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ABSTRACT 
 

This article develops an analytical model for evaluating digital integration algorithm error 
build-up under band-limited random process input.  It is demonstrated that the digital integration 
process introduces a random walk type error in the output that is directly proportional to the 
root-mean-square input amplitude, directly proportional to the square-root of the input 
bandwidth, and inversely proportional to the digital integration update frequency. 
 
 
ANALYSIS 
 

Consider the analytical model in Fig. 1, illustrating a band limited random noise process to 
be integrated.  A true integral is illustrated in the top half of Fig. 1.  An approximate digital 
integration process is described in the lower half of Fig. 1 as a trapezoidal integration algorithm 
with updating time interval T and cycle index n.  The digital integration error is the difference 
between the digital and true integrals.  The following analysis develops a simple equation for 
evaluating the digital integration error as a function of the integration algorithm processing rate 
and the band-limited random noise magnitude/bandwidth. 
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Fig. 1 - Digital Integration Algorithm Error 
 

The analysis begins by first describing the Fig. 1 model analytically: 
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x1
.

 = - ωbw x1 + np1          x2
.

 = x1 (1)

 

  
 

x3n =  x3n-1 + 1
2

 x1n + x1n-1 T
 

(2) 

where, 
 

x1  = Band-limited white noise input to the integrators (modeled as a first order Markov 
process). 

 
 ωbw  =  Bandwidth of band-limited white noise inputs (i.e., Markov process gain). 
 
   =  White noise input to the Markov process. np1
 
 x2  =  True integral of x1. 
 
 x3  =  Digital integral of x1 (using a trapezoidal integration algorithm). 
 
 n  =  Integration algorithm computation cycle index. 
 
 T  =  Integration algorithm computation cycle time period (reciprocal of algorithm 

iteration rate). 
 
Eqs. (1) can also be expressed in the equivalent state vector form [1, Eq. (15-2)]: 
 
 x

.
 = A x + np (3) 

 
in which 
 

 x =
_ x1

x2
          A =

_ - ωbw 0
1 0           np =

_ 
np1

0
 (4) 

 
and where 
 
 x  =  State vector. 
 
 A  =  State dynamic matrix. 
 
 np  =  Process noise vector. 
 

The equivalent integrated form of (3), valid at the digital integration algorithm iteration 
times, is given by the classical form [1, Eq. (15.1.1-14)]: 
 

 xn = Φn xn-1 + qn (5) 
in which 
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Φn = Φ (T)        Φ (τ) = ∫  tn-1

      tn-1  +  τ
A   Φ (τ1)  dτ1        Φ   (0)  =  I

  

qn = ∫  tn-1

      tn-1  + T
Φ   (τ)  nP  dτ

 (6)
 

 
where 
 
 Φ  =  State transition matrix. 
 
 I  =  Identity matrix. 
 
 qn  =  Integrated process noise vector (over tn-1 to tn). 
 
It is easily shown by integrating (6) for  that Φ (τ)

 

 

Φn = 
e- ωbw T   0

1
ωbw

 1 - e- ωbw T   1
 

(7)

 
 

We now define 
 

 

Φn =
_ 

φ11n φ12n

φ21n φ22n

          qn =
_ 

q1n

q2n
 (8)

 
 
From (7): 
 

 

φ11n = e- ωbw  T           φ12n = 0
 

φ21n = 1
ωbw

 1 - φ11n           φ22n = 1
 (9)

 
 
With (8) and (9), (5) and (2) become in component form: 
 

 

x1n = φ11n x1n-1 + q1n
 

x2n = x2n-1 + φ21n x1n-1 + q2n
 

x3n = x3n-1 + 1
2

 x1n + x1n-1 T

 (10)

 

 
 3 



The error in x3 is defined as the difference between x3 and the true integral x2: 
 

 en =
_ x3n - x2n 

(11)
 

where 
 
   =  Error in xen 3n. 
 
The e  error can be evaluated in terms of its variance: n
 

 
Peen = E en

2  = E x3n - x2n
2   = E x3n

2  + E x2n
2 - 2 E x3n x2n  (12) 

 
or 
  (13) Peen = P33n + P22n - 2 P32n
 
where 
 
 E    =  Expected value operator. 
 
 Peen  =  Variance of e . n
 
 Pijn  =  Expected value of xin xjn  (i.e., the covariance of xin with xjn). 
 

For error build-up analysis, it is convenient to define (13) in terms of its build-up rate over a 
computer cycle: 
 

 
Peen

.
 ≡ ΔPijn / T = ΔP33n + ΔP22n - 2 ΔP32n / T (14)

 
 
in which 
 

  (15) ΔPijn ≡ Pijn - Pijn-1
 
and where 
 

 Peen

.
=  Error e variance build-up rate over computer cycle n. 

