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ABSTRACT 
 

Traditional Newtonian mechanics treats gravity as one of the forces contributing to 
the acceleration of a body in motion.  Newtonian natural motion is defined relative to an 
abstract inertial space where gravity is non-existent and free body velocity motion 
remains constant unless modified by applied force.  With this interpretation, gravitational 
force is an embedded characteristic whose effect on body acceleration is not measurable 
by accelerometers, the traditional instruments used in inertial navigation systems to 
measure acceleration relative to inertial space.  This paper introduces a revised 
interpretation in which gravity is an integral part of natural motion, and natural motion 
can only be modified by applied non-gravitational forces.  With this new interpretation, 
gravitational force is non-existent, all forces impacting natural motion are measurable by 
accelerometers, and gravity can only be determined relative to its value at another 
location.  Equations of motion are presented for the new interpretation and used to 
describe classical known situations: forces experienced on the surface of the earth, "zero-
gravity" in free-fall and earth orbit, creating "zero-gravity" in an aircraft, the general 
relativity principle of equivalence between inertial and gravitational mass, linear and 
rotational dynamics of mass groups, and a measurable definition of inertial coordinates 
including its use as an inertial angular reference. 
 
 
INTRODUCTION 
 

The basic laws of natural motion formulated by Newton in 1667 postulated that in the 
absence of applied force, a body will translate at a constant natural motion (velocity) [1 - 
pp. 416].  Velocity is defined as position change relative to an arbitrary non-gravitational 
inertial space, hence, is a relative rather than absolute quantity. Applied force defined by 
Newton includes magnetic, electrical, mechanical, and gravitational effects.  Under 
applied force, the body will change its velocity (accelerate) in the direction of the force 
with magnitude inversely proportional to its inertia (mass) according to Newton's classic 
equation: F = Im a where F is the applied force vector, Im is the body inertial mass, and 

a is the associated acceleration vector response. 
 
Newton also postulated that the gravitational force of a body (weight) is proportional 

to the gravity field in which it is located according to the equation: W = Gm g  where W  

is the body weight, Gm is the body gravitational mass, and g is the local gravity vector.  
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Einstein further postulated that an equality between the inertial and gravitational mass 
( Im and Gm ) is fundamental to the basic laws of general relativity [2 - pp. 78]. 

 
This paper introduces a revised formulation of natural motion in which gravity is a 

fundamental component, and in which deviations from natural motion are produced only 
by applied measurable forces.  As a result, the concepts of gravitational force and 
gravitational mass are no longer required to describe general motion and physical 
phenomena.  The revised definition of natural motion uses relative acceleration (rather 
than velocity) as a simpler representation of natural motion, dividing it into two parts; a 
force acceleration component (measurable with accelerometers), and an immeasurable 
natural component (of which gravity is an analytically definable constituent).  A 
consequence of the revised natural motion definition is that absolute gravity is an 
immeasurable quantity, and only relative gravity between two defined locations can be 
measured by any means. 

  
In the Newtonian formulation, natural body motion is defined as uniform velocity 

unless modified by applied force, with force including a gravitational component.  In the 
revised formulation there is no gravitational force, and natural motion is "free-fall" 
velocity as modified by local gravitational acceleration, with gravity being a property of 
the local body position location in the universe.  Deviations from natural motion are 
generated from forces applied to the body.  A consequence of the revised formulation is 
that the Newtonian concept of "gravitational" mass is not required to predict body 
motion, nor the general relativity requirement for equivalency between "gravitational" 
and "inertial" mass. 

 
Another basic difference between the Newtonian and revised formulations is the 

definition for the coordinate frame used to describe natural motion.  Both the Newtonian 
and revised formulations postulate the existence of an "inertial coordinate frame" in 
which the laws of motion are valid.  In the Newtonian formulation, natural motion is 
defined for a single body, necessitating that the inertial coordinate frame have a definable 
origin from which position motion is measured.  The inertial frame is defined to be one of 
constant natural motion velocity in a hypothetical gravity-free space.  For the revised 
approach, motion is defined as the relativistic difference in the movement between two 
separate masses.  As a result, the inertial coordinate frame for describing motion needs no 
position origin.  It is only used as a means for describing the relative angular orientation 
between different inertial coordinate frames that may be selected to describe relative 
motion phenomena.  The concept of a coordinate frame thereby reduces to an angular 
orientation definition of three orthogonal unit free-vectors whose mathematical dot 
products with relative motion vector parameters (e.g., relative position and velocity) 
define the components of the vector parameters in the coordinate frame.  The unit vectors 
can be conveniently defined in terms of their individual angular orientation relative to 
definable and observable celestial phenomena (e.g., parallel to a line between two stars, 
parallel to a perpendicular to the earth-sun ecliptic plane, or parallel to earth's rotation 
axis). 
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For both the Newtonian and revised formulations, the "inertial coordinate frame" in 
which motion is defined includes a requirement for non-rotation.  However, the basic 
concept of rotation implies a changing angular orientation relative to an angular 
reference.  Thus, the concept of non-rotation becomes ambiguous without defining the 
angular reference from which rotation is to be measured.  Such an angular reference has 
never been defined for the constant velocity translating Newtonian inertial frame 
formulated in hypothetical gravity free space.  Because only the angular orientation 
characteristics of inertial coordinates is required for the new formulation, the associated 
unit vector characteristics can be conveniently defined in terms of their individual angular 
orientation relative to definable and observable celestial phenomena. 

 
This paper defines and provides the analytical basis for the new formulation, deriving 

the associated laws of translational motion for individual point masses, point mass 
groups, and rigid bodies; and for the rotational motion of mass groups and rigid bodies.  
Included is a discussion of the operation of accelerometers used to measure force 
acceleration for the new formulation, and of gyros used to measure angular rotation 
relative to the revised definition of inertial coordinates.  Examples are provided 
illustrating how the revised theory explains known phenomena existing in common 
experience. 

 
 

NOTATION 
 

V  =  Vector without specific coordinate frame designation.  A vector is a 
parameter that has length and direction.  Vectors used in the paper are 
classified as “free vectors”, hence, have no preferred location in coordinate 
frames in which they are analytically described. 

 
AV   =  Column matrix with elements equal to the projection of V on coordinate 

frame A axes.  The projection of V on each frame A axis equals the dot 
product of V with a unit vector parallel to that coordinate axis. 

 
AV ×( )   =  Skew symmetric (or cross-product) form of AV  represented by the 

square matrix 

0 ZA−V YAV

ZAV 0 XA−V

YA−V XAV 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 in which XAV , YAV , ZAV  

are the components of AV .  The matrix product of AV ×( )  with 

another A frame vector equals the cross-product of AV  with the 

vector in the A frame, i.e.: AV ×( ) AW = AV × AW . 

 

CA2

A1  =  Direction cosine matrix that transforms a vector from its coordinate frame 

A2 projection form to its coordinate frame A1 projection form, i.e.: 
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1AV =
2A
1AC 2AV .  The columns of CA2

A1 are projections on A1 axes of 

unit vectors parallel to A2 axes.  Conversely, the rows of CA2

A1 are 

projections on A2 axes of unit vectors parallel to A1 axes.  An important 

property of CA2

A1 is that it's inverse equals it's transpose  

 

1A 2Aω   =  Angular rotation rate of coordinate frame A2 relative to coordinate 

frame A1.  Conversely, the angular rotation rate of coordinate frame 

A1 relative to coordinate frame A2 is the negative of 
1A 2Aω

, i.e.,: 

2A 1Aω = −
1A 2Aω  

 

 
.

( )   =  
d( )
dt

  =  Derivative with respect to time t. 

 
 

THE DYNAMICS OF POINT MASSES 
 

In this revised formulation, velocity change of a mass point measured in an inertial 
reference frame is produced by two effects; force applied to the mass (measurable by 
accelerometers), and non-measurable acceleration that is a property of the position 
location of the mass in celestial space.  Non-measurable acceleration includes 
gravitational effects and other thus far unknown non-measurable accelerations.  Natural 
motion in the new formulation is motion in the absence of measurable force, hence, 
accelerated motion produced by local non-measurable acceleration (e.g., gravity) at the 
position location of the point mass. 

 
From an analytical standpoint, consider two mass points 1 and 2.  The relative 

velocity (position change) between the two points as projected on the axes of an arbitrary 
coordinate frame A equals the integral of the relative acceleration between the points: 

 

 
d
dt 2,1

Ar =
0

t
∫

2d
dt 2,1

Ar
⎛
⎝⎜

⎞
⎠⎟

dt +
0

d
dt 2,1

Ar
⎛
⎝⎜

⎞
⎠⎟

 (1) 

with 

 2,1
Ar =

0

t
∫ d

dt 2,1
Ar

⎛
⎝⎜

⎞
⎠⎟

dt +
02,1

Ar  (2) 

where 
 

2,1
Ar  =  Column matrix with components of relative distance vector 2,1r  projected 

along coordinate frame A axes. 
 



