Translational velocity of the navigation frame relative to earth.

264

R = Distance from earth's center to the INS (for a spherical earth).

u
R

 = Unit vector along the position vector from earth center to the current INS

position.

ρR = Terrestrial angular rate of the local level navigation frame (L) about u
R

.

For a true oblate earth model, Equation (A-10) has the more general form:

ωEL
L

 = ρH
L

 + ρVert u
L (A-11)

where

ρH
L

 = Horizontal component of ωEL
L

 required to maintain horizontal navigation

coordinate axes in the presence of vL

uL = Unit vector perpendicular to the surface of the earth along the local vertical.

ρVert = Terrestrial angular rate of the local level navigation frame (L) about the
geodetic local geodetic vertical.

The ρH
L

 term is a function of vL and the local curvature of the earth's surface.

Velocity Rate Equation

The velocity of interest in inertial navigation is the time rate of change of position relative to
earth fixed coordinates. The velocity vector is defined in earth coordinates as:

vE =
Δ

 R
E

(A-12)

where

vE = Column vector representing the velocity vector of interest projected along
earth frame axes.

RE = Column vector representing the position vector from earth's center to the
INS as viewed in earth coordinate axes.

265

The components of v in local level frame (L) coordinates are the values needed for internal
system computer usage and (with appropriate conversion routines) for navigation data
outputs. The L Frame components of v are related to the earth frame components by the E
to L direction cosine matrix through:

vL = CE
L

 vE (A-13)

The derivative of (A-13) is:

v
L

 = CE
L

 vE + CE
L

 v
E

(A-14)

The CE
L
 term in (A-14) is the transpose of (A-7):

CE
L

 = ΩEL
L T

CE
L

 = - ΩEL
L

 CE
L

(A-15)

where it is recognized that ΩEL
L

 is skew symmetric, hence its transpose equals its negative.

The v
E

 term in (A-14) can be developed by first operating on (A-12):

vE = R
E

 =
d
dt

 CI
E

 RI = CI
E

 R
I
 + CI

E
 RI

Through a development similar to that leading to (A-4),

CI
E

 = CI
E
 ΩEI

I
 = - CI

E
 ΩIE

I
(A-16)

where it is recognized that ΩIE
I

 is the negative of ΩEI
I

. Hence,

vE = CI
E
 R

I
 - ΩIE

I
RI (A-17)

The v
E

 term for (A-14) is now obtained from the derivative of (A-17):

v
E

= CI
E
 R

I
 - ΩIE

I
RI - ΩIE

I
R

I
 + CI

E
 R

I
 - ΩIE

I
RI

= CI
E
 R

I
 - ΩIE

I
R

I
 + CI

E
 R

I
 - ΩIE

I
RI

(A-18)

The ΩIE
I

 term in the latter expression has been equated to zero due to the constancy of
earth's rotation rate. With (A-16), (A-18) becomes:

266

v
E

= CI
E
 R

I
 - ΩIE

I
R

I
 - ΩIE

I
R

I
 + ΩIE

I
 ΩIE

I
 RI

= CI
E
 R

I
 - 2 ΩIE

I
R

I
+ ΩIE

I
 ΩIE

I
 RI

(A-19)

The R
I
 term in (A-19) can be related to v through (A-17). Transformation of (A-17) to

the I Frame (multiplication by CE
I
) and rearrangement yields:

R
I
 = vI + ΩIE

I
 RI

Substitution into (A-19) obtains:

v
E

= CI
E
 R

I
 - 2 ΩIE

I
 vI + ΩIE

I
 RI + ΩIE

I
 ΩIE

I
 RI

= CI
E
 R

I
 - ΩIE

I
 ΩIE

I
 RI - 2 ΩIE

I
vI

(A-20)

The R
I
 term in (A-20) is the total inertial acceleration of the INS. This can be equated to

the sum of gravitational acceleration (go) and specific force acceleration (aSF), the latter
representing the acceleration produced by contact forces that is sensed by accelerometers:

R
I
 = go

I
 + aSF

I

Equation (A-20) then becomes:

v
E

 = CI
E
 aSF

I
 + go

I
 - ΩIE

I
 ΩIE

I
 RI - 2 ΩIE

I
vI (A-21)

We now define:

gI =
Δ

 go
I
 - ΩIE

I
 ΩIE

I
 RI

The g vector is the negative of the specific force acceleration that would be measured by
accelerometers at rest relative to the earth at radius vector R. The direction of g is along the
line a stationary plumb bob would take at position location R (i.e., stationary relative to the
earth). For this reason, g is sometimes referred to as plumb bob gravity. With this
definition, (A-21) assumes the simpler form:

v
E

 = CI
E
 aSF

I
 + gI - 2 ΩIE

I
vI (A-22)

We can now substitute (A-22) and (A-15) into (A-14) to obtain the following for v
L

 :

267

v
L

= - ΩEL
L

 CE
L

 vE + CE
L

 CI
E
 aSF

I
 + gI - 2 ΩIE

I
 vI

= - ΩEL
L

 vL + CI
L
 aSF

I
 + gI - 2 ΩIE

I
 vI

= - ΩEL
L

 vL + aSF
L

 + gL - 2 ΩIE
L

 vL

Introducing the cross-product vector notation into the latter expression and combining

terms yields the final expression for v
L:

v
L

 = aSF
L

 + gL - ωEL
L

 + 2 ωIE
L

 × vL (A-23)

The aSF
L

 term in (A-23) is obtained by transforming data measured in aircraft body axes to

local level coordinates using the body (B) to local level (L) direction cosine matrix:

aSF
L

 = CB
L

 aSF
B

(A-24)

Altitude Rate Equation

The equation for altitude rate is obtained from the defining equations for altitude:

hL = h uL = RL - Rs
L

h = RL - Rs
L

 • uL
(A-25)

where

h = Altitude

uL = Unit vector (in L Frame axes) that is perpendicular (along the
local geodetic vertical) to the earth surface and is directed
through the local RL position point. By the definition of the L
Frame, uL is along the L Frame vertical axis.

hL = Altitude vector.

Rs
L

 = Position vector from earth center to the earth surface point

where uL emanates.

268

The altitude rate is the derivative of h in (A-25):

h = R
L

 - Rs
L

 • uL (A-26)

where it is recognized that the rate of change of uL is zero because it is defined as a unit
vector along the L-Frame vertical axis (hence, its derivative in the L-Frame is zero).

We can also write:

RL = CE
L

 RE

Rs
L

 = CE
L

 Rs
E

(A-27)

The derivative of (A-27) is:

R
L

 = CE
L

 R
E

 + CE
L

 RE

Rs
L

 = CE
L

 Rs
E

 + CE
L

 Rs
E

(A-28)

The CE
L
 term in (A-28) is the transpose of (A-7). From the definition of ωEL

L
, its transpose

equals its negative, hence:

CE
L

 = - ΩEL
L

 CE
L

(A-29)

Substituting (A-29) and (A-12) in (A-28):

R
L

 = CE
L

 vE - ΩEL
L

 CE
L

 RE

Rs
L

 = CE
L

 Rs
E

 - ΩEL
L

 CE
L

 Rs
E

(A-30)

or

R
L

 = vL - ωEL
L

 × RL

Rs
L

 = CE
L

 Rs
E

 - ωEL
L

 Rs
L

(A-31)

Substituting (A-31) with (A-25) into (A-26) yields:

269

h = vL - CE
L

 Rs
E

 - ωEL
L

 × RL - Rs
L

 • uL

= vL - CE
L

 Rs
E

 - h ωEL
L

 × uL • uL

= vL • uL - CE
L

 Rs
E

 • uL

(A-32)

From the definition of Rs
E

 as a vector from earth’s center to the local earth surface, changes

in Rs
E

 produced by vehicle translation must be horizontal along the earth surface. As such,

the second term in Equation (A-32) is identically zero. (Note: This can also be
demonstrated analytically through a very complicated development.) The final equation for
altitude rate, therefore, is:

h = vL • uL (A-33)

Strapdown Inertial Navigation Equation Summary

The strapdown inertial navigation equations are given by Equations (A-6), (A-7),
(A-9), (A-10), (A-11), (A-23), (A-24), and (A-33), and are summarized below for easy
reference:

CB
L

 = CB
L

 ΩIB
B

 - ΩIE
L

 + ΩEL
L

 CB
L

ωIE
L

 = CE
L

 ωIE
E

ωEL
L

 =
1
R

 uR
L

 × vL + ρR uR
L

 for a spherical earth

(A-34)

ωEL
L

 = ρH
L

 + ρVert u
L for a general oblate earth

v
L

 = CB
L

 aSF
B

 + gL - ωEL
L

 + 2ωIE
L

 × vL

CL
E

 = CL
E
 ΩEL

L

h = vL • uL

270

APPENDIX B

DERIVATION OF ERROR EQUATIONS
FOR STRAPDOWN INERTIAL NAVIGATION SYSTEMS

This appendix derives the error equations for strapdown inertial navigation systems. The
results are generalized to the extent that they can be applied to any of the traditional types of
local level navigation implementations (e.g., wander azimuth, free azimuth, or North/East
geographic).

Nomenclature

The following general nomenclature is used in this appendix:

A, A1, A2, A3 = Arbitrary coordinate frames.

E Frame = Earth fixed coordinate frame used for position location definition.

L Frame = Navigation coordinate frame having its Z axis parallel to the upward
vertical at the local earth surface referenced position location point on the
earth’s surface. Used for integrating acceleration into velocity, for defining
the angular orientation of the local vertical in the E Frame and for
describing the strapdown sensor coordinate frame orientation.

B Frame = Strapdown inertial sensor coordinates (“body frame”) with axes
parallel to nominal right handed orthogonal sensor input axes.

I Frame = Non-rotating inertial coordinate frame used as the reference for
angular rate sensor measurements.

V = Vector without specific coordinate frame designation.

VA = Column matrix with elements equal to the projection of V on Frame A axes.

CA2

A1 = Direction cosine matrix that transforms a vector from its A2 Frame

projection form to its A1 Frame projection form.

ωA1A2 = Angular rate of coordinate Frame A2 relative to coordinate Frame A1.

When A1 is the inertial I Frame, ωA1A2 is the angular rate measured by
angular rate sensors mounted on Frame A2.

ΩA1A2

A3 = Skew symmetric (or cross-product) form of ωA1A2

A3 represented by the

271

square matrix

0 - ωZ12

3
ωY12

3

ωZ12

3
0 - ωX12

3

- ωY12

3
ωX12

3
0

 where ωX12

3
, ωY12

3
, ωZ12

3
 are the

components of ωA1A2

A3 . The matrix product of ΩA1A2

A3 with another A3

Frame vector equals the cross-product of ωA1A2

A3 with the vector in the A3

Frame. Because ΩA1A2

A3 is skew symmetric, its transpose equals its

negative.

I = Identity matrix.

 =
d
dt

 = Derivative with respect to time.

v = Velocity relative to the earth.

h = Altitude above the earth's surface.

g = Plumb-bob gravity.

aSF = Specific force acceleration (acceleration produced by contact forces, not
gravitation). Strapdown accelerometers measure aSF in the B Frame.

uR = Unit vector upward along the the radial vector from earth's center.

R = Radial distance from earth's center to the INS.

ρR = vertical component of ωEL
L

 transport rate.

Strapdown Inertial Navigation Equations

The differential equations of kinematic motion of a vehicle traveling relative to the earth that
are typically instrumented in a strapdown inertial navigation system (INS) are derived in
Appendix A (Equations (A-34)) and have the following form:

272

CB
L

 = CB
L

 ΩIB
B

 - ΩIE
L

 + ΩEL
L

 CB
L

ωIE
L

 = CE
L

 ωIE
E

ωEL
L

 =
1
R

 uR
L

 × vL + ρR uR
L

 for a spherical earth

(B-1)

v
L

 = CB
L

 aSF
B

 + gL - ωEL
L

 + 2 ωIE
L

 × vL

CL
E

 = CL
E
 ΩEL

L

h = vL • uR
L

The spherical earth form of the Equation (A-34) ωEL
L

 equation has been used in (B-1) as an
approximation for error model determination. In addition, the approximation has been

made that the unit vector along the geodetic vertical uL is parallel to the unit vector along the

radius vector from earth's center uR
L

, hence, uR
L

 is utilized for both and treated as a constant.

These approximations produce second order error effects that are generally negligible for
error analysis purposes.

Strapdown Navigation System Error Equations

A strapdown inertial navigation system attempts to continuously evaluate Equations (B-1)
in an on-board navigation computer using strapdown gyros and accelerometers to measure

the ωIB
B

 and aSF
B

 quantities. The accuracy for such an implementation is dependent

primarily on the accuracy of the inertial sensor measurements (i.e. - computer errors can be
designed out of the error budget by careful software development and use of a computer
with sufficient word length and speed).

Inertial sensor errors propagate through the navigation equations, producing navigation
errors that contain the dynamic characteristics of Equations (B-1). Equations for the
navigation errors can be derived by differencing Equations (B-1) with the same form of
these equations implemented in the on-board flight computer that include sensor errors.
The equations executed in the INS computer are defined as:

273

CB
L

 = CB
L

 ΩIB
B

 - ΩIE
L

 + ΩEL
L

 CB
L

ωIE
L

 = CE
L

 ωIE
E

ωEL
L

 =
1

R
 uR

L
 × v

L
 + ρR uR

L

(B-2)

v
L

 = CB
L

 aSF
B

 + g
L

 - ωEL
L

 + 2 ωIE
L

 × v
L

CL
E

 = CL
E

 ΩEL
L

h = v
L

 • uR
L

where

^ = Designation that the quantity indicated is a numerical array that has been
generated as a result of calculations in the INS computer.

