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ABSTRACT

This article specializes and expands the kinematics of Point-To-Point
Relativity to describe the differential motion of a remote point as observed at two
gpatial points in motion relative to one another. In its origina form, Point-To-
Point Relativity was restricted to constant relative velocity between the two
observers (as in traditiona Special Relativity). The differential approach
described in this article places no restriction on relative velocity between
observers. As aresult, the equations for observed remote point acceleration aso
account for relative acceleration between the two observation points.

INTRODUCTION

Point-To-Point Relativity [1] is a revised form of traditional Relativity theory in which
position is described as the distance vector between two points in space as viewed by observers
trandating relative to one-another. Unlike traditional Relativity theory, the Point-to-Point
approach avoids the use of relatively trandating reference frames, space-time diagrams, world
lines intersecting with space-time events, and the concept of space-time simultaneity. In the
Point-to-Point approach, distance vectors are represented as free vectors having no preferred
location in reference frames in which they are described. An advantage for the new approach is
eliminating the requirement for clock synchronization between the observers [2 Chpt. 8, 3 Sect.
12-2, 4 Chpt. VI Sect. 1]. As part of the Point-to-Point formulation, a new notation was
developed in [1] to explicitly identify point-to-point distance-vectors/time-intervals measured by
a particular observer, and their relationship with equivalent measurements taken by another
observer.

This article describes a differential version of Point-to-Point kinematic, deriving Point-to-
Point Lorentz formulas for the differential position change, velocity, and acceleration of aremote
gpatial point as determined by observers travelling relative to one-another. The original Point-
To-Point article [1] was based on constant relative velocity between observers (as in traditional
Special Relativity theory), initialy deriving finite position change formulas as the basis for
subsequent velocity and acceleration measurements. This article expands the scope of [1] to
accommodate variations in relative velocity (acceleration) between the observation points.



The article first derives fundamental equations of differential kinematic position change
between points in space for compatibility with either Newtonian or Relativistic geometries. The
equations are then specialized for compatibility with the speed of light constancy requirement of
Relativity theory. Deriving the position change equations in differential form allows them to be
developed without assuming constant relative velocity between observation points (as in
classical Special Relativity). The resulting Point-To-Point Relativity differential position change
formulas are then used to develop the corresponding velocity and acceleration of a remote spatial
point as determined by two observers in general motion (velocity and acceleration) relative to
one another, to derive the differential equivalents of Lorentz “time dilation” and “length
contraction”, and to demonstrate the invariance between observers of classical Relativity “proper
time”.

NOTATION

The following general notation is used throughout the article:

() = Vector parameter having length and direction.

/i = Vector subscript denoting the vector parameter being observed (measured or
calculated from measurements) at observation point i (i being point a or b).

Observable Event — An event at a position location in space at an instant in time (e.g., a
lightning strike, explosion, or radar pulse illumination) that can be observed at a
remote spatial |ocation based on el ectro-magnetic wave propagation (e.g. light or
radar) from the event to the observation point [2 pp. 29 & 36, 3 pp. 515 & 521, 4 pp.
28 & 236-238, 5 pp. 10].

GENERAL KINEMATIC EQUATIONS

Consider observers at points « and b observing the motion of a distant point p, each observer
measuring the motion as the difference between observed p position locations (“events’) at two

successive time points ¢4 and 7, (¢ following #1):
AEp/a = Xpola ™ Epyla AEp/l7:£]?2/17_£1931_/13 1)

where Xpila + Xpolq A€ distance vectors (position) measured at point a from point a to p at
times¢ and 1o, Ax pla is the change (linear translation) in the point a observed p position vector

over the ¢1 to 1o timeinterval, and similarly for Xpib+ X polbr DX prp-



If points @ and b have trandated during the 71 to o timeinterval, Ax pla will differ from
AX 1 - Observersa and b can account for the relative tranglation when predicting what the
other would observe:

AEbp/a = A)—Cp/a —AXp,  AX

Xaplb = Azp/b —AXyp (2)

where AXpprq isthe point a prediction of AX and similarly for AX i - Asin (1) wecan
also write

AXp1a = Xpota = Yoya AXaib=Xaoin™ Xailp ©)

Now assume that the 71 to ¢o time interval isinfinitesmally small. Then (2) becomes the
differential equivalent:

dibp/a = dip/a - d)—Cb/a diap/b = dzp/b N dza/b (4)

where d () isthe differential equivalent of A () over theinfinitesimal time interval from #1 to to.
Based on Newtonian and Relativity theory symmetry and the principle of non-unigueness
between points @ and b [6 pp. 423, 2 Chpt. 5, 7 pp. 177], we can further assume that dx,,, and

dx,;, Will be parallel but oppositely directed so that

dxb/a dza/b

— =Vbla zv Za/bE

dty dtp

‘—}b/a = :_Va/b gv ﬂv:Yb/a/Vb/a = _Ya/b/Va/b (5)

where v, , . isthe velocity of point b measured at point a, v, isthe magnitudeof v, , dt, is
aninfinitesimal time interval for the dx,, , position change as measured on a clock located at
point a, similarly for v, and 4z, and u,, isaunit vector inthedirectionof y,, (and dx,,,).