 5 

d
dt 2,1

Ar  =  Relative velocity in frame A between mass points 1 and 2. 

 
2d

dt 2,1
Ar =  Relative acceleration in frame A between mass points 1 and 2. 

 

02,1
Ar ,

0

d
dt 2,1

Ar
⎛
⎝⎜

⎞
⎠⎟

=  Initial values of 2,1
Ar ,

d
dt 2,1

Ar  at time t = 0. 

 
For the revised formulation, if frame A is an inertial (I) frame (to be defined 

subsequently), the relative acceleration between the mass points equates to the sum of 
applied force effects and natural motion acceleration: 

 

 
 

2d
dt 2,1

Ir =
2F

Ia −
1F

Ia + Δ
2,1N

Ia Δ
2,1N

Ia
2N

Ia −
1N

Ia  (3) 

 
with (1) and (2) specialized for the I frame: 

 

 

d
dt 2,1

Ir =
0

t
∫

2d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

dt +
0

d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

2,1
Ir =

0

t
∫ d

dt 2,1
Ir

⎛
⎝⎜

⎞
⎠⎟

dt +
02,1

Ir

 (4) 

where 

1F
a ,

2F
a =  Acceleration of mass points 1 and 2 produced by measurable forces at 

points 1 and 2. 
 

1N
a ,

2N
a =  Acceleration of mass points 1 and 2 produced by non-measurable natural 

properties of the point 1 and 2 position locations. 
 

As in Newton's formulation, the force created accelerations satisfy: 
 

 
1F

Ia = 1F / 1m
2F

Ia = 2F / 2m  (5) 

 
where 

 

1m , 2m = Inertial mass of mass points 1 and 2. 

 

1F , 2F = Measurable forces applied to mass points 1 and 2. 
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Equation (3) and (5) with (4) are the fundamental relativistic motion equations for the 
revised version of natural motion, a revised formulation of Newton's second law and 
gravitational law [1 - pp. 416 - 417 & pp. 810 - 811].  Equation (3) shows that in the 
absence of applied force acceleration, the relative velocity between point masses (the 
integral of (3)) will not be constant, but will change by the difference in natural 
acceleration at the point mass locations.  For the gravitational component of natural 

motion acceleration at an arbitrary point p in space (
pN/ga ), the classical inverse square 

Newtonian expression applies, equating gravity to the combined effect of celestial mass: 

 
pN/ga = ∫

μ

p/dm3r
p/dmr dm  (6) 

where 
 dm  =  Differential mass element in the universe. 

 p/dmr =  Linear distance vector from point p to dm. 

 p/dmr =  Magnitude of p/dmr . 

 μ   =  The universal gravitational constant. 

 
and the integral is over all the mass in the universe. 
 

From (3) we see that although 
2N

a  and 
1N

a  are not measurable directly (and the 

gravitational portion can be theoretically calculated from a (6) type analytical model), 

their relative difference Δ
2,1N

Ia  can still be ascertained from measurements of 

2d
dt 2,1

Ir (e.g., optically) and 
1F

a ,
2F

a (using (5) with individual 1F , 2F  force 

measurements), or from 
2d

dt 2,1
Ir  alone in the absence of applied force. 

 
It is now stated without explicit proof that based on (3), only relative natural motion 

acceleration (i.e., the difference between 
2N

a
 and 1N

a ) can ever be measured.  Thus, the 

absolute gravity component of natural motion is not measurable, only its relative effect 

on the motion between separated bodies.  In contrast, 
2F

a and 
1F

a are absolute quantities 

whose values can be determined at any point in space by individual force measurements. 
 

Appendices A and B expand the results in this section to the translational dynamics of 
mass groups and rigid bodies. The results are identical to what has been traditionally 
obtained in the past using the traditional Newtonian formulation, e.g., [3 - Chapts. 3 & 4]. 
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MOTION IN A ROTATING COORDINATE FRAME 
 

Consider a coordinate frame B at an arbitrary angular orientation relative to Inertial 

frame I.  The relative position vector 2,1r  viewed in frame B is related to that in frame I 

according to 
 

 2,1
Br = I

BC 2,1
Ir  (7) 

 
The relative velocity between points 1 and 2 measured in the B frame (the derivative 

of 2,1
Br ) is related to the B frame measured velocity by the derivative of (7): 

 2,1
Br( )
.

= I
BC 2,1

Ir( )
.

+ I
BC( )
.

2,1
Ir  (8) 

 
It is well known that the time rate of change of a direction cosine matrix is a function of 

the relative angular rate between it's two relating coordinate frames.  In the case of I
BC( )
.

 

in (8), the relationship is [4 - pp. 3-54]: 

 I
BC( )
.

= − IB
Bω ×( ) I

BC  (9) 

where 

IB
Bω =  The angular rate of frame B relative to frame I as measured (superscript) in 

the B frame. 
 
Substituting (9) in (8) obtains 

 2,1
Br( )
.

= I
BC 2,1

Ir( )
.

− IB
Bω ×( ) I

BC 2,1
Ir = I

BC 2,1
Ir( )
.

− IB
Bω ×( ) 2,1

Br  (10) 

The relative acceleration between points 1 and 2 in the B frame 2,1
Br( )
..

is the derivative of 

(10) which with (9) is 
 

 
2,1
Br( )
..

= I
BC( )
.

2,1
Ir( )
.

+ I
BC 2,1

Ir( )
..

− IB
Bω

.
×

⎛
⎝⎜

⎞
⎠⎟ 2,1

Br − IB
Bω ×( ) 2,1

Br( )
.

= − IB
Bω ×( ) I

BC 2,1
Ir( )
.

+ I
BC 2,1

Ir( )
..

− IB
Bω

.
×

⎛
⎝⎜

⎞
⎠⎟ 2,1

Br − IB
Bω ×( ) 2,1

Br( )
.  (11) 

Solving for I
BC 2,1

Ir( )
.

 from (8) and substitution in (11) yields 
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2,1
Br( )
..

= I
BC 2,1

Ir( )
..

− IB
Bω

.
×

⎛
⎝⎜

⎞
⎠⎟ 2,1

Br − IB
Bω ×( ) IB

Bω ×( ) 2,1
Br − 2 IB

Bω ×( ) 2,1
Br( )
.

= I
BC 2,1

Ir( )
..

− IB
Bω

.
× 2,1

Br − IB
Bω × IB

Bω × 2,1
Br( ) − 2 IB

Bω × 2,1
Br( )
.

 (12) 

Equation (12) is a general expression describing the relative acceleration between two 

points 2,1
Br( )
..

, as a function of the relative acceleration between the points measured in the 

I frame 2,1
Ir( )
..

, the relative A frame position and velocity 2,1
Br , 2,1

Br( )
.

, the angular 

orientation I
BC  of frame B relative to frame I, and IB

Bω , the B frame measured angular 

velocity of frame B relative to the I frame. 
 

We now invoke the inertial characteristic to frame I for which equation (3) applies.  
Substituting (3) into (12) finally obtains the general expression for the acceleration 
between two mass points as viewed in a coordinate frame rotating relative to an inertial I 
frame as a function of force and natural motion accelerations measured in the rotating 
frame: 

 
2,1
Br( )
..

=
2F

Ba −
1F

Ba + Δ
2,1N

Ba

− IB
Bω

.
× 2,1

Br − IB
Bω × IB

Bω × 2,1
Br( ) − 2 IB

Bω × 2,1
Br( )
.

 (13) 

Velocity and position in the rotating B frame are obtained from (1) and (2) 

 2,1
Br( )
.

=
0

t
∫ 2,1

Br( )
..

dt +
02,1

Br( )
.

2,1
Br =

0

t
∫ 2,1

Br( )
.

dt +
02,1

Br  (14) 

Equation (13) with (14) relates the relative position and velocity between two mass points 
as computed in a rotating coordinate frame, to the force acceleration on each mass point, 
the difference in natural motion acceleration at the mass points, and the angular rotation 
rate of the computational coordinate frame relative to inertial coordinates. 
 

Appendices C and D expand the results in this section to encompass the rotational 
dynamics of mass groups and rigid bodies.  The results are identical to what has been 
obtained in the past using the traditional Newtonian formulation, e.g., [3 - Chapts. 5 & 6]. 
 
 
THE CONCEPT OF INERTIAL ROTATION 
 

For both the Newtonian and the new revised formulation of motion, the definition of 
an inertial coordinate frame is one in which the laws of motion apply.  For the new 
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formulation, the laws of motion are as expressed by (3) and (5) with (4).  Based on this 
definition, we can also define a measurable concept of inertial rotation: 

 
Inertial rotation is the angular rotation rate of a coordinate frame relative to an inertial 

coordinate frame. 
 