~ = Designation for a sensor measurement of the quantity indicated (i.e. -
containing sensor errors).

The navigation error quantities of interest are the errors in CB
L
, v

L
, CL

E
 and h defined as:

δCB
L

 =
Δ

 CB
L

 - CB
L

δvL =
Δ

 v
L

 - vL

(B-3)

δCL
E

 =
Δ

 CL
E

 - CL
E

δh =
Δ

 h - h

Errors in the sensor measurements and the other variables in Equations (B-2) are defined
similarly:

274

δωIB
B

=
Δ

ωIB
B

 - ωIB
B

δaSF
B

=
Δ

aSF
B

 - aSF
B

δΩIE
L

=
Δ

ΩIE
L

 - ΩIE
L

δωIE
L

=
Δ

ωIE
L

 - ωIE
L

δΩEL
L

=
Δ

ΩEL
L

 - ΩEL
L

δωEL
L

=
Δ

ωEL
L

 - ωEL
L

δgL =
Δ

g
L

 - gL

δρR =
Δ

ρR - ρR

δR =
Δ

R - R

(B-4)

It is to be noted that no errors have been defined for uR
L

 and ωIE
E

 . The errors in these
quantities are identically zero because the values used for them in the computer are not
calculated, but are constants equal to the true values.

uR
L

 - uR
L

 = 0

ωIE
E

 - ωIE
E

 = 0

(B-5)

A set of error propagation equations relating (B-3) and (B-4) can now be obtained by
differencing Equations (B-1) with (B-2), introducing the Equation (B-3), (B-4), and (B-5)
relationships, and dropping second order (error squared) terms:

275

δCB
L

 = δCB
L

 ΩIB
B

 + CB
L

 δΩIB
B

- δΩIE
L

 + δΩEL
L

 CB
L

 - ΩIE
L

 + ΩEL
L

 δCB
L

δvL = δCB
L

 aSF
B

 + CB
L

 δaSF
B

 - 2 δωIE
L

 + δωEL
L

 × vL

- 2 ωIE
L

 + ωEL
L

 × δvL + δgL

(B-6)

δCL
E

 = δCL
E
 ΩEL

L
 + CL

E
 δΩEL

L

δh = uR
L

 • δvL

δωIE
L

 = δCE
L

 ωIE
E

δωEL
L

 =
1
R

 uR
L

 × δvL -
δR

R2
 uR

L
 × vL + δρR uR

L

Equations (B-6) can be converted into a more tractable form by introducing the concept of

small angle vector rotations as the cause for the δC errors:

CB
L

 = I - ΓL
 CB

L
 ⇒ δCB

L
 = - ΓL

 CB
L

CE
L
 = I - ΕL

 CE
L

 ⇒ δCE
L

 = - ΕL
 CE

L
 (B-7)

CL
E

 = CE
L T

 = CL
E
 I + ΕL

 ⇒ δCL
E

 = CL
E

 ΕL

where

γL
 = The small angle rotation vector error associated with δCB

L
.

eL = The small angle rotation vector associated with δCL
E
 .

ΓL
, ΕL = Skew symmetric operators associated with γ

L
 and eL. See

Nomenclature section at front of this appendix for definition of skew

symmetric form of general angular velocity vectors. The Γ
L
, ΕL skew

symmetric forms of γ
L

, eL are defined similarly.

276

Using (B-7), the δωIE
L

 equation in set (B-6) is:

δωIE
L

 = - ΕL
 CE

L
 ωIE

E
 = - ΕL

 ωIE
L

 = - eL × ωIE
L

(B-8)

The error model for δgL in the Equations (B-6) δvL expression is the variation in gL in
Equations (B-1) from true gravity. Variations are produced by altitude error (error in R)

and true gravity variations from the model used in the computer. The gL term in Equations
(B-1) can be defined in general as a simple inverse square law gravity model plus a
correction that accounts for the deviation of gravity from the simplified inverse square
model:

gL = - go
Ro

2

R2
 uR

L
 + ΔgL (B-9)

where

go = Simplified inverse square gravitation model magnitude on the earth surface.

Ro = Earth's radius.

R = Distance from earth center to the INS.

ΔgL = Correction to inverse square model that accounts for earth mass distribution
effects and earth angular rotation centripetal acceleration (See Appendix A
definition for gravity in Equation (A-22)).

The δgL term in the Equations (B-6) δvL expression is the differential of (B-9):

δgL = 2 go
Ro

2

R3
 δR + δΔgL ≈

2g
R

 δh uR
L

 + δgM
L (B-10)

where

g = Gravity magnitude at INS.

δgM
L

 = Unmodeled gravity error (produced, for example, by local gravity
anomalies).

277

Equation (B-10) includes the variation of the inverse square term in (B-9) with altitude, but

excludes variations in the ΔgL term with altitude as negligible. Equation (B-10) also
includes the very good approximation that the error in R is equal to the error in h:

δR ≈ δh (B-11)

Using (B-7), (B-8) and (B-10), the δv
L

 equation in set (B-6) becomes:

δv
L

 = CB
L

 δaSF
B

 - γL
 × aSF

L
 - 2 ωIE

L
 + ωEL

L
 × δvL

(B-12)

- δωEL
L

 - 2 eL × ωIE
L

 × vL +
2 g
R

 δh uR
L

 + δgM
L

Substituting (B-7) into the δCL
E
 equation in set (B-6) yields:

CL
E

 ΕL
 + CL

E
 Ε

L
 = CL

E
 ΕL

 ΩEL
L

 + CL
E

 δΩEL
L

But, from Equation (B-1):

CL
E

 = CL
E

 ΩEL
L

Therefore,

CL
E

 Ε
L

 = CL
E ΕL

 ΩEL
L

 - CL
E

 ΩEL
L

 ΕL
 + CL

E
 δΩEL

L

or,

 Ε
L

 = ΕL
 ΩEL

L
 - ΩEL

L
 ΕL

 + δΩEL
L

The term in brackets can be reduced to simpler form by application of the triple vector
product identity:

V1 × V2 × V3 = V1 • V3 V2 - V2 • V3 V1 (B-13)

where

278

V1, V2, V3 = Arbitrary vectors

Multiplying the term in brackets by an arbitrary vector (V3) yields:

 V3 = ΕL
 ΩEL

L
 V3 - ΩEL

L
 ΕL

V3

or in the equivalent vector form:

 V3 = eL × ωEL
L

 × V3 - ωEL
L

 × eL × V3

Applying the triple vector product identity to the terms on the right:

 V3 = eL • V3 ωEL
L

 - eL • ωEL
L

 V3 - ωEL
L

 • V3 eL + ωEL
L

 • eL V3

= eL • V3 ωEL
L

 - ωEL
L

 • V3 eL

which, with the Equation (B-13) triple vector product identity, becomes:

 V3 = eL × ωEL
L

 × V3

or in matrix form:

 V3 = eL × ωEL
L *

 V3

where

()* = Designation for skew symmetric form of the vector in brackets. See
Notation section at the start of this appendix for the definition of a vector
skew symmetric form applied to angular rate vectors. The ()* notation
uses the same skew symmetric form applied to an arbitrary vector.

Since V3 is arbitrary,

 = ΕL
 ΩEL

L
 - ΩEL

L
 ΕL

 = eL × ωEL
L

 *

Thus:

Ε
L

 = eL × wEL
L

 * + δΩEL
L

or

e
L

= eL × ωEL
L

 + δωEL
L (B-14)

279

The δCB
L
 expression in Equations (B-6) is similarly reduced by applying δωEL

L
 from

Equation (B-6) and Equations (B-7) - (B-8):

δCB
L

 = - Γ
T

 CB
L

 - ΓT
 CB

L
 = - ΓL

 CB
L

 ΩIB
B

 + CB
L

 δΩIB
B

- δΩIE
L

 + δΩEL
L

 CB
L

 + ΩIE
L

 + ΩEL
L

 ΓL
 CB

L

From Equations (B-l):

CB
L

 = CB
L

 ΩIB
B

 - ΩIE
L

 + ΩEL
L

 CB
L

Hence,

 Γ
L

CB
L

= - ΓL
 CB

L
 ΩIB

B
 - ΩIE

L
 + ΩEL

L
 CB

L

 + ΓL
 CB

L
 ΩIB

B
 - CB

L
 δΩIB

B
 + δΩIE

L
 + δΩEL

L
 CB

L
 - ΩIE

L
 + ΩEL

L
 ΓL

 CB
L

= ΓL
 ΩIE

L
 + ΩEL

L
 CB

L
 - ΩIE

L
 + ΩEL

L
 ΓL

 CB
L

 - CB
L

 δΩIB
B

 + δΩIE
L

 + δΩEL
L

 CB
L

or

 Γ
L

= ΓL
 ΩIE

L
 + ΩEL

L
 - ΩIE

L
 + ΩEL

L
 ΓL

- CB
L

 δΩIB
B

 CL
B

 + δΩIE
L

 + δΩEL
L

= γL
 × ωIE

L
 + ωEL

L

*
 - CB

L
 δΩIB

B
 CL

B
 + δΩIE

L
 + δΩEL

L

It can be shown that:

CB
L

 δΩIB
B

 CL
B

 = CB
L

 δωIB
B *

Hence,

 Γ
L

 = γL
 × ωIE

L
 + ωEL

L

*
 - CB

L
 δωIB

B *
 + δΩIE

L
 + δΩEL

L

or, in vector form:

 γ
L

 = γL
 × ωIE

L
 + ωEL

L
 - CB

L
 δωIB

B
 + δωIE

L
 + δωEL

L

280

or with Equation (B-8):

 γ
L

= γL
 × ωIE

L
 + ωEL

L
 - CB

L
 δωIB

B
 - eL × ωIE

L
 + δωEL

L (B-15)

The δωEL
L

 term in Equations (B-12), (B-14), and (B-15) is the expression in Equations (B-

6) with (B-11) for δR:

δωEL
L

 =
1
R

 uR
L

 × δvL -
δh

R2
 uR

L
 × vL + δρR uR

L
(B-16)

Equations (B-12), (B-14), (B-15), (B-16) and (B-6) for δh constitute the error expressions

for Equations (B-l) in terms of sensor errors δaSF
B

 and δωIB
B

. Equations (B-3), (B-4), and

(B-7) provide the definition for error terms δvL, γ
L

, eL, δh in terms of the parameters
calculated in the navigation computer. These equations are summarized below:

 γ
L

 = γL
 × ωIE

L
 + ωEL

L
 - CB

L
 δωIB

B
 - eL × ωIE

L
 + δωEL

L

δωEL
L

 =
1
R

 uR
L

 × δvL -
δh

R2
 uR

L
 × vL + δρR uR

L

δv = CB
L

 δaSF
B

 - γL
 × aSF

L
 - 2 ωIE

L
 + ωEL

L
 × δvL

(B-17)

- δωEL
L

 - 2 eL × ωIE
L

 × vL +
2 g
R

 δh uR
L

 + δgM
L

e
L

 = eL × ωEL
L

 + δωEL
L

δh = uR
L

 • δvL

Equations (B-17) constitute an error model for a strapdown Iinertial navigation system that
can be used for covariance simulation or Kalman filter design purposes. A disadvantage in
these equations is that they compute position in terms of four parameters, the εL vector and

281

δh. The vertical component of eL, in particular, is a redundant angle that only appears as a
consequence of the definition of the error parameters in locally level L Frame coordinates

(i.e., the vertical component of eL is the L Frame azimuth error). On the other hand, if the
position error states are not significant enough to be included (e.g., in a Kalman filter
design), the εL and δh error states need not be included, hence, the above noted
disadvantage disappears.

Error Equation Revisions To Simplify Position Error State Model

For situations where the position error states are to be included, and the redundant εL

vertical error state is to be eliminated, a different definition can be used for the error

parameters that avoids the need to explicitly calculate the vertical component of eL. The
method is to define the basic attitude, velocity and position errors in earth (E Frame)
coordinates:

CB
E

 = I - ΨE
 CB

E
 ⇒ δCB

E
 =

Δ
 CB

E
 - CB

E
 = - ΨE

 CB
E

δVE = v
E

 - vE (B-18)

δRE =
Δ

 R
E

 - RE

where

CB
E
 = Direction cosine matrix between body (B) and earth (E) coordinates.

ΨE
 = Skew symmetric form of ψE

 defined below.

ψE
 = Angular error in CB

E
.

R = Position vector from earth's center to the INS.

