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Foreword

This two volume text provides a detailed comprehensive discourse on the analytics of
strapdown inertial navigation systems (INS’s), the basic technology used on modern day
commercial and military aircraft, guided missiles, surface ships and underwater vehicles.
Based on his first-hand experience in this field, the author has provided a unique service to the
aerospace industry in preparing this technical dissertation on the algorithms implemented in
the strapdown system computer, and the analytics (and software) associated with system
software validation, system test, simulation, performance analysis, and the analytical design
methodology used in deriving the strapdown equations.  Included is an in-depth chapter
dealing with Kalman filter theory and its application to the aiding of a strapdown INS.

Strapdown Analytics has been prepared for the reader who may not have had experience in
navigation or Kalman filtering.  The analytical material presented is derived from scratch,
showing the developmental steps in rigorous detail, without relying on reference material for
supporting analytics.  The book is complicated, yet complete and understandable by
analytically inclined graduate students and practicing engineers.  The book can be viewed as
the text for an advanced course one might take following the introductory course taught by the
author, Introduction To Strapdown Inertial Navigation Systems.

This is the second edition of Strapdown Analytics.  It contains all material provided in the
first edition including errata corrections uncovered since the original publication in 2000.
This edition contains an additional Chapter 19 which presents three relevant strapdown papers
published by the author since 2000.
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13
      

Analytical Solutions To The
Strapdown Navigation Error Equations

13.0  OVERVIEW

Chapter 12 developed various forms of differential equations describing the dynamic error
characteristics of strapdown inertial navigation error terms in various coordinate frames.  The
complete solution to these equations generally requires a numerical integration process on a
digital computer for a particular set of initial conditions, noise characteristics, vertical control
loop gains and trajectory profile.  Unfortunately, although numerically correct, this procedure
does not lend itself to providing an understanding of the various mechanisms that produce
navigation error in general.  In this chapter, we analyze the Chapter 12 equations under
simplifying conditions that lend themselves to closed form analytical solution.  The analytical
results thus obtained provide the desired insight into the general behavior of the navigation error
terms in response to initialization error effects and inertial sensor input error.

The chapter begins with a presentation of generalized vector relations that are used
throughout the development of the analytic solutions.  We then provide an analytical overview
of the general characteristics of the strapdown inertial navigation error response in the vertical
and horizontal channels for up to two hours and for long term system operation.  Included is a
discussion of the “open-loop” versus “closed-loop” vertical channel response and the effect of
strapdown inertial sensor scale-factor/misalignment error on attitude/acceleration transformation
accuracy.  The remaining sections develop analytical solutions to the error differential equations
for classical constraint conditions:

• Response to constant sensor errors at constant attitude for up to two hours.

• Solutions for constant sensor errors at rotating attitudes for up to two hours.

• Average long term horizontal solution for constant sensor errors at
constant attitude.

• Navigation error response to inertial sensor random output noise.

In general, the coordinate frames we will be using in this chapter are the B, N, E, and I
Frames defined in Section 2.2, with the I Frame as defined with more specificity in Section
12.0.  An exception is Section 13.5 in which the E, N and I Frames have particular definitions
selected for the problem being analyzed.
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13.1  USEFUL VECTOR RELATIONSHIPS

The analytical developments in subsections to follow are laborious at times, and expedited by
making use of some generalized vector relationships presented here.

Considering a general vector in the N Frame, we can write:

AN  =  AH
N

 + AZN uZN
N

(13.1-1)

where

AN  =  Arbitrary vector with components projected on N Frame coordinate axes.

uZN
N

  = Unit vector upward along the N Frame Z axis as projected onto N Frame axes.

From the definition of the N Frame in Section 2.2, uZN
N

 lies along the upward

local geodetic vertical.

AH
N

  =  Horizontal component of AN defined as the component perpendicular to uZN
N

.

H  = Designation for the horizontal component of the associated vector (i.e., the portion

that is perpendicular to uZN
N

).

AZN  =  Vertical component of AN defined as the component along uZN
N

.

By definition we can write:

AZN  =  uZN
N

 ⋅ AN (13.1-2)

and from (13.1-1):

AH
N

  =  AN - uZN
N

 ⋅ AN  uZN
N

(13.1-3)

From (13.1-1) we see that:

uZN
N

 × AN  =  uZN
N

 × AH
N

(13.1-4)

Using the Equation (3.1.1-16) general vector triple cross-product rule, the cross product of

uZN
N

 with (13.1-4) is given by:

uZN
N

 × uZN
N

 × AN   =  - AH
N

(13.1-5)

or with the definition of the cross-product operator in Equation (3.1.1-13):



USEFUL VECTOR RELATIONSHIPS     13-3

uZN
N ×  uZN

N ×  AN  =  - AH
N

(13.1-6)

We can also define AH
N

 as:

AH
N

  =  IH AN (13.1-7)

where

IH  = Horizontal identity matrix defined as a diagonal matrix with the 1,1 and 2,2
elements equal to unity and the 3,3 element equal to zero.

From (13.1-6) and (13.1-7) we then see that:

uZN
N ×  uZN

N ×   =  - IH (13.1-8)

Equation (13.1-8) applies for a particular unit vector uZN
N

 defined to lie along the N Frame Z

axis.  For the more general case of an arbitrary unit vector, the equivalent to (13.1-5) and
(13.1-6) is obtained with the Equation (3.1.1-16) vector triple cross-product rule:

uGen
N

 × uGen
N

 × AN   =  uGen
N ×  uGen

N ×  AN  =  uGen
N

 uGen
N

 ⋅ AN  - AN (13.1-9)

where

uGen
N

  =  General unit vector projected on N Frame axes.

Using the Equation (3.1.1-12) vector dot-product operator in the last term in (13.1-9), we get:

uGen
N ×  uGen

N ×  AN  =  uGen
N

 uGen
N T

 AN - AN  =  uGen
N

 uGen
N T

 - I  AN (13.1-10)

Because AN has been defined as an arbitrary vector, (13.1-10) then assumes the general form:

uGen
N ×  uGen

N ×   =  uGen
N

 uGen
N T

 - I (13.1-11)

An expression for the triple uGen
N ×  product can also be derived from (13.1-9) as:

uGen
N

 × uGen
N

 × uGen
N

 × AN   = uGen
N ×  uGen

N ×  uGen
N ×  AN

 

=  uGen
N ×  uGen

N
 uGen

N
 ⋅ AN  - AN   =  - uGen

N ×  AN
(13.1-12)

In (13.1-12) use was made of the fact that the cross product of a vector with itself is zero.

Because AN has been defined as an arbitrary vector, (13.1-12) then assumes the general form:
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uGen
N ×  uGen

N ×  uGen
N ×   =  - uGen

N × (13.1-13)

13.2  GENERAL NAVIGATION ERROR EQUATION CHARACTERISTICS

The general characteristic response of the strapdown inertial navigation error equations can be
analyzed using Equations (12.5.4-1).  These equations can be revised by incorporating Equation
(12.1.2-4) and the N Frame version of (12.3.6.1-29), repeated below:

ωIN
N

  =  ωIE
N

 + ωEN
N

(13.2-1)

ωEN
N

  ≈  ρZN uZN
N

 + 
1
R

 uZN
N

 × vH
N

(13.2-2)

We can also write for the ωIE
N

 earth rate vector using generalized Equations (13.1-1) and

(13.1-2):

ωIE
N

  =  ωIEH

N
 + ωIE

N
 ⋅ uZN

N
 uZN

N
(13.2-3)

where

ωIEH

N
  =  Horizontal component of ωIE

N
.

It will prove expeditious in this section to select the N Frame as being of the “Free Azimuth”

type which (as defined in Section 4.5) sets ρZN equal to the negative of the vertical earth rate

component:

ρZN  =  - ωIE
N

 ⋅ uZN
N

(13.2-4)

With (13.2-2) - (13.2-4), Equation (13.2-1) becomes:

ωIN
N

  =  
1
R

 uZN
N

 × vH
N

 + ωIEH

N
  =  ωIN H

N
(13.2-5)

where

ωIN H

N
  =  Horizontal component of ωIN

N
.

It is advantageous for this development to define the δυN
, δRN velocity/position error terms

in Equations (12.5.4-1) as the sum of their horizontal and vertical components:

δυN
  =  δυH

N
 + δυR uZN

N
(13.2-6)
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δRN  =  δRH
N

 + δR uZN
N

(13.2-7)

where

δυH
N

, δRH
N

  =  Horizontal components of δυN
, δRN.

δυR, δR  =  Vertical components of δυN
, δRN.

With (13.2-5) - (13.2-7) and general Equation (13.1-5), particular cross-product terms in
Equations (12.5.4-1) become:

ωIN
N

 × δυN
  =  ωIN H

N
 × δυH

N
 + ωIN H

N
 × uZN

N
 δυR

 =  ωIN H

N
 × δυH

N
 - uZN

N
 × 

1
R

 uZN
N

 × vH
N

 + ωIEH

N
 δυR (13.2-8)

 =  ωIN H

N
 × δυH

N
 + ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 δυR

and similarly:

ωIN
N

 × δRN  =  ωIN H

N
 × δRH

N
 + ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 δR (13.2-9)

Let us now substitute (13.2-6) - (13.2-9) into the Equations (12.5.4-1) velocity/position error
rate expressions to obtain the equivalent Free Azimuth N Frame forms:

δRH
N

 + δR uZN
N

  =  δυH
N

 + δυR uZN
N

 - ωIN H

N
 × δRH

N
 - ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 δR

- C3 δR - δhPrsr  uZN
N

 + CB
N

 δυQuant

(13.2-10)

________________________________________________________________________

δυH
N

 + δυR uZN
N

  =  CB
N

 δaSF
B

 + aSF
N

 × ψN
 - 

g
R

 δRH
N

 - ωINH

N
 × δυH

N
 - ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 δυR

+ δgMdl
N

 + F(h) 
g
R

 - C2  δR - δevc3 + C2 δhPrsr  uZN
N

- aSF
N

 ×  CB
N

 δαQuant - CB
N

 ωIB
B

 ×  CB
N

 δυQuant

(13.2-11)

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

The ψN
 attitude error and δevc3 integral control terms in Equations (13.2-11) are provided by

the Equations (12.5.4-1) expressions:
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ψ
N

  =  - CB
N

 δωIB
B

 - ωIN
N

 × ψ 
N

 + CB
N

 ωIB
B

 × δαQuant (13.2-12)

δevc3  =  C1 δR - δhPrsr (13.2-13)

An important characteristic of Equations (13.2-10) - (13.2-13) is the dependence of the ψN

attitude error only on angular rate sensor errors (δωIB
B

, δαQuant in Equation (13.2-12)).  Recall

from Section 12.2.1 Equations (12.2.1-4) and (12.2.1-7) that ψN
 represents the rotation angle

error vector in the CB
E

 matrix projected on N Frame axes.  On the other hand, we see from

Equations (13.2-10) - (13.2-11) that the position and velocity errors (δRN, δυN
) are functions

of accelerometer error (δaSF
B

, δυQuant) as well as (through the ψN
 coupling) angular rate sensor

error (δωIB
B

, δαQuant).  Subsections 13.2.1 through 13.2.4 to follow describe general

characteristic solutions to position/velocity error Equations (13.2-10) - (13.2-11) including a
discussion of the general effects of strapdown inertial sensor scale-factor/misalignment error on
attitude/acceleration-transformation accuracy.

13.2.1  VERTICAL CHANNEL RESPONSE

In order to understand the vertical channel response characteristics of Equations (13.2-10) -
(13.2-11), let us first analyze the case in which the vertical controls are eliminated (i.e., the
C1, C2, C3 gains are set to zero).  The vertical component of (13.2-10) and (13.2-11) with zero

vertical channel gains is obtained from the dot product with uZN
N

, recognizing from (13.2-13)

that δevc3 = 0 for C1 = 0:

δR  =  δυR - ωINH

N
 × δRH

N
 ⋅ uZN

N
 + δRForce (13.2.1-1)

δυR  =  F(h) 
g
R

 δR - ωINH

N
 × δυH

N
 ⋅ uZN

N
 + δυForce

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0
(13.2.1-2)

with

δRForce  =  CB
N

 δυQuant  ⋅ uZN
N

 

δυForce  =  CB
N

 δaSF
B

 + aSF
N

 × ψN
 + δgMdl

N

                   - aSF
N

 ×  CB
N

 δαQuant - CB
N

 ωIB
B

 ×  CB
N

 δυQuant  ⋅ uZN
N

(13.2.1-3)
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where

δRForce  =  Equation (13.2.1-1) forcing term.

δυForce  =  Equation (13.2.1-2) forcing term.

Equations (13.2.1-1) and (13.2.1-2) can be combined by taking the time derivative of

(13.2.1-1) and substituting (13.2.1-2) for δυR.  The result after rearrangement is an equation for

open-loop vertical channel response that is suitable for characteristics analysis:

δR - F(h) 
g
R

 δR  =  - ωINH

N
 × δRH

N
 + ωINH

N
 × δRH

N
 ⋅ uZN

N

              - ωINH

N
 × δυH

N
 ⋅ uZN

N
 + 

d
dt

 δRForce + δυForce

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

(13.2.1-4)

Equation (13.2.1-4) with (13.2.1-3) shows that the vertical channel position response (δR) is

driven by accelerometer error (δaSF
B

), attitude error (ψN
), accelerometer and angular rate sensor

quantization noise (δυQuant and δαQuant) and cross-coupling effects between the horizontal and

vertical channels (δRH
N

, δRH
N

, and δυH
N

).  The cross-coupling effects are generally small and can

be ignored for this analysis.  Neglecting the cross-coupling allows Equation (13.2.1-4) to be
solved independently as a function of initial conditions and input forcing function.  In classical
fashion, we can then determine the characteristic roots of Equation (13.2.1-4) from the
homogeneous portion:

δR - F(h) 
g
R

 δR  =  0 (13.2.1-5)

The roots of (13.2.1-5) are determined from the general trial homogeneous solution:

δRHmg =  B eλt (13.2.1-6)

where

δRHmg  =  Homogeneous trial solution to (13.2.1-5).

λ  =  Characteristic root of (13.2.1-5).

B  =  Constant.

Substituting (13.2.1-6) for δR in (13.2.1-5) then yields the characteristic root equation:
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λ2
 - F(h) 

g
R

  =  0 (13.2.1-7)

whose solution is:

λ  =  ± F(h) 
g
R

(13.2.1-8)

The complete solution to (13.2.1-5) is a sum of terms of the form (13.2.1-6) for each

(13.2.1-8) root with the B coefficients selected to match the initial conditions for δR and δR.
Let’s look at this solution for the usual case when altitude h (i.e., distance above earth’s
reference ellipsoid surface) is greater than zero for which (from (13.2.1-4)) F(h) = 2 .  Then:

For   h  ≥  0:

     δRHmgTot   =  δR0 cosh 
2 g
R

 t  + δR0 
R

2 g
 sinh 

2 g
R

 t
(13.2.1-9)

with

cosh x  ≡  
1
2

 ex + e-x   =  1 + 
1
2 !

 x2 + 
1
4 !

 x 4  + ⋅ ⋅ ⋅ (13.2.1-10)

sinh x  ≡  
1
2

 ex - e-x   =  x + 
1
3 !

 x3 + 
1
5 !

 x 5  + ⋅ ⋅ ⋅ (13.2.1-11)

where

δRHmgTot   =  Total homogeneous solution.

δR0, δR0  =  Initial values for δR, δR at time t = 0.

cosh, sinh  =  Hyperbolic cosine, sine functions.

It is easily verified by substituting (13.2.1-10) and (13.2.1-11) into (13.2.1-9) that δRHmgTot

and its derivative equal δR0, δR0 at t = 0 as required.

Continuing to neglect the horizontal cross-coupling terms in (13.2.1-4), the total solution for

δR is then obtained in classical fashion as the sum of (13.2.1-9) plus the integrated effect of the

Equations (13.2.1-1) and (13.2.1-2) forcing terms operating through the (13.2.1-9) δR0 and

δR0 weighting coefficients at each time instant:
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For   h  ≥  0:

δR  =  δR0 cosh 
2 g
R

 t  + δR0 
R

2 g
 sinh 

2 g
R

 t

            + δRForce(τ) cosh 
2 g
R

 (t - τ)
0

t

 dτ

(13.2.1-12)

+ δυForce(τ) 
R

2 g
 sinh 

2 g
R

 (t - τ)
0

t

 dτ

where

τ  =  Past time parameter.

t  =  Current time.

Equation (13.2.1-12) clearly illustrates the exponentially unstable nature of the open-loop
vertical channel for positive altitude and for time t larger than the characteristic root time

constant 
R

2 g
.  At the surface of the earth on the equator, 

R
2 g

 = 9.49 minutes.  For small

t compared to 
R

2 g
, the (13.2.1-12) cosh and sinh functions can be approximated by 1 and

2 g
R

 t respectively which is a reasonable solution before the exponential enlargement

characteristic begins to develop.  For t = 9.49 minutes the 
2 g
R

 t argument for the cosh and

sinh functions in (13.2.1-12) is unity for which cosh (1) = 1.54  and sinh (1) = 1.18  (compared
to the previous small t approximation of 1 for each of these terms).  For larger values of t, the
magnitudes of the cosh, sinh functions increase exponentially.  We can conclude that for
positive altitude and navigation times greater than 10 minutes, the unstable nature of the open-
loop vertical channel may generate unacceptably large vertical navigation errors.  Thus, for
extended navigation time applications at positive altitude, the need for vertical channel control
becomes a requirement.

The source of the vertical channel instability discussed above can be traced to gravity error
along the local vertical created by vertical position error.  Because gravity magnitude decreases
as the square of distance from the center of the earth (for positive altitude), an upward vertical
position error produces a smaller gravity magnitude, hence, a negative gravity magnitude error.

The gravity magnitude error so created equals - 
2 g
R

 δR which decreases downward acceleration,

hence, increases upward acceleration (the “2” arises from the inverse “square” gravity
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magnitude law).  The net result is that the upward position acceleration δR has a positive

addition of 
2 g
R

 δR which is the source of the δR - 2 
g
R

 δR term in Equation (13.2.1-4) (when

F(h) = 2  for positive altitude).

Now, let’s look at the vertical channel solution for the case when altitude h is negative and,

from (13.2.1-4), F(h) = -1.  Then, the characteristic λ roots in (13.2.1-8) are ± j 
g
R

 (in

which j = -1), and the classical solution is similar to (13.2.1-12), but with the sinh, cosh

functions replaced by sine, cosine functions at the λ root magnitude frequency:

For h < 0:

δR  =  δR0 cos 
g
R

 t  + δR0 
R
g

 sin 
g
R

 t

            + δRForce(τ) cos 
g
R

 (t - τ)
0

t

 dτ

(13.2.1-13)

+ δυForce(τ) 
R
g

 sin 
g
R

 (t - τ)
0

t

 dτ

Equation (13.2.1-13) illustrates that for negative altitude, the characteristic  response of the

open-loop vertical channel is to exhibit undamped oscillations at frequency 
g
R

.  At the

surface of the earth on the equator, 
g
R

 = 0.00124 radians per second which corresponds to

an oscillation period of 84 minutes.  Interestingly, the horizontal channel response (discussed in
the next section) has this same 84 minute undamped oscillation characteristic.

The source of the vertical channel oscillation at negative altitude can also be traced to gravity
error along the local vertical created by vertical position error.  Because gravity magnitude
increases with distance from the center of the earth (for negative altitude), an upward (i.e., away
from earth’s center) vertical position error produces a larger gravity magnitude, hence, a

positive gravity magnitude error.  The gravity magnitude error so created equals 
g
R

 δR which

increases downward (toward earth center) acceleration, hence, decreases upward acceleration.

The net result is that the upward position acceleration δR has a negative addition of 
g
R

 δR which
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is the source of the δR + 
g
R

 δR term in Equation (13.2.1-4) (when F(h) = - 1  for negative

altitude).

Although the open-loop vertical channel response for negative altitude is not unstable, the
undamped oscillatory response exhibited by Equation (13.2.1-13) is still generally unacceptable
for extended navigation times, due to the large vertical position errors created.  For example, a

0.1 fps initial velocity error δR0 would generate an 84 minute period (i.e., 0.00124 rad/sec

frequency) oscillatory altitude error with an amplitude of 
0.1

0.00124
 = 80.6 ft.  Thus, to limit the

altitude error, we find that vertical channel control is generally also applied for negative as well
as positive altitudes.

With vertical channel control applied for both positive and negative altitudes, the governing
vertical loop characteristic response equation is developed in the same manner as (13.2.1-4), but

with the (13.2-10) - (13.2-11) vertical loop control gains included and δevc3 substituted from

(13.2-13):

δR + C3 δR + C2 - F(h) 
g
R

 δR  + C1 δR dt

            =  - ωINH

N
 × δRH

N
 + ωINH

N
 × δRH

N
 ⋅ uZN

N

 

                 - ωINH

N
 × δυH

N
 ⋅ uZN

N
 + 

d
dt

 δRForce + δυForce

                 + C3 δhPrsr + C2 δhPrsr  + C1 δhPrsr dt

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

(13.2.1-14)

The vertical velocity error associated with the solution to (13.2.1-14) is obtained from the
rearranged form of the vertical component of (13.2-10) including the (13.2.1-3) definition for

δRForce:

δυR  =  δR + C3 δR - δhPrsr  + ωINH

N
 × δRH

N
 ⋅ uZN

N
 - δRForce (13.2.1-15)

The characteristic response of δR can be ascertained from the derivative of (3.2.1-14), using

(13.2.1-3) for δυForce , and subtracting 
d3

dt3
 δhPrsr  from both sides of the equal sign:
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d3

dt3
 δR - δhPrsr  + C3 

d2

dt2
 δR - δhPrsr  + C2 

d
dt

 δR - δhPrsr

+ C1 δR - δhPrsr   =  δaSFZN - 
d3

dt3
 δhPrsr + 

(13.2.1-16)

where

δaSFZN  = The vertical (N Frame Z axis) component of the δaSF specific force
acceleration error vector (e.g., from accelerometers).

For stable dynamic response control gains, Equation (13.2.1-16) shows that δR will reach a

stable bounded solution equal to δhPrsr  plus small additions caused by time variations in

δaSFZN (due principally to angular maneuvering which changes the coupling of accelerometer

errors into the vertical), third derivative changes in δhPrsr , and residual terms in the (13.2.1-14)

forcing functions.  In practice, the δR position error will approximately equal δhPrsr  and δR will

be small.  From Equation (13.2.1-15) (and (13.2.1-3) for δRForce), we see that this also

corresponds to a small bounded value for δυR.  This forms the rationale (for analysis purposes)

to neglect the vertical loop coupling into the horizontal position/velocity error equations under
closed-loop vertical control conditions.

13.2.2  HORIZONTAL CHANNEL RESPONSE

To analyze the characteristics of the horizontal navigation error channel, we return to
Equations (13.2-10) - (13.2-13) and investigate the response under closed-loop vertical channel

control conditions.  As discussed in Section 13.2.1, this corresponds to δR  approximately

equal to δhPrsr , and δυR small.  Because δhPrsr  is small, δR will also be small, hence, we can

neglect both δR and δυR in Equations (13.2-10) and (13.2-11).  We also note that the

ωIN H

N
 × δRH

N
 and ωIN H

N
 × δυH

N
 terms in (13.2-10) - (13.2-11) are cross-products between

horizontal vectors which, therefore, are vertical.  Based on the previous observations, we see
then that the horizontal components of  (13.2-10) - (13.2-11) under closed-loop vertical control
conditions can be nicely approximated as:

δRH
N

  ≈  δυH
N

 + δRHForce

N
(13.2.2-1)

δυH
N

  ≈  - 
g
R

 δRH
N

 + δυHForce

N
(13.2.2-2)

with
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δRHForce

N
  =  CB

N
 δυQuant  

 H

δυHForce

N
  =  CB

N
 δaSF

B
 + aSF

N
 × ψN

 + δgMdl
N  

 
(13.2.2-3)

 
 

- aSF
N

 ×  CB
N

 δαQuant - CB
N

 ωIB
B

 ×  CB
N

 δυQuant
 

 H
where

H  =  Designation for horizontal component of the associated vector.

δRHForce

N
  =  Equation (13.2.2-1) forcing term.

δυHForce

N
  =  Equation (13.2.2-2) forcing term.

The general characteristics of the horizontal navigation errors are obtained by combining

Equations (13.2.2-1) and (13.2.2-2).  Differentiating (13.2.2-1), substituting (13.2.2-2) for δυH
N

and rearrangement yields the characteristic horizontal error response equation:

δRH
N

 + 
g
R

 δRH
N

  =  
d
dt

 δRHForce

N
 + δυHForce

N
(13.2.2-4)

The homogeneous portion of (13.2.2-4) is:

δRH
N

 + 
g
R

 δRH
N

  =  0 (13.2.2-5)

whose characteristic solution is:

δRHHmg

N
  =  δRH0

N
 cos ωS t + δRH0

N
 
sin ωS t

ωS

(13.2.2-6)

with

ωS  =  
g
R

(13.2.2-7)

where

δRHHmg

N
  =  Solution to homogeneous Equation (13.2.2-5).

δRH0

N
, δRH0

N
  =  Initial values for δRH

N
, δRH

N
.
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The solution to (13.2.2-4) is then obtained in classical fashion as the sum of (13.2.2-6) plus
the integral of the Equation (13.2.2-1) and (13.2.2-2) forcing functions multiplied by the

Equation (13.2.2-6) δRH0

N
, δRH0

N
 weighting coefficients:

δRH
N

  =  δRH0

N
 cos ωS t + δRH0

N
 
sin ωS t

ωS

           + δRHForce

N
(τ) cos ωS (t - τ)  + δυHForce

N
(τ) 

sin ωS (t - τ)

ωS
0

t

 dτ

(13.2.2-8)

Equation (13.2.2-8) shows that in the Free Azimuth N Frame, the horizontal position error (and

its rate of change) contains undamped sinusoidal oscillations at frequency ωS.  Once generated,

these oscillation patterns continue to repeat in the Free Azimuth coordinate frame.  At the

surface of the earth on the equator, ωS = 0.00124 radians per second which corresponds to an

oscillation period of approximately 84 minutes.  The horizontal velocity error δυH
N

 is similarly

affected as can be seen from the rearranged form of (13.2.2-1):

δυH
N

  =  δRH
N

 - δRHForce

N
(13.2.2-9)

It is also instructive to ascertain the response characteristic of the CB
N

 matrix horizontal tilt

error γH
N

, which can be determined from the horizontal component of the Equation (12.2.1-17)

equivalency relation:

γH
N

  =  ψH
N

 + εH
N

(13.2.2-10)

Anticipating the results of our analysis, we double differentiate (13.2.2-10) and combine it with

the product of (13.2.2-10) and ωS
2
 to obtain:

γH
N

 + ωS
2
 γH

N
  =  ψH

N
 + ωS

2
 ψH

N
 + εH

N
 + ωS

2
 εH

N
(13.2.2-11)

The εH
N

 + ωS
2
 εH

N
 portion of (13.2.2-11) can be defined from the horizontal component of

equivalency Equation (12.2.3-19) with (13.1-4):

εH
N

  =  
1
R

 uZN
N

 × δRH
N

(13.2.2-12)
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Taking the cross-product of Equation (13.2.2-4) with uZN
N

, substituting (13.2.2-12) and its

second derivative in the result, and incorporating the ωS definition from Equation (13.2.2-7)

shows that:

εH
N

 + ωS
2
 εH

N
  =  

1
R

 uZN
N

 × 
d
dt

 δRHForce

N
 + δυHForce

N
(13.2.2-13)

We also note with (13.2.2-7) and general Equation (13.1-6) that:

ωS
2
 ψH

N
  =  - 

g
R

 uZN
N

 × uZN
N

 × ψN
(13.2.2-14)

Substituting (13.2.2-13) and (13.2.2-14) into (13.2.2-11) then provides:

γH
N

 + ωS
2
 γH

N
  =  ψH

N
 + 

1
R

 uZN
N

 × 
d
dt

 δRHForce

N
 + δυHForce

N
 - g uZN

N
 × ψN

(13.2.2-15)

or in more compact notation:

γH
N

 + ωS
2
 γH

N
  =  γHForce

N
(13.2.2-16)

with

γHForce

N
  ≡  ψH

N
 + 

1
R

 uZN
N

 × 
d
dt

 δRHForce

N
 + δυHForce

N
 - g uZN

N
 × ψN

(13.2.2-17)

where

γHForce

N
  =  Forcing function for horizontal tilt dynamic Equation (13.2.2-16).

The δRHForce

N
, δυHForce

N
 and ψH

N
 terms in (13.2.2-17) are provided by Equations (13.2.2-3)

and the horizontal time derivative of (13.2-12).  It is also analytically advantageous to define the

specific force acceleration aSF
N

 in the Equation (13.2.2-3) δυHForce

N
 expression as the sum of a

term to balance plumb-bob gravity plus a maneuvering acceleration component:

aSF
N

  =  g uZN
N

 + ΔaSF
N

(13.2.2-18)

where

ΔaSF
N

  =  Portion of aSF
N

 for maneuvering.

Substituting (13.2.2-3) with (13.2.2-18) and the horizontal time derivative of (13.2-12) into
(13.2.2-17) then obtains:
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γHForce

N
  =  

d
dt

 - CB
N

 δωIB 
B

 - ωIN
N

 × ψ 
N

 + CB
N

 ωIB 
B

× δαQuant  

 H

+ 
1
R

 uZN
N

 × 
d
dt

 CB
N

 δυQuant  

 H
 + CB

N
 δaSF

B
 + ΔaSF

N
 × ψN

 + δgMdl
N  

 
 
 

(13.2.2-19)

 
 

 
 

- aSF
N

 ×  CB
N

 δαQuant - CB
N

 ωIB
B

 ×  CB
N

 δυQuant  

 H

The 
d
dt

 ωIN
N

 × ψ 
N

 term in (13.2.2-19) can be expanded using (13.2-12) as:

d
dt

 ωIN
N

 × ψ 
N

  =  ωIN
N

 × ψ 
N

 + ωIN
N

 × ψ 
N

=  ωIN
N

 × ψ 
N

 - ωIN
N

 × ωIN
N

 × ψN
 - ωIN

N
 × CB

N
 δωIB 

B
(13.2.2-20)

+ ωIN
N

 × CB
N

 ωIB 
B

× δαQuant

Finally, (13.2.2-20) is applied in (13.2.2-19) to obtain, after rearrangement:

γHForce

N
  =  

1
R

 uZN
N

 × CB
N

 δ aSF
B

 + Δ aSF
N

 × ψN
 + δ gMdl

N

             + - 
d
dt

 CB
N

 δ ωIB
B

 - ωIN
N

 ×  - ωIN
N

 ×
 2

 ψ 
N

 + ωIN
N

 × CB
N

 δ ωIB 
B

H

        + 
d
dt

 CB
N

 ωIB 
B

× δ  αQuant  - ωIN
N

 × CB
N

 ωIB 
B

× δ αQuant
H

  + 
1
R

 uZN
N

 × 
d
dt

 CB
N

 δ υQuant  - aSF
N

 ×  CB
N

 δ αQuant - CB
N

 ωIB
B

 ×  CB
N

 δ υQuant
H

 

(13.2.2-21)

Equation (13.2.2-16) with (13.2.2-21) shows as expected, that the horizontal tilt error is also

characterized by undamped sinusoidal oscillations at frequency ωS.  It is important to also note,

however, that the Equation (13.2.2-21) γHForce

N
 forcing function for (13.2.2-16) contains no

significant terms that increase systematically with time.  A minor exception is the

ωIN
N

 ×  - ωIN
N

 ×
 2

 ψ 
N

 term which can have increasing ψ 
N

 from Equation (13.2-12), however,

the average value for ωIN
N

 ×  - ωIN
N

 ×
 2

 is small.  The ΔaSF
N

 × ψN
 term in (13.2.2-21) has no

prevailing build-up rate because ΔaSF
N

 is generally transitory and of relative short duration.  We

conclude from Equations (13.2.2-16) and (13.2.2-21), therefore, that the characteristic response

of the CB
N

 matrix horizontal tilt γH
N

 is to exhibit bounded sinusoidal oscillation patterns that are
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stationary in the Free Azimuth N Frame.  The response is similar to that of a Foucault
pendulum; i.e., a pendulum suspended from a point which is free to oscillate in any plane (such
as the pendulum created by a suspended plumb-bob).  For this reason, the Free Azimuth
coordinate frame has sometimes been denoted as the “Foucault” frame.  A Foucault pendulum
whose pivot (or suspension) point is fixed relative to the earth will, if disturbed, generate an
oscillation pattern that is stationary in a locally level Free Azimuth coordinate frame.  Because
the Free Azimuth frame has zero angular rotation rate about the vertical, an observer on the
earth (who is rotating with the earth) will view it as rotating about the vertical in the direction
opposite to earth’s rotation, at a rate equal to the vertical component of earth’s rate.  Thus, the
oscillation plane of a Foucault pendulum to such an observer will appear to also rotate about the
vertical at the negative of earth’s vertical rotation rate.

To make the inertial navigation system tilt error pendulum analogy complete, the pendulum
would require an 84 minute period.  Such an 84 minute pendulum has been denoted as a
“Schuler” pendulum in honor of Dr. Maximilian Schuler, a German scientist who was active
during the early 1900's time period.  Dr. Schuler reasoned that an 84 minute pendulum would
remain vertical under accelerations of the suspension point.  Thus, with such a pendulum, an
accurate vertical reference could be established in a dynamic environment such as on a moving
ship.  His rationale for selecting an 84 minute pendulum period was based on the horizontal
acceleration of the pendulum pivot point over the earth surface producing a pendulum angular
acceleration (through its pendulocity) that would match the equivalent angular acceleration of the
pivot point over the earth’s curved surface.  Dr. Schuler demonstrated analytically that the

pendulum frequency to make this match equals 
g
R

, i.e., the ωS oscillation frequency for the

inertial navigation system horizontal tilt (and velocity/position) errors.  Without disturbances,
the Schuler pendulum remains vertical under pivot accelerations.  If disturbed (e.g., by

physically touching the pendulum), the Schuler pendulum oscillates at ωS, now known as the

“Schuler frequency”.  Similarly, without error, the inertial navigation system maintains a
horizontal reference (the N Frame) that remains horizontal under system acceleration.  If the
navigation system contains errors, it causes the N Frame to exhibit Schuler oscillations about
the vertical.  Thus, by designing an inertial navigation system, we have in effect, constructed an
artificial Schuler pendulum that exhibits the same behavior as a “real” Schuler pendulum.

The source of inertial navigation system Schuler oscillations can be traced to the error in the
system computer gravity model created by position error across the local vertical.  The gravity
model defines gravity to be downward along the local vertical.  A horizontal position error
creates a tilt error in the apparent local vertical (i.e., the local horizontal appears rotated from true
horizontal by the angular movement over the earth’s surface associated with the horizontal
position error).  The apparent local vertical tilt error, thereby, produces a small horizontal gravity
error component in opposition to the horizontal position error.  From the previous discussion, it
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can be easily demonstrated that the resulting gravity error is - 
g
R

 δRH
N

 which is the Schuler effect

that has appeared in our error equations.  The gravity error, in turn, adds - 
g
R

 δRH
N

 to the

horizontal acceleration error δRH
N

, which is the source of the δRH
N

 + 
g
R

 δRH
N

 term in Equation

(13.2.2-4).

13.2.3  LONG TERM APPROXIMATE POSITION ERROR SOLUTION

Let us begin this subsection with the relationship between the horizontal position error δRH
N

and the CN
E

 matrix error εN
 using the rearranged horizontal component of equivalency Equation

(12.2.3-16) with general Equation (13.1-4):

δRH
N

  =  - R uZN
N

 × εH
N

(13.2.3-1)

The horizontal component of equivalency relation (12.2.1-17) rearranged is:

εH
N

  =  - ψH
N

 + γH
N

(13.2.3-2)

Substituting (13.2.3-2) into (13.2.3-1) then finds:

δRH
N

  =  R uZN
N

 × ψH
N

 - R uZN
N

 × γH
N

(13.2.3-3)

Section 13.2.2 (Equations (13.2.2-16) with (13.2.2-21)) showed that the solution for γH
N

 in

Equation (13.2.3-3) is characterized by undamped Schuler oscillations with no significant terms

that increase systematically with time.  In contrast, the ψH
N

 term in (13.2.3-3) can grow

systematically with time as shown in Equation (13.2-12) due principally to angular rate sensor

error.  Thus, we conclude that for long term navigation position error analysis, all but the ψH
N

term in (13.2.3-3) can be safely ignored, yielding the following simplified form for assessing

δRH
N

 long term behavior:

δRHLngTrm

N
  ≈  R uZN

N
 × ψH

N
(13.2.3-4)

where

δRHLngTrm

N
  = Approximate value for δRH

N
 for long term inertial navigation system

error analysis.
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The ψH
N

 term in (13.2.3-4) is the solution to Equation (13.2-12).

We should also recognize that although Equation (13.2.3-4) was derived in a Free Azimuth
N Frame, the result can now be transformed to any coordinate frame in which it is convenient

to define ψH.  Section 13.5 elaborates on this point in more detail in developing a solution for

ψH
N

 under analytically defined trajectory conditions for long term navigation error application of

Equation (13.2.3-4).

13.2.4 STRAPDOWN INERTIAL SENSOR SCALE-FACTOR/MISALIGNMENT
ERROR EFFECTS

Strapdown inertial sensor misalignment (i.e., the angular rate sensor triad or the
accelerometer triad) can be defined as the sum of two effects; misalignment of an inertial sensor
triad (angular rate sensor or accelerometer) relative to the inertial sensor reference axes (i.e., the
B Frame), and orthogonality error between input axes of two sensors in a particular sensor
triad.  Figure 13.2.4-1 illustrates each effect for the X - Y axes of the angular rate sensor triad:

X

Y

X

Y

.
Z

Triad Misalignment Error   

η

η

X

Y

X

Y

.
Z

Sensor Orthogonality Error   

μ

μ

Figure 13.2.4-1  Angular Rate Sensor Triad Misalignment And Sensor
Orthogonality Error

In Figure 13.2.4-1, axes X, Y are the compensated input axis directions for the X, Y angular
rate sensors, and axes X, Y are the nominal angular rate sensor input axis directions (i.e., the X,
Y axes of the B Frame).  Figure 13.2.4-1 shows the angular rate sensor misalignment errors for
a “Triad Misalignment Error” situation when the angular rate sensor triad is misaligned as a

whole from the nominal axes (with the X, Y axes orthogonal), and for a “Sensor Orthogonality

Error” situation when the misalignment of the X, Y angular rate sensors makes the X, Y axes
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non-orthogonal.  For the Triad Misalignment Error illustration, X is misaligned from X by η
(which couples Y axis rate into X) and Y is misaligned from Y by η (which couples X axis rate

into Y).  For the Sensor Orthogonality Error illustration, X, Y are misaligned from X, Y by μ.
The Figure 13.2.4-1 situation can be related to terms in the angular rate sensor triad sensor
scale-factor/misalignment error matrix using the Equation (12.4-13) definition:

δKScal/Mis  =  

δKXX δKXY δKXZ

δKYX δKYY δKYZ

δKZX δKZY δKZZ

(13.2.4-1)

where

δKScal/Mis  = Angular rate sensor triad scale-factor/misalignment residual error matrix
remaining after application of compensation corrections to sensor
outputs.

δKii  =  Scale factor error for the i axis angular rate sensor.

δKij  = Misalignment error for the i axis angular rate sensor coupling B Frame j axis

angular rate into the sensor input (for i ≠ j).

Returning to Figure 13.2.4-1, for the triad misalignment case, the angle between Y and X is

greater than 90 degrees (for positive η), hence, η couples X rate negatively into Y.  In contrast,

the angle between X and Y is less than 90 degrees (for positive η), hence, η couples Y rate

positively into X.  For both the X and Y sensor axes, the coupling gain is equal to η.  This

corresponds to the situation in Equation (13.2.4-1) when δKXY  = - δKYX , which represents a

skew symmetric misalignment error characteristic in δKScal/Mis (about the diagonal).  For the

Figure 13.2.4-1 orthogonality error case, the angles between Y and X and between X and Y are

both less than 90 degrees (for positive μ), hence, μ couples rate positively from X, Y into Y, X

with a coupling gain of μ.  This corresponds to the situation in Equation (13.2.4-1) when

δKXY  = δKYX , which represents a symmetric misalignment error characteristic in δKScal/Mis

(about the diagonal).  In general, both the triad misalignment and orthogonality error situations

in Figure 13.2.4-1 exist simultaneously in δKScal/Mis for the angular rate sensor triad between

the X/Y, Y/Z and Z/X axes, and in δLScal/Mis  for the accelerometer triad, where

δLScal/Mis   = Accelerometer triad scale-factor/misalignment residual error matrix
remaining after application of compensation corrections to sensor
outputs.
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We can generalize the previous observations by stating that misalignment errors for a sensor
triad as a whole (angular rate sensor or accelerometer triad) are characterized by skew

symmetric off-diagonal terms in δKScal/Mis, δLScal/Mis  while sensor non-orthogonality error
misalignments in a sensor triad are characterized by symmetric off-diagonal terms in

δKScal/Mis, δLScal/Mis .  We also note from Equation (13.2.4-1) that inertial sensor scale factor

errors are characterized by terms along the diagonal of δKScal/Mis, δLScal/Mis .  Based on this

generalization, we define δKScal/Mis, δLScal/Mis  as being composed of the sum of triad
misalignment and sensor scale-factor/orthogonality components:

δKScal/Mis  =  δKScal/Orth + δKTMis δLScal/Mis  =  δLScal/Orth + δLTMis (13.2.4-2)

where

δKScal/Orth, δLScal/Orth  = Portion of δKScal/Mis, δLScal/Mis  containing the scale
factor and orthogonality error terms.  Based on the previous

discussion, δKScal/Orth and δLScal/Orth are symmetric
matrices about the diagonal with the diagonal elements
generally non-zero.

δKTMis, δLTMis  = Portion of δKScal/Mis,  δLScal/Mis  containing the triad
misalignment error terms.  Based on the previous discussion,

δKTMis and δ LTMis  are skew-symmetric matrices about the
diagonal, with zero for the diagonal elements.

From their definition, a symmetric matrix equals its transpose and a skew-symmetric matrix
equals the negative of its transpose.  Using this rule we can combine Equations (13.2.4-2) with
their transpose to find after rearrangement:

δKScal/Orth  =  
1
2

 δKScal/Mis + δKScal/Mis
T

 

δKTMis  =  
1
2

 δKScal/Mis - δKScal/Mis
T

 

δLScal/Orth  =  
1
2

 δLScal/Mis + δLScal/Mis
T

 

δLTMis  =  
1
2

 δLScal/Mis - δLScal/Mis
T

(13.2.4-3)

Because δKTMis, δLTMis are skew-symmetric, they can be expressed in the equivalent form:

δKTMis  =  δKTMis× δLTMis  =  δLTMis× (13.2.4-4)
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where

δKTMis, δLTMis  = Angular rate sensor triad and accelerometer triad misalignment
error vectors.

δKTMis× , δLTMis×   = Skew symmetric forms of δKTMis, δLTMis as defined by
generalized Equation (3.1.1-14).

We can also decompose δKScal/Orth and δLScal/Orth into their constituents:

δLScal/Orth  =  δLScal + δLOrth δKScal/Orth  =  δKScal + δKOrth (13.2.4-5)

where

δKScal, δLScal  = Scale factor error portions of δKScal/Orth, δLScal/Orth which are the
diagonal elements.

δKOrth , δLOrth   = Orthogonality misalignment error portions of δKScal/Orth and

δLScal/Orth consisting of the off-diagonal elements.  The
orthogonality errors represent misalignment between the sensors of
the angular rate sensor triad or the accelerometer triad.

In order to characterize the effect of inertial sensor scale-factor/misalignment error on attitude
and acceleration transformation accuracy, let us now define the inertial sensor error associated
with these effects from Equations (12.4-12) and (12.4-14) as:

δωIBScal/Mis

B
  ≡  δKScal/Mis ωIB

B
δaSFScal/Mis

B
  ≡  δLScal/Mis aSF

B
 (13.2.4-6)

where

δωIBScal/Mis

B
, δaSFScal/Mis

B
  = Angular rate sensor, accelerometer error vector

components produced by inertial sensor scale-
factor/misalignment errors.

With (13.2.4-2), (13.2.4-4) and (13.2.4-5), Equations (13.2.4-6) are given by:

δωIBScal/Mis

B
  =  δKScal ωIB

B
 + δKTMis × ωIB

B
 + δKOrth ωIB

B

 

δaSFScal/Mis

B
  =  δLScal aSF

B
 + δLTMis × aSF

B
 + δLOrth aSF

B
(13.2.4-7)

Equations (13.2.4-7) are now in a convenient form for investigating their impact on
attitude/acceleration-transformation accuracy.
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We first analyze the effect of δωIBScal/Mis

B
 on attitude error build-up by analyzing the impact

on ψ
I
 from Equation (12.3.7.1-4):

ψ
I
  =  - CB

I
 δωIB

B
(13.2.4-8)

where

ψI
  = Angular error vector associated with CB

I
, the direction cosine matrix that

transforms vectors from B to I Frame axes.

From Equation (13.2.4-8) we see that ψI
 error build-up is directly affected by the magnitude of

δωIB
B

.  The magnitude squared of δωIB
B

 is derived from the magnitude of ωIB
B

 using general

Equation (3.1.1-2):

ωIB
2

  =  ωIB
B

 ⋅ ωIB
B

(13.2.4-9)

where

ωIB  =  Magnitude of ωIB
B

.

Taking the differential of (13.2.4-9) then obtains for the ωIB
B

 magnitude error:

δωIB  =  
1

ωIB

 ωIB
B

 ⋅ δωIB
B

(13.2.4-10)

where

δωIB  =  Error in ωIB.

The effect of angular rate sensor scale-factor/misalignment error on δωIB can now be

evaluated by substituting δωIBScal/Mis

B
 from (13.2.4-7) for δωIB

B
 in (13.2.4-10):

δωIBScal/Mis  =  
1

ωIB

 ωIB
B

 ⋅ δKScal + δKOrth  ωIB
B

 + δKTMis × ωIB
B

(13.2.4-11)

where

δωIBScal/Mis  = Portion of δωIB produced by angular rate sensor scale-
factor/misalignment error.
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Because δKTMis × ωIB
B

 in (13.2.4-11) is perpendicular to ωIB
B

, its dot product with ωIB
B

 is zero,

hence, (13.2.4-11) reduces to:

δωIBScal/Mis  =  
1

ωIB

 ωIB
B

 ⋅ δKScal + δKOrth  ωIB
B

(13.2.4-12)

Equation (13.2.4-12) shows that the error in the magnitude of inertially sensed angular rate is
affected by angular rate sensor scale factor and orthogonality error but not by angular rate
sensor triad misalignment error.

The effect of angular rate sensor triad misalignment error on ψI
 can be analyzed with

Equation (13.2.4-8) using the δKTMis term in (13.2.4-7) for δωIB
B

:

ψTMis
I

  =  - CB
I
 δKTMis × ωIB

B
  =  CB

I
 ωIB

B
 × δKTMis   =  CB

I
 ωIB

B
×  δKTMis (13.2.4-13)

where

ψTMis
I

  =  Portion of ψI
 produced by angular rate sensor triad misalignment.

Equation (13.2.4-13) can be simplified by noting from Equations (12.1.4-18) that:

CB
I

  =  CB
I

 ωIB
B

× (13.2.4-14)

With (13.2.4-14), (13.2.4-13) reduces to:

ψTMis
I

  =  CB
I

 δKTMis (13.2.4-15)

whose integral is simply:

ψTMis
I

  =  CB
I

 - CB0

I
 δKTMis (13.2.4-16)

where

B0  =  B Frame orientation in inertial space at time t = 0.

Equation (13.2.4-16) shows that the effect of angular rate sensor triad misalignment on
attitude error is to add an attitude error equal to the change in the I Frame projection of the
misalignment angle error vector (from the B Frame) since time t = 0.  The same effect holds

for any coordinate frame in which ψ is being evaluated, not only the I Frame, provided that
rotation of the frame is properly taken into account.  For example, for the local level L Frame,
Equation (13.2.4-16) becomes:
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ψTMis
L

  =  CI
L

 CB
I

 - CB0

I
 δKTMis  =  CB

L
 - CBI0

LI  δKTMis

=  CB
L

 - CLI0

LI  CLI

LI0 CBI0

LI  δKTMis  =  CB
L

 - CLI0

LI  CBI0

LI0  δKTMis

=  CB
L

 - CLI0

LI  CB0

L0  δKTMis

(13.2.4-16a)

where

L0  =  L Frame orientation in inertial space at time t = 0.

and for more specificity,

LI  =  Discrete attitude of the L Frame in non-rotating inertial space at the current time.

BI0 , LI0  = Discrete attitudes of the B and L Frames in non-rotating inertial space at
time t = 0.

The previous notation is introduced to clearly denote CLI0

LI  as being a relative attitude matrix

between two time points evaluated in the I Frame.  Without the I notation (e.g., CL0

L
 )
 
the matrix

would have different values depending on the coordinate frame in which it was evaluated.  For
example, contrast Equations (7.1.1.2-3) and (7.1.1.2-4) with (7.3.1-8) and (7.3.1-9)

(substituting L for N) while recognizing that ρ ≡ ωEN = ωEL.

To analyze the effect of inertial sensor misalignment on acceleration transformation accuracy
we begin with the transform relation:

aSFXForm

A
  =  CB

A
 aSF

B
  =  CI

A
 CB

I
 aSF

B
(13.2.4-17)

where

A  = Arbitrary coordinate frame in which velocity is to be calculated by acceleration
integration.  The A Frame might be the N Frame, the I Frame or some other
frame, depending on the application.

aSFXForm

A
  =  Specific force acceleration projected on the A Frame.

From its definition, aSFXForm

A
 will be integrated (with other terms) to obtain system velocity in

the A Frame.  To understand the effect of inertial sensor misalignment on aSFXForm

A
, hence

velocity error build-up, we take the differential of (13.2.4-17), apply (12.3.7.1-10) for δCB
I

, and

expand:
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δaSFXForm

A
  =  CI

A
 δCB

I
 aSF

B
 + CB

I
 δaSF

B
 + δCI

A
 CB

I
 aSF

B
 

 =  CI
A

 CB
I

 δaSF
B

 - ψI×  CB
I

 aSF
B

 + (13.2.4-18)

=  CI
A

 CB
I

 δaSF
B

 - CB
I

 CI
B

 ψI×  CB
I

 aSF
B

 + 

In Equation (13.2.4-18), only the terms directly affected by inertial sensor error are identified

(i.e., ψI
 from angular rate sensor error in (13.2.4-8) and δaSF

B
  accelerometer error).  The

remaining terms are identified by the  notation (e.g., the δCI
A

 term which is typically a

function of velocity and position produced from the integral of sensor error).  Applying
generalized Equation (3.1.1-40) to (13.2.4-18), combining matrix products, and factorization
then yields the compressed form:

δaSFXForm

A
  =  CB

A
 δaSF

B
 - ψB× aSF

B
 + ⋅ ⋅ ⋅ (13.2.4-19)

It is instructive to analyze the particular effects of initial attitude error and inertial sensor

misalignment by expanding ψB
 in (13.2.4-19) as:

ψB
  =  CA

B
 ψ0

A
 + ΔψTMis

B
 + ΔψOrth

B
 + ΔψOther

B
(13.2.4-20)

where

ψ0
A

  =  Initial value of the attitude error in the A Frame.

ΔψOrth
B

  = Change in ψB
 since time t = 0 due to angular rate sensor orthogonality error

(between angular rate sensors).

ΔψOther
B

  = Contributions to ψB
 from all angular rate sensor error sources other than

angular rate sensor misalignment.

The ΔψTMis
B

 term in (13.2.4-20) is from (13.2.4-16):

ΔψTMis
B

  =  CI
B

 CB
I

 - CB0

I
 δKTMis  =  I - CB0

B
 δKTMis (13.2.4-21)

The ΔψOrth
B

 term in (13.2.4-20) can be derived from (13.2.4-8) using the δKOrth  term in

(13.2.4-7) for δωIB
B

:

ψOrth
I

  =  - CB
I
 δKOrth  ωIB

B
(13.2.4-22)
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Integrating (13.2.4-22) and transforming to the B Frame finds for ΔψOrth
B

:

ΔψOrth
B

  =  - CI
B
 CB

I
 δKOrth  ωIB

B
 dτ

0

t

(13.2.4-23)

The δaSF
B

 term in (13.2.4-19) is similarly expanded with (13.2.4-7) as:

δaSF
B

  =  δLTMis × aSF
B

 + δLOrth aSF
B

 + δaSFOther

B
(13.2.4-24)

where

δaSFOther

B
  =  Accelerometer error terms other than accelerometer misalignment.

Substituting (13.2.4-20), (13.2.4-21), (13.2.4-23) and (13.2.4-24) into Equation (13.2.4-19)
then yields:

δaSFXForm

A
  =  CB

A
 δLTMis × aSF

B
 + δLOrth aSF

B
 + δaSFOther

B
 - CA

B
 ψ0

A  
 
 

 + I - CB0

B
 δKTMis - CI

B
 CB

I
 δKOrth  ωIB

B
 dτ

0

t

 + ΔψOther
B

 × aSF
B

=  CB
A

 δLTMis - δKTMis  × aSF
B

 + CB
A

 CB0

B
 δKTMis  × aSF

B
(13.2.4-25)

- CB
A

 CA
B

 ψ0
A

 × aSF
B

 + CB
A

 CI
B

 CB
I

 δKOrth  ωIB
B

 dτ
0

t

 × aSF
B

+ CB
A

 δLOrth  aSF
B

 + δaSFOther

B
 - ΔψOther

B
 × aSF

B

Particular terms in (13.2.4-25) can be converted to an alternative form using generalized
Equation (3.1.1-38):

CB
A

 CB0

B
 δKTMis  × aSF

B
  =  CB

A
 CB0

B
 δKTMis×  CB

B0 CA
B

 CB
A

 aSF
B

=  CB0

A
 δKTMis×  CA

B0 aSF
A

  =  CB0

A
 δKTMis  × aSF

A
(13.2.4-26)

CB
A

 CA
B

 ψ0
A

 × aSF
B

  =  CB
A

 CA
B

 ψ0
A

×  CB
A

 aSF
B

  =  ψ0
A

 × aSF
A

We also note that:
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CI
B

 CB
I

 δKOrth  ωIB
B

 dτ
0

t

  =  CB0

B
 CI

B0 CB0

I
 CB

B0 δKOrth  ωIB
B

 dτ
0

t

=  CB0

B
 CB

B0 δKOrth  ωIB
B

 dτ
0

t
(13.2.4-27)

Substituting (13.2.4-26) and (13.2.4-27) into (13.2.4-25) obtains an expression that provides
insight into the effect of inertial sensor misalignment on acceleration transformation error,
hence, velocity error build-up:

δaSFXForm

A
  =  CB

A
 δLTMis - δKTMis  × aSF

B
 - ψ0

A
 - CB0

A
 δKTMis  × aSF

A

+ CB
A

 δLOrth  aSF
B

 + CB0

B
 CB

B0 δKOrth  ωIB
B

 dτ
0

t

 × aSF
B

(13.2.4-28)

+ CB
A

 δaSFOther

B
 - ΔψOther

B
 × aSF

B

Equation (13.2.4-28) shows that the angular rate sensor triad misalignment δKTMis acts as

an offset on the initial attitude error ψ0
A

.  This is an analytical statement that initial attitude error

relative to actual sensor axes is the governing factor impacting velocity error build-up.  In

addition, the accelerometer triad misalignment δLTMis that impacts acceleration transformation

accuracy is relative to the angular rate sensor triad misalignment δKTMis.  Hence, only the

relative misalignment between the angular rate sensor and accelerometer triads affects velocity
error build-up.  This all makes sense intuitively when one recognizes that the B Frame is

defined as the “nominal” sensor frame from which ψA
, δLTMis, δKTMis are measured.  In

other words, the selection of a particular B Frame orientation relative to the inertial sensor triads
should have no impact on velocity error growth, provided that the B Frame attitude in the
system computer is properly initialized based on the selected B Frame orientation.  We also

note that the δLOrth  orthogonality error term in (13.2.4-28) represents relative accelerometer-to-

accelerometer misalignment.  In conjunction with δLTMis being relative to angular rate sensor

triad misalignment δKTMis (as already discussed), we can further generalize that only relative

misalignment between any accelerometer and the angular rate sensor triad will affect velocity
error build-up.

The previous discussion has formed the basis for selecting the B Frame as the “mean
angular rate sensor axis” frame in which the angular rate sensor triad misalignment
compensation corrections are “nominally” defined to be zero.  This selection is unique for a
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particular sensor assembly and is established implicitly during sensor assembly calibration
when the misalignment calibration coefficients are determined.  Using the “mean angular rate
sensor axis” frame for the B Frame minimizes the magnitude of the angular rate sensor
misalignment compensation coefficients (for orthogonality correction) which minimizes second
order error effects if first order approximations are used for misalignment compensation.  A
similar argument can be made for use of “mean accelerometer axes” for the B Frame.  Since
the modern day optical type angular rate sensors generally have stable alignment characteristics,
the “mean angular rate sensor axis” approach has been favored.  An important point to note,

however, is that use of “mean angular rate sensor axes” does not set δKTMis to zero because

δKTMis represents the error in the compensated angular rate sensor triad alignment including

compensation error and physical mounting instabilities.

We finally note in Equation (13.2.4-28) that the δKOrth  angular rate sensor orthogonality

error (a sensor-to-sensor relative misalignment error term) can impact velocity error growth,
depending on the angular rate (and corresponding attitude) history.  Interestingly, Equation

(13.2.4-28) also shows that for a particular elapsed CB
B0 attitude history, the effect of δKOrth  can

be completely erased if the inverse attitude history is traced using the corresponding negative

angular rate history ωIB
B

.  This effect should be understood when structuring strapdown inertial

system rotation test profiles.

13.3 NAVIGATION ERRORS FOR CONSTANT ATTITUDE
AND CONSTANT SENSOR ERRORS

In this section we analyze the effect of constant inertial sensor errors on navigation
inaccuracy for situations when the sensor (body) B Frame is at a fixed attitude relative to the
wander azimuth version of the N Frame.  From Section 4.5, the wander azimuth frame is
defined to be locally level, with the inertial angular rate about the vertical equal to the vertical

component of earth’s rate (which is equivalent to setting the vertical transport rate term ρZN to

zero).  For a stationary system relative to the earth, the azimuth wander frame will thereby
“keep up” with earth rate around the vertical, hence, will appear stationary relative to an
observer in the E Frame.  For a system traversing a great circle trajectory, an azimuth wander N
Frame will remain at a fixed azimuth orientation relative to the velocity vector (Note - A great
circle trajectory is defined as a constant altitude flight path parallel to the earth that is in an earth
fixed plane passing through earth’s center).  Since the B Frame typically remains at a fixed
orientation relative to the velocity vector on a great circle trajectory, the B Frame will thereby
also remain at a fixed orientation relative to the N Frame along a great circle.  Thus, the case
when the B Frame is fixed relative to the wander azimuth N Frame represents a real situation in
some applications.
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As an aside, it is easily demonstrated (as stipulated above) that the wander azimuth N Frame
remains fixed relative to the velocity vector along a great circle trajectory by considering that the
velocity vector along a great circle is constant, horizontal (i.e., perpendicular to a unit vector
along the local vertical), and in a fixed plane relative to the earth.  Analytically, this is equivalent
in the N Frame to:

vN  =  v uGC
N

 × uZN
N

  =  v CE
N

 uGC
E

 × uZN
N

(13.3-1)

where

v  =  Velocity vector vN magnitude.

uZN
N

  = Unit vector along the N Frame Z axis, which from the Section 2.2 definition, is

along the local upward geodetic vertical.

uGC
N

  = Unit vector perpendicular to the great circle plane and considered to be constant

in the E Frame.  Because uZN
N

 lies in the great circle plane, uGC
N

 is also

perpendicular to uZN
N

.

The time derivative of (13.3-1) is obtained by recognizing uGC
E

 to be constant by definition and

applying the transpose of (4.4.1.1-1) for CE
N

 (with the transpose of ρN×  equal to its negative):

v
N

  =  v CE
N

 uGC
E

 × uZN
N

  =  - v ρN×  CE
N

 uGC
E

 × uZN
N

  =  - v uZN
N

 × uGC
N

 × ρN
(13.3-2)

For the wander azimuth N Frame, the vertical component of the ρN
 transport rate is zero,

hence, from the (13.2-2) ωEN
N

 expression (for ρN
) we can write to first order accuracy

(neglecting e terms) using generalized Equation (13.1-4):

ρN
  ≈  

1
R

 uZN
N

 × vN For Wander Azimuth Case (13.3-3)

Substituting (13.3-3) for ρN
 and (13.3-1) for vN in the (13.3-2) uGC

N
 × ρN

 term, applying

(13.1-5) and remembering that uGC
N

 has no vertical component obtains:

uGC
N

 × ρN
  =  

1
R

 uGC
N

 × uZN
N

 × vN

=  
1
R

 uGC
N

 × uZN
N

 × v uGC
N

 × uZN
N

  =  
1
R

 uGC
N

 × v uGC
N

  =  0
(13.3-4)

Thus, with (13.3-4) we see that (13.3-2) becomes simply:
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v
N

  =  0 
For a Great Circle Trajectory
And A Wander Azimuth N Frame

(13.3-5)

Because vN is constant in the N Frame by virtue of Equation (13.3-5), the orientation of the N

Frame axes relative to vN is constant as originally stipulated.

Returning to the problem at hand, we develop the constant-attitude/constant-sensor-error
navigation error solution from Equations (12.5.3-1) with the sensor quantization noise, sensor

random output noise, gravity error and δhPrsr  terms omitted, with rl approximated by R (as in

(12.3.6.1-26)), with (13.2.2-18) substituted for aSF
N

 in the δV
N

 expression, with (13.3-3) for

ωEN
N

 in the εZN expression, and applying generalized Equation (13.1-4).  The result in the

wander azimuth frame (ρZN and δρZN = 0) is:

γ
N

  =  - CB 
N

 δωIB
B

 - ωIN
N

 × γN
 + 

1
R

 ωIE
N

 × uZN
N

 × δRN  + ωIE
N

 × uZN
N

 εZN + δωEN
N

 

δωIB
B

  =  δKScal/Mis ωIB
B

 + δKBias

εZN  =  - 
1

R2
  uZN

N
 × vH

N
 ⋅ δRH

N

δV
N

  =  CB
N

 δ aSF
B

 + g uZN
N

 × γ 

H
N

 + Δ aSF
N

 × γN
 - 

1
R

 uZN
N

 × δ RH
N

 - εZN uZN
N

- ωIE
N

 + ωIN
N

 × δ VN + F(h) 
g
R

 - C2  δ R - δ evc3  uZN
N

 

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

δ aSF
B

  =  δLScal/Mis aSF
B

 + δLBias (13.3-6)

δR
N

  =  δVN - ωEN
N

 × δRN - C3 δR uZN
N

δevc3  =  C1 δR

δωEN
N

  =  
1
R

  uZN
N

 × δVN  - vZN 
1

R2
 uZN

N
 × δRN

+ 
1
R

 vH
N

 εZN - 
1

R2
 uZN

N
 × vN  δR

δRH
N

  =  δRN - δR uZN
N

δ R  =  uZN
N

 ⋅ δ RN

ΔaSF
N

  =  aSF
N

 - g uZN
N
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where

γH
N

  =  Horizontal component of γN
.