We should also recognize that there can be more than one inertial coordinate frame.  For 
example, consider a coordinate frame A that has zero angular rate relative to inertial 

frame I (i.e., I
AC is constant).  Under the constant I

AC  condition, multiplying equation (3) 

by I
AC  yields: 

 2,1
Ar( )
..

=
2F

Aa −
1F

Aa + Δ
2,1N

Aa  (15) 

 
Equation (15) is the revised law of motion, but in another inertial frame A. 
 

Frame B in the previous section is a general example of a non-inertial coordinate 

frame because it has angular rate IBω relative to inertial frame I.  On the other hand, if 

IBω is zero, the (13) motion equation reduces to 

 2,1
Br( )
..

=
2F

Ba −
1F

Ba + Δ
2,1N

Ba  (16) 

 
which is revised law of motion equation (3) in frame B.  Thus, by virtue of (16), frame B 
would then represent an inertial coordinate frame having (by definition) zero angular rate 
relative to any other inertial frame (e.g., I or A).  Means for determining whether a 
particular selected frame is inertial or not, will be discussed subsequently based on 
measurable performance parameters. 
 
 
INERTIAL SENSORS 
 

Inertial sensors are instruments that can be used to measure the force acceleration and 
inertial angular rotation rate elements in equations (3) and (13).  Accelerometers located 
at mass points 1 and 2 measure the force acceleration components at these locations.  
Gyros having input axes aligned with equation (13) frame A axes, measure the inertial 
angular rate components in (13). 

 
Accelerometers 

 
An accelerometer is a device that can be used to directly measure force-generated 

acceleration [5, pp. 234-235 and 292N-292O].  Accelerometers implement (5) using a 
proof mass located in a body whose force acceleration is to be measured.  The proof-mass 
position location is controlled by forces generated within the accelerometer to maintain a 
fixed location of the proof-mass within the body-mounted accelerometer case.  The 
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resulting proof-mass force acceleration is thereby controlled to equal the body's force 
acceleration.  By dividing the measured accelerometer control force by the mass of the 
proof mass as in (5), a direct measurement of body force acceleration is obtained.  Most 
accelerometers are designed to measure force acceleration along a single axis (the 
accelerometer input axis).  Three accelerometers are then required to measure each of 
three components of the force acceleration vector. 

 
Mechanical Gyros 

 
Two types of mechanical gyros have found wide-spread usage: Classical 

“Momentum-Wheel” gyros and recently, MEMS (Micro-machined Electro-Mechanical 
Systems) gyros that implement the angular rate sensing function within a single micro-
machined silicon (or quartz) substrate. 

 
Momentum-Wheel Gyros 
   

A classical momentum wheel gyro consists of a spinning rotor "wheel" enclosed in a 
case  [5, 246-253].  The rotor is mounted with a suspension mechanism that allows only 
known torques (differential equal magnitude forces operating at opposite ends of a lever 
arm) to be applied to the spinning mass perpendicular to axes for which case angular rate 
is to be measured.  The governing equations of motion are (D-9) and (D-10) with 
coordinate frame A parallel to rotor fixed axes and frame B parallel to gyro case fixed 
axes: 

 

 IBω = I,Caseω IAω = I,Caseω + Case,Rtrω  (17) 

cm
BH = cm

BJ I,Case
Bω + Case,Rtrω( ) cm

BJ = − ∫ i,cm
Br ×( ) i,cm

Br ×( ) iρ dv⎡
⎣

⎤
⎦  (18) 

 

 

cm
BH( )
.

= cm
BJ I,Case

Bω + Case,Rtr
Bω( )⎡

⎣
⎤
⎦

.

= cm
BJ( )
.

I,Case
Bω + Case,Rtr

Bω( ) + cm
BJ I,Case

Bω( )
.

+ Case,Rtr
Bω( )

.⎡

⎣
⎢

⎤

⎦
⎥

= i,cm
Br ×

iExternal
BF( )∑ − I,Case

Bω × cmH + ∫ i,cm
Br × Δ

i,cmN
Ba( ) iρ dv

 (19) 

where 

I,Caseω = Angular rate of the gyro case relative to the inertial I frame. 

Case,Rtrω = Angular rate of the rotor relative to the I frame. 

i,cmr  = Relative position vector from the rotor center-of-mass to point i on the rotor. 

cmH = Angular momentum of the rotor about its center of mass relative to the I frame 

coordinates. 
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cmJ  = Moment of inertia tensor of the rotor. 

dv  = Differential rotor volume element at point i. 

iρ  = Mass density at rotor point i. 

and the rotor center of mass is defined implicitly from (A-4) as the point on the rotor for 
which 

 ∫ i,cmr iρ dv = 0  (20) 

For a gyro used to measure the angular rate of a structure to which it is mounted, the 

gyro case rotates with the structure, and the torque i,cm
Br ×

iExternal
BF( )∑  in (19) would be 

generated within the gyro to maintain spin axis alignment with gyro case fixed axes.  
Then from symmetry, the rotor mass distribution will not change in the case aligned B 

frame, and the rate of change of the moment of inertial tensor B frame projection cm
BJ( )
.

 

in (19) will be zero. Additionally, the gyro rotor spin rate relative to the case would be 

controlled by a synchronous hysteresis drive motor to remain constant, hence Case,Rtr
Bω( )

.
 

will also be zero.  Thus, with rearrangement, (19) simplifies to 
 

 

 

BΤ = I,Case
Bω × RtrH

+ cm
BJ I,Case

Bω( )
.

+ I,Case
Bω × cm

BJ I,Case
Bω( ) − ∫ i,cm

Br × Δ
i,cmN

Ba( ) iρ dv
(21) 

with the torque Τ  applied on the rotor and the rotor angular momentum RtrH relative to 

the case defined in B frame coordinates as 
 

  

BΤ i,cm
Br ×

iExternal
BF( )∑ RtrH cm

BJ Case,Rtr
Bω  (22) 

 
The last three terms in (21) are generally small compared to the others, in part due to the 

largeness of the angular momentum RtrH designed into the gyro rotor (by spin rate and 

mass).  Thus, (21) shows that the torque applied to the rotor is approximately 

proportional to the inertial angular rate of the gyro case I,Case
Bω .  Using appropriate 

scaling, an electrical signal proportional to the applied torque can thereby be formed as 

the gyro output measurement of I,Case
Bω .  For improved accuracy in measuring I,Case

Bω , 

the gyro output can be corrected for the cm
BJ I,Case

Bω( )
.

 and I,Case
Bω × cm

BJ I,Case
Bω( )  terms 

in (21) by appropriate software compensation routines applied in computers using the 

gyro output (i.e., as a function of the rescaled BΤ gyro input to the computer).  The 
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∫ i,cm
Br × Δ

i,cmN
Ba( ) iρ dv  gravity gradient term in (21) is generally negligible compared 

with BΤ .  It is to be noted, however, that if the rotor is designed to have a symmetrical 

mass distribution (i.e., diagonal inertia tensor cm
BJ  with equal diagonal element 

components - see (18) for cm
BJ  definition), it can be shown that the gravity gradient term 

would be zero [3 - Sect. 6-4] (as would the I,Case
Bω × cm

BJ I,Case
Bω( )  term). 

 
MEMS Gyros 
 

MEMS gyros consist of two independent MEMS accelerometers having parallel input 
axes separated by a small distance [5, pp. 292P – 292Q)].  The accelerometers are driven 
into parallel oppositely directed linear oscillation about an axis perpendicular to their 
input axes.  Under angular rotation perpendicular to the accelerometer input and vibration 
induced axes, an oscillatory Coriolis acceleration response is generated along each 
accelerometer input axis.  Because the linear oscillation of each accelerometer is 
oppositely directed from the other, the Coriolis reaction response to rotation will also be 
oppositely directed.  Subtracting the accelerometer outputs provides an oscillating output 
(at the linear vibration frequency) proportional to the angular rate.  Demodulating the 
oscillating output provides a measurement of angular rate relative to non-rotating inertial 
space. 

 
Optical Gyros 
 

Optical gyros contain a closed-optical path containing two beams of monochromatic 
light traveling in opposite directions [5, pp. 266 – 267].  Due to the Coriolis distortion of 
a vector’s components viewed from two coordinate frames rotating relative to one 
another, [6] shows that the wavelength of the light beam traveling in the direction of 
rotation will become longer while the beam traveling in the opposite direction will 
become shorter.  The difference in the wavelength shifts is proportional to the angular 
rate (relative to non-rotating inertial space) around an axis perpendicular to the to the 
light-path plane.  The means for generating an output angular rate measurement is based 
on the basic precept of Special Relativity Theory [2]: That the speed of light c is the same 
constant relative to any observer, irrespective of the observer’s velocity relative to the 
light beam. 