We also note that:

CB
E

 = CL
E

 CB
L

(B-19)

so that:

δCB
E

 = δCL
E

 CB
L

 + CL
E

 δCB
L

(B-20)

282

Substituting δCL
E
 and δCB

L
 from (B-7) into (B-20) and the result with (B-19) into the

Equation (B-18) ΨE
 expression shows after rearrangement that:

ΨE
 = - δCL

E
 CB

L
 + CL

E
 δCB

L
 CB

E T

= - CL
E

 ΕL
 CB

L
 - CL

E
 ΓL

 CB
L

 CB
L T

 CL
E T

= CL
E

 ΓL
 - ΕL

 CL
E T

or:

CL
E T

 ΨE
 CL

E
 = ΓL

 - ΕL
(B-21)

Recognizing the operation on the left as a similarity transformation from E to L, Equation
(B-21), then, is equivalent to:

ψL
 = γL

 - eL (B-22)

An equation relating δVE to δvL is derived by first recognizing that:

v
E

 = CL
E

 v
L

vE = CL
E

 vL

CL
E

 = CL
E

 + δCL
E

(B-23)

Substituting (B-23) in the δVE expression in (B-18) and applying the definition for δvL

from Equation (B-3), we obtain to first order

δVE = CL
E

 v
L

 - CL
E

 vL = CL
E

 + δCL
E

 v
L

 - CL
E

 vL

= CL
E
 v

L
 - vL + δCL

E
 vL = CL

E
 δvL + δCL

E
 vL

(B-24)

Substituting δCL
E
 from (B-7) into (B-24) yields:

δVE = CL
E
 δvL + ΕL

 vL = CL
E

 δvL + eL × vL (B-25)

283

If we now define:

δVL =
Δ

CE
L

 δVE (B-26)

Equation (B-25) becomes:

δVL = δvL + eL × vL (B-27)

An equation relating δRE to eL and h is obtained by first defining R in the E Frame by its

magnitude and the unit vector along its direction uR
E

:

RE = R uR
E

where

R = Radial distance from the center of the earth to the vehicle.

Then:

δRE = R uR
E

 - R uR
E

(B-28)

The uR
E

 vectors are calculated by transforming uR
L

 through the CL
E

 matrix:

uR
E

 = CL
E

 uR
L

 = CL
E
 uR

L

uR
E

 = CL
E

 uR
L

Substitution into (B-28) yields to first order:

δRE = R + δR CL
E

 + δCL
E

 uR
L

 - R CL
E

 uR
L

 ≈ R δCL
E

 uR
L

 + δR CL
E
 uR

L

where δCL
E
 and δR are defined previously in Equations (B-3) and (B-4). Now apply δCL

E

in terms of EL as defined in (B-7):

δRE = R CL
E

 ΕL
 uR

L
 + δR CL

E
 uR

L

284

Treating δRE as a position error vector evaluated in the E Frame, we transform to the L
Frame to find its defined L Frame equivalent:

δRL =
Δ

 CE
L

 δRE (B-29)

With (B-29), the previous equation becomes:

δRL = R ΕL
 uR

L
 + δR uR

L

or in vector form

δRL = R εL
 × uR

L
 + δR uR

L (B-30)

The vertical component of δRL is the dot product of (B-30) with uR
L

. As expected it equals

δR. Subtracting the δR uR
L

 vertical component from (B-30) yields the horizontal

component of δRL:

δRH
L

= R eL × uR
L

 (B-31)

where

δRH
L

= Horizontal component of δRL.

Equations (B-11), (B-22), (B-27), (B-30) and (B-31) summarized below are equivalency

relationships for the new ψL
, δVL, δRL error parameters in terms of the original error

parameters γL
, δvL, eL, δh.

285

ψL
 = γL

 - eL

δVL = δvL + eL × vL

δRL = R eL × uR
L

 + δR uR
L

(B-32)

δRH
L

 = R eL × uR
L

δR = δh

Differential equations for the new error parameters are now obtained by substituting (B-32)
(with equivalent inverse relationships) into error Equations (B-17).

The ψ
L
 equation is obtained by differencing γ

L
, e

L
 in Equations (B-17) and applying the

ψL
 equivalency expression (and its derivative) from Equations (B-32):

ψ
L

 = ψL
 × ωIE

L
 + ωEL

L
 - CB

L
 δωIB

B
 (B-33)

The δV
L

 equation is derived by first differentiating the (B-32) δVL expression:

δV
L

 = δv
L

 + e
L

 × vL + eL × v
L

and then substituting for v
L

, δv
L

 and e
L
 from Equations (B-1and (B-17) with δvL in

terms of δVL from the rearranged (B-32) δVL expression. The result is:

286

δV
L

= CB
L

 δaSF
B

 - γL
 × aSF

L
 - 2ωIE

L
 + ωEL

L
 × δVL - eL × vL

- δωEL
L

 - 2 eL × ωIE
L

 × vL +
2g
R

 δh uR
L

 + δgM
L

 + eL × ωEL
L

 + δωEL
L

 × vL

+ eL × CB
L

 aSF
B

 - 2 ωIE
L

 + ωEL
L

 × vL + gL

= CB
L

 δaSF
B

 - γL
 - eL × aL + eL × gL - 2 ωIE

L
 + ωEL

L
 × δVL +

2g
R

 δh uR
L

 + δgM
L

+ 2 ωIE
L

 + ωEL
L

 × eL × vL + eL × 2 ωIE
L

 + ωEL
L

 × vL

- eL × 2 ωIE
L

 + ωEL
L

 × vL

The last three terms in the above expression can be shown to sum to identically zero by
application of the triple vector product identity (Equation (B-13)) to each term and
summing results.

Substituting ψ
L
, δR from (B-32) for (γ

L
 - eL), δh then yields:

δV
L

 = CB
L

 δaSF
B

 - ψL
 × aSF

L
 + eL × gL - 2 ωIE

L
 + ωEL

L
 × δVL +

2g
R

 δR uR
L

 + δgM
L

For error analysis purposes, the Δg
L

 term in gL Equation (B-9) can be ignored. Then gL is

along uR
L

 and the eL × gL term in the latter expression becomes:

eL × gL = - g eL × uR
L

Using the δRH
L

 equivalency from (B-32) we then find that:

eL × gL = -
g
R

 δRH
L

so that the δV
L

 equation assumes the final form:

 δV
L

 = CB
L

 δaSF
B

 - ψL
 × aSF

L
 -

g
R

 δRH
L

 - 2 ωIE
L

 + ωEL
L

 × δVL +
2g
R

 δR uR
L

 + δgM
L

(B-34)

287

It remains to develop a δR position error rate equation to replace the e
L
, δh set in (B-17).

The δR position error rate is developed by first differentiating the δRE definition equation
in set (B-18):

δR
E

 = R
E

 - R
E

(B-35)

The velocity vector v is defined in Appendix A (Equation (A-12)) as follows:

vE = R
E

(B-36)

hence,

v
E

 = R
E

(B-37)

Substituting (B-36) and (B-37) in (B-35), and introducing the definition for δVE from (B-
18) shows that:

δR
E

 = δVE (B-38)

From (B-29) we also know that:

δRL =
Δ

 CE
L

 δRE (B-39)

or upon differentiation:

δR
L

 = CE
L

 δRE + CE
L δR

E
(B-40)

Substituting the transpose of CL
E
 from (B-1) for CE

L
 and using (B-38) for δR

E
 shows that:

δR
L

 = - ΩEL
L

 CL
E T

 δRE + CE
L δVE (B-41)

Applying the Equation (B-26), (B-29) definitions for δVL, δRL to (B-41) then yields the

desired equation for δR
L

:

δR
L

 = δVL - ωEL
L

 × δRL (B-42)

288

Equations (B-33), (B-34) and (B-42), summarized below, constitute the strapdown inertial

navigation error equations in terms of the new error parameters ψ
L
, δVL, δRL. These

equations are completely equivalent to strapdown navigation error equations (B-17) based

on the original error parameters γL
, δvL, eL, δh. The equivalency between the new and

original navigation error parameters is provided by Equations (B-32).

ψ
L

 = ψL
 × ωIE

L
 + ωEL

L
 - CB

L
 δωIB

B

δV
L

 = CB
L

 δaSF
B

 - ψL
 × aSF

L
 -

g
R

 δRH
L

(B-43)

- 2 ωIE
L

 + ωEL
L

 × δVL +
2 g
R

 δR uR
L

 + δgM
L

δR
L

 = δVL - ωEL
L

 × δRL

289

NOTES

290

LATER PAPERS

1984 PAPER - ADVANCES IN STRAPDOWN SYSTEMS

1984 PAPER - STRAPDOWN SYSTEM ALGORITHMS

291

NOTES

292

ADVANCES IN STRAPDOWN SENSORS

Paul G Savage

President

Strapdown Associates, Inc.

Woodbridge Plaza, Suite 150

10201 Wayzata Blvd

Minnetonka, Minnesota 55343

Presented in Athens-Greece,

Rome-Italy and Copenhagen-Denmark

as part of

AGARD Lecture Series No. 133

ADVANCES IN STRAPDOWN INERTIAL SYSTEMS

May, 1984

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

NOTES

318

STRAPDOWN SYSTEM ALGORITHMS

Paul G. Savage
President

Strapdown Associates, Inc.
Woodbridge Plaza, Suite 150

10201 Wayzata Blvd.
Minnetonka, Minnesota 55343

Presented in Athens, Greece;
Rome, Italy; and Copenhagen, Denmark;

As Part Of
AGARD Lecture Series No. 133

ADVANCES IN STRAPDOWN INERTIAL SYSTEMS
May, 1984

319

STRAPDOWN SYSTEM ALGORITHMS

Paul G. Savage
President

Strapdown Associates, Inc.
Woodbridge Plaza, Suite 150

10201 Wayzata Blvd.
Minnetonka, Minnesota 55343

SUMMARY

This paper addresses the attitude determination, acceleration transformation, and
attitude/heading output computational operations performed in modern-day strapdown
inertial navigation systems. Contemporary algorithms are described for implementing
these operations in real-time computers. The attitude determination and acceleration
transformation algorithm discussions are based on the two-speed approach in which high
frequency coning and sculling effects are calculated with simplified high speed
algorithms, with results fed into lower speed higher order algorithms. This is the
approach that is typically used in most modern-day strapdown systems. Design equations
are included for evaluating the performance of the strapdown computer algorithms as a
function of computer execution speed and sensor assembly vibration
amplitude/frequency/phase environment.

Both direction cosine and quaternion based attitude algorithms are described and
compared in light of modern-day algorithm accuracy capabilities. Orthogonality and
normalization operations are addressed for potential attitude algorithm accuracy
enhancement. The section on attitude data output algorithms includes a discussion on
roll/heading Euler angle singularities near high/low pitch angle conditions.

1. INTRODUCTION

The concept of strapdown inertial navigation was originated more than thirty
years ago, largely from an analytical standpoint. The theoretical analytical expressions
for processing strapdown inertial sensor data to develop attitude, velocity, and position
information were reasonably well understood in the form of continuous matrix operations
and differential equations. The implementation of these equations in a digital computer,
however, was invariably keyed to severe throughput limitations of original airborne
digital computer technology. As a result, many of the strapdown computational
algorithms originated during these early periods were inherently limited in accuracy,
particularly under high frequency dynamic motion. A classical test for algorithm
accuracy during this early period was how well the algorithm computed attitude under
cyclic coning motion as the coning frequency approached the computer update cycle
frequency.

In the late 1960’s and early 1970’s, several analytical efforts addressed the
problem of splitting the strapdown computation process into low and high speed sections

320

(7, 8, 10). The low speed section contained the bulk of the computational equations, and
was designed to accurately account for low frequency large amplitude dynamic motion
effects (e.g., vehicle maneuvering). The high speed computation section was designed
with a small set of simple algorithms that would accurately account for high frequency
small amplitude dynamic motion (e.g., vehicle vibrations). Splitting the computational
process in this manner allowed the bulk of the strapdown algorithms to be iterated at
reasonable speeds compatible with computer throughput limitations. The high speed
algorithms were simple enough that they could be mechanized individually with special
purpose electronics, or as a minor high speed loop in the main processor.

Over the past ten years, the structure of most strapdown algorithms has evolved
into this two speed structure. The techniques have been refined today so that fairly
straight-forward analytical design methods can be used to define algorithm analytical
forms and computational rates to achieve required levels of performance in specified
dynamic environments.

This paper describes the algorithms used today in most modern-day strapdown
inertial navigation systems to calculate attitude and transform acceleration vector
measurements from sensor to navigation axes. The algorithms for integrating the
transformed accelerations into velocity and position data are not addressed because it is
believed that these operations are generic to inertial navigation in general, not only
strapdown inertial navigation.

For the algorithms discussed, the analytical basis is presented together with a
discussion on general design methodology used to develop the algorithms for
compatibility with particular user accuracy and environmental requirements.

2. STRAPDOWN COMPUTATION OPERATIONS

Figure 1 depicts the computational elements implemented by software algorithms
in typical strapdown inertial navigation systems. Input data to the algorithms is provided
from a triad of strapdown gyros and accelerometers. The gyros provide precision
measurements of strapdown sensor coordinate frame (“body axes”) angular rotation rate
relative to nonrotating inertial space. The accelerometers provide precision
measurements of 3-axis orthogonal specific force acceleration along body axes.