Traditional Relativity and Newtonian theory invokes the principle that there is no “ preferred”
velocity reference location [6 pp. 423, 2 Chpt. 5, 7 pp. 177], hence, the velocity magnitude of
point a observed at point » will equal the velocity magnitude of point » observed at point a:

Valb = Vbla = Vab (6)
where y,;, isthe magnitude of the relative velocity between pointsa and 5. From (5) and (6),
dib/a =vapdta i, dEa/b =—vapdtpu, (7

With (7), (4) becomes the equivalent differential of the classical Newtonian form [2 pp. 37, 3 pp.
508, 4 pp. 237, 5 pp.19]:



dsz/a - dzp/a ~Vabdta U, dxap/b - dx /bt Vab dip U, (8)

For subsequent use, we also expand dibp/ , and dx aplb in (8) into components parallel and

perpendicular to the b-relative-to-a velocity vector directionu,, . Recognizing that vector
components along «,, are their dot products with u

d;p/a:dgp/a.gvgv+d§p/aL dx p=AdX -ty U, +dx plb, 9)

where subscript L identifies a parameter’ s component perpendicular to u, .

RELATIVITY AND NEWTONIAN GEOMETRY COMPATIBILITY

Traditional Newtonian geometry would have dEap/b = dEp/a , dﬁbpla = a’gp/b, and

dtp = dt, 1N (8). According to Relativity theory, however, these traditional equalities do not
exactly hold along ,,. To accommodate both, the (9) equalities are modified asin [4 pp. 236]:

dxbp/a Otdx U U, +dx b, dx, 1p= adﬁp/a'ﬂvﬂv"'dfp/al (20)

Zapl
where « is set to 1 for Newtonian compatibility and to a different value (to be determined
subsequently) for Relativity compatibility. Substituting (8) with (9) in (10) obtains after
rearrangement (similar to [4 pp. 236]):

(11)
adx,-u,u,+dx,;, =dx,, u,u,+dx,, —vadtat,
The u,, componentsin (11) can be rearranged into
1
dxp/a u,u,= (dxp/b u,u,+vgpdiptt )
1
(12)

1
dxp/b u,u, (dxp/a v_vélbdtaﬂv)
1
=dxXpg-Uy Uy~ vapdia ﬂv+(;_1](d§p/a'zvﬂv_vab dta Ev)

Substituting dgp/a -u, u,, from (12) into the (9) d’_‘p/a expression yields:



1
dzp/a = d)—cp/b U Ut dip/aj_'i' Vab dtp U, + (;_1)(6151)/17 uy,u,Fvgp dip gv) (13)

Then, recognizing from the perpendicular components in (11) that dx pla, = dx plb, and from

(9) that dx ,p -y, + dzp/bj_ = dgp,b , (13) becomes

1
dX )1 =dX pp+ vab dip U, + (;— j(dip/b Uyt vap dtp zv) (14)

Using the identical procedure for the dgp,b .u, u, expressionin (12) finds similarly for dgp,b:

1
dip/b = dﬁp/a ~Vab dta ZV+(;_1)(d£p/a 'Zv ﬂv_Vab dta Zv) (15)

Egs. (14) and (15) comprise a set of generalized differential distance vector conversion
formulas (from observer b to a and from observer a to b) that are compatible with either
Newtonian geometry or Relativity kinematic theory. For acomplete conversion set it remains to
find generalized equations for converting 4z, to dr, and dr, tO diy, -

Egs. (14) and (15) can be inverted to find general solutions for the 4¢, and 4y, differential
timeintervals. Taking the dot product of (14) with w,, obtains with rearrangement:

1

Substituting a’gp/a .u,, from (16) into (15) (multiplied by o dotted with «,,) and solving for g,

gives:
1)1
dta: |:_(d£p/b'2v+vab dtb)_adip/va:|
Vb/a o (17)
1 2 1 2
:avb/ (dlfp/b-zvﬂ/abdtb—a dicp/b-ﬂv)za[dtb+(1—0€ )dzp/b'ZV/VabJ
a

Similarly, dotting (15) with « , and substituting the dﬁp/a .u,, resultinto (14) (multiplied by o
dotted with u,,) solvesfor gz, :

iy == [dta= (1= 0?) dxy 1, -, v (18)

Egs. (14), (15), (17), and (18) summarize as follows



1
Axpja=dX p1p+ vab dtp ﬂv"'(;_lj(dzp/b “Uy Uy Fvah dip gv)

dta= %[dtb +(1-0?)dx pu, Vab}

1 (19)
dip/b = dép/a ~Vab dta 2v+(;— j(dép/a UL UL~ vap dty Zv)
1
dtp :; |:dta —(l— az) d)_cp/a .gv/vabJ
Substituting u,, = v,/ vq, from (5) with (6), (19) becomes
1 2
dﬁp/a = dEp/b—’_‘—}b/a dtp+ E_l (dzp/b “Ybla Ybla / Vab T Vbia dtb)
1 2 2
dta=g|:dtb+(1—0{ )dEp/b"—/b/alvab} (20)
20

1 2
dX 1y =AdX 1= Vpyq dta * [; _lj(dlcp/a VilaYbla! Vab = Vbla dfa)
1 2 2
dtp :; |:dtd —<1_0{ ) dzp/a “Ybla / Vabi|

An equivalent symmetrical version of (20) derivesfrom (5) using u,=—-v,,, /v, for thefirst
equation setin (19) and u,,=v,,, /v, for the second equation set in (19):