 
Because both light beams in an optical gyro traverse the same wave-path (in opposite 

directions) during each closed circuit (relative to the rotating gyro), the total distance L 
traveled around the circuit will be the same for each beam.  Thus, since the oppositely 
directed beams are traveling at the same speed c through the same distance L,  the transit 
time T around the closed-circuit will be the same: T = L / c.  (Note: The stated same 
distance premise may not be obvious because (as is commonly known by optical gyro 
designers), angular rate causes the circular distance traveled by one beam to differ from 
the other, but relative to non-rotating inertial space.  Now if one can imagine a measuring 
tape graduated in both directions being attached along the closed wave-path, it should be 
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clear that the distance measured along the tape will be the same for either measurement 
direction because for each, it is the same physical tape used for the measurement.) 

 
In the absence of rotation, the wavelengths of both beams will be equal, and upon 

completing a closed-circuit (each traveling the closed distance L over time interval T), the 
number of waves filling the wave-path (i.e., the total cumulative phase in wavelengths 
from entry to exit) will be the same. Thus, without rotation, the cumulative phase 
between the beams at exit time T will be the same, and the phase difference will be zero.  
(Note: The total phase angle from peak-to-peak of a light wave can be represented as a 
cycle or as 2  radians).  Under rotation, however, the wavelength of the beam traveling 
with rotation will become longer (and conversely for the beam traveling in the opposite 
direction), hence, the cumulative phase over L will be less for the beam traveling with 
rotation.  The result is that at T, the phase difference between the beams will differ from 
what it was when the closed-path journey began.  The phase difference is proportional to 
the inertial angular rate around the gyro input axis, and is optically measured at T to 
determine the gyro output.  The means for generating the output depends on whether the 
optical instrument is a fiber optic gyro or a ring laser gyro. 

 
Fiber Optic Gyros 

 
In a fiber optic gyro (FOG), the closed wave-path is implemented using optical fiber 

of total length L wrapped in several concentric coils, with optical splicing technology 
used to close, enter, and leave the fiber coil [5, pp. 292B – 292G] and [6].  
Monochromatic light for the FOG is generated external to the coil by a super-luminescent 
diode, and gated through fiber splices into the coil where it splits into oppositely directed 
beams.  When the beams complete the closed-circuit around the coil at T, they are gated 
out of the coil through fiber splices and combined on a photo-detector to measure angular 
rotation rate. 

 
Ring Laser Gyros  

 
In a ring laser gyro (RLG), the closed wave-path is implemented using reflecting 

mirrors (typically 3 or 4) that reflect monochromatic light around a closed optical cavity 
light-path [5, pp. 266 – 267 and 270 – 271B] and [6].  The monochromatic light is 
generated by the lasing action of a helium-neon gas laser resident within the closed gyro 
cavity.  As the beams complete each closed circuit between the reflecting mirrors, they 
collide with the helium-neon lasing plasma, generating new photons in phase and at the 
same wavelength as the returning photons.  The added photons replace those lost during 
the closed-circuit, creating a never-ending re-circulating beam that begins at gyro turn-
on.  Consequently, as time increases, the effective beam path length (the total closed-
distance traveled by the leading wave since creation at turn-on) becomes progressively 
longer, and a phase comparison between oppositely directed beams thereby represents the 
total angular rotation (integrated angular rate) experienced since turn-on.  Suitable optics 
built into the RLG combine the counter-rotating beams onto a photo-detector to generate 
a signal representing the sine of the integrated input angular rate.  Each photo-diode 
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output wave thereby signifies rotation through a known angular rotation increment, the 
basic form of the RLG output. 

 
 

SELECTION OF A PARTICULAR INERTIAL COORDINATE FRAME 
 

Since the inertial coordinate frame axes in the revised formulation are only used for 
angular referencing, inertial coordinates can be defined based on observable remote 
celestial formations.  The only requirement is that the projections of relative acceleration 
between masses on the selected inertial frame axes represent equation (3) or its 

equivalent (A-6), (B-4), (C-7), (D-6) or (13) (with IB
Iω  = 0).  Either of these equations 

shows that the relative velocity rate in the selected I frame must account for only relative 
force and natural motion acceleration.  Since the reformulated definition of inertial 
coordinates only requires the angular orientation of its unit vectors, the previous 
statement can be simplified to state that the angular orientation of the I frame unit vectors 
must be such as to satisfy the previous equations.  Moreover, each inertial unit vector 
definition can be made independently from the others, so long as the orthogonality 
constraint between the three is satisfied.  (This is easily accomplished for example, by 
first defining a unit vector pair based on celestial observations.  One of the I frame unit 
vectors can than be constructed as the normalized perpendicular to the observed pair.  A 
second I frame unit vector can then be defined as one of the observed pair.  The third I 
frame unit vector would then be formed as the cross-product between the first selected 
two.) 

 
Observations of celestial relative mass motion generally entail observations of 

relative position between masses (e.g., the double integral of relative acceleration 
equation (3) as in (4)).  For example, consider an inertial coordinate frame with one of its 
unit vectors parallel to a line between two observable and easily identifiable stars.  
Assuming that the selected stars are reasonably close to one another it can be assumed 
that the natural motion acceleration created from other celestial elements at each star 
location will be the same.  The stars can also be selected so that the relative distance is 
sufficiently far that the gravitational acceleration generated by one on the other is 
negligibly small.  Finally, it is safe to approximate that the force acceleration acting on 
each star will be zero.  Thus, (3) shows that the projection of the relative star acceleration 
motion along inertial axes will be zero.  Hence, if the initial relative velocity between the 
stars is negligibly small, (4) shows that the line between the stars will be constant and 
suitable for selection as a reference direction for one of the inertial frame unit vectors.  
(Note: If the relative velocity between the stars has a component perpendicular to the line 
between the stars, the line will rotate in inertial space, hence, would not be suitable for 
use as an inertial coordinate axis direction vector.  Celestial observations of relative star 
locations from earth has shown that after correction for earth's rotation, the distance 
vector between stars remains constant in inertial coordinates). 
 

As another example based on observed relative mass movement, consider the motion 
of an orbiting planet around a star.  Call the star mass 1 and the planet mass 2.  Then from 
(3) and (4): 
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2d

dt 2,1
Ir =

2F
Ia −

1F
Ia + Δ

2,1N
Ia d

dt 2,1
Ir =

0

t
∫

2d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

dt +
0

d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

 (23) 

 

In celestial space, the
1F

a , 
2F

a  force acceleration can be safely approximated as zero.  

Assuming a large distance of the planet from the star, each with general mass symmetry, 
(6) would show that the star's generated gravitational component of natural acceleration 

on the planet would be 
2N/ga = − 1m

μ

21
3r

21r .  Similarly, the planet's generated 

gravitational component of natural acceleration on the star would be
1N/ga = − 2m

μ

21
3r

21r .  

It can also be assumed that the selected star and planet will be sufficiently distant from 
other natural motion generating mechanisms that their values at the star and planet  
locations are equal, hence cancel in (23).  Thus, (23) simplifies to 

 
2d

dt 2,1
Ir = − 2m − 1m( ) μ

21
3r

2,1
Ir

d
dt 2,1

Ir =
0

t
∫

2d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

dt +
0

d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

 (24) 

Define vector Iw  normal to 2,1
Ir  and 

d
dt 2,1

Ir  as a potential direction for an I frame unit 

vector: 

 Iw 2,1
Ir × d

dt 2,1
Ir  (25) 

(Note that Iw  is a mass normalized relative angular momentum of a point mass at 2 

relative to point 1 as in (C-1) of Appendix C - i.e., per unit point 2 mass.)  The rate of 

change of Iw  in the I frame is  

  

d
dt

Iw = d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

× d
dt 2,1

Ir
⎛
⎝⎜

⎞
⎠⎟

+ 2,1
Ir ×

2d
dt 2,1

Ir = − 2,1
Ir × 2m + 1m( ) μ

21
3r

2,1
Ir

⎡

⎣
⎢

⎤

⎦
⎥ = 0  (26) 

 

Thus Iw  in (25) will remain constant at its initial value in the I frame, and a unit vector 

parallel to (26) will have the required characteristic for an I frame unit vector.  Note also 

that the component of 
2d

dt 2,1
Ir in (24) along Iw  is proportional to 

 
2d

dt 2,1
Ir

⎛
⎝⎜

⎞
⎠⎟

. Iw = − 2m + 1m( ) μ

21
3r

2,1
Ir .