321

VECTOR
TRANSFORMATION

ATTITUDE REFERENCE
INTEGRATION ROUTINES

EULER
ANGLE
EXTRACTION

BODY
ACCELERATIONS
(FROM STRAPDOWN
ACCELEROMETERS)

BODY
RATES
(FROM STRAPDOWN
GYROS)

NAVIGATION
FRAME
ACCELERATIONS

DCM OF BODY FRAME
RELATIVE TO NAVIGATION FRAME

NAVIGATION
FRAME
ROTATION
RATES

ATTITUDE/HEADING
DATA

FIGURE 1 - STRAPDOWN ATTITUDE REFERENCE OPERATIONS

The strapdown gyro data is processed on an iterative basis by suitable integration
algorithms to calculate the attitude of the body frame relative to navigation coordinates.
The rotation rate of the navigation frame is an input to the calculation from the navigation
section of the overall computation software. Typical navigation coordinate frames are
oriented with the z-axis vertical and the x, y, axes horizontal.

The attitude information calculated from the gyro and navigation frame rate data
is used to transform the accelerometer specific force vector measurements in body axes to
their equivalent form in navigation coordinates. The navigation frame specific force
accelerations are then integrated in the navigation software section to calculate velocity
and position. The velocity/position computational algorithms are not unique to the
strapdown mechanization concept, hence, are not treated in this paper. Several texts treat
the velocity/position integration algorithms in detail (1, 2, 3, 4, 12).

Figure 1 also shows an Euler Angle Extraction function as part of the strapdown
attitude reference operations. This algorithm is used to convert the calculated attitude
data into an output format that is more compatible with typical user requirements (e.g.,
roll, pitch, heading Euler angles).

3. STRAPDOWN ATTITUDE INTEGRATION ALGORITHMS

The attitude information in strapdown inertial navigation systems is typically
calculated in the form of a direction cosine matrix or as an attitude quaternion. The
direction cosine matrix is a three-by-three matrix whose rows represent unit vectors in
navigation axes projected along body axes. As such, the element in the ith row and jth
column represents the cosine of the angle between the navigation frame i-axis and body
frame j-axis. The quaternion is a four-vector whose elements are defined analytically (5,
9) as follows:

322

a = αx/α sin α/2

b = αy/α sin α/2

c = αz/α sin α/2

d = cos α/2

(1)

where

αx, αy, αz = Components of an angle vector α.

α = Magnitude of α.

The α vector is defined to have direction and magnitude such that if the

navigation frame was rotated about α through an angle α, it would be rotated into

alignment with the body frame. The α rotation angle vector and its quaternion equivalent
(a, b, c, d, from equations (1)), or the direction cosine matrix, uniquely define the attitude
of the body axes relative to navigation axes.

3.1 Direction Cosine Updating Algorithms

3.1.1 Direction Cosine Updating Algorithm For Body Rotations

The direction cosine matrix can be updated for body frame gyro sensed motion in
the strapdown computer by executing the following classical direction cosine matrix
chain rule algorithm on a repetitive basis:

C(m+1) = C(m) A(m) (2)

where

C(m) = Direction cosine matrix relating body to navigation axes at the mth

computer cycle time.

A(m) = Direction cosine matrix that transforms vectors from body coordinates
at the (m+1)th computer cycle to body coordinates at the mth computer
cycle.

It is well known (9) that:

A(m) = I + f1 φ× + f2 φ× 2
(3)

where

323

f1 =
sin φ

φ
 = 1 - φ2

/3! + φ4
/5! -

f2 =
1 - cos φ

φ2
 = 1/2! - φ2

/4! + φ4
/6! -

φ2
= φx2 + φy2 + φz2

(4)

φ× =
Δ

0 -φz φy

φz 0 -φx

-φy φx 0

I = 3 × 3 identity matrix

φx, φy, φz = Components of φ.

φ = Angle vector with direction and magnitude such that a rotation of the body

frame about φ through an angle equal to the magnitude of φ will rotate the
body frame from its orientation at computer cycle m to its orientation at

computer cycle m+1. The φ vector is computed for each computer cycle m
by processing the data from the strapdown gyros. The algorithm for

computing φ will be described subsequently.

The “order” of the algorithm defined by equations (2) through (4) is determined
by the number of terms carried in the f1, f2 expansions. A fifth order algorithm, for

example, retains sufficient terms in f1 and f2 such that A(m) contains all φ term products

out to fifth order. Hence, f1 would be truncated after the φ4 term and f2 would be

truncated after the φ2 term to retain fifth order accuracy in A(m). The order of accuracy
required is determined by system accuracy requirements under maximum rate input

conditions when φ is a maximum. The computation iteration rate is typically selected to

assure that φ remains small at maximum rate (e.g., 0.1 radians). This assures that the
number of terms required for accuracy in the f1, f2 expansions will be reasonable.

3.1.2 Direction Cosine Updating Algorithm For Navigation Frame Rotations

Equation (2) is used to update the direction cosine matrix for gyro sensed body
frame motion. In order to update the direction cosines for rotation of the navigation
coordinate frame, the following classical direction cosine matrix chain rule algorithm is
used:

324

C(n+1) = B(n) C(n) (5)

where

B(n) = Direction cosine matrix that transforms vectors from navigation axes at
computer cycle n to navigation axes at computer cycle (n+1).

The equation for B(n) parallels equation (3):

B(n) = I - (θ×) + 0.5(θ×)2 (6)

with

θ× =
Δ

0 -θz θy

θz 0 -θx

-θy θx 0

(7)

where

θx, θy, θz = Components of θ.

θ = Angle vector with direction and magnitude such that a rotation of the

navigation frame about θ through an angle equal to the magnitude of θ will
rotate the navigation frame from its orientation at computer cycle n to its
orientation at computer cycle n+1. The θ vector is computed for each
computer cycle n by processing the navigation frame rotation rate data from
the navigation software section (12)

It is important to note that the n cycle (for navigation frame rotation) and m cycle
(for body frame rotation) are generally different, n typically being executed at a lower
iteration rate than m. This is permissible because the navigation frame rotation rates are
considerably smaller than the body rates, hence, high execution rates are not needed to
maintain θ small to reduce the order of the iteration algorithm. The algorithm represented

by equations (5) and (6) is second order in θ. Generally, first order is of sufficient

accuracy, and the (θ×)2 term need not be carried in the actual software implementation.

3.2 Quaternion Updating Algorithm

3.2.1 Quaternion Transformation Properties

The updating algorithms for the attitude quaternion can be developed through an
investigation of its vector transformation properties (5, 9). We first introduce

325

nomenclature that is useful for describing quaternion algebraic operations. Referring to
equation (1), the quaternion with components a, b, c, d, can be described as:

u = ai + bj + ck + d (8)

where

a, b, c = Components of the “vector” part of the quaternion.

i, j, k = Quaternion vector operators analogous to unit vectors along orthogonal
coordinate axes.

d = “Scalar” part of the quaternion.

We also define rules for quaternion vector operator products as:

ii = -1
jj = -1
kk = -1

ij = k
jk = i
ki = j

ji = -k
kj = -i
ik = -j

With the above definitions, the product w of two quaternions (u and v) becomes:

w = uv = (ai + bj + ck+ d) (ei + fj + gk + h)

= aeii + afij + agik + ahi
+ beji + bfjj + bgjk + bhj
+ ceki + cfkj + cgkk + chk
+ dei + dfj + dgk + dh

= (ah + de + bg - cf) i
+ (bh + df + ce - ag) j
+ (ch + dg + af - be) k
+ (dh - ae - bf - cg)

or in “Four-vector” matrix form:

w =
Δ

e'
f '
g'
h'

=

d -c b a
c d -a b
-b a d c
-a -b -c d

e
f
g
h

We also define the “complex conjugate” of the general quaternion u in
equation (8) as:

u* =
Δ

-ai - bj - ck + d

326

We now define a quaternion operator h(m) for the body angle change φ over
computer cycle m as:

h(m) =

φx/φ sin φ/2

φy/φ sin φ/2

φz/φ sin φ/2

cos φ/2

 (9)

where the elements in the above column matrix refer to the i, j, k, and scalar components
of h. We also define a general vector v with components vx, vy, vz, and a corresponding
quaternion v having the same vector components with a zero scalar component:

v =

vx

vy

vz

0

Using the above definitions and the general rules for quaternion algebra, it is
readily demonstrated by substitution and trigonometric manipulation that:

v' =
Δ

h(m) v h(m)* = A'(m) v (10)

where

A'(m) =
Δ

 A(m) 0
0 0

v' =
Δ

vx'

vy'

vz'

0

A(m) = As defined in (3)

Equation (10), therefore, is the quaternion form of the vector transformation
equation that transforms a vector from body coordinates at computer cycle (m+1) to body
coordinates at computer cycle m:

v' = A(m) v (11)

where

v', v = “Three-vector” form of v' and v (i.e., with components vx', vy', vz' and vx,
vy, vz).

327

v = The general vector v in body coordinates at computer cycle (m+1).

v' = The general vector v in body coordinates at computer cycle m.

3.2.2 Quaternion Updating Algorithm For Body Motion

Equation (10) with its equation (11) dual can be used to define analogous vector
transformation operations between body coordinates and navigation coordinates at
computer cycle m as:

v" = q(m) v' q(m)*

v" = C(m) v'
(12)

where

q(m) = Quaternion relating body axes to navigation axes at computer cycle m.

v' = The vector v in navigation coordinates.

v" = The vector v in body coordinates at computer cycle m.

v', v" = Quaternion (“Four vector”) form of v', v".

The q quaternion has four elements (i.e., a, b, c, d) that are updated for body

motion φ at each computer cycle m. The updating equation is easily derived by
substituting equation (10) into (12):

v" = q(m) h(m) v h(m)* q(m)*

Using the definition for the quaternion complex conjugate, it is readily
demonstrated that:

h(m)* q(m)* = (q(m) h(m))*

Thus,

v" = q(m) h(m) v (q(m) h(m)) *

But we can also write the direct expression:

v" = q(m+1) v q(m+1)*

Therefore, by direct comparison of the latter two equations:

q(m+1) = q(m) h(m) (13)

328

Equation (13) is the quaternion equivalent to direction cosine updating equation
(2). For computational purposes, h(m) as defined in equations (9) is equivalently:

h(m) =

f3 φx

f3 φy

f3 φz

f4

f3 =
sin φ/2

φ
 = 0.5 1 - 0.5φ 2

/3! + 0.5φ 4
/5! -

f4 = cos φ/2 = 1 - 0.5φ 2
/2! + 0.5φ 4

/4! -)

(14)

0.5φ 2
= 0.25 φx2 + φy2 + φx2

The “order” of the equation (13) and (14) updating algorithm depends on the
order of φ terms carried in h which depends on the truncation point used in f3 and f4. The
rationale for selecting the algorithm order and associated algorithm iteration rate is
directly analogous to selection of the direction cosine updating algorithm order (discussed
previously).

3.2.3 Quaternion Updating Algorithm For Navigation Frame Rotation

Equation (13) with (14) is used to update the quaternion for body frame motion
sensed by gyros. In order to update the quaternion for rotation of the navigation
coordinate frame, an algorithm analogous to equation (5) (for the direction cosine matrix)
is used with a navigation frame rotation quaternion r:

q(n+1) = r(n) q(n)

r(n) =

 -0.5 θx

 -0.5 θy

 -0.5 θz

 1-0.5 θ/2
2

(15)

θ/2
2
= 0.25 θx2 + θy2 + θx2

329

where

θx, θy, θz = Components of θ as defined previously for equations (6) and (7).

The development of equation (15) parallels the development of (13). The
equation for r(n) is a truncated form of the theoretical exact analytical expression
(analogous to the second order truncated form of equation (14)). The θ2 term in equation

(15) generally is not required for accuracy (due to the smallness of θ in typical
applications).

As for the direction cosine updating algorithm for navigation frame motion, the
equivalent quaternion updating algorithm (equation (15)) updating cycle n need not be
processed as fast as the body rate cycle m to maintain equivalent accuracy. This is due to
the considerably smaller navigation frame rotation rates compared to body rotation rates.

3.2.4 Equivalencies Between Direction Cosine And Quaternion Elements

The analytical equivalency between the elements of the direction cosine matrix
and the attitude quaternion can be derived by direct expansion of equations (12). If we
define the elements of q as:

q =

a
b
c
d

equation (12) becomes after expansion, factorization of v', and neglecting the scalar part
of the v" and v' quaternion vectors (i.e., carrying only the vector components of v" and
v'):

v" =

d2 + a2 - b2 - c2 2 (ab - cd) 2 (ac + bd)

2 (ab + cd) d2 + b2 - c2 - a2 2 (bc - ad)

2 (ac - bd) 2 (bc + ad) d2 + c2 - a2 - b2

 v' (16)

Defining C in equation (12) as:

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

equation (16) when compared with (12) shows that:

330

C11 = d2 + a2 - b2 - c2

C12 = 2 (ab - cd)

C13 = 2 (ac + bd)

C21 = 2 (ab + cd)

C22 = d2 + b2 - c2 - a2

C23 = 2 (bc - ad)

C31 = 2 (ac - bd)

C32 = 2 (bc + ad)

C33 = d2 + c2 - a2 - b2

(17)

The converse of equation (17) is somewhat more complicated. Using the property
(from equation (1)) that:

a2 + b2 + c2 + d2 = 1

the converse of equation (17) can be shown (11) to be computable from the following
sequence of operations:

Tr = C11 + C22 + C33

P1 = 1 + 2C11 - Tr

P2 = 1 + 2C22 - Tr

P3 = 1 + 2C33 - Tr

Po = 1 + Tr

If P1 = max (P1, P2, P3, Po), then:

a = 0.5 P1
1/2 sign aprevious

b = C21 + C12 /4a

c = C13 + C31 /4a

d = C32 - C23 /4a

(18)

(Continued)

331

If P2 = max (P1, P2, P3, Po), then:

b = 0.5 P2
1/2 sign bprevious

c = C32 + C23 /4b

d = C13 - C31 /4b

a = C21 + C12 /4b

If P3 = max (P1, P2, P3, Po), then:

c = 0.5 P3
1/2 sign cprevious

d = C21 - C12 /4c

a = C13 + C31 /4c

b = C32 + C23 /4c

(18)
(Concluded)

If Po = max (P1, P2, P3, Po), then:

d = 0.5 Po
1/2 sign dprevious

a = C32 - C23 /4d

b = C13 - C31 /4d

c = C21 - C12 /4d

3.3 The Computation of φ

3.3.1 Continuous Form

The φ “body attitude change” vector is calculated by processing data from the
strapdown gyros. Under situations where the angular rotation rate vector (sensed by the

gyros) lies along a fixed direction (i.e., is nonrotating in inertial space), the φ vector is
equal to the simple integral of the angular rate vector over the time interval from
computer cycle m to computer cycle (m+1):

φ = ω
tm

tm+1

 dt for cases when ω is nonrotating. (19)

where

332

ω = Angular rate vector sensed by the strapdown gyros.