The ωIN
N

 term in (13.3-6) is from (13.2-1) and (13.2-2) with ρZN set to zero for the Wander

Azimuth N Frame:

ωIN
N

  =  ωIE
N

 + 
1
R

 uZN
N

 × vH
N

(13.3-7)

‘

The horizontal component of γN
 is generally small compared to the vertical component

which justifies neglecting the γN
 horizontal component in ωIN

N
 × γN

 of the Equations (13.3-6)

γ
N

 expression.  Hence, with (13.3-7) and generalized Equations (13.1-4) and (13.1-5) we can
approximate:

ωIN
N

 × γN
  ≈  ωIN

N
 × γZN uZN

N
  =  γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

(13.3-8)

where

γZN  =  Vertical component of γN
.

ωIEH

N
  =  Horizontal component of ωIE

N
.

For navigation times up to 2 hours, the position error δRN does not generally grow to a large

enough value to be significant in the Equations (13.3-6) γ
N

 expression (through the ωIE
N

 earth

rate), in the δR
N

 expression (through ωEN
N

 coupling), or in the δωEN
N

 expression (through vZN

and uZN
N

 × vN).  Based on the heading initialization discussion in Sections 14.1 and 14.2, the

initial value of εZN in (13.3-6) can be arbitrarily set to zero (if initial heading error is identified

with CB
N

 rather then CN
E

 heading misalignment) or equivalently, can be considered explicitly part

of CN
E

 initial heading error with the initial γZN heading error in CB
N

 set to zero.  We choose the

former for error analysis purposes (i.e., setting initial εZN to zero) with the understanding that

initial γZN contains the full initial heading error.  Additionally, for navigation times of less than

2 hours, εZN does not have sufficient time to grow large enough (from δRN - See the (13.3-6)

εZN equation) to have significant impact in the γ
N

, δV
N

 or δωEN
N

 expressions.  Thus, εZN in

total has minor impact on Equations (13.3-6).  Finally, δVN feedback in the δV
N

 equation
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(through ωIE
N

 + ωIN
N

) is comparatively small compared to other terms for up to 2 hour

navigation times.  Dropping the small effects as negligible, substitution of δωEN
N

 from (13.3-6)

in the δV
N

 expression, substitution of (13.3-8) for ωIN
N

 × γN
 in the γ

N
 expression, and

application of (13.1-4) to particular terms, then results in the following simplified version of the
Equations (13.3-6) navigation error expressions:

γ
N

  ≈  - CB 
N

 δ ωIB
B

 - γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + 
1
R

  uZN
N

 × δVH
N

 

δV
N

  ≈  CB
N

 δaSF
B

 + g uZN
N

 × γ 

H
N

 + ΔaSF
N

 × γN
 - 

1
R

 uZN
N

 × δ RH
N

                            + F(h) 
g
R

 - C2  δR - δ evc3  uZN
N

         F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0 
 

δ R
N

  =  δVN - C3 δ R uZN
N

 

δ evc3  =  C1 δ R

(13.3-9)

For the case being investigated of the B Frame at fixed attitude relative to the Wander

Azimuth N Frame, the inertial B Frame rate ωIB
B

 equals the N Frame inertial rate ωIN
B

 so that:

ωIB
B

  =  ωIN
B

  =  CB
N T

 ωIN
N

(13.3-10)

We can also write for B Frame specific force acceleration using Equation(13.2.2-18) for aSF
N

 :

aSF
B

  =  CB
N T

 aSF
N

  =  CB
N T

 g uZN
N

 + ΔaSF
N

(13.3-11)

Using (13.3-10) and (13.3-11), the angular rate sensor and accelerometer error terms in
(13.3-6) become:

δωIB
B

  =  δKScal/Mis CB
N T

 ωIN
N

 + δKBias
 

δaSF
B

  =  δLScal/Mis CB
N T

 g uZN
N

 + ΔaSF
N

 + δLBias 

(13.3-12)

Equations (13.3-9) with (13.3-12) can be solved analytically if we make simplifying
assumptions for the navigation system trajectory distance and maneuver acceleration.  For the

trajectory distance, we assume that the navigation time is of short enough duration that the ωIEH

N
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horizontal earth rate term can be considered constant.  For the maneuver acceleration ΔaSF
N

, we

assume that it occurs horizontally and impulsively at the start of navigation and zero thereafter,
imparting a change in velocity at time zero.  From Equations (13.3-9) and (13.3-12) we see that

the δV
N

 and δaSF
B

 contain ΔaSF
N

 which directly impacts δVN at time zero.  The result is that the

initial conditions for Equations (13.3-9) for the time instant immediately following application

of the ΔaSF
N

 impulse are:

γZN0+  =  γZN0 γH0 +

N
  =  γH0

N

δVZN0+  =  δVZN0 + CB
N

 δLScal/Mis CB
N T

ΔvSFH

N
 

 ZN

                                + ΔvSFH

N
 × γH0

N
 - 

1
R

 uZN
N

 × δRH0

N
 ⋅ uZN

N

 

δVH0+

N
  =  δVH0

N
 + CB

N
 δLScal/Mis CB

N T
ΔvSFH

N
 

 H
 - γZN0 uZN

N
 × ΔvSFH

N

(13.3-13)

δR0+  =  δR0 δRH0 +

N
  =  δRH0

N

where

0  =  Subscript indicating initial value prior to application of the ΔaSF
N

 impulse.

0+  = Subscript indicating value immediately following application of the ΔaSF
N

impulse.

ZN  =  Subscript indicating Z component in the N Frame (i.e., along uZN
N

).

H  =  Subscript indicating horizontal component (i.e., perpendicular to uZN
N

).

ΔvSFH

N
  =  Velocity change produced by the ΔaSF

N
 impulse.

Following application of the ΔaSF
N

 impulse, ΔaSF
N

 is zero.  We will also assume that the

velocity is constant following application of the ΔaSF
N

 impulse.  Thus, the velocity and

Equations (13.3-12) following ΔaSF
N

 application are:

vH
N

  =  vH0

N
 + ΔvSFH

N

δωIB
B

  =  δKScal/Mis CB
N T

 ωIN
N

 + δKBias (13.3-14)

δaSF
B

  =  g δLScal/Mis CB
N T

uZN
N

 + δLBias
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Following application of the ΔaSF
N

 impulse, the ΔaSF
N

 term can also be removed from

Equations (13.3-9).  Expansion of Equations (13.3-9) into horizontal and vertical components
at this point is advantageous to expedite analytical solution.  Thus, recognizing that cross-

products of uZN
N

 with horizontal vectors are horizontal, (13.3-9) becomes:

γZN  =  - CB 
N

 δωIB
B

 

 ZN

γH
N

  ≈  - CB 
N

 δωIB
B

 

H
 - γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + 
1
R

  uZN
N

 × δVH
N

δVZN  =  CB
N

 δaSF
B

 

 ZN
 + F(h) 

g
R

 - C2  δR - δevc3

         F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0 
 

δVH
N

  ≈  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N

(13.3-15)

δR  =  δVZN - C3 δR

δRH
N

  =  δVH
N

δevc3  =  C1 δR

Equations (13.3-15) with (13.3-14) for the velocity and sensor error terms, and (13.3-13)

for initial conditions (following ΔaSF
N

 impulse application) are now in a form that allows simple

analytical solution.  The following subsections solve these equations for two situations; without
vertical loop control for short navigation times (i.e., less than 10 minutes) and with vertical loop
control for navigation times of up to 2 hours.

13.3.1 SHORT TERM SOLUTION AT CONSTANT ATTITUDE WITH
FREE INERTIAL VERTICAL CHANNEL

For the short term solution, we seek the solution to Equations (13.3-15) with (13.3-13) and

(13.3-14) without vertical loop control (i.e., C1, C2, C3, δevc3 equal to zero).  For short term,

we can approximate the δVH
N

 and δR terms in the Equations (13.3-15) γH
N

 and δVZN

expressions to equal the Equation (13.3-13) initial values.  Thus, the form of (13.3-15) we will
analyze is:
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γZN  =  - CB 
N

 δωIB
B

 

 ZN

γH
N

  ≈  - CB 
N

 δωIB
B

 

H
 - γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + 
1
R

  uZN
N

 × δVH0 +

N

δVZN  =  CB
N

 δaSF
B

 

 ZN
 + F(h) 

g
R

 δR0+

         F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0 
 

δVH
N

  ≈  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N

(13.3.1-1)

δR  =  δVZN

δRH
N

  =  δVH
N

To simplify the analysis, we hold the CB 
N

 attitude and altitude (i.e., R) constant, and

approximate ωIE
N

 as constant over the short navigation time.  Using (13.3-7) for ωIN
N

 and

(13.3-14) for vH
N

, we also assume that the inertial sensor error contributors in (13.3-14) are

constant so the sensor error terms in (13.3.1-1) become:

CB
N

 δωIB
B

  =  δωIB
N

=  CB
N

 δKScal/Mis CB
N T

 ωIE
N

 + 
1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
 + δKBias   =  Constant

(13.3.1-2)

CB
N

 δaSF
B

  =  δaSF
N

  =  CB
N

 g δLScal/Mis CB
N T

uZN
N

 + δLBias  =  Constant

where

δωIB
N

, δaSF
N

  =  N Frame components of δωIB, δaSF.

Using (13.3-13) for initial conditions, (13.3.1-2) for sensor errors, (13.3-14) for vH
N

, and the

previous simplifying assumptions, Equations (13.3.1-1) can then be easily integrated in the
sequence shown to yield:
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γZN  =  γZN0 - t δωIBZN

γH
N

  =  γH0

N
 - t δωIBH

N
 - t γ ZN0 - 

1
2

 t2 δωIBZN  ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 + ΔvSFH

N

+ t 
1
R

 uZN
N

 × δVH0

N
 + CB

N
 δLScal/Mis CB

N T
ΔvSFH

N
 

 H
 - γ ZN0 uZN

N
 × ΔvSFH

N

δVZN  =  δVZN0 + CB
N

 δLScal/Mis CB
N T

ΔvSFH

N
 

 ZN

+ ΔvSFH

N
 × γ 

H0

N
 - 

1
R

 uZN
N

 × δ RH0

N
 ⋅ uZN

N
 + t δ  aSFZN + F(h) 

g
R

 δ R0

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

δVH
N

  =  δVH0

N
 + CB

N
 δLScal/Mis CB

N T
ΔvSFH

N
 

 H
 - γ ZN0 uZN

N
 × ΔvSFH

N

+ t δ aSFH

N
+ g uZN

N
 × t γ 

H0

N
 - 

1
2

 t2 δ ωIBH

N
 (13.3.1-3)

- 
1
2

 t2 γZN0 - 
1
6

 t3 δωIBZN  ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 + ΔvSFH

N

+ 
1
2

 t2 
1
R

 uZN
N

 × δVH0

N
 + CB

N
 δLScal/Mis CB

N T
ΔvSFH

N
 

 H
 - γ ZN0 uZN

N
 × ΔvSFH

N

δR  =  δR0 + t δVZN0 + t CB
N

 δLScal/Mis CB
N T

ΔvSFH

N
 

 ZN

+ t ΔvSFH

N
 × γ 

H0

N
 - 

1
R

 uZN
N

 × δ RH0

N
 ⋅ uZN

N
 + 

1
2

 t2 δ  aSFZN + F(h) 
g
R

 δ R0

δRH
N

  =  δRH0

N
 + t δVH0

N
 + t CB

N
 δLScal/Mis CB

N T
ΔvSFH

N
 

 H
 - t γ ZN0 uZN

N
 × ΔvSFH

N

+ 
1
2

 t2 δ aSFH

N
 + g uZN

N
 × 

1
2

 t2 γ 

H0

N
 - 

1
6

 t3 δ ωIBH

N
 

- 
1
6

 t3 γ ZN0 - 
1

24
 t4 δ ωIBZN  ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 + ΔvSFH

N

+ 
1
6

 t3 
1
R

 uZN
N

 × δVH0

N
 + CB

N
 δLScal/Mis CB

N T
ΔvSFH

N
 

 H
 - γ ZN0 uZN

N
 × ΔvSFH

N

where

δωIBH

N
, δωIBZN  =  Horizontal and upward vertical components of δωIB

N
 in (13.3.1-2).

δaSFH

N
, δaSFZN  =  Horizontal and upward vertical components of δaSF

N
 in (13.3.1-2).
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Applying generalized Equation (13.1-5) and grouping common error source terms in
(13.3.1-3), we then obtain the final short-term/fixed-attitude solution:

γZN  =  γZN0 - t δωIBZN

γ 

H
N

  =  γ 

H0

N
 - t γ ZN0 ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 + t 

1
R

 uZN
N

 × δVH0

N
 

+ t 
1
R

 uZN
N

 × CB
N

 δLScal/Mis CB
N T

ΔvSFH

N
 

 H
 - t δωIBH

N

+ 
1
2

 t2 δωIBZN ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 + ΔvSFH

N

δVZN  =  δVZN0 + F(h) 
g
R

 t δ  R0 + ΔvSFH

N
 × γH0

N
 - 

1
R

 uZN
N

 × δ RH0

N
 ⋅ uZN

N
 

+ CB
N

 δLScal/Mis CB
N T

 ΔvSFH

N
 

 ZN
 + t δaSFZN

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

δVH
N

  =  1 - 
1
2

 
g
R

 t2  δVH0

N
 + g t uZN

N
 × γH0

N

- γ ZN0 uZN
N

 × ΔvSFH

N
 + 

1
2

 
g
R

 t2 R ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
(13.3.1-4)

+ 1 - 
1
2

 
g
R

 t2  CB
N

 δLScal/Mis CB
N T

 ΔvSFH

N
 

 H
 + t δ aSFH

N

- 
1
2

 
g
R

 t2 R uZN
N

 × δ ωIBH

N
 + 

1
6

 
g
R

 t3 R δ ωIBZN ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N

δR  =  δ R0 + t δVZN0 + 
1
2

 F(h) 
g
R

 t2 δ R0 + t ΔvSFH

N
 × γ 

H0

N
 - 

1
R

 uZN
N

 × δ RH0

N
 ⋅ uZN

N
 

+ t CB
N

 δLScal/Mis CB
N T

 ΔvSFH

N
 

 ZN
 + 

1
2

 t2 δaSFZN

δRH
N

  =  δRH0

N
 + t - 

1
6

 
g
R

 t3  δVH0

N
 + 

1
2

 g t2 uZN
N

 × γH0

N

- γ ZN0 t uZN
N

 × ΔvSFH

N
 + 

1
6

 
g
R

 t3 R ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N

+ t - 
1
6

 
g
R

 t3  CB
N

 δLScal/Mis CB
N T

 ΔvSFH

N
 

 H
 + 

1
2

 t2 δ aSFH

N

- 
1
6

 
g
R

 t3 R uZN
N

 × δ ωIBH

N
 + 

1
24

 
g
R

 t4 R δ ωIBZN ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N

Equations (13.3.1-4) reveal the following navigation error characteristics in response to the

principal sources of navigation error.  The heading error γZN grows linearly (t) with vertical
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angular rate sensor error.  The horizontal tilt γH
N

 grows linearly with initial heading error, initial

horizontal velocity error, and horizontal angular rate sensor error.  The vertical velocity error

δVZN grows linearly with vertical accelerometer error.  The horizontal velocity error δVH
N

grows linearly with initial horizontal tilt and horizontal accelerometer error, and parabolically

(t2) with initial heading error and horizontal angular rate sensor error.  The vertical position

error δR grows linearly with initial vertical velocity error and parabolically with vertical

accelerometer error.  The horizontal position error δRH
N

 grows linearly with initial horizontal

velocity error, parabolically with initial horizontal tilt and horizontal accelerometer error, and as

t3 with initial heading error and horizontal angular rate sensor error.  The effect of the initial

horizontal velocity impulse ΔvSF
N

 is to add initial velocity error in the earth-rate/transport-rate

coupling term, to produce an initial horizontal velocity error and a linearly increasing horizontal
position error proportional to initial heading error, and to generate an initial velocity error and
linearly increasing position error proportional to accelerometer scale-factor/misalignment error.

13.3.2 UP TO TWO HOUR HORIZONTAL SOLUTION AT CONSTANT
ATTITUDE WITH CONTROLLED VERTICAL CHANNEL

For the solution to Equations (13.3-15) that is valid for up to 2 hours under controlled

vertical channel conditions, we assume that δR and δVZN will be controlled to zero by the

control gains so that only the horizontal velocity/position solutions are of interest.  Then
Equations (13.3-15) simplify to:

γZN  =  - CB 
N

 δωIB
B

 

 ZN

γH
N

  ≈  - CB 
N

 δωIB
B

 

H
 - γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + 
1
R

  uZN
N

 × δVH
N

 

δVH
N

  ≈  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
(13.3.2-1)

δRH
N

  =  δVH
N

Equations (13.3-14) still apply for the velocity and inertial sensor terms in (13.3.2-1), and
Equations (13.3-13) still apply for initial conditions immediately following application of the

initial ΔaSF
N

 impulse.
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The analytical solution to (13.3.2-1) is obtained by first noting that the γH
N

 and δVH
N

expressions are coupled together by the δVH
N

 and γH
N

 terms, that the γH
N

, δVH
N

 expressions are

driven by sensor errors and the γZN solution, and that the δRH
N

 solution is driven by the δVH
N

solution.  The general solution process is to solve for γZN first, then determine the coupled γH
N

,

δVH
N

 solution, and finally find δRH
N

 from δVH
N

.  For our simplified model we also assume (as

in Section 13.3.1) that the distance traveled will be short enough that ωIN
E

 can be approximated

as constant, that attitude in the form of CB
N

 is constant, and that inertial sensor error contributors

in (13.3-14) are constant so Equations (13.3.1-2) apply.  Then the solution to the (13.3.2-1) γZN

expression for time t following application of the initial ΔaSF
N

 impulse is simply:

γZN  =  γZN0+ - t δωIBZN (13.3.2-2)

The γZN0 + initial condition is provided in Equations (13.3-13).

The coupled γH
N

, δVH
N

 expressions in (13.3.2-1) are solved by taking the derivative of δVH
N

(subject to the previous simplifying assumptions), substituting γH
N

 from (13.3.2-1) and γZN

from (13.3.2-2) in the result, using (13.3-14) for vH
N

, and application of generalized Equation

(13.1-6) to obtain:

δVH
N

  =  g uZN
N

 × γH
N

=  g uZN
N

 × - δωIBH

N
 - γZN0+ - t δωIBZN  ωIEH

N
 × uZN

N  
 

+ 
1
R

 vH0

N
 + ΔvSFH

N
 + 

1
R

  uZN
N

 × δVH
N

(13.3.2-3)

=  - 
g
R

  δVH
N

 - 
g
R

 R uZN
N

 × δωIBH

N  
 

+ γZN0+ - t δωIBZN  ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
 

or upon rearrangement:
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δVH
N

 + ωS
2
 δVH

N
  = - ωS

2
 R uZN

N
 × δωIBH

N  
 

 
 

+ γZN0+ - t δωIBZN  ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
 

(13.3.2-4)

with

ωS  =  
g
R

(13.3.2-5)

in which ωS is, of course, our familiar 84 minute period Schuler frequency (See Section
13.2.2).

Equation (13.3.2-4) has the compressed form:

δVH
N

 + ωS
2
 δVH

N
  =  D1 + D2 t (13.3.2-6)

with

D1  =  - ωS
2

 R uZN
N

 × δ ωIBH

N
 + γZN0+ ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
 

 

D2  =  ωS
2

 R δ ωIBZN ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
(13.3.2-7)

For the problem at hand, D1, D2 are treated as constants.

Equation (13.3.2-6) can be solved by first finding the general homogeneous solution that fits

δVH
N

 + ωS
2
 δVH

N
 to zero, finding the “Particular” solution that fits δVH

N
 + ωS

2
 δVH

N
 to D1 + D2 t,

then summing the two and setting the homogeneous solution coefficients to match the
Equations (13.3-13) initial conditions.  As in Section 13.2.1, the homogeneous solution
involves solving for the roots of the (13.3.2-6) characteristic equation:

λ2
 + ωS

2
  =  0 (13.3.2-8)

for which:

λ  =  ± j ωS

where

j  =  Imaginary parameter - 1.

The homogeneous solution is the sum of terms of the form B eλt  for each root.  We also know
that:
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sin x  =  
e j x - e-j x

2 j
cos x  =  

e j x + e-j x

2
(13.3.2-9)

so that the homogeneous solution is:

δVHHmg

N
  =  C1 sin ωS t + C2 cos ωS t (13.3.2-10)

where

δVHHmg

N
  =  Homogeneous solution to (13.3.2-6).

C1, C2  = Constants to be subsequently determined based on initial condition
constraints.

The Particular solution to (13.3.2-6) has the form:

δVHPrt

N
  =  C3 + C4 t (13.3.2-11)

where

δVHPrt

N
  =  Particular solution to (13.3.2-6).

C3, C4  =  Constants to satisfy (13.3.2-6).

The C3, C4 constants are determined by substituting (13.3.2-11) for δVH
N

 in (13.3.2-6) and

equating coefficients of like powers of t:

δVHPrt

N
 + ωS

2
 δVHPrt

N
  =  ωS

2
 C3 + C4 t   =  D1 + D2 t (13.3.2-12)

for which:

C3  =  
1

ωS
2

 D1 C4  = 
1

ωS
2

 D2 (13.3.2-13)

The total solution is then constructed as the sum of (13.3.2-10) and (13.3.2-11) with
(13.3.2-13):

δVH
N

  =  C1 sin ωS t + C2 cos ωS t + 
1

ωS
2

 D1 + D2 t (13.3.2-14)

The C1, C2 coefficients in (13.3.2-14) can now be evaluated by setting t equal to zero in

(13.3.2-14) and its derivative, and introducing initial condition constraints:
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δVHt = 0

N
  =  C2 + 

1

ωS
2

 D1 (13.3.2-15)

δVH t = 0

N
  =  C1 ωS cos ωS t - C2 ωS sin ωS t + 

1

ωS
2

 D2

 t = 0

  =  C1 ωS + 
1

ωS
2

 D2 (13.3.2-16)

From the Equations (13.3.2-1) δVH
N

 expression with (13.3.1-2), we also know that:

δVH t = 0

N
  =  δ aSFH

N
 + g uZN

N
 × γ 

H t = 0

N
 (13.3.2-17)

Combining (13.3.2-16) and (13.3.2-17) yields:

δ aSFH

N
 + g uZN

N
 × γ 

H t = 0

N
  =  C1 ωS + 

1

ωS
2

 D2 (13.3.2-18)

The solution for C1, C2 is obtained from (13.3.2-15) and (13.3.2-18) by rearrangement and

equating the t = 0 terms to the Equations (13.3-13) “0+” initial values:

C1  =  
1

ωS

 δ aSF H

N
 + g uZN

N
 × γH0+

N
 - 

1

ωS
2

 D2 C2  =  δVH0 +

N
 - 

1

ωS
2

 D1 (13.3.2-19)

The solution for δVH
N

 (i.e., the solution to Equations (13.3.2-1)) is then determined by

substituting (13.3.2-19) into (13.3.2-14) and rearranging:

δVH
N

  =  δVH0+

N
 cos ωS t + δaSFH

N
 + g uZN

N
 × γH0+

N
 
sin ωS t

ωS

              + D1 
(1 - cos ωS t)

ωS
2

 + 
1

ωS
2

 D2 t - 
sin ωS t

ωS

(13.3.2-20)

with δVH0 +

N
, γH0 +

N
 provided from Equations (13.3-13) and D1, D2 from Equations (13.3.2-7).

The γH
N

 solution to Equations (13.3.2-1) is found as the integral of the γH
N

 expression.  Using

the definitions for D1, D2, the Equations (13.3-14) velocity expression, the (13.3.2-2) solution

for γZN, and general Equation (13.1-5), the γH
N

 expression in (13.3.2-1) is first compacted to the

form:
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γH
N

  =  - 
1

ωS
2
 R

 uZN
N

 × D1 + D2 t  + 
1
R

  uZN
N

 × δVH
N

(13.3.2-21)

Then, substituting (13.3.2-20) for δVH
N

, applying (13.1-5), and using Schuler frequency

expression (13.3.2-5), we obtain:

             γH
N

  =  
1
R

 uZN
N

 × δVH0+

N
 cos ωS t

+  
1
R

 uZN
N

 × δaSFH

N
 - ωS

2
 γH0+

N
 
sin ωS t

ωS

 - 
1

ωS
2

 R
 uZN

N
 × D1 cos ωS t + D2 

sin ωS t

ωS

(13.3.2-22)

The bounded integral of (13.3.2-22) from time = 0 to t  with γH0 +

N
 as the initial condition

provides the γH
N

 solution:

          γH
N

  =  γH0+

N
 cos ωS t + 

1
R

 uZN
N

 × δVH0+

N
 
sin ωS t

ωS

+ 
1
R

 uZN
N

 × δaSFH

N
 
(1 - cos ωS t)

ωS
2

 - 
1

ωS
2

 R
 uZN

N
 × D1 

sin ωS t

ωS

 + D2 
(1 - cos ωS t)

ωS
2

(13.3.2-23)

The δRH
N

 solution to Equations (13.3.2-1) is easily calculated from the δRH
N

 expression by

the simple bounded integration of (13.3.2-20) from time = 0 to t :

δRH
N

  =  δRH0+

N
 + δVH0+

N
 
sin ωS t

ωS

 + δaSFH

N
 + g uZN

N
 × γH0+

N
 
(1 - cos ωS t)

ωS
2

              + D1 
1

ωS
2

  t - 
sin ωS t

ωS

 + 
1

ωS
2

 D2 
1
2

 t2 - 
(1 - cos ωS t)

ωS
2

(13.3.2-24)

We now substitute Equations (13.3.2-7) for D1, D2, the δωIB
B

, δaSF
B

 inertial sensor error

expressions from (13.3-14), the (13.3-13) initial condition relations, (13.3-7) for ωIN
N

, and vH
N

from (13.3-14) into (13.3.2-2), (13.3.2-20), (13.3.2-23) and (13.3.2-24).  After grouping

common error source terms, applying ωS Equation (13.3.2-5), and applying general Equation

(13.1-5), the final result is:
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γZN  =  γZN0 - t δωIBZN

γH
N

  =  γH0

N
 cos ωS t - γZN0 ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 
sin ωS t

ωS

 + 
1
R

 uZN
N

 × δVH0

N
 
sin ωS t

ωS

+ uZN
N

 × CB
N

 δLScal/Mis CB
N T

 ΔvSFH

N
 
1
R

 
sin ωS t

ωS  H

+ 
1
R

 uZN
N

 × δaSFH

N
 
(1 - cos ωS t)

ωS
2

 - δωIBH

N
 
sin ωS t

ωS

 

+ δωIBZN ωIEH

N
 × uZN

N
 + 

1
R

 vH0

N
 + ΔvSFH

N
 
(1 - cos ωS t)

ωS
2

δVH
N

  =  δVH0

N
 cos ωS t + g uZN

N
 × γH0

N
 
sin ωS t

ωS

(13.3.2-25)

- γZN0 uZN
N

 × ΔvSFH

N
 + R ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 (1 - cos ωS t)

+ CB
N

 δ LScal/Mis CB
N T

 ΔvSFH

N
 

 H
 cos ωS t + δ aSFH

N
 
sin ωS t

ωS

- R uZN
N

 × δωIBH

N
 (1 - cos ωS t) + R δωIBZN ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
 t - 

sin ωS t

ωS

δRH
N

  =  δRH0

N
 + δVH0

N
 
sin ωS t

ωS

 + g uZN
N

 × γH0

N
 
(1 - cos ωS t)

ωS
2

- γZN0 uZN
N

 × ΔvSFH

N
 t + R ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 t - 

sin ωS t

ωS

+ CB
N

 δ LScal/Mis CB
N T

 ΔvSFH

N
 

 H
 
sin ωS t

ωS

 + δ aSFH

N
 
(1 - cos ωS t)

ωS
2

- R uZN
N

 × δωIBH

N
 t - 

sin ωS t

ωS

+ R δωIBZN ωIEH

N
 + 

1
R

 uZN
N

 × vH0

N
 + ΔvSFH

N
 

1
2

 t2 - 
(1 - cos ωS t)

ωS
2

The δωIB
N

 and δaSF
N

 sensor error terms in (13.3.2-25) are provided by Equations (13.3.1-2).
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If Equations (13.3.2-25) (using (13.3.2-5) for ωS and with Taylor series expansion for the

sine, cosine terms) are compared with Equations (13.3.1-4), it will be found that they agree for
short time periods to first order (and to second, third and fourth order for some terms).
Equations (13.3.2-25) reveal the following navigation error characteristics in response to the
principal sources of navigation error.

The heading error γZN grows linearly (t) with vertical angular rate sensor error.  The

horizontal tilt γH
N

 responds as a sine wave Schuler oscillation to initial heading error, initial

horizontal velocity error and horizontal angular rate sensor error, and as an offset cosine wave
Schuler oscillation to horizontal accelerometer error and vertical angular rate sensor error.  Initial

horizontal tilt becomes a γH
N

 cosine wave Schuler oscillation response.

The horizontal velocity error δVH
N

 responds as a sine wave Schuler oscillation to initial

horizontal tilt and horizontal accelerometer error, as an offset cosine wave Schuler oscillation to
initial heading error and horizontal angular rate sensor error, and as an unbounded ramp in time
t (plus a sine wave Schuler oscillation) to vertical angular rate sensor error.  Initial horizontal

velocity error becomes a δVH
N

 cosine wave Schuler oscillation response.

The horizontal position error δRH
N

 responds as a sine wave Schuler oscillation to initial

horizontal velocity error, as an offset cosine wave Schuler oscillation to initial horizontal tilt and
horizontal accelerometer error, as an unbounded ramp in t (plus a sine wave Schuler oscillation)

to initial heading error and horizontal angular rate sensor error, and as a t2 buildup (plus an
offset cosine wave Schuler oscillation) to vertical angular rate sensor error.

The effect of the initial horizontal velocity impulse ΔvSF
N

 is add to initial velocity error in the

transport rate coupling term, to produce a horizontal velocity error cosine wave Schuler
oscillation and horizontal position error sine wave Schuler oscillation proportional to
accelerometer scale-factor/misalignment error, and to generate an offset horizontal velocity error
and linearly ramping horizontal position error proportional to initial heading error.

13.4 NAVIGATION ERRORS FOR ROTATING ATTITUDE
AND CONSTANT SENSOR ERRORS

In the previous section we investigated the navigation error equation response to constant
sensor errors in a non-rotating environment.  In this section we investigate the navigation error
response to constant sensor errors in a rotating B Frame for four different trajectory conditions:
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• Constant high rate spinning.

• High rotation rate when the rotation rate vector is also rotating
(simulating rotating free body angular motion).

• Circular trajectory profile at constant angular rate about the vertical.

• Circular trajectory profile at constant rate about the vertical when
the angular rate equals the Schuler frequency.

13.4.1  CONSTANT HIGH RATE SPINNING ABOUT NON-ROTATING AXIS

For the constant rate spinning example we investigate the angular rate error, attitude error
build-up and acceleration transformation error produced by constant inertial sensor errors.

13.4.1.1  ANGULAR RATE VECTOR ERROR CHARACTERISTICS

The angular rate vector is considered constant in the B Frame and described by:

ωIB
B

  =  ωIB uω
B

(13.4.1.1-1)

where

ωIB  =  Magnitude of ωIB
B

 (considered constant).

uω
B

  =  B Frame projection of a unit vector along ωIB
B

 (considered constant).

We also define the angular rate sensor derived equivalent to Equation (13.4.1.1-1):

ωIB
B

  =  ωIB uω
B

(13.4.1.1-2)

where

    = Indicator for parameter input to the system computer, hence, containing errors.

The input parameter without the    is defined to be the idealized version of the input

parameter, hence, error free.  In this section, the    parameters are derived from
compensated inertial sensor inputs which contain error because the compensation
has imperfections and/or the sensor error characteristics change following
calibration.

Of interest is the error in the ωIB
B

 magnitude (ωIB) and the angular error in the ωIB
B

 direction

vector uω
B

, each of which is defined by:
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δωIB  ≡  ωIB - ωIB (13.4.1.1-3)

βB
  ≡  uω

B
 × uω

B
(13.4.1.1-4)

where

δωIB, βB
  =  Magnitude and angular errors in ωIB

B
.

The δωIB magnitude error in ωIB
B

 can be expressed in terms if the angular rate sensor vector

error δωIB
B

 as follows.  We first note from general Equation (3.1.1-2) that:

ωIB
2

  =  ωIB
B

 ⋅ ωIB
B

(13.4.1.1-5)

The δωIB error is then obtained from the differential of (13.4.1.1-5):

ωIB δωIB  =  ωIB
B

 ⋅ δωIB
B

(13.4.1.1-6)

or upon rearrangement and application of (13.4.1.1-1):

δωIB  =  uω
B

 ⋅ δωIB
B

(13.4.1.1-7)

The βB
 angular error in ωIB

B
 can be expressed in terms of the angular rate sensor vector error

δωIB
B

 by first defining uω
B

 as:

uω
B

  =  uω
B

 + δuω
B

(13.4.1.1-8)

where

δuω
B

  =  Error in uω
B

.

Substituting (13.4.1.1-8) into (13.4.1.1-4) yields the equivalent form:

βB
  =  uω

B
 × δuω

B
(13.4.1.1-9)

The δuω
B

 term in (13.4.1.1-9) is then obtained from the differential of (13.4.1.1-1):

δωIB
B

  =  δωIB uω
B

 + ωIB δuω
B

(13.4.1.1-10)

or after rearrangement:
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δuω
B

  =  - 
δωIB

ωIB

 uω
B

 + 
1

ωIB

 δωIB
B

(13.4.1.1-11)

Substituting (13.4.1.1-11) into (13.4.1.1-9) then gives:

βB
  =  

1

ωIB

 uω
B

 × δωIB
B

(13.4.1.1-12)

Equations (13.4.1.1-7) and (13.4.1.1-12) define the magnitude error (δωIB) and angular error

(βB
) in ωIB

B
 as a function of the angular rate sensor error vector δωIB

B
.  We now define δωIB

B
 in

terms of its contributing elements so that δωIB and βB
 can be expressed in expanded form.  For

the case being considered of constant sensor errors, δωIB
B

 is from (12.5.6-1) (neglecting

δωRand):

δωIB
B

  =  δKScal/Mis ωIB
B

 + δKBias (13.4.1.1-13)

With (13.4.1.1-13), (13.4.1.1-1) for ωIB
B

, and generalized Equations (3.1.1-12) - (3.1.1-13),

Equations (13.4.1.1-7) and (13.4.1.1-12) become:

δωIB  =  ωIB uω
B T

 δKScal/Mis uω
B

 + uω
B T

 δKBias (13.4.1.1-14)

βB
  =  uω

B
 ×  δKScal/Mis uω

B
 + 

1

ωIB

 uω
B

 × δKBias (13.4.1.1-15)

Equations (13.4.1.1-14) and (13.4.1.1-15) show that ωIB
B

 is misaligned from ωIB
B

 (by βB
)

and changed in length from ωIB
B

 (by δωIB) due to angular rate sensor bias, misalignment and

scale factor error (δKBias, δKScal/Mis).  The δωIB error is of particular concern because it leads

to unbounded angle error buildup around the spin axis when integrated into attitude.  It is

instructive to expand Equation (13.4.1.1-14) for δωIB in terms of the components of δKBias,

δKScal/Mis and uω
B

 which we shall define as:

δKBias  =  

δKBX

δKBY

δKBZ

δKScal/Mis  =  

δKXX δKXY δKXZ

δKYX δKYY δKYZ

δKZX δKZY δKZZ

uω
B

  =  

uωXB

uωYB

uωZB

(13.4.1.1-16)
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Substituting (13.4.1.1-16) into (13.4.1.1-14) then yields for δωIB:

δωIB  =  ωIB uωXB

2
 δKXX  + uωYB

2
 δKYY  + uωZB

2
 δKZZ

+ uωXB uωYB δKXY  + δKYX  + uωYB uωZB δKYZ + δKZY (13.4.1.1-17)

+ uωZB uωXB δKZX + δKXZ  + uωXB δKBX +uωYB δKBY + uωZB δKBZ

Equation (13.4.1.1-17) shows that angular rate magnitude error is produced by angular rate
sensor scale factor and bias error components along the spin axis (as may have been expected),

but also from orthogonality error components (i.e., the δKij + δKji  terms represent angular rate

sensor axis orthogonality error, as discussed in Section 13.2.4 leading to Equations (13.2.4-3)).
Note that all orthogonality error contributions become zero if the spin axis lies along any of the
B Frame axes (i.e., any of the angular rate sensor axes).  Under this condition, only one of the

uω
B

 components in (13.4.1.1-17) is non-zero which sets all uωi uωj to zero.  The previous

orthogonality error observation is the basis for having the preferred angular rate sensor
mounting in a spinning vehicle with the angular rate sensor axes either parallel or perpendicular
to the spin axis.

13.4.1.2 ATTITUDE AND ACCELERATION TRANSFORMATION
ERROR CHARACTERISTICS

For analytical expediency, we will describe the spinning vehicle attitude and transformation
error effects in a non-rotating inertial coordinate frame (i.e., the I Frame).  The attitude error we

will analyze is ψI
, the error in the CB

I
 matrix defined in Equations (12.3.7.1-2):

ψI×   =  I - CB
I

 CB
I T

(13.4.1.2-1)

and whose error rate is produced from δωIB
B

 angular rate sensor error as described by Equation

(12.3.7.1-4):

ψ
I
  =  - CB

I
 δωIB 

B
(13.4.1.2-2)

The acceleration transformation error we will analyze is the error in CB
I

 aSF
B

 caused by the CB
I

error (ψI
) and the accelerometer error δaSF

B
.  These effects are represented by the first two terms

on the right side of the Equations (12.3.7.1-15) velocity error rate expression, which with
(3.1.1-13) is:
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δυSnsr
I

  =  CB
I

 δaSF
B

 + aSF
I

 ×  ψI
(13.4.1.2-3)

where

δυSnsr
I

  = Acceleration transformation error in the I Frame caused by angular rate
sensor and accelerometer error.

For analysis purposes we also define:

CB
I

  =  CB0

I
 CB

B0 (13.4.1.2-4)

where

B0  = B Frame attitude relative to the I Frame at navigation time t = 0.  The B0 Frame is

considered fixed in the I Frame, hence, CB0

I
 is constant.

We consider the B Frame to be rotating at angular rate ωIB which for the problem being
analyzed, is considered constant in the B Frame.  The B0 Frame is constant in the I Frame (by

definition), hence:

ωB0B
B

  =  ωIB
B

(13.4.1.2-5)

where

ωB0B
B

  = Angular rate of the B Frame relative to the B0 Frame in B Frame coordinates

(and constant because ωIB
B

 is defined to be constant).

For a constant B Frame angular rate vector (relative to the B0 Frame), generalized Equation

(3.3.5-14) shows that the rotation vector φ associated with the B Frame CB
B0 attitude matrix has

a rate of change equal to ωB0B
B

.  This is easily verified by setting φ in (3.3.5-14) to ωB0B
B

 t (i.e.,

the integral of ωB0B
B

).  The cross-product terms in (3.3.5-14) of φ with ωB0B
B

 are thereby zero,

leaving the φ rate of change equal to ωB0B
B

.  Thus, with (13.4.1.2-5) we can write:

φ  =  ωIB t (13.4.1.2-6)

where

φ  =  Magnitude of the CB
B0 attitude rotation vector φ.

ωIB  =  Magnitude of ωIB
B

.
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and

φ  =  φ uω
B

(13.4.1.2-7)

where

uω
B

  =  Unit vector along ωIB
B

 (considered constant).

Generalized Equation (3.2.2.1-4) shows that CB
B0 corresponding to Equation (13.4.1.2-7) is

given by:

CB
B0  =  I + sin φ uω

B×  + (1 - cos φ) uω
B×  uω

B× (13.4.1.2-8)

With generalized equation (13.1-11) for uω
B×  uω

B× , (13.4.1.2-8) has the alternate form:

CB
B0  =  uω

B
 uω

B T
 + sin φ uω

B×  - cos φ uω
B×  uω

B× (13.4.1.2-9)

We then substitute (13.4.1.2-9) and (13.4.1.2-4) into (13.4.1.2-2) and (13.4.1.2-3) to obtain:

ψ
I
  =  - CB0

I
 uω

B
 uω

B T
 + sin φ uω

B×  - cos φ uω
B×  uω

B×  δωIB
B

(13.4.1.2-10)

δυSnsr
I

  =  aSF
I ×  ψI

 + CB0

I
 uω

B
 uω

B T
 + sin φ uω

B×  - cos φ uω
B×  uω

B×  δaSF
B

(13.4.1.2-11)

Equations (13.4.1.2-10) and (13.4.1.2-11) with (13.4.1.2-6) are now in a form from which
we can draw conclusions regarding the impact of constant sensor errors in rotating

environments.  First we should understand the analytical operations performed by the uω
B

 uω
B T

,

uω
B×  and uω

B×  uω
B×  operators in these equations.  The uω

B
 uω

B T
 operator produces an output

vector along uω
B

 with magnitude equal to the component of its input vector (i.e., δωIB
B

 or δaSF
B

 )

along uω
B

.  The uω
B×  operator produces an output vector that is perpendicular to uω

B
, with

magnitude equal to the component of the input vector perpendicular to uω
B

.  The uω
B×  uω

B×

operator produces a vector equal in magnitude to the uω
B×  operator output vector, but which is

also perpendicular to the uω
B×  operator output vector (and perpendicular to uω

B
).  Hence, the

outputs from the three operators are mutually perpendicular.  Because the uω
B×  and

uω
B×  uω

B×  operators in (13.4.1.2-10) and (13.4.1.2-11) multiply sin φ and cos φ, and because

φ (from Equation (13.4.1.2-6)) grows linearly with time t at spin rate ωIB, we can conclude that
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the combined effect of the uω
B×  and uω

B×  uω
B×  operators is to produce an output vector with

magnitude equal to the input vector component perpendicular to uω
B

, but which rotates in the I

Frame at ωIB around uω
B

.

Let us now address the analytical solution to (13.4.1.2-10) and (13.4.1.2-11) under constant

inertial sensor error conditions.  Ignoring sensor noise effects for the problem at hand, the δωIB
B

angular rate sensor error vector in (13.4.1.2-10) is given by Equation (13.4.1.1-13).  From

(13.4.1.1-13) we see that for constant ωIB
B

 (the case being analyzed), δωIB
B

 is constant.  Under

these conditions we can analytically integrate Equation (13.4.1.2-10) from time = 0 to t  with

(13.4.1.2-6) for φ, to obtain for ψI
:

  ψI
 = ψ0

I
 - CB0

I
 t uω

B
 uω

B T
+ 

(1 - cos ωIB t)

ωIB

 uω
B×  - 

sin ωIB t

ωIB

  uω
B×  uω

B×  δωIB
B

= ψ0
I
 - CB0

I
 t uω

B
 uω

B T
 δωIB

B
 + (1 - cos ωIB t) I - sin ωIB t uω

B×  
1

ωIB

 uω
B×  δωIB

B
(13.4.1.2-12)

where

ψ0
I
  =  Initial value for ψI

 at time t = 0.

From (13.4.1.2-12), we see that the ψI
component along uω

B
 (from the t uω

B
 uω

B T
 term) is a

ramp in time t proportional to the component of δωIB
B

 along uω
B

, and the component of δωIB
B

perpendicular to uω
B

 (the uω
B×  δωIB

B
 term) has no systematic build-up effect on ψI

.  Thus, the

spinning motion effectively compensates for constant angular rate sensor error perpendicular to

uω
B

.  This effect forms the basis for the construction of some strapdown inertial navigation

systems in which the inertial sensor assembly is mounted on a turn-table that provides forced
rotation to the angular rate sensors.  Attitude error build-up perpendicular to the turn-table
rotation axis is thereby reduced.  We also note from Equations (13.4.1.1-7) and (13.4.1.1-12)

that the uω
B T

 δωIB
B

 and 
1

ωIB

 uω
B

 × δωIB
B

 terms in (13.4.1.2-12) represent the ωIB
B

 magnitude and

tilt errors, δωIB and βB
.  Thus, the systematic build-up effect on ψI

 is produced by the ωIB
B

magnitude error δωIB, while the ωIB
B

 tilt error βB
 produces a component in ψI

 (the CB
I

 angular

error vector) that rotates around the spin axis.
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For constant inertial sensor errors, δaSF
B

 in (13.4.1.2-11) is from (12.5.6-1) (neglecting

δaRand):

δaSF
B

  =  δLScal/Mis aSF
B

 + δLBias (13.4.1.2-13)

The aSF
B

 term in (13.4.1.2-13) can be expressed as the sum of a portion to balance gravity plus

a maneuver acceleration, as in the B Frame version of (13.2.2-18):

aSF
B

  =  g uZN
B

 + ΔaSF
B

(13.4.1.2-14)

where

uZN
B

  = Unit vector along the N Frame Z axis projected on the B Frame, which from

the N Frame definition in Section 2.2, is along the upward geodetic vertical.

Similarly, the aSF
I

 term in (13.4.1.2-11) can be expressed as:

aSF
I

  =  CB0

I
 CB

B0 g uZN
B

 + ΔaSF
B

(13.4.1.2-15)

With (13.4.1.2-9) for CB
B0 in (13.4.1.2-15), aSF

B
 from (13.4.1.2-14) in (13.4.1.2-13), and aSF

I

from (13.4.1.2-15) in (13.4.1.2-11), it is difficult to define general conditions that make the

components of δυSnsr
I

 Equation (13.4.1.2-11) constant to enable simple analytical integration.

One particular condition that permits simplification is the case when ΔaSF
B

 is zero and the spin

axis is vertical so that uω
B

 = uZN
B

 for which (13.4.1.2-14) - (13.4.1.2-15) reduce to:

aSF
B

  =  g uω
B

(13.4.1.2-16)

aSF
I

  =  g CB0

I
 uω

B0 (13.4.1.2-17)

where

uω
B0  =  The uω rotation axis unit vector projected on B0 Frame axes.

With (13.4.1.2-16) for aSF
B

 in (13.4.1.2-13) (and recognizing uω
B

 as constant from its

definition), the δaSF
B

 accelerometer error term in δυSnsr
I

 Equation (13.4.1.2-11) is constant.

Applying generalized Equation (3.1.1-38) to (13.4.1.2-17) and, since uω
B

 is constant, using

(3.2.2.1-6) (which sets uω
B0 = uω

B
), the aSF

I
 ×  term in (13.4.1.2-11) becomes:
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aSF
I

 ×   =  g CB0

I
 uω

B0  ×   =  g CB0

I
 uω

B
 ×   =  g CB0

I
 uω

B
 ×  CB0

I T
(13.4.1.2-18)

Substituting (13.4.1.2-18) into δυSnsr
I

 Equation (13.4.1.2-11) using (13.4.1.2-12) for ψI
,

substituting (13.4.1.2-6) for φ, applying generalized Equation (13.1-13), and treating δaSF
B

 as

constant then provides an expression that can be readily integrated:

δυSnsr
I

  =  g CB0

I
 uω

B
 × ψ0

I

- g CB0

I
 uω

B
 ×  t uω

B
 uω

B T
 + 

(1 - cos ωIB t)

ωIB

 uω
B×  - 

sin ωIB t

ωIB

 uω
B×  uω

B×  δωIB
B

+ CB0

I
 uω

B
 uω

B T
 + sin ωIB t uω

B×  - cos ωIB t uω
B×  uω

B×  δaSF
B

(13.4.1.2-19)

=  g CB0

I
 uω

B
 × ψ0

I
 - g CB0

I
 

(1 - cos ωIB t)

ωIB

 uω
B

 ×  uω
B×  + 

sin ωIB t

ωIB

 uω
B×  δωIB

B

+ CB0

I
 uω

B
 uω

B T
 + sin ωIB t uω

B×  - cos ωIB t uω
B×  uω

B×  δaSF
B

The integral of (13.4.1.2-19) from time = 0 to t (for δaSF
B

 constant) defines the velocity error

produced from constant inertial sensor errors in the vertical rotation environment:

δυSnsr
I

  =  δυSnsr0

I
 + g t CB0

I
 uω

B
 × ψ0

I

                - g CB0

I
 t - 

sin ωIB t

ωIB

 uω
B×  + 

(1 - cos ωIB t)

ωIB

 I  
1

ωIB

 uω
B×  δωIB

B

                + CB0

I
 t uω

B
 uω

B T
 + 

(1 - cos ωIB t)

ωIB

 uω
B×  - 

sin ωIB t

ωIB

 uω
B×  uω

B×  δaSF
B

(13.4.1.2-20)

where

δυSnsr0

I
  =  Initial value for δυSnsr

I
 at time t = 0.

Similar to the attitude error build-up, Equation (13.4.1.2-20) shows that the angular rotation
for the case being investigated converts the constant accelerometer error perpendicular to the
rotation axis into an oscillatory (rotating) velocity error at the spin frequency.  Thus, strapdown
inertial navigation systems using rotation turn-tables for angular rate sensor accuracy
enhancement, also reduce velocity error build-up perpendicular to the turn-table rotation axis
created by accelerometer error.  The component of accelerometer error along the spin axis
integrates into a ramping velocity error along the spin axis.  Equation (13.4.1.2-20) also shows
that the angular rate sensor error produces a ramping velocity error build-up across the spin axis
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(in addition to oscillating errors at the spin frequency).  From the discussion following ψI

Equation (13.4.1.2-12), the velocity ramp produced from angular rate sensor error is directly

attributed to the βB
 tilt in ωIB

B
 (i.e., βB

 = 
1

ωIB

 uω
B×  δωIB

B
 in (13.4.1.2-20) multiplying t uω

B× ).

The effect of βB
 is to produce an average ψI

 attitude error (see Equation (13.4.1.2-12)) that

cross-couples aSF
I

 in Equation (13.4.1.2-11) from the vertical in this case, into the horizontal

plane and perpendicular to the ωIB
B

 tilt error angle vector βB
.

13.4.2  HIGH RATE SPINNING ABOUT ROTATING AXIS

The previous section analyzed inertial sensor generated angular rate, attitude and acceleration
transformation error in a rotating environment in which the angular rate vector was constant in
magnitude and direction.  In this section we analyze the attitude error rate in a rotating
environment in which the angular rate vector is also rotating.  Such an angular rate environment
is produced by rotating rigid body motion in the absence of applied torques which, through the
rotational equivalent of Newton’s laws of motion, is governed by the body angular momentum
in inertial space being constant (Reference 8 - Sections 5-3 and 5-4).  The angular momentum
of a rigid body is defined as:

HP  =  JP ωIB
P

(13.4.2-1)

where

JP  = Moment of inertia tensor of the rigid body in body fixed coordinate frame P.  The

components of JP are a function of the rigid body mass distribution and the
orientation of the P frame.

P  = Coordinate frame fixed in the rigid body along the “principal” moment of inertia

axes.  The principal moment of inertia axes are defined to be the axes in which JP

is a diagonal matrix.  Note that the B Frame which is also fixed in the rigid body,
is defined to be nominally aligned to the strapdown inertial sensor axis frame,
hence, is not necessarily aligned with the P Frame (even nominally).

ωIB
P

  = Angular rate of the rigid body B Frame relative to inertial space projected on
coordinate Frame P axes.

HP  =  Angular momentum of the rigid body in P Frame coordinates.

Using generalized Equation (3.4-6), the time rate of change of HP is related to the time rate
of change in our non-rotating inertial Frame I through:
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H
P
  =  CI

P
 H

I
 + ωPI

P
 × HP  =  CI

P
 H

I
 + ωBI

P
 × HP (13.4.2-2)

where

CI
P

  = Direction cosine matrix that transforms vectors from the I Frame to the

P Frame.

ωPI
P

  = Angular rate of the I Frame relative to the P Frame projected on coordinate
Frame P axes.

ωBI
P

  = Angular rate of the I Frame relative to the B Frame projected on coordinate

Frame P axes, and equal to ωPI
P

 because the P and B Frames are defined to be
fixed in the rigid body, hence, fixed relative to one another.

In the absence of applied torques (i.e., free spinning body motion), Newton’s laws applied to

rotating mass state that H
I
 = 0.  Recognizing that ωBI

P
 is the negative of ωIB

P
 then allows us to

write for (13.4.2-2):

H
P
  =  - ωIB

P
 × HP (13.4.2-3)

Equation (13.4.2-3) with (13.4.2-1) for HP are now expanded in component form.  We first

define the components of ωIB
P

 and JP as:

ωIB
P

  =  

ωIBXP

ωIBYP

ωIBZP

J
 P  =  

JSA 0 0
0 JCA 0
0 0 JCA

(13.4.2-4)

where

ωIBXP, ωIBYP, ωIBZP  =  P Frame components of ωIB
P

.

JSA  = Moment of inertia of the body around its spin axis.  For this analysis, the body
is assumed to be nominally spinning about the P Frame X axis.

JCA  = Moment of inertia of the body across the spin axis.  For this analysis we will
assume that the body has mass symmetry around the spin axis so that the
moment of inertia around any axis perpendicular to the spin axis is JCA.

Hence, the Y and Z components of JP are equal to JCA.

Substituting (13.4.2-1) into (13.4.2-3) with (13.4.2-4) then yields for the X component:
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ωIBXP  =  0 (13.4.2-5)

Thus:

ωIBXP  ≡  ωSpin  =  Constant (13.4.2-6)

where

ωSpin  =  Spin rate of the body about the P Frame X axis.

From Equation (13.4.2-1) with (13.4.2-4) and (13.4.2-6) we can also write:

HXP  =  JSA ωSpin  =  Constant (13.4.2-7)

where

HXP  =  P Frame X axis component of HP.

Now, let’s decompose H into two parts, a component along the P Frame X axis (i.e., the
spin axis) and a component perpendicular to the spin axis.  Without specific coordinate frame
designation we write:

H  =  HXP uSpin + H⊥ u ⊥ (13.4.2-8)

where

H  = Angular momentum vector in general without specific coordinate frame
designation.

uSpin  =  Unit vector along the P Frame X axis (the body spin axis).

u ⊥  = Unit vector perpendicular to uSpin  along the component of H perpendicular to
uSpin.

H⊥  =  Magnitude of the H component perpendicular to uSpin 

 

.

Figure 13.4.2-1 illustrates Equation (13.4.2-8).

Generalized Equations (3.1.1-2) and (3.1.1-29) (with V = W) show that the magnitude of
any vector is the same in any coordinate frame.  Thus for the problem at hand, because H is
constant in inertial space, its magnitude is constant in inertial space and in all coordinate frames.
Therefore, the length of H in Figure 13.4.2-1 is constant.  We also know from Equation
(13.4.2-7) that HXP in Figure 13.4.2-1 is constant.  Since HXP is the projection of H on uSpin,

we conclude that β must also be constant, thus uSpin  and u ⊥ will maintain the fixed geometry
relative to H shown in the figure.  Based on this observation we define a new coordinate Frame

⊥ (X, Z axes shown in Figure 13.4.2-1) where:
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⊥  = Right handed orthogonal coordinate frame with X along uSpin , Y axis along

H × uSpin  with the Z axis in the H - uSpin  plane and perpendicular to X, Y in the
right hand sense (i.e., along u ⊥).

H
β

  Frame
Axes X⊥

Z⊥

u⊥

HXP

HZ⊥ uSpin

⊥

I Frame X Axis

P Frame X Axis

Figure 13.4.2-1  Angular Momentum Vector Components

We also define the I Frame for this problem with the X axis along H (See Figure 13.4.2-1),
the Y, Z axes perpendicular to H such that the Figure 13.4.2-1 uSpin - u ⊥ plane is rotated from

the I Frame Z - X plane by an angle α measured positive about the I Frame X axis.  When

α = 0, the YI and Y⊥ axes are the same.  From this definition, β (in Figure 13.4.2-1) and α
form a two Euler angle set relating the I and ⊥ Frames.  The Method of Least Work diagram in

Figure 13.4.2-2 illustrates this geometry as well as the P Frame orientation at Euler angle φ
around uSpin from the uSpin - u ⊥ plane and where:

α, β, φ  = Euler angles relating the P and I Frames.  The α, β Euler angles relate the ⊥
and I Frames.

Also shown in Figure 13.4.2-2 are the α, β, φ rates of change and the components of ωIB in

Frame ⊥ and Frame P (as explained in general in Section 3.3.3.3).

From the previous discussion we know that:

β  =  Constant (13.4.2-9)
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φ

• •

•

Frame
I

Frame
P

φ

Frame
⊥

βα
α

β

ωIBXP

ωIBYP

ωIBZP

ωIBX⊥

ωIBY⊥

ωIBZ⊥

Figure 13.4.2-2  Coordinate Frame Geometry and Angular Rates

Since β is constant, β = 0, and the ωIB angular rate components in Frame ⊥  are from Figure

13.4.2-2 (with (13.4.2-6):

ωIB
⊥

  =  

α cos β + φ

0

α sin β

  =  

ωIBXP

0

α sin β

  =  

ωSpin

0

α sin β

(13.4.2-10)

The β angle is determined with Figure 13.4.2-1 from the components of H in the ⊥ Frame:

tan β  =  HZ⊥ / HXP (13.4.2-11)

The HXP component in (13.4.2-11) is given by Equation (13.4.2-7).  The HZ⊥ component in

(13.4.2-11) is found from H in the ⊥ Frame using (13.4.2-1):

H⊥  =  CP
⊥

 HP  =  CP
⊥

 J
 P ωIB

P
  =  CP

⊥
 JP CP

⊥ T
 CP

⊥
 ωIB

P
  =  J

 ⊥ ωIB
⊥

(13.4.2-12)

with:

J
 ⊥  =  CP

⊥
 J

 P CP
⊥ T

(13.4.2-13)

where

CP
⊥  = Direction cosine matrix that transforms vectors from the P Frame to the

⊥ Frame.
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From Figure 13.4.2-2 we see that:

CP
⊥  =  

1 0 0

0 cos φ - sin φ

0 sin φ cos φ

(13.4.2-14)

Substituting (13.4.2-14) with JP from (13.4.2-4) into (13.4.2-13), we find that because of the

symmetry in JP around the spin axis:

J⊥  =  JP (13.4.2-15)

Thus, (13.4.2-12) is simply:

H⊥  =  J
 P ωIB

⊥
(13.4.2-16)

The H⊥ components can now be obtained from (13.4.2-16) with (13.4.2-10) for ωIB
⊥

 and

(13.4.2-4) for JP:

H⊥  ≡  

HX⊥

HY⊥

HZ⊥

  =  

JSA ωSpin

0

JCA α sin β

(13.4.2-17)

With (13.4.2-17) for HZ⊥ and (13.4.2-7) for HXP, Equation (13.4.2-11) for tan β becomes:

tan β  =  
J CA

JSA
 
α sin β

ωSpin

(13.4.2-18)

or solving for α and remembering from (13.4.2-9) that β is constant:

α  =  
JSA

JCA
 ωSpin sec β  =  Constant (13.4.2-19)

The X component of Equation (13.4.2-10) is:

α cos β + φ  =  ωSpin (13.4.2-20)

or, solving for φ, using α from (13.4.2-19):
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φ  =  1 - 
JSA

JCA
 ωSpin  =  Constant (13.4.2-21)

Thus, we see that free rotating body motion corresponds to a constant spin rate about the spin

axis, in which the spin axis rotates at a constant rate α about an inertial axis (the inertial axis

being along H in Figure 13.4.2-2) and in which the spin axis is inclined by a constant angle β
from the inertial axis.

The α, β, φ Euler angles can also be expressed from (13.4.2-9), (13.4.2-19) and (13.4.2-21)
as:

α  =  α0 + α t β  =  Constant φ  =  φ0 + φ t (13.4.2-22)

where

α0, φ0  =  Initial values for α, φ at time t = 0.

To determine the attitude error rate produced from strapdown angular rate sensors in the

hypothesized angular motion environment, we will also need the components of ωIB
P

 which can

be obtained from:

ωIB
P

  =  CP
⊥ T

 ωIB
⊥

(13.4.2-23)

Using (13.4.2-14) for CP
⊥ and (13.4.2-10) for ωIB

⊥
, Equation (13.4.2-23) becomes:

ωIB
P

  =  

ωIBXP

ωIBYP

ωIBZP

  =  

ωSpin

α sin β sin φ

α sin β cos φ

(13.4.2-24)

Equations (13.4.2-22) - (13.4.2-24) describe the rotary motion of a free body with moment
of inertia symmetry about the spin axis.  These relations will now be used to define the attitude
error rate generated by strapdown angular rate sensors in such an environment.  We begin with
the Equation (12.3.7.1-4) I Frame version of the attitude error rate and the Equation
(13.4.1.1-13) angular rate sensor error expression for constant sensor errors.  Using the
(3.2.1-5) chain rule, these equations are:

ψ
I
  =  - CP

I
 CB

P
 δωIB

B
(13.4.2-25)

δωIB
B

  =  δKScal/Mis
B

 ωIB
B

 + δKBias
B

(13.4.2-26)
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Note that for clarity, the angular rate sensor error coefficients δ KScal/Mis
B

  and δ KBias
B

  have been
given a superscript B to identify them as being applied in the B Frame as indicated in Equation

(13.4.2-26).  We can also write for ωIB
B

:

ωIB
B

  =  CB
P T

 ωIB
P

(13.4.2-27)

Substituting (13.4.2-27) into (13.4.2-26), and the result into (13.4.2-25) finds:

ψ
I
  =  - CP

I
 CB

P
 δKScal/Mis

B
 CB

P T
 ωIB

P
 + CB

P
 δKBias

B
(13.4.2-28)

or

ψ
I
  =  - CP

I
 δKScal/Mis

P
 ωIB

P
 + δKBias

P
(13.4.2-29)

with the P Frame angular rate sensor error coefficients defined by:

δKScal/Mis
P

  =  CB
P
 δKScal/Mis

B
 CB

P T
(13.4.2-30)

δKBias
P

  =  CB
P

 δKBias
B

 (13.4.2-31)

We identify the components of δKScal/Mis
P

 and δKBias
P

 as:

δKScal/Mis
P

  =  

δKS/MXXP δKS/MXYP δKS/MXZP

δKS/MYXP δKS/MYYP δKS/MYZP

δKS/MZXP δKS/MZYP δKS/MZZP

δKBias
P

  =  

δKBiasXP

δKBiasYP

δKBiasZP

(13.4.2-32)

Using the (13.4.2-32) and (13.4.2-24) component definitions, Equation (13.4.2-29) can be
expressed in component form as:

ψS/Ml  =  - CPI( l,m) δKS/MmnP ωIBnP∑
m,n

  =  - δKS/MmnP CPI( l,m) ωIBnP∑
m,n

(13.4.2-33)

ψBiasl  =  - CPI(l,m) δKBiasmP∑
m

(13.4.2-34)

where

ψS/Ml  = Portion of ψ
I
 component l generated from angular rate sensor scale-

factor/misalignment error (i.e., from δKScal/Mis
P

).
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ψBiasl  = Portion of ψ
I
 component l generated from angular rate sensor bias error (i.e.,

from δKBias
P

).

CPI( l,m)  =  Element in row l, column m of CP
I

.

m, n, l  =  Indices equal to 1, 2 or 3 representing X, Y, Z components respectively.

The total ψ
I
 component l equals the sum of ψS/Ml and ψBiasl.