2,1
Ir × d

dt 2,1
Ir

⎛
⎝⎜

⎞
⎠⎟

= 0  (27) 

Hence, the relative velocity 
d
dt 2,1

Ir  will remain in a fixed plane defined by the constant 

Iw  normal to the plane of motion (i.e., the orbit plane of the planet around the star).  As 

such, a unit vector perpendicular to the observed planet orbital plane (i.e., parallel to Iw  
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in (25)) can be the basis for selection of one of the I frame unit vectors.  A perpendicular 
to earth's orbital plane around the sun is an example of this approach applied in the past. 
 

Based on the revised formulation of motion, Appendix D shows that in the absence of 
applied torques, the angular momentum of a rigid body about its center-of-mass will 
remain constant in an inertial coordinate frame.  As such, a unit vector directed along a 
torque free angular momentum vector can be used as an axis of an inertial frame.  As an 
example of a rigid body angular momentum based approach, consider the angular 

momentum cmH  of a rotating planet about its center of mass based on (D-6): 

 
 

d cmH

dt
= i,cm

Ir ×
iExternal

IF( )∑ + ∫ i,cm
Ir × Δ

i,cmN
Ia( ) iρ dv  (28) 

Forces applied to the planet can be approximated to be zero.  As in the previous 
example, consider that the planet is orbiting a star.  If the planet is sufficiently removed 

from the star center, the gravitational acceleration gradient Δ
i,cmN

Ia across the planet 

produced by the star will be very small.  For a symmetrical planet mass distribution, it 

can be shown that the composite effect in (28) of Δ
i,cmN

Ia  on 
 

d cmH

dt
 will be zero.  If the 

planet has only a small amount of mass asymmetry, the natural motion acceleration 

generated by Δ
i,cmN

Ia  will then be negligible.  Finally, consider that the natural motion 

acceleration gradient across the planet generated from other celestial elements is 
negligible.  Thus, (28) show that under these conditions, the rate of change of the angular 

momentum of the planet around its center of mass cmH  will be zero when measured in 

inertial coordinates.  Consequently, cmH will be constant, hence suitable for use as a 

reference direction for one of the unit vectors in an inertial coordinate frame.  A unit 
vector along earth's rotation axis is an example of this approach applied in the past. 

 
Unit vectors for an inertial coordinate frame can also be constructed artificially using 

gyros.  Three gyros mounted to a common base measure the angular rate vector of the 
mounting base relative to inertial coordinates.  Equation (9) can be integrated in a 
computer to calculate the angular orientation of the gyro mount relative to inertial I frame 

coordinates (in the form of direction cosine matrix I
BC ).  The columns of I

BC  are the I 

frame unit vector components as measured in a coordinate frame B aligned with the gyro 
input axes.  Such an implementation is the basis for inertial navigation systems 
(Appendix E) that relate force acceleration measurements (from accelerometers mounted 
with the gyros on the same base) into their equivalent I frame components for integration 
into relative velocity and position - based on (3) and (4). 
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APPLYING THE NEW FORMULATION TO DESCRIBE COMMON PHENOMENA 
 

Examples follow showing how the new relative motion formulation explains common 
phenomena, yielding identical results as classical formulations of the past. 
 
The Concept Of Weight 

 
Consider a coordinate frame B that rotates with the earth.  Consider a point 1 to be at 

earth's center of mass.  Because the earth is in free space, the net force 1F  impinging on 

it is zero, hence, the point 1 force acceleration will be zero.  Assuming an approximate 
symmetric mass distribution for the earth, application of (6) would show that the 
gravitational acceleration at earth's center point 1 due to earth's mass is zero (Note: the 
same can be deduced from symmetry, recognizing that the gravitational field generated at 
earth's center from an arbitrary mass point in the earth is exactly equal in magnitude and 
oppositely directed from the equivalent mass on the opposite side of the center of mass).  

Now consider a fixed point 2 on earth's surface.  Call 
2/g−EarthN

a the gravitational 

acceleration caused by earth mass at point 2.  In addition to earth mass effects, points 1 
and 2 have natural motion acceleration produced by the universe.  Call the difference 

between these at points Δ
2,1−UniverseN

a .  (Note - Δ
2,1−UniverseN

Ba is generated primarily by 

near earth spatial masses, the moon and secondarily, the sun).  Substituting these factors 
in (13) yields in the B frame 

 
2,1
Br( )
..

=
2F

Ba +
2/g−EarthN

Ba + Δ
2,1−UniverseN

Ba

− IB
Bω

.
× 2,1

Ar − IB
Bω × IB

Bω × 2,1
Br( ) − 2 IB

Bω × 2,1
Br( )
.

 (29) 

Because point 2 is fixed on earth's surface, the relative acceleration 2,1
Br( )
..

and velocity 

2,1
Br( )
.

 between points 1 and 2 is zero.  Additionally, earth's angular rate relative to 

inertial coordinates is constant, hence, for the B frame that rotates with the earth, 

IB
Bω

.
= 0 .  Substitution in (29) and solving for 

2F
Ba  then yields 

 

2F
Ba = −

2/g−EarthN
Ba + IB

Bω × IB
Bω × 2,1

Br( ) − Δ
2,1−UniverseN

Ba  (30) 

 

A mass body located at point 2 would experience the 
2F

Ba  force acceleration of (30) 

which is directed approximately upward, opposite from earth's downward 

gravity
2/g−EarthN

Ba .  The magnitude approximately equals the magnitude of 
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2/g−EarthN
Ba because the centripetal acceleration term IB

Bω × IB
Bω × 2,1

Br( )  is much smaller 

than
2/g−EarthN

Ba , and because Δ
2,1−UniverseN

Ba  is much smaller than IB
Bω × IB

Bω × 2,1
Br( ) .  

From (5), the 
2F

Ba inertial acceleration would be created by a force 2F  operating on a 

stationary mass body located at point 2.  This is the quantity denoted as "weight".  When 
we "weigh" a body, we are measuring the upward force 2F  using an appropriately 

calibrated scale. 
 

Measuring Weight On Earth's Surface, Other Planets, And In Space 
 
Two types of scales can be used to measure weight, a force-balance type and a mass-

balance type.  For the former, a spring-type mechanism is used to provide the balance 
force 2F .  The scale readout is proportional to the spring deflection under 2F  which is 

calibrated to provide the proper unit of force per unit mass in earth's gravity field.  In the 
English system, one pound is the force required to inertially accelerate one slug of mass 
at one foot per second-squared.  On a planet other than earth, a force-balance scale would 
have a scale factor error equal to the ratio of gravity magnitude values on the planet 
compared to that of the earth (e.g., the reported weight of an earth calibrated scale on 
Mars would be 0.45 of its value on the earth, i.e., the ratio between Mars/Earth surface 
gravity). 

 
For a mass balance type scale, a test mass is used with a suitable lever arm 

mechanism to balance the mass being weighed.  Both the test mass and the mass being 
weighed generate an inertial acceleration, hence reaction force proportional to the local 
gravity magnitude.  Balance is achieved by adjusting the test mass lever-arm position on 
the balancing mechanism so that the lever-arm/force products for the two masses become 
equal.  The resulting lever arm position at the balance point thereby becomes proportional 
to the ratio of the balance forces (i.e., proportional to the ratio of the masses) because 
both are in the same gravity field.  The lever arm position is calibrated based on the test 
mass size to provide an output in acceptable "weight" units (e.g., one pound per slug per 
unit of earth's gravity).  Notice, however, that because of the mass balance principal 
underlying this type of scale, the scale would have the same output on any planet as it 
would on earth's surface.  Thus, the balance type scale is actually a mass measurement 
device whose output is calibrated in pounds rather then slugs to correspond with the 
reaction force it would produce on earth's surface.  The concept of "pound mass" rather 
than "inertial mass" has been used to "clarify" the distinction between mass being 
weighed and mass being inertially accelerated.  However, according to this revised 
formulation, there is no need to distinguish one from the other; both are based on the 
force applied to inertial mass in generating inertial acceleration. 

 
Now consider a body being weighed in free space.  Consider the body being weighed 

to be at location point 2 and the scale to be at point 1 in a non-rotating spacecraft under 
unforced natural motion.  Because the body and scale will be stationary relative to one 



 19

another, the relative acceleration between them 
2d

dt 2,1
Ir  is zero.  Because the distance 

between them is small, their difference in natural motion acceleration Δ
2,1N

Ia will be 

essentially zero.  From (3), the difference in the force accelerations (
2F

Ia −
1F

Ia ) will then 

be zero.  Since it has been stipulated that the bodies and the spacecraft containing the 

bodies are in free space, there will be no external force applied to either, thus, 
2F

Ia and 

1F
Ia will also be zero.  For a force-balance type scale, there will thereby be zero force 

applied by the scale to the body being weighed, and the measured force (and deduced 
weight) will be zero (i.e., "weightless").  Curiously, however, for a mass-balance type 
scale, the output will be indeterminate because any lever arm position will be a balance 
point.  If the spacecraft containing the body and scale has a small amount of force applied 

to it (e.g., from a reaction jet), both 
2F

Ia and 
1F

Ia will be generated, and a single balance 

point, thereby created, corresponding to a correct earth referenced "pound-mass" output. 
 