Under general motion conditions (when ω may be rotating), equation (19) has the
more complex form (as derived in (10) or alternatively, in Appendix A):

α (t) =
tm

t

ω + 1/2 α × ω +
1

α2
 1 -

α sinα

2 (1-cosα)
 α × α × ω dt

φ = α t = tm+1

(20)

It can verified by power series expansion that to first order,

1/α2
 1 -

α sinα

2 (1-cosα)
 ≈

1
12

Hence, α (t) in equation (20), to third order accuracy in α can be approximated
by:

α (t) ≈
tm

t

ω + 1/2 α × ω +
1
12

 α × α × ω dt (21)

A second order expression for α (t) can be obtained from (21) by dropping the

1/12 term. An even simpler expression for α (t) is obtained by dropping the 1/12 term

and approximating the α term in the integral by the direct integral of w:

β (t) = ω
tm

t

 dt

δ β (t) = 1/2 β
tm

t

 × ω dt

φ = β t=tm+1 + δβ t=tm+1

(22)

An interesting characteristic about equation (22) is that its accuracy is in fact
comparable to that of third order equation (21). In other words, the simplifying

assumption of replacing α with β in the 1/2 α × ω term is in fact equivalent to

introducing an error in equation (21) that to third order, equals the
1
12

 α × α × ω term.

333

This property can be verified by simulation as well as analytical expansion under
hypothesized angular motion conditions.

Equation (22) is the equation that is mechanized in software in most modern-day

strapdown inertial navigation systems to calculate φ. It can be demonstrated analytically
and by simulation that for representative vehicle angular motion and vibration, equation

(22) faithfully calculates φ to accuracy levels that are compatible with high performance
strapdown inertial navigation system requirements.

For situations where ω is nonrotating, the δβ term in (22) is zero and φ equals the

simple time integral or ω over the computer interval m (i.e., the equation (19)

approximation). For situations where ω is rotating (a situation defined analytically as

“coning”), the δβ term is nonzero and must be calculated and used as a correction to the

ω integral to properly calculate φ.

It is important to note that the accuracy by which equation (22) approximates (20)

is dependent on φ being small (e.g., less than 0.1 radian). In order to protect the accuracy

of this approximation, the computer iteration rate must be high enough that φ remains
small under maximum vehicle rotation rate conditions.

3.3.2 Recursive Algorithm Form

The implementation of equation (22) in a digital computer implies that a higher
speed integration summing operation be performed during each body motion attitude
update cycle. A computational algorithm for the integration function can be derived by
first rewriting equation (22) in the equivalent incremental updating form:

β (t) = β (l) + ω
tl

t

 dt

δβ (l+1) = δβ (l) + 1/2 β
tl

tl+1

(t) × ω dt

β (l+1) = β t=tl+1

φ = β t=tm+1 + δβ t=tm+1

(23)

with initial conditions:

334

β t=tm = 0

δβ t=tm = 0
(24)

where

l = High speed computer cycle within the m body rate update cycle.

The integrals in (23) can be replaced by analytical forms that are compatible with
gyro input data processing if ω is replaced by a generalized time series expansion. For

equations (23), it is sufficient to approximate ω over the l to l+1 time interval as a
constant plus a linear ramp:

ω ≈ A + B t - tl (25)

where

A, B = Constant vectors.

Substituting (25) in (23), and recognizing with the equation (25) approximation that:

A tl+1 - tl = 1/2 Δθ(l) + Δθ(l-1)

1/2 B tl+1 - tl
2 = 1/2 Δθ (l) - Δθ(l-1)

where by definition:

Δθ(l) =
Δ

 ω
tl

t l+1

 dt

yields the desired final form for the φ updating algorithm:

δβ(l+1) = δβ(l) + 1/2 β (l) + 1/6 Δθ (l-1) × Δθ (l)

Δθ(l) = ω
tl

t l+1

 dt = dθ∑tl
tl+1

(26)

β(l+1) = β(l) + Δθ(l)

φ = β t=tm+1 + δβ t=tm+1

with initial conditions:

335

β t=tm =
Δ

 β (l=0) = 0

δβ t=tm =
Δ

 δβ (l=0) = 0

where

dθ = Gyro output pulse vector. Each component (x, y, z) represents the
occurrence of a rotation through a specified fixed angle increment about the
gyro input axis.

Δθ = Gyro output pulse vector count from l to l+1.

The computational algorithm described by equation (26) is used on a recursive

basis to calculate φ once each m cycle. After φ is calculated, the β and δβ functions are

reset for the next m cycle φ calculation. The iteration rate for l within m is maintained at

a high enough rate to properly account for anticipated dynamic ω motion effects. Section
6. describes analytical techniques that can be used to assess the adequacy of the iteration
rate under dynamic angular rate conditions.

3.4 The Computation of θ

The θ vector in equations (6) and (15) is computed as a simple integral of
navigation frame angular rate over the n cycle iteration period:

θ = Ω dt
tn

tn+1

(27)

where

Ω = Navigation frame rotation rate as calculated in the navigation software
section (12).

Standard recursive integration algorithms can be used to calculate θ in equation
(27) (e.g., trapezoidal) over the time interval from n to n+1. The update rate for the
integration algorithm is selected to be compatible with software accuracy requirements in
the anticipated dynamic maneuver environment for the user vehicle.

3.5 Orthogonality And Normalization Algorithms

Most strapdown attitude computation techniques periodically employ self-
consistency correction algorithms as an outer-loop function for accuracy enhancement. If

336

the basic attitude data is computed in the form of a direction cosine matrix, the self-
consistency check is that the rows should be orthogonal to each other and equal to unity
in magnitude. This condition is based on the fact that the rows of the direction cosine
matrix represent unit vectors along orthogonal navigation coordinate frame axes as
projected in body axes. For the quaternion, the self-consistency check is that the sum of
the squares of the quaternion elements be unity (this can be verified by operation on
equation (1)).

3.5.1 Direction Cosine Orthogonalization And Normalization

The test for orthogonality between two direction cosine rows is that the dot
product be zero. The error condition, then is:

Eij = Ci Cj
 T

(28)

where

Ci = ith row of C

Cj = jth row of C

T = Transpose

A calculated orthogonality error Eij can be corrected by rotating Ci and Cj relative
to each other about an axis perpendicular to both by the error angle Eij. Since it is not
known whether Ci or Cj is in error, it is assumed that each are equally likely to be
generating the error, and each is rotated by half of Eij to correct the error. Hence, the
orthogonality correction algorithm is:

Ci(n+1) = Ci(n) - 1/2 Eij Cj(n)

Cj(n+1) = Cj(n) - 1/2 Eij Ci(n)
(29)

It is easily verified using (29) that an orthogonality error Eij originally present in
Ci (n) and Cj (n) is no longer present in Ci (n+1) and Cj (n+1) after application of
equation (29).

The unity condition of Ci (i.e., normality) can be tested by comparing the
magnitude squared of Ci with unity:

Eii = Ci Ci
 T

 - 1 (30)

A measured normality error Eii can be corrected with:

Ci(n+1) = Ci(n) - 1/2 Eii Ci(n) (31)

337

Equations (28) through (31) can be used to measure and correct orthogonality and
normalization errors in the direction cosine matrix. In combined matrix form, the overall
measurement/correction operation is sometimes written as:

Cn+1 = Cn+1/2 I - Cn Cn
 T

 Cn (32)

3.5.1.1 Rows or Columns - The previous discussion addressed the problem of
orthogonalizing and nomalizing the rows of a direction cosine matrix C. In combined
form, equation (32) shows that the correction is:

δC = 1/2 I - CCT C (33)

Equation (33) can be operated upon by premultiplication with C
postmultiplication by CT, and combining terms. The result is:

δC = 1/2 C I - CTC (34)

The I - CTC term in (34) is the error matrix based on testing orthogonality and
normality of the columns of C. Thus, if the rows of C are orthonormalized (i.e., dC is
nulled), the columns of C will also be implicitly orthonormalized. The inverse applies if
the columns are directly orthonormalized with (34). The question that remains is, which
is preferred? The answer is related to the real time computing problem associated with
the calculation and correction of orthogonalization and normalization errors.

Ideally, the orthogonalization and normalization operations are performed as an
outer loop function in a strapdown navigation computer so as not to impact computer
throughput requirements. A computational organization that facilities such an approach
divides the orthonormalization operations into submodules that are executed on
successive passes in the outer-loop software path. A logical division of the
orthonormalization operations into submodules is as defined by equations (28), (29), (30),
and (31).

This implies that measurement and correction of orthogonalization and
normalization effects are performed at different times in the computing cycle. Such an
approach is only valid if the orthogonality and normalizations errors (i.e., Eij and Eii)
remain reasonably stable as a function of time.

To assess the time stability of the orthogonality/normalization error is to
investigate the rate of change of the bracketed terms in equations (33) and (34). For
convenience, these will be defined as:

ER =
Δ

 I - CCT

EC =
Δ

 I - CTC

(35)

338

The time derivative of (35) is:

ER = CC
T

 - CC
T

EC = C
T

C - CTC
(36)

Expressions for C and C
T
 can be developed by returning to equations (2), (3), (5),

and (6). These equations can be rearranged to show that over a given time interval, the
change in C is given by:

ΔC = C (A - I) + (B - I) C

which with (3) and (4) becomes to first order:

ΔC = C (φ×) - (θ×) C (37)

Dividing by the time interval for the change in C, recognizing that φ and θ are

approximately integrals of ω and Ω over the time interval, and letting the time interval go
to zero in the limit, yields the classical equation for the rate of change of C:

C = C (ω×) - (Ω×) C (38)

where

(ω×), (Ω×) = Skew symmetric matrix form of vectors ω, Ω.

The transpose of (38) is:

C
T

 = (ω×) CT + CT (Ω×) (39)

We now substitute (38) and (39) into (36). After combining terms and applying
equations (35), the final result is:

ER = ER (Ω×) - (Ω×) ER

EC = EC (ω×) - (ω×) EC

(40)

Equations (40) show that the rate of change of ER is proportional to ER and the
navigation frame rotation rate Ω, whereas the rate of change of EC is proportional to EC

and the body rotation rate ω. Since ω is generally much larger than Ω, EC is generally

larger than ER. It can be concluded that ER is more stable over time, hence,
orthornormalizing the direction cosine matrix rows (based on the ER measurement) is the

339

preferred computational approach if the real time computing problem is taken into
account.

3.5.2 Quaternion Normalization

The quaternion is normalized by measuring its magnitude squared compared by
unity, and adjusting each element proportionally to correct the normalization error. The
normalization error is given by:

Eq = q q* - 1 (41)

It is easily verified using the rules for quaternion algebraic that Eq equals the sum
of the squares of the elements of q minus 1. The correction algorithm is given by:

q(n+1) = q(n) - 1/2 Eq q(n) (42)

3.6 Direction Cosine Versus The Quaternion For Body Attitude Referencing

The tradeoff between direction cosine versus quaternion parameters as the
primary attitude reference data in strapdown inertial systems has been a popular area of
debate between strapdown analysts over the past three decades. In its original form, the
tradeoff centered on the relative accuracy between the two methods in accounting for
body angular motion. These tradeoffs invariably evolved from the differential equation
form of the direction cosine and quaternion updating equations and investigated the
accuracy of equivalent algorithms for integrating these equations in a digital computer
under hypothesized body angular motion. Invariably, the body motion investigated was
coning motion at various frequencies relative to the computer update frequency. For
these early studies, the tradeoffs generally demonstrated that for comparable integration
algorithms, the quaternion approach generated solutions that more accurately replicated
the true coning motion for situations where the coning frequency was within a decade of
the computer update frequency.

As presented in this paper, both the quaternion and direction cosine updating

algorithms have been based on processing of a body angle motion vector φ which
accounts for all dynamic motion effects including coning. These updating algorithms
(equation (2) and (3) for direction cosines and (13) and (14) for the quaternion) represent

exact solutions for the attitude updating process for a given input angle vector φ.
Consequently, the question of accuracy for different body motion can no longer be
considered a viable tradeoff area. The principle tradeoffs that remain between the two
approaches are the computer memory and throughput requirements associated with each
in a strapdown navigation system.