From Figure 13.4.2-2, the elements of CP
I

 are:

CPI(1,1)  =  cos β
CPI(1,2)  =  sin β sin φ
CPI(1,3)  =  sin β cos φ

CPI(2,1)  =  sin α sin β
CPI(2,2)  =  cos α cos φ - sin α cos β sin φ (13.4.2-35)

CPI(2,3)  =  - cos α sin φ - sin α cos β cos φ

CPI(3,1)  =  - cos α sin β
CPI(3,2)  =  sin α cos φ + cos α cos β sin φ
CPI(3,3)  =  - sin α sin φ + cos α cos β cos φ

Using (13.4.2-35) for CPI( l,m), (13.4.2-24) for ωIBnP, and (13.4.2-22) for α, β, φ, we make

the following observations regarding the CPI( l,m) ωIBnP products in Equation (13.4.2-33):

CPI(1,1) ωIBXP  =  ωSpin cos β

CPI(1,2) ωIBYP  =  
1
2

 α sin2β + Oscillatory Terms

 

CPI(1,3) ωIBZP  =  
1
2

 α sin2β + Oscillatory Terms

(13.4.2-36)

For l = 2   or   l = 3   or   l = 1, m ≠ n: CPI( l,m) ωIBnP  =  Oscillatory Terms

Note from Equations (13.4.2-19) and (13.4.2-22) that α and β are constant.  We conclude,

therefore, from Equation (13.4.2-36), that the only CPI( l,m) ωIBnP terms containing non-

oscillatory elements have l = 1 and m = n.  These terms multiply δKS/MXXP, δKS/MYYP,
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δKS/MZZP in ψS/Ml Equation (13.4.2-33), and are only present in ψS/M1.  It is the constant

terms in ψS/Ml that affect attitude error build-up in ψI
.  The oscillatory components create only

bounded ψI
 oscillations.  Hence, if we wish to calculate the average attitude error build-up rate

in ψI
, we need only use the constant portions of Equations (13.4.2-36) and δKS/MXXP,

δKS/MYYP, δKS/MZZP in the Equation (13.4.2-33) ψS/M1 expression, with the average attitude

error build-up rate in ψS/M2, ψS/M3 recognized to be zero.

A similar but simpler rationale applies to ψBiasl Equation (13.4.2-34) for which it is

recognized from Equations (13.4.2-35) with (13.4.2-22) for α, β, φ that:

CPI(1,1)  =  Constant
 

For l,m ≠ 1,1:     CPI (l,m)  =  Oscillatory Terms
(13.4.2-37)

Thus, from Equation (13.4.2-34), ψBias1 produces an average ψI
 build-up rate from δKBiasXP

operating through CPI(1,1) , while the average build-up rate from ψBias2, ψBias3 is zero.

Let us now calculate analytical expressions for δKS/MXXP, δKS/MYYP, δKS/MZZP and

δKBiasXP for evaluating the average attitude error build-up rate.  First we define:

δKScal/Mis
B

  =  

δKS/MXXB δKS/MXYB δKS/MXZB

δKS/MYXB δKS/MYYB δKS/MYZB

δKS/MZXB δKS/MZYB δKS/MZZB

δKBias
B

  =  

δKBiasXB

δKBiasYB

δKBiasZB

(13.4.2-38)

We then substitute (13.4.2-38) into (13.4.2-30) and (13.4.2-31) to obtain the desired analytical
scalar forms:

δKS/MXXP  =  CBP
2

(1,1) δKS/MXXB + CBP
2

(1,2) δKS/MYYB + CBP
2

(1,3) δKS/MZZB

+ CBP(1,1) CBP(1,2) δKS/MXYB + δKS/MYXB

+ CBP(1,2) CBP(1,3) δKS/MYZB + δKS/MZYB (13.4.2-39)

+ CBP(1,3) CBP(1,1) δKS/MZXB + δKS/MXZB

(Continued)
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δKS/MYYP  =  CBP
2

(2,1) δKS/MXXB + CBP
2

(2,2) δKS/MYYB + CBP
2

(2,3) δKS/MZZB

+ CBP(2,1) CBP(2,2) δKS/MXYB + δKS/MYXB

+ CBP(2,2) CBP(2,3) δKS/MYZB + δKS/MZYB

+ CBP(2,3) CBP(2,1) δKS/MZXB + δKS/MXZB

(13.4.2-39)
(Continued)

δKS/MZZP  =  CBP
2

(3,1) δKS/MXXB + CBP
2

(3,2) δKS/MYYB + CBP
2

(3,3) δKS/MZZB

+ CBP(3,1) CBP(3,2) δKS/MXYB + δKS/MYXB

+ CBP(3,2) CBP(3,3) δKS/MYZB + δKS/MZYB

+ CBP(3,3) CBP(3,1) δKS/MZXB + δKS/MXZB

δKBiasXP  =  CBP(1,1) δKBiasXB + CBP(1,2) δKBiasYB + CBP(1,3) δKBiasZB

The final step is to substitute (13.4.2-39) and (13.4.2-36) - (13.4.2-37) (neglecting the
oscillatory terms) into the axis 1 component of Equations (13.4.2-33) - (13.4.2-34), and add the
results to obtain the average attitude error build-up rate around I Frame axis 1.  The average
attitude error build-up rate around I Frame axes 2 and 3 are set to zero.  The process is
expedited by noting from generalized Equations (3.2.1-6) that direction cosine matrix columns
represent orthogonal unit vectors, hence, the magnitude of any column is 1 and the dot product
between any two columns is zero.  Thus:

For  m = 1  to 3:
'

     CBP
2

(2,m) + CBP
2

(3,m)  =  1 - CBP
2

(1,m)
 

     CBP(2,m) CBP(2,m+1) + CBP(3,m) CBP(3,m+1)
                   =  - CBP(1,m) CBP(1,m+1)

(13.4.2-40)

in which the condition m + 1 is defined to be 1 when m = 3.

Applying the previous described procedure with Equation (13.4.2-40) then yields the final
result:

ψAvg1  =  - CBP
2

(1,1) ωSpin cos β + 1 - CBP
2

(1,1)  
1
2

 α sin2β  δKS/MXXB

- CBP
2

(1,2) ωSpin cos β + 1 - CBP
2

(1,2)  
1
2

 α sin2β  δKS/MYYB (13.4.2-41)

(Continued)
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- CBP
2

(1,3) ωSpin cos β + 1 - CBP
2

(1,3)  
1
2

 α sin2β  δKS/MZZB

- CBP(1,1) CBP(1,2) ωSpin cos β - 
1
2

 α sin2β  δKS/MXYB + δKS/MYXB

 

- CBP(1,2) CBP(1,3) ωSpin cos β - 
1
2

 α sin2β  δKS/MYZB + δKS/MZYB

(13.4.2-41)
(Continued)

- CBP(1,3) CBP(1,1) ωSpin cos β - 
1
2

 α sin2β  δKS/MZXB + δKS/MXZB

- cos β CBP(1,1) δKBiasXB + CBP(1,2) δKBiasYB + CBP(1,3) δKBiasZB

ψAvg2  =  0 ψAvg3  =  0

where

ψAvgi  =  Average value of the ith component of ψ
I
.

13.4.3 SOLUTION FOR HORIZONTAL CIRCULAR TRAJECTORY PROFILE
FOR UP TO TWO HOURS WITH CONTROLLED VERTICAL CHANNEL

In this section we analyze navigation errors for an INS with a controlled vertical channel that
is navigating along a circular horizontal trajectory at constant velocity (e.g., simulating an
aircraft in a stationary holding pattern relative to the earth).  To simplify the analysis we restrict
the navigation time to up to two hours so that we can ignore some earth rate terms.  We also
assume that the vehicle velocity is slow enough that transport rate can be neglected compared to
earth rate.

With these approximations, the following simplified version of Equations (13.3.2-1) apply:

γZN  =  - CB 
N

 δωIB
B

 

 ZN
 

γH
N

  =  - CB 
N

 δωIB
B

 

 H
 - γZN ωIEH

N
 × uZN

N
 + 

1
R

  uZN
N

 × δVH
N

 

δVH
N

  ≈  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N

 

δRH
N

  =  δVH
N

(13.4.3-1)
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An analytical expression for the CB
N

 matrix in (13.4.3-1) can be derived from the sensor

assembly B Frame angular rate which we shall define as:

ωEB
B

  =  uω
B

 ωEB (13.4.3-2)

where

ωEB
B

  = B Frame angular rate relative to the earth fixed E Frame as projected on B
Frame axes.  For a steady turning rate at constant velocity along the

hypothesized circular trajectory, ωEB
B

 will be constant.

uω
B

  = Unit vector along ωEB
B

.  For the hypothesized circular trajectory at constant

velocity, uω
B

 will be parallel to a vertical located at the center of the trajectory
circle.

ωEB  =  Magnitude of ωEB
B

.

For the assumed constant ωEB
B

 angular rate, the B Frame rotates around uω
B

 at ωEB.  The

relationship between the B Frame current attitude and its initial attitude can then be described by

a rotation vector along uω
B

 with magnitude:

φ  =  ωEB dt
0

t

  =  ωEB t (13.4.3-3)

where

φ, uω
B

  = Magnitude and direction of the rotation vector describing the current B Frame
attitude relative to its starting attitude (considered fixed to the earth).  See
Section 3.2.2 for definition of the “rotation vector”.

Generalized Equations (3.2.2.1-4) and (3.2.2.1-6) show that the direction cosine matrix
associated with the previous rotation vector is given by:

CB
B0  =  I + sin φ uω

B×  + (1 - cos φ) uω
B×  uω

B× (13.4.3-4)

where

B0  = Initial orientation of the B Frame (considered fixed in the earth fixed
E Frame).
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CB
B0  = Direction cosine matrix that transforms vectors from the B Frame to the

B0 Frame.

We now apply generalized Equation (3.1.1-40) for particular terms in (13.4.3-4):

uω
B×   =  CB

N T
 uω

N×  CB
N

 

uω
B×  uω

B×   =  CB
N T

 uω
N×  uω

N×  CB
N

(13.4.3-5)

Substituting (13.4.3-5) and (13.4.3-3) into (13.4.3-4), and factoring out the CB
N

, CB
N T

 terms

yields:

CB
B0  =  CB

N T
  I + sin ωEB t uω

N×  + (1 - cos ωEB t) uω
N×  uω

N×  CB
N

(13.4.3-6)

To simplify the analysis, we assume that the trajectory circle radius is small compared to

earth’s radius, hence, we can approximate uω
N

 as lying along the local vertical and:

uω
N

  ≈  uZN
N

(13.4.3-7)

From (13.1-8) and (13.1-11) we can also write:

uZN
N ×  uZN

N ×   =  - IH
 

I - IH  =  I + uZN
N ×  uZN

N ×   =  uZN
N

 uZN
N T

(13.4.3-8)

where

IH  = Horizontal diagonal matrix with the 1,1 and 2,2 elements equal to unity and the
3,3 element equal to zero.

With (13.4.3-7) - (13.4.3-8), Equation (13.4.3-6) becomes:

CB
B0  =  CB

N T
 uZN

N
 uZN

N T
 + uZN

N ×  sin ωEB t + IH cos ωEB t  CB
N

(13.4.3-9)

We now obtain CB
N

 from (13.4.3-9) through:

CB
N

  =  CB
N

 CB
B0 CB

B0 T
(13.4.3-10)
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If we substitute Equation (13.4.3-9) for the middle CB
B0 term in (13.4.3-10), the (13.4.3-9)

CB
N T

 term will be canceled by the (13.4.3-10) CB
N

 term, leaving the (13.4.3-9) square bracketed

term with CB
N

 CB
B0 T

 (or CB0

N
) on its right.  Thus, application of (13.4.3-9) in (13.4.3-10)

obtains:

CB
N

  =  uZN
N

 uZN
N T

 + uZN
N ×  sin ωEB t + IH cos ωEB t  CB0

N
 (13.4.3-11)

With (13.4.3-11) for CB
N

, we can derive an analytical solution to Equations (13.4.3-1) for the

case of constant inertial sensor error components.  From Equations (12.5.6-1), for constant

sensor error components we omit the noise terms, and the (13.4.3-1) δωIB
B

, δaSF
B

 inertial sensor

error vectors become:

δωIB
B

  =  δKScal/Mis ωIB
B

 + δKBias δaSF
B

  =  δLScal/Mis aSF
B

 + δLBias (13.4.3-12)

For the constant velocity steady turn trajectory, aSF
B

 in (13.4.3-12) will be constant equal to the

negative of plumb-bob gravity in the B Frame.  The ωIB
B

 term in (13.4.3-12) equals the sum of

earth’s rate plus B Frame angular rate relative to the earth (ωEB
B

).  For the assumed trajectory

circle radius much smaller that earth’s radius, as the B Frame turns about the vertical, the

horizontal earth rate component will appear oscillatory in the B Frame (at frequency ωEB), and

the B Frame vertical earth rate component will be approximately constant.  If we assume that
the trajectory turning rate is large compared to earth’s rate, we can neglect the oscillatory

horizontal earth rate component in ωIB
B

.  Since ωEB
B

 is constant, we can thereby approximate ωIB
B

in (13.4.3-12) as constant.  Thus, for aSF
B

 and ωIB
B

 approximately constant in (13.4.3-12), for

our assumed constant δK, δL coefficients, the δaSF
B

 and δωIB
B

 sensor errors will also be

constant.

Understanding the implications of the constant sensor error assumption, we now seek an

analytical solution to Equations (13.4.3-1) with (13.4.3-11) using constants for δωIB
B

, δaSF
B

.

Because of the relatively short navigation time and limited trajectory range, we will also

approximate the ωIEH

N
 horizontal earth rate component in (13.4.3-1) as constant.  We begin by

applying CB
N

 from (13.4.3-11) to find the horizontal and vertical sensor error components in

Equations (13.4.3-1)
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CB
N

 δωIB
B

  =  uZN
N

 uZN
N T

 + uZN
N ×  sin ωEB t + IH cos ωEB t  CB0

N
 δωIB

B

 

CB
N

 δaSF
B

  =  uZN
N

 uZN
N T

 + uZN
N ×  sin ωEB t + IH cos ωEB t  CB0

N
 δaSF

B
(13.4.3-13)

The uZN
N

 uZN
N T

 operator in (13.4.3-13) transmits the vertical component of its input, the IH

operator transmits the horizontal input component, and the uZN
N ×  operator generates a resultant

that is perpendicular to uZN
N

, hence, horizontal.  Thus from (13.4.3-13) we can write:

CB
N

 δωIB
B

 

 ZN
  =   CB0

N
 δωIB

B
 

 ZN

CB 
N

 δωIB
B

 

 H
  =  uZN

N ×  sin ωEB t + IH cos ωEB t   CB0

N
 δωIB

B
 

 H
(13.4.3-14)

CB 
N

 δaSF
B

 

 H
  =  uZN

N ×  sin ωEB t + IH cos ωEB t  CB0

N
 δaSF

B
 

 H

where

H  =  Designation for the horizontal component of the associated vector.

ZN  =  Designation for the vertical component (along uZN
N

) of the associated vector.

With (13.4.3-14), the integral of the vertical attitude error rate in (13.4.3-1) is:

γZN  =  γZN0 - CB0

N
 δωIB

B
 

 ZN
 t (13.4.3-15)

where

γZN0  =  Initial vertical attitude error (i.e., initial heading error).

The derivative of the (13.4.3-1) horizontal velocity error expression (with constant g because of
the horizontal trajectory) is:

δVH
N

  =  
d
dt

 CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
(13.4.3-16)

Using (13.4.3-14) for CB
N

 δaSF
B

 

 H
, Equation (13.4.3-1) for γH

N
, (13.4.3-15) for γZN, and

applying generalized Equation (13.1-5), we find for particular terms in (13.4.3-16):
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d
dt

 CB
N

 δaSF
B

 

 H
  =  ωEB uZN

N ×  cos ωEB t - IH sin ωEB t  CB0

N
 δaSF

B
 

 H
 

uZN
N

 × γ H
N

  =  - uZN
N

 × CB 
N

 δωIB
B

 

 H
 - γ ZN0 - CB0

N
 δωIB

B
 

 ZN
 t  ωIEH

N
 - 

1
R

 δVH
N

(13.4.3-17)

with (13.4.3-14) for CB 
N

 δωIB
B

 

 H
 using (13.1-8) and (13.1-13):

uZN
N

 × CB 
N

 δωIB
B

 

 H
  =  - IH sin ωEB t + uZN

N ×  cos ωEB t  CB0

N
 δωIB

B
 

 H
(13.4.3-18)

Substituting (13.4.3-17) - (13.4.3-18) into (13.4.3-16) then obtains after rearrangement:

δVH
N

 + 
g
R

 δVH
N

  =  ωEB uZN
N ×  cos ωEB t - IH sin ωEB t  CB0

N
 δaSF

B
 

 H

- g - IH sin ωEB t + uZN
N ×  cos ωEB t  CB0

N
 δωIB

B
 

 H
(13.4.3-19)

- g γZN0 - CB0

N
 δωIB

B
 

 ZN
 t  ωIEH

N

or in more compact notation:

δVH
N

 + ωS
2
 δVH

N
  =  Dγ  z + Dc cos ωEB t + Ds sin ωEB t + Dt t (13.4.3-20)

with

ωS  =  
g
R

  =  Schuler frequency

Dγz  =  - g γZN0 ωIEH

N

Ds  =  g CB0

N
 δωIB

B
 

 H
 - ωEB CB0

N
 δaSF

B
 

 H
(13.4.3-21)

Dc  =  uZN
N

 × ωEB CB0

N
 δaSF

B
 

 H
 - g CB0

N
 δωIB

B
 

 H
  =  - uZN

N
 × Ds

Dt  =  g CB0

N
 δωIB

B
 

 ZN
 ωIEH

N

In classical fashion, we construct the “Particular” solution to (13.4.3-20) as:

δVHPrt

N
  =  C0 + Cc cos ωEB t + Cs sin ωEB t + Ct t (13.4.3-22)
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where

δVHPrt

N
  =  Particular solution for δVH

N
 in (13.4.3-20).

The second derivative of (13.4.3-22) is;

δVHPrt

N
  =  - ωEB

2
 Cc cos ωEB t + Cs sin ωEB t (13.4.3-23)

Substituting (13.4.3-22) for δVH
N

 and (13.4.3-23) for δVH
N

 in (13.4.3-20) with Dc from

(13.4.3-21) yields:

ωS
2

 - ωEB
2

 Cc cos ωEB t + Cs sin ωEB t  + ωS
2

 C0 + Ct t
 

            =  Dγ   z + Ds sin ωEB t - uZN
N

 × Ds  cos ωEB t + Dt t 
(13.4.3-24)

Equation (13.4.3-24) is solved for the (13.4.3-22) δVHPrt

N
 coefficients by equating coefficients

of like terms, whence:

C0  =  
1

ωS
2

 Dγ  z             Cs  =  
1

ωS
2

 - ωEB
2

 Ds

 

Cc  =  - 
1

ωS
2

 - ωEB
2

 uZN
N

 × Ds   =  - uZN
N

 × Cs             Ct  =  
1

ωS
2

 Dt 

(13.4.3-25)

The complete solution for δVH
N

 is now obtained as the sum of the homogeneous part with

the (13.4.3-22) and (13.4.3-25) particular part.  As in Section 13.2.2, we construct the

homogeneous solution as the sum of terms for the characteristic roots of the δVH
N

 differential

equation which, for Equation (13.4.3-20), are sinusoids at the Schuler frequency ωS.  Thus,
using (13.4.3-22) with the Cc expression in (13.4.3-25) for the Particular solution, the overall

solution for δVH
N

 is:

δVH
N

  =  C1 cos ωS t + C2 sin ωS t

              + C0 + Cs sin ωEB t - uZN
N

 × Cs  cos ωEB t + Ct t
(13.4.3-26)

and for its derivative:

δVH
N

  =  - C1 ωS sin ωS t + ωS C2 cos ωS t

              + ωEB Cs cos ωEB t + ωEB uZN
N

 × Cs  sin ωEB t + Ct 
(13.4.3-27)
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The C1, C2 coefficients are set to satisfy Equations (13.4.3-26) - (13.4.3-27) at time t = 0,

which with δVH
N

 from (13.4.3-1) and CB
N

 δaSF
B

 

H
 from (13.4.3-14) are:

δVH0

N
  =  C1 + C0 - uZN

N
 × Cs

δVH0

N
  =  ωS C2 + ωEB Cs + Ct (13.4.3-28)

 =  CB
N

 δaSF
B

 

 H0
 + g uZN

N
 × γH0

N
  =  CB0

N
 δaSF

B
 

 H
 + g uZN

N
 × γH0

N

where

δVH0

N
, δVH0

N
, γH0

N
  =  Initial values for δVH

N
, δVH

N
, γH

N
 (at time t = 0).

Rearranging (13.4.3-28) then yields:

C1  =  δVH0

N
 - C0 + uZN

N
 × Cs

 

C2  =  
1

ωS

 CB0

N
 δaSF

B
 

 H
 + g uZN

N
 × γH0

N
 - 

ωEB

ωS

 Cs - 
1

ωS

 Ct

(13.4.3-29)

The complete solution for δVH
N

 is finally obtained from (13.4.3-26) with (13.4.3-29) for C1

and C2, Equation (13.4.3-25) for C0, Cs, Ct, Equation (13.4.3-21) for Dγz, Ds, Dt , and

selective substitution of ωS from (13.4.3-21):

δVH
N

  =  δVH0

N
 cos ωS t - R γZN0 ωIEH

N
 (1 - cos ωS t) + g uZN

N
 × γH0

N
 
sin ωS t

ωS

- 
ωEB

ωS
2

 - ωEB
2

 sin ωEB t - 
ωS

ωEB

 sin ωS t  I - (cos ωEB t - cos ωS t) uZN
N ×  CB0

N
 δaSF

B
 

 H

+ R  CB0

N
 δωIB

B
 

 ZN
 ωIEH

N
 t - 

sin ωS t

ωS

(13.4.3-30)

+ R 
ωS

2

ωS
2

 - ωEB
2

 sin ωEB t - 
ωEB

ωS

 sin ωS t  I - (cos ωEB t - cos ωS t) uZN
N ×  CB0

N
 δωIB

B
 

 H

The corresponding horizontal position error solution is determined per Equations (13.4.3-1)
as the integral from time = 0 to t  of the Equation (13.4.3-30) horizontal velocity error solution:
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δRH
N

  =  δRH0

N
 + δVH0

N
 

1

ωS

 sin ωS t - R γZN0 ωIEH

N
 t - 

1

ωS

 sin ωS t  + g uZN
N

 × γH0

N
 
(1 - cos ωS t)

ωS
2

+ 
1

ωS
2

 - ωEB
2

 (cos ωEB t - cos ωS t) I + sin ωEB t - 
ωEB

ωS

 sin ωS t  uZN
N ×  CB0

N
 δaSF

B
 

 H

+ R CB0

N
 δωIB

B
 

 ZN
 ωIEH

N
 

1
2

 t2 - 
(1 - cos ωS t)

ωS
2

(13.4.3-31)

+ R 
ωS

ωS
2

 - ωEB
2

 
ωS

ωEB

 (1 - cos ωEB t) - 
ωEB

ωS

 (1 - cos ωS t)  I

 - 
ωS

ωEB

 sin ωEB t - sin ωS t  uZN
N ×  CB0

N
 δωIB

B
 

 H

where

δRH0

N
  =  Initial value for δRH

N
 (at time t = 0).

Equations (13.4.3-30) and (13.4.3-31) show that the horizontal angular rate and
accelerometer errors produce position and velocity error oscillations at the Schuler frequency
and at the frequency of circular trajectory traversal.  In addition, no long term position error

build-up is created from horizontal sensor error, and for rapid turning rates (ωEB) compared to

the ωS Schuler frequency, the oscillatory effects on navigation error are attenuated.  The

previous situation is unique to strapdown (compared to gimbaled) inertial navigation systems,
and stems from the rotation of the strapdown sensors which averages their impact on
navigation error build-up.  This contrasts with the strapdown INS solution for a straight
trajectory (Equations (13.3.2-25)) which show a ramping position error build-up due to
horizontal angular rate sensor error coupled with Schuler oscillations from horizontal strapdown

inertial sensor errors, but without the ωEB turning rate attenuation.  The effect of vertical angular

rate sensor error and initial condition errors is the same for straight and circular trajectories.  For

the case when ωEB approaches ωS, Equations (13.4.3-30) - (13.4.3-31) show that the circular

trajectory has the effect of amplifying position/velocity error build-up due to horizontal inertial

sensor error (due to the ωS
2
 - ωEB

2
 term).  The effect is analogous to the response of a pendulum

to driving forces near its natural frequency of oscillation.  For the singular case when ωEB = ωS,

the (13.4.3-30) - (13.4.3-31) solution is indeterminate.  The next section develops a solution for

the circular trajectory that is valid for the particular situation when ωEB = ωS (known as Schuler

pumping).
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13.4.4  SOLUTION FOR HORIZONTAL CIRCULAR TRAJECTORY PROFILE AT
SCHULER FREQUENCY WITH CONTROLLED VERTICAL CHANNEL

Consider the case of a strapdown INS with a controlled vertical channel that is navigating
along a circular trajectory in which the frequency of rotation around the circle matches the
Schuler frequency.  Subject to the same constraints delineated in Section 13.4.3, the applicable

navigation error equations are provided by Equations (13.4.3-20) - (13.4.3-21) with ωEB = ωS:

δVH
N

 + ωS
2
 δVH

N
  =  Dγ  z + Ds sin ωS t - uZN

N
 × Ds  cos ωS t + Dt t (13.4.4-1)

ωS  =  
g
R

  =  Schuler frequency

Dγz  =  - g γZN0 ωIEH

N

 

Ds  =  g CB0

N
 δωIB

B
 

 H
 - ωS CB0

N
 δaSF

B
 

 H

(13.4.4-2)

Dt  =  g CB0

N
 δωIB

B
 

 ZN
 ωIEH

N

Following the same procedure as in Section 13.4.3, the solution to Equation (13.4.4-1) is
obtained by first constructing a “Particular” solution that we anticipate to fit the (13.4.4-1)
forcing function:

δVHPrt

N
  =  C0 + Cct t cos ωS t + Cst t sin ωS t + Ct t (13.4.4-3)

Substituting (13.4.4-3) and its second derivative into (13.4.4-1) for δVH
N

 then gives after

combining terms:

- 2 ωS Cct sin ωS t + 2 ωS Cst cos ωS t + ωS
2

 C0 + Ct t
 

      =  Dγ  z + Ds sin ωS t - uZN
N

 × Ds  cos ωS t + Dt t
(13.4.4-4)

from which, after equating coefficients of like terms:

C0  =  
1

ωS
2

 Dγz             Cct  =  - 
1

2 ωS

 Ds

Cst  =  - 
1

2 ωS

 uZN
N

 × Ds   =  uZN
N

 × Cct             Ct  =  
1

ωS
2

 Dt

(13.4.4-5)
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As in Section 13.4.3, the total solution is then constructed as the sum of the Particular part
(from (13.4.4-3) and (13.4.4-5)) and the homogeneous part (based on the characteristic Schuler
frequency oscillation roots).  Thus:

δVH
N

  =  C1 cos ωS t + C2 sin ωS t + C0

              + Cct t cos ωS t + uZN
N

 × Cct  t sin ωS t + Ct t
(13.4.4-6)

and for its derivative:

δVH
N

  =  - C1 ωS sin ωS t + ωS C2 cos ωS t + Cct cos ωS t + uZN
N

 × Cct  sin ωS t

              - Cct ωS t sin ωS t + uZN
N

 × Cct  ωS t cos ωS t + Ct

(13.4.4-7)

The C1, C2 coefficients are set to satisfy Equations (13.4.4-6) and (13.4.4-7) at time t = 0

using δVH
N

 from Equations (13.4.3-1):

δVH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
(13.4.4-8)

Equations (13.4.4-6) - (13.4.4-8) at t = 0 then yields:

C1  =  δVH0

N
 - C0

 

C2  =  
1

ωS

 CB0

N
 δaSF

B
 

 H
 + g uZN

N
 × γH0

N
 - Cct - Ct

(13.4.4-9)

The complete solution for δVH
N

 is obtained using (13.4.4-6) with (13.4.4-9) for C1 and C2,

Equation (13.4.4-5) for C0, Cct, Ct, Equation (13.4.4-2) for Dγz, Ds, Dt , and selective

substitution of ωS from (13.4.4-2):

δVH
N

  =  δVH0

N
 cos ωS t - R γZN0 ωIEH

N
 1 - cos ωS t  +g uZN

N
 × γH0

N
 
sin ωS t

ωS

+ 
1
2

 t I cos ωS t + sin ωS t uZN
N ×  + I 

sin ωS t

ωS

 CB0

N
 δaSF

B
 

 H

+ R CB0

N
 δωIB

B
 

 ZN
 ωIEH

N
 t - 

sin ωS t

ωS

(13.4.4-10)

- R 
ωS

2
 t I cos ωS t + sin ωS t uZN

N ×  - I 
sin ωS t

ωS

 CB0

N
 δωIB

B
 

 H
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The corresponding horizontal position error solution is derived by integrating (13.4.4-10)
from time = 0 to t  in accordance with (13.4.3-1):

δRH
N

  =  δRH0

N
 + δVH0

N
 

1

ωS

 sin ωS t - R γZN0 ωIEH

N
 t - 

sin ωS t

ωS

 + g uZN
N

 × γH0

N
 
(1 - cos ωS t)

ωS
2

+ 
1

2 ωS

 t I sin ωS t - cos ωS t uZN
N

 ×  - 
1

ωS

 (1 - cos ωS t) I - sin ωS t uZN
N ×

 
 

                 + I 
(1 - cos ωS t)

ωS

 CB0

N
 δaSF

B
 

 H

+ R CB0

N
 δωIB

B
 

 ZN
 ωIEH

N
 

1
2

 t2 - 
(1 - cos ωS t)

ωS
2

(13.4.4-11)

- 
R
2

 t I sin ωS t - cos ωS t uZN
N ×  - 

1

ωS

 (1 - cos ωS t) I - sin ωS t uZN
N ×

 
 

-  I 
(1 - cos ωS t)

ωS

 CB0

N
 δωIB

B
 

 H

Equations (13.4.4-10) - (13.4.4-11) illustrate the principal effect of Schuler pumping (i.e.,

trajectory turning rate ωEB equal to Schuler frequency ωS) on horizontal navigation error; the

creation of an oscillating navigation error at Schuler frequency in response to horizontal inertial
sensor error, with an unbounded linearly ramping envelope component.  As for the Section
13.4.3 general circular trajectory situation, no pure unbounded linear position ramping error
exists in response to horizontal angular rate sensor error (as it does along the Section 13.3.2
straight trajectory).  However, the slope of the Schuler envelope for the Schuler pumping case is
half the magnitude of the pure linear position error ramp slope along the straight trajectory (See
Equations (13.3.2-25)), and is created along both N Frame horizontal axes (in quadrature) for
each angular rate sensor error component.  For the straight trajectory case, a given angular rate
sensor error component creates position error build-up along only one direction in the N Frame.
A ramping Schuler oscillation envelope is generally considered a serious effect because it is
accompanied by a ramping velocity oscillation envelope.  In contrast, along the straight
trajectory, the same angular rate sensor error source would create a velocity offset with a
bounded amplitude Schuler oscillation.

It is also to be noted that the Equations (13.4.4-10) - (13.4.4-11) navigation error response to
vertical angular rate sensor and initial condition error along the Schuler circle is identical to the
error response in Section 13.4.3 for the general circular trajectory case.
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13.5 LONG TERM POSITION ERROR FOR CONSTANT
ATTITUDE AND SENSOR ERRORS

Thus far, in Sections 13.3 - 13.4 we have developed analytical solutions to the strapdown
inertial navigation error equations for limited navigation times (up to two hours) for which the
effect of position error on earth rate components can be neglected.  In this section we deal with
the long term position error solution in which the Schuler oscillation effects can be ignored.
The applicable long term position error equation we will analyze is Equation (13.2.3-4) which
has been derived in Section 13.2.3:

δRHLngTrm

N
  =  R uZN

N
 × ψH

N
(13.5-1)

where

δRHLngTrm

N
  = Approximate value for δRH

N
 for long term inertial navigation system

error analysis in which Schuler oscillation effects have been neglected.

ψH
N

  =  Horizontal component of ψN
.

The ψN
 attitude error in (13.5-1) is from Equation (12.3.7.1-4) with the (3.2.1-5) chain rule:

ψ
I
  =  - CN

I
 CB

N
 δωIB 

B
(13.5-2)

ψN
  =  CN

I T
 ψI

(13.5-3)

where

CN
I

  = Direction cosine matrix that transforms vectors from the N Frame to the

I Frame.

The δωIB 
B

 angular rate sensor error vector in (13.5-2) is given in general by the δωIB 
B

expression in Equations (12.5.6-1):

δωIB
B

  =  δKScal/Mis ωIB
B

 + δKBias + δωRand (13.5-4)

For long term error analysis, the δKBias term in (13.5-4) dominates for typical angular rate
sensors used in strapdown systems designed for long term inertial navigation (e.g., ring laser

gyros).  To simplify the analysis we will, therefore, only include  δKBias with the further

simplification that  δKBias be considered constant for the navigation period.  Thus:
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δωIB
B

  ≈  δKBias  =  Constant (13.5-5)

In order to find an analytical to Equations (13.5-1) - (13.5-3) with (13.5-5) we define a
simple but meaningful trajectory for the navigation system as a great circle relative to the earth
at constant velocity, with selected analysis coordinate frames connecting the B and I Frames as
illustrated in the Figure 13.5-1 “Method of Least Work” diagram (See Section 3.2.3.3 for
interpretation):

•

•

Initial 
Geographic 
Coordinates
(Frame      )

l0

•

Navigation
Coordinates
(Frame N)

ρ t

G0

β0

Body
 Coordinates 

(Frame B)

Initial
Navigation
Coordinates
(Frame         )N0

CB
N

•

Inertial 
Coordinates

(Frame I)

Earth 
Coordinates
(Frame E)

ωet

Figure 13.5-1  Analysis Coordinate Frame Relationships

where

t  =  Time from trajectory start.

E, G0 and N0  = Earth fixed coordinate frames.  E is the earth reference frame with Y
along the earth polar rotation axis and Z in the plane of the starting
meridian at trajectory time t = 0 (in contrast with the Section 2.2 E
Frame that has Z in the Greenwich meridian plane).  G0 is a
geographic frame with Y axis north and Z axis along the upward
vertical at the t = 0 trajectory starting location.  The N0 initial
navigation frame has the Z axis vertical at the t = 0 starting location
with the Y axis in the initial velocity direction.

N  = Local navigation coordinate frame with X axis perpendicular to the great circle
plane, Y axis along the velocity vector and Z axis up at time t along the trajectory.

I  = Non-rotating inertial reference frame.  The I Frame is defined in Figure 13.5-1 to be
coincident with the E Frame at navigation time t = 0.

ωe  = Earth’s angular rotation rate.  The ωe t  angle is the angle rotated through by the
earth (relative to inertial space) since navigation time t = 0.
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l0  =  Initial latitude.

β0  = Angle between the initial north direction and the initial velocity vector measured
positive around a downward vertical (also known as the initial “track angle”).

ρ  = Transport rate representing the angular rate of the INS over the earth’s surface

(relative to the earth) along the great circle.  The ρ t  angle is the great circle angle
traversed by the INS since navigation time t = 0.  Since the velocity relative to the

earth is assumed constant, ρ is also constant.

From Figure 13.5-1 we write for the elements of CN
I

 in Equations (13.5-2) - (13.5-3):

CNI(1,1)  =  cos ωe t cos β0 + sin ωe t sin l0 sin β0 

CNI(1,2)  =  cos ωe t sin β0 cos ρ t + sin ωe t - sin l0 cos β0 cos ρ t - cos l0 sin ρ t

CNI(1,3)  =  cos ωe t sin β0 sin ρ t + sin ωe t - sin l0 cos β0 sin ρ t + cos l0 cos ρ t

CNI(2,1)  =  - cos l0 sin β0 

CNI(2,2)  =  cos l0 cos β0 cos ρ t - sin l0 sin ρ t (13.5-6)

CNI(2,3)  =  cos l0 cos β0 sin ρ t + sin l0 cos ρ t 

CNI(3,1)  =  - sin ωe t cos β0 + cos ωe t sin l0 sin β0 

CNI(3,2)  =  - sin ωe t sin β0 cos ρ t + cos ωe t - sin l0 cos β0 cos ρ t - cos l0 sin ρ t

CNI(3,3)  =  - sin ωe t sin β0 sin ρ t + cos ωe t - sin l0 cos β0 sin ρ t + cos l0 cos ρ t

where

CNI (i,j)   =  Element of CN
I

 in row i, column j.

The analytical solution for ψI
 in Equation (13.5-3) is the integral of (13.5-2) from

time = 0 to t  using (13.5-5) - (13.5-6) and, for simplicity, assuming CB
N

  to be constant (i.e.,

constant sensor axis B Frame orientation relative to the N Frame):

ψI
  =  ψ0

I
 - CN

I
 dt

0

t

 CB
N

 δKBias (13.5-7)

where

ψ0
I
  =  Initial value for ψI

 at time t = 0.
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The ψ0
I
 initial attitude error in (13.5-7) can be expressed in terms if its N0 Frame components

if we recognize that the I and E Frames have been defined to be coincident at t = 0:

ψ0
I
  =  ψ0

E
  =  CN0

E
 ψ0

N0 (13.5-8)

With (13.5-7) and (13.5-8), Equation (13.5-3) for ψN
 becomes:

ψN
  =  CN

I T
 CN0

E
 ψ0

N0 - CN
I

 dt
0

t

 CB
N

 δKBias (13.5-9)

Components of the CN0

E
 matrix in (13.5-9) are from Figure 13.5-1 (or Equations (13.5-6) at

t = 0):

CN0E(1,1)  =  cos β0

CN0E(1,2)  =  sin β0

CN0E(1,3)  =  0

CN0E(2,1)  =  - cos l0 sinβ0

CN0E(2,2)  =  cos l0 cosβ0 (13.5-10)

CN0E(2,3)  =  sin l0

CN0E(3,1)  =  sin l0 sinβ0

CN0E(3,2)  =  - sin l0 cosβ0

CN0E(3,3)  =  cos l0

where

CN0E(i,j)   =  Element in row i, column j of CN0

E
.

Summarizing and collecting results at this point, the long term position error δRHLngTrm

N
 is

provided by Equations (13.5-1) and (13.5-9):

δRHLngTrm

N
  =  R uZN

N
 × ψH

N

 

ψN
  =  CN

I T
 CN0

E
 ψ0

N0
 - CN

I T
 ICN

I
 CB

N
 δKBias

(13.5-11)

with
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ICN
I

  ≡  CN
I

 dt
0

t

(13.5-12)

where

ICN
I

  =  Integral of CN
I

 from time t = 0.

and with (13.5-6) and (13.5-10) for CN
I

, CN0

E
.

Equations (13.5-10) - (13.5-11) for δRHLngTrm

N
 are solved once the CN

I
 integral (ICN

I
) in

(13.5-12) is evaluated using (13.5-6) for CN
I

.  Evaluation of (13.5-12) is expedited by first

defining the following for particular terms in (13.5-6):

gcω (t)  ≡  cos ωe t 

gsω (t)  ≡  sin ωe t 

gcρ (t)  ≡  cos ρ t 

gsρ (t)  ≡  sin ρ t 
(13.5-13)

gcc(t)  ≡  cos ωe t cos ρ t  =  
1
2

 cos (ωe + ρ) t + cos (ωe - ρ) t

gcs(t)  ≡  cos ωe t sin ρ t  =  
1
2

 sin (ωe + ρ) t - sin (ωe - ρ) t

gsc(t)  ≡  sin ωe t cos ρ t  =  
1
2

 sin (ωe + ρ) t + sin (ωe - ρ) t

gss(t)  ≡  sin ωe t sin ρ t  =  
1
2

 - cos (ωe + ρ) t + cos (ωe - ρ) t

With (13.5-13), Equations (13.5-6) become for the CN
I

 elements:

CNI(1,1)  =  cos β0 gc ω (t) + sin l0 sin β0 gs ω (t)

CNI(1,2)  =  sin β0 gcc (t) - sin l0 cos β0 gsc (t) - cos l0 gss (t)

CNI(1,3)  =  sin β0 gcs (t) - sin l0 cos β0 gss (t) + cos l0 gsc (t)
(13.5-14)

CNI(2,1)  =  - cos l0 sin β0 

CNI(2,2)  =  cos l0 cos β0 gc ρ (t) - sin l0 gs ρ (t) 

CNI(2,3)  =  cos l0 cos β0 gs ρ (t) + sin l0 gc ρ (t)

(Continued)
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CNI(3,1)  =  - cos β0 gs ω (t) + sin l0 sin β0 gc ω (t)

CNI(3,2)  =  - sin β0 gsc (t) - sin l0 cos β0 gcc (t) - cos l0 gcs (t)
(13.5-14)

(Continued)

CNI(3,3)  =  - sin β0 gss (t) - sin l0 cos β0 gcs (t) + cos l0 gcc (t)

The only time varying elements in (13.5-14) are the Equation (13.5-13) terms.  Thus, the

integral of (13.5-14) for ICN
I

 per Equation (13.5-12) is a function of the integrated (13.5-13)

terms which we shall define as:

Igcω(t)  ≡  gcω(τ) dτ
0

t

  =  
sin ωe t

ωe

 

Igsω(t)  ≡  gsω(τ) dτ
0

t

  =   
1 - cos ωe t

ωe

 

Igcρ(t)  ≡  gcρ(τ) dτ
0

t

  =  
sin ρ t

ρ
 

Igsρ(t)  ≡  gsρ(τ) dτ
0

t

  =  
1 - cos ρ t

ρ

Igcc(t)  ≡  gcc(τ) dτ
0

t

  =  
1
2

 
sin (ωe + ρ) t

ωe + ρ
 + 

sin (ωe - ρ) t

ωe - ρ

(13.5-15)

Igcs(t)  ≡  gcs(τ) dτ
0

t

  =  
1
2

 
1 - cos (ωe + ρ) t

ωe + ρ
 - 

1 - cos (ωe - ρ) t

ωe - ρ

Igsc(t)  ≡  gsc(τ) dτ
0

t

  =  
1
2

  
1 - cos (ωe + ρ) t

ωe + ρ
 + 

1 - cos (ωe - ρ) t

ωe - ρ

Igss(t)  ≡  gss(τ) dτ
0

t

  =  
1
2

 - 
sin (ωe + ρ) t

ωe + ρ
 + 

sin (ωe - ρ) t

ωe - ρ

Some of the elements in Equations (13.5-15) become indeterminate when ρ approaches

zero, plus ωe or minus ωe.  Using Taylor series expansion for the appropriate sinusoidal terms

in these elements, the particular affected terms can be evaluated to first order under the previous
conditions, whence:



LONG TERM POSITION ERROR FOR CONSTANT ATTITUDE AND SENSOR ERRORS     13-85

For ρ  ≈  0:

Igcρ(t)  ≈  t Igsρ(t)  ≈  
1
2

 ρ t2  ≈  0

For ρ  ≈  ωe:

Igcc(t)  ≈  
1
2

 t + 
sin (ωe + ρ) t

ωe + ρ
               Igcs(t)  ≈  

1
2

 
1 - cos (ωe + ρ) t

ωe + ρ
 

Igsc(t)  ≈  
1
2

  
1 - cos (ωe + ρ) t

ωe + ρ
            Igss(t)  ≈  

1
2

 t - 
sin (ωe + ρ) t

ωe + ρ

(13.5-16)

For ρ  ≈  - ωe:

Igcc(t)  ≈  
1
2

 t + 
sin (ωe - ρ) t

ωe - ρ
               Igcs(t)  ≈  - 

1
2

 
1 - cos (ωe - ρ) t

ωe - ρ
 

Igsc(t)  ≈  
1
2

 
1 - cos (ωe - ρ) t

ωe - ρ
               Igss(t)  ≈  

1
2

 - t + 
sin (ωe - ρ) t

ωe - ρ

Then, using (13.5-15) - (13.5-16), the elements of ICN
I

 are obtained per Equation (13.5-12) as

the integral of Equations (13.5-14):

ICNI(1,1)  =  cos β0 Igcω (t) + sin l0 sin β0 Igsω (t)

ICNI(1,2)  =  sin β0 Igcc (t) - sin l0 cos β0 Igsc (t) - cos l0 Igss (t)

ICNI(1,3)  =  sin β0 Igcs (t) - sin l0 cos β0 Igss (t) + cos l0 Igsc (t)

ICNI(2,1)  =  - t cos l0 sin β0

ICNI(2,2)  =  cos l0 cos β0 Igcρ (t) - sin l0 Igsρ (t) (13.5-17)

ICNI(2,3)  =  cos l0 cos β0 Igsρ (t) + sin l0 Igcρ (t)

ICNI(3,1)  =  - cos β0 Igsω (t) + sin l0 sin β0 Igcω (t)

ICNI(3,2)  =  - sin β0 Igsc (t) - sin l0 cos β0 Igcc (t) - cos l0 Igcs (t)

ICNI(3,3)  =  - sin β0 Igss (t) - sin l0 cos β0 Igcs (t) + cos l0 Igcc (t)

where

ICNI (i,j)   =  Element of ICN
I

 in row i, column j.
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The general analytical solution for the long term position error δRHLngTrm

N
 is given by

Equations (13.5-11) using (13.5-10) for CN0

E
, Equation (13.5-14) with (13.5-13) for CN

I
, and

Equation (13.5-17) with (13.5-15) - (13.5-16) for ICN
I

.

It is instructive to also generate a δRHLngTrm

N
 analytic solution under the special case of a

slowly moving vehicle for which ρ and ρ t can be considered negligible.  For simplicity we also

set β0 = 0 so that the Y axis of the N0 Frame is north and, since ρ is assumed small, the N and
G0 Frames can be approximated to be coincident.  Then, using (13.1-4), Equations (13.5-11) -

(13.5-12) simplify to:

δRHLngTrm

G0   =  R uZG0

G0  × ψG0

 

ψG0  =  CG0

I T
 CG0

E
 ψ0

G0
 - CG0

I T
 ICG0

I
 CB

G0 δKBias

(13.5-18)

ICG0

I
  ≡  CG0

I
 dt

0

t

(13.5-19)

Equations (13.5-18) - (13.5-19) can also be expressed as:

δRHLngTrm

G0   =  Aψ0 ψ0
G0

 + AδKBias δKBias
G0  δKBias

G0   =  CB
G0 δKBias (13.5-20)

with

Aψ0  =  R uZG0

G0 ×  CG0

I T
 CG0

E
AδKBias  =  - R uZG0

G0 ×  CG0

I T
 ICG0

I
(13.5-21)

where

Aψ0, AδKBias  = Long term horizontal position error sensitivity matrices to initial
attitude error and G0 Frame angular rate sensor bias error.

The CG0

I
 matrix terms in (13.5-21) are equivalently:

CG0

I
  =  CE

I
 CG0

E
CG0

I T
  =  CG0

E T
 CE

I T
(13.5-22)

Recognizing from Figure 13.5-1 that CG0

E
 is constant allows us to write for ICG0

I
 from

(13.5-19) with (13.5-22) for CG0

I
:
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ICG0

I
  =  ICE

I
 CG0

E
(13.5-23)

ICE
I

  ≡  CE
I

0

t

 dt (13.5-24)

Using (13.5-23) and CG0

I T
 from (13.5-22), Equation (13.5-21) becomes:

Aψ0  =  R uZG0

G0 ×  CG0

E T
 CE

I T
 CG0

E

 

AδKBias  =  - R uZG0

G0 ×  CG0

E T
 CE

I T
 ICE

I
 CG0

E
(13.5-25)

From Figure 13.5-1 we now write for the individual matrices in (13.5-25):

CG0

E
  =  

1 0 0

0 cos l0 sinl0

0 - sinl0 cos l0

CE
I

  =  

cos ωe t 0 sin ωe t

0 1 0

- sin ωe t 0 cos ωe t

(13.5-26)

Then, using CE
I

 from (13.5-26) in (13.5-24):

ICE
I

  =  

sin ωe t

ωe

   0   
1 - cos ωe t

ωe

 

0
 

 

t
 

 

0
 

- 
1 - cos ωe t

ωe

0
sin ωe t

ωe

(13.5-27)

Finally, we substitute (13.5-26) and (13.5-27) into (13.5-25) to obtain for the position error
sensitivity matrices:
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Aψ  0  =  

R sin l0 sin ωe t   - R 1 - sin2l0 (1 - cos ωe t)    - R sin l0 cos l0 (1 - cos ωe t)

R cos ωe t   R sin l0 sin ωe t   - R cos l0 sin ωe t

0 0 0

(13.5-28)

Aδ KBias = 

- R sin l0 
(1 - cos  ω e t)

ω e

    R t - sin2l0 t - 
sin  ω e t

ω e

    R sin l0 cos l0 t - 
sin  ω e t

ω e

- R 
sin  ω e t

ω e

    - R sin l0 
(1 - cos  ω e t)

ω e

    R cos l0 
(1 - cos  ω e t)

ω e

0 0 0

When interpreting the Equations (13.5-28) sensitivities, recall from Equations (13.5-20)
that they are for horizontal position error in the G0 Frame which has X east, Y north and Z
vertical.  Thus, the third row is zero because we are evaluating horizontal position error
components.  Note that the sensitivity to initial attitude error is to create only an oscillatory
position error response at earth rate frequency (i.e., one revolution per day).  Similar horizontal
position error oscillations at earth rate frequency are generated from angular rate sensor bias
error, however, the north (Y) and vertical (Z) bias errors also produce an unbounded linearly
ramping east (X) position error build-up (in the first row).

For short term navigation times (e.g., one to two hours) when ωe t is small, with Taylor
series expansion for the sinusoidal terms in Equations (13.5-28) and retaining only the
dominant term for each input component (i.e., the dominant term in each matrix column), the
(13.5-28) matrices become the approximate forms:

Aψ0  ≈  

0    - R    0

R    0    - R cos l0 ωe t

0    0    0
(13.5-29)

AδKBias  ≈  

0    R t     0

- R t    0    R cosl0 ωe 
1
2

 t2

0    0    0

It is informative to compare the long term position response of Equation (13.5-20) with the
Equation (13.3.2-25) up-to-two-hour approximate horizontal position error expression
developed in Section 13.3.2.  To make the comparison, we use the approximate (13.5-29)
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forms for Aψ0 and AδKBias which are reformatted based on cross-product operator definition

Equation (3.1.1-14):

Aψ0  ≈  R uZG0

G0 ×  + R cos l0 ωe t uXG0

G0 ×  

 H
 

AδKBias  ≈ - R t uZG0

G0 ×  - R cos l0 ωe 
1
2

 t2 uXG0

G0 ×  

 H
 

(13.5-30)

where

uXG0

G0   =  Unit vector along the G0 Frame X axis (i.e., East).

uXG0

G0 ×  

 H
  = Cross-product operator form of uXG0

G0  with the third row set to zero (i.e.,

only transmitting the X and Y horizontal (H) components).

The ψ0
G0 term in (13.5-20) can also be reformatted in terms of the Equation (13.3.2-25) error

parameters using (12.2.1-17), (12.2.3-19) and (13.1-4) with γN
 represented as the sum of its

horizontal and vertical components:

ψ0
G0  =  γH0

G0 + γZG0 uZG0

G0  - 
1
R

 uZG0

G0  × δRH0

G0  - εZG0 uZG0

G0 (13.5-31)

where

γH0

G0, γZG0, δRH0

G0, εZG0  = Initial G0 Frame values for the Section 13.3 γH
N

, γZN, δRH
N

,

εZN error parameters.  For reference, Equations (13.3.2-25)
which we will be comparing against (13.5-20), is based on
Equations (13.3-6) of Section 13.3.

Substituting (13.5-30) - (13.5-31) into (13.5-20) then obtains the equivalent simplified form for
short term navigation times:

δ RHLngTrm

G0   =  δ RH0

G0 + R uZG0

G0  × γH0

G0
 - R cos l0 ωe t uYG0

G0  γZG0 - εZG0
 

                       - R t uZG0

G0  × δ KBiasH

G0  + R cos l0 ωe 
1
2

 t2 δ KBiasZG0 uYG0

G0  

(13.5-32)

where

δKBiasH

G0 , δKBiasZG0  =  Horizontal and vertical components of δKBias
G0 .
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Equation (13.5-32) can now be compared against the δRH
N

 horizontal position error

expression in Equations (13.3.2-25) by setting the (13.3.2-25) N Frame equal to the Geo

Frame, equating ωS
2
 in (13.3.2-25) to g / R (per Equation (13.2.2-7)), and recognizing that the

horizontal earth rate component ωIEH in (13.3.2-25) lies along the G0 Frame Y axis and equals

ωe cos l0.  (The last point is easily seen using Figure 13.5-1 if we inject the full earth rate vector

(of magnitude ωe) along the Y axis of the E Frame (i.e., earth’s polar rotation axis) and find its

projection on the G0 Frame horizontal (X, Y) axes.)  Based on the previous equalities we see

then that, neglecting Schuler oscillation effects, the (13.3.2-25) δRH
N

 response to δRH0 

G0, γH0 

G0
,

γZG0 
, δKBias

G0  is identical to the (13.5-32) response.  The only term in (13.5-32) that has no

equivalency in (13.3.2-25) is εZG0, the value for the heading error in the initial CN
E

 matrix.  The

heading initialization discussion following Equation (13.3-8) shows why this term has been
legitimately dropped from Equations (13.3-15) for which (13.3.2-25) is the short term (1 to 2
hour) solution.  The previous referenced initialization discussion also points out that, depending

on the initialization technique utilized, εZG0 can also be considered to be part of γZG0.

Finally, it is to be noted in Equations (13.5-28) that the only truly unbounded long term
position error response is produced (through AδKBias) in the east (X) direction by north (Y) and

vertical (Z) angular rate sensor bias error.  In the (13.5-29) simplified short term version of
(13.5-28), what appears to be a ramping north (Y) position error response from vertical (Z)
attitude error (through Aψ0) and east (X) angular rate sensor bias error (through AδKBias), is

actually the starting leg of a sine wave at earth rate frequency with the first peak occurring at 6
hours.  What appears in (13.5-29) to be an unbounded parabolically increasing north (Y)
position error response to vertical (Z) angular rate sensor bias error (through AδKBias) is

actually (in (13.5-28)) the starting leg of an offset cosine wave at earth rate frequency with the
first peak occurring at 12 hours.  The net result is that many of the errors that were believed to
produce unbounded position error drift during short term (up to two hour) navigation periods
are actually bounded sinusoids at earth rate frequency.  In the more general case studied earlier
when transport rate was not treated as negligible (Equations (13.5-10) - (13.5-17)), the transport
rate also plays a part in the long term error bounding, depending on whether the transport rate is
adding to or subtracting from earth rate, and the orientation of the great circle flight path relative
to the earth’s polar axis. Thus, overall system performance measured as average position error
drift per navigation period (i.e., nautical miles error per hour) is actually improved for longer
navigation periods.  This basic effect can be directly traced to the strapdown inertial sensors
maintaining a stationary attitude relative to the local flight path direction and thereby tracing a
circular path.  As we have seen in Section 13.4.3, navigating along a circular path attenuates the
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long term position drift for the inertial components whose input axes are rotated by sensor
assembly angular motion following the flight path.

13.6 NAVIGATION ERROR FROM SENSOR OUTPUT
RANDOM NOISE DURING NAVIGATION

Thus far we have analyzed the response of the strapdown navigation error equations to
constant inertial sensor errors and initial position, velocity, attitude uncertainties during the
navigation period.  In this section we analyze the navigation error response to inertial

component output random noise (i.e., the δωRand, δaRand terms in Equations (12.5.6-1)) for the

up-to-two-hour and short term cases analyzed in Sections 13.3.2 and 13.3.1.  The method we
will use to develop analytical solutions to the differential navigation error equations is based on
treating the sensor noise terms as a sequence of random impulses, each creating a change in
particular navigation error terms at the instant it occurs, which then propagate forward in time as
did the initial navigation error terms in Sections 13.3.1 - 13.3.2.  The complete navigation error
response at any particular time during navigation is then obtained as a convolution of all the
random noise impulse effects up to that point in time.

13.6.1 HORIZONTAL SOLUTION TO RANDOM NOISE FOR
UP TO TWO HOURS WITH CONTROLLED VERTICAL CHANNEL

As outlined in Section 13.6, the navigation error response to random noise is derived from
the response to initial navigation error uncertainties; specifically the response to initial velocity
and attitude errors.  For the one to two hour case with controlled vertical channel, the response
to initial condition uncertainties can be obtained from the Section 13.3.2 analytical navigation
error solution as provided by Equations (13.3.2-25).  For this section we will analyze

navigation errors under constant velocity conditions, therefore, the ΔvSFH

N
 velocity change in

Equations (13.3.2-25) will be equated to zero and the vH0

N
 initial horizontal velocity will be

equated simply to the horizontal velocity vH
N

 (assumed constant).  Retaining only the Equation

(13.3.2-25) response to initial velocity/attitude errors and selectively substituting for the Schuler

frequency ωS from (13.3.2-5) then yields for the navigation errors:
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γZN  =  γZN0

γH
N

  =  γH0

N
 cos ωS t - γZN0 ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 
sin ωS t

ωS

 + 
1
R

 uZN
N

 × δVH0

N
 
sin ωS t

ωS

δVH
N

  =  δVH0

N
 cos ωS t + g uZN

N
 × γH0

N
 
sin ωS t

ωS

             - γZN0 R ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 (1 - cos ωS t)

(13.6.1-1)

δRH
N

  =  δVH0

N
 
sin ωS t

ωS

 + R uZN
N

 × γH0

N
 (1 - cos ωS t)

- γZN0 R ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 t - 
1

ωS

 sin ωS t

We note in passing that Equations (13.3.2-25) from which (13.6.1-1) was derived, were based

on the assumption that the B to N Frame attitude (as manifested in CB
N

) is constant.  Since CB
N

does not appear in (13.6.1-1), this limitation does not apply, and Equations (13.6.1-1) are also

valid for arbitrary time varying CB
N

.

Equations (13.6.1-1) represent the velocity/attitude error initial condition response of
navigation error differential Equations (13.3.2-1):

γZN  =  - CB 
N

 δωIB
B

 

 ZN

γH
N

  ≈  - CB 
N

 δωIB
B

 

H
 - γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + 
1
R

  uZN
N

 × δVH
N

 

δVH
N

  ≈  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
(13.6.1-2)

δRH
N

  =  δVH
N

The inertial sensor errors we are analyzing in this section (δωIB
B

, δaSF
B

) are the random

components which from (12.5.6-1) are given by:

δωIB
B

  =  δωRand δaSF
B

  =  δaRand (13.6.1-3)
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To analyze the response of (13.6.1-2) to the (13.6.1-3) sensor errors, we treat δωRand, δaRand

as a sequence of random impulses and analyze the response of (13.6.1-2) to each.  Each
impulse is integrated in Equations (13.6.1-2), producing an instantaneous change in
velocity/attitude at the time the impulse occurs.  From Equations (13.6.1-2) with (3.1.1-12) we
see that the velocity/attitude changes are given by:

ΔγZNi  =  - uZN
N

 ⋅ CBi

Ni εω  Rndi   =  - uZN
N T

 CBi

Ni εω   Rndi

ΔγHi

N
  =  - CBi

Ni εωRndi
 

 H
  =  - CBi

Ni  

 H
 εωRndi (13.6.1-4)

ΔδVHi

N
  =  CBi

Ni εaRndi
 

 H
  =  CBi

Ni  

 H
 εaRndi 

where

εω  Rndi, εaRndi  = Random impulse components of δωRand, δ aRand  occurring at time
instant i.

CBi

Ni  =  Value of CB
N

 at time instant i.

CBi

Ni  

 H
  =  CBi

Ni with the third row (representing the vertical) set to zero.

ΔγZNi, ΔγHi

N
, ΔδVHi

N
  = Changes in γZN, γH

N
, δVH

N
 produced at time instant i by εω  Rndi

and εaRndi
 .

Let us now analyze the effect of ΔγZNi, ΔγHi

N
, ΔδVHi

N
 in Equations (13.6.1-4) on δVH

N
.

Clearly, the effect is to create a δVH
N

 corresponding with the Equations (13.6.1-1) δVH
N

response to γZN0, γH0

N
, δVH0

N
, but with the time variable t replaced by the time interval from

when ΔγZNi, ΔγHi

N
 and ΔδVHi

N
 were created.  Thus, from the δVH

N
 expression in (13.6.1-1) we

have:

ΔiδVH
N

(t)  =  ΔδVHi

N
 cos ωS (t-τi) + g uZN

N
 × ΔγHi

N
 
sin ωS (t-τi)

ωS

                     - ΔγZNi R ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 1 - cos ωS (t-τi)

(13.6.1-5)

where

τi  =  Time that ΔγZNi, ΔγHi

N
 and ΔδVHi

N
 were created due to εω  Rndi, εaRndi.
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ΔiδVH
N

(t)   = Change in δVH
N

 at time t produced by ΔγZNi, ΔγHi

N
, ΔδVHi

N
 created at

time τi.

Equation (13.6.1-5) can also be expressed in the more compact form:

ΔiδVH
N

(t)  =  ΦVHVH(t, τi) ΔδVHi

N
 + ΦVHγH(t, τi) ΔγHi

N
 + ΦVHγZ(t, τi) ΔγZNi (13.6.1-6)

in which, using general Equation (3.1.1-13):

ΦVHVH
 (t,τi)  =  cos ωS (t-τi)

ΦVHγ H
 (t,τi)  =  g 

sin ωS (t-τi)

ωS

 uZN
N × (13.6.1-7)

ΦVHγ Z
 (t,τi)  =  - R ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 1 - cos ωS (t-τi)

where

ΦVH k (t,τi)  = “Error state transition” element defining the response of δVH
N

 at time t to

initial conditions on variable k (i.e., γZN, γH
N

 or δVH
N

) at time τi.

The total δVH
N

 response to random noise is the sum at time t of all the ΔiδVH
N

(t)  responses:

δVH
N

(t)  =  ΔiδVH
N

(t)∑
i = 1

n

(13.6.1-8)

where

n  =  Total number of τi’s since navigation time t = 0.

Equations (13.6.1-6) - (13.6.1-8) with (13.6.1-4) comprise what is known as a

“deterministic” set from which δVH
N

 can be evaluated for a particular εω  Rndi, εaRndi sequence.

Since εω  Rndi, εaRndi is random by nature, every real navigation “run” will have a different

εω  Rndi, εaRndi history, hence, a different δVH
N

 response.  In order to characterize the δVH
N

response for an ensemble of navigation runs, we resort to the statistical error definition:

PVHVH
 (t)  ≡  E  δVH

N
 (t) δVH

N
 (t)

T
(13.6.1-9)
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where

E  ( )  = Expected value operator representing the ensemble average of the quantity in
brackets.

PVHVH(t)  =  Horizontal velocity error covariance matrix at time t.

The component form of (13.6.1-9) is:

PVHVH(t)  =  

E (δVXN
2

) E (δVXN δVYN)    0

E (δVYN δVXN) E (δVYN
2

)    0

0 0 0

(13.6.1-10)

where

δVXN , δVYN   = N Frame X, Y components of δVH
N

.  Note, that the Z (vertical) term

is zero because δVH
N

 represents horizontal velocity error components.