Einstein's Elevator Thought Experiment 
 

Einstein's elevator thought experiment [2 - pp. 75 - 79] deals with the difference 
between observations of two observers, one stationary on the earth, the other in an 
enclosed capsule in Newtonian gravity free inertial space, being pulled upward by a rope 
at an acceleration equal to earth's surface gravity magnitude.  The observer in the capsule 
sees free objects within the capsule appear to be accelerating downward at the 
acceleration of gravity, exactly as would an earthbound observer see objects that are 
dropped to fall freely to the earth under earth's gravitational pull.  Einstein concluded that 
the two situations are equivalent and that the observer in the elevator would interpret his 
observation as being created by a "uniform" gravity field, much as would the earthbound 
observer. 

 
What does revised formulation (3) predict for the result of this experiment?  First 

consider the earth fixed observer at point 2 on the earth's surface where 
2F

Ba , force 

acceleration (in a B frame rotating with the earth), is given by (30).  For simplicity (as in 

Einstein's model) we will ignore the IB
Bω  earth rate effect in (30) so that the B frame can 

be considered to be inertial frame I, hence, (30) becomes 
 

 
2F

Ia = −
2/g−EarthN

Ia + Δ
2,ErthCntr−UniverseN

Ia( )  (31) 

where 
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Δ
2,ErthCntr−UniverseN

Ia  =  The difference between the natural acceleration of the 

universe at surface point 2 compared to a point at earth's 
center. 

 
Consider point 2 to be close to another point 1 in free-fall at the point 2 location.  

Then Δ
2,1N

Ia and the 
1F

Ia  force acceleration is zero, and (31) in (3) shows that 
2d

dt 2,1
Ir , 

the acceleration of point 2 relative to point 1 would be 
 

 
2d

dt 2,1
Ir = −

2/g−EarthN
Ia + Δ

2,ErthCntr−UniverseN
Ia( )  (32) 

By definition, the acceleration 
2d

dt 1,2
Ir  of free-fall point 1 relative to point 2 is the 

negative of (32), hence, 
 

 
2d

dt 1,2
Ir =

2/g−EarthN
Ia + Δ

2,ErthCntr−UniverseN
Ia( )  (33) 

 
Thus, free-fall point 1 falls relative to earth fixed point 2 at the combined natural 
acceleration of earth fixed point 2. 
 

For an observer at point 3 within the rope accelerated capsule, the experiment sets the 

applied rope force acceleration 
3F

Ia  equal to stationary observer 2 value 
2F

Ia , or from 

(31), 

 
3F

Ia = −
2/g−EarthN

Ia + Δ
2,ErthCntr−UniverseN

Ia( )  (34) 

 
Now consider a mass point 4 to be in free-fall within the capsule.  As in the previous 

discussion for the earth fixed observer, both Δ
3,4N

Ia  and the 
4F

Ia  force acceleration is 

zero.  Substitution in (3) then yields the acceleration of free-fall point 4 relative to the 
accelerating capsule point 3: 
 

 
2d

dt 4,3
Ir = −

3F
Ia =

2/g−EarthN
Ia + Δ

2,ErthCntr−UniverseN
Ia( )  (35) 

 
which is exactly the same as the (33) result for the earth fixed observer. 

 
Einstein interpreted these results as demonstrating that natural and artificially 

generated gravitational acceleration are indistinguishable, provided that there is an 
equivalency between inertial and gravitational mass.  His conclusion was based on the 
interpretation of gravitational acceleration as being the result of an applied gravitational 
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force.  Gravitational mass was then required to translate gravitational acceleration into 
the gravitational force that created it.  But with the new formulation, the concept of 
gravitational mass never enters the analysis.  Inertial mass is required, but only implicitly 
as represented in (5) for translating the applied force acceleration to the force that 
produces it.  Both the earth and capsule bound observers measure the same effect; the 
same applied force acceleration that accelerates the observer from the free-fall mass 
being observed.  For the earth-bound case the force acceleration is the natural reaction of 
the earth surface against gravitational free-fall.  For the capsule-bound case, the force 
generated acceleration is created to match the same gravity resisting force acceleration 
experienced on earth's surface.  Neither case measures gravitational acceleration, either 
actual or artificial as postulated by Einstein. 

 
Free-Fall In Space And Earth Orbit 
 

"Free-fall" has been defined as motion due to gravity alone (i.e., with no additional 
applied force) relative to a reference point commonly selected to be the center of some 
near-by planet or star (for which the applied force acceleration can be approximated as 
zero).  From (3), the free-fall motion of a general point 2 relative to some non-forced 
acceleration reference point 1 is 
 

 
2d

dt 2,1
Ir = Δ

2,1N
Ia  (36) 

 
The center of the earth has been a common reference point for referencing near-earth 

motion.  From (3) for Δ
2,1N

Ia in (36), the free-fall motion of a mass point 2 relative to 

point 1 at the center of the earth is: 
 

 
2d

dt 2,1
Ir =

2/g−EarthN
Ia + Δ

2,1−UniverseN
Ia  (37) 

 
Integration of (4) for velocity and position with (37) as input would describe an orbit 
around the earth, depending on the initial velocity/position values (i.e., too high an initial 
velocity would generate an escape trajectory from the earth; too low or a misdirected 
initial velocity would produce a trajectory that impacted the earth).  Equation (37) motion 
can be "artificially" generated by applying control forces to a vehicle that are designed to 

cancel all other applied forces, thereby controlling 
2F

Ia  to zero (e.g., by adjusting the 

thrust and lift in an airplane to cancel aerodynamic forces).  The control sensor for such 
an application would be an accelerometer, measuring the inertial acceleration controlling 
the vehicle to maintain an average zero output during the free-fall maneuver.  Note that in 
the previous example, local gravity is a primary element in point 2 motion, and the point 
2 "environment" is not one of "zero or micro-gravity" as it is sometimes erroneously 
defined. 
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Inertial Navigation 
 

An inertial navigation system (INS) is a portable autonomous device that calculates 
velocity and position between two points (1 and 2) by integrating relative acceleration 

between the points.  The force portion 
F

a of the acceleration is measured by 

accelerometers.  The natural component of acceleration 
N

a is gravity N/ga based on an 

analytical model function of calculated position.  The basic concept is represented in an 
inertial coordinate I frame by equations (3), (4), and (6).  Gyros are used to determine the 
angular orientation of the accelerometers relative to inertial coordinates based on the 
integrated form [4 - pp. 3-53]: 

 

 
F
Ia = B

IC F
Ba  B

IC = ∫ IB
Bω ×( ) dt +

0B
IC( )  (38) 

 

where the B frame is aligned with the accelerometer mount, 
F
Ia is INS force acceleration 

in inertial I frame coordinates, 
F
Ba is the accelerometer output vector, and IB

Bω  is the B 

frame angular rate relative to the I frame as measured by gyros installed on the 
accelerometer mount.  Means are also provided relating I frame coordinates to standard 
frames commonly used for navigation data representations (e.g., locally level coordinates 
aligned with north, east, vertical axes). 

 
Typical versions of (3), (4), (6), and (38) implemented in a terrestrial INS calculate 

velocity relative to a rotating earth in a coordinate frame that remains locally level at the 
INS position as it moves relative to earth's surface.  Position relative to the earth is 
determined from the velocity in terms of latitude/longitude angular units and altitude, 
using appropriate integration routines.  The details are described in Appendix E. 
 