1
— 2
dzp/a - dzp/b ~Yayp dtb +(;_ j(dgp/b “YalbYalb / Vab ~ Yalb dtb)

dta= %[dl‘b - (1— 062)0’ Xpib-Yarp! ng} (21

1 2
dzp/b = dEP/a ~Vplq dla +(;_1j(d£p/a “YblaYbla / Vab ™ Ybla dta)
1
dtp :; [dta - (1_ a2) dEp/a Ybla / chzb}

Egs. (19), (20), or (21), with (6) congtitute generalized sets of Point-to-Point kinematic
conversion formulas that are compatible with either Newtonian geometry or Relativity theory.
The distinguishing characteristic between either is the value selected for a. For o = 1, Egs. (19)
—(21) reduce to the classic Newtonian form. For compatibility with Relativity theory, a must be
set so that the speed-of-light constancy law of Relativity theory is satisfied.



SETTING ALPHA FOR RELATIVITY COMPATIBILITY

For compatibility with Relativity theory, « in (19) — (21) is used to account for experimental
and theoretical findings that the speed of light (or any electro-magnetic wave speed) is the same
constant to any observer in the same isotropic homogenous medium (or in a vacuum) [8, 9 Sect.
[1]. Thus, consider what observers ¢ and b would measure for the distance a photon » of light
would travel between two observable points (“events’) in space (events 1 and 2, event 2
following event 1). Each observer would find:

2_ _ 2.2 2_ _ 2,2
Azr/a‘ _A)—Cr/a'Azr/a_C Aty ‘A)—Cr/b‘ _Azr/b'A)—Cr/b_c Atb (22)

where Ax,,, is the distance vector traversed by photon » between event points 1 and 2, Az, is
the time interval recorded on a point a located clock between observations 1 and 2, ¢ is the speed
of light, and similarly forAx,,,, Az,- The equivalent of (22) over an infinitessimal space time
interval would be
2_ _ 2,2 2_ _ 2,2
|dx,o| " =dx,;,-dx,1, =% dt? dx, | =dx, g dx, =P arf  (23)

r/a‘

Applying the generalized previous results to photon motion equates point p to photon » for
which (9), (23), and Pythagoras give

2 2 5 o
dzr/a‘ = (dfr/a 'zv) + dzr/au_ ' d)—cr/aJ_ —ctdla (24)
2 2 5 5
‘d)—cl’/b‘ _(dzr/b'zv) +d£r/bl'd§r/bl—c dtb
Taking the difference between the (24) expressions finds
2 2
(dzr/b 'ﬂv) N (d)—cr/a 'zv) (25)

_ 2 2 2
=c (dlb_dta)'l_dzp/cu_'d)_cp/al_dzp/bJ_'d)—cp/bj_

For this exercise it is convenient to use the equivalent (11) form of the (19) position change
conversion pair. ldentifying photon r asp in (11) obtains

o dzr/a 'Zv gVJ’_di}”/aL = dir/b 'ILtV ]’_lv+d£},/bJ_+Vab dtb gv (26)
adir/b 'zv Zv+d£1’/bj_ = dzr/a 'gv Zv+d£r/aJ__Vab dta ZV

The components of (26) parallel and perpendicular to », can be written individually as



o dEr/a U, = dzr/b U, tvgp dip
o dlr/b Uy, = dﬁr/a U, = Vb dig (27)

dzr/bj_ - dzr/aj_

Solving for dx, ;,.u, from the first expression in (27) and substitution in the second obtains
with rearrangement:

(0{2—1) dx,;, -, =vap(X dtp—dty) (28)

Similarly, solving for dx,,,.u, from the second expression in (27) and substitution in the first
obtains:

(0{2—1) dx,.;p-t,=vab (dtp— 0t dty) (29)

Squaring (28) and (29), and taking their difference gives

(1- 0‘2)2 [(dfr/b -Ev)z‘ (dx,/, -%)2} =vZ, [(dfb ~ o dty)’ (e diy - dl‘a)z}

(30)

=V [dfz%Jr (@ dta)” (e dip)* - dtczl} =12, (1- o) (de2 - ar?)

or
2 2

(1-@2) (A1)~ (2,1 | =2, (@ - aid) @
Substituting (25) in (31) and applying the third expression from (27) finds

(1— az) c? (dt,f—dzg) =v2, (dt,f—dt%) (32)
or

L-o=vilc? (33

Eq. (33) easly solvesfor «, yielding the well-known Relativity coefficient:

a:1[1—v§b/02 (34)



POINT-TO-POINT RELATIVITY OBSERVATIONS OF REMOTE POINT DIFFERENTIAL
POSITION CHANGE

With (33) and (34), Egs. (21) become Differential Point-To-Point Relativity conversion
formulas relating remote point p differential position change as viewed by observers at points a
and b:

1
— 2
dﬁp/a_dzp/b_yalb dip+ ( / -1 (dxp/b Yalb ‘—)a/b/vab_‘—}a/b dtb)
_Vab C

_ 2
dta—m(dtb—dgp/b.\_za/b/c )
_Vab C

(35)

1
dﬁplb:dzp/a_‘—)b/adtd-l_ \/7/ -1 (dxp/a Vb/avb/alvab Ybla dta)
_Vab c

1
dtp A (dta _dzp/a -Yb/alcz)

Egs. (35) are the differential Point-To-Point Relativity conversion equivalent of the general
Lorentz transformation operations in traditional Relativity theory [3 Egs. (12-5a); 5 Egs. (10.32)
- (10.33), (10-36) - (10.37) & pp. 30]. Note that the v, , v+ vap relaive velocity terms

between points a and b as defined by (5) with (6) are completely general without any constancy
assumption.  This characteristic will carry forward into the subsequent derivation of p
acceleration viewed from points @ and » in which relative acceleration between a and b is
included.