From (13.6.1-10) we see that the diagonal elements of PVHVH(t) equal the average square of the

δVH
N

 components, each known as the component “variance” about the mean, and which for the

assumed random noise processes, the mean (or simple linear average) is zero.  The square root
of each diagonal element is called the “standard deviation”.

Let us now expand upon Equation (13.6.1-9) using (13.6.1-8) for δVH
N

(t) :

PVHVH(t)  =  E ΔiδVH
N

(t)∑
i = 1

n

 ΔiδVH
N

(t)∑
i = 1

n T

=  E ΔiδVH
N

(t)∑
i = 1

n

 ΔjδVH
N

(t)
T∑

j = 1

n

(13.6.1-11)

=  E ΔiδVH
N

(t) ΔiδVH
N

(t)
T∑

i = 1

n

 + ∑
i = 1
i ≠ j

n

E ΔiδVH
N

(t) ΔjδVH
N

(t)
T∑

 j = 1

n

We formally characterize the εω   Rndi
 , εaRndi

  noise impulses as having a zero ensemble mean

and to be statistically independent from one i to any other i.  Then the second term in
(13.6.1-11) averages to zero and (13.6.1-11) reduces to:
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PVHVH(t)  =  E ΔiδVH
N

(t) ΔiδVH
N

(t)
T∑

i = 1

n

(13.6.1-12)

Substituting (13.6.1-6) into the (13.6.1-12) argument, expanding and equating the average
product of different noise components to zero (because of their assumed independence), and

noting the form of the Φ elements defined in (13.6.1-7), obtains:

E ΔiδVH
N

(t) ΔiδVH
N

(t)
T

=  E ΦVHVH(t, τi) ΔδVHi

N
 + ΦVHγH(t, τi) ΔγHi

N
 + ΦVHγZ(t, τi) ΔγZNi

ΦVHVH(t, τi) ΔδVHi

N
 + ΦVHγH(t, τi) ΔγHi

N
 + ΦVHγZ(t, τi) ΔγZNi

T

=  E ΦVHVH(t, τi) ΔδVHi

N
 ΦVHVH(t, τi) ΔδVHi

N T

            + E ΦVHγH(t, τi) ΔγHi

N
 ΦVHγH(t, τi) ΔγHi

N T (13.6.1-13)

+  E ΦVHγZ(t, τi) ΔγZNi  ΦVHγZ(t, τi) ΔγZNi
T

=  ΦVHVH

2
(t, τi) E ΔδVHi

N
 ΔδVHi

N T

+ ΦVHγH(t, τi) E ΔγHi

N
 ΔγHi

N T
 ΦVHγH(t, τi)

T

+ E ΔγZNi
 2

 ΦVHγZ(t, τi) ΦVHγZ(t, τi)
T

The expected value terms in (13.6.1-13) can be evaluated as functions of sensor noise using
(13.6.1-4):

E  ΔγZNi
 2

  =  uZN
N T

 CBi

Ni E εωRndi εωRndi
T

 CBi

Ni T
 uZN

N

E ΔγHi

N
 ΔγHi

N T
  =  CBi

Ni  

 H
 E εωRndi εωRndi

T
 CBi

Ni  

 H

 T
(13.6.1-14)

E ΔδVHi

N
 ΔδVHi

N T
  =  CBi

Ni  

 H
 E εaRndi εaRndi

T
 CBi

Ni  

 H

 T

To simplify the analysis we make further assumptions regarding the εω  Rndi, εaRndi angular

rate sensor triad and accelerometer triad random noise vectors.  Specifically, we assume each
inertial sensor in a sensor triad has the same output noise variance, and that the output noise
from a given sensor in a triad is independent from output noise generated by other sensors in
the triad.  Then the off-diagonal terms in the (13.6.1-14) expected value terms are zero and the
diagonal elements are equal to the individual sensor type variance:
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E εω   Rndi εω   Rndi
T

  =  I E εω   Rndi

2

 

E εaRndi εaRndi
T

  =  I E εaRndi

2
(13.6.1-15)

where

E εω   Rndi

2
, E εaRndi

2
  = Individual angular rate sensor and accelerometer random

output noise variances at time instant i.

I  =  Identity matrix.

The following identity will also prove useful:

    CB 
N

 

 H
 I CB 

N
 

 H

 T
  =  CB 

N
 

 H
 CB 

N
 

 H

 T
  =  CB 

N
 CB 

N
 

 H

 T
 

 H
 

=  CB 
N

 

 H
 CB 

N T  T
 

 H
  =   CB 

N
 CB 

N T
 

 H

 T
  

 H
  =  IH

 T  

 H
  =  IH

(13.6.1-16)

where

IH  =  Identity matrix with element 3,3 (the vertical component) set to zero.

Substituting (13.6.1-15) into (13.6.1-14) and applying (13.6.1-16) then gives:

E ΔγHi

N
 ΔγHi

N T
  =  CB i

Ni  

 H
  I E εωRndi

2
 CB i

Ni  

 H

 T
 

=  CBi

Ni  

 H
  CB i

Ni  

 H

 T
 E εωRndi

2
  =  IH E εωRndi

2

E  ΔγZNi
 2

  =  uZN
N T

 CB i

Ni I E εωRndi

2
 CB i

Ni T
 uZN

N
 (13.6.1-17)

 =  uZN
N T

 CB i

Ni CB i

Ni T
 uZN

N
 E εωRndi

2
  =  E εωRndi

2

E ΔδVHi

N
 ΔδVHi

N T
  =  IH E εaRndi

2

With (13.6.1-17) and the form of the Φ’s from (13.6.1-7), Equation (13.6.1-13) becomes:

E ΔiδVH
N

(t) ΔiδVH
N

(t)
T

  =  ΦVHVH

2
(t,τi) IH E εaRndi

2

+ ΦVHγH(t, τi) IH ΦVHγH(t, τi)
T

 E εωRndi

2
(13.6.1-18)

+ ΦVHγZ(t, τi) ΦVHγZ(t, τi)
T

 E εωRndi

2

(Continued)
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=  ΦVHVH

2
(t,τi) IH E εaRnd i

2
 + ΦVHγH(t,τi) ΦVHγH(t,τi)

T
 E εω    Rndi

2 (13.6.1-18)
(Continued)

+ ΦVHγZ(t, τi) ΦVHγZ(t, τi)
T

 E εωRndi

2

Substituting (13.6.1-18) into (13.6.1-12) with clever insertion of Δτi, we then find for
PVHVH(t):

PVHVH(t)  =  ΦVHVH

2
(t,τi) IH 

1

Δτi

 E εaRndi

2
 Δτi∑

i = 1

n

+ ΦVHγH(t, τi) ΦVHγH(t, τi)
T

 
1

Δτi

 E εωRndi

2
 Δτi (13.6.1-19)

+ ΦVHγZ(t, τi) ΦVHγZ(t, τi)
T

 
1

Δτi

 E εωRndi

2
 Δτi

where

Δτi  =  Time interval over which εω  Rndi, εaRndi operate.

Equation (13.6.1-19) is now in classical form for reduction to an integral expression if we
introduce the following notation:

 qaRnd(τ)  ≡  lim 
1

Δτi

 E εaRndi

2

 Δτi → 0

qω  Rnd(τ)  ≡  lim 
1

Δτi

 E εω   Rndi

2

 Δτi → 0
(13.6.1-20)

f (τ) dτ
τ = 0

τ = t

  =  lim f (τi) Δτi∑
i = 1

n

 Δτi → 0

where

qω  Rnd(τ), qaRnd(τ)  = Angular rate sensor and accelerometer random output noise
variance densities.

With (13.6.1-20), Equation (13.6.1-19) becomes in the limit as Δτi → 0:
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PVHVH(t)  =  IH ΦVHVH

2
(t,τ) qaRnd(τ) dτ

τ = 0

τ = t

+  ΦVHγ H(t,τ) ΦVHγ H(t,τ)
T

 qω  Rnd(τ) dτ
τ = 0

τ = t

(13.6.1-21)

+ ΦVHγ Z(t,τ) ΦVHγ Z(t,τ)
T

 qω  Rnd(τ) dτ
τ = 0

τ = t

For constant inertial sensor process noise densities, Equation (13.6.1-21) can be explicitly
evaluated by substitution of (13.6.1-7) for the error state transition elements, recognizing that
the transpose of a cross-product operator is its negative, and employing generalized Equation
(13.1-8):

ΦVHVH

2
(t,τ) dτ

τ = 0

τ = t

  =  cos2 ωS (t - τ) dτ
τ = 0

τ = t

  =  
1
2

 t + 
sin 2 ωS t

2 ωS

ΦVHγ H(t,τ) ΦVHγ H(t,τ)
T
 dτ

τ = 0

τ = t

  =  - g2 uZN
N ×

 2
 

1

ωS
2

 sin2 ωS (t - τ) dτ
τ = 0

τ = t

=   IH 
g2

ωS
2

 
1
2

 t - 
sin 2 ωS t

2 ωS

ΦVHγZ(t, τ) ΦVHγZ(t, τ)
T
 dτ

τ = 0

τ = t

(13.6.1-22)

=  R2 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N T

 1 - cos ωS (t - τ)
 2

 dτ
τ = 0

τ = t

=  R2 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N T

 1 - 2 cos ωS (t - τ) + cos2 ωS (t - τ)  dτ
τ = 0

τ = t

=  R2 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N T

 
3
2

 t - 
2 sin ωS t

ωS

 + 
sin 2 ωS t

4 ωS



13-100     ANALYTICAL SOLUTIONS TO THE STRAPDOWN NAVIGATION ERROR EQUATIONS

Finally, we substitute (13.6.1-22) into (13.6.1-21) to obtain the analytical solution for
PVHVH(t)  under constant sensor noise density conditions:

PVHVH(t)  =  IH 
1
2

 t + 
sin 2 ωS t

2 ωS

 qaRnd

+ IH 
g2

ωS
2

 
1
2

 t - 
sin 2 ωS t

2 ωS

 + R2 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N T

 
3
2

 t
 
 

 
 

 - 
2 sin ωS t

ωS

 + 
sin 2 ωS t

4 ωS

  qω   Rnd

(13.6.1-23)

The identical process is used to obtain the attitude and horizontal position error covariances
from Equations (13.6.1-1) and (13.6.1-4):

PγZγZ(t)  =  t qωRnd (13.6.1-24)

Pγ Hγ H(t)  =  IH 
1

R2
 

1

ωS
2

 
1
2

 t - 
sin 2 ωS t

2 ωS

 qaRnd

+ IH 
1
2

 t + 
sin 2 ωS t

2 ωS

 + ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 ωIEH

N
 × uZN

N
 + 

1
R

 vH
N T

(13.6.1-25)

1

ωS
2

 
1
2

 t - 
sin 2 ωS t

2 ωS

 qω   Rnd

PRHRH(t)  =  IH 
1

ωS
2

 
1
2

 t - 
sin 2 ωS t

2 ωS

 qaRnd

+ IH R2 
3
2

 t - 
2 sin ωS t

ωS

 + 
sin 2 ωS t

4 ωS

 + R2 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N  
 

(13.6.1-26)

+ 
1
R

 uZN
N

 × vH
N T

 
1
3

 t3 - 
2 sin ωS t

ωS
3

 + 
2 cos ωS t

ωS
2

 t + 
1

ωS
2

 
1
2

 t - 
sin 2 ωS t

2 ωS

  qω   Rnd

Equations (13.6.1-23) - (13.6.1-26) describe the attitude, velocity and position error response
to inertial sensor random noise operating during the navigation period for up to two hour
navigation times and for constant sensor noise densities.  These equations do not include the
effect of inertial sensor random noise operating during the initial alignment period (prior to
navigation mode engagement) which impacts initial heading accuracy.  The effect of random
noise on the initial alignment process is addressed in Section 14.6 of Chapter 14.



NAVIGATION ERROR FROM SENSOR OUTPUT RANDOM NOISE DURING NAVIGATION     13-101

It is also instructive to investigate the position error produced from inertial sensor random
noise using the long term navigation position error approximation of Equation (13.2.3-4) to
illustrate the inadequacy of this equation to properly account for the random noise effect.

Equation (13.2.3-4) for the average long term position error δRHLngTrm

N
 using ψN

 from attitude

error Equation (12.3.7.1-4) with the (3.2.1-5) chain rule is:

δRHLngTrm

N
  =  R uZN

N
 × ψH

N
(13.6.1-27)

ψ
I
  =  - CN

I
 CB

N
 δωIB 

B
(13.6.1-28)

ψN
  =  CN

I T
 ψI

(13.6.1-29)

The long term position variance is from (13.6.1-27) and (13.6.1-29):

PRHLngRHLng  =  E δRHLngTrm

N
 δRHLngTrm

N T

=  R2 E uZN
N ×  ψH

N
 ψH

N T
 uZN

N ×
T

=  - R2 E uZN
N ×  CN

I
 

 H

T
 ψI

 ψI T
 CN

I
 

 H
 uZN

N ×
(13.6.1-30)

=  - R2 uZN
N ×  CN

I
 

 H

T
 E ψI

 ψI T
 CN

I
 

 H
 uZN

N ×

where

PRHLngRHLng  = Covariance matrix for δRHLngTrm

N
 as defined by Equation (13.6.1-27).

The E ψI
 ψI T

 term in (13.6.1-30) produced by random sensor output noise is evaluated

(as in the development of Equation (13.6.1-23)) by considering δωIB
B

 in (13.6.1-28) as a

sequence of random impulses, and ψI
 as the sum of the (13.6.1-28) responses to each ith

impulse.  As in the development of (13.6.1-23), we then treat each sensor in the angular rate
sensor triad as having equal noise statistics, go to the limit to convert the summation to an
integral, and set the angular rate sensor noise density constant:

Δψi
I
  =  - CNi

I
 CBi

Ni εωRndi (13.6.1-31)

ψI
  =  Δψi

I∑
i = 1

n

  =  - CNi

I
 CB i

Ni εωRndi∑
i = 1

n

 (13.6.1-32)
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E ψI
 ψI T

  =  E CNi

I
 CB i

Ni εωRndi∑
i = 1

n

 CNj

I
 CB j

N j εωRndj

 T∑
j = 1

n

=  CNi

I
 CB i

Ni E εωRndi εωRndi
 T ∑

i = 1

n

 CB i

Ni  T
 CNi

I  T

=  CNi

I
 CB i

Ni I E εωRndi

2∑
i = 1

n

 CB i

Ni  T
 CNi

I  T
  = I E εωRndi

2∑
i = 1

n
(13.6.1-33)

=  I 
1

Δτi

 E εωRndi

2∑
i = 1

n

 Δτi  =  I qωRnd(τ) dτ
τ = 0

τ = t

  =  I t qωRnd 

With (13.6.1-33), Equation (13.6.1-30) for PRHLngRHLng becomes:

PRHLngRHLng  =  - R2 uZN
N ×  CN

I
 

 H

 T
 I t qωRnd CN

I
 

 H
 uZN

N ×
 

                       =  - R2 uZN
N ×  IH uZN

N ×  t qωRnd  =  - R2 uZN
N ×  uZN

N ×  t qωRnd

(13.6.1-34)

or, finally, with generalized Equation (13.1-8):

PRHLngRHLng  =  IH R2 t qωRnd (13.6.1-35)

If PRHLngRHLng Equation (13.6.1-35) is compared with PRHRH Equation (13.6.1-26), it will

be seen that (13.6.1-26) contains an IH R2 
3
2

 t qωRnd term versus the comparable

IH R2 t qωRnd term in (13.6.1-35) (i.e., 50% larger), Equation (13.6.1-26) contains additional

Schuler terms which become negligible compared to IH R2 
3
2

 t qωRnd for long navigation

times, and Equation (13.6.1-26) contains a 
1
3

 t3 qωRnd term multiplied by earth-rate/transport-

rate products, also small compared to IH R2 
3
2

 t qωRnd (at least for up to two hour navigation

periods for which (13.6.1-26) is valid).  The net result is that Equation (13.6.1-35) provides a
solution that is 33% lower than the more accurate (13.6.1-26) result.  The reason for the
discrepancy is the effect of random Schuler oscillation build-up that is properly accounted for in
(13.6.1-26) but which is ignored in the approximate long term position error Equation
(13.6.1-27) from which (13.6.1-35) was derived.
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13.6.2  SHORT TERM SOLUTION WITH FREE INERTIAL VERTICAL CHANNEL

In order to develop the navigation error response to random noise for short term navigation
periods (e.g., less than 10 minutes) with a free inertial vertical channel, we begin (as in Section
13.6.1) with the response to initial velocity/attitude error from solution Equation (13.3.1-4),

while setting ΔvSFH

N
 to zero (no maneuvering), and equating VH0

N
 to VH

N
 (assumed constant):

γZN  =  γZN0

γH
N

  ≈  γH0

N
 - t γZN0 ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + t 
1
R

 uZN
N

 × δVH0

N

δVZN  =  δVZN0

δVH
N

  =  1 - 
1
2

 
g
R

 t2  δVH0

N
 + g t uZN

N
 × γH0

N
 - γZN0 

1
2

 g t2 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

(13.6.2-1)

δR  =  t δVZN0

δRH
N

  =  t - 
1
6

 
g
R

 t3  δVH0

N
 + 

1
2

 g t2 uZN
N

 × γH0

N
 - γZN0 

1
6

 g t3 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

Equations (13.6.2-1) are the response of navigation error Equations (13.3.1-1) (repeated below)
to initial velocity/attitude errors:

γZN  =  - CB 
N

 δωIB
B

 

 ZN

γH
N

  ≈  - CB 
N

 δωIB
B

 

H
 - γZN ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 + 
1
R

  uZN
N

 × δVH0

N

δVZN  =  CB
N

 δ aSF
B

 

 ZN
 + F(h) 

g
R

 δ R0

          F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0 
 

δVH
N

  ≈  CB
N

 δ aSF
B

 

 H
 + g uZN

N
 × γH

N

(13.6.2-2)

δR  =  δVZN

δRH
N

  =  δVH
N

The response of Equations (13.6.2-2) to random δωIB
B

, δaSF
B

 inertial sensor errors can be

derived following the identical procedure used in Section 13.6.1 (i.e., using (13.6.2-1) to
calculate the response of individual sensor random noise impulses, then summing to obtain the
total for all noise impulses).  The process can be expedited by noting that the short term
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navigation error Equations (13.6.2-2) are identical to the up-to-two-hour navigation error
Equations (13.6.1-2) for the attitude and horizontal velocity/position errors (except for the

approximation of using δVH0

N
 for δVH

N
) in the (13.6.2-2) γH

N
 expression).  Hence, as an

alternative derivation procedure for the attitude and horizontal position/velocity error response to
sensor random noise, the short term response can be obtained from the up-to-two-hour solution
(Equations (13.6.1-23) - (13.6.1-26)) by replacing the Schuler sinusoids with truncated Taylor

series expansions and selective Schuler frequency (ωS) substitution using (13.3.2-5).  Using

either procedure (both are useful exercises for validity checking one against the other), the
following is the result:

PγZγZ(t)  =  t qωRnd

PγHγH(t)  =  
1

R2
 IH 

1
3

 t3 qaRnd

+ IH t + ωIEH

N
 × uZN

N
 + 

1
R

 vH
N

 ωIEH

N
 × uZN

N
 + 

1
R

 vH
N T

 
1
3

 t3  qωRnd

PVZVZ
 (t)  =  t qaRnd 

PVHVH
 (t)  =  t - 

g
R

 
1
3

 t3 + 
g2

R2
 

1
20

 t5  IH qaRnd (13.6.2-3)

+ IH 
1
3

 g2 t3 + ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N T

 
1
20

 g2 t5  qωRnd

PRR(t)  = 
1
3

 t3 qaRnd

PRHRH(t)  =  
1
3

 t3 - 
g
R

 
1

15
 t5 + 

g2

R2
 

1
252

 t7  IH qaRnd

+ IH 
1

20
 g2 t5 + ωIEH

N
 + 

1
R

 uZN
N

 × vH
N

 ωIEH

N
 + 

1
R

 uZN
N

 × vH
N T

 
1

252
 g2 t7  qωRnd
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14
      

Quasi-Stationary Initialization
Error Equations And Solutions

14.0  OVERVIEW

In Chapters 12 and 13 we analyzed the effect of inertial sensor and initial condition errors on
strapdown inertial navigation system attitude, velocity and position error, treating the initial
condition errors as independent variables.  In fact, for most inertial systems, some of the initial
condition errors (particularly attitude) are produced by the inertial sensors during the "Initial
Alignment" mode of system operation (immediately prior to engaging the "Navigation Mode").
Section 6.1.2 described the final segment of Initial Alignment (identified as "Fine Alignment")
under quasi-stationary environmental conditions in which the vehicle carrying the INS is
stationary except for random (and bounded) position disturbances due to wind gusts, stores/fuel
loading, passenger/crew boarding, etc.  Section 15.2.2 and its subsections examine the more
general situation in which the initial alignment process is performed on a moving base.  In this
chapter we analyze the quasi-stationary alignment process to assess the effect of inertial sensor
and disturbance errors on initial attitude determination.

The following sections review the quasi-stationary Fine Alignment analytical process and
derives a set of Fine Alignment error equations that establish the navigation mode attitude
initialization error.  Closed-form analytical solutions to the initialization error equations are then
developed for three conditions:

• Constant inertial sensor errors.

• Linearly increasing horizontal accelerometer error.

• Random inertial sensor errors in a random quasi-stationary
disturbance environment.

Preceding the section on random error sources is a discussion of the correlation between
navigation errors caused by initial attitude and inertial sensor error, recognizing that the attitude
initialization error is created (in part) by the same inertial sensors used during navigation.

The principal coordinate frames used in this chapter are the B, L, N, E and I Frames defined
in Section 2.2.
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14.1  FINE ALIGNMENT ANALYTICAL PROCESS EQUATIONS

We begin by restating Equations (6.1.2-2) governing the Fine Alignment process in the N
Frame with the addition of a "Measurement" vector and a "Reference Position Divergence"
vector:

CB
N

  =  CB
N

 ωIB
B

×  - ωIN
N

×  CB
N

ωIN
N

  =  ωIE
N

 + ωTilt
N

ZN  =  ΔRH
N

 - ΔRRefH
N

ΔRRefH
N

  =  0

ωIEH

N
  =  K1 uZN

N
 × ZN (14.1-1)

ωTilt
N

  =  K2 uZN
N

 × ZN

ωIE
N

  =  ωIEH

N
 + uZN

N
 ωe sin l

vH
N

  =  CB
N

 aSF
B

 

 H
 - K3 ZN

ΔRH
N

  =  vH
N

 - K4 ZN

where

ZN  = The "measurement" vector used for alignment process feedback through the
alignment process gains K1, K2, K3, K4.  The form of Equation (14.1-1) with

ZN as defined, is a more general form than in Equations (6.1.2-2), and has been
introduced here in anticipation of its use in Section 15.2.1 in which the process
gains are developed from Kalman filter theory.

ΔRRefH
N

  = Horizontal reference position divergence representing the quasi-stationary

dynamic movement of the INS.  The value for ΔRRefH
N

 is approximated as

zero (for lack of a measure of true horizontal position motion).  The ΔRRefH
N

concept will be used later when developing the alignment process error
equations to account for the effect of dynamic disturbance on initial
alignment error.

Equations (14.1-1) generate a CB
N

 matrix at the end of Fine Alignment that is aligned to the

local plumb-bob vertical, and provides N Frame horizontal earth rate components from which
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the CB
N

 initial heading (orientation relative to true north) is obtained.  Sections 6.2.1 and 6.2.2

discuss two methods for accounting for the CB
N

 initial heading; 1. Initializing the wander angle

in the CN
E

 matrix to correspond with the determined CB
N

 heading, or 2. Rotating the CB
L

 matrix

about the vertical at Fine Alignment completion through the negative of the determined heading

so that heading in the rotated CB
L

 is zero (Recall from Chapter 6 that the L and N Frames are

defined to be parallel to one another, hence, adjusting the CB
L

 heading to zero has the identical

effect on CB
N

.  From an analytical standpoint, we can consider the adjustment to be applied

directly to CB
N

.)  Each heading initialization technique is described analytically below from the

standpoint of CB
N

 (in contrast with CB
L

) initialization.

An analytical statement of the CN
E

  heading initialization method is developed in Section 6.2.1

(Equation (6.2.1-6)) which shows how we can account for the CB
N

 wander angle by initializing

the CN
E

 matrix second row with the components of:

uYE
N

  =  
cos l

ωIEH

 ωIEH

N
 + uZN

N
 sin l (14.1-2)

where

uYE
N

  = Unit vector along the earth E Frame Y axis as projected on N Frame axes.

From the definition of the E Frame in Section 2.2, the Y axis is along the earth

polar rotation axis, hence, uYE
E

 is along the earth polar axis.

ωIEH

N
  = Horizontal earth rate components at completion of Fine Alignment as

calculated from the Equations (14.1-1) dynamic process.

l  =  Initial geodetic latitude.

Equation (14.1-2) forms the basis for initializing the CN
E

 matrix as the means to account for CB
N

initial wander angle.

The alternative wander angle initialization process (by which CB
N

 is rotated around the vertical

to zero out the wander angle) can be described analytically by defining CB
N

 from the N Frame

version of Equation (6.2.2-1):
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CB
N+

  =  CN
N+

 CB
N

(14.1-3)

where

N+  = N Frame after application of the wander angle heading adjustment.  The N+
Frame then becomes the initial N Frame for the navigation mode.

CN
N+

  = Direction cosine matrix that transforms vectors from the N Frame (at

completion of Fine Alignment) to the N+ Frame immediately after CB
N

 wander

angle adjustment.

CB
N+

  =  CB
N

 matrix at the start of the Navigation Mode.

From Equations (6.2.2-3) with (6.2.2-4) - (6.2.2-6) we can write for CN
N+

 in (14.1-3):

CN
N+ T

  =  
1

ωIEH

 ωIEH

N
 × uZN

N
    

1

ωIEH

 ωIEH

N
    uZN

N

 

             =  - 
1

ωIEH

 uZN
N ×  ωIEH

N
    

1

ωIEH

 ωIEH

N
    uZN

N
(14.1-4)

Equations (14.1-3) and (14.1-4) represent the alternative initialization method to account for

wander angle by rotating CB
N

 to set the wander angle to zero.

14.2  QUASI-STATIONARY INITIAL ALIGNMENT ERROR EQUATIONS

Error equations for the quasi-stationary initial alignment process are derived from Equations
(14.1-1) using (14.1-2) or (14.1-3) - (14.1-4) for wander angle initialization.  The derivation of

the error equations begins with the differential of the ZN Measurement in Equations (14.1-1) to
obtain the error form:

δZN  =  δΔRH
N

 - δΔRRefH
N

(14.2-1)

where

δ( )  =  Error in the bracketed quantity.

δΔRRefH
N

  =  Error in ΔRRefH
N

 caused by its approximation in (14.1-1) as zero.
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The δΔRRefH
N

 error can be defined as the difference between its true value and the value

utilized in the strapdown INS computer software:

δΔRRefH
N

  ≡  ΔRRefH
N

 - ΔRTrueH

N
(14.2-2)

where

ΔRTrueH

N
  =  Actual horizontal position motion during initial alignment.

We attribute ΔRTrueH

N
 to quasi-stationary random vibration type motion, hence:

ΔRTrueH

N
  =  ΔRVibH

N  ♦
(14.2-3)

where

ΔRVibH

N  ♦
  = Horizontal random position disturbance during alignment from a nominally

stationary position.  The ♦ notation has been included to distinguish
between this term in the approximate continuous form equations discussed

in this chapter and the equivalent term (but without the ♦) in the actual Fine
Alignment equations discussed in Sections 15.2.1 and 15.2.1.1.  The actual

Fine Alignment process operates with (14.1-1) type ZN measurements that
are taken and applied at a finite (discrete) update time through a Kalman
gain matrix.  Section 15.1.5.3.2 discusses analytical equivalencies between
the continuous and discrete equation forms.

Then with (14.2-3) and ΔRRefH
N

 approximated as zero, Equation (14.2-2) is:

δΔRRefH
N

  =  - ΔRVibH

N  ♦
(14.2-4)

and (14.2-1) becomes:

δZN  =  δΔRH
N

 + ΔRVibH

N  ♦
(14.2-5)

With (14.2-5) we now write a set of quasi-stationary Fine Alignment error equations as the

differential of Equations (14.1-1).  For the differentials of the CB
N

 and vH
N

 expressions, we apply

the same procedures that led to Equations (12.3.4-39) and finally, to the revised (12.5.2-1) form

for γ
N

 and δvH
N

.  In the interests of brevity, the process will only be outlined here.
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For the differential of the (14.1-1) CB
N

 equation, substitute (12.2.1-9) to get (12.3.4-10) for

γ
N

:

γ
N

  =  - CB 
N

 δωIB
B

 - ωIN
N

 × γN
 + δωIN

N
(14.2-6)

Then in (14.2-6), substitute (12.5-7) for γN
 in the ωIN

N
 × γN

 term, and substitute the derivative

of (12.5-7) for γ
N

 using CB
N

 from (14.1-1) and δωQuant for δαQuant (as in (12.5-1)).

Rearrange to solve for γ
N

*, identifying δωIB
B

 - δωQuant as δωIB
B

* (from (12.4-12) and (12.5-6)).

Lastly, redefine γN
* as γN

 and δωIB
B

* as δωIB
B

, to get the result:

γ
N

  =  - CB 
N

 δωIB
B

 - ωIN
N

 × γN
 + δωIN

N
 + CB 

N
 ωIB

B
 × δαQuant (14.2-7)

For the differential of the (14.1-1) vH
N

 equation, substitute (12.2.1-9) and (14.2-5) to get:

δvH
N

  =  CB
N

 δaSF
B

 

 H
 + aSF

N
 × γN

 

 H
 - K3 δΔRH

N
 - K3 ΔRVibH

N  ♦
(14.2-8)

Then in (14.2-8), substitute (12.5-7) for γN
 in the aSF

N
 × γN

 term, and substitute the derivative of

(12.5-13) for δv
N

 using CB
N

 from (14.1-1) and δaQuant for δυQuant (as in (12.5-1)).  Rearrange

to solve for δv
N

*, identifying δaSF
B

 - δaQuant as δaSF
B

* (from (12.4-14) and (12.5-12)).  Lastly,

redefine δv
N

* as δv
N

, γN
* as γN

 and δaSF
B

* as δaSF
B

, to get the result:

δvH
N

  =  CB
N

 δ aSF
B

 

 H
 + aSF

N
 × γN

 

 H
  - K3 δΔRH

N
 - K3 ΔRVibH

N  ♦

            - aSF
N

 ×  CB
N

 δ αQuant + CB
N

 ωIB
B

 - ωIN
N

 ×  CB
N

 δ  υQuant
 

 H
 

(14.2-9)

The differential of the remaining terms in (14.1-1) is found straight-forwardly using (14.2-5)
and assuming that latitude l is a known input, hence, error free.  With (14.2-7) and (14.2-9) the
overall result is:
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γ
N

  =  - CB 
N

 δωIB
B

 - ωIN
N

 × γN
 + δωIN

N
 + CB 

N
 ωIB

B
 × δαQuant

δωIB
B

  =  δKScal/Mis ωIB
B

 + δKBias + δωRand

δωIN
N

  =  δωIE
N

 + δωTilt
N

δωIE
N

  =  δωIEH

N

δωIEH

N
  =  K1 uZN

N
 × δΔRH

N
 + K1 uZN

N
 × ΔRVibH

N  ♦

 

δωTilt
N

  =  K2 uZN
N

 × δΔRH
N

 + K2 uZN
N

 × ΔRVibH

N  ♦
(14.2-10)

δvH
N

  =  CB
N

 δaSF
B

 

 H
 + aSF

N
 × γN

 

 H
  - K3 δΔRH

N
 - K3 ΔRVibH

N  ♦

- aSF
N

 ×  CB
N

 δ  αQuant + CB
N

 ωIB
B

 - ωIN
N

 ×  CB
N

 δ  υQuant
 

 H
 

δaSF
B

  =  δLScal/Mis aSF
B

 + δLBias + δaRand

δΔRH
N

  =  δvH
N

 - K4 δΔRH
N

 - K4 ΔRVibH

N  ♦
 + CB

N
 δυQuant  

 H

It is analytically beneficial at this point to divide the CB 
N

 attitude error rate expression (γ
N

) in

Equations (14.2-10) into horizontal and vertical components based on:

γN
  =  γH

N
 + γZN uZN

N
(14.2-11)

where

γH
N

, γZN  =  Horizontal, vertical components of the CB 
N

 attitude error γN
.

Recognizing from Equations (14.2-10) that δωIN
N

 is horizontal, we expand the γ
N

 expression

into horizontal and vertical (along uZN
N

) components:

γZN  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIN
N

 × γN
 + uZN

N
 ⋅ CB 

N
 ωIB

B
 × δαQuant

 

γH
N

  =  - CB 
N

 δωIB
B

 

 H
 - ωIN

N
 × γN

 

 H
 + δωIN

N
 + CB 

N
 ωIB

B
 × δαQuant

 

 H

(14.2-12)

The ωIN
N

 × γN
 terms in (14.2-12) can be expanded using (14.1-1) for ωIN

N
 and ωIE

N
, (14.2-11)

for γN
, and recognizing that the cross-product of uZN

N
 with a horizontal vector is horizontal:
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uZN
N

 ⋅ ωIN
N

 × γN
  =  uZN

N
 ⋅ ωINH

N
 × γH

N
  =  uZN

N
 ⋅ ωIEH

N
 + ωTilt

N
 × γH

N

                                  ≈  uZN
N

 ⋅ ωIEH

N
 × γH

N

 

ωIN
N

 × γN
 

 H
  =  γZN ωIE

N
 + ωTilt

N
 × uZN

N
 

 H
 + ωIE

N
 + ωTilt

N
 × γH

N
 

 H

(14.2-13)

 =  γZN ωIEH

N
 + ωTilt

N
 × uZN

N
 + uZN

N
 × γH

N
 ωe sin l

 ≈  γZN ωIEH

N
 × uZN

N
 + uZN

N
 × γH

N
 ωe sin l

Equations (14.2-13) employ the approximation that ωTilt
N

 is small at the end of Fine Alignment

because, from Equations (14.1-1), it is proportional to the measurement ZN which is driven

toward zero by the alignment feedback dynamic process.  As such, the product of ωTilt
N

 with γN

components can be considered second order, hence, negligible.

We also recognize in (14.2-12) and in the (14.2-10) δωIB
B

 expression that for the quasi-

stationary initialization condition, the average B Frame inertial angular rate ωIB
B

 equals earth rate.

Hence, allowing for quasi-stationary angular vibration (as in (12.6-6)), we can write:

ωIB
B

  =  CB
N T

 ωIE
N

 + ωVib
B

(14.2-14)

where

ωVib
B

  =  Quasi-stationary angular vibration in the B Frame.

Substituting (14.2-14) into the (14.2-10) δωIB
B

 expression, and substituting (14.2-13) and

(14.2-14) into (14.2-12) using generalized Equation (3.1.1-38) with δωIN
N

, δωIE
N

 and δωTilt
N

from (14.2-10), then yields:

γZN  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × γH

N
 + uZN

N
 ⋅ CB

N
 ωVib 

B
× δαQuant

γH
N

  =  - CB 
N

 δωIB
B

 

 H
 - γZN ωIEH

N
 × uZN

N
 - uZN

N
 × γH

N
 ωe sin l + δωIEH

N

           + K2 uZN
N

 × δΔRH
N

 + CB
N

 

 H
 ωVib

B
 × δαQuant  + K2 uZN

N
 × ΔRVibH

N  ♦
(14.2-15)

δωIB
B

  =  δKScal/Mis CB
N T

 ωIE
N

 + δKBias + δωRand
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where

CB
N

 

 H
  =  CB

N
 with third row set to zero.

In (14.2-15) we have neglected the product of ωIE
N

 with δαQuant in the γ
N

 equations and the

ωVib
B

 product with δKScal/Mis in the δωIB
B

 equation as being small with zero average value.

The δvH
N

 and δaSF
B

 expressions in (14.2-10) can be simplified by recognizing that for quasi-

stationary conditions, the average specific force acceleration equals the negative of plumb-bob
gravity acting along the local geodetic vertical.  Hence, allowing for specific force vibration:

aSF
N

  =  - gP
N

 + aVib
N

  =  g uZN
N

 + CB
N

 aVib
B

 

aSF
B

  =  g CB
N T

uZN
N

 + aVib
B

(14.2-16)

where

g  =  Plumb-bob gravity magnitude.

aVib
B

  =  Quasi-stationary linear vibration in the B Frame.

With (14.2-16), (14.2-14) and (14.2-11), while recognizing that the cross-product of uZN
N

with a vector is horizontal, the δvH
N

 and δaSF
B

 expressions in (14.2-10) become:

δvH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
  - K3 δΔRH

N
 - g uZN

N ×  CB
N

 δαQuant

                - CB
N

 

 H
 aVib

B
 × δαQuant + ωVib

B
 × δυQuant  - K3 ΔRVibH

N  ♦

 

δaSF
B

  =  g δLScal/Mis CB
N T

uZN
N

 + δLBias + δaRand

(14.2-17)

In Equations (14.2-17) we have made the approximation that ωTilt
N

 is small (as is ωIE
N

) so that

in the (14.2-10) δvH
N

 expression, the product of ωIN
N

 (the sum of ωTilt
N

 and ωIE
N

 - See (14.1-1))

with CB
N

 δυQuant is negligible, and the product of ωIE
N

 with CB
N

 δ υ Quant  is negligible.

Additionally, we have neglected the product of CB
N

 aVib
B

 with γN
 in the δvH

N
 expression, and the

product of aVib
B

 with δLScal/Mis in the δaSF
B

 expression, as being small with zero average value.
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We now summarize Equations (14.2-15), (14.2-17) and the remaining pertinent expressions
from (14.2-10) to obtain the error equations for the Fine Alignment dynamic process that will
be used in subsequent sections for analysis.

γZN  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × γH

N
 + uZN

N
 ⋅ CB

N
 ωVib 

B
× δαQuant

δωIEH

N
  =  K1 uZN

N
 × δΔRH

N
 + K1 uZN

N
 × ΔRVibH

N  ♦

γH
N

  =  - CB 
N

 δωIB
B

 

 H
 - γZN ωIEH

N
 × uZN

N
 - uZN

N
 × γH

N
 ωe sin l + δωIEH

N

           + K2 uZN
N

 × δΔRH
N

 + CB
N

 

 H
 ωVib

B
 × δαQuant  + K2 uZN

N
 × ΔRVibH

N  ♦

δ ωIB
B

  =  δ KScal/Mis CB
N T

 ωIE
N

 + δ KBias + δ  ωRand (14.2-18)

δvH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
  - K3 δΔRH

N
 - g uZN

N ×  CB
N

 δαQuant

- CB
N

 

 H
 aVib

B
 × δαQuant + ωVib

B
 × δυQuant  - K3 ΔRVibH

N  ♦

δ aSF
B

  =  g δ LScal/Mis CB
N T

uZN
N

 + δ LBias + δ aRand 

δΔRH
N

  =  δvH
N

 - K4 δΔRH
N

 - K4 ΔRVibH

N  ♦
 + CB

N
 δυQuant  

 H

The purpose of the Fine Alignment process is to initialize the inertial sensor B Frame attitude
relative to the earth E Frame.  As such, the error parameter that properly characterizes the

accuracy of the Fine Alignment process is the error in the CB
E

 matrix at entry into the navigation

mode.  As discussed in Section 12.2.1, the error in CB
E

 can be represented in the N Frame by the

rotation error vector ψN
.  The solution to Equations (14.2-18) at Fine Alignment completion

provides γH
N

 and γZN (the N Frame error in the CB
N

 matrix), and δωIEH

N
, the error in the

estimated horizontal earth rate components used to initialize the wander angle.  The remainder

of this section develops an equation for ψN
 at navigation mode entry as a function of γH

N
, γZN

and δωIEH

N
 at Fine Alignment completion.  The ψN

 expression will be developed for each of the

two methods discussed in Section 14.1 for initializing the wander angle (i.e., Method 1. Setting

the CN
E

 matrix, and Method 2. Rotating the CB
N

 matrix).  As we shall see, and as should be

expected, the identical expression is obtained for ψN
 using either method.
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We first develop the equation for ψN
 based on wander angle initialization Method 1, setting

CN
E

 to match the wander angle determined from the estimated horizontal earth rate ωIEH

N
.  The

general relationship between ψN
 and γN

 is from Equation (12.2.1-17):

ψN
  =  γN

 - εN
(14.2-19)

The εN
 term in (14.2-19) represents the angular error in the CN

E
 matrix due to wander angle

initialization using ωIEH

N
 (which is in error).  Assuming correct CN

E
 initialization for latitude,

longitude (See Equations (6.2.1-6) - (6.2.1-9)), Equation (12.2.3-35) shows that:

εN
  =  δα uZN

N
(14.2-20)

where

δα  =  Wander angle initialization error in CN
E

.

With (14.2-11) for γN
 and (14.2-20), Equation (14.2-19) becomes:

ψN
  =  γ 

H
N

 + uZN
N

 γZN -   δ α (14.2-21)

The εN
 rotation error vector can also be expressed in terms of the CN

E
 matrix error (δCN

E
) (as

in Equation (12.2.1-11)).  Taking the transpose of (12.2.1-11), multiplying on the right by CN
E

,

and equating the transpose of εN×  to its negative, provides a useful relationship between δCN
E

and εN
:

εN×   =  - δCN
E T

 CN
E

(14.2-22)

From Equation (6.2.1-3), the CE
N

 matrix (i.e., the transpose of CN
E

) is:

CN
E T

  =  uXE
N

  uYE
N

uZE
N (14.2-23)

where

uXE
N

, uYE
N

, uZE
N

  = Unit vectors along the E Frame X, Y, Z axes projected on N Frame

axes.
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The differential of (14.2-23) provides δCN
E T

 for (14.2-22):

δCN
E T

  =  δuXE
N

  δuYE
N δuZE

N (14.2-24)

Substituting (14.2-24) and the transpose of (14.2-23) into (14.2-22) then gives:

εN×   =  - δuXE
N

 uXE
N T

 - δuYE
N

 uYE
N T

 - δuZE
N

 uZE
N T

(14.2-25)

Because uXE
N

, uYE
N

, uZE
N

 are mutually perpendicular, multiplication of (14.2-25) on the right by

uYE
N

 nullifies all but the middle term, whence:

εN× uYE
N

  =  - δuYE
N

(14.2-26)

The δuYE
N

 term in (14.2-26) is the differential of (14.1-2), with which (14.2-26) (assuming

zero latitude error) is:

εN× uYE
N

  =  - 
cos l

ωIEH

 δωIEH

N
 + 

δωIEH cos l

ωIEH

2
 ωIEH

N
(14.2-27)

An alternative expression for εN× uYE
N

 is obtained from the combination of (14.2-20) for εN

and (14.1-2) for uYE
N

:

εN× uYE
N

  =  δα uZN
N

 × uYE
N

  =  δα 
cos l

ωIEH

 uZN
N

 × ωIEH

N
(14.2-28)

Equating (14.2-27) and (14.2-28) yields:

δα 
cos l

ωIEH

 uZN
N

 × ωIEH

N
  =  - 

cos l

ωIEH

 δωIEH

N
 + 

δωIEH cos l

ωIEH

2
 ωIEH

N
(14.2-29)

The wander angle error δα is extracted from (14.2-29) by multiplying by 
ωIEH

cos l
, taking the

cross-product with ωIEH

N
, and applying the triple vector cross-product identity (Equation

(3.1.1-16):
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δα ωIEH

N
 × uZN

N
 × ωIEH

N
  =  δα ωIEH

2
 uZN

N
  =  - ωIEH

N
 × δωIEH

N
(14.2-30)

or

δα  =  - 
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
(14.2-31)

We finally substitute (14.2-31) into (14.2-21) to obtain the equation for ψN
 (the B Frame

attitude error relative to the E Frame) after application of the Method 1 wander angle
initialization approach, as a function of the Fine Alignment process error terms

γH
N

, γZN and δωIEH

N
:

ψN
  =  γH

N
 + uZN

N
 γZN + 

1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
(14.2-32)

As an aside, it is instructive at this point to examine a rearranged form of the earth rate term
in (14.2-32).  Since north is by definition in the horizontal direction toward earth’s positive
rotation axis, we can also write:

ωIEH

N
  =  ωIEH uNorth

N
(14.2-33)

where

uNorth
N

  =  Horizontal unit vector in the direction of true north.

Substituting (14.2-33) in (14.2-32), applying the (3.1.1-35) mixed vector dot/cross product
identity, and recognizing that the cross product of north and vertical unit vectors lies east (as in
Equation (18.1.1-12)), then finds for the (14.2-32) earth rate term:

uZN
N

 
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N

           =  uZN
N

 
1

ωIEH

 δωIEH

N
 ⋅ uZN

N
 × uNorth

N
  =  - uZN

N
 

1

ωIEH

 δωIEH

N
 ⋅ uEast

N

(14.2-34)

where

uEast
N

  =  Unit vector along the actual horizontal easterly direction in the N Frame.

Equation (14.2-34) substituted in (14.2-32) expresses the well known relationship that INS
initial “platform” heading error produced by horizontal earth rate estimation uncertainty equals
the east earth rate estimation error divided by horizontal earth rate magnitude.
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Continuing the main discussion, we now develop an equation for ψN
 based on the Method 2

wander angle initialization approach of rotating CB
N

 to nullify the wander angle determined from

the Fine Alignment process.  The Method 2 process initializes CN
E

 based on zero wander angle,

hence, since we are assuming error free latitude/longitude initialization, the error in CN
E

 (i.e., εN
)

is zero.  Thus, we can write for ψN
 at initialization completion:

ψN+
  =  γ+

N+
(14.2-35)

where

N+  =  N Frame following CB
N

 rotation for zero wander angle setting.

γ+
N+

  = Rotation error vector associated with CB
N+

, the value for CB
N

 following wander

angle rotation initialization, and the value for CB
N

 for Navigation Mode

engagement.

An expression for γ+
N+

 in (14.2-35) is derived beginning with the differential of Equation

(14.1-3):

δCB
N+

  =  δCN
N+

 CB
N

 + CN
N+

 δCB
N

(14.2-36)

The δCB
N

, δCB
N+

 and δCN
N+

 terms in (14.2-36) can be expressed in terms of their corresponding

rotation error vectors as in Equation (12.2.1-9) for δCB
N

:

δCB
N

  =  - γN×  CB
N δCB

N+
  =  - γ+

N+
×  CB

N+ δCN
N+

  =  - ΔγN+×  CN
N+

(14.2-37)

where

γN
, ΔγN+

  =  Rotation error vectors associated with CB
N

, CN
N+

.

Substituting (14.2-37) into (14.2-36) and applying generalized Equation (3.1.1-38) then gives:

γ+
N+

×  CB
N+

  =  ΔγN+×  CN
N+

 CB
N

 + CN
N+

 γN×  CB
N

=  ΔγN+×  CB
N+

 + CN
N+

 γN×  CN
N+ T

CB
N+

(14.2-38)

=  ΔγN+×  CB
N+

 + CN
N+

 γN
 ×  CB

N+
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or after multiplication on the right by the transpose of CB
N+

 and substitution in (14.2-35):

ψN+
  =  ΔγN+

 + CN
N+

 γN
(14.2-39)

With (14.2-11) for γN
 and the transpose of (14.1-4) for CN

N+
, (14.2-39) becomes:

ψN+
  =  CN

N+
 γH

N
 + γZN uZN

N
 + ΔγN+

(14.2-40)

The ΔγN+
 angle error vector in (14.2-40) is from (14.2-37):

ΔγN+×   =  - δCN
N+

 CN
N+ T

(14.2-41)

with CN
N+ T

 from (14.1-4) and δCN
N+

 as the differential of the transpose of (14.1-4):

δCN
N+

  =  

1

ωIEH

  δωIEH

N T
 - 

δωIEH

ωIEH

 ωIEH

N T
 uZN

N ×

1

ωIEH

 δωIEH

N T
 - 

δωIEH

ωIEH

 ωIEH

N T

0

(14.2-42)

We also note as in (13.4.1.1-5) - (13.4.1.1-6) that with generalized Equation (3.1.1-12):

ωIEH

N T
 ωIEH

N
  = ωIEH

2
δωIEH

N T
ωIEH

N
  =  ωIEH δωIEH (14.2-43)

Substituting (14.2-42) for δCN
N+

 and (14.1-4) for CN
N+ T

 into (14.2-41), and applying (14.2-43)

with generalized Equations (13.1-8), (3.1.1-12) and (3.1.1-35) obtains for ΔγN+
:

ΔγN+×   =  
0 - A 0
A 0 0
0 0 0

(14.2-44)

with

A  =  
1

ωIEH

2
 δωIEH

N T
 uZN

N
 × ωIEH

N
  =  

1

ωIEH

2
 δωIEH

N
 ⋅ uZN

N
 × ωIEH

N

                             =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
(14.2-45)
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Using the generalized Equation (3.1.1-14) definition for the cross-product operator, we see
from (14.2-44) - (14.2-45) that:

ΔγN+
  =  A uZN

N
  =  

1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
 uZN

N
(14.2-46)

Finally, we substitute (14.2-46) into (14.2-40) to obtain the equation for Frame B relative to

Frame E attitude initialization error ψN+
 based on the Method 2 wander angle initialization

procedure, in terms of the Fine Alignment process error terms:

ψN+
  =  CN

N+
 γH

N
 + uZN

N
 γZN + 

1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
(14.2-47)

The N Frame version of (14.2-47) (i.e., the N Frame at the orientation preceding the wander

angle rotation correction) is found by multiplication with CN
N+ T

 while noting that the form of

CN
N+ T

 in (14.1-4) has the first two columns perpendicular to uZN
N

.  The result is identical to

Equation (14.2-32) for the Method 1 wander angle initialization process.

In summary, the overall error equations for the Fine Alignment attitude initialization process
are given by Equations (14.2-18) with (14.2-32) for the Method 1 wander angle initialization
process, or equivalently, Equations (14.2-18) with Equation (14.2-47) for the Method 2 wander
angle initialization process.

14.3 INITIAL ALIGNMENT ERRORS PRODUCED BY CONSTANT INERTIAL
SENSOR ERRORS

In this section we analyze ψN
 attitude initialization error response of the quasi-stationary Fine

Alignment initialization process to constant inertial sensor errors using Equations (14.2-18) and
(14.2-32) with the noise terms set to zero:

γZN  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × γH

N

 

δωIEH

N
  =  K1 uZN

N
 × δΔRH

N
(14.3-1)

(Continued)
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γH
N

  =  - CB 
N

 δωIB
B

 

 H
 - γZN ωIEH

N
 × uZN

N
 - uZN

N
 × γH

N
 ωe sin l

                    + δωIEH

N
 + K2 uZN

N
 × δΔRH

N

 

δvH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
  - K3 δΔRH

N

(14.3-1)
(Continued)

δΔRH
N

  =  δvH
N

 - K4 δΔRH
N

with

ψN
  =  γH

N
 + uZN

N
 γZN + 

1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
(14.3-2)

and

δωIB
B

  =  δKScal/Mis CB
N T

 ωIE
N

 + δKBias
 

δaSF
B

  =  g δLScal/Mis CB
N T

uZN
N

 + δLBias 

(14.3-3)

In Equations (14.3-3), because of the quasi-stationary nature of the initial alignment problem

being analyzed, CB
N

 is on average, constant.  Thus, for the assumed constant δK, δL inertial

sensor error coefficients, the δωIB
B

, δaSF
B

 inertial sensor error vectors can also be considered

constant.

The analytical solution to Equations (14.3-1) - (14.3-2) is expedited if we split (14.3-2) into
its horizontal and vertical components:

ψH
N

  =  γH
N

(14.3-4)

ψZN  =  γZN + 
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
(14.3-5)

where

ψH
N

, ψZN  =  Horizontal and vertical components of ψN
.

The γZN term in (14.3-5) can be replaced by an alternative form through the following

development.  We first note using the (3.1.1-16) triple vector cross-product identity that:
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1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × ωIEH

N
 × uZN

N
  =  - 1 (14.3-6)

With (14.3-6), Equation (14.3-5) is equivalently:

ψZN  =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × δωIEH

N
 - γZN ωIEH

N
 × uZN

N
(14.3-7)

The round bracketed term in (14.3-7) is from the γH
N

 expression in (14.3-1):

δωIEH

N
 - γZN ωIEH

N
 × uZN

N
  =  γH

N
 + CB 

N
 δωIB

B
 

 H

                        + uZN
N

 × γH
N

 ωe sin l - K2 uZN
N

 × δΔRH
N

(14.3-8)

Substitution of (14.3-8) into (14.3-7) then yields:

ψZN  =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × γH

N
 + CB 

N
 δωIB

B
 

 H

                               
 

+ uZN
N

 × γH
N

 ωe sin l - K2 uZN
N

 × δΔRH
N

(14.3-9)

or upon expansion and application of the Equation (3.1.1-16) vector triple cross-product rule:

ψZN  =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × γH

N
 + CB 

N
 δωIB

B
 

 H

              + 
1

ωIEH

2
 ωIEH

N
 ⋅ γH

N
 ωe sin l - 

K2

ωIEH

2
  ωIEH

N
 ⋅ δΔRH

N

(14.3-10)

In seeking the analytical solution for ψN
 at Fine Alignment completion, we will use the

solution to (14.3-1) to find the ψN
 components calculated from (14.3-4) and (14.3-10).  We

now seek such a solution under constant inertial sensor error conditions.  For analytical
expediency, we also stipulate that the Fine Alignment gains (K1, K2, K3, K4) generate a stable

response in Equations (14.3-1) that will reach a steady state condition by Fine Alignment
completion in which transient effects produced by homogeneous roots have decayed to zero.

Then, we need only seek the “Particular” solution to (14.3-1) to determine the effect on ψN

initialization error.
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With the previous assumptions, we now seek the “Particular” solution to Equations (14.3-1)
by trying the following generalized analytical form:

γZN  =  CγZ0 + CγZ1 t

γH
N

  =  CγH 0 + CγH 1 t

δωIEH

N
  =  CωH 0 + CωH 1 t (14.3-11)

δvH
N

  =  CvH0 + CvH1 t

δΔRH
N

  =  CRH0 + CRH1 t

where

CγZ0, CγZ1, C  H0, C  H1  =  Constants.

t  =  Time since start of Fine Alignment.

Substituting (14.3-11) into (14.3-1) yields:

CγZ1  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × CγH 0 + CγH 1 t

CωH 1  =  K1 uZN
N

 × CRH0 + CRH1 t

CγH 1  =  - CB 
N

 δωIB
B

 

 H
 - CγZ0 + CγZ1 t  ωIEH

N
 × uZN

N

- uZN
N

 × CγH 0 + CγH 1 t  ωe sin l (14.3-12)

+ CωH 0 + CωH 1 t + K2 uZN
N

 × CRH0 + CRH1 t

CvH1  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × CγH 0 + CγH 1 t   - K3 CRH0 + CRH1 t

CRH1  =  CvH0 + CvH1 t - K4 CRH0 + CRH1 t

Equations (14.3-12) can be solved for the (14.3-11) coefficients if we now make the
expedient assumption of constant Fine Alignment process gains (K1, K2, K3, K4).  In practice,
the alignment gains are time varying, however, the major  portion of the solution for constant
gains will apply for time varying gains, and we will be able to infer the effect of the remaining
portion based on heuristic reasoning and numerical (simulation) experience.  Proceeding with
the constant gain assumption then, we equate coefficients of like powers of t in (14.3-12) which
gives:
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CγZ1  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × CγH 0 (14.3-13)

0  =  - uZN
N

 ⋅ ωIEH

N
 × CγH 1 (14.3-14)

CωH 1  =  K1 uZN
N

 × CRH0 (14.3-15)

0  =  K1 uZN
N

 × CRH1 (14.3-16)

CγH 1  =  - CB 
N

 δωIB
B

 

 H
 - CγZ0 ωIEH

N
 × uZN

N
 - uZN

N
 × CγH 0  ωe sin l

               + CωH 0 + K2 uZN
N

 × CRH0

(14.3-17)

0  =  - CγZ1 ωIEH

N
 × uZN

N
 - uZN

N
 × CγH 1  ωe sin l

           + CωH 1 + K2 uZN
N

 × CRH1

(14.3-18)

CvH1  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × CγH 0   - K3 CRH0 (14.3-19)

0  =  g uZN
N

 × CγH 1   - K3 CRH1 (14.3-20)

CRH1  =  CvH0 - K4 CRH0 (14.3-21)

0  =  CvH1 - K4 CRH1 (14.3-22)

Equations (14.3-13) - (14.3-22) constitute a set of ten simultaneous equations for the
coefficient terms in (14.3-12).  A procedure for solving these equations for the coefficient terms
is now outlined.  We first see from (14.3-16), (14.3-20) and (14.3-22) that:

CRH1  =  0 (14.3-23)

CγH 1  =  0 (14.3-24)

CvH1  =  0 (14.3-25)

Combining Equations (14.3-15), (14.3-18), (14.3-23) and (14.3-24) then yields:

CωH 1  =  CγZ1 ωIEH

N
 × uZN

N
  =  K1 uZN

N
 × CRH0 (14.3-26)

Taking the cross-product of (14.3-26) with uZN
N

, applying generalized Equation (13.1-6), and

dividing by K1 then obtains:
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CRH0  =  - 
1

K1
 CγZ1 ωIEH

N
(14.3-27)

Equation (14.3-19) with (14.3-25) gives:

0  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × CγH 0  - K3 CRH0 (14.3-28)

or after applying the cross-product with uZN
N

, utilizing Equation (13.1-6), and dividing by g:

CγH 0  =  
1
g

 uZN
N

 × CB
N

 δaSF
B

 

 H
 - K3 uZN

N
 × CRH0 (14.3-29)

The ωIEH

N
 × CγH 0 term in Equation (14.3-13) is from (14.3-29) and (14.3-27) with

(3.1.1-16) and the knowledge that uZN
N

 is perpendicular to horizontal vectors:

ωIEH

N
 × CγH 0  =  

1
g

 ωIEH

N
 × uZN

N
 × CB

N
 δaSF

B
 

 H
 - K3 uZN

N
 × CRH0

 =  
1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
 - K3 ωIEH

N
 ⋅ CRH0  uZN

N
(14.3-30)

 =  
1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
 + 

K3

K1
 ωIEH

2
 CγZ1  uZN

N

Substituting (14.3-30) in (14.3-13) then obtains:

CγZ1  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - 
1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
 + 

K3

K1
 ωIEH

2
 CγZ1 (14.3-31)

or upon rearrangement:

1 + 
K3

g K1
 ωIEH

2
 CγZ1  =  - uZN

N
 ⋅ CB 

N
 δωIB

B
 - 

1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
(14.3-32)

which then gives:

CγZ1  =  - 
1

1 + 
K3

g K1
 ωIEH

2
 uZN

N
 ⋅ CB 

N
 δωIB

B
 + 

1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
(14.3-33)

Substituting (14.3-33) into (14.3-27) obtains for CRH0:
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CRH0  =  
1

K1 + 
K3

g
 ωIEH

2
 uZN

N
 ⋅ CB 

N
 δωIB

B
 + 

1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
 ωIEH

N
(14.3-34)

Using (14.3-34), Equation (14.3-29) for CγH 0 becomes:

CγH 0  =  
1
g

 uZN
N

 × CB
N

 δaSF
B

 

 H

        - 
K3

g K1 + K3 ωIEH

2
 uZN

N
 ⋅ CB 

N
 δωIB

B
 + 

1
g

 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H
 uZN

N
 × ωIEH

N
(14.3-35)

Equations (14.3-23) - (14.3-25) and (14.3-33) - (14.3-35) provide analytical expressions for
all Equation (14.3-11) coefficients with the exception of CvH0, CωH 0, CωH 1 and CγZ0.  The

calculated coefficients are sufficient to evaluate ψN
 at Fine Alignment completion using

Equations (14.3-4), (14.3-10) and (14.3-11).  Nevertheless, it is important to confirm that a
reasonable solution exists for the CvH0, CωH 0, CωH 1, CγZ0 terms not yet evaluated to confirm

that the selected form of the Particular solution in (14.3-11) adequately fits Equations (14.3-1)
(or if it doesn’t for all terms, a plausible explanation must be provided).  Only then can the
individual solutions arrived at be accepted.  Proceeding, we determine the remaining terms as a
function of the already evaluated Equation (14.3-34) CRH0 expression; CvH0 is found by

combining Equations (14.3-21) and (14.3-23), CωH 1 has already been determined in (14.3-15)

as a function of CRH0, and CωH 0 is found as a function of CγZ0 and CRH0 by combining

Equations (14.3-17), (14.3-24) and (14.3-29).  Using generalized Equation (13.1-5), the
solution for the remaining terms is:

CvH0  =  K4 CRH0

CωH 1  =  K1 uZN
N

 × CRH0 (14.3-36)

CωH 0 - CγZ0 ωIEH

N
 × uZN

N
  =  CB 

N
 δωIB

B
 

 H
 - 

1
g

 CB
N

 δaSF
B

 

 H
 ωe sin l

+ 
1
g

 K3 I ωe sin l - K2 uZN
N

 ×  CRH0

The CγZ0 term in (14.3-36) cannot be explicitly evaluated because it represents part of the

homogeneous solution to Equations (14.3-1) (i.e., from the γZN expression).  Equations
(14.3-36) with (14.3-34) for CRH0 completes development of the Equation (14.3-11) Particular

solution coefficients (subject to the previous explanation of why CγZ0 cannot be explicitly

evaluated).  Hence, we conclude that the selected Particular solution fits Equations (14.3-1) and
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is, therefore, valid.  Note, however, that the selected Particular solution is only valid if the
calculated solution coefficients are constant as stipulated in (14.3-11) and its application in
(14.3-12) (in which derivatives of the assumed constants were equated to zero).  Since the
solution coefficients are a function (in part) of the K1, K2, K3, K4 gains, they will only be
constant if the gains are constant.  Thus, so far, the validity of our Particular solution depends
on the constant gain assumption.

We now use the above results in ψN
 component Equations (14.3-4) and (14.3-10) to find the

solution for the attitude initialization error.  In performing this operation, we note from

(14.3-24) and the derivative of the (14.3-11) γH
N

 expression (i.e., CγH 1), that the γH
N

 term in

(14.3-10) is zero.  Additionally, we make use of the following based on the Equation (3.1.1-35)
mixed vector dot/cross product identity:

ωIEH

N
 ⋅ uZN

N
 × CB

N
 δ aSF

B
 

 H
  =  - uZN

N
 ⋅ ωIEH

N
 × CB

N
 δ aSF

B
 

 H
(14.3-37)

Then, substituting Equation (14.3-37), Equations (14.3-23) - (14.3-24) and (14.3-34) -

(14.3-35) for CγH 0, CγH 1, CRH0, CRH1, and Equations (14.3-11) for γH
N

 and δΔRH
N

 into

Equations (14.3-4) and (14.3-10), and applying (3.1.1-35), we find for the ψN
 attitude

initialization components:

ψH
N

  =  
1
g

 uZN
N

 × CB
N

 δaSF
B

 

 H

- 
K3

g K1 + K3 ωIEH

2
 uZN

N
 ⋅ CB 

N
 δ ωIB

B
 + 

1
g

 ωIEH

N
 ⋅ CB

N
 δ aSF

B
 

 H
 uZN

N
 × ωIEH

N

(14.3-38)

ψZN  =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × CB 

N
 δ ωIB

B
 

 H
 - 

1
g

 CB
N

 δaSF
B

 

 H
 ωe sin l

- 
K2

K1 + 
K3

g
 ωIEH

2
 uZN

N
 ⋅ CB 

N
 δ ωIB

B
 + 

1
g

 ωIEH

N
 ⋅ CB

N
 δ aSF

B
 

 H

The leading terms in Equations (14.3-38) are the dominant terms.  They show that for
constant sensor errors, initial horizontal tilt is created from horizontal accelerometer error and
initial heading error is created from the component of horizontal angular rate sensor error

perpendicular to ωIEH

N
.  Since ωIEH

N
 lies north, the critical angular rate sensor error component

affecting initial heading error lies east.  We also note that initial heading error is inversely
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proportional to the magnitude of horizontal earth rate.  From the ωIE
N

 earth rate vector

expression in (6.1.2-2), since the vertical component of ωIE
N

 is ωe sin l and the ωIE
N

 magnitude is

ωe, the magnitude of the horizontal ωIE
N

 component, is ωe cos l.  Thus, for high or low latitude

alignments (i.e., near the north or south pole) when the magnitude of l approaches ninety
degrees, the initial heading error caused by east angular rate sensor error can be very large.  To
minimize the effect of inertial sensor error on initial heading determination accuracy, the ideal
latitude would be zero (i.e., on the equator).