In order to assess the relative computer memory and throughput requirements for
quaternion parameters versus direction cosines, the composite of all computer
requirements for each must be assessed. In general, these can be grouped into three
major computational areas:

340

1. Basic updating algorithm

2. Normalization and orthogonalization algorithms

3. Algorithms for conversion to the direction cosine matrix form needed for
acceleration transformation and Euler angle extraction

Basic Updating Algorithms - The basic updating algorithm for the quaternion
parameters is somewhat simpler than for direction cosines as expansion of equations (2)
and (3) compared with (13) and (14) would reveal. This results in both a throughput and
memory advantage for the quaternion approach. Part of this advantage arises because
only four quaternion elements have to be updated compared to nine for direction cosines.
The advantage is somewhat diminished if it is recognized that only two rows of direction
cosines (i.e., 6 elements) need actually be updated since the third row can then be easily
derived from the other two by a cross-product operation (i.e., the third row represents a
unit vector along the z-axis of the navigation frame as projected in body axes. The first
two rows represent unit vectors along x and y navigation frame axes. The cross-product
of unit vectors along x and y navigation axes equals the unit vector along the z-navigation
axis).

Normalization And Orthogonalization Algorithms - The normalization and
orthogonalization operations associated with direction cosines are given by equation (28)
through (31). The quaternion normalization equation is given by equations (41) and (42).

The normalization equation for the quaternion is generally simpler to implement
than the orthogonalization and normalization equations for the direction cosines. If only
two rows of the direction cosine matrix are updated (as described in the previous
paragraph) the direction cosine orthogonalization and normalization operations required
are half that dictated by (28) through (31), but are still more than required by (41) and
(42) for the quaternion. Since the orthonormalization operations would in general be
iterated at low rate, no throughput advantage results for the quaternion. Some memory
savings may be realized, however.

A key factor that must be addressed relative to orthonormalization tradeoffs is
whether or not orthonormalization is actually needed at all. Clearly, if the direction
cosine or quaternion updating algorithms were implemented perfectly,
orthonormalization would not be required. It is the author’s contention that, in fact, the
accuracy requirements for strapdown systems dictate that strapdown attitude updating
software cannot tolerate any errors whatsoever (compared to sensor error effects).
Therefore, if the attitude updating software is designed for negligible drift and scale
factor error (compared to sensor errors) it will also implicitly exhibit negligible
orthogonalization and/or normalization errors.

The above argument is valid if the effect of orthonormalization errors in
strapdown attitude data is no more detrimental to system performance than other software
attitude error effects. This is in fact the case, as detailed error analyses would reveal.
Since modern-day general purpose computers used in today’s strapdown inertial
navigation systems have the capability to implement attitude updating algorithms
essentially perfectly within a reasonable throughput and memory requirement, it is the

341

author’s opinion that orthonormalization error correction should not be needed, hence, is
not a viable tradeoff area relative to the use of quaternion parameters versus direction
cosines.

Algorithms For Conversion To The Direction Cosine Matrix - If the basic
calculated attitude data is direction cosines directly, no conversion process is required.
For cases where only two rows of direction cosines are updated, the third row must be
generated by the cross-product between the two rows calculated. For example:

C31 = C12 C23 - C13 C22

C32 = C13 C21 - C11 C23

C33 = C11 C22 - C12 C21

(43)

For quaternion parameters, equation (17) must be implemented to develop the
direction cosine matrix, a significantly more complex operation compared with (43) for
the two row direction cosine approach. Since direction cosine elements are generally
required at high rate (for acceleration transformation and Euler angle output extraction)
both a throughput and memory penalty is accrued for the quaternion approach. The
penalty is compounded if the calculated direction cosine outputs are required to greater
than single precision accuracy (including computational round-off error). For noise-free
acceleration transformation operations (such as may be needed to effect an accurate
system calibration) double-precision accuracy is needed. The result is that equation (17)
for the quaternion versus (43) for direction cosines would have to be implemented in
double-precision imposing a significant penalty for the more complex quaternion
conversion process.

Tradeoff Conclusions - From the above qualitative discussion, it is difficult to
draw hard conclusions regarding a preference for direction cosines versus quaternion
parameters for attitude referencing in strapdown inertial systems. Pros and cons exist for
each in the different tradeoff areas. Quantitative comparisons based on actual software
sizing and computer loading studies have led to similar inconclusive results. Fortunately,
today’s computer technology is such that the slight advantage one attitude parameter
approach may have over the other in any particular application is insignificant compared
with composite total strapdown inertial system throughput and memory software
requirements. Hence, ultimate selection of the attitude approach can be safely made
based on “analyst’s choice”.

4. STRAPDOWN ACCELERATION TRANSFORMATION ALGORITHMS

The acceleration vector measurement from the accelerometers in a strapdown
inertial system is transformed from body to navigation axes through a mechanization of
the classical vector transformation equation:

aN = C a (44)

where

342

a = Specific force acceleration measured in body axes by the strapdown
accelerometers.

aN = Specific force acceleration with components evaluated along navigation
axes.

The implementation of equation (44) is accomplished on a repetitive basis as a
recursive algorithm in a digital computer such that its integral properties are preserved at
the computer cycle times. In this manner, the velocity which is formed from the integral
of (44) will be accurate under dynamic conditions in which aN may have erratic high
frequency components. The recursive algorithm for (44) must account for the effects of
body rotation (and secondarily, rotation of the navigation coordinate frame) as well as
variations in a over the computer iteration period.

4.1 Acceleration Transformation Algorithm That Accounts For Body Rotation Effects

To develop an algorithm for equation (44) that preserves its integral properties,
we begin with its integral over a computer cycle:

uN = C
tm

tm+1

 a dt (45)

where

uN = Change in integral of equation (44) (or specific force velocity change) over
a computer cycle m

The velocity vector in the navigation computer is generated by summing the uN’s
corrected for Coriolis and gravity effects.

The C matrix in (45) is a continuous function of time in the interval from tm to
tm+1. An equivalent form for C in terms of its value at the computer update time (m) is:

C = C(m) A(t) (46)

where

C(m) = Value of C at tm

A(t) = Direction cosine matrix that transform vectors from body axes at time t to
the body attitude at the start time for the computation interval tm.

Equation (46) with the definition of A(t) above accounts for the effect of gyro
sensed body motion over the computer interval. The next section will discuss the
correction used to account for the small rotation of the navigation frame over the
computer interval.

343

Substituting (46) in (45) and expanding:

uN = C(m) A
tm

tm+1

(t) a dt

We now use a first order approximation for A(t) as given in equation (3), with φ
treated as a function of time in the interval as defined to first order in equation (22):

φ(t) ≈ β(t) = ω
tm

t

 dt

Thus,

A(t) ≈ I + β(t) × (47)

and

uN ≈ C(m) I + β(t) ×

tm

tm+1

 a dt

= C(m) a
tm

tm+1

 dt + β(t) × a dt
tm

tm+1

We now define

u =
Δ

a
tm

tm+1

 dt

Hence,

uN = C(m) u + β(t) × a dt
tm

tm+1

(48)

with

344

β(t) = ω dt
tm

t

u = a dt
tm

tm+1

An alternative form of (48) can also be derived through direct application of the
integration by parts rule to the integral term in the equation (48) uN expression:

uN = C(m) u + 1/2 β × u + 1/2 β(t) × a + u(t) × ω dt
tm

t

(49)

with

β (t) = ω dt
tm

t

 β = β t=tm+1

u (t) = a dt
tm

t

 u = u t=tm+1

Equations (48) and (49) are algorithmic forms of equation (44) that can be used to
calculated uN in the strapdown computer exactly (within the approximation of equation
(47)). These equations show that the specific force velocity change in navigation
coordinates is approximately equal to the integrated output from the strapdown
accelerometer (u) over the computer cycle, times the direction cosine matrix which was
valid at the previous computer update time. Correction terms are applied to account for
body rotation. In general, the correction term involves an integral of the interactive
effects of angular ω and linear a motion over the update cycle. The integral terms have
been coined “sculling” effects.

The equation (49) form of the uN equation includes a 1/2 β × u term which can be
evaluated at tm+1 as the simple cross-product of integrated gyro and accelerometer
measurements (i.e., without a dynamic integral operation). Furthermore, it is easily
demonstrated that for approximately constant angular rates and accelerations over the
computer cycle, the integral term in (49) is identically zero. This forms the basis for an
approximate form of (49) which is valid under benign flight conditions (i.e., using

equation (49) without including the integral term). The 1/2 β × u term in (49) is
sometimes denoted as “rotation compensation.”

345

4.1.1 Incremental Form of Transformation Operations and Sculling Terms

In a severe dynamic environment, equations (48) or (49) would be implemented
explicitly with the integral terms mechanized as a high speed digital algorithmic
operation within the tm to tm+1 update cycle. The integral terms we are dealing with are
from (48) and (49):

S1 =
Δ

 β (t) × a dt
tm

tm+1

S2 =
Δ

 1/2 β (t) × a + u (t) × ω dt
tm

tm+1

(50)

With the equation (50) definitions, (48) and (49) become:

uN = C(m) u + S1 (51)

or

uN = C(m) u + 1/2 β × u + S1 (52)

Recursive algorithms for S1 or S2 can be derived by first rewriting (50) in the
equivalent form:

β (t) = β (l) + ω dt
tl

t

u (t) = u (l) + a dt
tl

t

γ1 (l+1) = γ1 (l) + β (t) × a dt
tl

t l+1

γ2 (l+1) = γ2 (l) + 1/2 β (t) × a + u(t) × ω dt
tl

t l+1

β (l+1) = β t=tl+1

u (l+1) = u t=tl+1

S1 = γ1 t=tm+1

S2 = γ2 t=tm+1

(53)

with initial conditions

346

β t=tm = 0

u t=tm = 0

γ1 t=tm = 0

γ2 t=tm = 0

(54)

where

l = High speed computer cycle within m lower speed computation cycle.

The integrals in (53) can be replaced by analytical forms that are compatible with
gyro and accelerometer input data processing if ω and a are replaced by a generalized

time series expansion. For equations (53), it is sufficient to approximate ω and a over the
l to l+1 time interval as constants. Using this approximation in (53) yields the final
algorithm forms. For S1, the companion to equation (51), the algorithm is:

γ1 l+1 = γ1 (l) + β(l) + 1/2 Δθ (l) × Δv(l)

β l+1 = β(l) + Δθ (l)

where

Δθ(l) = ω
tl

t l+1

 dt = dθ∑t l

t l+1

Δv(l) = a
tl

t l+1

 dt = dv∑t l

t l+1

and

S1 = γ1 t=tm+1 (55)

For equation (51):

u (l+1) = u (l) + Δv(l)

u =
Δ

 u t=tm+1

with initial conditions:

347

β t=tm =
Δ

 β (l=0) = 0

γ1 t=tm =
Δ

 γ1 (l=0) = 0

where

dθ, dv = Gyro and accelerometer output pulse vectors. Each component (x, y, z)
represents the occurrence of a rotation through a specified angle about
the gyro input axis (for dθ components) or an acceleration through a
specific force velocity change along the accelerometer input axis (for
dv components).

Δθ, Δv = Gyro and accelerometer pulse vector counts from l to l+1.

For the alternative S2 form, the companion to equation (52), the algorithm is:

γ2 l+1 = γ2 l + 1/2 β(l) × Δv(l) + u(l) × Δθ (l)

β l+1 = β(l) + Δθ (l)

u l+1 = u(l) + Δv(l)

where

Δθ(l) = ω dt
tl

t l+1

 = dθ∑ tl

 tl+1

Δu(l) = a dt
tl

t l+1

 = dv∑ tl

 tl+1

(56)

and

S2 = γ2 t=tm+1

For equations (52):

β = β t=tm+1

u = u t=tm+1

with initial conditions:

348

β t=tm =
Δ

 β l=0 = 0

u t=tm =
Δ

 u l=0 = 0

γ2 t=tm =
Δ

 γ2 l=0 = 0

Equations (51) with (55), or (52) with (56) are computational algorithms that can
be used to calculate the navigation frame specific force velocity changes. Two iteration
rates are implied: a basic m cycle rate, and a higher speed l cycle rate within each m
cycle.

The m cycle rate is selected to be high enough to protect the approximation of

neglecting the β(t) × 2
 term in A(t) (contrast equation (47) with the equation (3) exact

form for A). This design condition is typically evaluated under maximum expected linear
acceleration/angular rate envelope conditions for the particular application. Typically,
the m cycle rate required for accuracy in the attitude updating algorithms is also sufficient
for accuracy requirements in the m cycle of the acceleration transformation algorithms.

The l cycle rate within m is set high enough to properly account for anticipated
composite dynamic ω, a effects. Section 6. describes analytical techniques that can be
used to assess the adequacy of the S iteration rate for the sculling computation under
dynamic input conditions.