 
CONCLUSIONS 
 

The revised definition of natural motion and altering forces simplifies the 
understanding of commonly experienced natural phenomena by eliminating the need for 
gravitational force and associated gravitational mass.  The basis for the new approach is 
dividing acceleration into two clearly defined parts, inertial acceleration generated by 
forces, and natural acceleration (including gravity) that governs unforced natural motion.  
Inertial acceleration is an absolute quantity measurable with accelerometers at any spatial 
location.  Natural acceleration is a relativistic property of space that can only be 
measured (e.g., by optical means) as the relative difference between values at separated 
spatial locations.  A corollary is that absolute natural motion acceleration at any spatial 
point is immeasurable.  Application of the new approach provides a measurable 
definition of inertial coordinates, the angular orientation reference of all inertial angular-
rate sensing instruments. 
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APPENDIX A 

TRANSLATIONAL DYNAMICS OF MASS GROUPS 
 

For a general mass point i within a group of masses, (3) with (5) relative to an 
arbitrary reference point 0 is 

 

 
2d

dt i,0
Ir =

iF
Ia −

0F
Ia + Δ

i,0N
Ia

iF
Ia = iF / im

0F
Ia = 0F / 0m  (A-1) 

 

Multiplying by im  and summing over the group of i masses yields: 

 

 im
2d

dt i,0
Ir∑ = iF + im Δ

i,0N
Ia( )∑ − M

0F
Ia M = im∑  (A-2) 

where M is the total inertial mass of the group.  Newton's third law states that for every 
force there is an equal and opposite reaction force  [1 - pp. 417].  Thus, the components 
of iF  due to point-to-point interaction within the group will sum to zero.  Then (A-2) 

becomes 
 

 im
2d

dt i,0
Ir∑ =

iExternal
F∑ + im Δ

i,0N
Ia∑ − M

0F
Ia  (A-3) 

 
and 

iExternal
F  is the external force acting on the group at point i, exclusive of forces 

produced by mass interactions within the group.  Equation (A-3) can be simplified by 
introducing the standard definition of "center-of mass" cm/0r  position relative to point 0 

as 

 cm,0r = im i,0r∑
M

 (A-4) 

 
Successive differentiation of (A-4) in the I frame using general equations (10) for frame I 
position/velocity representation gives 
 

 
2d

dt cm,0
Ir =

1

M im
2d

dt i,0
Ir

⎛
⎝⎜

⎞
⎠⎟

∑  (A-5) 

 
With (A-3) and rearrangement, (A-5) assumes the simplified form 
 

 

M
2d

dt cm,0
Ir =

iExternal
F∑ + im Δ

i,0N
Ia − M

0F
Ia∑

=
iExternal

F∑ + im Δ
i,cmN

Ia + Δ
cm,0N

Ia( ) − M
0F

Ia∑

=
iExternal

F∑ + im Δ
i,cmN

Ia + M Δ
cm,0N

Ia − M
0F

Ia∑

 (A-6) 
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The im Δ
i,cmN

Ia and M Δ
cm,0N

Ia  terms in (A-6) have been commonly identified as 

"gravitational forces" with im  and the M multiplying Δ
cm,0N

Ia  identified as 

"gravitational mass".  With the new formulation, however, im  and M are inertial mass, 

and only appear in (A-6) by the mathematical combination of (3) and (5) with (A-5).  The 
0 point for position referencing is commonly selected to be an easily identified location in 

pure natural motion for which 
0F

Ia  vanishes.  An example is the center of the earth for 

position locations relative to the earth.  For such a selection (A-6) assumes the more 
familiar form [3 - pp. 132]: 
 

 M
2d

dt cm,0
Ir =

iExternal
F∑ + im Δ

cm,0N
Ia + M Δ

cm,0N
Ia∑  (A-7) 

 
 

APPENDIX B 

TRANSLATIONAL DYNAMICS OF RIGID BODIES 
 

For a rigid body it is more appropriate to define the im  mass points in (A-6) as part 

of a continuum for which iρ  is the body point i mass density, dv is the differential 

volume of mass point i, and the summation operation becomes an integral, so that (A-6) 
becomes 

 

 M
2d

dt cm,0
Ir =

iExternal
F∑ + ∫ Δ

i,cmN
Ia iρ dv + M Δ

cm,0N
Ia − M

0F
Ia  (B-1) 

 

For rigid bodies, a very good approximation is that the Δ
i,cmN

Ia  gravity differential term  

in (B-1) varies linearly across the body as
  

Δ
i,cmN

Ia Δ
i,cmN

Ia( ) . i,cm
Ir  where 

 
 

Δ
i,cmN

Ia( )  =  Gradient of Δ
i,cmN

Ia  at the body center-of-mass cm. 

 
Substitution into the (B-1) integral term with (A-2) for total mass M gives 
 

 

∫ Δ
i,cmN

Ia iρ dv = Δ
i,cmN

Ia( ).∫ i,cm
Ir iρ dv

= Δ
i,cmN

Ia( ).∫ i,0
Ir − cm,0

Ir( ) iρ dv

= Δ
i,cmN

Ia( ). ∫ i,0
Ir iρ dv − cm,0

Ir ∫ iρ dv⎡
⎣

⎤
⎦

= Δ
i,cmN

Ia( ). ∫ i,0
Ir iρ dv − M cm,0

Ir⎡
⎣

⎤
⎦

 (B-2) 
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The integral form of (A-4) for a rigid body's center of mass is 

 cm,0r =
1

M ∫ i,0
Ir iρ dv  (B-3) 

With (B-3) in (B-2), (B-1) with (B-2) simplifies to the final common form for rigid body 
center-of-mass acceleration relative to arbitrary point 0: 
 

 
2d

dt cm,0
Ir =

1

M iExternal
F∑ + Δ

cm,0N
Ia −

0F
Ia  (B-4) 

 
 

APPENDIX C 

ROTATIONAL DYNAMICS OF MASS GROUPS 
 

The angular momentum i,0H  of a mass point i relative to an arbitrary mass point 0 is 

traditionally defined in inertial I frame coordinates as [3 - pp. 132] 
 

 
 

i,0
IH im i,0

Ir ×
d i,0

Ir

dt
 (C-1) 

 
The summation of (C-1) over the group of mass points yields the I frame angular 

momentum 
 0H  of the group: 

 

 

 

0H i,0
IH∑ =

im i,0
Ir ×

d i,0
Ir

dt

⎛
⎝⎜

⎞
⎠⎟

∑  (C-2) 

 

The rate of change of 
 0H  is the derivative of (C-2) 

 

 

 

d 0H

dt
= im

d i,0
Ir

dt
×

d i,0
Ir

dt
+ i,0

Ir ×
2d i,0

Ir

dt

⎡

⎣
⎢

⎤

⎦
⎥ =∑ im i,0

Ir ×
2d i,0

Ir

dt
∑  (C-3) 

 
Using revised motion equation (3) with point 2  and 1 identified respectively as points i 
and 0 yields: 
 

 
 

d 0H

dt
= im i,0

Ir ×
iF

Ia −
0F

Ia + Δ
i,0N

Ia( )∑  (C-4) 

 

Substituting (5) for 
iF

Ia  and 
0F

Ia  with (A-4) for center-of-mass position cm,0r  definition 

finds 
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d 0H

dt
= i,0

Ir × iF( )∑ + im i,0
Ir × Δ

i,0N
Ia( )∑ − im i,0

Ir ×
0F

Ia( )∑

= i,0
Ir × iF( )∑ + im i,0

Ir × Δ
i,0N

Ia( )∑ − M cm,0
Ir ×

0F
Ia

 (C-5) 

By selecting arbitrary point 0 as the center-of-mass (point cm) for the group, cm,0
Ir  is 

zero, and (C-5) reduces to 
 

 
 

d cmH

dt
= i,cm

Ir × iF( )∑ + im i,cm
Ir × Δ

i,cmN
Ia( )∑  (C-6) 

 
By Newton's third law, the interactive forces between adjacent mass points at any point i 
are equal and opposite. Hence, as for the Appendix B linear dynamic group case, the 
internal/interactive moment/force terms cancel at each i point and (C-6) further simplifies 
to the more familiar form [3 - pp. 132] 
 

 
 

d cmH

dt
= i,cm

Ir ×
iExternal

F( )∑ + im i,cm
Ir × Δ

i,cmN
Ia( )∑  (C-7) 

 
 

APPENDIX D 

ROTATIONAL DYNAMICS OF RIGID BODIES 
 

Equation (10) relates the rate of change of relative position between two points as 
viewed in inertial and rotating coordinate frames (I and A respectively).  Consider that 
the A frame in (10) is defined to be rotating with a body relative to the I frame, and that 
points 1 and 2 in the body are identified as the body's center-of-mass cm and a general 
point i respectively: 

 i,cm
Ar( )
.

= I
AC i,cm

Ir( )
.

− IA
Aω × i,cm

Ar  (D-1) 

For a rigid body, when viewed in the A frame, the relative position vector between any 

two points in the body is constant, hence, i,cm
Ar( )
.

= 0 , and (D-1) with rearrangement 

becomes 

 i,cm
Ir( )
.

= IA
Aω × i,cm

Ir  (D-2) 

 
Then substituting (D-2) into general equation (C-2) finds for the rigid body's angular 
momentum around its center-of-mass: 
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cmH = im i,cm
Ir × i,cm

Ir( )
.