 
We now develop analytical expressions for the individual terms in (14) by first forming 

particular products of the (10) terms: 
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x3n x1n = x3n-1 + 1
2

 x1n + x1n-1  T  x1n = x3n-1 x1n + 1
2

 x1n
2  T + 1

2
 x1n-1 x1n T

 

x3n x2n = x3n-1 + 1
2

 x1n + x1n-1  T  x2n = x3n-1 x2n + 1
2

 x1n x2n T + 1
2

 x1n-1 x2n T
 

 

 x3n
2  = x3n-1 + 1

2
 x1n + x1n-1  T

2
  (16) 

 
= x3n-1

2  + x3n-1 x1n + x1n-1  T + 1
4

 x1n
2  + 2 x1n x1n-1 + x1n-1

2  T2

= x3n-1
2  + x3n-1 x1n-1 T + 1

4
 x1n

2  T2+ 1
4

 x1n-1
2  T2 + x3n-1 x1n T + 1

2
 x1n x1n-1 T

2
 

 
Particular terms in (16) are with (10): 

 

 

x3n-1 x1n = x3n-1 φ11n x1n-1 + q1n  = φ11n x3n-1 x1n-1 + x3n-1 q1n
 

x1n-1 x1n = x1n-1 φ11n x1n-1 + q1n  = φ11n x1n-1
2  + x1n-1 q1n

 

x3n-1 x2n = x3n-1 x2n-1 + φ21n x1n-1 + q2n  = x3n-1 x2n-1 + φ21n x3n-1 x1n-1 + x3n-1 q2n
 

x1n-1 x2n = x1n-1 x2n-1 + φ21n x1n-1 + q2n  = x1n-1 x2n-1 + φ21n x1n-1
2  + x1n-1 q2n

 (17)

 
 
Substituting (17) in (16), taking the expected value, and recognizing that the qn terms are 
uncorrelated with xn-1 terms yields: 
 

 

P31n = φ11n P31n-1 + 1
2

 P11n T + 1
2

 φ11n P11n-1 T
 

P32n = P32n-1 + φ21n P31n-1 + 1
2

 P12n T + 1
2

 P12n-1 T + φ21n P11n-1 T
 

P33n = P33n-1 + 1 + φ11n  P31n-1 T + 1
4

 P11n T
2 + 1

4
 + 1

2
 φ11n  P11n-1 T2

 

(18)

 
 

The P11 and P12 terms in (18) are evaluated from the continuous covariance form of (3) [1, 
Eq. (15.1.2.1.1.3-1)] : 
 
 P

.
 = A P + P AT + Np

 (19) 
 
in which 
 

 P ≡ E  x xT  ≡ P11 P12
P21 P22

          Np ≡ 
Np11

0

0 0
 (20) 

 
and where 
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 Pij  =  Element in row i column j of covariance matrix P. 
 
 Np  =  Process noise density matrix. 
 
 Np11 =  Density of process noise n . p1
 
Expanding (19) with (20) and (3) in component form yields: 
 

 
 (21)

 
P11
.

 = - 2 ωbw P11 + Np11
         P12

.
 = P21

.
  =  P11 - ωBW P12        P22

.
 = 2 P12

 
We now assume that at the start of the Fig. 1 integration process, P11 is at its steady state value.  
Then from (21): 
 

 
 (22)

 P12
.

 + ωbw P12 = P11∞         P22
.

 = 2 P12
 
where, 
 
   =  Steady state value of P11. P11∞
 
The integral solution to (22) starting with zero P12 and P22 initial conditions is 
 

 
P12 = 1

ωbw
 1- e- ωbw t  P11∞         P22 = 2

ωbw
 t - 1

ωbw
  1- e- ωbw t  P11∞ (23)

 
 
where 
 
 t  =  Time since start of the Fig. 1 integration process. 
 
At computer cycles n-1 and n, P22 in (23) is given by: 
 

 

P22n-1 = 2
ωbw

 tn-1 - 1
ωbw

   1- e- ωbw tn-1  P11∞

 

P22n = 2
ωbw

 tn - 1
ωbw

   1- e- ωbw T e- ωbw tn-1  P11∞

 (24)

 
 
or 
 

 
P22n = P22n-1 + 2

ωbw
 T - 1- e- ωbw T  e- ωbw tn-1  P11∞ (25)

 
 
in which from its definition 
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  (26) T = tn - tn-1
From (23) at cycle n, P12 is 
 

 
P12n = 1

ωbw
 1- e- ωbw tn  P11∞ (27)

 
 
We also note that 
 
  (28) P11n = P11n-1 = P11∞
 
and from (15) 
 

  (29) ΔP33n = P33n - P33n-1         ΔP22n = P22n - P22n-1         ΔP32n = P32n - P32n-1
 

Eqs. (18) with (25), (27), (28) and (29) comprise a complete set for evaluating Peen

.
 in (14). 