4.1.3 Acceleration Transformation Algorithms Based on Quaternion Attitude Data

Equations (51) or (52) were based on the use of direction cosine data (C) in the
strapdown computer. If the basic attitude data is calculated in the form of a quaternion,
the equivalent C matrix for transformation can be calculated using equations (17).
Alternatively, the quaternion data can be applied directly in the implementation of the
transformation operation through application of equation (12) to equations (51) and (52):

uN = q(m) u + S1 q(m)* (57)

or

uN = q(m) u + S2
'

 q(m)*

S2
'
 =

Δ
 1/2 β × u + S2

(58)

where u and the terms in the middle brackets are the quaternion form of the vector of the
same nomenclature defined as having the first three terms (i.e., vector components) equal
to the vector elements, and the fourth scalar term equal to zero. The S1 and S2 terms are
calculated as defined by equations (55) and (56).

349

4.2 Acceleration Transformation Algorithm Correction For Navigation Frame
Rotations

The acceleration transformation algorithms represented by equation (51), (52) or
(57), (58) with (55), (56) neglects the effect of navigation frame rotation. In general, this
is a minor correction term that can be easily accounted for at the n cycle update rate (i.e.,
the computer cycle rate used to update the attitude data for the effect of navigation frame
rotations). It can be shown through a development similar to that leading to equation
(52), that the correction algorithm for local navigation frame motion is given to first order
by:

Δu
N

(n) = - 1/2 θ × v (n) (59)

where

Δu
N

(n) = Correction to the value of uN computed in the m cycle that occurs at
the current n cycle time. (Note: the m cycle is within the lower speed
n cycle time frame).

v (n) = Summation of u(m) over the n cycle update period.

θ = Integral of the navigation frame angular rotation rate over the n cycle period
(as described in Sections 3.1.2 and 3.4)

5. EULER ANGLE EXTRACTION ALGORITHMS

If the body attitude relative to navigation axes is defined in terms of three
successive Euler angle rotations ψ, θ, φ about axes z, y, x respectively (from navigation
to body axes), it can be readily demonstrated (9) that the relationship between the
direction cosine elements and Euler angles is given by:

350

C11 = cosθ cosψ

C12 = - cosφ sinψ + sinφ sinθ cosψ

C13 = sinφ sinψ + cosφ sinθ cosψ

C21 = cosθ sinψ

C22 = cosφ cosψ + sinφ sinθ sinψ

C23 = - sinφ cosψ + cosφ sinθ sinψ

C31 = - sinθ

C32 = sinφ cosθ

C33 = cosφ cosθ

(60)

For conditions where θ ≠ π/2 the inverse of equations (60) can be used to
evaluate the Euler angles from the direction cosines:

φ = tan-1
C32

C33

θ = - tan -1
C31

√ 1 - C31 2

ψ = tan-1
C21

C11

(61)

For situations where θ approaches π/2, the φ and ψ equations in (61) become
indeterminate because the numerator and denominator approach zero simultaneously (see
equations (60)). Under these conditions, an alternative equation for φ, ψ can be
developed by first applying trigonometric algebra to equations (60) to obtain:

C23 + C12 = sinθ - 1 sin ψ + φ

C13 - C22 = sinθ - 1 cos ψ + φ

C23 - C12 = sinθ + 1 sin ψ - φ

C13 + C22 = sinθ + 1 cos ψ - φ

(62)

351

Taking appropriate reciprocals of sine, cosine terms in (62) and applying the
inverse tangent function:

For θ near + π/2

ψ - φ = tan-1
C23 - C12

C13 + C22
(63)

For θ near - π/2

ψ + φ = π + tan
-1

C23 + C12

C13 - C22

Equations (63) can be used to obtain expressions for the sum or difference of ψ
and φ under conditions where θ is near π/2. Explicit separate solutions for ψ and φ
cannot be found under the θ = π/2 condition because ψ and φ both become angle
measures about parallel axes (about vertical), hence, measure the same angle (i.e., a

degree of rotational freedom is lost, and only two Euler angles, θ = ± π/2 and ψ or φ
define the body to navigation frame attitude). Under θ near π/2 conditions, φ or ψ can
be arbitrarily selected to satisfy another condition, with the unspecified variable
calculated from (63). As an example, ψ might be set to a constant at the value it had from

equations (61) when the θ near π/2 region was entered. This selection avoids jumps in ψ
as the solution equation is transitioned from the (61) to the (63) form.

6. ALGORITHM PERFORMANCE ASSESSMENT

The division of the attitude updating and acceleration transformation algorithms
into high and low speed loops for body motion effects (l and m rates) provides for
flexibility in selection of the iteration rates to maintain overall algorithm accuracy at
system specified performance levels. The l and m rate algorithms have been designed
such that the high rate l loop consists of simple computations that can be iterated at the
high rate needed to properly account for high frequency vibration effects. The m rate
loop algorithms, on the other are more complicated, based on computationally exact
solutions.

Iteration rates for the m loop are selected to maintain accuracy under maximum
maneuver induced motion conditions. The m loop iteration rate to maintain accuracy
under maximum maneuver conditions can be easily evaluated analytically, or by
simulation, through comparison of the actual algorithm solution with the Taylor series
truncated forms selected for system mechanization. Iteration rates for the l loop are
selected to maintain accuracy under anticipated vibratory environmental conditions.

352

6.1 Vibration Environment Assessment

A fundamental calculation that should be performed prior to the analysis of l loop
algorithm iteration rate requirements is an assessment of the dynamic inputs that must be
measured by the algorithms. In essence, this consists of an evaluation of the continuous
(i.e., infinitely fast iteration rate) form of the algorithms in question under dynamic input
conditions. The specific continuous form equations of interest are equations (22) for δβ
and (50) for S1 or S2.

6.1.1 δβ Dynamic Environment Assessment (Coning)

We repeat equations (22) for δβ evaluated at t = tm+1:

β (t) = ω
tm

t

 dt

δβ t=tm+1 = 1/2 β
tm

tm+1

 (t) × ω dt

(64)

and analyze the solution for δβ t=tm+1 under general motion at frequency f in axes x

and y with angular amplitudes θx, θy and relative phase angle φ such that:

ω
0

t

 dt = θx sin(2πft), θy sin(2πft+φ), 0
T

ω = 2πf θx cos(2πft), θy cos(2πft+φ), 0
T

(65)

Substituting (65) in (64), expanding through application of appropriate
trigonometric identities, and carrying out the indicated integrals analytically between the
assigned limits, yields zero for the x, y components and the following for the z

component of δβ t=tm+1 :

δβz t=tm+1 = π θx θy sinφ f tm+1 - tm -
sin 2πf tm+1 - tm

2πf

Defining the m cycle time interval as Tm, the latter expression is equivalently:

353

δβz = π θx θy sinφ f Tm 1 -
sin 2πfTm

2πfTm

(66)

Hence, even though the ω rate is cyclic in two axes as defined by equation (65) in

x and y, the value for δβz is a constant proportional to the sine of the phase angle

between the x, y angular vibrations. Under conditions where φ = 0 (defined as “rocking”

motion), δβz is zero. Under conditions where φ = π/2, δβz is maximum. The equation

(65) rate when φ = π/2 has been termed “coning motion” due to the characteristic
response of the z axis under this motion which describes a cone in inertial space.

Equation (66) can be converted into a “drift rate” form by dividing the δβz angle
by the time interval Tm over which it was evaluated:

δβz = π θx θy sinφ f 1 -
sin 2πfTm

2πfTm

(67)

Equation (67) is a fundamental equation that can be used to assess the magnitude

of δβz that must be accounted for by the δβ computer algorithm under discrete frequency

input conditions. If δβz is small relative to system performance requirements, it can be

neglected, and the l loop algorithm for δβ need not be implemented.

Equation (67) describes how δβz can be calculated for a discrete input vibration
frequency f. In a more general case, the input rate is composed of a mixture of
frequencies in x and y at different phase angles φ for each. If the source of the
generalized angular vibration is random input noise to the strapdown system, the x, y
motion is colored by the transmission characteristics of the noise input to the x, y angular
response. A more general development of equation (67) that accounts for the latter

effects shows that the comparable equation for δβz is given by:

 δβz = ω
0

∞

 Ax(ω) Ay(ω) sin φAy(ω) - φAx (ω) 1 -
sin ωTm

ωTm

 Pnn(jω) dω (68)

where

Ax(ω), Ay(ω) = Amplitude of the transfer function relating system input
vibration noise to angular attitude response of the sensor
assembly about the x, y axes.

354

φAx (ω), φAy(ω) = Phase of the transfer function relating system input vibration
noise to angular attitude response of the sensor assembly
about the x, y axes.

Pnn(jω) = Power spectral density of input vibration noise.

ω = Fourier frequency (rad/sec)

Note: Mean squared vibration energy = Pnn(jω)
0

∞

 dω

Equation (68) can be used to assess the extent of random spectrum dynamic

angular environment to be measured by the δβ computational algorithm. The δβz value
calculated by (68) measures the composite correlated coning drift in the sensor assembly

that must be calculated to accurately account for the actual motion present. If the δβz
magnitude calculated from (68) is small compared to other systems error budget effects,
the mechanization of an algorithm to calculate δβ is not needed (i.e., can be approximated
by zero).

The extension of equations (67) and (68) to y, z or z, x axis angular vibration
motion should be obvious.

6.1.2 S1, S2 Dynamic Environment Assessment (Sculling)

We repeat equations (50) with u and β from (48) and (49):

β (t) = ω
tm

t

 dt

u (t) = a
tm

t

 dt

S1 = β (t) × a dt
tm

tm+1

S2 = 1/2 β (t) × a + u (t) × ω dt
tm

tm+1

(69)

355

and analyze the S1, S2 solutions under general cycle motion at frequency f in axes x, y
with angular amplitude θx about axis x and acceleration amplitude Dy along axis y at

relative phase φ such that:

ω
0

t

 dt = θx sin (2πft), 0, 0
T

ω = 2πf θx cos (2πft), 0, 0
T

a = 0, Dy sin (2πft+φ), 0
T

(70)

Substituting (70) in (69), expanding through application of appropriate
trigonometric identities, and carrying out the indicated integrals analytically between the
assigned limits, yields zero for the x, y components and the following for the z
component of S1 and S2:

S2z = 1/2 Tm θx Dy cos φ 1 -
sin πfTm

2πfTm

(71)

S1z = 1/2 β × u z + S2z (72)

where

β × u z = z - component of β × u evaluated at t = tm+1.

Hence, even though the ω and a inputs are cyclic in two axes as defined in
equations (70), the value for S2z is a constant proportional to the cosine of the phase
angle between the x angular vibration and y linear acceleration vibration. Under
conditions where φ = π/2, S2z is zero. Under conditions where φ = 0, S2z is a maximum.

Equation (70) motion when φ = 0 has been termed “sculling motion” due to the analogy
with the characteristic angular movement and acceleration forces imparted to a single oar
used to propel a boat from the stern. Note also that S1z is equal to S2z plus the correction
term (rotation compensation) measured as the cross-product of the sample angular rate
and linear acceleration integrals taken over the m computation cycle. (See equations (48)
and (49) for definitions).

Equation (71) for S2z can be converted into an “acceleration bias” form by
dividing the velocity change correction S2z by the time interval Tm over which it was
evaluated:

S2z = 1/2 θx Dy cosφ 1 -
sin 2πfTm

2πfTm

(73)

356

Equation (73) (with (72) for S1z) is a fundamental equation that can be used to

assess the magnitude of S2z that must be accounted for by the S1 or S2 computer

algorithm under discrete frequency input conditions. If S2z is small relative to system
performance requirements, it can be neglected, and the l loop algorithm for calculating S1
or S2 need not be implemented. Under the latter conditions, S1 would be set equal to the
cross-product term in (72) which makes the basic equation (51) and (52) transformation
algorithms identical.

Equation (73) describes how S2z can be calculated with a discrete input vibration
frequency f for angular motion about x and linear motion along y. In a more general
case, the input rates and accelerations are composed of mixtures of angular and linear
motion about x and y at different frequencies and relative phase angles. If the source of
the generalized vibration motion is random input noise to the strapdown system, the x, y
angular and linear motion is colored by the transmission characteristics of the noise input
to the x, y angular and linear response. A more general development of equation (73) that

accounts for the latter effects show that the comparable equation for S2z is given by:

S2z = Ay(ω) Bx(ω) cos φAy(ω) - φBx(ω)
0

∞

 - Ax(ω) By(ω) cos φAx(ω)

- φBy(ω) 1 -
sinωTm

ωTm

 Pnn(jω) dω

(74)

where

Ax(ω), Ay(ω),

φAx (ω), φAy(ω), = As defined previously.

Pnn(jω), ω

Bx(ω), By(ω), = x, y amplitude/phase linear acceleration response of the

φBx(ω), φBy(ω) sensor assembly to the input vibration.

Equation (74) can be used to assess the extent of random spectrum dynamic

motion environment to be measured by the S1 or S2 computational algorithms. The S2z
value calculated by (74) measures the composite correlated sculling acceleration bias in
the sensor assembly that must be calculated to accurately account for the actual motion

present. If the S2z magnitude calculated from (74) is small compared to other system
error budget effects, the mechanization of an algorithm to calculate S1 or S2 in the high
rate l loop is not needed (i.e., S2 can be approximated by zero in (52) or S1 can be set
equal to the cross-product term in (52)).

The extension of equations (73) and (74) for y, z or z, x axis vibration motion
should be obvious.

