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ABSTRACT

This article develops an analytical model for evaluating digital integration algorithm error
build-up under band-limited random process input. It isdemonstrated that the digital integration
process introduces a random walk type error in the output that is directly proportional to the
root-mean-square input amplitude, directly proportional to the square-root of the input
bandwidth, and inversely proportional to the digital integration update frequency.

ANALY SIS

Consider the analytical model in Fig. 1, illustrating a band limited random noise process to
be integrated. A trueintegra isillustrated in the top half of Fig. 1. An approximate digital
integration process is described in the lower half of Fig. 1 as atrapezoidal integration algorithm
with updating timeinterval T and cycleindex n. Thedigital integration error is the difference
between the digital and true integrals. The following analysis develops a simple equation for
evaluating the digital integration error as afunction of the integration algorithm processing rate
and the band-limited random noise magnitude/bandwidth.
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Fig. 1- Digital Integration Algorithm Error

The analysis begins by first describing the Fig. 1 model analytically:



X, = - Opw X1+ Npy Xy =X1 (1)

1
X3n = X3n_l + E (Xln + Xln_l) T (2)
where,

x1 = Band-limited white noise input to the integrators (modeled as afirst order Markov
process).

wpw = Bandwidth of band-limited white noise inputs (i.e., Markov process gain)

np; = White noise input to the Markov process.

X2 = Trueintegral of X1.

x3 = Digital integral of x; (using atrapezoidal integration algorithm).
n = Integration algorithm computation cycle index.

T =

Integration algorithm computation cycle time period (reciprocal of algorithm
iteration rate).

Egs. (1) can also be expressed in the equivalent state vector form [1, Eq. (15-2)]:

X =AX+ny ©)

in which
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and where

X = State vector.

A = State dynamic matrix.

np = Process noise vector.

The equivalent integrated form of (3), valid at the digital integration algorithm iteration
times, is given by the classical form [1, Eq. (15.1.1-14)]:

Xn=®PnXn-1+0n
in which

(5)
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where
d = State transition matrix.
| = Identity matrix.

9n = Integrated process noise vector (over t, 1 toty).
It is easily shown by integrating (6) for ®(t) that

g @bwT 0
®n = i(l - e'(’)bWT) 1
Wphw

We now define
611, 012, a1,
D= gn =
021, 022, 92
From (7):
011,= €@w T 012,=0

1
b21,=— (1 - ¢11n) 022,=1
Whw

With (8) and (9), (5) and (2) become in component form:

Xln = (Dlln Xln_l + qln

X2n = X2n-1 + q)zln Xln_l + q2n

1
X3n= X3y E (Xln + Xln-l) T

(6)
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The error in x3 is defined as the difference between x3 and the true integral xo:

€= X3, - X2, (1)
where

e = Errorinxa,

The €n error can be evaluated in terms of its variance;

Pegy = El &%) =B (xa - x27] = E(xgn) +E(x,)? - 2E{Xa, X2,) (12)
or
Pee, = P33 + P2 - 2 Pay. (13)
where
E( ) = Expected value operator.

Pee,, = Variance of én.

Pij, = Expected value of Xi, Xj, (i.e., the covariance of Xj,with Xj,).

For error build-up analysis, it is convenient to define (13) in terms of its build-up rate over a
computer cycle:

Pec, = AP,/ T =(APs3, + APz, - 2APs )/ T (14)
in which
APjj, = Pij, - Pijp1 (15)
and where
ﬁeen: Error e variance build-up rate over computer cycle n.

We now develop analytical expressions for the individual termsin (14) by first forming
particular products of the (10) terms:
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Particular termsin (16) are with (10):
X31 Xin = X (011 X1 1 + 1) = 011,30 1 X1y g + X3y Gty
_ _ 2
X1n1 X1n = X1pq (q)lln Xipg * qln) = 11, X1pq T X1 g A1
(17)
X3n-1 X2n = X3n-1 (in-l + q)21n Xln-l + qzn) = X3n-1 X2n-1 + ¢21n X3n-1 Xln-l + X3n-1 qzn

2
X1p1 X2n = X1 (in-l + 021, X151 + qzn) = X1p.q X2n1 + 021, X1pq 1 Xlp G2,

Substituting (17) in (16), taking the expected value, and recognizing that the g, terms are
uncorrelated with xp-1 termsyields:

1 1
P31,= 011, P31,,.1 * > P11, T+ > 011, P11, T

1 1
P32,= P32, + 021,P31,1 + > P12, T+ > P12, T +621,P11,4 T (18)

1 1.1

The P11 and P12 termsin (18) are evaluated from the continuous covariance form of (3) [1,
Eq. (15.1.2.1.1.3-1)] :

P=AP+PAT+Np (19)
inwhich
P11 P2 ] Np, O
P=E(xx")= No=| 1 20
and where



P

—

Element in row i column j of covariance matrix P.