POINT-TO-POINT RELATIVITY OBSERVATIONS OF REMOTE POINT VELOCITY

The derivation of remote point p velocity relative to observation point a beginswith a
restatement of the (35) observation equations for observer a:

1

— 2

dzp/a_d)—cp/b_za/b dip+ ( / -1 (dxp/b Yalb Ya/blvab_za/b dtb)
_vab C

dtg :;(dtb _dzp/b “Yaib / Cz)
\/1 Vab / C

Dividing (36) by d¢p findswith rearrangement

(36)



dﬁp/a dtq _ dlplb B dzp/b

2
Vo v o lyE, +

dx
T

2
VaibYalb! Vap = Vaib
(37)

Defining
v dxXpla ) /bEd’—‘p/b
P g, TP dtp

(38)

where v and v b are the point p velocities observed at points a and 5. With (38), (37)

pla
becomes
dtq _ 2 1 2
Yola=™, = Ypib = Ypib-Yalb ‘—}a/b/"ab—'_ > z(zp/b'za/b ‘—}a/b/"ab_za/b)

o 1 (39)
ata _

dtp ’1_\/’2[7/02 (1_‘—}P/b"_/a/b/c2)
a

Substituting the second expression in (39) into the first obtains

1

e m(l_%/b Yapp! )

1
_ 2 2

=Voib = Ypib-Yaib Yalp ! Vaip * 2, 2 Z(Yp/b-Ya/bka/blvab‘Za/b)
_vab C

(40)

Rearrangement of (40) then yields the Point-to-Point Relativity equation for v pla point p
velocity relative to point @, as a function of Volb point p velocity relative to point b:

/ 2 2 2 2
1_Vab/c (‘—;p/b_‘—;p/b"—;a/bya/blvab) (1_2p/b'2alblvab)‘—}a/b

— (41)
(l_zp/b'za/blcz) (1_‘—)p/b"—)a/b/cz)

Ypla=

Substituting v, =—v;,, from (5) — (6) into (41) would obtain the equivalent to what has
previously been found by traditional Relativity theory [3 pp. Eq. (12-12), 5 pp. Eqg. (16.07)].

The velocity of point p velocity relative to point 4 isfound similarly, but starting with the
(35) observation equations for observer b. Theresultis

10



/ 2 2 2 2
1_vablc (Zp/a_yp/a"—}b/a Zb/alvab) (1_Zp/a"—}b/alvab) Ybla (42)

(1_‘—)p/a Vpia! 02) (1_‘—}p/a 'Zb/alcz)

YpIb =

POINT-TO-POINT RELATIVITY OBSERVATIONS OF REMOTE POINT ACCELERATION

Deriving point p acceleration relative to observation point a begins with the (41) equation for
Vola: the dt, | dt;, equation in (39), and the acceleration definitionsin (36). The derivation will

also assume that the original (5) — (6) premise of v _,, =—v,, isvalid under changingv,,, .
Taking the differential of (41) with dv plb terms grouped first and dy,, , terms second yields

2 2 2
Vl_vablc (dzp/b_d‘—}p/b “Yalb Ya/blvab)

(1_ Ypib-Yalb / 02)

d‘—}p/a =

2 2 2
1- Vab e (Yp/b “Ypib-Yalb Yalb / Vab) d‘—)p/b Yalb N d‘_}p/b Yaib Yalb

2 2) 2
(1—Zp/b-2a/b/02) c? (1_Yp/b"—’a/b/c )"ab

+

2
(1_Xp/b Yalb / Vab) d‘—}p/b “Yalb Yalb

2
2\ 2
(1_‘—}p/b"—}a/blc ) ¢

2 2
dvab(‘—}p/b “Ypib-Yalb Yalb / Vab)

2 2 2\ 2
2\1-vipl e (1_Yp/b"_’a/b/6' )c
| Xpib - Dalb Yalb* Y pib - Yalb Walb
1_Vab/c

2 2
—dvy, Yoib-Yalb Yalb / Vab

2\ .2
(1_‘—)p/b Vaip! € ) Vab

2 | 2 2 2
Vi=vap e (Zp/b =Vt Yalb Yaln | V2) Y i - dVarp | ¢

(1_ YoIb 'Xa/blcz)2

+

2 _ 2
dvg, YoIb-YalbYalb (1 Yoib-Yalb / Vab) dVanp (43)

2\ 4 2
(1_‘—)p/b"—}alb/c )Vab (1_2p/b"—}alb/c )

2
L Yplb: dValp Yalp (1‘Yp/b Varp! Vab) Ypib-4Yalp Vaib
_ 2\ 2 2
(1 ‘—}p/b'za/blc )Vab (1_‘—}p/b"—}a/b/cz) c?

11



The dv2, termin (43) is obtained from

2 _ _ 2 _ _
Vab = Ybla Ybla = Yalb-Yalb dvab_z‘—}b/a 'dzb/a_z‘—)a/b 'd‘—}a/b (44)
Substituting dv2, =2v,, -dv,, from (44) in (43) gives