The (14.3-38) solution for both the horizontal and vertical ψN
 components have two

elements, a portion that is independent of the gains and a portion that is proportional to gain
ratios.  The gain dependent portion is driven by the   bracketed term containing the vertical
component of angular rate sensor error and the component of accelerometer error along the

horizontal earth rate component ωIEH

N
 (which lies north/south by definition).  The source of the

bracketed term can be traced to CγZ1 in Equation (14.3-33) through the following logic: CγZ1

impacts CRH0 and CγH 0 (through (14.3-27) and (14.3-29)), which sets γH
N

 and δΔRH
N

 (through

(14.3-11) with (14.3-23) and (14.3-24)), thereby affecting ψH
N

 and ψZN through (14.3-4) and

(14.3-10).  From Equation (14.3-11), we see that CγZ1 is the vertical attitude error rate γZN.

Thus, in order to eliminate the gain dependent terms in (14.3-38), we must stipulate conditions

that will set γZN to zero.

Recall that the Equation (14.3-38) solution was based on the assumption of constant
alignment process gains.  We now demonstrate that the gain independent solution in (14.3-38)

is also valid for the general case of time varying gains when γZN (the source of the gain

dependent terms as discussed in the previous paragraph) is zero.  If we set γZN to zero in
(14.3-1) and repeat the previous Particular solution process, we will find that CRH0 in (14.3-34)

is zero, and the remaining coefficients in (14.3-11) become independent of the K1, K2, K3, K4
gains.  Thus, the Particular solution coefficients become constant as stipulated in the (14.3-11) -
(14.3-12) trial solution, hence valid, but also valid for the general case of time varying gains
which is the normal situation.  If we substitute the Particular solution coefficients based on zero

γZN in Equations (14.3-11), we then find that the solution to (14.3-1) becomes:
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γZN  =  γZN0 Assumes condition of γZN = 0.

δωIEH

N
  =  γZN0 ωIEH

N
 × uZN

N
 + CB 

N
 δ ωIB

B
 

 H
 - 

1
g

 CB
N

 δ aSF
B

 

 H
 ωe sin l 

γH
N

  =  
1
g

 uZN
N

 × CB
N

 δ aSF
B

 

 H
 (14.3-39)

δvH
N

  =  0

δΔRH
N

  =  0

where

γZN0  =  Value for γZN at the start of Fine Alignment.

It is easily demonstrated by direct substitution in (14.3-1), that Equations (14.3-39) satisfy

(14.3-1) without specifying the nature of the gains.  Moreover, if Equations (14.3-39) for γH
N

and δΔRH
N

 are substituted in Equations (14.3-4) and (14.3-10), we find that:

ψH
N

  =  
1
g

 uZN
N

 × CB
N

 δ aSF
B

 

 H
 

ψZN  =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × CB 

N
 δωIB

B
 

 H
 - 

1
g

 CB
N

 δ aSF
B

 

 H
 ωe sin l

(14.3-40)

which is identical to the gain independent portion of (14.3-38).  Thus, the gain independent
portion of (14.3-38) is valid for arbitrary gain profiles, as the gains produce a stable equilibrium

at Fine Alignment completion.  Finally, if the Equations (14.3-39) γH
N

 solution is substituted

into the Equations (14.3-1) γZN expression (which we have stipulated to be zero), we find with

the (3.1.1-16) triple vector cross-product identity:

γZN  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - 
1
g

 uZN
N

 ⋅ ωIEH

N
 × uZN

N
 × CB

N
 δ aSF

B
 

 H

                      =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 + 
1
g

 ωIEH

N
 ⋅ CB

N
 δ aSF

B
 

 H

(14.3-41)

The (14.3-41) γZN expression is exactly the critical bracketed term in the gain dependent portion

of Equations (14.3-38) (derived based on constant gains).  Thus, we see that by setting γZN to

zero (the basis for (14.3-39) - (14.3-40)), we are also directly nullifying the (14.3-38) gain
dependent term, thereby making (14.3-38) and (14.3-40) equivalent.
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For the ψZN expression in (14.3-38), the gain independent portion sensor error components

are orthogonal to the gain dependent portion sensor error components.  Thus, the setting of the

gain dependent sensor error components to zero has no effect on the ψZN gain independent

term.  The gain independent portion of ψZN is created by horizontal angular rate sensor and

accelerometer error components perpendicular to ωIEH

N
 (Note that since ωIEH

N
 is along a

north/south line by definition, the horizontal inertial sensor components perpendicular to ωIEH

N

lie east/west).  Compared to the Equation (14.3-38) gain independent ψZN error produced by

angular rate sensor error, the gain independent accelerometer error effect is generally small and

arises from the horizontal tilt it creates (See the γH
N

 solution from Equations (14.3-4) and

(14.3-38)) which couples vertical earth rate (ωe sin l) into the (14.3-1) γH
N

 expression.

The gain dependent term in the (14.3-38) ψZN expression is generally small compared to the

gain independent term.  For Kalman filter derived gains (See Section 15.2.1 and its subsections)
which are time varying, it can be demonstrated numerically (by simulation), that the effect of

the sensor error terms multiplying the gain ratio 
K2

K1 + 
K3

g
 ωIEH

2
 in the Equation (14.3-38) ψZN

expression is equivalent to substituting 0.5 t for the gain ratio.  This same effect can also be
deduced from Equation (18.3.1.2-8) which, upon rearrangement, shows that Kalman filter

estimated true heading ψT will contain an error component equal to the vertical angular rate

sensor error multiplied by one half the time in alignment TAlign.  From the previous discussion,

we can conclude that an accurate solution for ψZN, that is valid for time varying gains, is the

Equations (14.3-38) result with 
K2

K1 + 
K3

g
 ωIEH

2
 set to 0.5 t.

From empirical experience, the author can also state that the dominant term in the (14.3-38)

ψH
N

 expression is the gain independent term.  The gain dependent term in ψH
N

 is produced in the

Equations (14.3-1) γH
N

 expression from horizontal earth rate coupling of γZN build-up (due to

vertical angular rate sensor error), plus vertical earth rate component (ωe sin l) coupling of

horizontal tilt (produced by horizontal accelerometer error).  The author has no empirical

experience regarding the particular characteristic of the 
K3

g K1 + K3 ωIEH

2
 gain ratio term in the
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(14.3-38) ψH
N

 expression under time varying gain conditions, other than the general experience

that ψH
N

 is dominated by the gain independent term.

14.4 INITIAL ALIGNMENT ERROR CAUSED BY
RAMPING ACCELEROMETER ERROR

In the previous section we analyzed the error response of the Fine Alignment process to
constant inertial sensor errors.  In this section we analyze the response to a particular type of
time varying inertial sensor error that can have serious impact on initial heading determination
accuracy; the effect of time varying accelerometer error during the alignment process.  For
analysis purposes, we will investigate the effect of a linearly changing accelerometer error
during Fine Alignment.

To simplify the analysis, it is expedient to neglect the earth-rate/horizontal-tilt coupling terms

in the γ
N

 expressions of general Fine Alignment error Equations (14.2-18).  It can be verified
from the analytical solutions in this and previous sections, that these terms have only a second
order effect on results to be obtained in this section.  Thus, neglecting the horizontal-tilt/earth-

rate coupling in γ
N

 and only including linearly varying accelerometer error effects, Equations
(14.2-18) simplify to:

γZN  =   0

δωIEH

N
  =  K1 uZN

N
 × δΔRH

N

γH
N

  =  - γZN ωIEH

N
 × uZN

N
 + δωIEH

N
 + K2 uZN

N
 × δΔRH

N

 

δvH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × γH

N
  - K3 δΔRH

N
(14.4-1)

CB
N

 δ aSF
B

 

 H
  =  CB

N
 δ aSF

B
 

 H
 t 

δΔRH
N

  =  δvH
N

 - K4 δΔRH
N

Equations (14.3-4) and (14.3-10) for ψN
 remain valid for the case being investigated of

ramping accelerometer errors.  Neglecting the horizontal-tilt/earth-rate coupling in these
equations and dropping the angular rate sensor error terms as not being investigated obtains for

ψN
:
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ψH
N

  =  γH
N

 

ψZN  =  
1

ωIEH

2
 uZN

N
 ⋅ ωIEH

N
 × γH

N
 - 

K2

ωIEH

2
  ωIEH

N
 ⋅ δΔRH

N
(14.4-2)

As in the previous section, we assume that the response of Equations (14.4-1) reaches a
steady state at Fine Alignment completion when the transients associated with the characteristic
dynamic roots have decayed to zero.  Thus, we seek the “Particular” solution to (14.4-1) which
we try to fit (as in the previous section) with the following generalized form:

γZN  =  0

δωIEH

N
  =  CωH 0 + CωH 1 t

γH
N

  =  CγH 0 + CγH 1 t (14.4-3)

δvH
N

  =  CvH0 + CvH1 t

δΔRH
N

  =  CRH0 + CRH1 t

where

γZN0  =  Value for γZN at the start of Fine Alignment.

The solution for γZN in (14.4-3) is based on γZN equal to zero in (14.4-1) with the initial

value of γZN set to zero (because we are only analyzing the Fine Alignment error response to

ramping accelerometer error, not initial condition uncertainties).  Substituting (14.4-3) into
(14.4-1) yields:

CωH 1  =  K1 uZN
N

 × CRH0 + CRH1 t

CγH 1  =  CωH 0 + CωH 1 t + K2 uZN
N

 × CRH0 + CRH1 t
 

CvH1  =  CB
N

 δaSF
B

 

 H
 t + g uZN

N
 × CγH 0 + CγH 1 t - K3 CRH0 + CRH1 t

(14.4-4)

CRH1  =  CvH0 + CvH1 t - K4 CRH0 + CRH1 t

Equations (14.4-4) are readily solvable (as in the previous section) by grouping and equating
terms with like powers of t for each (14.4-4) expression, and then solving for the (14.4-3)
coefficients by combining results through algebraic manipulation.  The coefficients so obtained
are constant and independent of the K1, K2, K3, K4 gains, thereby validating the (14.4-3) model
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for the general case of time varying gains.  Substituting the coefficients into (14.4-3) then yields
the (14.4-1) solution:

γZN  =  0

δωIEH

N
  =  

1
g

 uZN
N

 × CB
N

 δaSF
B

 

 H

γH
N

  =  
1
g

 uZN
N

 × CB
N

 δaSF
B

 

 H
 t (14.4-5)

δvH
N

  =  0

δΔRH
N

  =  0

Substitution of the (14.4-5) results in (14.4-1) further verifies that (14.4-5) satisfies (14.4-1)
without gain restriction (other than the assumption of stable gains that will converge (14.4-1) to
a stable steady state).

We now obtain the solution for ψN
 produced by accelerometer error ramping during Fine

Alignment, by substituting (14.4-5) into Equations (14.4-2), and applying the (3.1.1-16) vector
triple cross-product identity:

ψH
N

  =  
1
g

 uZN
N

 × CB
N

 δaSF
B

 

 H
 t

 

ψZN  =  
1

g ωIEH

2
 ωIEH

N
 ⋅ CB

N
 δaSF

B
 

 H

(14.4-6)

Equations (14.4-6) show that the effect of a ramping horizontal accelerometer during Fine
Alignment is to produce a horizontal tilt proportional to the cumulative accelerometer error

CB
N

 δaSF
B

 

 H
 t , and a heading error proportional to the north component of accelerometer error

rate.  If Equations (14.4-6) are compared with (14.3-38) we see that the north accelerometer rate
(divided by g) has the identical effect on initial heading error as east angular rate sensor error.
This places a tight turn-on transient requirement for the north accelerometer to minimize its
effect on initial heading error.
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14.5 CORRELATION BETWEEN SENSOR ERRORS DURING
INITIAL ALIGNMENT AND NAVIGATION

The navigation errors generated in an INS are produced by inertial sensor error, initial
attitude/heading error, etc.  Thus far we have treated the effects of inertial sensor error and initial
attitude error (horizontal tilt and heading error) as independent sources of navigation error.  In
fact, because the initial alignment process utilizes the inertial sensors, the initial attitude errors
for navigation are correlated with the inertial sensor errors during navigation.  In this section we
analyze the effect of inertial-sensor/initial-attitude error correlation on inertial navigation
performance.

We begin with the attitude and velocity error rate expressions from Equations (12.5.1-1):

ψ
N

  =  - CB
N

 δωIB
B

 - ωIN
N

 × ψ 
N

 + CB
N

 ωIB
B

 × δαQuant

δV
N

  =  CB
N

 δ aSF
B

 + aSF
N

 × ψN
 - 

g
R

 δRH
N

 - ωIE
N

 + ωIN
N

 × δVN + δgMdl
N

                         + F(h) 
g
R

 - C2  δR + C2 δhPrsr - δevc3  uZN
N

(14.5-1)

- aSF 
N ×  CB

N
 δαQuant - CB

N
 ωIB

B
 + ωIE

N
 ×  CB

N
 δυQuant

F(h)  =  2     For   h  ≥  0               F(h)  =  - 1     For   h  <  0

As in past sections, we define particular terms in (14.5-1) as the sum of their constituents:

aSF
N

  =  g uZN
N

 + Δ aSF
N

 

ωIN
N

  =  ωIE
N

 + ωEN
N

(14.5-2)

ψ 
N

  =  ψH
N

 + ψZN uZN
N

where

uZN
N

  = Unit vector along the N frame Z axis which lies along the upward local geodetic

vertical.

g  = Plumb-bob gravity magnitude.  The g uZN
N

 term in (14.5-2) represents the

component of aSF
N

 (specific force acceleration) required to balance the INS against

plumb-bob gravity.  If aSF
N

 equaled g uZN
N

 at a stationary earth fixed position, the

INS would remain stationary.
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ΔaSF
N

  = Component of aSF
N

 attributable to variations from the portion used to balance

against plumb-bob gravity.  ΔaSF
N

 is produced principally by maneuver
induced acceleration.

ψH
N

, ψZN  =  Horizontal, vertical components of attitude error ψN
.

ωIE
N

, ωEN
N

, ωIN
N

  = Earth fixed E Frame angular rate relative to inertial I Frame space
(i.e., “earth rate”), navigation N Frame angular rate relative to the E
Frame (i.e., “transport rate”), N Frame angular rate relative to the I
Frame (i.e., “platform rate”), all projected on N Frame axes.

We can also write for ωIE
N

 from Equations (6.1.2-2):

ωIE
N

  =  ωIEH

N
 + uZN

N
 ωe sin l (14.5-3)

where

ωe  =  Earth’s inertial angular rate magnitude.

l  =  Geodetic latitude.

Substituting (14.5-2) and (14.5-3) into (14.5-1) yields for the vertical/horizontal components

of ψ 
N

 and the horizontal component of δVH
N

:

ψZN  =  - CB
N

 δωIB
B

 + ωIN
N

 × ψ 
N

 ⋅ uZN
N

 + 

ψH
N

  =  - CB
N

 δωIB
B

 - ωIEH

N
 + uZN

N
 ωe sin l + ωEN

N
 × ψH

N
 + ψZN uZN

N
 +  

 H

=  - CB
N

 δωIB
B

 

 H
 - ψZN ωIEH

N
 × uZN

N
 - ωe sin l uZN

N
 × ψH

N
 - ωEN

N
 × ψN

 

 H
 + (14.5-4)

δVH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 + ΔaSF

N
 × ψN

 

 H
 + 

=  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × ψH

N
 + ΔaSF

N
 × ψN

 

 H
 + 

where

H  =  Designator for horizontal component.

Let us now define ψ 
N

 and its components as being composed of their initial value plus

changes since the start of navigation:
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ψN
  =  ψ0

N
 + ΔψN ψH

N
  =  ψH0

N
 + ΔψH

N
ψZN  =  ψZN0 + ΔψZN (14.5-5)

where

ψ0
N

, ψH0

N
, ψZN0  = Values for ψN

, ψH
N

, ψZN at the end of Fine Alignment which is the

start of Navigation.

ΔψN
, ΔψH

N
, ΔψZN  =  Change in ψN

, ψH
N

, ψZN since the start of Navigation.

Substituting (14.5-5) into (14.5-4) obtains:

ΔψZN  =  - CB
N

 δωIB
B

 + ωIN
N

 × ψ0
N

 + ΔψN
 ⋅ uZN

N
 + (14.5-6)

ΔψH
N

  =  - CB
N

 δωIB
B

 

 H
 - ψZN0 ωIEH

N
 × uZN

N
 - ωe sin l uZN

N
 × ψH0

N

          - ΔψZN ωIEH

N
 × uZN

N
 - ωe sin l uZN

N
 × ΔψH

N
 - ωEN

N
 × ψ0

N
 + ΔψN

 

 H
 + 

(14.5-7)

δVH
N

  =  CB
N

 δaSF
B

 

 H
 + g uZN

N
 × ψH0

N
 + g uZN

N
 × ΔψH

N
 + ΔaSF

N
 × ψ0

N
 + ΔψN

 

 H
 + (14.5-8)

The effect of inertial-sensor/initial-attitude error correlation is produced by the components of
sensor error that are the same during the alignment and navigation modes (i.e., the constant
sensor error components).  From Equations (14.3-38) we know that for constant sensor errors:

ψH0

N
  =  

1
g

 uZN
N

 × CB
N

 δ  aSF
B

 

  HAlign
 + Negligible (14.5-9)

ψZN0  =  
1

ωIEH/Align

2
 uZN

N
 ⋅ ωIEH/Align

N
 × CB 

N
 δ  ωIB

B
 

 HAlign

                                 - 
1
g

 CB
N

 δ  aSF
B

 

 HAlign
 ωe sin lAlign  + Negligible 

(14.5-10)

where

Align  = Subscript denoting the parameter value during the Fine Alignment process.

and in which the δaSF
B

 and δωIB
B

 sensor errors are considered to only contain constant error

contributors.  This will be our interpretation for the remainder of this section.  Remaining time
varying sensor errors can be considered as included in the  terms in (14.5-6) - (14.5-8).  The
“Negligible” terms in (14.5-9) and (14.5-10) are proportional to vertical angular rate sensor
error and north accelerometer error which are small contributions compared to the other terms
(See Section 14.3 for discussion).
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Equation (14.5-10) can be rearranged using the generalized Equation (3.1.1-35) mixed vector
dot/cross product identity:

ψZN0  =  - 
1

ωIEH/Align

2
  CB

N
 δ  ωIB

B
 

 HAlign
 - 

1
g

 CB
N

 δ  aSF
B

 

 HAlign
 ωe sin lAlign  ⋅ ωIEH/Align

N
 × uZN

N

=  - 
1

ωIEH/Align

  CB 
N

 δ  ωIB
B

 

 HAlign
 - 

1
g

 CB
N

 δ  aSF
B

 

 HAlign
 ωe sin lAlign  ⋅ uEastAlign

N
(14.5-11)

with

uEast
N

  =  
1

ωIEH

 ωIEH

N
 × uZN

N
(14.5-12)

where

uEast
N

  = Horizontal unit vector pointing east (i.e., along a horizontal perpendicular to

north pointing ωIEH

N
).

Substituting (14.5-9), (14.5-11) and (14.5-12) into (14.5-7) and applying generalized

Equation (13.1-5) then yields for ΔψH
N

:

ΔψH
N

  =  - CB
N

 δωIB
B

 

  H
 - 

1
g

 ωe sin l CB
N

 δaSF
B

 

 HAlign

+ 
ωIEH

ωIEH/Align

  CB 
N

 δ  ωIB
B

 

 HAlign
 - 

1
g

 CB
N

 δ  aSF
B

 

 HAlign
 ωe sin lAlign  ⋅ uEastAlign

N
 uEast

N
 (14.5-13)

- ΔψZN ωIEH uEast
N

 - ωe sin l uZN
N

 × ΔψH
N

 - ωEN
N

 × ψ0
N

 + ΔψN
 

 H
 + 

From the discussion following Equation (14.3-38) we can write for the horizontal
component of earth rate:

ωIEH  =  ωe cos l (14.5-14)

Substituting (14.5-14) into (14.5-13), (14.5-9) into (14.5-8), and applying generalized Equation

(13.1-5) yields the final result for ΔψH
N

 and δVH
N

 with ΔψZN from (14.5-6):
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ΔψZN  =  - CB
N

 δ ωIB
B

 + ωIN
N

 × ψ0
N

 + ΔψN
 ⋅ uZN

N
 + 

ΔψH
N

  =  - CB
N

 δ  ωIB
B

 

 H
 - 

1
g

 ωe sin l CB
N

 δ  aSF
B

 

 HAlign

+ 
cos l

cos lAlign
  CB 

N
 δ ωIB

B
 

 HAlign
 - 

1
g

 ωe sin lAlign CB
N

 δ aSF
B

 

 HAlign
 ⋅ uEastAlign

N
 uEast

N
 

- ΔψZN ωe cos l uEast
N

 - ωe sin l uZN
N

 × ΔψH
N

 - ωEN
N

 × ψ0
N

 + ΔψN
 

 H
 + (14.5-15)

δVH
N

  =  CB
N

 δaSF
B

 

 H
 - CB

N
 δaSF

B
 

 HAlign

+ g uZN
N

 × ΔψH
N

 + ΔaSF
N

 × ψ0
N

 + ΔψN
 

 H
 + 

The δVH
N

 expression in (14.5-15) shows that the horizontal tilt created during the initial

alignment process generates a horizontal acceleration CB
N

 δaSF
B

 

 HAlign
 that compensates the

constant horizontal accelerometer error during navigation CB
N

 δaSF
B

 

 H
, thereby reducing δVH

N

horizontal velocity error build-up.  The compensation only holds, however, if the attitude CB
N

during navigation matches the attitude during alignment, and the accelerometer error δaSF
B

 

remains the same during alignment and navigation.  The ideal compensation situation occurs for
constant attitude and non-maneuvering navigation at the alignment attitude (e.g., on a stationary
test fixture).  The worst case situation occurs for navigation at an attitude that is in the opposite
heading direction from the alignment attitude (e.g., executing a 180 degree heading rotation

following alignment) which has the effect of reversing the polarity of CB
N

 δaSF
B

 

 H
 so that in

δVH
N

, it adds to (rather than subtracts from) CB
N

 δaSF
B

 

 HAlign
.  In most applications, the heading

during navigation can be at arbitrary orientation relative to the alignment heading, hence, the
potential benefit of alignment-tilt/accelerometer-error compensation cannot be counted on.  The
net result is a tighter long term stability requirement placed on the accelerometer because
calibration from initial tilt is generally not viable.

The ΔψH
N

 expression in (14.5-15) shows that the heading error created during the initial

alignment process generates an east earth rate coupling term 
cos l

cos lAlign
 CB 

N
 δ  ωIB

B
 

 HAlign
 

- 
1
g

 ωe sin lAlign CB
N

 δ  aSF
B

 

 HAlign
 ⋅ uEastAlign

N
  that compensates the east component of the
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inertial sensor error term - CB
N

 δ  ωIB
B

 

 H
 - 

1
g

 ωe sin l CB
N

 δ  aSF
B

 

 HAlign
 ⋅ uEast

N
 , thereby reducing

ΔψH
N

 horizontal tilt error build-up and associated coupling into δVH
N

 horizontal velocity error.

The compensation holds if the navigation latitude remains near the alignment latitude, the

attitude CB
N

 during navigation matches the attitude during alignment, and the inertial sensor

errors (δ ωIB 
B

 and δ aSF
B

 ) remain the same during alignment and navigation (Note that the

dominant error term in - CB
N

 δ  ωIB
B

 

 H
 - 

1
g

 ωe sin l CB
N

 δ  aSF
B

 

 HAlign
 ⋅ uEast

N
  is the east

component of δωIB).  The ideal compensation situation occurs for constant attitude and non-

maneuvering navigation at the alignment attitude (e.g., on a stationary test fixture).  The worst

case situation occurs for navigation at an attitude CB
N

 that is in the opposite heading direction

from the alignment attitude (e.g., executing a 180 degree heading rotation following alignment).
This has the effect of reversing the polarity of the east angular rate sensor bias

- CB
N

 δ  ωIB
B

 

 H
 ⋅ uEast

N
 so that in ΔψH

N
, it adds to (rather than subtracts from)

cos l
cos lAlign

 CB 
N

 δ  ωIB
B

 

 HAlign
 ⋅ uEastAlign

N
 .  In most applications, the heading during navigation can

be at arbitrary orientation relative to the alignment heading, hence, the potential benefit of
alignment-heading-error/east-angular-rate-sensor (and accelerometer) error compensation
cannot be counted on.  The net result is a tighter long term stability requirement placed on the
angular rate sensors because calibration from initial heading alignment is generally not viable.

It should be noted that during the alignment process, the estimated horizontal earth rate in the

north direction compared with the correct value (i.e., ωe cos l) can be utilized to calibrate the

north angular rate sensor error.  This can be achieved in practice in a strapdown INS by
transforming the estimated north angular rate sensor error into the sensor frame (B Frame) in
which it would be then applied as part of sensor compensation operations.  The utility of this
approach depends on the uncertainty in the estimated north error component (due to sensor
noise and transitory effects) compared to the calibration accuracy required.  For stable angular
rate sensors, the process can be enhanced by implementing the calibration procedure as a
smoothing summation process over successive initial alignments.  With such an approach, the
angular rate sensor calibration coefficients determined at the end of each alignment (as described
previously) would be attenuated by a weighting coefficient, and then added to the previously
determined smoothed calibration coefficients (multiplied by one minus the weighting
coefficient).  The result would then represent the updated smoothed calibration coefficients and
would be used for the sensor calibration correction during navigation.
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Finally, we also point out that the potential compensation of sensor error by initial-
tilt/heading-error also depends on the navigation position remaining not far removed from the

alignment position so that in Equations (14.5-15), the integrated effect of ωEN
N

 transport rate

coupling is small, and the components of ωIE
N

 and uEast
N

 remain near the alignment values.

14.6 INITIAL ALIGNMENT ERROR CAUSED BY
RANDOM SENSOR ERRORS AND DISTURBANCES

In this section we will examine the error response of the (14.2-18) quasi-stationary Fine
Alignment error equations to random inertial sensor output errors and random external
disturbances.  The feedback control gains in Equations (14.2-18) are generally derived from
Kalman filter theory (as is subsequently discussed in detail in Section 15.2.1 and its
subsections).  The Fine Alignment error response in this section will be determined in terms of
the estimated horizontal earth rate error variance calculated within the Fine Alignment Kalman
filter covariance matrix.  As discussed in Section 14.2, it is the earth rate estimation error that
determines initial heading alignment inaccuracy, the critical performance design parameter for
the overall initial alignment operation.

The analysis approach used in this section makes extensive use of fundamental background
material from Chapter 15.  To more easily comprehend the material in this section, the reader is
encouraged to first read Chapter 15, Sections 15.0 through 15.1.2.1.1.3, 15.2.1 through
15.2.1.2, and 15.1.5 through 15.1.5.4.1.

The analytical solutions to be developed will be derived by analytically integrating the
continuous form Kalman filter error state covariance propagation/reset equation developed in
Section 15.1.5.3.1 and whose general solutions are provided in Sections 15.1.5.4 and
15.1.5.4.1.  First we will analytically state the problem to be analyzed in terms of a partitioned
form of the quasi-stationary Fine Alignment process error state dynamic equation and its
associated Kalman filter input measurement equation.  Next we will use the Section 15.1.5.4
equations to attempt a complete solution for the earth rate estimation error that includes all noise
terms.  Faced with the complexity of the task we will simplify the problem to only include
measurement and angular rate sensor output noise.  A closed-form analytical solution will be
obtained, but will prove too unwieldy for practical use in interpreting general error behavior.  To
further simplify the analysis, we will then attempt to develop individual solutions in response to
each noise source applied separately.  The response to measurement noise will be found by
direct application of the Section 15.1.5.4 equations.  The response to process noise (i.e., with
zero measurement noise) will be found by application of the Section 15.1.5.4.1 procedure that
uses a revised measurement equation having its measurement noise equal to a partition of the
process noise vector.  To simplify the process noise analysis, we will apply the Section 15.1.5.4
equations successively for individual process noise inputs acting alone.  Finally, we will show
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that the sum of solutions obtained for the individual measurement and process noise sources is
a reasonable approximation to the solution with all noise sources applied simultaneously.

To simplify the notation in the following sections, we will drop the functional (t) designation
used in Chapter 15, except for cases where it is necessary for clarity.

14.6.1  ANALYTICAL PROBLEM DEFINITION

The (14.2-18) Fine Alignment process error equations have the following general closed-
loop analytical form:

ζ  =  A ζ + GP nP - K♦ ν ν  =  H ζ + GM nM
♦ (14.6.1-1)

where

ζ  = Vector of quasi-stationary Fine Alignment closed-loop controlled error states

formed from the δωIEH

N
, γH

N
, δvH

N
, δΔRH

N
 terms in Equations (14.2-18).

K♦  =  Matrix formed from the K1 - K4 feedback gains in (14.2-18).

ν  =  ζ feedback correction vector formed from the terms containing K♦ in (14.2-18).

A, nP, GP  = The error state dynamic matrix, process noise vector and process noise
dynamic coupling matrix formed from the error equations by appropriate

grouping of coefficients multiplying ζ and the noise terms exclusive of

those containing K♦.

H, nM
♦ , GM  = The measurement matrix, measurement noise vector and measurement

noise dynamic coupling matrix formed from the error equations by

appropriate grouping of coefficients multiplying ζ and the noise terms

exclusive of those containing K♦.

( ) ♦  = Notation signifying that ( ) is a parameter in the continuous form Equations
(14.2-18) that is equivalent and analytically related to the same parameter ( )
appearing in the discrete recursive Kalman filter closed-loop configuration (as
discussed in Section 15.1.5.3.2) that would be implemented in the actual real-
time system computer.

Note that γZN in (14.2-18) is not included in the above ζ definition (hence, excluded in the

(14.6.1-1) ζ error state dynamic equation).  Based on experience, the γZN term has negligible

impact on initial alignment performance (particularly regarding the portion of γZN affected by

input noise, the general analysis topic of this section).
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Equations (14.6.1-1) represent the continuous form of the actual discrete closed-loop
Kalman estimation/control error equations developed in Sections 15.2.1 and 15.2.1.1 for the
quasi-stationary Fine Alignment process.  Equations (14.6.1-1) are also identical in form to
Equations (15.1.5.3.2-22) and (15.1.5.3.2-14) of Section 15.1.5.3.2, the general closed-loop
continuous estimation/reset equations.  The Section 15.1.5.3.2 closed-loop equations are
developed as a special case of the more general (15.1.5.3.2-3) and (15.1.5.3.2-13) -
(15.1.5.3.2-14) continuous estimation/control equations:

x  =  A x + GP nP + uc
♦

 

x  =  A - K♦ H  x + K♦ z♦ + uc
♦               z♦  =  H x + GM nM

♦
(14.6.1-2)

where

x  =  Vector of uncontrolled error states.

x  =  The estimate for x.

z♦  =  The continuous form measurement vector.

K♦  =  The continous form estimation gain matrix.

uc
♦  =  The continuous form control vector.

Equations (14.6.1-1) are derived from (14.6.1-2) by setting uc
♦ to - K♦ z♦ which, as shown

in Section 15.1.5.3.2, is the equivalent to setting uc
♦ such that the x estimate is continuously

controlled to zero.  Section 15.1.5.3.2 shows that under these conditions, the controlled error
state vector becomes:

ζ  =  - Δx (14.6.1-3)

in which

Δx  ≡  x - x (14.6.1-4)

where

Δx  =  Uncertainty in x (or the error in the estimated error state vector x).

By (14.6.1-3) we see that we can evaluate ζ in (14.6.1-1) by analyzing Δx.  For general noise

analysis problems, this is more easily achieved by analyzing the covariance of Δx defined by
(15.1.2.1-4) as:

P  ≡  E Δx Δx
T

(14.6.1-5)
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where

P  =  Estimated error state uncertainty covariance matrix.

E ( )   =  The expected value operator (i.e., average statistical value).

Section 15.1.5.3.1 shows that for a Kalman type estimation process (i.e., using the continuous

form Kalman gain matrix for K♦), the rate of change of the covariance matrix is given by
(15.1.5.3.1-23):

P  =  A P + P AT + GP QPDens GP
T

 - P HT GM R♦ GM
T  -1

 H P (14.6.1-6)

where

QPDens  =  White noise density matrix associated with nP.

R♦  =  White noise density matrix associated with nM
♦ .

The general analytical integral solution to (14.6.1-6) is provided in Section 15.1.5.4 by
Equations (15.1.5.4-7), (15.1.5.4-8) and (15.1.5.4-11).

Thus, we can analyze the (14.6.1-1) ζ response to noise by assessing the response of P as the
analytical integral of (14.6.1-6).  This will be the general analysis approach we will use in the
sub-sections to follow.

Section 15.1.5.3.2 shows that Equation (14.6.1-6) is also valid for a pure estimator type

Kalman filter in which the uc
♦ control vector is set to zero.  Then (14.6.1-2) becomes for the

error state dynamic and measurement equations:

x  =  A x + GP nP z♦  =  H x + GM nM
♦ (14.6.1-7)

Equation (14.6.1-7) is the generic form we will use in this section as the error state dynamic
and measurement equations for Kalman filter design, for which (14.6.1-6) is the resulting
covariance rate equation.

Finally, to expedite problem analysis, we will study the partitioned form of ζ which divides ζ
into two separate four-component vectors, one for each of the horizontal N Frame axes.
Section 15.2.1.1 shows that the partitioned error state vectors are completely independent from
one another with each having identical error state uncertainty covariance matrices.  The general
form of each partitioned error state vector with its process noise vector and pertinent matrices

for (14.6.1-6) are given by (15.2.1.1-10) - (15.2.1.1-11) with (15.1.5.3.1-24) for R♦.  To
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simplify the analysis, we will use normalized versions of the (15.2.1.1-11) partitioned error
state and process noise vectors as follows:

x ′  =  δωIEH, γ H, 
1
g

 δvH, 
1
g

 δΔRH
 T

 

n′P  =  δωRandH, δαQuantH, 
1
g

 δ aRand H, 
1
g

 δ υQuantH

 T
 

(14.6.1-8)

where

′  = Designation for the normalized version of the equivalent (15.2.1.1-10) -
(15.2.1.1-11) * partitioned parameter.

x ′, n′P  = Normalized versions of the (15.2.1.1-10) partitioned error state and process
noise vectors.

δωIEH, γH, δvH, δΔRH  = Components of δωIEH

N
, γH

N
, δvH

N
, δΔRH

N
 in (14.2-18) along

one of the N Frame horizontal axes.

δωRandH, δαQuantH, δaRandH, δυQuantH  =  Components of δωRand , δα Quant, δaRand ,

δυQuant in (14.2-18) along one of the N Frame horizontal axes.

We also note that for this analysis, the n′P process noise vector excludes the vibration-

quantization noise products in Equations (14.2-18) which are generally small compared to the
individual quantization noise terms.

Equations (14.6.1-8) are equivalent to operating on the (15.2.1.1-11) vectors with the
mapping transformation:

x ′  =  B x* n′P  =  B nP* B  =  

1 0 0 0
0 1 0 0

0 0
1
g

0

0 0 0
1
g

(14.6.1-9)

where

B  =  Normalization matrix.

x*, nP*  =  Partitioned error state and process noise vectors from (15.2.1.1-11).

From (14.6.1-9) we also see that:
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x*  =  B-1 x  ′ nP*  =  B-1 n′P B-1  =  

1 0 0 0
0 1 0 0
0 0 g 0
0 0 0 g

(14.6.1-10)

The normalized version of Equations (15.2.1.1-10) - (15.2.1.1-11) with (15.1.5.3.1-24) is

obtained by pre-multiplying the (15.2.1.1-10) x* equation by B, substituting (14.6.1-10) for

x*, nP* in the result, identifying the terms multiplying x ′, n′P as revised error state dynamic and

process noise dynamic coupling matrices A′, GP ′, substituting x* from (14.6.1-10) in the

(15.2.1.1-10) z*n expression and identifying the terms multiplying x ′n as the revised

measurement matrix H ′.  For simplicity and compatibility with the (14.6.1-7) generic form, we

then drop the * notation in the measurement equation and the ′ notation on the A′, GP ′, H ′
matrices with the understanding that from this point forward, the affected matrices and vectors
are compatible with the (14.6.1-8) defined normalized vector components.  The result, including
the continuous form measurement equation from (14.6.1-7), is:

x  ′  =  A x ′ + GP n′P zn  =  H x  ′n + GM nMn z♦  =  H x  ′ + GM nM
♦ (14.6.1-11)

_______________________________________________________________

x ′  =  δωIEH, γH, 
1
g

 δvH, 
1
g

 δΔRH
 T

n′P  =  δωRandH, δαQuantH, 
1
g

 δaRandH, 
1
g

 δυQuantH

 T

nM  =  ΔrVibH

A  =  

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 

GP  =  

0 0 0 0
- 1 0 0 0
0 - 1 1 0
0 0 0 1

          QPDens  =  

qω  Rand 0 0 0

0 qα Quant 0 0

0 0
1

g2
 qaRand 0

0 0 0
1

g2
  qυ Quant

 

(14.6.1-12)

H  =  0 0 0 g  
 

GM  =  1
          

R♦  =  PRVib H Tn
 

PRVibH  =  E ΔrVibH

2
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where

qω Rand, qαQuant, qaRand , qυQuant  =  Noise density for each component of δωRand ,

δαQuant, δaRand , δυQuant.  Values for the qαQuant and qυQuant densities can be
found using Equations (15.2.1.2-18).  Values used for the qaRand and qω Rand
densities should be based on the characteristics of the particular accelerometers
and angular rate sensors being used.

ΔrVibH  =  Horizontal per-axis quasi-stationary position random motion.

PRVibH  =  Variance of ΔrVibH.

n  =  Computation rate index for the actual recursive Kalman alignment filter.

Tn  = Discrete n cycle quasi-stationary Fine Alignment process control feedback cycle
time.

z♦  = The input measurement for the continuous form Kalman filter (a scalar in this
particular case).

zn  = The input measurement at cycle n for the n cycle Kalman filter (a scalar in this
particular case).

nMn  = The measurement noise at cycle n for the n cycle Kalman filter (a scalar in this
particular case).

nM
♦   = Continuous form white measurement noise defined implicitly as a function of

the discrete measurement noise nMn by Equation (15.1.5.3.1-30) (a scalar in this
particular case).

R♦  = Continuous form measurement noise covariance matrix defined in
(15.1.5.3.1-24) in terms of the nMn variance Rn.  At the end of Section

15.1.5.3.1, R♦ is shown to be the white noise density matrix associated with

nM
♦ .

Equations (14.6.1-11) and (14.6.1-12) constitute the model we will use for the remainder of
this chapter to determine the associated covariance matrix from (14.6.1-6) as representative of
the response of (14.6.1-11) to process and measurement noise inputs.

Based on the (14.6.1-12) definitions we also see that:
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GP QPDens GP
 T

  =  

0 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

q2  ≡  qωRand          q3  ≡  qαQuant + 
1

g2 qaRand          q4  ≡  
1

g2  qυQuant (14.6.1-13)

HT GM R♦ GM
T  -1

 H  =  

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1
r

               r  ≡  
PRVibH Tn

g2

where

q2, q3, q4  =  Redefined process noise densities for analytic expediency.

r  = Redefined normalized continuous coupled measurement noise variance (for analytic
expediency).

14.6.2 ANALYTICAL COVARIANCE SOLUTION ATTEMPTS UNDER
COMBINED MEASUREMENT AND PROCESS NOISE

The analytical integral solution to the non-linear covariance rate Equation (14.6.1-6) is found
in Section 15.1.5.4 by first performing a variable transformation that converts (14.6.1-6) into
the Equation (15.1.5.4-7) coupled homogeneous linear differential equation set:

y

λ
  =  

- AT     HT GM R♦ GM
T  -1

 H

GP QPDens GP
T

A

   
y

λ
(14.6.2-1)

where

y, λ  =  Vectors of the same dimension as P defined by (15.1.5.4-1) and (15.1.5.4-2).

The general homogeneous solution to Equation(14.6.2-1) can be written in terms of its state
transition matrix (as in (15.1.5.4-8)) which is then used to obtain the covariance matrix P with
Equation (15.1.5.4-11).

Let’s attempt to execute this procedure by first defining:

y  ≡  y1, y2, y3, y4
 T λ  ≡  λ1, λ2, λ3, λ4

 T (14.6.2-2)
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where

yi, λi  =  Elements i of y, λ.

Then using (14.6.2-2), Equations (14.6.1-12) for A, and (14.6.1-13) for HT GM R♦ GM
T  -1

 H

and GP QPDens GP
 T, Equation (14.6.2-1) becomes in scalar form:

y1  =  - y2

y2  =  - y3

y3  =  - y4

y4  =  
1
r

 λ4

λ1  =  0

λ2  =  q2 y2 + λ1

λ3  =  q3 y3 + λ2

λ4  =  q4 y4 + λ3

(14.6.2-3)

Finding an analytic solution to (14.6.2-3) would be a challenging and exceedingly complex
task.  For simplicity we will attempt to find a solution in which we delete all but the most
significant qi process noise term.  From experience we know that the angular rate sensor output
noise q2 is generally the dominant qi term so we approximate (14.6.2-3) as:

For q3  ≈  0 and q4  ≈  0:

y1  =  - y2

y2  =  - y3

y3  =  - y4

y4  =  
1
r

 λ4

λ1  =  0

λ2  =  q2 y2 + λ1

λ3  =  λ2

λ4  =  λ3

(14.6.2-4)

An analytical solution to (14.6.2-4) can be found through its Laplace transform (Reference 10 -
Appendix II, Laplace Transform Pair Number 6):

S Y1 - y10  =  -Y2

S Y2 - y20  =  -Y3

S Y3 - y30  =  -Y4

S Y4 - y40  =  
1
r

 Λ4

S Λ1 - λ10  =  0

S Λ2 - λ20  =  q2 Y2 + Λ1

S Λ3 - λ30  =  Λ2

S Λ4 - λ40  =  Λ3

(14.6.2-5)

or with rearrangement:



INITIAL ALIGNMENT ERROR CAUSED BY RANDOM SENSOR ERRORS AND DISTURBANCES    14-45

a)     Y1  =  
1
S

 -Y2 + y10

b)     Y2  =  
1
S

 -Y3 + y20

c)     Y3  = 
1
S

 -Y4 + y30

d)     Y4  =  
1
S

 
1
r

 Λ4 + y40

e)     Λ1  =  
1
S

 λ10

f)     Λ2  =  
1
S

 q2 Y2 +Λ1 + λ20

g)     Λ3  =  
1
S

 Λ2 + λ30

h)     Λ4  =  
1
S

 Λ3 + λ40

(14.6.2-6)

where

a) - h)  =  Individual equation designators.

S  =  Laplace transform parameter.

Yi, Λi  =  Laplace transforms of yi, λi.

yi0, λi0  =  Initial values for yi, λi at time t = 0.

Equations (14.6.2-6) can now be analytically combined to solve for each Yi, Λi.  The Λ4

component is found by substituting g) into h), f) into the result, e) and b) into the result, c) into
the result, d) into the result, and rearranging.  The result is:

S6 - 
q2

r
 Λ4  =  q2 y40 - S y30 + S2 y20  + S2 λ10 + S3 λ20 + S4 λ30 + S5 λ40 (14.6.2-7)

We then define the characteristic polynomial:

F  ≡  S6 - 
q2

r
(14.6.2-8)

with which, (14.6.2-7) becomes for Λ4:

Λ4  =  
1
F

 q2 y40 - S y30 + S2 y20  + S2 λ10 + S3 λ20 + S4 λ30 + S5 λ40 (14.6.2-9)

The Λ2 to Λ3 and Y1 to Y4 solutions are found by substituting (14.6.2-9) in (14.6.2-6) d), d)

in c), c) in b), b) in a), b) and e) in f), and f) in g).  The results with e) are in matrix form:



14-46      QUASI-STATIONARY INITIALIZATION ERROR EQUATIONS AND SOLUTIONS

Y1

Y2

Y3

Y4

Λ1

Λ2

Λ3

Λ4

  =  
1
F

 

F
S

 - S4 S3 - S2 - 
1

r S2
- 

1
r S

- 
1
r

- 
S
r

0 S5 - S4 S3 1
r S

1
r

S
r

S2

r

0 - 
q2

r
S5 - S4 - 

1
r

- 
S
r

- 
S2

r
- 

S3

r

0 
q2

r
 S - 

q2

r
S5 S

r
S2

r
S3

r
S4

r

0 0 0 0
F
S

0 0 0

0 q2 S4 - q2 S3 q2 S2 S4 S5 q2

r

q2

r
 S

0 q2 S3 - q2 S2 q2 S S3 S4 S5 q2

r

0 q2 S2 - q2 S q2 S2 S3 S4 S5

 

y10

y20

y30

y40

λ10

λ20

λ30

λ40

(14.6.2-10)

The inverse Laplace transform of (14.6.2-10) yields the form required to identify the state
transition matrix elements in (15.1.5.4-8) for the desired covariance solution using
(15.1.5.4-11).  The Laplace transform inversion process is expedited by first defining:

Θ0  ≡  
1
S

          Θ1  ≡  
S5

F
          Θ2  ≡  

S4

F
          Θ3  ≡  

S3

F
          Θ4  ≡  

S2

F

Θ5  ≡  
S
F

           Θ6  ≡  
1
F

           Θ7  ≡  
1

F S
         Θ8  ≡  

1

F S2

(14.6.2-11)

With (14.6.2-11), Equation (14.6.2-10) becomes:
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Y1

Y2

Y3

Y4

Λ1

Λ2

Λ3

Λ4

  =  

Θ0 - Θ2 Θ3 - Θ4 - 
1
r

 Θ8 - 
1
r

 Θ7 - 
1
r

 Θ6 - 
1
r

 Θ5

0 Θ1 - Θ2 Θ3
1
r

 Θ7
1
r

 Θ6
1
r

 Θ5
1
r

 Θ4

0 - 
q2

r
 Θ6 Θ1 - Θ2 - 

1
r

 Θ6 - 
1
r

 Θ5 - 
1
r

 Θ4 - 
1
r

 Θ3

0
q2

r
 Θ5 - 

q2

r
 Θ6 Θ1

1
r

 Θ5
1
r

 Θ4
1
r

 Θ3
1
r

 Θ2

0 0 0 0 Θ0 0 0 0

0 q2 Θ2 - q2 Θ3 q2 Θ4 Θ2 Θ1
q2

r
 Θ6

q2

r
 Θ5

0 q2 Θ3 - q2 Θ4 q2 Θ5 Θ3 Θ2 Θ1
q2

r
 Θ6

0 q2 Θ4 - q2 Θ5 q2 Θ6 Θ4 Θ3 Θ2 Θ1

 

y10

y20

y30

y40

λ10

λ20

λ30

λ40

(14.6.2-12)

To further simplify the analysis, let’s only deal with the situation when the initial covariance

matrix has the earth rate uncertainty term as the non-zero element.  Based on the form of x  ′ in
(14.6.1-12) we then write:

P ′0  =  

PΩ0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(14.6.2-13)

where

P ′0  =  Initial value of P ′ defined below.

P ′  =  The estimated x ′ uncertainty covariance matrix.

PΩ0  =  Initial value for the expected value of δωIEH

2
.
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From (14.6.2-13), the inverse Laplace transform of (14.6.2-12), and the general (15.1.5.4-8)

format, we see that the terms required to find the covariance P ′ from (15.1.5.4-11) (with P(0)

identified as P ′0) are:

Φyy(t) + Φyλ(t) P ′0  =  

θ0(t) - 
PΩ0

r
 θ8(t) - θ2(t) θ3(t) - θ4(t)

PΩ0

r
 θ7(t) θ1(t) - θ2(t) θ3(t)

- 
PΩ0

r
 θ6(t) - 

q2

r
 θ6(t) θ1(t) - θ2(t)

PΩ0

r
 θ5(t)

q2

r
 θ5(t) - 

q2

r
 θ6(t) θ1(t)

(14.6.2-14)

Φλy(t) + Φλλ(t) P ′0  =  

PΩ0 θ0(t) 0 0 0

PΩ0 θ2(t) q2 θ2(t) - q2 θ3(t) q2 θ4(t)

PΩ0 θ3(t) q2 θ3(t) - q2 θ4(t) q2 θ5(t)

PΩ0 θ4(t) q2 θ4(t) - q2 θ5(t) q2 θ6(t)

(14.6.2-15)

where

θi(t)   =  Inverse Laplace transform of Θi.

For positive time t, the θ0(t)  term in (14.6.2-15) (the inverse Laplace transform of Θ0 in

(14.6.2-11)) is 1.  From (15.1.5.4-11) and (14.6.2-14) - (14.6.2-15) we then find for the
horizontal earth rate variance (the critical term affecting initial alignment accuracy):

PΩ  =  
Cftr11(t)

Dtr(t)
 PΩ0 (14.6.2-16)

where

Dtr(t)  =  Determinant of Φyy(t) + Φyλ(t) P ′0 in (14.6.2-14).

Cftr11(t)  = Cofactor for the 1,1 element for Φyy(t) + Φyλ(t) P ′0 in (14.6.2-14)

defined as the determinant of the matrix formed from Φyy(t) + Φyλ(t) P ′0
with column 1 and row 1 deleted.
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PΩ  = The expected value of δωIEH

2
, the square of the (14.6.1-12) earth rate term in x ′,

and the 1,1 element of P ′.

To obtain a complete closed-form analytical solution for PΩ from (14.6.2-14) - (14.6.2-16) it

remains to find analytical expressions for the θi(t)  inverse Laplace transforms of the

(14.6.2-11) Θi’s.  The following outlines the general process.  First we define:

S0  ≡  
q2

r

 - 
1

6 (14.6.2-17)

Based on (14.6.2-17), F in (14.6.2-8) factors into:

F  =  S6 - 
q2

r
  =  S6 - S0

6
  =  S2 - S0

2
 S2 + S0 S + S0

2
 S2 - S0 S + S0

2
(14.6.2-18)

Using (14.6.2-18), the 
1
F

 term in (14.6.2-11) is by partial fraction expansion:

1
F

  =  
1

6 S0
5

 
2 S0

S2 - S0
2

 - 
S + 2 S0

S2 + S0 S + S0
2

 + 
S - 2 S0

S2 - S0 S + S0
2

(14.6.2-19)

or in general for the Θi terms in (14.6.2-11) for i = 1 to 6:

For i = 1 to 6:

Θi  =  
S6-i

F
  =  

ai S + bi

S2 - S0
2

 + 
ci S + di

S2 + S0 S + S0
2

 + 
ei S + fi

S2 - S0 S + S0
2

(14.6.2-20)

where

ai, bi, etc.  =  Constants as in (14.6.2-19) for the i = 6 case.

With (14.6.2-20), the Θ7 expression in (14.6.2-11) is:

Θ7  =  
1

F S
  =  

a6 S + b6

S S2 - S0
2

 + 
c6 S + d6

S S2 + S0 S + S0
2

 + 
e6 S + f6

S S2 - S0 S + S0
2

 

                    =  
a6

S2 - S0
2

 + 
b6

S S2 - S0
2

 + 
c6 S + d6

S S2 + S0 S + S0
2

 + 
e6 S + f6

S S2 - S0 S + S0
2

(14.6.2-21)
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Using

1

S S2 - S0
2   =  

1

S0
2 

S

S2 - S0
2

 - 
1
S (14.6.2-22)

Equation (14.6.2-21) becomes:

Θ7  =  
a6

S2 - S0
2

 + 
b6

S0
2

 
S

S2 - S0
2

 - 
1
S

 + 
c6 S + d6

S S2 + S0 S + S0
2

 + 
e6 S + f6

S S2 - S0 S + S0
2

(14.6.2-23)

Similarly, Θ8 is:

Θ8  =  
1

F S2
  =  

a6 S + b6

S2 S2 - S0
2

 + 
c6 S + d6

S2 S2 + S0 S + S0
2

 + 
e6 S + f6

S2 S2 - S0 S + S0
2

=  
a6

S S2 - S0
2

 + 
b6

S2 S2 - S0
2

 + 
c6 S + d6

S2 S2 + S0 S + S0
2

 + 
e6 S + f6

S2 S2 - S0 S + S0
2

(14.6.2-24)

=  
a6

S0
2 

S

S2 - S0
2

 - 
1
S  + 

b6

S2 S2 - S0
2  + 

c6 S + d6

S2 S2 + S0 S + S0
2  + 

e6 S + f6

S2 S2 - S0 S + S0
2

and for completeness, Θ0 from (14.6.2-11) is:

Θ0  =  
1
S

(14.6.2-25)

Upon reviewing Equations (14.6.2-20) and (14.6.2-23) - (14.6.2-25) for Θ0 - Θ8 it will be

found that all are linearly composed of polynomials, each having one of the following forms:

1
S

          
S

S2 - S0
2

          
1

S2 - S0
2

          
1

S2 S2 - S0
2

 

a S + b

S2 + S0 S + S0
2

          
a S + b

S2 - S0 S + S0
2

          
a S + b

S S2 + S0 S + S0
2

 

a S + b

S S2 - S0 S + S0
2

          
a S + b

S2 S2 + S0 S + S0
2

          
a S + b

S2 S2 - S0 S + S0
2

(14.6.2-26)
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where

a, b  = General coefficients that have different particular values for each (14.6.2-26)
term.

Inverse Laplace transforms of each of the (14.6.2-26) expressions are directly available from
standard Laplace transform pair tables (e.g., Reference 10 - Appendix III, Laplace Transform
Pair Numbers 3, 19, 66, 83, 114, 115 and 116).

Thus, (14.6.2-16) with (14.6.2-14), (14.6.2-20), (14.6.2-23) - (14.6.2-25), and the inverse
Laplace transforms of (14.6.2-26) constitute a complete closed-form solution for PΩ under the

assumed simplifying assumptions of q3 and q4 being negligible (zero) and P ′0 having PΩ0 as

the only non-zero element.  The final result is far too complex for any practical application.

In order to simplify the analytics further, the following sections will resort to finding the P ′
response to individual noise terms acting independently.  The solution approach will be as in
previous sections based on the analytical integral to the continuous form covariance rate
Equation (14.6.1-6) using its equivalent linear form (14.6.2-1) with (15.1.5.4-8) and
(15.1.5.4-11) as the general integral solution formulas.  The individual noise input solutions can
(hopefully) then be summed to determine the solution under combined noise inputs.  It should
be clear at the outset, however, that the combined solutions so obtained will not be identical to
the true integral solution with all noise terms operating simultaneously.  This is because
Equation (14.6.1-6) is based on the implicit assumption that the associated Kalman filter (and
the computed feedback gains thereof) will be designed based only on those noise terms
appearing in (14.6.1-6).  In the actual Kalman filter, the design is based on all noise terms
present.  Thus, a solution to (14.6.1-6) based on including only a selected individual noise
source, will differ from the response of the actual system to the same noise source.  A section is
included at the end of this chapter that analyzes the sum of individual noise input solutions to
(14.6.1-6) compared to the simultaneous multiple noise input solution, and shows that the
former is a reasonable approximation to the latter.

14.6.3  COVARIANCE SOLUTION UNDER ONLY MEASUREMENT NOISE

Consider the solution to (14.6.2-1) for the case when the measurement noise nM in our

(14.6.1-11) error model is the only active noise source (i.e., the n′P process noise is zero).  Then

Equations (14.6.2-3) (derived from (14.6.2-1)) become:
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a)  y1  =  - y2

b)  y2  =  - y3

c)  y3  =  - y4

d)  y4  =  
1
r

 λ4

e)  λ1  =  0

f)  λ2  =  λ1

g)  λ3  =  λ2

h)  λ4  =  λ3

(14.6.3-1)

Equations (14.6.3-1) are easily analytically integrated in the order e), f), g), h), d), c), b), a) as
follows:

λ1  =  λ10

λ2  =  λ20 + λ10 t

λ3  =  λ30 + λ20 t + λ10 
1

2 !
 t2

λ4  =  λ40 + λ30 t + λ20 
1

2 !
 t2 + λ10 

1
3 !

 t3

y4  =  y40 + 
1
r

 λ40 t  + λ30 
1

2 !
 t2 + λ20 

1
3 !

 t3 + λ10 
1
4 !

 t4
(14.6.3-2)

y3  =  y30 - y40 t - 
1
r

 λ40 
1

2 !
 t2 + λ30 

1
3 !

 t3 + λ20 
1
4 !

 t4 + λ10 
1
5 !

 t5

y2  =  y20 - y30 t + y40 
1

2 !
 t2 + 

1
r

 λ40 
1
3 !

 t3 + λ30 
1
4 !

 t4 + λ20 
1
5 !

 t5 + λ10 
1
6 !

 t6

y1  =  y10 - y20 t + y30 
1

2 !
 t2 - y40 

1
3 !

 t3 - 
1
r
 λ40 

1
4 !

 t4 + λ30 
1
5 !

 t5 + λ20 
1
6 !

 t6+ λ10 
1
7 !

 t7

or in matrix form:
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y1

y2

y3

y4

λ1

λ2

λ3

λ4

  =  

1 - t  
1

2 !
 t2 - 

1
3 !

 t3 - 
1
r

 
1
7 !

 t7 - 
1
r

 
1
6 !

 t6 - 
1
r

 
1
5 !

 t5 - 
1
r
 

1
4 !

 t4

0 1 - t
1

2 !
 t2 1

r
 

1
6 !

 t6 1
r

 
1
5 !

 t5 1
r

 
1
4 !

 t4 1
r

 
1
3 !

 t3

0 0 1 - t - 
1
r

 
1
5 !

 t5 - 
1
r

 
1
4 !

 t4 - 
1
r
 

1
3 !

 t3 - 
1
r
 

1
2 !

 t2

0 0 0 1
1
r

 
1
4 !

 t4 1
r

 
1
3 !

 t3 1
r

 
1
2 !

 t2 1
r

 t

0 0 0 0 1 0 0 0

0 0 0 0 t 1 0 0

0 0 0 0
1
2 !

 t2 t 1 0

0 0 0 0
1
3 !

 t3 1
2 !

 t2 t 1

 

y10

y20

y30

y40

λ10

λ20

λ30

λ40

(14.6.3-3)

Comparing (14.6.3-3) with the (15.1.5.4-8) general form we see that:

Φyy(t)  =  

1 - t  
1

2 !
 t2 - 

1
3 !

 t3

0 1 - t
1
2 !

 t2

0 0 1 - t
0 0 0 1

(14.6.3-4)

Φyλ(t)  =  

- 
1
r

 
1

7 !
 t7 - 

1
r

 
1
6 !

 t6 - 
1
r

 
1
5 !

 t5 - 
1
r
 

1
4 !

 t4

1
r

 
1

6 !
 t6 1

r
 
1
5 !

 t5 1
r

 
1
4 !

 t4 1
r

 
1
3 !

 t3

- 
1
r

 
1

5 !
 t5 - 

1
r

 
1
4 !

 t4 - 
1
r
 

1
3 !

 t3 - 
1
r
 

1
2 !

 t2

1
r

 
1

4 !
 t4 1

r
 
1
3 !

 t3 1
r

 
1
2 !

 t2 1
r

 t

(Continued)
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Φλy(t)  =  0 Φλλ( t)  =  

1 0 0 0
t 1 0 0

1
2 !

 t2 t 1 0

1
3 !

 t3  
1
2 !

 t2 t 1

(14.6.3-4)
(Continued)

As in the previous section, we simplify the analysis by considering the case when the earth
rate uncertainty variance PΩ0 is the only member of initial P ′.  Then (14.6.2-13) applies which,

with (14.6.3-4), yields for terms in general solution Equation (15.1.5.4-11):

Φyy(t) + Φyλ(t) P ′0  =  

1 - 
1
r
 

1
7 !

 t7 PΩ0  - t  
1
2 !

 t2 - 
1
3 !

 t3

1
r

 
1
6 !

 t6 PΩ0 1 - t
1
2 !

 t2

- 
1
r

 
1
5 !

 t5 PΩ0 0 1 - t

1
r

 
1
4 !

 t4 PΩ0 0 0 1

(14.6.3-5)

Φλy(t) + Φλλ( t) P ′0  =  

PΩ0 0 0 0

t PΩ0 0 0 0

1
2 !

 t2 PΩ0 0 0 0

1
3 !

 t3 PΩ0 0 0 0

The determinant of the first expression in (14.6.3-5) is:

Dtr(t)  =  1 - 
1
r

 
1

7 !
 t7 PΩ0 - 

1
r
 

1
6 !

 t6 PΩ0 (- t) - 
1
r

 
1
5 !

 t5 PΩ0 t2 - 
1
2 !

 t2

                       - 
1
r
 

1
4 !

 t4 PΩ0 - t3 - 
1
3 !

 t3 + 
1
2 !

 t3 + 
1
2 !

 t3

            =  1 + 
1
r

 t7 PΩ0 - 
1

7 !
 + 

1
6 !

 - 
1

5 ! 2 !
 + 

1
4 ! 3 !

            =  1 + 
1
r

 t7 PΩ0 
1

7 !
 - 1 + 7 - 

7 × 6

2 !
 + 

7 × 6 × 5

3 !

            =  1 + 
1
r

 t7 PΩ0 
20
7 !

  =  1 + 
1

252 r
 t7 PΩ0

(14.6.3-6)
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where

Dtr(t)  =  Determinant of Φyy(t) + Φyλ( t) P ′0.

With (14.6.3-6) we find for the inverse of the first expression in (14.6.3-5):

Φyy(t) + Φyλ( t) P ′0
 -1  =  1 + 

1
252 r

 t7 PΩ0

 -1
 

1 - - -
- - - -
- - - -
- - - -

(14.6.3-7)

Substituting (14.6.3-7) and the second expression from (14.6.3-5) into (15.1.5.4-11) then
yields for the earth rate uncertainty variance PΩ (the 1,1 element of P ′):

PΩ  =  PΩ0 1 + 
1

252 r
 t7 PΩ0

 -1
(14.6.3-8)

Finally, we substitute r from (14.6.1-13) in (14.6.3-8) to obtain:

PΩRVib  =  PΩ0 1 + 
1

252
 

g2

PRVibH Tn
 t7 PΩ0

 -1
(14.6.3-9)

where

PΩRVib  = Earth rate uncertainty variance produced by random horizontal position
vibration during alignment, and in which the Kalman filter is designed
assuming zero process noise.