Np

Process noise density matrix.
Np,, = Density of process noise np,.

Expanding (19) with (20) and (3) in component form yields:

If’llz - 2 Wpw F’11+an

If’12 = F.’21 = P11 - 0w P12 P,, =2P12 (21)

We now assume that at the start of the Fig. 1 integration process, P11 is at its steady state value.
Then from (21):

Fl)lz + Opw P12 = Plloo F.)ZZ =2Pp (22)
where,

P11, = Steady state value of Py1.
The integral solution to (22) starting with zero P12 and P2 initial conditionsis

Py =——(1- g @b py;_ P22=i[ :

t-— (1- e“”bwt)] PiL. (23)
Obw Wpw Whw

where

t = Time since start of the Fig. 1 integration process.

At computer cyclesn-1 and n, P22 in (23) is given by:

2 1 :
P21 = _ltn-l = (1-g@bw t”'l)] P11,
Whw Wbhw

P22, =

(24)
2 [tn i 1 (1_ e®bw T & ®bw tn-l)] P
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or
P22n = P22n-1 + L[T - (1- e Obw T) e Obw tI’l-l] F)ll<><>

25
- (25)
in which from its definition



T= tn - tn-]_ (26)
From (23) at cyclen, P12 is

P12, = L (1-eoowin)py (27)
Whw
We also note that
P11, =P11,,1=P11., (28)
and from (15)
AP33,=P33,- P33, 4 AP22,= P22, - P22, 4 AP32,=P32,- P32, 4 (29)

Egs. (18) with (25), (27), (28) and (29) comprise a complete set for evaluating F3eeﬂ in (14).

The analysisis now simplified by considering the steady state solution to (14) (i.e., for very
large n). Inthe steady state we write from (18) and (27):

P31, =P31,.1 = P31, P12, =P12,.1= P12,

1 1 _ (30)
P31, = 011, P31, +§(1 + ¢11n) P T P12, =—(1- g0bw) P11,
Opw
or
1
P12,=—P11,,
Opw
31
_ _ _ 1 [1+6n, (D)
P31,= P31,,.; = P31, = > P11, T
1- d11,
where,

P12.., P31, = Steady state values for P12 and Ps;.

Then with (18), (25), (28) and (31), (29) becomes
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AP32. = 021,,P31., + P12, T + > ¢21, P11, T

1 1+d11,| 1 1 021 1
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Substituting (32) into (14) yields

'5een _ !(1 + ¢11n) T+ 2 5 ( d21,, L L )] Py = !(1 + ¢11n) T-2 4)211 P (@)

1- 011, Oow  \1-011, Opw 1- 011,
From (9):
2
1+¢11,-—(1-011
(1 + ¢11n) T-2621, " o ( n)
1- 011, 1- 611, (34)
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1-011,) @pw \1-€9WT @py T

Finally, from (33) and (34):

1+eH 2|1
GerW:Gx\/( '_)_ (35)
1-e* pu fe

where

Oepy = A/ F'>een = Standard deviation of integration algorithm random walk output
error (per square-root-of-secs).

fo = 1/ T = Integration algorithm iteration rate (hz).

ox = 4 P11, = Standard deviation of band-limited input to digital integrator.



1 = opw/ fc = Bandwidth/iteration rate ratio (rad/sec per hz).

Eq. (35) isan exact expression for the steady state random walk error in the digital
integration process. An approximate expression can be obtained for og,,, for small values of p
from the Taylor series expansion:

_ 121 3
eh=1-p+=p"-Zpu +..
m+Su-cu (36)
From (36):
121 3 1 .1 21 3
2-u+=u -=u+.. l-Zpu+=p -=u +..
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With (37), (35) becomes

1
Oenu = 55\ 5 (38)

Substituting for the definition of L= opw / fc then yields the approximate form:

1 1
Oepy = g Obw E Ox (39)
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