357

6.2 Algorithm Accuracy Assessment.

The accuracy of the computation algorithm for δβ or S1, S2 can be assessed by
comparing their solutions to the comparable continuous form solutions developed in
Section 6.1 under identical input conditions.

6.2.1 δβ Coning Algorithm Error Assessment

The computational algorithm for calculating δβ in a strapdown system is given by
equation (26). A measure of the accuracy of the equation (26) algorithm can be obtained
by analytically calculating the solution generated from (26) under assumed cyclic motion
and comparing this result to the equivalent solution obtained from the idealized
continuous algorithm described in Section 6.1. For a discrete frequency vibration input,
the equation (65) motion can be used analytically in equation (26) to calculate the
algorithm solution for δβ at t = tm+1 (i.e., analogous to the equation (67) solution for the
continuous (infinitely fast) algorithm. After much algebraic manipulation, it can be
demonstrated that the algorithm solution for δβ as calculated from equation (26) under
equation (65) input motion, has zero x, y components, with a z component rate given by:

δβzALG = π f θx θy sin φ 1 + 1/3 (1 - cos 2πfTl)
sin 2πfTl

2πfTl

 -
sin 2πfTm

2πfTm

(75)

where

δβzALG = Recursive algorithm solution for δβz rate

Tl = Time interval for high speed l computer iteration cycle

Equation (75) for the δβ discrete recursive algorithm solution of equation (26) is

directly analogous to the equation (67) solution of the equation (22) continuous δβ
algorithm. It is easily verified that (75) reduces to (67) as Tl approaches zero.

The error in the δβ algorithm is measured by the difference between (67) and
(75); i.e.:

e δβz = π f θx θy sin φ 1 + 1/3 (1 - cos 2πfTl)
sin 2πfTl

2πfTl

 - 1 (76)

where

358

e δβz = Error rate in the equation (26) algorithm.

Equation (76) can be used to assess the error in the equation (26) δβ algorithm
caused by finite iteration rate (i.e., the effect of Tl) under discrete frequency input
conditions.

Under random vibration input conditions, the equation (26) algorithm can be
analyzed to obtain the more general solution for the δβzALG rate:

δβzALG = ω
o

∞

 Ax(ω) Ay(ω) sin φAy(ω) - φAx(ω)

 × 1 + 1/3 (1 - cos ωTl)
sin ωTl

ωTl

 -
sin ωTm

ωTm

 Pnn(jω) dω

(77)

The δβ algorithm error under random inputs is the difference between the
equation (77) discrete solution and the equivalent continuous equation (68) solution form.
The result is:

e δβ z = ω
o

∞

 Ax(ω) Ay(ω) sin φAy(ω) - φAx(ω)

 × 1 + 1/3 (1 - cosωTl)
sin ωTl

ωTl

 - 1 Pnn (jω) dω

(78)

Equations (76) and (78) can be used to assess the error in the equation (26) δβ
algorithm caused by finite iteration rate under discrete or random vibration input
conditions. The extension of equations (76) and (78) to y, z or z, x axis effects should be
obvious.

6.2.2 S Sculling Algorithm Error Assessment

The computational algorithm for calculating S1 or S2 is given by equations (55)
and (56). A measure of the accuracy of these algorithms can be obtained by analytically
calculating the solution generated from (55) or (56) under assumed cyclic motion and
comparing the result to the equivalent solution obtained from the continuous algorithm as
described in Section 6.1.2. For a discrete frequency vibration input, the equation (70)
motion can be used analytically in equation (55) and (56) to calculate the algorithm
solution for S1, S2 (i.e., analogous to the equation (72) and (73) solution for the
continuous (infinitely fast) algorithms). After much algebraic manipulation, it can be
demonstrated that the algorithm solution for S1 and S2 as calculated from equations (55)
and (56) under equation (70) input motion, has zero x, y components, with a z component
rate given by:

359

S2zALG = 1/2 θx Dy cos φ
sin 2πfTl

2πfTl

 -
sin 2πfTm

2πfTm

(79)

S1zALG = 1/2 β × u z + S2zALG (80)

where
S1zALG, S2zALG = Recursive algorithm solutions for S1z, S2z.

Equations (79) and (80) for the S1, S2 discrete recursive algorithm solution is
directly analogous to the equations (73) and (72) solution to the continuous S1, S2
algorithm. It is easily verified that (79) and (80) reduce to (73) and (72) as Tl approaches
zero.

The error in the S1, S2 algorithm is measured by the difference between (79), (80)
and (73), (72); i.e.,

e S1z = e S2z = 1/2 θx Dy cos φ 1 -
sin 2πfTl

2πfTl

(81)

where

e S1z , e S2z = Error rate in the equation (55) and (56) algorithm solutions.

Equation (81) can be used to assess the error in the equation (55) and (56)
algorithms caused by finite iteration rate (i.e., the effect of Tl) under discrete frequency
input conditions.

Under random vibration input conditions, the equation (55) and (56) algorithms
can be analyzed to obtain the more general solution for S1z, S2z:

S2z = Ay(ω) Bx(ω) cos φAy(ω) - φBx(ω)

o

∞

 - Ax(ω) By(ω) cos φAx(ω) - φBy(ω)

sin ωTl

ωTl

 -
sin ωTm

ωTm

 Pnn (jω) dω

S1z = 1/2 β × u z + S2z

(82)

The S1z, S2z algorithm error under vibration is the difference between the
equation (82) discrete solutions and the equivalent continuous equation (74) with (72)
forms:

360

e S1z = e S2z = Ay(ω) Bx(ω) cos φAy(ω) - φBx(ω)

o

∞

 - Ax(ω) By(ω) cos φAx(ω) - φBy(ω)

 1 -

sin ωTl

ωTl

 Pnn (jω) dω

(83)

Equation (82) and (83) can be used to assess the error in the equation (55) and
(56) algorithms caused by finite iteration rate under discrete or random vibration input
conditions. The extension of equation (83) to y, z or z, x axis effects should be obvious.

7. CONCLUDING REMARKS

The strapdown computational algorithms and associated design considerations
presented in this paper are representative of the algorithms being used in most modern-
day strapdown inertial navigation systems. The unique characteristic of the attitude and
transformation algorithms presented is the separation of each into a complex low speed
and simple high speed computation section. Due to the simplicity of the high speed
calculations they can be executed at the high rates necessary to properly account for high
frequency but generally low amplitude vibratory effects without posing an
insurmountable throughput burden on the computer. The lower speed calculations which
contain the bulk of the computational equations can then be executed at a fairly modest
update rate selected to properly account for lower frequency but larger magnitude
maneuver induced motion effects. Perhaps the principal advantage of the algorithm
forms presented, is their ability to be analyzed for accuracy using straight-forward
analytical techniques. This allows the algorithms to be easily tailored and evaluated for
given applications as a function of anticipated dynamic environments and user accuracy
requirements.

REFERENCES

1. Pitman, George R. Jr., ed., Inertial Guidance, John Wiley and Sons, New York,
1962.

2. Leondes, Cornelius T., ed., Guidance and Control of Aerospace Vehicles,
McGraw-Hill, 1963.

3. Macomber, George R. and Fernandes, Manuel, Inertial Guidance Engineering,
Prentice-Hall Englewood Cliffs, New Jersey, 1962.

4. Britting, Kenneth R., Inertial Navigation System Analysis, John Wiley and Sons,
New York, 1971.

5. Morse, Philip M. and Feshback, Herman, Methods of Theoretical Physics,
McGraw-Hill, 1953.

361

6. A Study of Critical Computational Problems Associated with Strapdown Inertial
Navigation Systems, NASA Report CR-968, April 1968.

7. Savage, P.G., “A New Second-Order Solution for Strapped-Down Attitude
Computation”, AIAA/JACC Guidance & Control Conference, Seattle,
Washington, August 15-17, 1966.

8. Jordan, J.W., “An Accurate Strapdown Direction Cosine Algorithm”, NASA TN
D-5384, September 1969.

9. Mckern, Richard A., A Study of Transformation Algorithms For Use In A Digital
Computer, Massachusetts Institute of Technology Master’s Thesis, Department of
Aeronautics and Astronatics, January 1968.

10. Bortz J.E., “A New Mathematical Formulation for Strapdown Inertial
Navigation”, IEEE Transactions on Aerospace and Electronic Systems, Volume
AES-7, No. 1, January 1971.

11. Shepperd, Stanley W., “Quaternion from Rotation Matrix”, AIAA Journal of
Guidance and Control, Vol. 1, No. 3 May-June 1978.

12. Savage, P.G., Introduction To Strapdown Inertial Navigation Systems, June 1,
1983 (Third Printing); Third Strapdown Associates Open Seminar on Strapdown
Inertial Navigation Systems, Marquette Inn, Minneapolis, Minnesota, November
14-18, 1983.

APPENDIX A

DERIVATION OF φ EQUATION

A differential equation for the rate of change of the φ vector can be derived from
the equivalent quaternion rate equation. The quaternion h in equations (13) and (14) is

the quaternion equivalent to the φ rotation angle vector. A differential equation for h can
be derived from the incremental equivalent to (13) that describes how h changes over a
short time period Δt (from tl to tl+1) within the larger time interval from tm to tm+1:

h (l+1) = h(l) p(l) (A1)

where

362

P =

g3 αx

g3 αy

g3 αz

g4

(A2)

g3 =
sin α/2

α
g4 = cos α/2

α = Rotation angle vector associated with the small rotation of the body over the
short computer time interval from l to l+1 within the larger interval from m
to m+1.

αx, αy, αz, α = Components and magnitude of α.

Equation (A1) is equivalently:

h (l+1) - h(l)

Δt
= h(l)

p(l) - 1

Δt
(A3)

Δt =
Δ

tl+1 - tl

The basic definition of angular rate states that for small Δt,

α ≈ ω Δt

α ≈ ω Δt
(A4)

Hence, for small Δt, α is small, and therefore, from (A2),

g3 ≈ 1/2

g4 ≈ 1 -
α2

2
 ≈ 1 -

ω2
 Δt2

2

(A5)

Using mixed vector/scalar notation, substitution of (A4) and (A5) in (A2) yields:

p = g3 α + g4 ≈ 1/2 ω Δt + 1 -
ω2

 Δt2

2

363

Substituting in (A3) obtains:

h (l+1) - h(l)

Δt
 ≈ h(l) 1/2 ω + 1/2 ω2

 Δt

In the limit as Δt → 0 , the latter reduce to the derivative form:

h = 1/2 h ω (A6)

We now return to (14) and express h as a function of φ in mixed vector/scalar notation:

h = f3 φ + f4

f3 =
sin φ/2

φ

f4 = cos φ/2

(A7)

Substituting in (A6),

h = 1/2 f3 φ ω + 1/2 f4 ω (A8)

It is readily demonstrated by algebraic expansion and using the rules of

quaternion algebra that φ ω in (A8) is equivalently:

φ ω = φ × ω - φ ⋅ ω

Differentiation of (A7) shows that:

h = f3 φ + f3 φ + f4

f3 = 1/2
cos φ/2

φ
 φ -

sin φ/2

φ2
 φ =

φ

φ
 1/2 f4 - f3

f4 = - 1/2 sinφ/2 φ = - 1/2 φ φ f3

Hence, with (A8),

364

h = f3 φ +
φ

φ
 1/2 f4 - f3 φ - 1/2 φ φ f3

= 1/2 f3 φ × ω - 1/2 f3 φ ⋅ ω + 1/2 f4 ω

Dividing by f3 and solving for φ:

φ = 1/2
f4

f3
 ω + 1/2 φ × ω

-
φ

φ
 1/2

f4

f3
 - 1 φ - 1/2 φ φ - 1/2 φ ⋅ ω

(A9)

Equation (A9) is now separated into its vector and scalar components:

φ = 1/2
f4

f3
 ω + 1/2 φ × ω -

φ

φ
 1/2

f4

f3
 - 1 φ

1/2 φ φ = 1/2 φ ⋅ ω
(A10)

The scalar equation is equivalently:

φ

φ
=

1

φ2
 φ ⋅ ω

Substituting in the vector part of (A10) yields:

φ = 1/2
f4

f3
 ω + 1/2 φ × ω -

1

φ2
 1/2

f4

f3
 - 1 φ ⋅ ω φ

Using the vector triple product rule, it is easily demonstrated that:

φ ⋅ ω φ = φ × φ × ω + φ2
 ω

Substituting:

φ = 1/2
f4

f3
 ω + 1/2 φ × ω - 1/2

f4

f3
 - 1 ω +

1

φ2
 1 -

f4

2f3
 φ × φ × ω

365

Combining terms:

φ = ω + 1/2 φ × ω +
1

φ2
 1 -

f4

2f3
 φ × φ × ω

Using the definition for f4 and f3 from (A7), it can be shown by trigonometric
manipulation that the bracketed coefficient in the latter expression is equivalently:

1 -
f4

2f3
=

1

φ2
 1 -

φ sin φ

2 1-cos φ

Substitution yields the final expression for φ:

φ = ω + 1/2 φ × ω +
1

φ2
 1 -

φ sin φ

2 1-cos φ
 φ × φ × ω (A11)

Equation (20) in the main text is the integral form of (A11) over a computer cycle (from
tm to tm+1).

366

NOTES

367

NOTES

368

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