14.6.4  COVARIANCE RESPONSE WITH NO MEASUREMENT NOISE

Let’s now consider the situation when the measurement noise R♦ is zero for which Section
15.1.5.4.1 provides a general covariance solution procedure, but only for particular constraint
conditions.  To see whether our (14.6.1-11) - (14.6.1-12) error model satisfies the 15.1.5.4.1
constraints, we partition the (14.6.1-12) matrices to separate states feeding the measurement
(through H) from the others.  Based on the (14.6.1-12) expressions for the error state vector x ′
and measurement matrix H, partitioned forms for the (14.6.1-12) matrices under zero
measurement noise conditions are defined below together with a re-statement of (14.6.1-11):

x  ′  =  A x ′ + GP n′P zn  =  H x  ′n + GM nMn z♦  =  H x  ′ + GM nM
♦ (14.6.4-1)
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H  =  0 HM             HM  ≡  g           nM  =  ΔrVibH  =  0           nM
♦   =  0          R♦  =  0

 

x ′  =  
x*

xM
          x*  ≡  

δωIEH

γH

1
g

 δvH

          xM  ≡  
1
g

 δΔRH

 

A  =  
A* 0

AM* AMM
          A*  ≡  

0 0 0
1 0 0
0 1 0

 

AM*  ≡  0 0 1           AMM  =  0
 

GP  =  
GP* 0

0 GP
M

          GP*  ≡  
0 0 0
- 1 0 0
0 - 1 1

          GP
M

  ≡  1

 

(14.6.4-2)

      

n′P  =  
nP*

nPM
          nP*  =  

δ ωRandH

δ αQuantH

1
g

 δ aRandH

          nP 

M  =  
1
g

 δ' υ QuantH

 

Q P Dens  =  
 Q P*Dens              0   

 

   0          Q 

 PM Dens
 

Q P*Dens  =  

qω  Rand 0 0

0 qα Quant 0

0 0
1

g2
 qaRand

          Q P 

M Dens  =  
1

g2  qυ Quant 

where

M, *  = Designation for error state x ′ and associated process noise terms directly

affecting the measurement (M ) and those not directly affecting the
measurement (*).
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Based on the (14.6.4-2) and (14.6.1-13) definitions we also see that:

GP QPDens GP
T

  =  
 GP* QP*Dens GP*

T
                   0        
 

        0               GPM QPM Dens GPM

T

GP* QP*Dens GP*
T

  =  

0 0 0

0 q2 0

0 0 q3

               
q2  =  qω Rand
 

q3  =  qα Quant + 
1

g2 qaRand

 (14.6.4-3)

GPM QPM Dens GPM

T
  =  q4  =  

1

g2 qυQuant

If we compare (14.6.4-2) with Section 15.1.5.4.1 constraint Equations (15.1.5.4.1-3) and
(15.1.5.4.1-4), we see that (14.6.4-2) satisfies the format requirements.  Thus, it is valid to
apply the Section 15.1.5.4.1 general covariance solution procedure (for zero measurement
noise) to our particular zero measurement noise problem.

The zero measurement solution procedure provided at the end of Section 15.1.5.4.1 (the first
step of which was completed above), is based on converting the measurement (with zero
measurement noise) into a revised measurement defined in (15.1.5.4.1-28) as:

zRev
♦   =  AM* x* + GPM nPM (14.6.4-4)

where

zRev
♦

  = Revised version of the continuous form z♦ measurement (and a scalar in this
particular case).

and AM*, GPM, nPM are as defined in the (14.6.4-2) partitions.

Section 15.1.5.4.1 shows that for a Kalman filter using z♦ as the input measurement to
estimate x ′, the estimate for the x* partition of x ′ (see Equation (14.6.4-2) for x ′ partition

definition) is identical to the x* estimate that would be obtained from a Kalman filter using the

revised zRev
♦

  for the input measurement.  Section 15.1.5.4.1 also shows that the Kalman filter

estimate for the remaining partition in x ′ (i.e., the xM partition) equals the true xM value (i.e.,

error free).  The equivalent statements for the associated x ′ error state uncertainty covariance is

given by (15.1.5.4.1-12):
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P ′  =  
P* 0
0 0

P*  ≡  E Δx* Δx*T (14.6.4-5)

where

Δx*  =  Uncertainty in the Kalman filter’s estimate of x*.

P*  =  The estimated x* uncertainty covariance matrix.

E ( )  =  Expected value operator.

The solution procedure outlined at the end of Section 15.1.5.4.1 solves for P* by applying
the general covariance solution of Section 15.1.5.4 (Equations (15.1.5.4-7), (15.1.5.4-8) and
(15.1.5.4-11)), but based on the (14.6.4-4) measurement.  This is achieved by first making the
following substitutions in Equations (15.1.5.4-7) and (15.1.5.4-11):

A(t)  =  A*             GP(t) QPDens(t) GP(t)T  =  GP* QP*Dens GP*
T

 

H(t)  =  AM*          GM(t) R♦(t) GM(t)T  =  GPM QPM Dens GPM

T
(14.6.4-6)

P(t)  =  P* P(0)  =  P*0 (14.6.4-7)

where

P*0  =  Initial value for P* in (14.6.4-5).

Then P* is found using (15.1.5.4-7), (15.1.5.4-8) and (15.1.5.4-11) with the result substituted

in (14.6.4-5) to determine P ′.  Let’s try this procedure for the (14.6.4-2) - (14.6.4-3) model.

First we apply (14.6.4-6) to (15.1.5.4-7) to find :

y

λ
  =  

           - A*T             AM*
T GPM QPM Dens GPM

T -1
 AM* 

GP* QP*Dens GP*
T

                                    A*                          
 

y

λ
(14.6.4-8)

Using the appropriate matrix values from (14.6.4-2) - (14.6.4-3), Equation (14.6.4-8) is in
component form:

y1  =  - y2

y2  =  - y3

y3  =  
1

q4
 λ3

λ1  =  0

λ2  =  q2 y2 + λ1

λ3  =  q3 y3 + λ2

(14.6.4-9)
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In principle, Equations (14.6.4-9) can be integrated into the (15.1.5.4-8) state transition
solution form and then used with (14.6.4-7) in (15.1.5.4-11) to solve for P*.  Substituting P* in

(14.6.4-5) then provides P ′.  In practice (as for Equations (14.6.2-3) that included measurement
noise) the analytics are too complex to yield any useful result.  So, as in Section 14.6.2, we
resort to integrating (14.6.4-9) under individual noise input conditions, the subject of the
subsections to follow.

14.6.4.1  RESPONSE TO ACCELEROMETER QUANTIZATION NOISE

Consider the solution to (14.6.4-9) for the case when the accelerometer quantization noise q4
(see (14.6.4-3) for q4 definition) is the only active noise source (i.e., the q2 and q3 process noise
terms are zero).  The integration of (14.6.4-9) then directly parallels the Section 14.6.3
integration approach (for active measurement noise and zero process noise).  For q2 and q3
zero, Equations (14.6.4-9) become:

y1  =  - y2

y2  =  - y3

y3  =  
1

q4
 λ3

λ1  =  0

λ2  =  λ1

λ3  =  λ2

(14.6.4.1-1)

Equations (14.6.4.1-1) are easily analytically integrated as in Section 14.6.3 (that led to
(14.6.3-2)).  The result is:

λ1  =  λ10

λ2  =  λ20 + λ10 t

λ3  =  λ30 + λ20 t + λ10 
1

2 !
 t2

y3  =  y30 + 
1

q4
 λ30 t  + λ20 

1
2 !

 t2 + λ10 
1
3 !

 t3
(14.6.4.1-2)

y2  =  y20 - y30 t - 
1

q4
 λ30 

1
2 !

 t2 + λ20 
1
3 !

 t3 + λ10 
1
4 !

 t4

y1  =  y10 - y20 t + y30 
1

2 !
 t2 + 

1
q4

 λ30 
1
3 !

 t3 + λ20 
1
4 !

 t4 + λ10 
1
5 !

 t5

or in matrix form:
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y1

y2

y3

λ1

λ2

λ3

  =  

1 - t  
1

2 !
 t2 1

q4
 
1

5 !
 t5 1

q4
 

1
4 !

 t4 1
q4

 
1
3 !

 t3

0 1 - t - 
1

q4
 

1
4 !

 t4 - 
1
q4

 
1
3 !

 t3 - 
1
q4

 
1
2 !

 t2

0 0 1
1

q4
 
1

3 !
 t3 1

q4
 

1
2 !

 t2 1
q4

 t

0 0 0 1 0 0

0 0 0 t 1 0

0 0 0
1

2 !
 t2 t 1

 

y10

y20

y30

λ10

λ20

λ30

(14.6.4.1-3)

Following the procedure outlined in the last paragraph of Section 14.6.4, we next compare
(14.6.4.1-3) with the (15.1.5.4-8) general form to see that:

Φyy(t)  =  

1 - t  
1

2 !
 t2

0 1 - t

0 0 1

Φyλ(t)   =  

1
q4

 
1
5 !

 t5 1
q4

 
1
4 !

 t4 1
q4

 
1
3 !

 t3

- 
1
q4

 
1
4 !

 t4 - 
1
q4

 
1
3 !

 t3 - 
1
q4

 
1
2 !

 t2

1
q4

 
1
3 !

 t3 1
q4

 
1
2 !

 t2 1
q4

 t

(14.6.4.1-4)

Φλy(t)  =  0 Φλλ( t)  =  

1 0 0

t 1 0

1
2 !

 t2 t 1

where

Φyy(t), Φyλ(t), Φλy(t), Φλλ(t)   =  Elements of the state transition matrix associated
with the Equation (14.6.4.1-3) state dynamic matrix for propagation

of initial conditions on the y, λ vectors to the current time.
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As in previous sections we simplify the analysis by only considering the case when the earth
rate uncertainty variance PΩ0 is the only member of initial P*.  Based on the form of x*

(14.6.4-2) we then write (as in (14.6.2-13)):

P*0  =  

PΩ0 0 0

0 0 0

0 0 0

(14.6.4.1-5)

Continuing the procedure outlined at the end of Section 14.6.4, we use (14.6.4.1-4) and
(14.6.4.1-5) with the P(0) conversion expression from (14.6.4-7) in general solution Equations
(15.1.5.4-11) to find for particular terms:

Φyy(t) + Φyλ(t) P*0  =  

1 + 
1
q4

 
1
5 !

 t5 PΩ0  - t  
1
2 !

 t2

- 
1
q4

 
1
4 !

 t4 PΩ0 1 - t

1
q4

 
1
3 !

 t3 PΩ0 0 1

(14.6.4.1-6)

Φλy(t) + Φλλ(t) P*0  =  

PΩ0 0    0

t PΩ0 0    0

1
2 !

 t2 PΩ0 0    0

The determinant of the first expression in (14.6.4.1-6) is:

Dtr(t)  =  1 + 
1

q4
 

1
5 !

 t5 PΩ0 + 
1

q4
 

1
3 !

 t5 PΩ0 - 
1
q4

 
1
4 !

 t5 PΩ0 - 
1
q4

 
1

3 ! 2 !
 t5 PΩ0

            =  1 + 
1

q4
 t5 PΩ0 

1
5 !

 + 
1

3 !
 - 

1
4 !

 - 
1

3 ! 2 !

            =  1 + 
1

q4
 t5 PΩ0 

1
5 !

 1 + 5 × 4 - 5 - 
5 × 4

2 !

            =  1 + 
1

q4
 t5 PΩ0 

6
5 !

  =  1 + 
1

20 q4
 t5 PΩ0

(14.6.4.1-7)



14-62      QUASI-STATIONARY INITIALIZATION ERROR EQUATIONS AND SOLUTIONS

where

Dtr(t)  =  Determinant of Φyy(t) + Φyλ(t) P*0.

with which we find for the inverse of the first expression in (14.6.4.1-6):

Φyy(t) + Φyλ( t) P*0
 -1  =  1 + 

1
20 q4

 t5 PΩ0

 -1
 

1 - -
- - -
- - -

(14.6.4.1-8)

Substituting (14.6.4.1-8), the second expression from (14.6.4.1-6), and the P(t) conversion
expression from (14.6.4-7) into general solution Equation (15.1.5.4-11) then yields for the earth
rate uncertainty variance PΩ (the 1,1 element of P*):

PΩ  =  PΩ0 1 + 
1

20 q4
 t5 PΩ0

 -1
 (14.6.4.1-9)

From (14.6.4-5) we see that PΩ is also the (1,1) element of P ′.

Finally, we substitute q4 from (14.6.4-3) in (14.6.4.1-9) to obtain:

PΩυQuant  =  PΩ0 1 + 
g2

qυQuant
 

1
20

 t5 PΩ0

 -1

(14.6.4.1-10)

where

PΩυQuant  = Earth rate uncertainty variance produced by accelerometer horizontal

quantization noise during alignment, and in which the Kalman filter was
designed assuming zero measurement noise and zero for the other
process noise sources.

14.6.4.2 RESPONSE TO COMBINED ANGULAR RATE SENSOR
QUANTIZATION AND ACCELEROMETER RANDOM OUTPUT NOISE

Equation (14.6.4-9) was developed as a means for finding P*, and ultimately P ′, under a
zero measurement noise condition (using the procedure outlined at the conclusion of Section
14.6.4).  Let’s consider the solution to (14.6.4-9) for the case when the combined angular rate
sensor quantization and accelerometer random output noise q3 (see (14.6.4-3)) is the only active
noise source (i.e., the q2 and q4 process noise terms are zero).  From (14.6.4-9) we see that
setting q4 equal to zero introduces a singularity condition that prevents a simple direct
integration.  However, (14.6.4-9) with zero q4 can be converted to a singular free form if we
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adopt the same procedure used in Section 14.6.4 to eliminate the zero measurement noise
singularity.

Section 14.6.4 began with the original x ′ error state dynamic equation and the original z♦

measurement equation, but in the presence of zero original measurement noise nM
♦ .  To find the

x ′ estimation uncertainty covariance P ′ under zero nM
♦  measurement noise, a revised zRev

♦

measurement was formed that had process noise nPM (with density q4) as its measurement

noise.  Use of zRev
♦

  in a revised Kalman filter configuration enabled us to solve for P*, the

uncertainty covariance matrix for the x* partition of x ′.  The P* covariance was then used to

find P ′ under zero nM
♦  measurement noise.  The P ′ solution was developed analytically in

Section 14.6.4.1 for the case when nPM was the only active noise source (i.e., with the

remaining process noise sources nP* and the original measurement noise nM
♦  set to zero).

In this section we will repeat the Section 14.6.4 procedure, but beginning with the Section

14.6.4 revised zRev
♦

 measurement equation, the x* partition of the x ′ error state dynamic

equation, and the condition when nPM (process noise q4) as well as nM
♦  measurement noise are

zero.  We will then form a revised zRev2
♦  measurement that has coupled process noise

GP
M/M

 nPM/M (with q3 density) as its measurement noise.  Use of zRev2
♦  in a revised Kalman

filter configuration will enable us to solve for P**, the uncertainty covariance matrix for an x**

partition of x*.  The P** covariance will be used to find P* under conditions of zero nM
♦

measurement noise and zero nPM (q4) process noise.  Then P* will be used to find P ′ under the

same conditions.  The P ′ solution will be developed analytically in this section for the case
when GP

M/M
 nPM/M (density q3) is the only active noise source.  In the next Section 14.6.4.3,

we will perform an abbreviated version of the procedure used in this section, but beginning with

zRev2
♦  and the x** error state dynamic equation.  The result will be the P ′ response to angular

rate sensor output noise (q2 density) for the case when all other noise sources are zero.

We begin this section with the x* partition of x from (14.6.4-1) as the error state dynamic
equation using the (14.6.4-2) partitioning formulas.  Revised measurement Equation (14.6.4-4)
is used as the starting point measurement equation.  Both are repeated below:
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x*  =  A* x* + GP* nP*

zRev
♦   =  HRev x* + GMRev nM Rev

♦ (14.6.4.2-1)

HRev  ≡  AM* GM Rev  ≡  GPM nMRev
♦   ≡  nPM

where

HRev, GMRev, nM Rev
♦   = The revised continuous form measurement matrix,

measurement noise coupling matrix and measurement noise.

Using (14.6.4-2) for component values, we reformat the (14.6.4.2-1) participating matrices

to separate terms directly affecting the zRev
♦

  measurement from those that do not:

HRev  =  0 HM/M             HM/M  =  1
 

nMRev
♦   =  nPM  =  

1
g

 δυQuantH  =  0           RRev
♦   =  QPM Dens  =  

1

g2
 qυQuant  =  0

 

x*  =  
x**

xM/M

          x**  =   
δωIEH

γH

          xM/M  =  
1
g

 δvH

 

A*  =  
A** 0

AM/M** AM/M M/M
          A**  ≡  

0 0
1 0

 

AM/M**  ≡  0 1           AM/M M/M  =  0
 

GP*  =  
GP** 0

0 GP
M/M

          GP**  ≡  0
- 1

          GP
M/M

  ≡  1 1

(14.6.4.2-2)

nP*  =  
nP**

nP
M/M

          nP**  =  δωRandH          nP
M/M  =  

δαQuantH

1
g

 δaRandH

 

QP*Dens  =  
 QP**Dens              0   

 

   0          QPM/M Dens
 

QP**Dens  =  qωRand          QPM/M Dens  =  

qαQuant 0

0
1

g2
 qaRand
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where

**, M/M  = Designation for error state x* and associated process noise terms directly

affecting the zRev
♦

  measurement (denoted by M /M) and those not directly
affecting the measurement (denoted by **).

Based on the (14.6.4.2-2) definitions we also see that:

GP* QP*Dens GP*
T

  =  
 GP** QP**Dens GP**

T
                   0        

 

        0               GPM/M QPM/M Dens GPM/M

T

GP** QP**Dens GP**
T

  =  0 0
0 q2

          q2  =  qω Rand (14.6.4.2-3)

GPM/M QPM/M Dens GPM/M
T   =  q3  =  qα Quant + 

1

g2
 qaRand 

We now compare (14.6.4.2-2) against Section 15.1.5.4.1 constraint Equations (15.1.5.4.1-3)
and (15.1.5.4.1-4), and see that (14.6.4.2-2) satisfies the format requirements.  Thus, it is valid
to apply the Section 15.1.5.4.1 general covariance solution procedure (for zero measurement
noise) to our particular zero revised measurement noise problem. In this case the revised

measurement noise nMRev
♦  is actually process noise nPM, but it appears analytically in the

(14.6.4.2-2) revised measurement equation in the form of measurement noise.  Thus, for the
case of zero revised measurement noise (i.e., zero nPM), we can treat the problem as a zero

measurement noise situation for which the Section 15.1.5.4.1 procedure then applies.
Remember, however, that the revised measurement in Equation (14.6.4.2-1) was developed in

Section 14.6.4 based on zero measurement noise (i.e., the real measurement noise nM
♦  of

Equation (14.6.4-1)).  Thus, the problem we are addressing in this section is finding a

covariance solution for zero nM
♦  measurement noise and zero nPM process noise.  Let’s

continue.

The zero measurement solution to be developed in this case is based on converting the

(14.6.4.2-1) measurement zRev
♦

  into a revised measurement of the same form as zRev
♦

 in

(15.1.5.4.1-28):

zRev2
♦   =  AM/M** x** + GPM/M nPM/M (14.6.4.2-4)



14-66      QUASI-STATIONARY INITIALIZATION ERROR EQUATIONS AND SOLUTIONS

where

zRev2
♦   = Revised version of the Equation (14.6.4.2-1) continuous form zRev

♦

measurement.

and AM/M**, GPM/M, nPM/M are as defined in the (14.6.4.2-2) partitions.

Following the Section 14.6.4 process for the (14.6.4.2-2) model shows as in (14.6.4-5) that:

P*  =  P** 0
0 0

P**  ≡  E Δx** Δx**T (14.6.4.2-5)

where

Δx**  = Uncertainty in the revised estimate of x** (see (14.6.4.2-2) for components)

for the Kalman filter that uses zRev2
♦  as its measurement.

P*  =  Estimated x* uncertainty covariance.

P**  =  Estimated x** uncertainty covariance.

Paralleling Section 14.6.4, we now make the following substitutions in Equations
(15.1.5.4-7) and (15.1.5.4-11), but based on the (14.6.4.2-2) M/M and ** partitions:

A(t)  =  A**                GP(t) QPDens(t) GP(t)T  =  GP** QP**Dens GP**
T

 

H(t)  =  AM/M**          GM(t) R♦(t) GM(t)T  =  GPM/M QPM/M Dens GPM/M

T
(14.6.4.2-6)

P(t)  =  P** P(0)  =  P**0 (14.6.4.2-7)

where

P**0  =  Initial value for P** in (14.6.4.2-7).

Then P** is found using (15.1.5.4-7), (15.1.5.4-8) and (15.1.5.4-11) with the result substituted

in (14.6.4.2-5) to determine P*.  For this case of zero nM
♦  measurement and nPM process noise,

we can then substitute P* into (14.6.4-5) to finally determine P ′.  The combined (14.6.4.2-5)

and (14.6.4-5) operation for P ′ is:

P ′  =  P** 0
0 0

(14.6.4.2-8)
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Applying (14.6.4.2-6) to (15.1.5.4-7) we find :

y

λ
  =  

          - A**T             AM/M**
T GP

M/M QP
M/M Dens GP

M/M

T -1
 AM/M** 

GP** QP**Dens GP**
T

                                            A**                                 
 

y

λ

(14.6.4.2-9)

Using the appropriate matrix values from (14.6.4.2-2) - (14.6.4.2-3), Equation (14.6.4.2-9)
becomes in component form:

y1  =  - y2

y2  =  
1

q3
 λ2

λ1  =  0

λ2  =  q2 y2 + λ1
(14.6.4.2-10)

Equations (14.6.4.2-10) can now be integrated into the (15.1.5.4-8) state transition solution
form and used with (14.6.4.2-7) in (15.1.5.4-11) to solve for P**.  Equation (14.6.4.2-8) is

then applied to find P ′.  For the remainder of this section we will find P ′ for the special case of
zero q2 and the only active noise source being q3 (i.e., angular rate sensor quantization noise and
accelerometer random output noise - See (14.6.4.2-3)).  Section 14.6.5 will deal with the

solution for P ′ for non-zero q2 and q3 so that results can be compared with the individual non-
zero q3 only and non-zero q2 only solutions (the latter to be determined in Section 14.6.4.3).

For the zero q2 case, Equations (14.6.4.2-10) become:

y1  =  - y2

y2  =  
1

q3
 λ2

λ1  =  0

λ2  =  λ1
(14.6.4.2-11)

whose solution is:

λ1  =  λ10

λ2  =  λ20 + λ10 t

y2  =  y20 + 
1

q3
 λ20 t  + λ10 

1
2 !

 t2

y1  =  y10 - y20 t - 
1

q3
 λ20 

1
2 !

 t2 + λ10 
1
3 !

 t3

(14.6.4.2-12)

or in matrix form:



14-68      QUASI-STATIONARY INITIALIZATION ERROR EQUATIONS AND SOLUTIONS

y1

y2

λ1

λ2

  =  

1 - t - 
1

q3
 

1
3 !

 t3 - 
1
q3

 
1
2 !

 t2

0 1 
1

q3
 

1
2 !

 t2 1
q3

 t

0 0 1 0

0 0 t 1

 

y10

y20

λ10

λ20

(14.6.4.2-13)

We next compare (14.6.4.2-13) with the (15.1.5.4-8) general form to see that:

Φyy(t)  =  
1 - t
0 1

Φyλ(t)   =  

- 
1
q3

 
1
3 !

 t3 - 
1
q3

 
1
2 !

 t2

1
q3

 
1
2 !

 t2 1
q3

 t

(14.6.4.2-14)

Φλy(t)  =  0 Φλλ( t)  =  
1 0
t 1

As in previous sections, we simplify the analysis by considering the case when the earth rate
uncertainty variance PΩ0 is the only member of initial P**.  Based on the form of x** in

(14.6.4.2-2) we then write (as in (14.6.4.1-5)):

P**0  =  
PΩ0 0

0 0
(14.6.4.2-15)

Continuing the procedure outlined following (14.6.4.2-7), we use (14.6.4.2-14) and
(14.6.4.2-15) with the P(0) conversion expression from (14.6.4.2-7) in general solution
Equations (15.1.5.4-11) to find for particular terms:

Φyy(t) + Φyλ(t) P**0  =  

1 - 
1
q3

 
1
3 !

 t3 PΩ0  - t

1
q3

 
1
2 !

 t2 PΩ0 1

(14.6.4.2-16)

Φλy(t) + Φλλ(t) P**0  =  
PΩ0 0

t PΩ0 0
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The determinant of the first expression in (14.6.4.2-16) is:

Dtr(t)  =  1 - 
1

q3
 

1
3 !

 t3 PΩ0 + 
1
q3

 
1
2 !

 t3 PΩ0

 

            =  1 + 
1

q3
 t3 PΩ0 - 

1
3 !

 + 
1
2 !

  =  1 + 
1

3 q3
 t3 PΩ0

(14.6.4.2-17)

where

Dtr(t)  =  Determinant of Φyy(t) + Φyλ(t) P**0.

with which we find for the inverse of the first expression in (14.6.4.2-16):

Φyy(t) + Φyλ( t) P**0
 -1  =  1 + 

1
3 q3

 t3 PΩ0

 -1
 1 -

- -
(14.6.4.2-18)

Substituting (14.6.4.2-18), the second expression from (14.6.4.2-16), and the P conversion
expression from (14.6.4.2-7) into general solution Equation (15.1.5.4.-11) then yields for the
earth rate uncertainty variance PΩ (the 1,1 element of P**):

PΩ  =  PΩ0 1 + 
1

3 q3
 t3 PΩ0

 -1
 (14.6.4.2-19)

From (14.6.4.2-8) we see that PΩ is also the (1,1) element of P ′.

Finally, we substitute q3 from (14.6.4.2-3) in (14.6.4.2-19) to obtain:

PΩαQuant/aRand  =  PΩ0 1 + 
1

qαQuant + 
1

g2
 qaRand

 
1
3

 t3 PΩ0

 -1

(14.6.4.2-20)

where

PΩα Quant/aRand 
  =  Earth rate uncertainty variance produced by angular rate sensor

horizontal quantization noise and accelerometer horizontal random output noise
during alignment, and in which the Kalman filter was designed assuming zero
measurement noise and zero for the other process noise sources.

14.6.4.3  RESPONSE TO ANGULAR RATE SENSOR RANDOM OUTPUT NOISE

In this section we find the response of the horizontal earth rate uncertainty variance to angular
rate sensor random output noise (density q2) acting alone.  By now the reader should be
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familiar with the general solution approach.  For this case we’ll take some short cuts by starting
from (14.6.4.2-10) (with non-zero q2 and q3 as the active noise sources) in comparison with
(14.6.4-9) (with non-zero q2, q3 and q4), compared with (14.6.2-3) (with non-zero q2, q3, q4
and r), all repeated below:

y1  =  - y2

y2  =  - y3

y3  =  - y4

y4  =  
1
r

 λ4

λ1  =  0

λ2  =  q2 y2 + λ1

λ3  =  q3 y3 + λ2

λ4  =  q4 y4 + λ3

(14.6.4.3-1)

y1  =  - y2

y2  =  - y3

y3  =  
1

q4
 λ3

λ1  =  0

λ2  =  q2 y2 + λ1

λ3  =  q3 y3 + λ2

(14.6.4.3-2)

y1  =  - y2

y2  =  
1

q3
 λ2

λ1  =  0

λ2  =  q2 y2 + λ1
(14.6.4.3-3)

If the development of (14.6.4.2-10) (Equations (14.6.4.3-3)) is reviewed, it will be seen that
they originated from (14.6.4-9) (Equations (14.6.4.3-2)) for the singular condition when q4 = 0.

Similarly, review of the (14.6.4-9) development (Equations (14.6.4.3-2)) shows that they
originated from (14.6.2-3) (Equations (14.6.4.3-1)) for the singular condition when r = 0.  By
direct analogy and inspection of (14.6.4.3-3) compared to (14.6.4.3-2) compared to
(14.6.4.3-1), we can immediately write for the singular zero q3 condition in (14.6.4.3-3):

y1  =  
1

q2
 λ1 λ1  =  0 (14.6.4.3-4)

whose integral solution is:

y1  =  y10 + 
1

q2
 λ10 t λ1  =  λ10 (14.6.4.3-5)

or in matrix form:
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y1

λ1

  =  

1 
1

q2
 t

0 1 
 

y10

λ10

(14.6.4.3-6)

Comparing (14.6.4.3-6) with the (15.1.5.4-8) general form we get:

Φyy(t)  =  1 Φyλ(t)   =  
1

q2
 t Φλy(t)  =  0 Φλλ( t)  =  1 (14.6.4.3-7)

Extrapolating the next step based on (14.6.4.2-16) (which came from (14.6.4.3-3)), we find
from (14.6.4.3-7) in general solution Equations (15.1.5.4-11) for particular terms:

Φyy(t) + Φyλ(t) P***0  =  1 + 
1
q2

 t PΩ0

 

Φλy(t) + Φλλ(t) P***0  =  PΩ0

(14.6.4.3-8)

where

P***0  = Initial covariance of the uncertainty in a partition of x** in Equations
(14.6.4.2-2) containing only the horizontal earth rate estimate earth rate

δωIEH.

From its definition, we see that:

P***0  =  PΩ0 (14.6.4.3-9)

Substituting (14.6.4.3-8) and (14.6.4.3-9) into general solution Equation (15.1.5.4-11) then
yields for the earth rate uncertainty variance PΩ:

PΩ  =  1 + 
1

q2
 t PΩ0

 -1
 PΩ0 (14.6.4.3-10)

From (14.6.4.2-2) and (14.6.4.2-8) we see that PΩ is also the (1,1) element of P ′.
Extrapolating (14.6.4.2-8) to the P*** form shows that the remaining elements of P ′ are zero.

Finally, we substitute q2 from (14.6.4.2-3) in (14.6.4.3-10) to obtain:

PΩωRand  =  1 + 
1

qωRand
 t PΩ0

 -1
 PΩ0 (14.6.4.3-11)
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where

PΩωRand  = Earth rate uncertainty variance produced by angular rate sensor horizontal

random output noise during alignment, and in which the Kalman filter was
designed assuming zero measurement noise and zero for the other process
noise sources.

The above development is far from rigorous and is provided in the interests of shortening the
process.  As an exercise, the reader can verify its validity (as the author has done) by
performing the detailed rigorous process of previous sections (e.g., using Section 14.6.4.2 as a
template).

14.6.4.4  SUMMARY OF RESPONSES TO MEASUREMENT AND PROCESS NOISE

Equations (14.6.3-9), (14.6.4.1-10), (14.6.4.2-20) and (14.6.4.3-11) are responses of the
horizontal earth rate uncertainty to individual random noise error sources present during Fine
Alignment, assuming for each that the Kalman filter was designed for only that noise source
present (i.e., zero for the other noise sources).  These equations are summarized below.

PΩRVib  =  PΩ0 1 +
1

252
 

g2

PRVibH Tn
 t7 PΩ0

 -1

PΩυQuant  =  PΩ0 1 +
g2

qυQuant
 

1
20

 t5 PΩ0

 -1

 

PΩαQuant/aRand  =  PΩ0 1 + 
1

qαQuant + 
1

g2
 qaRand

 
1
3

 t3 PΩ0

 -1
(14.6.4.4-1)

PΩωRand  =  1 + 
1

qωRand
 t PΩ0

 -1
 PΩ0

Values for the qαQuant and qυQuant densities can be found using Equations (15.2.1.2-18).
Values used for the qaRand and qω  Rand  densities should be based on the characteristics of the
particular accelerometers and angular rate sensors being used.

It is also instructive to consider the form of Equations (14.6.4.4-1) under conditions when
the initial earth rate uncertainty variance is large.  Then the equations simplify to:
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For Large PΩ0:

PΩRVib  =  
252 Tn PRVibH

g2 t7
PΩυQuant  =  

20 qυQuant

g2 t5
(14.6.4.4-2)

PΩαQuant/aRand  =  
3 qαQuant + 

1

g2
 qaRand

t3

PΩωRand  =  
qωRand

t

14.6.5 COMBINED SOLUTION VERSUS THE SUM OF
INDIVIDUAL SOLUTIONS FOR MULTIPLE NOISE SOURCES

In Sections 14.6.3 and 14.6.4 (and its subsections) we found simple closed-form solutions
for the estimated horizontal earth rate uncertainty response to individual noise sources
(summarized in Section 14.6.4.4), assuming for each that the Kalman filter was designed for
only that noise source present (with zero for the other noise sources).  In actual practice, the
Kalman filter design is based on all noise sources being present (in its covariance/gain
calculations).  To find the response of the actual filter (designed for all noise sources present) to
each noise source, a Fine Alignment suboptimal covariance simulation numerical sensitivity
analysis can be performed for each noise source using the actual filter computed Kalman gain
matrix (e.g., as in Section 16.2.4).  For the Section 14.6.4.4 noise sensitivity results to be
useful, they should be reasonably close to the sensitivities obtained with the actual Kalman
gains.

An analytical (rather than numerical simulation) assessment can also be made to measure the
accuracy to which the Section 14.6.4.4 results match the noise sensitivities of the Fine
Alignment process using actual Kalman filter gains.  The method is similar to the approach
outlined in the previous paragraph.  The difference is that the linear sum of the Section 14.6.4.4
results would be compared against the horizontal earth rate uncertainty variance determined
analytically with all noise sources present.  Unfortunately, as illustrated in Section 14.6.2,
finding an analytical solution with all noise sources present is far too complicated compared
with the simulation alternative.

As an analytical compromise, the following sections will perform the comparison described
in the previous paragraph, but for only two of the noise sources active; horizontal angular rate
sensor random noise (q2) and the q3 noise group (horizontal angular rate sensor quantization
noise and accelerometer random output noise).  An analytical solution for the horizontal earth
rate estimate uncertainty under simulataneous q2, q3 excitation is found fairly easily in Section
14.6.5.1.  As an indication of the Section 14.6.2 individual solution accuracies, the 14.6.5.1
result is compared in Section 14.6.5.2 with the sum of the individual q2 and q3 results from
Section 14.6.4.4.  The results compare quite favorably which supports the notion of using the
Section 14.6.4.4 sensitivities as a reasonable approximation to the actual sensitivities.
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14.6.5.1 RESPONSE TO COMBINED ANGULAR RATE SENSOR
RANDOM OUTPUT NOISE, QUANTIZATION NOISE
AND ACCELEROMETER RANDOM OUTPUT NOISE

In this section we find the horizontal earth rate uncertainty variance response to simultaneous
q2 and q3 noise (angular rate sensor output noise, angular rate sensor quantization noise and
accelerometer random output noise).  The result is determined by returning to Equations
(14.6.4.2-10) repeated below:

y1  =  - y2

y2  =  
1

q3
 λ2

λ1  =  0

λ2  =  q2 y2 + λ1
(14.6.5.1-1)

We will now find the integral solution to (14.6.5.1-1) and then translate the result to
horizontal earth rate uncertainty variance using the Section 14.6.4.2 process following
Equations (14.6.4.2-13).  The (14.6.5.1-1) integral solution is easily found using Laplace
transform techniques.  The Laplace transform of (14.6.5.1-1) is:

S Y1 - y10  =  - Y2

S Y2 - y20  =  
1

q3
 Λ2

S Λ1 - λ10  =  0

S Λ2 - λ20  =  q2 Y2 + Λ1
(14.6.5.1-2)

where

S  =  Laplace transform parameter.

Yi, Λi  =  Laplace transforms of yi, λi.

Equations (14.6.5.1-2) are upon rearrangement:

a)    Y1  =  
1
S

 - Y2 + y10

b)    Y2  =  
1
S

 
1

q3
 Λ2 + y20

c)    Λ1  =  
1
S

 λ10

d)    Λ2  =  
1
S

 q2 Y2 + Λ1 + λ20

(14.6.5.1-3)

The Λ1 solution is from (14.6.5.1-3) c) directly.  The Y2 solution is obtained by substituting

d) with c) in b), multiplying by S2, and rearranging:

Y2  =  
1
S

 
1

q3
 Λ2 + y20   =  

1
S

 
1
q3

 
1
S

 q2 Y2 + 
1
S

 λ10 + λ20  + y20

 

Y2 S2 - 
q2

q3
  =  S y20 + 

1
S

 
1

q3
 λ10 + 

1
q3

 λ20

(14.6.5.1-4)
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or

Y2  =  
1
F

 S y20 + 
1
S

 
1

q3
 λ10 + 

1
q3

 λ20 (14.6.5.1-5)

with

F  ≡  S2 - α2 α  ≡  
q2

q3
(14.6.5.1-6)

Then Y1 is found in (14.6.5.1-3) from a) with (14.6.5.1-5) for Y2; Λ2 is found from d) with

(14.6.5.1-5) for Y2 and c):

Y1  =  
1

F S
 F y10 - S y20 - 

1
S

 
1
q3

 λ10 - 
1
q3

 λ20 (14.6.5.1-7)

Λ2  =  
1

F S
 q2 S y20 + 

1
S

 
1

q3
 λ10 + 

1
q3

 λ20  + 
F
S

 λ10 + F λ20

=  
1

F S
 q2 S y20 +  

F
S

 + 
1
S

 
q2

q3
 λ10 + F + 

q2

q3
 λ20 (14.6.5.1-8)

=  
1

F S
 q2 S y20 + S λ10 + S2 λ20

The results in matrix form are:

Y1

Y2

Λ1

Λ2

  =  
1
F

 

F
S

 - 1 - 
1

q3 S2
 - 

1
q3 S

0 S 
1
S

 
1
q3

 
1
q3

0 0 
F
S

 0

0 q2 1 S

 

y10

y20

λ10

λ20

(14.6.5.1-9)

Next, with (14.6.5.1-6) for F, we define the following for particular Laplace formations in
(14.6.5.1-9) including their inverse Laplace transforms:



14-76      QUASI-STATIONARY INITIALIZATION ERROR EQUATIONS AND SOLUTIONS

Θ0  ≡  
1
S

          θ0(t)  =  1

Θ1  ≡  
S
F

  =  
S

S2 - α2          θ1(t)  =  cosh α t

Θ2  ≡  
1
F

  =  
1

S2 - α2          θ2(t)  =  
sinh α t

α
 

Θ3  ≡  
1

F S
  =  

1

S2 - α2
 S

  =  
1

α2 - 
1
S

 + 
S

S2 - α2

(14.6.5.1-10)

θ3(t)  =  
1

α2
 - 1 + cosh α t   =  

q3

q2
 - 1 + cosh α t

Θ4  ≡  
1

F S2  =  
1

S2 - α2
 S2          θ4(t)  =  

1

α2 
sinh α t

α
 - t   =  

q3

q2
 

sinh α t

α
 - t

where

Θi, θi( t)   =  The particular Laplace transform and its inverse Laplace transform.

Using the (14.6.5.1-10) Θi definitions, (14.6.5.1-9) is equivalently:

Y1

Y2

Λ1

Λ2

  =  

Θ0 - Θ2 - Θ4 
1
q3

- Θ3 
1
q3

0 Θ1 Θ3 
1
q3

Θ2 
1
q3

0 0 Θ0 0

0 q2 Θ2 Θ2 Θ1

 

y10

y20

λ10

λ20

(14.6.5.1-11)

whose inverse Laplace transform is:

y1

y2

λ1

λ2

  =  

θ0(t) - θ2(t) - θ4(t) 
1
q3

 - θ3(t) 
1
q3

0 θ1(t) θ3(t) 
1
q3

 θ2(t) 
1
q3

0 0 θ0(t) 0

0 q2 θ2(t) θ2(t) θ1(t)

 

y10

y20

λ10

λ20

(14.6.5.1-12)
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We next compare (14.6.5.1-12) with the (15.1.5.4-8) general form to see that:

Φyy(t)  =  
θ0(t) - θ2(t)

0 θ1(t)
Φyλ(t)   =  

- θ4(t) 
1
q3

 - θ3(t) 
1
q3

θ3(t) 
1
q3

 θ2(t) 
1
q3

(14.6.5.1-13)

Φλy(t)  =  
0  0 

0  q2 θ2(t)
Φλλ( t)  =  

θ0(t) 0

θ2(t) θ1(t)

Using (14.6.5.1-13) and P**0 from (14.6.4.2-15) finds:

Φyy(t) + Φyλ( t) P**0  =  

θ0(t) - θ4(t) 
1
q3

 PΩ0   - θ2(t)

θ3(t) 
1
q3

 PΩ0  θ1(t)

(14.6.5.1-14)

Φλy(t) + Φλλ( t) P**0  =  
θ0(t) PΩ0  0

θ2(t) PΩ0  q2 θ2(t)

The determinant of the first expression in (14.6.5.1-14) is with the (14.6.5.1-10) inverse
Laplace transforms:

Dtr(t)  =  θ0(t) - θ4(t) 
1

q3
 PΩ0  θ1(t) + θ2(t) θ3(t) 

1
q3

 PΩ0

 =  1 - 
sinh α  t

α
 - t  

1
q2

 PΩ  0  cosh  α  t + 
1
q2

 
sinh α  t

α
 -1 + cosh α  t  PΩ  0 

 =  cosh α  t - 
sinh α  t

α
 
1

q2
 PΩ 0 cosh α  t + 

t
q2

 PΩ 0 cosh α  t

 

             - 
sinh α  t

q2 α
 PΩ  0 + 

1
q2

 
sinh α  t

α
 cosh α  t PΩ 0

 

=  cosh α  t + 
t

q2
 PΩ  0 cosh α t  - 

sinh α  t

q2 α
 PΩ  0

(14.6.5.1-15)

(Continued)
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 =  1 + 
t

q2
 PΩ  0  cosh α  t - 

sinh α  t

q2 α
 PΩ  0

 =  cosh α  t 1 + 
t

q2
 PΩ  0 - 

tanh α  t

q2 α
 PΩ  0

(14.6.5.1-15)
(Continued)

 =  θ1(t) 1 + 
PΩ  0

q2 α
  α t - tanh α  t

where

Dtr(t)  =  Determinant of Φyy(t) + Φyλ(t) P**0.

Applying (14.6.5.1-15) obtains for the inverse of the first expression in (14.6.5.1-14):

Φyy(t) + Φyλ(t) P**0
 -1  =  1 + 

PΩ  0

q2 α
  α t - tanh α  t

 -1

 1 -
- -

(14.6.5.1-16)

Substituting (14.6.5.1-16), the second expression from (14.6.5.1-14) with θ0( t)

from(14.6.5.1-10), and the P conversion expression from (14.6.4.2-7) into general solution
Equation (15.1.5.4-11) then yields for the earth rate uncertainty variance PΩ (the 1,1 element of
P**):

PΩ  =  PΩ  0 1 + 
PΩ  0

q2 α
 α  t - tanh α  t

 -1

(14.6.5.1-17)

From (14.6.4.2-8) we see that PΩ is also the (1,1) element of P ′.  The α and q2 terms in
(14.6.5.1-17) are from (14.6.5.1-6) and (14.6.4.2-3):

q2  =  qωRand q3  =  qα Quant + 
1

g2
 qaRand  α  ≡  

q2

q3
(14.6.5.1-18)

Equations (14.6.5.1-17) with (14.6.5.1-18) provide a solution for the horizontal earth rate
uncertainty variance for simultaneous application of q2 and q3 process noise with the other
noise sources zero (and the Kalman filter design based on these conditions).

It is also instructive to consider the form of Equation (14.6.5.1-17) under conditions when
the initial earth rate uncertainty variance is large.  Then the equation simplifies to:

For Large PΩ0 : PΩ  =  
q2 α

α  t - tanh α  t
(14.6.5.1-19)
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14.6.5.2 COMPARISON BETWEEN THE SUM OF INDIVIDUAL SOLUTIONS
AND THE COMBINED SOLUTION FOR MULTIPLE NOISE SOURCES

In this section we compare the PΩ solution from the previous section with the sum of the
individual q2 and q3 solutions from Equations (14.6.4.4-2), to see whether the sum solution can
be used as a reasonable approximation to the previous section Equation (14.6.5.1-19) PΩ
solution.

First we restate the (14.6.5.1-19) solution, renamed to identify it as the response to
simultaneous q2 and q3:

PΩ  Simult  =  
q2 α

α  t - tanh α t
(14.6.5.2-1)

where

PΩSimult  = PΩ for a Kalman filter designed with simultaneous q2 and q3 with no other
noise sources.

The individual q2 and q3 solutions from (14.6.4.4-2) are with (14.6.5.1-18):

PΩ  αQuant/aRand  =  
3 q3

t3
  =  

3 q2 α

(α  t)
3

PΩ  ωRand  =  
qω  Rand

t
  =  

q2 α

α  t
(14.6.5.2-2)

The sum of the (14.6.5.2-2) solutions is:

PΩ  Sum  =  PΩ  αQuant/aRand + PΩ  ωRand
 

             =  
3 q2 α

(α  t)
3

 + 
q2 α

α  t
  =  q2 α 

3

(α  t)
3
 + 

1

α  t

(14.6.5.2-3)

where

PΩSum  = The sum of the PΩ solutions for individual Kalman filters designed with q2

and with q3 as the only noise sources.

We now address the question of how accurately (14.6.5.2-3) approximates (14.6.5.2-1) by
forming the ratio minus the desired result (i.e., 1):

PΩ Sum

PΩ Simult

 - 1  =  
3

(α  t)
3
 + 

1

α  t
 α  t - tanh α  t  - 1 (14.6.5.2-4)
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Equation (14.6.5.2-4) is tabulated below as a function of α  t  with α defined in (14.6.5.1-18) as
the square root of q2 / q3.

q2

q3
  t

 

PΩSum

PΩSimult

 - 1

 

0
0.1
0.3
1
3
10

∞

0
- 6.64 E-4
- 5.78 E-4
- 4.64 E-2
- 1.09 E-1
- 7.30 E-2

0

We see from the table that the maximum for the error function occurs near q2 / q3 = 3 for
which the error is - 10.9% (i.e., the approximate sum solution PΩSum is 10.9% smaller than the

true solution PΩSimult).  The standard deviation of the ΩSum error at q2 / q3 = 3 (i.e., the square

root ratio 
PΩSum

PΩSimult

 compared to one) is - 5.6%.  For large or small values of q2 / q3 the

error in the PΩSum solution is zero.  Thus, we see that use of PΩSum as an approximation to

PΩSimult has little error over the full range of q2 / q3.

Based on the above results (and general Kalman filter covariance simulation experience), we
can extrapolate Equation (14.6.5.2-3) to the general case, that a reasonable approximation for
PΩ with all noise sources present is the sum of all the individual noise responses:

PΩ  ≈  PΩRVib + PΩυQuant + PΩαQuant/aRand + PΩωRand (14.6.5.2-5)

in which the contributing terms are as given by the Equations (14.6.4.4-1) or (14.6.4.4-2)
individual noise solutions.
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15     Kalman Filtering Techniques

15.0  OVERVIEW

Thus far, we have been primarily concerned with the analytical aspects of “free inertial
navigation” in which inertial sensors (angular rate sensors and accelerometers) provide the only
input to the navigation system.  In this regard the free inertial navigation system is a non-
radiating autonomous device, generating its output from internally contained inertial sensors.
Two exceptions are worthy of note; the pressure altitude input that is frequently used to control
vertical channel error (discussed in Section 4.4.1.2.1), and the quasi-stationary initialization
process (discussed in Chapter 6) that relies on the general knowledge that the user vehicle has
bounded small amplitude attitude/position motion.

In many applications, the free inertial performance of the INS is not sufficient to achieve all
navigation accuracy requirements.  To compensate for INS performance deficiencies, other
navigation devices have been utilized to attenuate the undesirable INS error characteristics (e.g.,
unbounded position error growth and position/velocity/attitude Schuler oscillations).  Kalman
filtering has become a standard method of blending navigation data from the INS and other
available navigation sources, to achieve an overall navigation solution that eliminates the
undesirable INS error characteristics, while retaining the desirable INS wide-bandwidth/low-
noise navigation signal output signature.

In this chapter we will describe Kalman filtering as a general analytical software process, and
as it relates to strapdown inertial navigation applications.  Included is a general discussion of the
Kalman filter software validation process.  Examples are provided illustrating the application of
Kalman filtering to INS quasi-stationary initialization (gain determination for the Chapter 6 Fine
Alignment process), dynamic moving base INS initialization (i.e., “transfer alignment”), INS
updating using a body mounted velocity sensor (e.g., Doppler radar), and INS updating based
on GPS (Global Positioning System) range-to-satellite measurements.

Coordinate frames we will use in this chapter include the B, L, N, E and I Frames defined in
Section 2.2.

15.1  KALMAN FILTERING IN GENERAL

Kalman filtering is a general analytical process by which inaccessible system parameters can
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be estimated based on accessible measurements from the system outputs.  As applied to inertial
navigation, Kalman filters have been utilized to estimate and correct inaccessible INS errors
(e.g., attitude error, inertial sensor errors), based on measurements of accessible INS
parameters compared to equivalent parameters provided from an alternative navigation data
source (e.g., INS computed position compared to calculated position from a GPS receiver
aiding device in equivalent formats).  The alternative navigation source is typically denoted as
the “inertial aiding” device.  The process of comparing the accessible INS and aiding device
parameters (a subtraction process) generates an error signal (called the “measurement”) that
contains a composite of errors from the INS and the inertial aid.  Processing the measurement
through the Kalman filter allows all significant INS and aiding device errors affecting the
measurement to be independently estimated.  A “control” process is typically incorporated as
part of Kalman filter operations to continuously correct the INS errors being estimated.

From an analytical standpoint, let us define an “error state vector” containing as its elements
(“error states”) the significant INS and aiding device error terms to be accounted for by the
Kalman filter.  Assuming a linear model for the error states, we can describe their general
dynamic characteristics in matrix form by the “error state dynamic equation”:

x(t)  =  A(t) x(t) + GP(t) nP(t) (15.1-1)

where

x(t)  =  Error state vector treated analytically as a column matrix.

A(t)  =  Error state dynamic matrix.

nP(t)  = Vector of independent white “process” noise sources driving x(t) (treated
analytically as a column matrix).

GP(t)  = Process noise dynamic coupling matrix that couples individual nP(t)

components into x(t) .

In general, A(t) and GP(t) are time varying functions of the angular rate, acceleration, attitude,
velocity and position parameters calculated within the INS computer.  Equation set (12.5.1-1)
with Section 12.5.6 for the sensor errors is an example of strapdown inertial navigation system
error state propagation equations that fit the (15.1-1) format.  For this case, the error states

comprising x(t) might include ψN
, δ VN, δ RN, δ K0Bias , δ L0Bias .  The nP(t) independent

process noise vector might include δ αQuant,  δ υQuant, δ ωRand , δ aRand .  The A(t) and GP(t)
matrices would be the matrix elements in (12.5.1-1) and Section 12.5.6 coupling nP(t) and x(t)

into x(t).  Additionally, x(t) and nP(t) would include the pertinent error effects associated with
the aiding device.

The Kalman filter is normally implemented as a repetitive software function at a specified
cycle rate in a digital computer.  For an aided inertial navigation system, the Kalman filter is
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typically resident in the inertial navigation system computer.  The Kalman filter designed to
estimate x will operate from the “measurement” input at each filter software cycle time which
can be linearly modeled by the linearized “measurement equation”:

zn  =  Hn xn + GMn nMn (15.1-2)

where

n  =  Kalman filter software cycle time index.

  n  =    at the nth Kalman filter cycle time.

z  =  Measurement vector analytically represented as a column matrix.

H  =  Measurement matrix.

nM  = Vector of independent white measurement noise sources (represented
analytically as a column matrix).  The nM vector represents noise type error
effects that may be introduced in the process of taking the measurement.

GM  =  Measurement noise dynamic coupling matrix that couples nM into z.

In general, H and GM are time varying functions of the navigation parameters calculated in the

INS computer.

The measurement equation is a linearized version of a general nonlinear “observation
equation” used as the actual input to the Kalman filter:

ZObs n  =  f (ξINS n, ξAid n) (15.1-3)

where

ξINS  =  INS navigation parameters.

ξAid  =  Aiding device navigation parameters.

f ( )  = Functional operator that compares designated equivalent elements of ξINS and

ξAid.  The f ( ) operator is designed so that for an error free INS, an error free
aiding device, and a perfect (error free) f ( ) software implementation, f ( ) will be
zero.

ZObs  = Observation vector formed from the comparison between comparable INS
and aiding device navigation parameters.  For an error free INS, an error free
aiding device, and zero error in making the observation, ZObs would equal
zero.  The linearized form of ZObs is the Equation (15.1-2) measurement
vector z.
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We also allow that x may be controlled by the Kalman filter to constrain error build-up such
that:

xn(+c)  =  xn(-) + uc n (15.1-4)

where

uc n  = Control vector derived from the Kalman filter and applied at time tn to

constrain x.

(+c)  = Designation for parameter value at its designated time stamp (tn in this case)
immediately after (“a posteriori”) the application of control resets (c subscript)
at the same designated time.  Note: The designation (+e) will also be used in
subsequent sections to describe estimation resets in Kalman estimation filter
structures.

(-)  = Designation for parameter value at its designated time stamp (tn in this case)
prior to (“a priori”) the application of any resets (estimation or control) at the
same designated time.

The Latin notation “a priori” and “a posteriori” has been adopted in Kalman filter terminology
to add an element of “mysterioso”.

The process of applying Equation (15.1-4) to the system errors is known as a “control reset”
operation.  The implementation of (15.1-4) in the INS computer involves applying uc n

  to the

INS (and, in some cases, also to the aiding device) navigation parameters:

ξ INSn(+c)  =  ξ INSn(-) + gINS  ξ INSn(-), uc n
 

ξAidn(+c)  =  ξAidn(-) + gAid  ξINSn(-), uc n

(15.1-5)

where

gINS( ), gAid( )  = Non-linear functional operators used to apply uc  n
  to the ξINS, ξAid

navigation parameters at time tn such that the error in these
parameters is controlled as specified by Equation (15.1-4).

Equation (15.1-4) represents the linearized version of (15.1-5).

Equations (15.1-4) - (15.1-5) are based on application of the control vector at the Kalman
estimation update time tn.  Another possibility is to apply the control reset at an intermediate
time between Kalman estimation/update cycle times.  In this document we shall primarily
consider the (15.1-4) - (15.1-5) forms.  Use of the intermediate time control reset is discussed
further in Section 15.1.2.4.
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15.1.1  DISCRETE FORM OF ERROR STATE PROPAGATION EQUATIONS

For compatibility with the Kalman filter digital computer repetitive software structure,
Equation (15.1-1) can be restated in an integrated discrete form for evaluation at the filter cycle
times.  We first define the integrated solution to (15.1-1) as the sum of two parts:

x(t)  =  xHmg(t, t1) + xPrt (t, t1) (15.1.1-1)

where

xHmg(t, t1)  = Solution to the homogeneous portion of (15.1-1) from time t1 to time t
(i.e., assuming zero for the forcing process noise nP(t) since time t1).
The xHmg(t, t1) portion of the x(t) solution accounts for initial values on
x(t) at time t1 and how they propagate through the (15.1-1) equation in
the absence of process noise input.

xPrt (t, t1)  = Particular solution to (15.1-1) produced by nP(t) since time t1 which adds
to the xHmg(t, t1) initial condition propagation portion to form the total
x(t).

From its definition, the homogeneous portion of (15.1-1) is given by:

xHmg(t, t1)  =  A(t) xHmg(t, t1) (15.1.1-2)

The xHmg(t, t1) solution to (15.1.1-2) is structured from the xHmg(t, t1) definition as the linear

form:

xHmg(t, t1)  =  Φ(t, t1) x(t1) (15.1.1-3)

where

Φ(t, t1)  = Error state transition matrix that propagates x(t) from its value at time t1 to
its value at time t in the absence of process noise.

From the definition of xHmg(t, t1), we see that its value at time t = t1 is x(t1).  Thus,
Equation (15.1.1-3) evaluated at t = t1 shows that:

Φ(t1,t1)  =  I (15.1.1-4)

The time derivative of (15.1.1-3) is:

xHmg(t, t1)  =  Φ(t, t1) x(t1) (15.1.1-5)
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Substituting (15.1.1-5) and (15.1.1-3) into (15.1.1-2) provides the differential equation for the

error state transition matrix Φ(t, t1):

Φ(t, t1)  =  A(t) Φ(t, t1) (15.1.1-6)

The integral solution to (15.1.1-6) from time t1 with (15.1.1-4) as the initial condition provides

Φ(t, t1) for evaluation of xHmg(t, t1) in Equation (15.1.1-3).

A useful characteristic of the error state transition matrix can be derived from Equation
(15.1.1-3) for the homogeneous solution at arbitrary times t2 and t3 following t1:

xHmg(t2)  =  Φ(t2,t1) x(t1)
 

xHmg(t3)  =  Φ(t3,t2) xHmg(t2)
(15.1.1-7)

where

xHmg(ti)   =  xHmg(t, t1) at time ti following time t1.

Φ(ti,tj)   = Error state transition matrix that propagates x(t) from its value at time tj to its
value at time ti in the absence of process noise (i.e., the homogeneous
propagation of x(t) from its value at time tj).

In combination, (15.1.1-7) gives:

xHmg(t3)  =  Φ(t3,t2) Φ(t2,t1) x(t1) (15.1.1-8)

We can also write:

xHmg(t3)  =  Φ(t3,t1) x(t1) (15.1.1-9)

Equating (15.1.1-8) and (15.1.1-9) then shows that:

Φ(t3,t1)  =  Φ(t3,t2) Φ(t2,t1) (15.1.1-10)

which is a form that will aid in subsequent developments.

The xPrt (t, t1) particular solution to (15.1-1) is obtained by applying Φ(t, τ) to the

infinitesimal contribution of nP(t)  to x(t) at time τ (for τ greater than or equal to t1), and

summing (integrating) the contributions from t1 to t.  For nP(t)  applied at time τ over an

infinitesimal time interval dτ, the contribution to x(t) in Equation (15.1-1) at time t is:
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dxPrt (t)  =  Φ(t, τ) GP(τ) nP(τ) dτ (15.1.1-11)

Integrating (15.1.1-11) from t1 to t then provides the particular solution

xPrt (t, t1)  =  Φ(t, τ) GP(τ) nP(τ) dτ
t1

t

(15.1.1-12)

The overall solution to (15.1-1) from time t1 is the composite of Equations (15.1.1-1),
(15.1.1-3), (15.1.1-4), (15.1.1-6) and (15.1.1-12):

x(t)  =  Φ(t, t1) x(t1) + w(t, t1)

Φ(t, t1)  =  I + A(τ) Φ(τ,t1) dτ
t1

t

(15.1.1-13)

w(t, t1)  =  Φ(t, τ) GP(τ) nP(τ) dτ
t1

t

where

w(t, t1)  =  Integrated process noise vector.

If we interpret t1 as the last Kalman filter update time (cycle n-1 at time tn-1) and t as the
current Kalman filter update time (cycle n at time tn), Equations (15.1.1-13) over a Kalman
filter update cycle time interval are then given by:

xn  =  Φn xn-1 + wn (15.1.1-14)

with

Φ(t, tn-1)  =  I + A(τ) Φ(τ,tn-1) dτ
tn -1

t

            Φn  ≡  Φ( tn,tn-1)

(15.1.1-15)

wn  =  Φ(tn,τ) GP(τ) nP(τ) dτ
tn -1

tn

(15.1.1-16)

Equations (15.1.1-14) - (15.1.1-16) represent the equivalent discrete integrated form of (15.1-1)
at each filter update cycle time.
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15.1.2  KALMAN FILTER CONFIGURATION

A Kalman filter designed to estimate and control x can be modeled from Equations
(15.1.1-14) and (15.1-2) - (15.1-5) repeated below with more definitive notation:

ZObs n  =  f  ξINSn(-), ξAidn(-) (15.1.2-1)

xn(-)  =  Φn xn-1(+c) + wn (15.1.2-2)

zn  =  Hn xn(-) + GM n nMn (15.1.2-3)

ξ INSn(+c)  =  ξ INSn(-) + gINS  ξ INSn(-), uc n
 

ξAidn(+c)  =  ξAidn(-) + gAid  ξ INSn(-), uc n

(15.1.2-4)

xn(+c)  =  xn(-) + uc n (15.1.2-5)

Equations (15.1.2-1) - (15.1.2-5) represent the interfaces between the actual navigation

parameters (ξINS and ξAid), the Kalman filter observation input (ZObs), and the control vector

output (uc), including the effect on the error state vector x.  The ξINS and ξAid data is available
in the navigation computer as is the observation ZObs and the computer generated control vector
uc.  The Kalman filter design problem is: Given ZObs as input and the (15.1.2-2), (15.1.2-3)

and (15.1.2-5) linearized analytical model for x propagation, measurement and control, estimate
x and use the x estimate to calculate and output the x control vector uc.  A set of Kalman filter

and interface equations based on (15.1.2-1) - (15.1.2-5) for performing these operations is
represented by the following computation sequence that would be programmed into the
navigation computer in the order listed:

ZObs n  =  f  ξINSn(-), ξAidn(-) (15.1.2-6)

xn(-)  =  Φn xn-1(+c) (15.1.2-7)

zn  =  Hn xn(-) (15.1.2-8)

xn(+e)  =  xn(-) + Kn ZObs n - zn (15.1.2-9)

uc n  =  function of xn(+e) (15.1.2-10)

ξINS n(+c)  =  ξ INS n(-) + gINS  ξINS n(-), uc n
 

ξAid n(+c)  =  ξAid n(-) + gAid  ξINS n(-), uc n

(15.1.2-11)
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xn(+c)  =  xn(+e) + uc n (15.1.2-12)

x0  =  0 Initial Conditions (15.1.2-13)

where

    =  Value for parameter estimated (or predicted) by the Kalman filter.

(+e)  = Designation for parameter value at its designated time stamp (tn in this case)
immediately after (“a posteriori”) the application of estimation resets (e
subscript) at the same designated time.

(+c)  = Designation for parameter value at its designated time stamp (tn in this case)
immediately after (“a posteriori”) the application of control resets (c subscript)
at the same designated time.

(-)  = Designation for parameter value at its designated time stamp (tn in this case)
immediately prior to (“a priori”) the application of any resets (estimation or
control) at the same designated time.

Kn  = Kalman gain matrix.  Kn is a time varying function of the statistical inaccuracy

in xn (as will be described subsequently).