2 2 2
Vl_vablc (dzp/b_d‘—)p/b “Yalb Xa/blvab)

d
. (1_Yp/b"—}a/b/02)

Ypla™

2 2 2
. I-vgplec (Xp/b—Yp/b-Ya/bYa/b/Vab)de/b-Ya/b+ dY ,1b - Yalb Yalb

2 2\ .2
(L= vpsp - vapple?) ¢ (L=t Yar ! ) V3

2
B (1_‘—}p/b Yalb / Vab) d‘—}p/b “Yalb Yalb

2
2\" 2
(1_‘—}p/b"—/a/b/c ) ¢

2
Za/b'dzalb(‘—}p/b_‘—}p/b"—)a/b Za/b/"’ab)
2 2 2\ 2
Vl_vab/c (1_Yp/b"—}a/blc )c

Ypib- dYaip Valb +‘—}p/b Vaib DValp

2 2
vl g /12
_ Yalb-%Yalb Y pib-Yalb Yalb' Vab (45)

2\ 2
(1_‘—}p/b"—}alblc )Vab
2 2 2
\/1_ Vab/C ‘—}p/b'd‘—}alb (‘—}p/b_‘—}p/b"—}a/b Za/blvab)

2
2 2
(1_‘—}p/b"—)a/blc ) ¢

+

_ 2

2\ 4 2
(1_‘—}p/b"—}a/blc )Vab (1_‘—}p/b"—}a/blc )
2
+ ‘—}p/b'd‘—}a/b Yalb _ (1_‘—}p/b "—}a/b/vab)‘—}p/b'd‘—}a/b Yalb
— 2) 2 2
(=25 varn ! ¢2) v2, (1= v 5 - vasple?) ¢

The third and fourth terms in (45) combine as

12



2
de/b “Yalb Yalb (1_‘—}p/b Yalb / Vab) d‘—)p/b “Yalb Yalb

(1_Yp/b 'Ya/b/cz) ng (1_‘_’p/b .\_/a/b/cz)zcz

_ Vp1p-Yarp Yalt _(1_‘—}p/b"—}a/b/02)_(1_‘—}p/b"—}a/blv§b) 46)
(1_Yp/b"—)a/b/cz)2_ Vc21/b c?

Ve Yay (1 1]:(1—v§b/ )Y i -Varp Vain
(1“_’p/b-‘_’a/b/02)2 vap < (1—Xp/b-2a/b/02)2"§b

Thelast two termsin (45) combine similarly:

Voib-4YaipYarp (1‘Yp/b Valp! ng) Vb 4Yalb Yalb

(L= varn ! ?) V2 (2=, .\_/a/b/cz)zcz

(47)

2 2
(1_ Vab le ) Yplb- dYalp Yalp

2
(1‘ VolbYalb! 02) vah
With (46) and (47), (45) becomes

2 2 2,2 _ 2
(1_Vab/c )de/b-Ya/bZa/b+\/1 vap! (d‘_’p/b dkp/b-Xa/b‘_’a/b/Vab)

2 B 2)
(1_Yp/b'Ya/b/02) varn (1 VolbYaip! ¢

2 2 2
\/1_ Vab le d‘—}p/b Yalb (‘—}p/b “Ypib-Yalb Yalb / Vab)

2
2\ 2
(1 Xp/b"—)a/b/c ) c

d—p/a =

+

2 (48)
Valb- dYa/b(Yp/b ~Yoib-Yaib Yalp! Vab)

’ \/1_ va, ! 02(1_l’p/b V! 02) 2

5 > Yolb 'd‘—}a/b Yalp +Zp/b Yalb d‘—}a/b
vl g /12
“4Yalb-Yaib Yplb-Yalb Yalb! Vab

2).2
(1_‘—}p/b'za/b/c )Vab

Continued

13



2 2 2
. Vl_va/b/c Xp/b'd‘—)a/b(zp/b_zp/b Yalb ‘—}a/blvab)

2
2\" 2
(1_‘—}plb'za/blc ) ¢

2
B 2‘—}a/b : d‘—}a/b Ypib-Yalb Yalb 3 (1_ Ypib-Yalb /Vab) dVarp

W (48) Concluded
(1_2p/b Vaple )Vab (1_‘—}p/b Vaipl e )
212
+(1_Vab/c )Yp/b'd‘—}a/b‘—}a/b
22 2
(1_Xp/b Vaiple ) Vab
Define
dy dv dv dv
Qp/a = Pl Qp/b = ndill Apla = =bla Quip = =alb (49)
dtg dtp dty dtp
where Aplgr Gpp A€ point p accelerations observed at pointsa and b, a,,,, ispoint

observation point » acceleration observed at point a, and a,,,;, is observation point a acceleration
observed at point a. Dividing (48) by ¢, and applying (49) then gives

14



2 2 h_22 _ 2]
(1_Vab/c )gp/b"—}a/b‘—}a/b+ 1 Vab/C (gp/b Qp/b"—)a/b‘—}a/b/"ab)

2 2
N (=2 )

_.2 2 _ 2
+\/1 Vab/c Qp/b"—)a/b(‘—}p/b Zp/b'zot/b‘—}a/b/"ab)