⎡

⎣
⎢

⎤

⎦
⎥∑ = im i,cm

Ir × IA
Iω × i,cm

Ir( )⎡
⎣

⎤
⎦∑  (D-3) 

 
For a rigid body it is more appropriate to define the im  mass points in (D-3) as part 

of a continuum for which iρ  is the body point i mass density, dv is the differential 

volume of mass point i, and the summation operation becomes an integral, so that (D-3) 
becomes 
 

 
 cmH = cm

IJ IA
Iω  (D-4) 

 

with the moment of inertia tensor cmJ  defined in the I frame as 

 
 

cm
IJ − ∫ i,cm

Ir ×( ) i,cm
Ir ×( ) iρ dv⎡

⎣
⎤
⎦  (D-5) 

 
Replacing the natural motion summation with an integration operation in (C-7) provides 

the corresponding differential equation for cmH  in an inertial I frame: 

 

 
 

d cmH

dt
= i,cm

Ir ×
iExternal

IF( )∑ + ∫ i,cm
Ir × Δ

i,cmN
Ia( ) iρ dv  (D-6) 

 

The lever arm applied force term i,cmr ×
iExternal

F  in (D-6) is commonly referred to as 

"torque". 
 

Equation (D-6) with (D-4) and (D-5) is the general rotational dynamics differential 
equation for a rigid body in an inertial I frame [3 - pp. 132-133].  As is well known, it 

demonstrates that in the absence of applied forces and Δ
i,cmN

a  natural acceleration 

gradients, the angular momentum cmH  will remain stationary in magnitude and direction 

in inertial coordinates.  The Δ
i,cmN

a  term in (D-6) (primarily due to gravity gradient) is 

commonly small enough to be ignored compared to the i,cmr ×
iExternal

F  external torque 

terms.  However, there remain some applications where it can be an important factor in 
angular rate response (e.g., gravity gradient stabilization of satellites where a long boom 

is extended to intentionally amplify the gravity difference i,cmr ×
iExternal

F  and physical 

separation i,cmr  terms).  As can be verified by expansion and evaluation in an arbitrary B 

frame coordinate system, it is also important to know (as demonstrated in [3 - Sect. 6-4]) 

that for a symmetrical mass distribution, the ∫ i,cm
Ir × Δ

i,cmN
Ia( ) iρ dv  term vanishes 

under the very good approximation of constant gravity gradient across the body. 
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The derivative of cmH  is also commonly expressed in terms of the cmH rate of  

change viewed in another general B frame rotating at IBω  relative to the I frame.  Define 

 
 cm

BH = I
BC cmH  (D-7) 

Following the same methodology that led to (7) finds 

 
 cm

BH( )
.

= I
BC cmH( )

.
− IB

Bω × cmH  (D-8) 

which when substituted into (D-8) shows that 

 
 

cm
BH( )
.

= i,cm
Br ×

iExternal
BF( )∑ − IB

Bω × cmH + ∫ i,cm
Br × Δ

i,cmN
Ba( ) iρ dv  (D-9) 

The B frame projection of cmH  in (D-9) is evaluated from (D-7) and (D-4): 

 
 cm

BH = I
BC cmH = I

BC cm
IJ IA

Iω = I
BC cm

IJ B
IC IA

Bω = cm
BJ IA

Bω  (D-10) 

The B frame projection of cmJ  in (D-10) is obtained with (D-5) from the tensor similarity 

transformation of cm
IJ  and i,cm

Ir ×( ) onto the B frame: 

 

 

cm
BJ = I

BC cm
IJ B

IC = − I
BC ∫ i,cm

Ir ×( ) i,cm
Ir ×( ) iρ dv⎡

⎣
⎤
⎦ B

IC

= − ∫ I
BC i,cm

Ir ×( ) B
IC I

BC i,cm
Ir ×( ) B

IC iρ dv⎡
⎣

⎤
⎦

= − ∫ i,cm
Br ×( ) i,cm

Br ×( ) iρ dv⎡
⎣

⎤
⎦

 (D-11) 

 
 

APPENDIX E 

THE ANALYTICS OF INERTIAL NAVIGATION 
 

A typical version of (3) and (4) implemented in a terrestrial INS is derived from (16) 
with rotating coordinate frame B identified as frame E having its unit vectors parallel to 
known reference lines fixed relative to the earth (e.g., earth's rotation axis with the other 
axes in earth's equatorial plane at known angular orientations relative to a selected inertial 
coordinate frame orientation).  Frame A in (16) is identified to be inertial coordinate 
frame I.  Point 2 is defined to be within the INS, and point 1 is defined to be the center of 
the earth (thus having zero force acceleration).  Neglecting the variation in natural motion 
acceleration from the universe between the INS and earth's center, and recognizing that in 
earth E frame coordinates, earth's angular rate relative to the I frame is constant, (16) 
becomes 
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 INS,Erthcntr/E
Ev( )

.
=

2F
Ea +

INS/g−EarthN
Ea

− IE
Eω × IE

Eω × INS,Erthcntr
Er( ) − 2 IE

Eω × INS,Erthcntr/E
Ev

 (E-1) 

where 
INS/g−EarthN

a  is the component of INS natural acceleration caused by earth's 

gravity, and  is the velocity of INS point 2 relative to earth center point 1 as viewed in E 
frame coordinates, is defined as: 

 INS,Erthcntr/E
Ev INS,Erthcntr/E

Er( )
.

 (E-2) 

 
Now define a third coordinate frame L having one of its unit vectors aligned parallel to 
the local vertical with the other two unit vectors perpendicular to each other and having a 

known orientation relative to the E frame.  Then INS,Erthcntr/Ev  in the L frame is 

 INS,Erthcntr/E
Lv = E

LC INS,Erthcntr/E
Ev  (E-3) 

 INS,Erthcntr/E
Lv( )

.
= E

LC( )
.

INS,Erthcntr/E
Ev + E

LC INS,Erthcntr/E
Ev( )

.
 (E-4) 

where the E
LC  rate of change E

LC( )
.

 is generated from EL
Lω , the angular rate of the L 

frame relative to the E frame, or similar to (9): 

 E
LC( )
.

= − EL
Lω ×( ) E

LC  (E-5) 

Substituting (E-1), (E-3), and (E-5) into (E-4) yields the classical inertial navigation 

equations for calculating INS,Erthcntr/E
Lv  in an INS computer: 

 INS,Erthcntr/E
Lv( )

.
=

2F
La +

INS/g−EarthN
La

− IE
Lω × IE

Lω × INS,Erthcntr
Lr( ) − EL

Lω + 2 IE
Lω( ) × INS,Erthcntr/E

Lv

 (E-6) 

 INS,Erthcntr/E
Lv =

0

t
∫ INS,Erthcntr/E

Lv( )
.

dt +
0INS,Erthcntr/E

Lv  (E-7) 

with 

IE
Lω = E

LC IE
Eω INS,Erthcntr

Lr = E
LC INS,Erthcntr

Er EL
Lω =  cF INS,Erthcntr/E

Lv

INS,Erthcntr
Er = Function of  E

LC  and h h = Upu
0

t
∫ .

INS,Erthcntr/E
Lv dt + 0h

 (E-8) 

where 

h = Altitude above earth's surface. 
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Upu  =  Unit vector upward at the local position. 

cF  =  Curvature matrix [4 - pp. 5-21 & 5-22] (an analytic function of E
LC  and h), and 

approximately equal to identity divided by the sum of earth's average radius 

plus h. 

In typical practice, E
LC  in (E-8 )is calculated as the transpose of the integral of 

transposed (E-5), noting from its definition, that the transpose of the skew symmetric 

cross-product matrix form of a vector equals its negative i.e., 
T

EL
Lω ×( ) = − EL

Lω ×( ) : 

 L
EC( )
.

= L
EC EL

Lω ×( )  (E-9) 

 
For a strapdown INS, the inertial sensors are mounted to a platform that is fixed 

relative to vehicle axes.  Strapdown platform coordinates ("body" B frame) are defined as 
having unit vectors parallel to sensor platform axes.  The L frame force components of 

2F
La  in (E-6) are obtained from the B frame force acceleration measurements 

2F
Ba  by 

transforming to the L frame: 
 

 
2F

La = B
LC

2F
Ba  (E-10) 

 

With INS,Erthcntr/E
Lv  found from (E-7), the relative position vector INS,Erthcntr

Lr  in (E-

8) can be found by transforming INS,Erthcntr/E
Lv  to the E frame and integrating (E-2).  In 

practice, however, position relative to the earth is usually measured by altitude h above 
the earth's surface and by angular units over the earth's surface (i.e., latitude and 

longitude).  Latitude and longitude can be extracted from the L
EC  matrix calculated in  

(E-6) [4 - pp. 4-29]; altitude is determined as the integral of the vertical component of 

INS,Erthcntr/E
Lv  from (E-7).  The B

LC  matrix in (E-10) is calculated by integrating classic 

attitude rate equation forms (e.g., direction cosines - [4 - pp. 3-54]) using strapdown gyro 

measurements of IB
Bω , the B frame angular rate relative to I frame inertial coordinates: 

 B
LC( )
.

= B
LC IB

Bω ×( ) − IL
Lω ×( ) B

LC  (E-11) 

with 

 IL
Lω = IE

Lω + EL
Lω  (E-12) 
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