Equation (15.1.2-7) (known as the estimated error state vector “propagation” operation) is

modeled after Equation (15.1.2-2) as the Kalman filter’s estimate for what xn will be at the next

Kalman cycle based on its estimated value after the last Kalman update.  Equation (15.1.2-7)
accounts for the error state propagation dynamics but does not account for the wn integrated

process noise in (15.1.2-2) other than its average value of zero.  In addition, the initial value for

x is not known, hence, is modeled in Equations (15.1.2-13) as zero.  Similarly, Equation
(15.1.2-8) is modeled after measurement Equation (15.1.2-3) as the filter’s prediction of what

the nth measurement will be.  Equation (15.1.2-8) accounts for xn and the known form of the
measurement matrix, but does not account for the measurement noise nM which it

approximates at its average zero value.  Equation (15.1.2-9) (known as the “innovations
process” or the “estimation update” operation) is the method of compensating for the
inaccuracy in the Equations (15.1.2-7) - (15.1.2-8) approximations.  The input to Equation
(15.1.2-9) is the observation vector ZObsn

  whose linearized form is zn.  The difference between

the zn estimate (i.e., zn) and ZObsn
  in Equation (15.1.2-9) provides the measure (within the

measurement noise) of how well the xn estimate is representative of the actual xn.  T h e

difference vector ZObsn - zn (called the “measurement residual”) is used in feed-back fashion

through the Kalman gain matrix Kn, to provide xn updates.  After a sufficient number of filter

cycles, xn should converge to the correct xn value, within the boundaries of the noise inputs to
the system (i.e., wn, nM process and measurement noise).
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To control x to zero, the ideal u c would be set to the negative of x at a given cycle time and

applied at the same cycle time (i.e., uc n = - xn).  If this operation were performed immediately

following the Kalman estimation update, then uc n + xn(+e) = 0 and we see from Equations

(15.1.2-12) and (15.1.2-7) that the propagated x (i.e., xn(-) ) would also be controlled to zero.

Thus, an ideal control would be effected in which the estimated error state vector is maintained
at zero both following and before the Kalman measurement/estimation reset operations.
Assuming an accurate estimation process (i.e., Kn selection) the actual error state vector x will
also be controlled in this manner within the limits of the process and measurement noise
affecting the estimation process.  Unfortunately, except for a few limited exceptions, applying
an ideal control in this manner is not possible because of real time constraints present in actual
applications.

The fundamental real time constraint in a large Kalman filter (i.e., with many error state
components) is the time interval required to execute the operations implied by Equations

(15.1.2-6) - (15.1.2-12), the most time consuming of which are the calculations of Φn and Kn.

The cycle time interval for a large Kalman filter is generally sized based on providing sufficient

time to calculate Φn and Kn.  Thus, by the time that execution of Equations (15.1.2-6) -

(15.1.2-12) are completed, a full Kalman cycle has expired, and xn(+)  in these equations would

not be calculated until time tn+1.  Therefore, the ideal control of setting uc n = - xn(+e)  and

applying it at tn cannot be executed because xn is not yet known at tn, and will not be known

until tn+1.  A possible solution to this dilemma might be to pre compute Φn and Kn one cycle

earlier so they will be ready for application when the measurement is made.  Given that Φn and

Kn have been pre computed, the time to execute (15.1.2-6) - (15.1.2-12) is generally fast

enough to be considered instantaneous so that xn(+e) will, in effect, be known at tn.  In this case

we can then set and apply uc n = - xn(+e) at tn, thereby achieving our ideal control reset

operation.  To pre compute Φn and Kn, their computation must be completed by tn.

Unfortunately, except for a few exceptions (e.g., the quasi-stationary ground alignment problem

discussed in Section 15.2.1), Φn and Kn are functions of dynamic navigation parameters

measured over the tn-1 to tn time interval, hence, their computation cannot be initiated until tn.

The method of “delayed control resets” is a general technique that has been successfully
applied to deal with the computation delay in a real time Kalman filter.  With this approach, the
Kalman filter operations are similar to Equations (15.1.2-6) - (15.1.2-13), except that the
control function is applied one cycle later, thereby allowing one full cycle time to execute the
real time Kalman filter computations.  The equivalent to the Equations (15.1.2-1) - (15.1.2-5)
design model for a delayed control reset Kalman filter would be as follows:
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ξ INS n(+c)  =  ξ INS n(-) + gINS  ξ INS n(-), uc n
 

ξAid n(+c)  =  ξAid n(-) + gAid  ξ INS n(-), uc n

(15.1.2-14)

ZObsn  =  f  ξ INS n(+c), ξAid n(+c) (15.1.2-15)

xn(-)  =  Φn xn-1(+c) + wn (15.1.2-16)

xn(+c)  =  xn(-) + uc n (15.1.2-17)

zn  =  Hn xn(+c) + GM  n nM  n (15.1.2-18)

The delayed control reset Kalman filter and interface equations based on (15.1.2-14) -
(15.1.2-18) would then be represented by the following computation sequence programmed
into the navigation computer in the order listed:

ξINS n(+c)  =  ξINS n(-) + gINS  ξINS n(-), uc n
 

ξAid n(+c)  =  ξAid n(-) + gAid  ξINS n(-), uc n

(15.1.2-19)

ZObs n  =  f  ξINSn(+c), ξAidn(+c) (15.1.2-20)

xn(-)  =  Φn xn-1(+e) (15.1.2-21)

xn(+c)  =  xn(-) + uc n (15.1.2-22)

zn  =  Hn xn(+c) (15.1.2-23)

xn(+e)  =  xn(+c) + Kn ZObsn - zn (15.1.2-24)

uc n+1  =  function of xn(+e) (15.1.2-25)

x0  =  0 Initial Conditions (15.1.2-26)

If Equations (15.1.2-19) - (15.1.2-26) are compared with Equations (15.1.2-6) - (15.1.2-13),
it should be apparent that they differ in one fundamental way: in Equations (15.1.2-6) -
(15.1.2-13) the uc control vector is applied (in (15.1.2-11) - (15.1.2-12)) at cycle time n based

on the x estimate at cycle time n (See Equation (15.1.2-10)); for delayed control reset Equations

(15.1.2-19) - (15.1.2-26), the uc control vector is also based on the x estimate at cycle time n
(See Equation (15.1.2-25)), but is then applied at the next n+1th  cycle time (in Equations
(15.1.2-19) and (15.1.2-22)).
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For Equations (15.1.2-19) - (15.1.2-26) we will also set the control vector equal to the
negative of the error states being controlled, but to be applied during the next n+1th cycle;

uc n+1 = - xn(+e) or equivalently, uc n = - xn-1(+e).  With this control law we see from (15.1.2-21)

and (15.1.2-22) that:

xn(+c)  =  xn(-) + uc n  =  Φn xn-1(+e) - xn-1(+e)  =  Φn - I  xn-1(+e) (15.1.2-27)

Thus, the delayed control reset leaves a residual error in controlling the error state vector to zero.

The residual control error is generally small because Φn ≈ I and because the Kalman filter

estimation loop maintains xn-1(+e) at a small value.  Note, that the residual control error is not

an error in estimating x, only in controlling x to the ideal zero value.  Equation (15.1.2-27) is the
filter’s estimate of what the error state vector will be in response to delayed resets.  The actual
error state vector will behave similarly within the boundaries of input process and measurement
noise.  Thus, (15.1.2-27) is not an error in the sense of an unknown uncertainty (i.e., it is

known explicitly in the Kalman filter).  In principle, the estimated error state vector xn can be

used to correct the navigation data output (with a one Kalman cycle delay) if such a set of

corrected output data was beneficial.  The approach would be as follows after the xn(+c) vector

in Equation (15.1.2-22) has been calculated:

ucOutn  =  - xn(+c)

ξINS/Out n(+c)  =  ξINS n(+c) + gINS ξINS n(+c), ucOut n (15.1.2-28)

ξAid/Out n(+c)  =  ξAid n(+c) + gAid ξINS n(+c), ucOut n

where

ucOutn  =  Equivalent to control vector uc for output data.

ξINS/Out n(+c), ξAid/Out n(+c)  =  ξINS, ξAid outputs based on zeroing the estimated error

state vector x using the control function.  The “time stamp” for
these outputs would correspond to the n cycle time stamp after
applying the control vector in Equations (15.1.2-19).  The outputs
would typically be available one filter cycle later than cycle n.

A variation to Equations (15.1.2-19) - (15.1.2-26) applies the state transition matrix Φn to the
uc  n

  control vector prior to its application in Equations (15.1.2-19) and (15.1.2-22).

Analytically, this can be represented by an adjunct expression preceding (15.1.2-19) of the form

uc  Φn = Φn uc n
 , with uc  Φn

  then used for uc  n
  in (15.1.2-19) and (15.1.2-22).  If Φn could be

calculated instantaneously (an impossibility in practice), uc  Φn
  would be applied at the cycle n
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time, resulting in zero for xn(+c) (i.e., an ideal control reset).  The reader can verify this by

applying the same procedure leading to Equation (15.1.2-27).  Due to the time delay in

calculating Φn, however, the uc  Φn
  control cannot be applied at cycle time n, but at a later time

(call it n′) after Φn has been calculated.  To properly account for the Φn computational delay, n′
would be included in the Kalman filter computational structure such that the error state vector x

is first propagated to Kalman cycle n, the ZObsn observation is made for the x estimate update,

then x is propagated to n′ when uc  Φn
  is applied.  The net result is that x at the n′ control reset

time will have a residual of the form given in Equation (15.1.2-27), but with Φn replaced by the

error state transition matrix that propagates x from n to n′.

Finally, it should be noted that Equations (15.1.2-6) - (15.1.2-13) (or (15.1.2-19) -
(15.1.2-26)) represent “Kalman filter” estimation/control operations, but are also representative
of the larger class of error model feed-back filters.  What distinguishes the Kalman filter from
other filter configurations is the form of the gain matrix Kn.  For a Kalman filter, the Kn gain
matrix is a time varying function of the statistical characteristics of the estimated compared to
the actual error state vector.  Specifically, the Kalman filter gain matrix is designed to minimize

the statistical variance of each element in x from the true x error state vector element values (the
so-called “minimum variance” approach).

The following subsections develop the equations for computing the Kalman gain matrix and
discuss the process of making the measurement for Kalman filter input, applying the Kalman
filter control vector to the inertial navigation parameters, and accounting for timing and
synchronization of the Kalman filter estimation cycle time with the observation equation data
comparison.

15.1.2.1  KALMAN GAIN CALCULATION

This section deals with the design of the Kn gain matrix for the Equation (15.1.2-9) (or
(15.1.2-24)) estimation process using the Kalman filter “minimum variance” approach.  The
Kalman filter design problem is to select the Kn matrix for Equation (15.1.2-9) (or (15.1.2-24))

that will minimize the variance of the error in x after each update.  The error in x is denoted as
the estimated error state vector “uncertainty”. To formulate the problem analytically, we first
define:

Δx  ≡  x - x (15.1.2.1-1)
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where

Δx  = Estimated error state vector uncertainty defined as the difference between the
estimated and actual error state vectors.

At time tn, using the notation of the previous section, the estimation error before and after
update operations is for the ideal control reset filter:

Δxn(-)  =  xn(-) - xn(-)

Δxn(+e)  =  xn(+e) - xn(-) (15.1.2.1-2)

Δxn(+c)  =  xn(+c) - xn(+c)

Note that the Δxn(+e) expression in (15.1.2.1-2) uses xn(-) for the actual error state vector at

time tn because for the ideal filter, there is no difference in the true value immediately before or
immediately after the estimation update, and the estimation update occurs before control
application (see Equations (15.1.2-7) - (15.1.2-9) and (15.1.2-12)).

For the delayed control filter, the equivalent to (15.1.2.1-2) is:

Δxn(-)  =  xn(-) - xn(-)

Δxn(+c)  =  xn(+c) - xn(+c) (15.1.2.1-3)

Δxn(+e)  =  xn(+e) - xn(+c)

Note that the Δxn(+e) expression in (15.1.2.1-3) uses xn(+c) for the actual error state vector at

time tn because for the delayed control filter, there is no difference in the true value immediately
before or immediately after the estimation update, and the estimation update occurs following
control application (See Equations (15.1.2-21) - (15.1.2-24)).

We now also define the covariance matrix associated with Δx as:

P  ≡  E Δx Δx
T

(15.1.2.1-4)

where

P  =  Estimated error state uncertainty covariance matrix.

E ( )   =  The expected value operator (i.e., average statistical value).

It is easily verified by expanding Equation (15.1.2.1-4) that:
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 P  =  

E Δx1
2

E Δx1 Δx2 E Δx1 Δx3

E Δx2 Δx1 E Δx2
2

E Δx2 Δx3

E Δx3 Δx1 E Δx3 Δx2 E Δx3
2

(15.1.2.1-5)

where

Δx1, Δx2, Δx3 ⋅⋅⋅  =  Elements 1, 2, 3,  of Δx.

Equation (15.1.2.1-5) shows that the diagonal elements of P equal the variances of the

elements of Δx (i.e., the mean squared values) and the off-diagonal terms equal the covariances.
It should also be apparent that P is a symmetrical matrix, hence, it is equal to its transpose:

PT  =  P (15.1.2.1-6)

The covariance matrix concept has been introduced as the measure of uncertainty in Δx (i.e.,
the statistics of its error characteristics).  The basis for selecting a Kalman gain matrix Kn in
Equations (15.1.2-9) (or (15.1.2-24)) will be to minimize Pn after the update.  We now return
to Equations (15.1.2-8) - (15.1.2-9) (or (15.1.2-22) - (15.1.2-24)) to derive an expression for
Pn(+e) (P at filter cycle n, after the estimation update) in terms of Pn(-) (P at filter cycle n,
before applying updates), the statistics of the measurement noise, and the general gain matrix
Kn.

We begin with the Equations (15.1.2-6) - (15.1.2-13) idealized Kalman filter configuration

(without delayed control resets) and calculate Δxn(+e), the error state uncertainty after

estimation updating, as a function of Δxn(-) .  We will then show that the result so obtained is

identical for the delayed reset filter.  Proceeding, we subtract xn(-) from both sides of the
Equation (15.1.2-9) update expression, substitute the linearized zn form of ZObsn from

(15.1.2-3), and apply (15.1.2-8) for zn:

xn(+e) - xn(-)  =  xn(-) + K n zn - zn  - xn(-)

=  xn(-) - xn(-) + K n Hn xn(-) - xn(-)  + K n GM n nM n (15.1.2.1-7)

=  I - K n Hn  xn(-) - xn(-)  + K n GM n nM n 

or, with the first expression in (15.1.2.1-2):

Δxn(+e)  =  I - K n Hn  Δxn(-) + K n GM n nM n (15.1.2.1-8)
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The equivalent relationship for the delayed control reset Kalman filter (Equations (15.1.2-19)
- (15.1.2-26)) is developed by proceeding as above for the idealized filter, but first subtracting

xn(+c) from Equation (15.1.2-24).  The result is as in (15.1.2.1-8), but with Δxn(-)  replaced by

Δxn(+c) defined in (15.1.2.1-3):

Δxn(+e)  =  I - K n Hn  Δxn(+c) + K n GM n nM n (15.1.2.1-9)

We now develop an expression for the estimated error state uncertainty in the delayed reset

filter after the control update Δxn(+c) in terms of Δxn(-) , the error state uncertainty prior to

application of the update.  From Equations (15.1.2.1-3), (15.1.2-22) and (15.1.2-17) we write:

Δxn(+c)  =  xn(+c) - xn(+c)
 

               =  xn(-) + uc n - xn(-) + ucn   =  xn(-) - xn(-)
(15.1.2.1-10)

or, with the first expression in (15.1.2.1-3):

Δxn(+c)  =  Δxn(-) (15.1.2.1-11)

Thus, for the delayed control reset Kalman filter, application of the control vector has no effect
on the estimated error state uncertainty.  We will find this to be a general rule for all Kalman
filter configurations.  Using (15.1.2.1-11) in (15.1.2.1-9), we obtain the identical (15.1.2.1-8)
result for the delayed reset filter.  Thus, (15.1.2.1-8) is equally valid for the delayed or idealized
control reset Kalman filter configurations.

Equation (15.1.2.1-8) shows how the uncertainty in x is impacted by estimation reset
Equations (15.1.2-8) - (15.1.2-9) (or control/estimation Equations (15.1.2-22) - (15.1.2-24)).

We now utilize the definition for the Δx covariance matrix to develop the statistical equivalent to
(15.1.2.1-8).  Substituting (15.1.2.1-8) into (15.1.2.1-4) at filter cycle n after estimation
updating yields:

Pn(+e)  =  E I - K n Hn  Δxn(-) + K n GM n nM n  I - K n Hn  Δxn(-) + K n GM n nM n
 T

=  E I - K n Hn  Δxn(-) Δxn
T

(-) I - K n Hn
T  +E K n GM n nM n nM n

T
 GM n

T
 K 

n
T

+ E I - K n Hn  Δxn(-) nM n

T
 GM n

T
 K 

n
T

 + E K n GM n nM n Δxn
T

(-) I - K n Hn
T (15.1.2.1-12)

=  I - K n Hn  E Δxn(-) Δxn
T

(-)  I - K n Hn
T + K n GM n E nM n nM n

T
 GM n

T
 K 

n
T

 

+ I - K n Hn  E Δxn(-) nM n

T
 GM n

T
 K 

n
T

 + K n GM n E nM n Δxn
T

(-)  I - K n Hn
T 
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Using the (15.1.2.1-4) definition, the E Δxn(-) Δxn
T

(-)  term in (15.1.2.1-12) is identified as

Pn(-), the Δx covariance matrix at cycle n prior to updating.  The E nMn nMn

T
 expression in

(15.1.2.1-12) is defined as:

Rn  ≡  E nMn nMn

T
(15.1.2.1-13)

where

Rn  = Independent measurement noise covariance matrix.  Because nM has been
defined to contain independent elements, the expected value of the off-diagonal
products in Rn are zero (Use (15.1.2.1-5) as a guide for the expanded form of
Rn).  Hence, Rn is a diagonal matrix with each element equal to the variance of
the corresponding nM element.

In order to evaluate the E Δxn(-) nMn

T
 and E nMn Δxn

T
(-)  terms in (15.1.2.1-12) we have to

specify the cycle to cycle correlation characteristics of the measurement noise nM.  We assume
that nM is a “white” sequence (in n) (i.e., nM at cycle n is uncorrelated with nM at previous
cycle times).  Since nMn is uncorrelated from past values of nM, past measurements (z in

Equation (15.1.2-3) or (15.1.2-18) containing nM) are also uncorrelated with nMn.  Since past

measurements and controls were used to generate xn and xn(-)  (in Equations (15.1.2-2),

(15.1.2-5), (15.1.2-7) and (15.1.2-12) (or (15.1.2-16), (15.1.2-17), (15.1.2-21) and

(15.1.2-22)), we can conclude with (15.1.2.1-2) (or (15.1.2.1-3)) that Δxn(-)  is also
uncorrelated with nMn.  Thus, we can write for the (15.1.2.1-12) terms in question:

E Δxn(-) nMn

T
  =  0 E nMn Δxn

T
(-)   =  0 (15.1.2.1-14)

Using the previous results, the Equation (15.1.2.1-12) error state vector covariance
estimation update equation becomes the simplified form:

Pn(+e)  =  I - K n Hn  Pn(-) I - K n Hn
T + K n GM n Rn GM n

T
 K n

T (15.1.2.1-15)

Equation (15.1.2.1-15) relates the statistical uncertainty in x after the estimation update with the

statistical uncertainty in x before applying updates, as a result of applying update Equations
(15.1.2-6) and (15.1.2-8) - (15.1.2-9) (or (15.1.2-19) - (15.1.2-20) and (15.1.2-22) -
(15.1.2-24)) using the observation ZObs (or, the linearized equivalent measurement z)

containing measurement noise.  The x uncertainty is represented by the covariance matrix Pn
and the noise characteristics of the measurement are contained in the Rn covariance matrix.
Equation (15.1.2.1-15) is the statistical equivalent of Equation (15.1.2.1-8).  It is important to
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recognize that Equations (15.1.2.1-8) and (15.1.2.1-15) are completely general at this point,
being valid for any gain matrix Kn used in estimation update Equation (15.1.2-9) (or
(15.1.2-24)).  General Equation (15.1.2.1-15) is known as the “Joseph’s form” for error state
vector uncertainty covariance matrix updating.

The Kalman gain is defined analytically as the “optimal” Kn that minimizes Pn(+e) in

Equation (15.1.2.1-15) (i.e., minimizes the statistical uncertainty in x after the update, or

equivalently, minimizes the variance of the uncertainty in x after the update).  To determine the
optimal Kn that minimizes Pn(+e), we first expand (15.1.2.1-15) as follows using (15.1.2.1-6):

Pn(+e)  =  Pn(-) - K n Hn Pn(-) - Pn(-) K n Hn
T 

+ K n Hn Pn(-) K n Hn
T + K n GM n Rn GM n

T
 K n

T 

=  Pn(-) + K n Hn Pn(-) Hn
T

 + GM n Rn GM n

T
 K n

T 

                  - K n Hn Pn
T

(-) - Pn(-) Hn
T

 K 

n
T (15.1.2.1-16)

=  Pn(-) + K n Hn Pn(-) Hn
T

 + GM n Rn GM n

T
 K n

T 

- K n Pn(-) Hn
T T

 - Pn(-) Hn
T

 K n
T 

To simplify the algebra, the coefficients in (15.1.2.1-16) are defined as:

An  ≡  Hn Pn(-) Hn
T

 + GM n Rn GM n

T
 Bn  ≡  Pn(-) Hn

T
(15.1.2.1-17)

so that (15.1.2.1-16) simplifies to:

Pn(+e)  =  Pn(-) + K n An Kn
T

 - K n Bn
T

 - Bn K 

n
T

 (15.1.2.1-18)

We now make an observation on the form of (15.1.2.1-18) as contrasted with a term of the
form:

K n - Dn  Cn K n - Dn
T  =  K n Cn K 

n
T

 - K n Cn Dn
T

 - Dn Cn K 

n
T

 + Dn Cn Dn
T

 (15.1.2.1-19)

or, for Cn symmetrical such that Cn = Cn
T:

K n - Dn  Cn K n - Dn
T  =  K n Cn K 

n
T

 - K n Dn Cn
T- Dn Cn  K 

n
T

 + Dn Cn Dn
T

 (15.1.2.1-20)
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If (15.1.2.1-18) is compared with (15.1.2.1-20) it should be clear that the two are identical in

form, except for the Dn Cn Dn
T

 and Pn(-) terms.  That is, for Cn and Dn defined as follows, the

two expressions are equivalent if (15.1.2.1-18) is corrected for Pn(-) and Dn Cn Dn
T

.

Cn  =  An Dn Cn  =  Bn (15.1.2.1-21)

or

Dn = Bn Cn
-1 = Bn An

-1 (15.1.2.1-22)

We must now verify that Cn = An is symmetrical since Equation (15.1.2.1-20) was based on

this assumption.  A look at (15.1.2.1-17) reveals that this is indeed the case.  An is composed of

a symmetrical matrix (covariance matrix Rn) modified by GM n and GM n

T
 plus a symmetrical

matrix Pn(-) modified by Hn and Hn
T

.  It is easily verified that GM n Rn GMn

T
 and Hn Pn(-) Hn

T

are each symmetrical by proving that each equals its transpose:

GM n Rn GM n

T T
  =  GM n Rn

T
 GM n

T
  =  GM n Rn GM n

T
 

 

Hn Pn(-) Hn
T T

  =  Hn Pn
T

(-) Hn
T

  =  Hn Pn(-) Hn
T

(15.1.2.1-23)

Hence, since both elements of An are symmetrical, An is symmetrical.  We now use
(15.1.2.1-21) to rewrite (15.1.2.1-18) as:

Pn(+e)  =  Pn(-) + K n Cn K 

n
T

 - K n Dn Cn
T - Dn Cn K 

n
T

 (15.1.2.1-24)

which, with the (15.1.2.1-20) identity is:

Pn(+e)  =  Pn(-) + K n - Dn  Cn K n - Dn
T - Dn Cn Dn

T
 (15.1.2.1-25)

Substituting (15.1.2.1-22) for Dn and (15.1.2.1-21) for Dn Cn, Equation (15.1.2.1-25)
becomes:

Pn(+e)  =  Pn(-) - Bn Bn An
-1 T

 + K n - Bn An
-1

 An K n - Bn An
-1 T

 (15.1.2.1-26)

Equation (15.1.2.1-26) is in a form that can now be used by inspection to define the
optimum Kn that minimizes Pn(+e).  Before this is done, however, the properties of the last
term in (15.1.2.1-26) must be clearly understood.  We will soon show that this term always has
positive terms along the diagonal.  Hence, because it is added to Pn(-) in (15.1.2.1-26) to form
Pn(+e), this term increases the magnitude of the diagonal elements in Pn.  Since the diagonal
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elements in Pn represent the variances of the x element uncertainties, we wish the diagonal
elements in Pn(+e) to be minimized through the updating process.  Because Kn only appears in
the last term of Equation (15.1.2.1-26), and because the last term only increases Pn(+e), we can
conclude that the optimum value for Kn that minimizes Pn(+e) is that value that sets the last
term in (15.1.2.1-26) to zero.  From (15.1.2.1-26), this value is seen by inspection to be:

K n  =  Bn An
-1

 (15.1.2.1-27)

or with (15.1.2.1-17):

K n  =  Pn(-) Hn
T

 Hn Pn(-) Hn
T

 + GM n Rn GM n

T  -1
 (15.1.2.1-28)

Equation (15.1.2.1-28) is the optimal Kalman gain that will generate a minimum variance

estimate for x for each update application of Equation (15.1.2-9) (or (15.1.2-24)).

We now go back a step and prove that the last term in (15.1.2.1-26) does indeed always have
positive diagonal elements as stipulated in our logic for selecting Kn.  If we define the

Kn - Bn An
-1 term as Ln for simplicity, the last term in (15.1.2.1-26) is, with (15.1.2.1-17):

K n - Bn An
-1

 An K n - Bn An
-1 T

  =  Ln An Ln
T

 

=  Ln Hn Pn(-) Hn
T

 + GMn Rn GMn

T
 Ln

T

 

=  Ln Hn Pn(-) Hn
T
 Ln

T
 + Ln GMn Rn GMn

T
 Ln

T
(15.1.2.1-29)

=  Ln Hn  Pn(-) Ln Hn
T + Ln GMn  Rn Ln GMn

T

Each of the two terms in the above expression consists of a covariance matrix (Pn(-) or Rn) pre

and post multiplied by a matrix and its transpose.  Let’s look at the Ln GMn  Rn Ln GMn
T

term as an example and reintroduce the (15.1.2.1-13) definition for Rn:

Ln GMn  Rn Ln GMn
T  =  Ln GMn  E nMn nMn

T
 Ln GMn

T

 

                 =  E Ln GMn nMn  Ln GMn nMn
T

(15.1.2.1-30)

The Ln GMn nMn term in the above expression is also a vector (say Yn) so that

Ln GMn  Rn Ln GMn
T  =  E Ln GMn nMn  Ln GMn nMn

T   =  E Yn Yn
T

(15.1.2.1-31)
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If the right side of (15.1.2.1-31) is expanded in component form (as we did for Pn previously)
it will be obvious that the diagonal elements are the variances (or mean squared values) of the
Yn elements.  Hence, the diagonal elements are positive.  A similar argument also applies for

the Ln Hn  Pn(-) Ln Hn
T term in (15.1.2.1-29), hence, its diagonal elements are also positive.

It is concluded that the sum of these terms (the last term in (15.1.2.1-26)) must, therefore, also
have positive diagonal elements, thereby, validating the assumption used previously in selecting
the optimal Kalman Kn matrix value.

Kalman gain Equation (15.1.2.1-28) is a function of the independent measurement noise
covariance matrix R, the measurement noise dynamic coupling matrix GM, the measurement
matrix H and the error state vector uncertainty covariance matrix before updates P(-).  As we
see from Equation (15.1.2.1-15), application of Kalman filter updates affects the covariance
matrix P.  Additionally, the P covariance matrix is affected by approximations in estimated
error state vector propagation Equation (15.1.2-7) or (15.1.2-21) applied between estimation
updates.  The net result is that in order to provide values for P in Kalman gain Equation
(15.1.2.1-28), a separate calculation must be carried out in parallel to compute P due to the
repeated application of the propagation/update process in Equations (15.1.2-6) - (15.1.2-12) (or
(15.1.2-19) - (15.1.2-25)).  The next section defines the equations used to compute P for the
Kalman filter gain calculation.

15.1.2.1.1  Covariance Matrix Calculation

Calculation of the error state vector uncertainty covariance matrix P for Kalman gain
Equation (15.1.2.1-28) involves two steps that are repeated for each estimation cycle;
covariance update and covariance propagation.  The covariance matrix update calculation adjusts
P (from the P(-) value to the P(+e) value) for the error state vector uncertainty reduction
afforded by the application of estimation update Equations (15.1.2-6) and (15.1.2-8) -
(15.1.2-9) for the idealized control reset filter (or control/estimation update Equations
(15.1.2-19) - (15.1.2-20) and (15.1.2-22) - (15.1.2-24) for the delayed control filter).  The
covariance matrix propagation calculation adjusts P for uncertainties introduced by applying
error state vector propagation Equation (15.1.2-21) for the delayed control reset Kalman filter
(or propagation/control Equations (15.1.2-7) and (15.1.2-11) - (15.1.2-12) for the idealized
filter) with their approximation of neglected process noise between update cycles.  As such,
covariance propagation computes Pn(-) from Pn-1(+e).

The covariance matrix update operation is represented by the Equation (15.1.2.1-15)
Joseph’s form repeated below:

Pn(+e)  =  I - K n Hn  Pn(-) I - K n Hn
T + K n GM n Rn GM n

T
 K n

T (15.1.2.1.1-1)
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It is also to be noted that if the gain for the filter is calculated according to Equation
(15.1.2.1-28), Equation (15.1.2.1.1-1) for Pn(+e) can be simplified.  The derivation of the
simplified form is easily achieved from Equation (15.1.2.1-26) using (15.1.2.1-27) for the
optimal gain condition and (15.1.2.1-17) for Bn:

Pn(+e)  =  Pn(-) - Bn Bn An
-1 T

  =  Pn(-) - Pn(-) Hn
T

 K 

n
T

 
  

                     =  Pn(-) - K n Hn Pn
T

(-)
T

(15.1.2.1.1-2)

Introducing the symmetry characteristic of P (i.e., P equals P transpose) into (15.1.2.1.1-2)
yields:

Pn(+e)  =  Pn(-) - K n Hn Pn(-) T (15.1.2.1.1-3)

We then take the transpose of (15.1.2.1.1-3) with P transpose equal to P to obtain the desired
result:

Pn(+e)  =  Pn(-) - K n Hn Pn(-)  =  I - K n Hn  Pn(-) (15.1.2.1.1-4)

Equation (15.1.2.1.1-4) is equivalent to Equation (15.1.2.1.1-1) for cases when Kn satisfies
Equation (15.1.2.1-28).  In applying (15.1.2.1.1-4), it is important to recognize that it is based
on an exact computation of (15.1.2.1-28) and its application as defined by estimation Equation
(15.1.2-9) or (15.1.2-24).  For the more general case when Kn is not exactly computed
according to (15.1.2.1-28) or when the exactly computed gains are not exactly applied in
(15.1.2-9) or (15.1.2-24), Equation (15.1.2.1.1-1) should be used.  An example of the previous
situation is a case when there is doubt regarding the dynamic model for a particular error state,
but when it is still to be accounted for statistically in the error state vector covariance and gain
matrix calculations.  For such a situation, the attempt to estimate this error state in Equation
(15.1.2-9) or (15.1.2-24) might not be performed, which is equivalent to setting the elements of
Kn for the error state to zero.  The error state is still accounted for statistically in the covariance
matrix P, and P is used to calculate Kn with (15.1.2.1-28).  However, before applying the
calculated Kn, the gain elements for the error state in question are set to zero, thereby applying a
gain matrix in (15.1.2-9) or (15.1.2-24) that does not satisfy (15.1.2.1-28).  For this case,
Equation (15.1.2.1.1-1) must be used to represent the covariance updating process with Kn
equal to the value after zeroing the appropriate gains.  This method of dealing with error states
with questionable dynamic characteristics is known as the “considered variable” approach.

Equation (15.1.2.1.1-1) or (15.1.2.1.1-4) defines the covariance Pn(+e) following an
estimation update as a function of the covariance Pn(-) before applying the update.  What we
now seek is the covariance propagation expression defining Pn(-) in terms of the covariance
Pn-1(+e) after the previous filter update.  For the delayed control reset Kalman filter (Equations
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(15.1.2-19) - (15.1.2-26)), this is easily obtained from propagation Equation (15.1.2-16) and
the equivalent estimation filter form (15.1.2-21).  Taking the difference between these
expressions and applying the first and third expressions in (15.1.2.1-3) yields for the error state
uncertainty propagation:

Δxn(-)  =  Φn Δxn-1(+e) - wn (15.1.2.1.1-5)

We now show that the uncertainty propagation equation for the idealized control reset
Equation (15.1.2-6) - (15.1.2-13) Kalman filter is identical to uncertainty propagation Equation
(15.1.2.1.1-5) for the delayed control reset filter.  To determine the effect of error state
propagation on error state uncertainty for the idealized control reset filter, we take the difference
between Equation (15.1.2-2) and the equivalent idealized estimation filter form (15.1.2-7), and
apply the first and third expressions in (15.1.2.1-2):

Δxn(-)  =  Φn Δxn-1(+c) - wn (15.1.2.1.1-6)

The estimated error state uncertainty following control reset for the idealized control reset filter
is from (15.1.2-5), (15.1.2-12) and the third expression in (15.1.2.1-2):

Δxn(+c)  =  xn(+c) - xn(+c)
 

               =  xn(+e) + uc n - xn(-) + ucn   =  xn(+e) - xn(-)
(15.1.2.1.1-7)

or, with the middle expression in (15.1.2.1-2):

Δxn(+c)  =  Δxn(+e) (15.1.2.1.1-8)

Hence, the error state uncertainty is unaffected by application of the controls as has been
previously stipulated.  Using (15.1.2.1.1-8) in (15.1.2.1.1-6), we obtain the identical
(15.1.2.1.1-5) result for the idealized control reset Kalman filter.  Thus, (15.1.2.1.1-5) is equally
valid for the delayed or idealized control reset Kalman filter configurations.

The equivalent covariance matrix expression associated with the (15.1.2.1.1-5) error
uncertainty propagation equation is from (15.1.2.1-4):

Pn(-)  =  E Δxn(-) Δxn
T

(-)   =  E Φn Δxn-1(+e) - wn  Φn Δxn-1(+e) - wn
T

 =  Φn E Δxn-1(+e) Δxn-1
T

(+e)  Φn
T

 + E wn wn
T

(15.1.2.1.1-9)

- Φn E Δxn-1(+e) wn
T

 - E wn Δxn-1
T

(+e)  Φn
T
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The first expected value term in the above expression should be recognized as the covariance
of xn after the last filter estimation update (i.e., Pn-1(+e)).  The second term is the covariance

matrix associated with the driving noise.  We define:

Qn  ≡  E wn wn
T

(15.1.2.1.1-10)

where

Qn  =  Integrated process noise matrix.

In order to evaluate the E Δxn-1(+e) wn
T

 and E wn Δxn-1
T

(+e)  terms in (15.1.2.1.1-9) we have

to specify the correlation between Δxn-1(+e) and wn.  This is readily accomplished from

Equation (15.1.1-16) which shows that for the assumed independent white characteristic of the
process noise vector nP, the integrated white noise vector wn is only a function of independent

noise inputs following tn-1.  The Δxn-1(+e) vector, on the other hand, is created at tn-1 and is

produced by events prior to tn-1, before the creation of wn.  Thus, wn and Δxn-1(+e) are

independent of each other and we can write:

E Δxn-1(+e) wn
T

  =  0 E wn Δxn-1
T

(+e)   =  0 (15.1.2.1.1-11)

Substituting (15.1.2.1.1-10) - (15.1.2.1.1-11) into (15.1.2.1.1-9) then yields the covariance
propagation relationship between Pn(-) and Pn-1(+e):

Pn(-)  =  Φn Pn-1(+e) Φn
T

 + Qn (15.1.2.1.1-12)

Equations (15.1.2.1.1-12) and (15.1.2.1.1-1) or (15.1.2.1.1-4) describe the reset and
propagation of the covariance matrix Pn over an estimation filter processing cycle.  These
equations together with Equation (15.1.2.1-28) enable the optimal gain matrix Kn to be
calculated for each filter cycle for application in estimation Equation (15.1.2-9) or (15.1.2-24).

Typical algorithms for calculating Φn and Qn in Equation (15.1.2.1.1-12) are described in

Sections 15.1.2.1.1.1 and 15.1.2.1.1.2.

It is to be noted from Equations (15.1.2.1.1-12) and (15.1.2.1.1-1) or (15.1.2.1.1-4), that the
optimal gain determination requires an updating of the covariance matrix P based on its value
for the previous interval.  An integration process is implied by this operation that must be
initialized at the start of the estimation filter computation process.  The initial value of P (i.e., P0)
is determined by our best estimate (on a root-mean-square basis) of the variances (and

covariances) associated with the uncertainties in the estimated error state vector x at the start of
the estimation process.  One of the advantages (and shortcomings) of the minimum variance

approach is that it is based on knowledge of the initial uncertainty in x (as manifested in P0).  In
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addition, knowledge of the statistics of the driving and measurement noise (as manifested in Qn
and Rn) is required.  If these statistical parameters are known (and they usually are), the
Equation (15.1.2.1-28) gain formula yields excellent filter performance.  On the other hand, if
Qn, Rn and P0 are unknown (or have large uncertainties), performance deficiencies can be
introduced.

We conclude this section with the development of the continuous differential equation form
of covariance propagation Equation (15.1.2.1.1-12) that will be useful in a later section for
developing an algorithm for computing the integrated process noise matrix Qn.  The continuous
form of the covariance propagation equation is derived by first generalizing Equations
(15.1.1-15), (15.1.1-16), (15.1.2.1.1-10) and (15.1.2.1.1-12) to represent propagation between
two arbitrary time points (t followed by t1), both within the tn-1 to tn time interval:

P(t1)  =  Φ(t1, t) P(t) Φ(t1,  t)T + Q(t1,  t) (15.1.2.1.1-13)

Q(t1, t)  =  E w(t1, t) w(t1, t)T (15.1.2.1.1-14)

w(t1, t)  = Φ(t1, τ) GP(τ) nP (τ) dτ
t

t1

(15.1.2.1.1-15)

Φ(t1, t)  =  I + A(τ) Φ(τ, t) dτ
t

t1

(15.1.2.1.1-16)

where

P(t1), P(t)  =  P at times t1 and t.

For t1 very close to t, (15.1.2.1.1-15) and (15.1.2.1.1-16) can be approximated to first order
by:

w(t1, t)  ≈  GP(t) nP (τ) dτ
t

t1

(15.1.2.1.1-17)

Φ(t1, t)  ≈  I + A(t) Δ t (15.1.2.1.1-18)

with

Δt  ≡  t1 - t (15.1.2.1.1-19)

Substituting (15.1.2.1.1-18) and (15.1.2.1.1-19) into (15.1.2.1.1-13) for small Δt  gives, after
rearrangement, to first order:
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P(t+Δt) - P(t)

Δt
  ≈  A(t) P(t) + P(t) A(t)T + 

1

Δt
 Q(t+Δt, t) (15.1.2.1.1-20)

The Q(t+Δt ,t) term in (15.1.2.1.1-20) is evaluated by substituting (15.1.2.1.1-17) and
(15.1.2.1.1-19) into (15.1.2.1.1-14):

Q(t+Δ t, t)  ≈  GP (t) E nP (τ) dτ
t

t+Δ t

 nP (τ)
T

 dτ
t

t+Δ t

 GP (t)T (15.1.2.1.1-21)

The expected value term in (15.1.2.1.1-21) can be rearranged into the following equivalent
form:

E nP (τ) dτ
t

t+Δ t

 nP (τ)
T

 dτ
t

t+Δ t

  = E nP (τα) dτα
t

t+Δ t

 nP (τβ)
T
 dτβ

t

t+Δ t

=  E  
t

t+Δ t

 nP (τα) nP (τβ)
T

 dτα
t

t+Δ t

 dτβ  (15.1.2.1.1-22)

=   
t

t+Δ t

 E nP (τα) nP (τβ)
T

 dτα
t

t+Δ t

 dτβ 

where

τα, τβ  =  Running time parameters that range from t to t +Δt .

To develop the equation for the P time derivative, we now let Δt  go to zero in the limit so that
(15.1.2.1.1-20) - (15.1.2.1.1-22) become:

P(t+Δt) - P(t)

Δ t  lim Δ  t → 0

=  

 

P(t)  =  A(t) P(t) + P(t) A(t)T

          + GP  (t) Q0(t) GP  (t)T
(15.1.2.1.1-23)

with

Q0(t)  ≡  
1

Δ t
  

t

t+Δ t

 E nP (τα) nP (τβ)
T

t

t+Δ t

 dτα  dτβ
lim Δ  t → 0

 (15.1.2.1.1-24)

Equation (15.1.2.1.1-24) can be simplified by invoking the definition for the process noise as
a vector of independent components, each being white, hence, uncorrelated with themselves at
two different time points.  Stated mathematically, the component independence constraint is:
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E (nPi nPj)  =  0      for i  ≠  j (15.1.2.1.1-25)

where

nPi, nPj  =  Elements i and j of nP.

The white noise constraint on each element of nP can be defined by:

E nPi(τα) nPi(τβ)   =  qPDensi
 (τβ) δ (τα - τβ) (15.1.2.1.1-26)

with

δ(τα - τβ)  =  0       For   τα  ≠  τβ 

δ(τα - τβ) dτα
τ α < τ β

τ α > τ β

  =  1

(15.1.2.1.1-27)

where

qPDensi
 (τβ)  =  White noise density associated with nPi at time τβ.

δ (τα - τβ)  =  Dirac delta function.

Substituting (15.1.2.1.1-26) - (15.1.2.1.1-27) with (15.1.2.1.1-25) into the (15.1.2.1.1-24) inner
integral then gives:

E nP (τα) nP (τβ)
T

 dτα
t

t+Δ t

  =  QPDens (τβ) (15.1.2.1.1-28)

where

QPDens (τβ)  = Process noise density matrix at time τβ.  By virtue of Equation

(15.1.2.1.1-25), QPDens (τβ) is diagonal with each element equal to

qPDensi
 (τβ).

We now apply (15.1.2.1.1-28) in (15.1.2.1.1-24) yielding:

Q0(t)  =  
1

Δt
 QPDens (τβ) dτβ

t

t+Δt

lim Δt → 0

  =  QPDens (t) (15.1.2.1.1-29)

Substituting (15.1.2.1.1-29) into (15.1.2.1.1-23) obtains the sought after differential equation
for covariance propagation between Kalman filter update cycles:



15-28     KALMAN FILTERING TECHNIQUES

P(t)  =  A(t) P(t) + P(t) A(t)T + GP (t) QPDens(t) GP (t)T (15.1.2.1.1-30)

The integral of Equation (15.1.2.1.1-30) between time tn-1 and tn (with Pn-1(+e) as the initial
condition on P(t) at t = tn-1) yields the Equation (15.1.2.1.1-12) discrete equivalent form if we

equate Pn(-) to P(tn).

Finally, it is sometimes useful to recognize the equivalency between the noise density for a
stationary white noise random process and the power spectral density for the noise process as
defined in Chapter 10 by Equation (10.2.2-21).  Recall from Section 10.2.2 (Equations
(10.2.2-9) - (10.2.2-10)) that a stationary white random process n(t) would have an auto-

correlation function φ(t, τ) for the time interval τ that is independent of time and given by:

φ(t,τ)  ≡  E n(t) n(t + τ) φ(t, τ)  =  φ(τ) (15.1.2.1.1-31)

Equation (10.2.2-17) shows that φ(τ) is a symmetrical function of τ (i.e., φ(τ)  =  φ(- τ)).  From

Equation (10.2.2-21) (based on φ(τ) symmetry) we have defined the power spectral density for
the stationary white noise process as:

G(ω)  ≡  
2

π
 φ(τ) cos ωτ dτ

0

∞

  =  
1

π
 φ(τ) cos ωτ dτ

- ∞

∞

(15.1.2.1.1-32)

where

G(ω)  =  Power spectral density for the white noise process n(t).

For the stationary n(t) we can also write from Equation (15.1.2.1.1-26):

E n(t) n(t + τ)   =  qPDen δ (τ)

         δ (τ)  =  0    for τ ≠ 0            δ (τ) dτ
τ < 0

τ > 0

  =  1

(15.1.2.1.1-33)

where

qPDen  =  Process noise density for the stationary white noise process.

Substituting (15.1.2.1.1-31) with (15.1.2.1.1-33) in (15.1.2.1.1-32) shows that:

G(ω)  =  
1

π
 qPDen (15.1.2.1.1-34)
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Thus, based on the (15.1.2.1.1-32) definition, the power spectral density for a stationary white

noise process is constant and equal to the process noise density divided by π.

15.1.2.1.1.1  Error State Transition Matrix Computation Algorithm

In order to calculate the error state transition matrix Φn for Equations (15.1.2-7), (15.1.2-21)

and (15.1.2.1.1-12), Equation (15.1.1-15) must be integrated from tn-1 to tn.  Because the A
matrix in (15.1.1-15) may contain significant high frequency terms (particularly in strapdown

applications in which aSF, ωIB and CB
N

 are typically part of the error state dynamic matrix A -

See Equations (12.5.1-1)), a high repetition rate for the associated integration algorithm is
typically required.  Direct integration of Equation (15.1.1-15) at high repetition rate is generally
not practical from a throughput standpoint for current state-of-the-art navigation computers.

Consequently, alternative means are typically utilized for calculating Φn.  For example, consider

implementing the Equation (15.1.1-15) Φn integration algorithm by repetitive application of

Equation (15.1.1-10):

Φ(tm , tn-1)  =  Φ(tm , tm-1) Φ(tm-1, tn-1)          Φ(tn-1, tn-1)  =  I
 

            Φn  ≡  Φ(tn, tn-1)  =  Φ(tm , tn-1)   At  tm  =  tn
(15.1.2.1.1.1-1)

where

m  = Repetition cycle index for a computation loop faster than the Kalman filter cycle
rate (e.g., 1 second for the m loop compared to 5 seconds for the Kalman loop).

If the m cycle period is selected short enough, the Φ(tm , tm-1) term in (15.1.2.1.1.1-1) can be
approximated by the integral of Equation (15.1.1-6) with (15.1.1-4) to first order:

Φ(tm , tm-1)  ≈  I + ΔΦm ΔΦm  ≡  A(t) dt
tm - 1

tm

(15.1.2.1.1.1-2)

Equation (15.1.2.1.1.1-2) can be extended in accuracy for A(t) being constant.  From Equation
(15.1.1-6) and (15.1.1-4) we write:

Φ(t, tm-1)  =  A Φ(t, tm-1) Φ(tm-1, tm-1)  =  I (15.1.2.1.1.1-3)

in which A is now assumed constant.  We then write a trial solution to (15.1.2.1.1.1-3) that
satisfies the identity initial condition constraint:

Φ(t, tm-1)  =  I + B1 (t- tm-1) + B2 (t- tm-1)2 + B3 (t- tm-1)3  + ⋅ ⋅ ⋅ (15.1.2.1.1.1-4)
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The derivative of (15.1.2.1.1.1-4) is:

Φ(t, tm-1)  =  B1 + 2 B2 (t- tm-1) + 3 B3 (t- tm-1)2 + 4 B4 (t- tm-1)3  + ⋅ ⋅ ⋅ (15.1.2.1.1.1-5)

Substituting (15.1.2.1.1.1-4) and (15.1.2.1.1.1-5) into (15.1.2.1.1.1-3) gives:

B1 + 2 B2 (t- tm-1) + 3 B3 (t- tm-1)2 + 4 B4 (t- tm-1)3  + ⋅ ⋅ ⋅
 

            =  A  I + B1 (t- tm-1) + B2 (t- tm-1)2 + B3 (t- tm-1)3  + ⋅ ⋅ ⋅
(15.1.2.1.1.1-6)

Equating coefficients of equal powers of (t  - tm-1) yields:

B1  =  A               B2  =  
1
2

 A B1  =  
1
2

 A2  =  
1
2 !

 A2

B3  =  
1
3

 A B2  =  
1

3 !
 A3             Etc.

(15.1.2.1.1.1-7)

With (15.1.2.1.1.1-7), Φ(t, tm-1) in Equation (15.1.2.1.1.1-4) becomes:

Φ(t, tm-1)  =  I + A (t- tm-1) + 
1

2 !
 A2 (t- tm-1)2 + 

1
3 !

 A3 (t- tm-1)3  + ⋅ ⋅ ⋅ (15.1.2.1.1.1-8)

or at time t = tm:

Φ(tm,tm-1)  =  I + A Tm + 
1

2 !
 A Tm

 2 + 
1
3 !

 A Tm
 3 + ⋅ ⋅ ⋅ (15.1.2.1.1.1-9)

where

Tm  =  Time interval from tm-1 to tm.

But from the definition in (15.1.2.1.1.1-2), we also know that for the constant A case:

A Tm  =  ΔΦm (15.1.2.1.1.1-10)

With (15.1.2.1.1.1-10), Equation (15.1.2.1.1.1-9) becomes:

Φ(tm,tm-1)  =  eΔΦm

 

eΔΦm  ≡  I + ΔΦm + 
1

2 !
 ΔΦm

2
 + 

1
3 !

 ΔΦm
3

 + ⋅ ⋅ ⋅   
(15.1.2.1.1.1-11)

Finally, we use the more general (15.1.2.1.1.1-2) form for calculating ΔΦm:

ΔΦm  ≡  A(t) dt
tm - 1

tm

(15.1.2.1.1.1-12)
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Equations (15.1.2.1.1.1-11) and (15.1.2.1.1.1-12) describe an algorithm for calculating

Φ(tm,tm-1) for Equation(15.1.2.1.1.1-1) that is accurate to first order for general A(t) and is

exact for constant A(t).  The Tm time interval would be selected to enable truncation of
(15.1.2.1.1.1-11) at a reasonable point for computer throughput considerations.  The digital

integration of A(t) to obtain ΔΦm in (15.1.2.1.1.1-12) would typically be performed

individually on each element of A(t) using a suitable algorithm at the iteration rate required to
handle the expected dynamics of the particular element (i.e., faster than the m cycle rate).
Typically, many of the elements of A(t) are zero, hence, the associated integrals are also zero
and need not be computed.  Many of the elements of A(t) will have very little change over the
Tm integration interval and their integral can, therefore, be accurately approximated by the
average of the value at the start and end of the interval multiplied by Tm.  The overall result is

that the computer throughput required to integrate A(t) in obtaining ΔΦm can generally be

reduced to a level that is acceptable on the basis of overall computation time resources.

15.1.2.1.1.2  Integrated Process Noise Matrix Algorithm

An algorithm for calculating the Qn integrated process noise matrix in Equation
(15.1.2.1.1-12) is developed in Section 15.1.2.1.1.3.  Section 15.1.2.1.1.3 treats the general
problem of propagating the covariance matrix and estimated error state vector between Kalman
estimation updates as a repetitive algorithm integration process (at an m cycle rate between
Kalman estimation n cycles).  This contrasts with the single update forms of Equation
(15.1.2.1.1-12) for covariance propagation and (15.1.2-7) or (15.1.2-21) for estimated error
state vector propagation.  Section 15.1.2.1.1.3 then develops the Qn algorithm for
(15.1.2.1.1-12) as a limiting case of the general m cycle covariance propagation algorithm in
which only one m cycle is used for covariance propagation between n cycles.  The Qn algorithm
so derived is imbedded in Equation (15.1.2.1.1.3-37), a revised form of Equation
(15.1.2.1.1-12) for Kalman filter implementation.

15.1.2.1.1.3 Covariance And Estimated Error State Vector Propagation By
Iterative Algorithm Processing Between Kalman Update Cycles

For high frequency dynamic environments and/or situations in which there is a lengthy time
period between Kalman update cycles, to preserve integration accuracy it may be necessary to
propagate the covariance matrix P and estimated error state vector using a repetitive discrete
processing routine within the basic Kalman cycle.  This section provides an example of such a
repetitive algorithm based on sequential propagation of an m cycle computation loop imbedded
within the basic n cycle Kalman estimation/update loop.  In the process of developing the
covariance propagation algorithm, we will also develop the estimated error state vector
propagation algorithm as well as an algorithm for calculating the integrated process noise
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matrix Qn in Equation (15.1.2.1.1-12) (for covariance propagation at the n cycle rate, i.e., when
m = n ).

The m cycle covariance propagation algorithm is based on the integrated form of the
continuous covariance differential propagation Equation (15.1.2.1.1-30) from the m-1 to m
cycle times.  The algorithm derivation begins with Equation (15.1.2.1.1-30) repeated below:

P(t)  =  A(t) P(t) + P(t) A(t)T + GP  (t) QPDens(t) GP  (t)T (15.1.2.1.1.3-1)

Equation (15.1.2.1.1.3-1) can be integrated over an m cycle using the method introduced in

Reference 6 - Section 4.6.  We first define transformation variables λ(t)  and y(t) such that:

λ(t)  =  P(t) y(t) (15.1.2.1.1.3-2)

and

y(t)  =  - A(t) T y(t) (15.1.2.1.1.3-3)

Differentiating (15.1.2.1.1.3-2) and substituting (15.1.2.1.1.3-1) and (15.1.2.1.1.3-3) yields:

λ(t)  =  P(t) y(t) + P(t) y(t)

=  A(t) P(t) + P(t) A(t)T + GP (t) Q P Dens(t) GP  (t)T  y(t)

- P(t) A(t)T y(t)
(15.1.2.1.1.3-4)

 =  A(t) P(t) y(t) + GP  (t) Q P Dens(t) GP  (t)T y(t)

Substituting (15.1.2.1.1.3-2) finds:

λ(t)  =  A(t) λ(t) + GP  (t) Q P Dens(t) GP  (t)T y(t) (15.1.2.1.1.3-5)

Equations (15.1.2.1.1.3-3) and (15.1.2.1.1.3-5) can be expressed in the equivalent form:

y(t)

λ(t)

  =  
- A(t) T      0

GP(t) QPDens(t) GP(t) T      A(t)
   

y(t)

λ(t)
(15.1.2.1.1.3-6)

Equation (15.1.2.1.1.3-6) is a homogeneous linear vector differential equation whose general
solution from time tm-1 to tm (as in Section 15.1.1) has the form:

ym

λm

  =  
Φyym 0

Φλym Φλλm

   
ym-1

λm-1

(15.1.2.1.1.3-7)



KALMAN FILTERING IN GENERAL     15-33

where

Φyym, Φλym, Φλλm  = State transition matrix elements associated with the Equation
(15.1.2.1.1.3-6) state dynamic matrix (in square brackets) that

propagates y, λ from their values at tm-1 to their values at tm.

Note that the upper right element in the state transition matrix has been set to zero because from

Equation (15.1.2.1.1.3-6), λ has no coupling into y.

Expanding (15.1.2.1.1.3-7) in component form obtains:

ym  =  Φyym ym-1 λm  =  Φλym ym-1 + Φλλm λm-1 (15.1.2.1.1.3-8)

Applying (15.1.2.1.1.3-2) at cycles m-1 and m:

λm-1  =  Pm-1 ym-1  λm  =  Pm ym (15.1.2.1.1.3-9)

Combining (15.1.2.1.1.3-8) and (15.1.2.1.1.3-9):

λm  =  Pm ym  =  Pm Φyym ym-1  =  Φλym ym-1 + Φλλm Pm-1 ym-1  (15.1.2.1.1.3-10)

Since (15.1.2.1.1.3-10) is valid for any ym-1, it follows that:

Pm Φyym  =  Φλym +  Φλλm Pm-1

or

Pm  =  Φλλm Pm-1 Φyym

-1
 +  Φλym Φyym

-1
(15.1.2.1.1.3-11)

Using classical state vector theory (as in Section 15.1.1, Equations (15.1.1-2) - (15.1.1-4)
and (15.1.1-6)), Equation (15.1.2.1.1.3-6) can be used to develop the means for evaluating the

Φ terms in (15.1.2.1.1.3-11):

Φ(t)  =  M(t) Φ(t) Φ(tm-1)  =  I

M(t)  ≡  
- A(t) T      0

GP(t) QPDens(t) GP(t) T      A(t)
(15.1.2.1.1.3-12)

Φ(t)  =  
Φyy(t) Φyλ(t)

Φλy(t) Φλλ(t)
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where

Φyy(t), Φyλ(t), Φλy(t), Φλλ(t)   = State transition matrix elements that propagate y, λ
from their values at tm-1 to their values at t.

The upper right component of (15.1.2.1.1.3-12) is:

Φyλ(t)  =  - A(t)T Φyλ(t)             Φyλ(tm-1)  =  0 

for which we write the  trivial solution:

Φyλ(t)  =  0 (15.1.2.1.1.3-13)

as stipulated earlier in (15.1.2.1.1.3-7).  With (15.1.2.1.1.3-13), the remaining components of
(15.1.2.1.1.3-12) become:

Φyy(t)  =  - A(t)T Φyy(t)                Φyy(tm-1)  =  I (15.1.2.1.1.3-14)

Φλλ(t)  =  A(t) Φλλ(t)                   Φλλ(tm-1)  =  I

Φλ y(t)  =  GP (t) Q P Dens(t) GP (t)T Φyy(t) + A(t) Φλ  y(t)

Φλ  y(tm-1)  =  0

(15.1.2.1.1.3-15)

A useful relationship between Φyy(t)  and Φλλ(t)  is revealed from the transpose of Φyy(t)  in

(15.1.2.1.1.3-14):

Φyy(t)
T

  =  - Φyy(t)
T

 A(t)                Φyy(tm-1)
T

  =  I (15.1.2.1.1.3-16)

From (15.1.2.1.1.3-16), the Φλλ(t)  expression in (15.1.2.1.1.3-15), and the initial conditions in
(15.1.2.1.1.3-14) - (15.1.2.1.1.3-15), we see that:

d
dt

 Φyy(t)
T

 Φλλ(t)   =  Φyy(t)
T

 Φλλ(t) + Φyy(t)
T

 Φλλ(t)  =  0 

                Φyy(tm-1)
T

 Φλλ(tm-1)  =  I
(15.1.2.1.1.3-17)

The general solution to (15.1.2.1.1.3-17) is the interesting property:

Φyy(t)
T

 Φλλ(t)  =  I 

or, upon taking the transpose and multiplying on the right by Φyy(t)  inverse:
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Φyy(t)
-1

 =  Φλλ(t)
T

 (15.1.2.1.1.3-18)

Use of (15.1.2.1.1.3-18) allows (15.1.2.1.1.3-11) to be simplified.  The Φ parameters in
(15.1.2.1.1.3-11) equate to their values at t = tm, thus (15.1.2.1.1.3-11) becomes the simpler

form:

Pm  =  Φλλm Pm-1 Φλλm

T
 +  Φλym Φλλm

T
(15.1.2.1.1.3-19)

The Φλλm, Φλym terms in (15.1.2.1.1.3-19) are the integral of Equations (15.1.2.1.1.3-15)

evaluated at time tm.  A first order solution to the (15.1.2.1.1.3-15) integral is obtained by
setting the right sides to the initial conditions and integrating from tm-1 to tm:

Φλλm  ≈  I + A(t) dt
tm - 1

tm

  =  I + ΔΦλλm

Φλ ym  ≈  GP (t) Q P Dens(t) GP (t)T dt
tm - 1

tm

  =  ΔΦλ ym 

(15.1.2.1.1.3-20)

with

ΔΦλλm  ≡  A(t) dt
tm - 1

tm

ΔΦλ ym  ≡  GP (t) Q P Dens(t) GP (t)T dt
tm - 1

tm

 (15.1.2.1.1.3-21)

If A(t) and GP(t) QPDens(t) GP(t) T are approximated as constant, the classical complete

solution to (15.1.2.1.1.3-15) is obtained (as in Section 15.1.2.1.1.1) as elements 2,1 and 2,2 of
the general solution to (15.1.2.1.1.3-12):

Φyym Φyλm

ΦλymΦλλm

  =  eM (15.1.2.1.1.3-22)

with from (15.1.2.1.1.3-12):

M  =  
- AT    0

GP QPDens GP
T

   A

 Tm (15.1.2.1.1.3-23)

where

Tm  =  Time interval from tm-1 to tm.
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The e functional in (15.1.2.1.1.3-22) is by definition (as in (15.1.2.1.1.1-11)):

eM  =  I + M + 
1

2 !
 M2 + 

1
3 !

 M 3 + ⋅ ⋅ ⋅ (15.1.2.1.1.3-24)

For the constant A(t), GP(t), QPDens(t)  case, Equations (15.1.2.1.1.3-21) can be introduced to

convert (15.1.1.1.2-23) to the equivalent form:

M  =  
- ΔΦλλm

T
0

ΔΦλym ΔΦλλm

(15.1.2.1.1.3-25)

It is easily verified by substituting (15.1.2.1.1.3-25) into (15.1.2.1.1.3-24) that Equation

(15.1.2.1.1.3-22) for Φλλm, Φλym is, to first order, equal to the Equation (15.1.2.1.1.3-20)

result.  Thus, the (15.1.2.1.1.3-25) form is actually more general, being accurate to first order

for general time varying A(t) and GP(t) QPDens(t) GP(t) T matrices, and being exact for the

case when M can be approximated as constant.

A recursive relationship can be written for (15.1.2.1.1.3-24) - (15.1.2.1.1.3-25) based on
generation of the Taylor series terms:

M j  =  M j-1 
- ΔΦλλm

T
0

ΔΦλym ΔΦλλm

M 0  =  I (15.1.2.1.1.3-26)

ej
M

  =  ej - 1
M

 + 
1
j !

 M j

e0
M

  =  I

where

j  =  Number of terms carried in the eM expansion.

M j  =  M to the power of j.

ej
M

  =  eM truncated at j terms in (15.1.2.1.1.3-24).

We also define:

- - - - - -

Mλy
 j

Mλλ
 j

  ≡  M j (15.1.2.1.1.3-27)
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With (15.1.2.1.1.3-21), (15.1.2.1.1.3-22), (15.1.2.1.1.3-26) and (15.1.2.1.1.3-27), the overall
Equation (15.1.2.1.1.3-19) discrete covariance matrix propagation algorithm then becomes the
iterative process:

Initialize computational parameters:

Mλλ
 0

  =  I Mλy
 0

  =  0 Φλλ
 0

  =  I Φλy
 0

  =  0

Input:

ΔΦλλm  =  A(t) dt  
 

tm - 1

tm

ΔΦλ ym  =  GP (t) Q P Dens(t) GP (t)T dt
tm - 1

tm

 

DO for j =1 to the specified Φλλ expansion order:

IF j is less than the specified Φλy expansion order, THEN:

Mλy
 j

  =  - Mλy
 j-1

 ΔΦλλm

T
 + Mλλ

 j-1
 ΔΦλym

Φλy
 j

  =  Φλy
 j-1

 + 
1
j !

 Mλy
 j

(15.1.2.1.1.3-28)

ENDIF

IF j is equal to the specified Φλy expansion order:    B  =  Φλy Φλλ
T

Mλλ
 j

  =  Mλλ
 j-1

 ΔΦλλm

Φλλ
 j

  =  Φλλ
 j-1

 + 
1
j !

 Mλλ
 j

ENDDO

Φm  =  Φλλ Qm  =  
1
2

 B + BT

Pm  =  Φm Pm-1 Φm
T

 +  Qm

where

Φλy
j

, Φλλ
j

  = Φλy, Φλλ in (15.1.2.1.1.3-22) but truncated after the M j term in the
(15.1.2.1.1.3-24) expansion series.

Φm  = Error state transition matrix that propagates the error state vector from tm-1 to tm.

If the (15.1.2.1.1.3-28) algorithm for Φm is compared with Equations

(15.1.2.1.1.1-11) - (15.1.2.1.1.1-12), it should be apparent that Φm and ΔΦλλm

of this section are identical to Φ(tm,tm-1) and ΔΦm, the tm-1 to tm error state
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transition matrix of Section 15.1.2.1.1.1 with its associated integrated error state
dynamic matrix.