2
2\2 2
(2= varle?) e

2
Yalb 'c—la/b(‘—)p/b “Ypib-YalbYalb / Vab)

/ 2 2 2\ 2
1-vip!ec (1_Yp/b'za/blc )c
5 5 ‘—)p/b'Qa/b‘—}a/b+‘—}p/b"—}a/bga/b
1-y2,/
ab’ €

_ 2
2Valp-4alb ¥ plb-Yalb Yalb! Vab (dta
dtp

Apla=

2\ 2

(1_‘—}p/b"—)a/blc )Vab
~ 2,2 _ 2
Vi-vap!e Xp/b-ﬂa/b(Yp/b Volb-Yalb Yalb! Vab)

2
2\7 2
(1_2plb Valple ) ¢

+

3 2
2‘—)a/b “QalbYpib-Yalb Yalb _ (1 Ypib-LYalb / vab) Qalb

2\ 4 2
(1_‘—)p/b"—)a/blc )Vab (1_‘—}p/b'za/b/c )

(50)
2 2
(2=v2y1 ) ¥ o1 - Qg Vars

* 2
2\ 2
(1_ Yplb Vaiple ) Vab

Substituting dt,, ! dt;, from (39) into (50) finally obtains
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312

2 2 22 _ 2
(2=v2eA) s Var Vais (1-v2 /¢ )(ﬂplb @pibYaib Yaip! Vab)
Apla™= +

2\3 2 2\?
(1_‘_’p/b-2a/b le ) Vab (1_Yp/b-‘_’a/b/6’ )

2 2 2
+ (1_ Vab le )Qp/b 'Xa/b(‘—}p/b “Yplb-YalbYalb / Vab)

3
2\ 2
(1_‘—}plb'za/blc ) ¢
2
+‘—}a/b 'Qa/b(zp/b “Ypib-YalbYalb / Vab)
1-v O 22
Zplb-Zalb’C ) €

2 2 Yoib-2alb ‘—}a/b+‘—}p/b “Yalb Lalb
1-44, 1/
( Vab' €

2
= 2%aib %l Y plb - Yalb Yalb! Vap

2
2.2
(1_‘—}p/b'2a/b/c ) Vab
2 2 2
+(1_Vablc )Yp/b'Qa/b(‘—}p/b_‘—}p/b'Za/b‘—}a/blvab)
2 3 2
(1_‘—}p/b'za/blc ) ¢
3/2
2712 1_.2 2(1_ 2
+(1_Vablc) ‘—}p/b'ga/b‘—}a/b_ 1 Va/b/C (1 ‘—)p/b"—}a/b/"ab)ga/b
3 2
2)".2 2
(1_Yp/b"—’a/b/0 ) Vab (1‘2p/b-2alb/6 ) (51)

2 2
B 2\/1_ Vab le YaibQalb YpIb-Yalb Yalb

2
2" 4
(1_‘—}p/b'zalblc ) Vab

Eq. (51) defines the acceleration of point p observed at point a as afunction of p acceleration
observed at point » and the relative vel ocity/accel eration between observation pointsa and . It
isalso to be noted that under constant relative velocity between pointsa and b ( i.e., constant
Vpiq OF ap;, =0, thetraditional assumption in classical Relativity theory), (51) reduces to

312

2 2 22 ~ 2
(L=vZ ) @ Yarp Yais (1-v2, /e )(Qp/b @pib-Yalb Yalb! Vab)
Apla™ +

1- 122 1- 12)°
YoIb-Yalb '€ | Vap Ypib-Yalp'c
(52)
2 2 2
+(1_ Vab/C )Qp/b'Xa/b(‘—}p/b_‘—)p/b'Za/b‘—}a/b/vab)

3
2\" 2
(1_‘—}p/b Vaiple ) ¢
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Substituting v, =— v, from (5) —(6), the (52) result is equivaent to what has been obtained
previously based on traditional Special Relativity [1 Eq. (86) & 3 Egs. (12-13)].

Results ssimilar to (52) can be formulated for the acceleration of point p observed at point » asa
function of p acceleration observed at point a and the relative velocity/accel eration between observation
pointsa and b. Starting with the (42) equation for v plb the 4, equationin (35), and the acceleration

definitionsin (49), thefinal result is

(1_ vgb/ 02)3/2

(1 V Vb/a/c )Svgb (1 V Vb/a/C )2

(1_Vab/C )Qp/a'yb/a (Yp/a_z la"Ybla Zb/alvab)
i

2 | 2 2
@t VotaVoia  (LV2! N @pra=2pta-Vora Vpial v20)
Aplb= +

+

(1 Yy Vb/a/C

2
+ Ybla-9bla (Zp/a “Ypla-YblaYbla / Vab)

(1 V vb/a/c )2c2

(1_ V2 /cz) Ypla-%bla ‘—/b/a+‘—)p/a"—)b/a pla
ab 2
- 22b/a “Apla¥pla-YblaYbla / Vab

2
2\" .2
(l_l}p/a"—}b/a/c ) Vab

2 2 2
+(1_Vablc )‘—}p/a'gb/a(yp/a_y la*Ybla ‘—)b/alvab)
?) e

(1 V Vb/a/c

(1-v /0)3/2 pla-9b1aYia NI Vhral € (1 Yota Yol V) b1

(1= v - vprale )3V§b (1= 0 - vorale )2 (53)