 
The analysis is now simplified by considering the steady state solution to (14) (i.e., for very 

large n).  In the steady state we write from (18) and (27): 
 

 
P31n = P31n-1 = P31∞         P12n = P12n-1 = P12∞

 

P31∞ = φ11n P31∞ + 1
2

 1 + φ11n  P11∞ T         P12∞ = 1
ωbw

 1- e- ωbw t∞  P11∞
 (30)

 

 

or 
 

 

P12n = 1
ωbw

 P11∞

 

P31n = P31n-1 = P31∞ = 1
2

  
1 + φ11n

1 - φ11n

 P11∞ T
 

(31)

 
 
where, 
 
   =  Steady state values for P12 and P31. P12∞, P31∞
 
Then with (18), (25), (28) and (31),  (29) becomes
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ΔP32n = φ21n P31∞ + P12∞ T + 1
2

 φ21n P11∞ T

= 1
2

 φ21n 
1 + φ11n

1 - φ11n

 + 1
2

 φ21n + 1
ωbw

 P11∞ T = 
φ21n

1 - φ11n

 + 1
ωbw

 P11∞ T
 

  (32) 

 

ΔP33n = 1 + φ11n  P31∞ T + 1
2

 1 + φ11n  P11∞ T2

= 1
2

 1 + φ11N  
1 + φ11n

1 - φ11n

 + 1  P11∞ T2 = 
1 + φ11n

1 - φ11n

 P11∞ T2

 

ΔP22n = 2
ωbw

 P11∞ T
 

 
Substituting (32) into (14) yields 
 

Peen

.
 = 

1 + φ11n

1 - φ11n

 T + 2
ωbw

 - 2 
φ21n

1 - φ11n

 + 1
ωbw

 P11∞ = 
1 + φ11n  T - 2 φ21n

1 - φ11n

 P11∞ (33)
 

 
From (9): 

 

1 + φ11n  T - 2 φ21n

1 - φ11n

 = 

1 + φ11n - 
2

ωbw
 1 - φ11n

1 - φ11n

= 
1 + φ11n

1 - φ11n

 T - 2
ωbw

 = 1 + e- ωbw T

1 - e- ωbw T
 - 2

ωbw T
T

 (34)

 
 
Finally, from (33) and (34): 
 

 
σerw = σx 1 + e- μ

1 - e- μ
 - 2

μ
 1
fc

 (35)
 

 
where 
 

σerw  =  Peen

.
  =  Standard deviation of integration algorithm random walk output 

error (per square-root-of-secs). 
 
   =  Integration algorithm iteration rate (hz). fc  =  1 / T
 
 σx  =  P11∞  =  Standard deviation of band-limited input to digital integrator. 
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 μ = ωbw / fc  =  Bandwidth/iteration rate ratio (rad/sec per hz). 
 

Eq. (35) is an exact expression for the steady state random walk error in the digital 
integration process.  An approximate expression can be obtained for σ  for small values of μ 
from the Taylor series expansion: 

erw

 

 
e-μ = 1 - μ + 1

2
 μ2 - 1

6
 μ3 + ... (36)

 
 
From (36): 
 

 

1 + e- μ

1 - e- μ
 - 2

μ
 = 

2 - μ + 1
2

 μ2 - 1
6

 μ3 + ...

μ - 1
2

 μ2 + 1
6

 μ3 - ...
 - 2

μ
  = 2

μ
 
1 - 1

2
 μ + 1

4
 μ2 - 1

6
 μ3 + ...

1 - 1
2

 μ + 1
6

 μ2 - ...
 - 2

μ

= 2
μ

 
1 - 1

2
 μ + 1

4
 μ2 - ... - 1 + 1

2
 μ - 1

6
 μ2 + ...

1 - 1
2

 μ + 1
6

 μ2 - ...
 ≈ 2

μ
 1
4

 - 1
6

 μ2 = 1
6

 μ

 (37)

 
 
With (37), (35) becomes 
 

 
σerw ≈ σx 1

6
 
μ
fc  

(38)
 

 

Substituting for the definition of μ =
_ ωbw / fc then yields the approximate form: 

 

 
σerw ≈ 1

6
 ωbw  1

fc
 σx (39)
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