2 2
_ 2\/1_ Vab le Yola*%bla¥Ypla-YblaYbla

(1 Yp vb/a/C) 3]3

+

Note the symmetry between (51) and (53), the expected result consistent with the basic premise
of Relativity theory, and that can also be used as a validity check on the (53) derivation process.
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DIFFERENTIAL POINT-TO-POINT FORMULAS FOR RELATIVE OBSERVER MOTION

Previous devel opments have centered on point « compared to b observations of the kinematic
motion of aremote point p (i.e., athree-point solution). In this section we formulate a two-point
kinematic solution by superimposing points » and p. Then the motion of point p observed at
point » will be zero, the motion of point p observed at point a will represent the relative motion
between observation points a and b, and three-point solution Egs. (35), (41), (42), (51), and (53)
collapse at point 4 into the simplified forms:

For Point p Located At Observation Point b
1 1

——"V,/p dtp dtq=—F——=d1t)p
3,12 =312

_ _ _ _ 2 2
Ypla=Ypla =" Yalb Qp/a_gb/a__\ll_va/b/c 2alb
dx,p=dxpp=0  diy=1-v!c? dta

Voib=Vpip =0 app=ap,=0

dx

Xpla™ d)—cb/a ==

(54)

A two point solution can also be developed for observer » by assuming another point ¢ to be
at location a. Then Egs. (35), (41), (42), (51), and (53) (with p defined as g = a) collapse at point
a into the simplified forms:

For Point ¢ Located At Observation Point a :

1
dxgp=d%q1p =~ Vpladla  dip="———dla
1_Vab/C 1_Vab/C

_, _ o —_h_2 2 (55)
Yaib = Yalb= " Ybla Qglb=%lb =~ 1_Va/b/C 9pla
d)—cq/a:dla/azo dta:‘\/l_vczzblcz dtp

=0 a . =a. =0

y Zala

Ygla=Y

Zala gla

Note the symmetry between (54) and (55), consistent with the basic premise of Relativity theory.

DIFFERENTIAL POINT-TO-POINT RELATIVITY TIME DILATION,
LENGTH CONTRACTION, AND PROPER TIME

Two well-known consequences of traditional Relativity theory are the lengthening of time
intervals (time dilation) and shorting of distances (distance contraction) predicted by Lorentz
analytics [2 Chpt. 12, 3 pp. 517, 4 pp. 250, 5 Sect. 14 & 15]. In traditional Relativity, Lorentz
analytics also defines a combined distance/time “ proper time” parameter that has the same value
when evaluated in reference frames trandating relative to one-another [3 pp. 519, 5 Sect. 12].
The same effects arise with Differential Point-to-Point Relativity.
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Differential Point-To-Point Relativity Time Dilation

Differential Point-to-Point Lorentz time dilation has already been demonstrated within the
two-point solutions where events occurring at one observer were seen by the other observer.
When point p differential position change occurred at observation point b, resultsin (54) showed

that dr, = dtp | \[1-v2, [ %, i.e, the time interval measured at point a during the spatial

movement of point b, was longer than the same time interval measured at point 5. Similarly,
when point ¢ differential position change occurred at observation point «, results in (55) showed

that drp=dt, ! \1-v2,/c?, i.e, the time interval measured at point b during the spatial

movement of point ¢ over the time, was longer than the same time interval measured at point a.
The effect is known as Lorentz “time dilation”. The results are equivalent to what has been
obtained from traditional Relativity theory [2 Chpt. 12, 3 pp. 517, 4 pp. 248 - 250, 5 Sect. 15].

Differential Point-To-Point Length Contraction

Differential Point-To-Point Lorentz distance contraction can be analytically demonstrated in
general from (35) for simultaneous observation of the beginning and end points of p at point b
(i.e., dtp=0) which finds

d dxp/a Vb/a/c (56)

Substituting (56) in the (35) dx b expression then finds:

1
AdX iy =dX pq = Vpjg dta* _\/7/ -1 (de/a Vota Vbla! Vap = Vbla dfa)
_Vab C

1

_ 2
=dX 51, =dX 14 Vo1 V1o vap + \/127/ (d X plaVbla Vbla! Vap = Vbla dfa)
- Vab C

— 2
- dﬁp/a _dzp/a “Ybla ‘—)b/alvab
1

2 2
\/7/(d)—6p/a"—}b/a ‘—}b/alvab_zb/a d)—cp/a'zb/alc ) (57)
Vab' €
1-v2,/ ¢?)
— 2 ( Vab 2
_dEp/a_de/a"—}b/ayb/alvab—i_ [ dﬁp/a"—}b/a‘—}b/alvab
1_Vab/c
— 2 / 2 2 2
_d)—cp/a_dlp/a'Yb/azb/alvab—i_ 1_Vab/c dzp/a"—)b/azb/alvab
2
dxp/a (1_\/ Vab/C )d)—cp/a'zb/a‘—}b/alvab

+



Eq. (57) showsthat d x plb the differential distance vector seen by observer b at afixed time
instant will equal the dx pla differential distance determined by observer a, but with the

component parallel to v, shortened by the factor 1—[1- 12, / ¢? = %ng /2. Theeffectis

known as “Lorentz distance contraction”. The result is equivalent to what has been obtained
from traditional Relativity theory [2 Chpt. 12, 3 pp. 520 - 523, 4 pp. 248 - 250, 5 Sect. 15].

Differential Point-To-Point Proper Time

In traditional Relativity theory, Lorentz “proper time’ is a “time-like” parameter that is
invariant in reference frames trandating relative to one-another [3 pp. 519, 5 pp. Sect. 12]. The
equivalent for Point-to-Point Relativity derives directly from (46). To expedite the derivation
process, it is convenient to reintroduce the u terminology in (19) for the velocity vector
Vabla=Vabih,- Thenwith a=,J1-y2, /2 from (34) and 1- o2 =2, / ¢2 from (33), the first
two rows of (19) become

1
dxp1q=dXpptvap diptt, +| =———=-1 (dzp/b Uyt vap dtb) u,
\ll_vab/c

dtq = %(dfb +dx -ty vap! c2)
Ji-vaple

As with traditional Relativity [3 pp. 519, 5 pp. Sect. 12], Differential Point-to-Point Relativity
proper time is based on its squared value:

(58)

dTZEdtz—dzp-dﬁp/cz (59)
where

dt = Point-to-Point differential proper timeinterval.

dt = Differentia time interval measured on a traditional local clock without particular
observer specification (dt, or dtp)-

d)_cp: Differential changes in point p position vector over the dr differentia time
interval without particular observer specification (dgp,a or d)_cp/b).

Note that (59) is similar to the equivalent for traditional Relativity in which proper time is
defined as a differential time change function of differential changes in measured distance and
time. Similar to traditional Relativity, it will now be shown that Differential Point-to-Point
proper time as defined in (59) is the same (i.e., invariant) between observers a and b trandating
relative to one another.
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For observer a, proper time dz calculates from (59) as

dz'2=dt421_dx dxp/a/cz (60)
The differential terms in (60) derive from (58). For the derivation, it is first useful to expand

dgp,a and d)_cp,b into components parallel and perpendicular tou,, :

dxpra=dXpig +dx,,  dxpp=dx,, +dx,, (61)
where

dxp,a ydx —Componentsofdxp,a, d)_cp,b paralel tou,, .

dqu,a , d’—‘p/bl: Componentsofdgp,a, d)_cp,b perpendicular to u,, .

With (61), (58) becomes

d =d ! dx + dtpu,
X X — v
Y 2
dta: 2(dtb+d£p/bvgv Vablcz)

1_\/‘21[7/0

Note also that from the definition of the (61) components:

dgp/av=d§p/a.gvgv dx pib, —dxp/b u,u,
2 2 (63)
dxp/a dxp/a (dxp/a ) dxp/b d)—cp/b _(dxp/b )
dx pl .d)_c =dx d)_c +d)_c dx
a =pla, la, a pla| (64)

dx,, plb dx,, plb= dxp/b dip/b +dx l'dﬁp/bl

2
The 4i2 and dx , .dx ,, termsin (60) arefrom (62) with (63) for(dg p/bv.gv) :
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dxp/a dx
dxp/b dxp/b
N 1 L dxp/b] 1, 1 { dqu/b}
JI-v3 1 P\ *Fvap dpu, J1-v2 1 A\ vap dipu,
1 dx plb, dxp/b

=dx .dx —_
= b /b
=plb| (1_V§b/cz) +2d§p/bv.gv Vab dlb+"ab dtl%

(65)

2
dts = (dtb+dx /b, U vab/c)

(1‘ vay! c?)

1 2
( —vap! ¢ )

Substituting (65) in (60) then finds for Differential Point-to-Point Relativity proper time:

1
dTZ_—Z[dtb-i-de b, .u Vabdqu/b/C +dxp/b dxp/b vab/c:|
(1_ ab/c)
2
1 2
_m[d)_cp/b dxp/b +2dx pib, 4 Vabdfb'*'vabdfb}/
Vab" ¢ (66)
1 [ 2 1 2\, 2. (2 , 4
=——F—|(1=v5, %) dt5+ (v, [ ¢ =1/ ¢©) dx .dx }
(1_v2 /02) ( ab ) b ( ab ) plb, “Xplb
2
— A2 2
= At — (dx Ib, dxp/b dxp/b dxp/b )/
or with (64) and (60):
d72=dt¢21—d£p/ p/a/C dtg—dﬁp/b-dﬁp/b/cz (67)

Eg. (67) demonstrates the invariance of Differential Point-to-Point proper time formula (59) as
determined by observer a or by observer . The (67) results are equivalent to what has been
obtained with traditional Relativity theory [5 pp. 519, 5 Sect. 12].

Eqg. (67) can aso be used to show the relationship between proper time and the time
differential measured on the point ¢ and 4 clocks. From (67),

22



a a

Then, from (68), the point p velocity definitions in (38), and the equivalent for the observer b:

dta:dT/\/l_‘_’p/a-Xp/a/CZ dtb:dz—/\/l_‘_’p/b"_’p/blcz (69)

Egs. (69) aso show that:

dta _ (1_317/17 Ypin! 02)

2
dlb (1 Vp/a.vp/alc)

CONCLUSIONS

Basing Point-To-Point Relativity kinematics on observations of differential remote point
position change enables the relative acceleration between observation points to be analytically
accommodated. Although not specifically stated, the Point-To-Point Relativity vector formulas
derived in this article are only valid in “inertially non-rotating systems’ (as in traditional
Relativity theory). The differential form of the resulting equations will alow their direct
expansion into Point-To-Point kinematics in rotating coordinate systems in a planned future
article.
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