Qm  =  Integrated effect of process noise on P from tm-1 to tm.

B  =  Intermediate parameter used to assure that Qm is symmetric.

Note in Equations (15.1.2.1.1.3-28) that the B term has the same form as the term on the
right in (15.1.2.1.1.3-19).  From the form of Equation (15.1.2.1.1-12) compared to
(15.1.2.1.1.3-19) we can identify this term as Qm, the integrated effect of process noise on the
covariance P over an m cycle.  However, because Equations (15.1.2.1.1.3-28) are truncated, the
B so computed will not exactly equal the true Qm.  Of particular concern are errors in B that
make it asymmetric as contrasted with the true Qm that is always symmetric.  To compensate

for B asymmetry, Qm is calculated in Equations (15.1.2.1.1.3-28) as 
1
2

 B + BT  which is

always symmetric (i.e., it equals its transpose), and exactly equals B when B is symmetric.
Also note that the (15.1.2.1.1.3-28) algorithm for B is based on the assumption that the selected

Φλy expansion order will be less than or equal to the selected Φλλ expansion order.  Generally

speaking, for comparable accuracy in the Pm equation, the expansion orders for Φm and Qm

should be equal.  From (15.1.2.1.1.3-28) we see that this condition corresponds with the

expansion orders for Φλy and Φλλ being the same.  For some applications, however, it is

desirable to have a higher expansion order for Φm than for Qm to assure an accurate estimated

error state vector propagation (to be discussed subsequently).

In Equations (15.1.2.1.1.3-28), the covariance matrix for the covariance propagation
algorithm is initialized at the computed P value following the last Kalman estimation reset (i.e.,
Pn-1(+e)).  The covariance matrix used for the next Kalman cycle gain calculation (i.e., Pn(-)) is
then set to the output of the covariance propagation algorithm at the next Kalman cycle time tn.
Thus, the initial condition and output for the (15.1.2.1.1.3-28) algorithm is:

Pm  =  Pn-1(+e)       At  t = tn-1 
 

Pn(-)  =  Pm       At  t = tn
(15.1.2.1.1.3-29)

The companion to Equations (15.1.2.1.1.3-28) - (15.1.2.1.1.3-29) for Kalman filter
estimated error state vector m cycle propagation, is easily written by inspection of (15.1.2-7) for

the idealized control reset case using Φm from (15.1.2.1.1.3-28):

xm  =  Φm xm-1

xm  =  xn-1(+c) At  t = tn-1 (15.1.2.1.1.3-30)

xn(-)  =  xm At  t = tn
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For the delayed reset case, the equivalent to (15.1.2.1.1.3-30) is from (15.1.2-21):

xm  =  Φm xm-1

xm  =  xn-1(+e) At  t = tn-1 (15.1.2.1.1.3-31)

xn(-)  =  xm At  t = tn

Equations (15.1.2.1.1.3-28) - (15.1.2.1.1.3-31) provide algorithms for propagating the
covariance matrix and estimated error state vector between Kalman estimation cycles.  The
number of terms carried in the (15.1.2.1.1.3-28) expansion series depends on the width of the

m cycle time interval, the frequency content of the A(t) and GP(t) QPDens(t) GP(t) T terms in

(15.1.2.1.1.3-28) and the number of integrators linking each error state to the measurement.
Simulation studies are generally required to verify that the series expansion order is sufficient

for proper characterization of the Φm and Qm matrices.

The integration of A(t) and GP(t) QPDens(t) GP(t) T in (15.1.2.1.1.3-28) to obtain ΔΦλλm

and ΔΦλym would be performed digitally, typically on the individual elements of A(t) and

GP(t) QPDens(t) GP(t) T, using a suitable algorithm at the iteration rate required to handle the

expected dynamics of the particular element.  Normally, many of the elements of A(t) and

GP(t) QPDens(t) GP(t) T are zero, hence, the associated integral is also zero and need not be

computed.  Many of the elements of A(t) and GP(t) QPDens(t) GP(t) T have very little change

over the integration interval (i.e., the m cycle) and their integral can, therefore, be accurately
approximated by the average of the value at the start and end of the m cycle interval multiplied
by the m cycle time.  Generally, the QPDens(t)  matrix is constant and by definition, diagonal.

Many of the rows of GP(t) have only one element (i.e., no noise element cross-coupling).  For
strapdown applications, some of the elements of GP(t) represent direction cosine matrices (e.g.,

CB
N

(t) ) that couple orthogonal inertial sensor triad output white random noise into attitude (for

angular rate sensors) or velocity (for accelerometers - See Equations (12.5.1-1)).  For this

situation, if the associated three elements of QPDens(t)  coupled by CB
N

(t)  are equal (i.e., if each

of the three orthogonal inertial sensors are characterized as having equal output random noise

densities), the associated product elements of GP(t) QPDens(t) GP(t) T will be:

CB
N

(t) QPDens/Assoc(t) CB
N

(t)
T

  =  CB
N

(t) VPDens/Assoc(t) I CB
N

(t)
T

=  VPDens/Assoc(t) CB
N

(t) I CB
N

(t)
T

(15.1.2.1.1.3-32)

=  VPDens/Assoc(t) I  =  QPDens/Assoc(t)
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where

QPDens/Assoc(t)   = 3 by 3 diagonal matrix containing the diagonal elements of

QPDens(t)  associated with the CB
N

(t)  coupling from GP(t).

VPDens/Assoc(t)   = Noise densities of each element of QPDens/Assoc(t)  (all assumed
equal).

I  =  Identity matrix.

Thus, in the above situation, the significantly time varying CB
N

(t)  term does not appear at all in

the coupled noise density matrix GP(t) QPDens(t) GP(t) T.  The overall result is that the

computer throughput required for the ΔΦλλm and ΔΦλym integration process can generally be

reduced to a level that has negligible penalty on overall computation time resources.

We conclude this section with an evaluation of the covariance propagation algorithm based

on a two term expansion series for Φλλ and Φλy.  Carrying out the Equation (15.1.2.1.1.3-28)

operations for a two term expansion shows that:

Φλλ  =  I + ΔΦλλm + 
1
2

 ΔΦλλm

2

B  ≈  ΔΦλym + 
1
2

 ΔΦλym ΔΦλλm

T
 + ΔΦλλm ΔΦλym (15.1.2.1.1.3-33)

≈  
1
2

 ΔΦλym + 
1
2

 I + ΔΦλλm  ΔΦλym I + ΔΦλλm
T

≈  
1
2

 ΔΦλym + 
1
2

 Φλλm ΔΦλym Φλλm

T

In the Equations (15.1.2.1.1.3-33) B calculation, the approximation has been made that ΔΦ
products are on the order of the error in the second order expansion utilized, hence, can be
deleted (or added) with negligible accuracy alteration.

Recognizing from (15.1.2.1.1.3-21) that ΔΦλym = ΔΦλym

T
, we see from (15.1.2.1.1.3-33)

and (15.1.2.1.1.3-28) that:

Φm  =  Φλλ Qm  ≈  
1
2

 ΔΦλym + 
1
2

 Φm ΔΦλym Φm
T

(15.1.2.1.1.3-34)

Substituting (15.1.2.1.1.3-34) into the (15.1.2.1.1.3-28) covariance propagation equation then

obtains (with (15.1.2.1.1.3-21) for ΔΦλym):
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Pm  =  Φm Pm-1 + 
1
2

 Q1m  Φm
T

 +  
1
2

 Q1m

Q1m   =   GP(t) QPDens(t) GP(t) T dt
tm - 1

tm
(15.1.2.1.1.3-35)

where

Q1m  = Value for Qm that would have been obtained using a first order expansion for

Φλy in (15.1.2.1.1.3-28).

From Equation (15.1.2.1.1.3-22) using (15.1.2.1.1.3-21) for ΔΦλλm and Φλλ = Φm (as in

(15.1.2.1.1.3-28)), we can also write the more general form (as in (15.1.2.1.1.1-11) -
(15.1.2.1.1.1-12)):

Φm  =  eΔΦm ΔΦm  ≡  A(t) dt
tm - 1

tm

(15.1.2.1.1.3-36)

Equations (15.1.2.1.1.3-35) - (15.1.2.1.1.3-36) can be viewed as a general covariance

propagation algorithm for the selected expansion for Φm and a second order expansion for Qm.

We finally note that if only one m cycle is used, then m is the Kalman estimation cycle n, and
(15.1.2.1.1.3-36) with (15.1.2.1.1.3-35) becomes the equivalent of (15.1.2.1.1-12):

Pn(-)  =  Φn Pn-1(+e) + 
1
2

 Q1n  Φn
T

 +  
1
2

 Q1n

Q1n   =   G P  (t) Q  P  Dens(t) G
 P  (t)T dt

tn-1

tn

 (15.1.2.1.1.3-37)

Φn  =  eΔΦn ΔΦn  ≡  A(t) dt
tn-1

tn

Equations (15.1.2.1.1.3-37) represent an approximation algorithm that can be considered for
implementing covariance propagation Equation (15.1.2.1.1-12) in the INS computer.  In many

applications, the GP(t) QPDens(t) GP(t) T matrix is approximated as constant (see discussion in

second paragraph following Equations (15.1.2.1.1.3-31)) in which case, Q1n in

(15.1.2.1.1.3-37) simplifies to:

Q1n  =  GP (t) Q P Dens(t) GP (t)T Tn  ≈  Constant (15.1.2.1.1.3-38)
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where

Tn  =  Kalman filter estimation cycle time interval.

The Equation (15.1.2.1.1.3-38) approximation can also be applied to Equations
(15.1.2.1.1.3-35) with Tn replaced by Tm.

15.1.2.1.1.4  Covariance Matrix Numerical Conditioning Control

Some of the intrinsic characteristics of the covariance matrix (P) are that it is symmetric
(element in row i, column j equals element in row j, column i), each diagonal element is
positive, and the matrix is positive definite.  The positive definite characteristic of P is
mathematically defined as the requirement that the operator VT P V be greater than zero for all
real V in which V is an arbitrary vector (Note: If the operator is less than zero for any V, then P
is said to be negative definite).  The positive definite requirement embodies the positive diagonal
P element constraint in addition to the requirement that Pii Pjj be not less than  Pij Pji  (Note:
Pij is the element of P in row i, column j).  As part of Kalman filter software background
computations involved in the calculation of P, control algorithms are frequently utilized to
preserve the positive definite characteristic of P in the presence of numerical round-off which
could drive P to be negative definite.  Negative definite values for P can produce instabilities in
the Kalman filter which utilizes P as a basic building block in the Kalman estimation process.

The symmetric P characteristic is easily satisfied by periodically setting the off-diagonal

elements of P equal to 
1
2

 P + PT .  A very simple algorithm that can be used to assure that the

diagonal elements of P remain positive and greater than designer selected reasonable minimum
values, is the following applied periodically:

IF  Pii  ≤  PiiMin   THEN       Pii  =  PiiMin (15.1.2.1.1.4-1)

where

Pii  =  Diagonal element of P in row i, column i.

PiiMin  = Minimum value of Pii based on designer judgment of the uncertainties in the
Kalman filter analytical models used for estimation.

A more sophisticated approach for maintaining P positive definite is to augment Equation
(15.1.2.1.1.4-1) with a P adjustment based on the more general characteristic that:

  Pij Pji   ≤  Pii Pjj (15.1.2.1.1.4-2)
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where

Pij  =  Element of P in row i, column j.

A control algorithm to realize (15.1.2.1.1.4-2) (following (15.1.2.1.1.4-1)) is:

IF      Pij(-) Pji(-)    >  Pii Pjj     THEN
 

           Pij(+)  =  Pji(+)  =  Pii Pjj  Sign Pij(-) + Pji(-)
(15.1.2.1.1.4-3)

where

(-), (+)  =  Designation for the element before and after the correction.

Sign ( )  =  1 for ( ) ≥ 0 and -1 for ( ) < 0.

If the diagonal elements of P become greater than is reasonable based on engineering
judgment, their growth rate can be terminated by setting the appropriate rows/columns of the
integrated coupled process noise matrix Qn to zero:

IF  Pii  ≥  PiiMax   THEN       Qij  =  Qji  =  0  FOR ALL j (15.1.2.1.1.4-4)

where

PiiMax  =  Maximum reasonable value for Pii.

Qij  =  Element in row i, column j of Qn.

A more sophisticated approach for controlling the maximum value of the P diagonal utilizes
a compressed form of the Joseph’s form covariance reset Equation (15.1.2.1.1-1):

P(+)  =  J P(-) JT (15.1.2.1.1.4-5)

where

J  = Diagonal matrix with elements selected to control the diagonal elements of P to be
less than PiiMax.

The algorithm for J is derived from the diagonal components of (15.1.2.1.1.4-5):

Pii(+)  =  Jii
 2

 Pii(-) (15.1.2.1.1.4-6)

where

Jii  =  Element in row i, column i of diagonal matrix J.

If Pii(-)  is greater or equal to PiiMax, we set Jii in (15.1.2.1.1.4-6) so that Pii(+)  equals PiiMax,

thus:
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IF Pii(-)  ≥  PiiMax   THEN

Jii  =  
PiiMax

Pii(-)
(15.1.2.1.1.4-7)

ELSE

Jii  = 1

ENDIF

The J matrix so calculated is then used in (15.1.2.1.1.4-5) to correct P so that the diagonal
elements remain below PiiMax.  Note, that the complete (15.1.2.1.1.4-5) form is required to

assure that P will remain positive definite after the correction.  The simpler, but dangerous
alternative of reducing only the diagonal elements P, can cause P to go negative definite.  The
simple Equation (15.1.2.1.1.4-1) algorithm used to control Pii to be greater than PiiMin is

allowable because increasing the P diagonal makes P more positive definite.

15.1.2.2  THE OBSERVATION AND THE MEASUREMENT EQUATION

Measurement Equation (15.1-2) shows the measurement to be a linear function of the error
state vector.  In practice, Equation (15.1-2) represents a linearized form of an “observation
equation” formed from the comparison of two identical functions of the navigation parameters
obtained from two navigation devices (as described in generalized format by Equations
(15.1-3)).  For example, if the navigation devices are an INS and a GPS receiver, the navigation

function might be the range ρ from the GPS receiver antenna to a particular GPS satellite (a

function of the INS position location).  An observation would be the difference between ρ
computed from INS position data and ρ calculated from a GPS satellite-to-receiver signal
transmission time measurement.  The observation vector in this case would be the vector of
such observations to several satellites.  The observation vector taken in this manner would be a
function of the INS position, the INS computed position error, GPS receiver error (e.g., clock
frequency and phase) and other external error effects such as satellite position uncertainties and
atmospheric effects on satellite-to-receiver signal transmission time.  The linearized form of the
observation equation is the Equation (15.1-2) measurement equation.  The linearization process
used to derive the measurement equation must include any conversion required to express the
measurement as a function of the selected error state vector parameters.  This step is necessary
because the error in the navigation parameters used in forming the observation equation (e.g.,

position errors in CN
E

 and altitude h - See Section 4.4) are not necessarily directly equal to the

error state vector parameters (e.g., position error δRN - See Section 12.2.3).  Hence, when the
linearization process is performed (by taking the differential of the observation equation) the
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immediate result is generally a function of error parameters that need conversion to their
equivalent error state vector forms.

To provide a specific example illustrating the development of the observation and
measurement equation, consider a horizontal position measurement formed from the INS

navigation-to-earth Frame direction cosine matrix CN
E

 and latitude/longitude provided from

another separate navigation device.  Let us consider the observation to be formed as the

difference between uZN
E

 computed from INS data and the equivalent vector calculated from

position data provided by the other navigation device where:

E  =  Earth fixed coordinate frame as defined in Section 2.2.

uZN
E

  = E Frame projection of a unit vector along the INS N Frame Z axis which, from

Section 2.2, lies along the upward geodetic vertical at the INS position location.

Since uZN
E

 computed with data from the INS and the other navigation device will be very

close to one another, the difference will lie primarily in a plane perpendicular to uZN
E

 (i.e., in a

horizontal plane).  To simplify the observation to have only two significant (horizontal)
components, we include a transformation into the INS locally horizontal N Frame in forming
the observation equation:

ZPOS  =  CNINS

E T
 uZNINS

E
 - uZNOTH

E
 

 H
(15.1.2.2-1)

where

INS  = Subscript designation for parameter value calculated using INS inertially
calculated computer data.

ZPOS  =  Observation for the position measurement.

uZNINS

E
, uZNOTH

E
  = uZN

E
 formed from the INS and other navigation device output data.

CNINS

E
  =  CN

E
 calculated in the INS computer (i.e., containing error).

N  =  Locally level navigation coordinates as defined in Section 2.2.

H  =  Horizontal components of the designated vector.

The uZNINS

E
 contribution to ZPOS in (15.1.2.2-1) is zero because it lies by definition along the

INS defined vertical:
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CNINS

E T
 uZNINS

E
 

 H
  =  uZNINS

N
 

 H
  =  0 (15.1.2.2-2)

The uZNOTH

E
 term in (15.1.2.2-1) is calculated from the other navigation device output data as a

vector along the upward geodetic vertical at the other navigation device position location, plus a
correction to account for lever arm separation from the INS.  An equation for the correction

terms can be found using δuZN
E

 in Section 12.2.3, the change in uZN
E

 produced by horizontal

position error δRH
E

.  Combining (12.2.3-11) for δuZN
E

 with εN
 × uZN

N
 from the rearranged

form of (12.2.3-16) and substituting (12.2.4-6) shows that δuZN
E

 = 
1
R

 δRH
E

.  A similar

expression can be used for correcting uZNOTH

E
 in (15.1.2.2-1) using the horizontal lever arm

component in place of δRH
E

.  Thus:

uZNOTH

E
  =  uUpOTH

E
 + 

1
R

 l  H
E

 (15.1.2.2-3)

where

uUpOTH

E
  = E Frame components of a unit vector along the other navigation device

position geodetic vertical as calculated with position data from the other
navigation device.

l  =  Lever arm from the INS to the other navigation device.

The lE term in (15.1.2.2-3) can be described in terms of projections along vehicle reference axes
as in Section 8.3:

lE  =  CB
E

 CM
B

 CVRF
M

 lVRF (15.1.2.2-4)

where

B  =  INS sensor (or “body”) reference axes as defined in Section 2.2.

M  =  INS mount coordinate frame aligned to the INS mount.

VRF  = Vehicle reference axis coordinate frame having a specified fixed alignment to
the vehicle carrying the INS and aiding device.

With (15.1.2.2-2) - (15.1.2.2-4) and application of generalized Equation (3.1.1-47) (with H

being equivalent to ⊥, representing vector components perpendicular to a unit vector along the
local vertical), Equation (15.1.2.2-1) becomes:
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ZPOS  =  - CNINS

E T
 uUpOTH

E
 + 

1
R

 l H
E

 

 H

(15.1.2.2-5)

or

ZPOS  =  - CNINS

E T
 

 H
 uUpOTH

E
 - 

1
R

 l H
N

(15.1.2.2-6)

with (15.1.2.2-4) in the N Frame:

lN  =  CB
N

 CM
B

 CVRF
M

 lVRF (15.1.2.2-7)

where

CNINS

E T
 

 H
  = Horizontal component of CNINS

E T
 which, from the Section 2.2

definition for the N Frame having Z axis vertical, is CNINS

E T
 with the

third row set to zero.

Equations (15.1.2.2-6) - (15.1.2.2-7) constitute the “observation equation” for the position
measurement.  The ZPOS observation so calculated would be used in Equation (15.1-3) as the
position measurement portion of the ZObs observation vector input to the Kalman filter.  The

“measurement equation” is now derived in the Equation (15.1-2) linearized format by taking
the differential of ZPOS Equation (15.1.2.2-1):

zPOS  ≡  δ ZPOS  =  δ  CNINS

E T
 uZNINS

E
 - uZNOTH

E
 + CNINS

E T
 δ uZNINS

E
 - δ uZNOTH

E
 

 H

(15.1.2.2-8)

Because the INS and other navigation device have comparable accuracy position data, uZNINS

E

will approximately equal uZNOTH

E
.  Consequently, the product of uZNINS

E
 - uZNOTH

E
 with

δ    CNINS

E T
 in (15.1.2.2-8) is second order, hence, negligible and we write:

zPOS  ≈  CN
E T

 δuZNINS

E
 - δuZNOTH

E
 

 H
(15.1.2.2-9)

In Equation (15.1.2.2-9) we have, for simplicity, deleted the INS subscript on CN
E

.  For the

remainder of this section, we will also drop the INS subscript on all direction cosine matrices
with the general understanding that they are based on INS computed navigation parameters.
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The δuZNINS

E
 term in (15.1.2.2-9) is expanded using (12.2.3-11):

δuZNINS

E
  =  CN

E
 εINS

N
 × uZNINS

N
(15.1.2.2-10)

If δRH
N

 is being used as the position error state rather than εN
, equivalency Equation (12.2.3-24)

is incorporated by which:

εN
 × uZN

N
  =  

1
R

 δRH
N

(15.1.2.2-11)

thereby making (15.1.2.2-10):

δuZNINS

E
  =  

1
R

 CN
E

 δRINSH

N
(15.1.2.2-12)

The δuZNOTH

E
 term in (15.1.2.2-9) is expanded from (15.1.2.2-3) taking care to use the

Section 3.5.4 formalism for vector differentials:

δ  uZNOTH

E
  =  δ  uUpOTH

E
 + 

1
R

 δ  l HE

E
 (15.1.2.2-13)

where

δ  l HE

E
  = The differential of l H  taken in the E Frame (subscript) and projected on the E

Frame (superscript) (as in generalized Equation (3.5.4-1)).

An expression for δuUpOTH

E
 can be determined similar to (15.1.2.2-12) by which:

δuUPOTH

E
  =  

1
R

 δROTHH

E
(15.1.2.2-14)

where

δROTHH

E
  = Horizontal position error associated with the other navigation device in

reporting its own position, as projected on E Frame axes.

The δ  l HE

E
  term in (15.1.2.2-13) is evaluated from the differential of E Frame version of

(15.1.2.2-7), treating CVRF
M

 as an error free reference:

δ  l HE

E
  =  δ   CB

E
 CM

B
 CVRF

M
 lVRF + CB

E
 CM

B
 CVRF

M
 δ  lVRF

VRF
 

 H
(15.1.2.2-15)
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where

δlVRF
VRF

  = Error in l evaluated in the VRF Frame (subscript) and projected on VRF

Frame axes (superscript).

The δ  CB
E

 CM
B

 term in (15.1.2.2-15) is found from generalized Equations (3.5.2-47) to be:

δ  CB
E

 CM
B

  =  - αM  to B
E

 + αB  to E
E

 ×  CB
E

 CM
B

(15.1.2.2-16)

with:

αM  to B
B

×   =  - δCM
B

 CM
B T

αM  to B
E

  =  CB
E

 αM  to B
B

(15.1.2.2-17)

αB to E
E

×   =  - δCB
E

 CB
E T

(15.1.2.2-18)

From (12.2.1-3):

ψE
 ×   =  - δCB

E
 CB

E T
(15.1.2.2-19)

Thus, comparing (15.1.2.2-18) and (15.1.2.2-19), we see that:

αB to E
E

  =  ψE
(15.1.2.2-20)

From the transpose of (8.3-2) we have to first order:

CM
B

  =  I - J × (15.1.2.2-21)

where

J  =  INS to mount misalignment calibration vector.

Substituting (15.1.2.2-21) and its differential into (15.1.2.2-17) shows that to first order:

αM  to B
B

  ≈  δJ (15.1.2.2-22)

and

αM  to B
E

  =  CB
E

 δJ (15.1.2.2-23)

Substituting (15.1.2.2-20) and (15.1.2.2-23) into (15.1.2.2-16) then yields:

δ   CB
E

 CM
B

  =  - ψE
 + CB

E
 δ  J  ×  CB

E
 CM

B
(15.1.2.2-24)
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The δlVRF
VRF

 term in (15.1.2.2-15) can be expanded into a term representing a potential error

state portion plus a random portion attributed to vibration induced bending effects:

δ  lVRF
VRF

  =  δ  l Stat
VRF

 + δ  lVib
VRF

(15.1.2.2-25)

where

δ l Stat
VRF

  = Portion of δlVRF
VRF

 that is slowly changing (or constant), hence, potentially

modelable as an error state vector component.

δlVib
VRF

  =  Random portion of δlVRF
VRF

 induced by vibration.

Substituting (15.1.2.2-24) and (15.1.2.2-25) in (15.1.2.2-15) then yields:

δ  l HE

E
  =  - ψE

 + CB
E

 δ  J  ×  CB
E

 CM
B

 CVRF
M

 lVRF
 + CB

E
 CM

B
 CVRF

M
 δ  lStat

VRF
 + δ  lVib

VRF
 

 H

(15.1.2.2-26)
or upon compression and rearrangement:

δ  l HE

E
  =  lE×  ψE

 + CB
E

 δ  J  + CVRF
E

 δ  l Stat
VRF

 + δ  lVib
VRF

 

 H
(15.1.2.2-27)

We now substitute Equations (15.1.2.2-12) - (15.1.2.2-14) and (15.1.2.2-27) into
(15.1.2.2-9) to find:

zPOS  ≈  CN
E T

 
1
R

 CN
E

 δ  RINSH

N
 - 

1
R

 δ  ROTHH

E

 

              - 
1
R

 lE×  ψE
 + CB

E
 δ  J  + CVRF

E
 δ  l Stat

VRF
 + δ  lVib

VRF
 

 H
 H

(15.1.2.2-28)

The following application of generalized Equation (3.1.1-47) (with H equivalent to ⊥) will

prove useful for the δl  terms in (15.1.2.2-28), recognizing that the X, Y axes of the N Frame
are horizontal:

CN
E T

 CVRF
E

 δ  lVRF  

 H
  =  CE

N
 CVRF

E
 δ  l H

VRF
  =  CVRF

N
 δ  l H

VRF

=  CVRF
N

 δ  lVRF  

 H
  =  CVRF

N
 

 H
 δ  lVRF

(15.1.2.2-29)

Applying (15.1.2.2-29) to (15.1.2.2-28) then yields the final form for the measurement
equation:
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zPOS  =  
1
R

 δ  RINSH

N
 - 

1
R

 CN
ET

 

 H
 δ  ROTHH

E
 - 

1
R

 lN×  

 H
 ψN

 + CB
N

 δ  J

 

                           -  
1
R

 CVRF
N

 

 H
 δ  l Stat

VRF
 - 

1
R

 CVRF
N

 

 H
 δ  lVib

VRF
(15.1.2.2-30)

with from (15.1.2.2-7) and (15.1.2.2-21), and neglecting J compared to the zero order terms:

lN  =  CVRF
N

 lVRF CVRF
N

  ≈  CB
N

 CVRF
M

(15.1.2.2-31)

where

CN
E T

 

 H
, CVRF

N
 

 H
  =  CN

E T
, CVRF

N
 with the third row set to zero.

The δ  RINSH

N
, δ  ROTHH

E
, ψN

, δ  J, δ  l Stat
VRF

 terms in (15.1.2.2-30) represent components of the

error state vector x, and δlVib
VRF

 represents the measurement noise nM associated with the zPOS

measurement.  If we compare (15.1.2.2-30) with the generalized form (15.1-2) we see that they

are equivalent; the coefficients of δ  RINSH

N
, δ  ROTHH

E
, ψN

, δ  J, δ  l Stat
VRF

 represent the elements of

the measurement matrix H associated with zPOS and the coefficient of δlVib
VRF

 represents the

measurement noise dynamic coupling matrix GM for zPOS.  Knowledge of the error

characteristics of the other navigation device would enable δROTHH

E
 to be expressed in terms of

error states that better define δROTHH

E
.  On the other hand, if the error model for δROTHH

E
 is not

well understood, the CN
E T

 

 H
 δROTHH

E
 term in (15.1.2.2-30) might be represented as simply

δROTHH

N
 and treated as a part of the measurement noise.  In the latter case, the estimation filter

cycle rate would have to be set slow enough to assure that the δROTHH

N
 error will be random

from measurement cycle to measurement cycle (i.e., consistent with the assumptions
underlying Equation (15.1-2) for which the measurement noise vector is white (i.e.,
uncorrelated from cycle to cycle)).

In practice, the ψN
, δJ terms multiplying lN in measurement Equation (15.1.2.2-30) typically

have negligible impact on the measurement, hence, they and supporting Equations
(15.1.2.2-31) can be ignored.  They were included in the development of (15.1.2.2-30) to
illustrate the overall measurement equation development process.  With this simplification, the
(15.1.2.2-30) equation for position measurements would then become:
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zPOS  ≈   
1
R

 δ  RINSH

N
 - 

1
R

 CN
ET

 

 H
 δ  ROTHH

E
 - 

1
R

 CVRF
N

 

 H
 δ  l Stat

VRF
 - 

1
R

 CVRF
N

 

 H
 δ  lVib

VRF

(15.1.2.2-32)

15.1.2.3  CONTROL VECTOR SELECTION AND APPLICATION

The uc control vector in Equations (15.1.2-5) and (15.1.2-11) - (15.1.2-12) (or (15.1.2-17),

(15.1.2-19) and (15.1.2-22)), is constructed to null the error state vector components that are
computer controllable; i.e., errors in computer calculated parameters that are permitted to be
adjusted for improved accuracy.  A fundamental benefit derived from such controls is that the
associated error state components remain small, hence, second order error effects (i.e., products
of error state vector components) are reduced.  This can be an important consideration when
applying a Kalman filter because its inherent structure is based on neglecting second order
errors.  Minimizing the time period between estimation/control updates provides additional
benefit in this regard.

In some applications, safety and/or computer accessibility considerations do not allow the
basic inertial navigation parameters to be adjusted for fear of inadvertently corrupting the
navigation data with incorrect data.  In such applications, the estimated navigation error states
are used to correct the inertial navigation output data (See Section 15.1.2.3.1).  It is to be noted,
however, that this approach leaves residual second order errors in the corrected navigation
outputs because the basic Kalman filter estimated error states used for correction are only
accurate to first order.  The most accurate correction method is to directly update the basic
navigation parameters using the uc control vector, which drives the errors toward null, thereby

rendering second order error effects negligible.

Construction of uc to null selected error states consists of setting the appropriate components
of uc to the negative of the last estimated value for the error states being controlled.  Based on

the discussion in Section 15.1.2, the idealized Kalman reset which uses Equations (15.1.2-6) -
(15.1.2-13), would then have:

uc n  =  - xc n(+e) (15.1.2.3-1)

where

(+e)  =  Designation for the parameter value immediately following the estimation
update.

xc n(+e)  = The estimated error state vector xn(+e), but with the uncontrolled
components set to zero.
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From Equation (15.1.2-12) and (15.1.2-7), use of the (15.1.2.3-1) control law sets the

estimated components of x  to zero for the error states being controlled.  For the case when real
time constraints do not permit use of the idealized control reset, the delayed reset technique can
be applied using Kalman filter Equations (15.1.2-19) - (15.1.2-26).  Then based on the
discussion in Section 15.1.2, we would set:

uc n  =  - xc n-1(+e) (15.1.2.3-2)

Application of the (15.1.2.3-1) or (15.1.2.3-2) control laws to the system navigation
parameters consists of two steps; conversion of the control vector components to a form that is
directly representative of the navigation parameters in the system computer, then application of
the converted control vector to the navigation parameters (as in (15.1.2-11) or (15.1.2-19)).
Equation (15.1.2-12) with (15.1.2.3-1), or (15.1.2-22) with (15.1.2.3-2), would then be
processed so that the estimated error state vector reflects application of the control vector to the
navigation parameters.  Application of the control vector to the navigation parameters has been
described previously by the general non-linear Equation (15.1-5).  As in the previous section,
we now provide an illustrative example of the above control reset procedure.

Let us consider the δ  RINSH

N
, δ  ROTHH

E
, ψN

, δ  J, δ  l Stat
VRF

 error terms in Equation (15.1.2.2-30)

as components of the x error state vector, and that we choose to control δRINSH

N
, ψN

, and δJ in

the INS navigation parameters to zero.  Let us also assume that observation Equation

(15.1.2.2-6) with (15.1.2.2-7) is implemented in the INS computer so that lVRF is an accessible

navigation parameter.  Therefore, δ  l Stat
VRF

 is controllable by adjusting lVRF.  Let us further

assume that an input interface to the other navigation device is not available, hence, control of

δROTHH

E
 is not possible.  For this situation, the Equation (15.1.2.3-1) or (15.1.2.3-2) control

vector uc would be formed from the negative of the estimated δ  RINSH

N
, ψN

, δ  J, δ  l Stat
VRF

 error

state vector components.  The uc so formed would be utilized directly in Equation (15.1.2-12)

or (15.1.2-22) following application of the control vector to the navigation parameters (in
(15.1.2-11) or (15.1.2-19)) as outlined below.

Adopting the Equation (15.1.2.3-1) and (15.1.2.3-2) nomenclature, let us define the non-zero
elements of uc where:

δ  RINS/Hc

N
, ψc

N
, δ  Jc, δ   l Statc

VRF
  = Elements of uc used to control error state vector

components δ  RINSH

N
, ψN

, δ  J, δ  l Stat
VRF

 as prescribed b y

Equation (15.1.2.3-1) or (15.1.2.3-2).
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Application of the control vector to the J and lVRF parameters in Equations (15.1.2-11) or
(15.1.2-19) is trivial:

J(+c)  =  J(-) + δJc lVRF(+c)  =  lVRF(-) + δ  l Statc
VRF

 (15.1.2.3-3)

where

(-)  =  Designation for parameter value immediately preceding the control reset.

(+c)  =  Designation for parameter value immediately following the control reset.

Application of the δRINS/H c

N
, ψc

N
 controls is generally more involved because the

position/attitude navigation parameters may not be in a form that permits direct control
application.  For example, let us consider the case when the basic INS horizontal position

parameter is CN
E

 and the basic attitude parameter is CB
L

 (by integrating Equations (12.1-1) and

(12.1-10)).  We can also write:

CB
N

  =  CL
N

 CB
L

(15.1.2.3-4)

or upon inversion:

CB
L

  =  CL
N T

 CB
N

(15.1.2.3-5)

The errors in CB
N

 and CN
E

 are characterized from Equation (12.2.1-9) and (12.2.1-11) by:

δCN
E

  =  CN
E

 εN× (15.1.2.3-6)

δCB
N

  =  - γN×  CB
N

(15.1.2.3-7)

where

γN
  = Rotation angle error vector associated with the CB

N
 matrix considering the N

Frame to be misaligned, as projected on Frame N axes.

εN
  = Rotation angle error vector associated with the CN

E
 matrix considering the N

Frame to be misaligned, as projected on Frame N axes.

Because CL
N

 is constant, the differential of (15.1.2.3-5) with (15.1.2.3-7), (15.1.2.3-4) and

generalized Equation (3.1.1-39) gives for the error in CB
L

:
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δCB
L

  =  - CL
N T

 γN×  CL
N

 CB
L

  =  - γL×  CB
L

(15.1.2.3-8)

γL
  = CL

N T
 γN

(15.1.2.3-9)

Equations (15.1.2.3-6) and (15.1.2.3-8) - (15.1.2.3-9) show how the errors in CN
E

 and CB
L

can be calculated in terms of the εN
 and γL

 error parameters.  The εN
, γL

 terms can also be

interpreted as control correction parameters in which δCN
E

, δCB
L

 represent control corrections to

CN
E

, CB
L
 corresponding to εN

, γL
 control parameters.  The associated control application

equations would then be:

CN
E

(+c)  =  CN
E

(-) + δ  CN
E

  =  CN
E

(-) I +  εc
N

×
 

CB
L

(+c)  =  CB
L

(-) + δ  CB
L

  =  I -  γc
L

×  CB
L

(-)
(15.1.2.3-10)

with, from (15.1.2.3-9);

γc
L

  =  CL
N T

 γc
N

(15.1.2.3-11)

where

εc
N

, γc
N

  =  Control vector equivalents for adjusting CN
E

, CB
L

.

For the example problem with which we are dealing, the position/attitude control corrections

are represented by δRINS/H c

N
, ψc

N
 rather than the εc

N
, γc

N
 form.  Equivalency Equations

(12.2.1-17) and (12.2.3-25) provide the means for converting δRINS/H c

N
, ψc

N
 to the εc

N
, γc

N

application form:

εc
N

  =  
1
R

 uZNINS

N
 × δRINS/H c

N γc
N

  =  ψc
N

 + εc
N

(15.1.2.3-12)

Note in (15.1.2.3-12) that the approximation has been made of neglecting the vertical εZN term

in (12.2.3-25).

Equations (15.1.2.3-10) - (15.1.2.3-12) would be the means by which the position/attitude

control vector components δRINS/H c

N
, ψc

N
 would be applied to the INS position/attitude

navigation parameters CN
E

, CB
L

.  Note that Equations (15.1.2.3-10) represent first order accuracy
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forms which could produce second order orthogonality/normalization errors in CN
E

, CB
L

.  In

order to eliminate the orthogonality/normalization error effects, the following revised form of
(15.1.2.3-10) can be used based on Equations (7.1.1.2-1), (7.1.1.2-3), (7.3.1-6) and (7.3.1-8):

CB
L

(+c)  =  I - 
sin γc

γc

 γc
L

×  + 
(1 - cos γc)

γc
2

 γc
L

×
 2

 CB
L

(-)

 

CN
E

(+c)  =  CN
E

(-) I + 
sin εc

εc

 εc
N

×  + 
(1 - cos εc)

εc
2

 εc
N

×
 2

(15.1.2.3-13)

For a general Kalman filter application, all of the Equations (12.5.1-1) navigation error terms
might be included as error states.  Then the associated error state vector would be of the form:

x  =  ψN T
, δVN T

, δRN T
, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

  T
(15.1.2.3-14)

The associated uc control vector calculated from error state vector estimates would then be:

uc  =  ψc
N T

, δVc
N T

, δRc
N T

, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
  T

(15.1.2.3-15)

Assuming that the INS navigation parameters are integrated in N Frame coordinates (e.g.,
Equations (12.1-1) - (12.1-12)), the (15.1.2.3-15) control vector components must first be
converted to an equivalent compatible form for application to the INS “foreground” navigation
parameters.  The term “foreground” is frequently applied to represent the basic navigation
integration operations in an INS that are executed to calculate the fundamental INS navigation

parameters (i.e., the ξINS term in Equation (15.1-3)).  We will continue to use the term

“foreground” in this section based on this meaning.  Using equivalency Equation (12.2.3-25),

we approximate the foreground CN
E

 position matrix control reset angle as in (15.1.2.3-12):

εc
N

  =  
1
R

 uZN
N

 × δRc
N

(15.1.2.3-16)

Note in (15.1.2.3-16) that the approximation has been made of neglecting the vertical εZN term

in (12.2.3-25).  This is because εZN is not definable from the selected (15.1.2.3-14) error states,

hence, we represent it as zero in the control reset formulation.  As we shall see subsequently,
this simplification has absolutely no detrimental impact whatsoever in achieving the desired
goal of resetting the selected (15.1.2.3-14) error states in accordance with (15.1.2.3-15) when
applying the foreground navigation parameter corrections.
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Using (15.1.2.3-16) and equivalency Equations (12.2.1-17), (12.2.2-5) and (12.2.3-26), the

foreground CB
N

 attitude matrix, vN velocity and h altitude foreground control signals are

obtained from the (15.1.2.3-15) components of uc:

γc
N

  =  ψc
N

 + εc
N

(15.1.2.3-17)

δvc
N

  =  δVc
N

 - εc
N

 × vN (15.1.2.3-18)

δ hc  =  uZN
N

 ⋅ δ Rc
N

 (15.1.2.3-19)

Applying (15.1.2.3-16) - (15.1.2.3-19) to the foreground parameters using (15.1.2.3-11) and
(15.1.2.3-13) for the matrix controls then obtains:

γc
L

  = CL
N T

 γc
N

CB
L

(+c)  =  I - 
sin γc

γc

 γc
L

×  + 
(1 - cos γc)

γc
2

 γc
L

×
 2

 CB
L

(-)

vN(+c)  =  vN(-) + δvc
N

(15.1.2.3-20)

CN
E

(+c)  =  CN
E

(-) I + 
sin εc

εc

 εc
N

×  + 
(1 - cos εc)

εc
2

 εc
N

×
 2

h(+c)  =  h(-) + δhc

We now demonstrate, as previously stipulated, that application of control Equations
(15.1.2.3-16) - (15.1.2.3-20) provides an accurate reset of the navigation error states in

(15.1.2.3-14).  For example, consider the ψN
 attitude error state vector component.  We know

from equivalency Equation (12.2.1-17) that:

ψN
  =  γN

 - εN
(15.1.2.3-21)

from which:

ψN
(+c)  =  γN

(+c) - ε
N

(+c) (15.1.2.3-22)

ψN
(-)  =  γN

(-) - εN
(-) (15.1.2.3-23)

We can also write the differential form of the (15.1.2.3-20) foreground controls as:
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γN
(+c)  =  γN

(-) + γc
N

(15.1.2.3-24)

εN
(+c)  =  εN

(-) + εc
N

(15.1.2.3-25)

Substituting (15.1.2.3-24) - (15.1.2.3-25) into (15.1.2.3-22), applying (15.1.2.3-17) for γc
N

, and

then substituting ψN
(-)  from (15.1.2.3-23) shows that:

ψN
(+c)  =  γN

(-) + γc
N

 - εN
(-) + εc

N

=  γN
(-) + ψc

N
 + εc

N
 - εN

(-) + εc
N

(15.1.2.3-26)

=  γN
(-) - εN

(-) + ψc
N

  =  ψN
(-) + ψc

N

Thus, execution of the stipulated γc
N

, εc
N

 controls to the foreground achieves the goal of

completely resetting ψN
 as specified.

Performing the same analysis for the velocity and position controls we first find from
(12.2.2-5) and (12.2.3-24):

δVN  =  δvN + εN
 × vN

 

δRN  =  R εN
 × uZN

N
 + δh uZN

N
(15.1.2.3-27)

whence:

δVN(+c)  =  δvN(+c) + εN
(+c) × vN

δVN(-)  =  δvN(-) + εN
(-) × vN

 

δRN(+c)  =  R εN
(+c) × uZN

N
 + δh(+c) uZN

N
(15.1.2.3-28)

δRN(-)  =  R εN
(-) × uZN

N
 + δh(-) uZN

N

The differential form of the (15.1.2.3-20) foreground velocity and altitude controls is:

δvN(+c)  =  δvN(-) + δvc
N

 

δh(+c)  =  δh(-) + δhc

(15.1.2.3-29)

Combining (15.1.2.3-16), (15.1.2.3-28) - (15.1.2.3-29), (15.1.2.3-25) and (15.1.2.3-18) -
(15.1.2.3-19) then shows (upon using the (3.1.1-16) vector triple cross product identity) that:
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δVN(+c) =  δvN(-) + δvc
N

 + εN
(-) + εc

N
 × vN

=  δvN(-) + δVc
N

 - εc
N

 × vN  + εN
(-) + εc

N
 × vN

=  δvN(-) + εN
(-) × vN + δVc

N
  =  δVN(-) + δVc

N

(15.1.2.3-30)

δRN(+c)  =  R εN
(-) + εc

N
 × uZN

N
 + δh(-) + δhc  uZN

N

=  R εN
(-) × uZN

N
 + δ h(-) uZN

N
 +R 

1
R

 uZN
N

 × δ Rc
N

 × uZN
N

 + uZN
N

 ⋅ δ Rc
N

 uZN
N

 

=  R εN
(-) × uZN

N
 + δ h(-) uZN

N
 + δ Rc

N
 - uZN

N
 ⋅ δ Rc

N
 uZN

N
 + uZN

N
 ⋅ δ Rc

N
 uZN

N
 

=  δRN(-) + δRc
N

Thus, execution of the stipulated εc
N

, δvc
N

, δhc controls to the foreground achieves the goal of

completely resetting δVN, δRN as specified.

15.1.2.3.1  Navigation Error Reduction By External Correction

For situations when resetting navigation parameters is not permitted, navigation error
corrections can be achieved by setting the control vector to zero in (15.1.2-10) - (15.1.2-12) or
(15.1.2-19), (15.1.2-22), (15.1.2-25), and correcting the navigation outputs.  For the example in
the previous section, Equations (15.1.2.3-10) or (15.1.2.3-13) would be implemented as an
output function, vis. (for (15.1.2.3-13)):

CBOut

L
  =  I - 

sin γc

γc

 γc
L

×  + 
(1 - cos γc)

γc
2

 γc
L

×
 2

 CB
L

 

CNOut

E
  =  CN

E
 I + 

sin εc

εc

 εc
N

×  + 
(1 - cos εc)

εc
2

 εc
N

×
 2

(15.1.2.3.1-1)

where

CNOut

E
, CBOut

L
  = Corrected forms of CN

E
, CB

L
 used for calculating position and attitude

output parameters.
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The basic CN
E

, CB
L
 parameters in the INS computer would not be adjusted by this process,

hence, would continue to contain error as represented in the Kalman filter estimated error state
vector.

15.1.2.4 TIMING AND SYNCHRONIZATION OF THE OBSERVATION/
MEASUREMENT AND KALMAN FILTER CYCLE

For the Kalman filter configurations in the ideal control reset format (Equations (15.1.2-6) -
(15.1.2-13)) and in the delayed reset format (Equations (15.1.2-19) - (15.1.2-26)), we have
implicitly assumed that the observation/measurement is taken and the controls applied at the
same time instant tn (i.e., the start of the Kalman filter nth computation cycle).  In many
applications, the control cannot be applied precisely at the observation/measurement time due to
time delay from when the control message is issued by the Kalman filter until it is received and
applied (particularly for controls applied to external aiding devices).  For measurements taken
from an external aiding device, the data from the aiding device, although sampled at a specified
time point, may have a “time stamp” (i.e., time for which the data corresponds) that is earlier
than the sample time.  Additionally, Section 15.1.2 (following Equation (15.1.2-28)) discusses
a variation to the delayed control reset method (for improved control reset accuracy) in which
control application is delayed until the state transition matrix is calculated and the control vector
has been propagated to the last (most recent) Kalman cycle time.  For simplicity, the latter
variation will not be included in this section’s discussion.  The following discussion will be
based on the assumption that the Kalman filter resides within the INS computer, hence, has
immediate access to INS navigation data parameters.

To avoid the possibility of Kalman filter performance degradation (and potential instability),
it is important that the Kalman filter model accurately reflects the actual time that the controls
are applied, that the Kalman observation ZObsn (Equation (15.1-3)) be formed from a

comparison between INS and aiding device parameters (ξINS and ξAid) with corresponding

time stamps, and that the Kalman measurement model is based on the observation time stamp.
Since the INS parameters at the Kalman data sample time generally have a time stamp equal to
the sample time (assuming regular high frequency INS parameter updating), the time stamp for

the ξINS and ξAid sampled data will generally not correspond, with the ξINS time stamp being

at a later time.  In order to create time stamp correspondence, two alternatives are possible;

extrapolating the ξAid data to the ξINS time stamp, or interpolating the ξINS data to the ξAid

time stamp.  The extrapolation method may seem appealing because it results in data
correspondence at the computer specified sample time, which can then be synchronized to occur
at the Kalman cycle time.  Then Kalman filter Equations (15.1.2-19) - (15.1.2-26) could be

applied to the observation formed from the sampled ξINS and extrapolated ξAid data.
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Unfortunately, extrapolation of ξAid data is typically a noisy process, hence, would generally
introduce unacceptable measurement noise into ZObsn.  Therefore, the interpolation method is

preferred in which a past saved ξINS data time history is interpolated to the ξAid time stamp

once the time stamp is known at the ξAid sample time.  This typically involves saving an INS

data time history in a past time window that is as long (in time) as the maximum anticipated

time difference (latency) from the ξAid data time stamp to the ξAid data sample time.  Because

INS data is typically relatively noise free, and because interpolation is generally a smoothing

process, forming ZObs from ξAid and interpolated ξINS data results in an observation vector
with relatively low measurement noise.  However, ZObs now has a time stamp corresponding

to the sampled ξAid time stamp, a time in the past, and a time which can vary from

measurement to measurement.

To accommodate the interpolation form of the observation and to allow for latency from the
time that control commands are issued to the time they are received and applied, the Kalman
filter structures described in Section 15.1.2 must be revised.  For example, consider the
reformulated Kalman filter configuration represented by the following calculations in the
sequence shown:

At tn+s, Sample INS Saved Data History And
   Aiding Device Data For The Kalman Filter

(15.1.2.4-1)

ZObs n  =  f (ξINSn, ξAidn) Based On Interpolated Saved Data (15.1.2.4-2)

xn-1+c(-)  =  Φn-1+c, n-1 xn-1(+e) (15.1.2.4-3)

xn-1+c(+c)  =  xn-1+c(-) + uc n-1+c (15.1.2.4-4)

xn(-)  =  Φn, n-1+c xn-1+c(+c) (15.1.2.4-5)

zn  =  Hn xn(-) (15.1.2.4-6)

xn(+e)  =  xn(-) + K n ZObs n - zn (15.1.2.4-7)

uc n+c  =  function of xn(+e) (15.1.2.4-8)

At tn+u, Transmit Control Vector And Its Specified
Application Time ( tn+c) To Aiding Device

(15.1.2.4-9)
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ξINSn+c(+c)  =  ξINSn+c(-) + gINS  ξINSn+c(-), uc n+c
 

ξAidn+c(+c)  =  ξAidn+c(-) + gAid  ξINSn+c(-), uc n+c

(15.1.2.4-10)

x0  =  0 (15.1.2.4-11)

where

n  = Kalman filter cycle time index which is now defined to correspond in time with

the ξAid time stamp.

n+s  = Subscript indicating the time point following tn (the ξAid time stamp) that data
for the Kalman filter is sampled.

n+u  = Subscript indicating the time point following tn+s (the Kalman filter data sample
time) that the n cycle Kalman filter computations are completed including the
last step of calculating the control vector u c.

n+c  = Subscript indicating the time point following tn+u that the control vector is
applied.

n-1+c  = Subscript indicating the time point following tn-1+s (the previous ξAid sample
time) that the control vector was applied.

Φn-1+c, n-1  = State transition matrix that propagates the error state vector from time
tn-1 to the following control time tn-1+c.

Φn, n-1+c  = State transition matrix that propagates the error state vector from the tn-1+c
control time to tn.

Equations (15.1.2.4-1) - (15.1.2.4-11) represent a revised form of delayed reset equations
(15.1.2-19) - (15.1.2-26) that explicitly account for observation/measurement interpolation and
associated delayed control resets.  In particular, the data sampling, control transmission and
control application times (tn+s, tn+u, and tn+c) in Equations (15.1.2.4-1) - (15.1.2.4-11) are now
defined to occur at three distinct time points (no longer at the same time instant).  Note, also,
that sampling of the Kalman filter input data in Equation (15.1.2.4-1) and applying the controls
in Equations (15.1.2.4-10) are the only operations in Equations (15.1.2.4-1) - (15.1.2.4-11) that
have to be performed “instantaneously” in real time.  The remainder of the computations,
including calculation of the observation vector and the Kalman gain for Equation (15.1.2.4-7) as
prescribed in Section 15.1.2.1, can be performed leisurely in the order indicated for completion
by the next sample time.  With such an organization, the sample time can be defined to occur
after completion of Kalman processing and control operations.

The control vector uc for (15.1.2.4-10) and (15.1.2.4-4) is computed following Kalman
update operations based on the value for the estimated error state vector at the last measurement
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time stamp (i.e., the current Kalman n cycle start time).  Note in Equation (15.1.2.4-9) that the
future control application time (tn+c) is transmitted with the control vector uc.  This allows the
Kalman filter to specify the control time, including allowances to accommodate potential time
delay from when the control message is sent to when it is received and applied.  The net result
is that u c will be applied precisely at the Kalman specified tn+c in accordance with the Equation
(15.1.2.4-4) model.

Equation (15.1.2.4-2) for the observation is based on interpolating the INS data to the past
aiding device time stamp (as described previously) which, by definition, is also the Kalman
filter cycle time n.  Implementation of Equations (15.1.2.4-1) - (15.1.2.4-10) in the order
indicated is only possible through the saved past INS data interpolation process used to form
the observation (and state transition and process noise matrices as discussed above).  To assure
accurate interpolation for any aiding device time stamp, it is important that INS data save
operations be initiated following the previous specified control vector application time tn-1+c (to
avoid the presence of control reset transients in the data set used for interpolation), and the saved
INS data time window must be longer than the maximum potential latency in the aiding device
time stamp.  Accurate interpolation to any past aiding device time stamp is thereby assured.

Equations (15.1.2.4-3) - (15.1.2.4-6) reflect the effect of the control reset operation at tn+c on
error state vector propagation from n-1 to n-1+c to n, and forming the observation vector at

cycle time n.  Calculation of the Φn-1+c, n-1  and Φn, n-1+c  matrices for Equations (15.1.2.4-3)
and (15.1.2.4-5) can be performed (as in Section 15.1.2.1.1.1) by m cycle propagation from n-1
to n-1+c and from n-1+c to n.  The method would be as follows.  We first define the running
error state dynamic matrix integral from the start of Kalman filter operations:

IA(t)  ≡  A(t) dt
0

t

(15.1.2.4-12)

and then note from (15.1.2.1.1.1-12) that:

ΔΦm  ≡  A(t) dt
tm - 1

tm

  =  IA(tm) - IA( tm-1) (15.1.2.4-13)

Equation (15.1.2.4-13) shows how ΔΦm can be calculated as the difference between the m-1

and m values of the running integral IA(t).  The ΔΦm term is used in Equations

(15.1.2.1.1.1-11) and (15.1.2.1.1.1-1) to calculate the Φn state transition matrix by propagation

across m cycles.  The same method can be used to calculate Φn-1+c, n-1  and Φn, n-1+c , except
that the m cycle propagations would be from the previous Kalman cycle time tn-1 (i.e., the
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aiding device previous output data time stamp) to the previous control time (tn-1+c), and from

tn-1+c to the current Kalman cycle time tn.  Using the (15.1.2.4-13) structure to compute ΔΦm,

the IA(tm) terms used would be calculated at specified fixed time interval m cycle points
between Kalman cycles, and at the tn Kalman cycle times (the tn-1+c time point would be
specified to occur on an m cycle).  The IA(tn) Kalman cycle value would be calculated from
saved IA(t) data that was sampled at the n+s sample time, then interpolated to tn, the aiding
device output data time stamp (i.e., the same process used for interpolating the INS data in

forming the observation vector).  Once Φn-1+c, n-1  and Φn, n-1+c  are evaluated by this method,

the Φn matrix for error state uncertainty covariance propagation (e.g., Equation

(15.1.2.1.1.3-37)) can be calculated from (15.1.1-10) as:

Φn  =  Φn, n-1+c Φn-1+c, n-1 (15.1.2.4-14)

If the more elaborate m cycle P covariance and x error state vector propagation approach is
required as discussed in Section 15.1.2.1.1.3 (e.g., Equations (15.1.2.1.1.3-28) -
(15.1.2.1.1.3-31)), the previous technique can also be applied to the Equation (15.1.2.1.1.3-21)
terms, vis.:

ΔΦλλm  ≡  IA(tm) - IA(tm-1)           IA(t)  ≡  A(t) dt
0

t

ΔΦλym  ≡  IQ(tm) - IQ(tm-1)           IQ(t)  ≡  GP (t) Q P Dens(t) GP (t)T dt  
0

t
(15.1.2.4-15)

With Equations (15.1.2.4-15), the IA(tm) and IQ(tm) would be calculated at specified m cycle
time points between Kalman cycles, and at the tn Kalman cycle times.  The IA(tn), IQ(tn) values
would be calculated from saved IA(t), IQ(t) data that was sampled at the n+s sample time, then
interpolated to the aiding device time stamp.

15.1.3  SUBOPTIMAL KALMAN FILTERS

The general Kalman filter configurations discussed in Section 15.1.2 were based on the
implied assumption that analytical models for the error states accurately characterize the effects
present on the input observation vector.  In a practical Kalman filter design, the analytical
models for error state propagation, estimation, control and measurement are approximations to
the true error state dynamics (known as the “real world” model).  The principal reason that
approximations are used is to reduce the dimensionality of the error state vector to minimize
computer throughput associated with Kalman filter matrix computational operations.  Thus, we
find, for example, that the error states included in the Kalman filter are only those that have
significant impact on Kalman filter performance objectives.  Nevertheless, the computed gain
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matrix is still based on the “optimal” form of Equation (15.1.2.1-28).  Because of
approximations in the error state vector dynamic and measurement models (including the
linearization process used in the error model development that neglects second order error
effects), the performance of the actual Kalman filter will be less accurate than if the exact “real
world” model was utilized.  Thus, the performance will be sub-optimum, hence, the actual filter
based on the approximate model is known as a “sub-optimal” Kalman filter.

The first step in the design of a Kalman filter is to write the error state dynamic and
measurement equations for the “real world” model.  Note, that even the “real world” model is
not the actual true world model due to the limited knowledge of the design analyst regarding all
pertinent error effects and their analytical formulation.  Once the “real world” model is defined,
the associated “optimal” Kalman filter configuration is evaluated by simulation of the real
world with the Kalman gains based on the real world model.  The “optimal” performance
results so obtained then serve as a reference from which to judge “sub-optimal” filter
performance based on the approximate error-state/measurement model.  The Kalman filter
design process, thereby, becomes a “cut-and-try” operation in which the approximate model is
iteratively adjusted, then tested, until the achieved sub-optimal performance is reasonably close
to the ideal optimal performance.  The simulation program used in the design iteration process
is based on covariance error analysis techniques (as described in Section 16.2.7), which
generally provides sensitivity outputs that help the designer identify the dominant terms
affecting Kalman filter performance.  Use of the sensitivity data provides a basis for
modifications to the approximate error-state/measurement model for improved Kalman filter
performance.

Some of the techniques used to simplify the error state dynamic/measurement model for the
suboptimal Kalman filter include error state reduction, approximating neglected error states by
process noise, approximating the integrated coupled process noise matrix as a constant, and
truncation of the state transition and integrated coupled process noise matrix expansion series.
Added process noise is also used at times to approximately account for second order error
effects in the Kalman filter error model.  In the “considered variable” approach (Section
15.1.2.1.1 following Equation (15.1.2.1.1-4)), suboptimal performance is the result of
intentionally not estimating certain error states (by zeroing their rows in the Kalman gain
matrix), while still accounting for their presence in the Kalman filter covariance matrix (used in
cases when there is sufficient uncertainty in the error state dynamics that estimation
implementation may be too inaccurate).  An important rule to bear in mind during the design
process is that error states to be included are those that significantly affect the measurement (i.e.,
error states that are “observable”).  Not including such error states can result in mis-estimating
error states that have been included in the filter’s error state model (due to “filter
misinterpretation” of measurement data input signatures).  On the other hand, if two error states
have identical dynamic signatures on the measurement, including both as separate error states
can lead to mis-estimating each (also classified as an “observability” problem).  In this case, a
combined error state is sometimes incorporated in which one error state is used to represent the
combined effect of both error states.  In some cases, it may be desired to estimate certain error
states that may not have good individual observability under normal operating conditions.
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Intentional maneuvers can be introduced in such cases to enhance observability so that these
error effects can be more quickly estimated (e.g., the transfer alignment problem discussed in
Section 15.2.2).

In the final analysis, previous experience and a good understanding of error state propagation
characteristics are important factors for the Kalman filter designer to assure a successful and
expeditious Kalman filter design process.

15.1.4  KALMAN FILTER SOFTWARE VALIDATION

Although a Kalman filter is generally a complex software package, its validation process can
be fairly straight-forward because of its fundamental underlying structure.  The Kalman filter
elements are well defined analytically and can be validated individually based on their intrinsic
properties.  Once the elements are validated, the proper operation of the filter is assured through
its theoretical structure.

As an example, consider the following operations that can be performed using specialized
test simulators for validating the Kalman filter algorithms defined by Equations (15.1.2-6) -
(15.1.2-13):

• The state transition matrix Φn, measurement zn, and observation ZObsn algorithms can

be validated by operating Equations (15.1.2-6) - (15.1.2-13) “open loop” (i.e., setting

the Kalman gain Kn and control vector u c to zero) using simulators for ξINSn
   and

ξAidn
 .  The ξINSn simulator would consist of the strapdown inertial navigation

algorithms upon which Φn is based.  The ξAidn
  simulator would be built onto a

previously validated trajectory generator (e.g., Chapter 17); the trajectory generator

would also provide the strapdown inertial sensor inputs to ξINSn
  .  The Kalman filter

error state vector xn components would be initialized to some arbitrary non-zero value;

the same error values would be inserted into the ξINSn
  , ξAidn

  parameters.  Under these

conditions, the Kalman filter measurement zn calculated with (15.1.2-8) should track the
observation vector ZObsn computed with (15.1.2-6), resulting in a zero value for the

measurement residual ZObsn - zn (within the fundamental linearization error in zn).  A

zero measurement residual validates the Φn, zn and ZObsn algorithms and associated

timing structure in the simulation implementation.

• The covariance propagation algorithm (with process noise set to zero) can be validated
as part of the previous process by initially setting the covariance matrix equal to the
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arbitrarily defined xn error state vector times its transpose.  The covariance matrix would

then be propagated without resets using the Equation (15.1.2.1.1-12) algorithm or a
Section 15.1.2.1.1.3 equivalent.  The propagated covariance matrix should then equal the
propagated error state vector times its transpose.

• The algorithms for calculating the Kalman gain matrix Kn and resetting the covariance
matrix can be validated by comparing the covariance reset algorithm output with the
output from an equivalent alternative algorithm based on the analytical form of Kn (e.g.,
the Equation (15.1.2.1.1-1) Joseph’s form compared with the Equation (15.1.2.1.1-4)
optimal form).  The results should be identical.

• The basic estimation capability of the Kalman filter can be validated by disabling the

control vector (setting uc to zero) and allowing the Kalman filter to estimate xn in the

presence of selected values for the error state components initially imbedded in ξINSn

and ξAidn
 .  For this test, the process and measurement noise matrices in the Kalman

filter covariance propagation/reset routines would be set to zero to heighten sensitivity
(and better account for the error condition being simulated).

• Kalman filter estimation capability in the presence of process and measurement noise
can be validated by repeating the previous test, but with random noise (from a software
noise generator at the Kalman filter specified white noise source amplitudes) applied

appropriately to the ξINSn
  , ξAidn

  models (for process noise) and to the ZObsn routine

(for measurement noise).  The Kalman filter process and measurement noise matrices
would also be active for this test.  In parallel, a “truth model” error state vector history
would be generated using the same noise and initial conditions applied to a simulated
version of error state dynamic Equation (15.1-1).  The uncertainty in the Kalman filter
estimated error state vector is evaluated by comparing the filter error state vector
estimate with the “truth model” error state vector.  Repeated runs with different random
noise generator initial “seeds” provides an ensemble history of the error state
uncertainty.  The ensemble average of the uncertainty times its transpose (at common
time points) should match the corresponding filter covariance matrix history.

• The control vector uc interface in control reset Equations (15.1.2-11) and (15.1.2-12)
can be validated by assigning an arbitrary value to uc and applying it to the previous
equations.  If the control reset equations and the measurement/observation algorithms

are consistent, the measurement residual ZObsn - zn should be unaffected by the control

reset application.
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15.1.5  SUPPLEMENTARY TOPICS

In this section we will develop some additional fundamental material that can be generally
useful in deriving analytic solutions to Kalman filter estimation problems.  The principal results
from this section form the basis for the analytical solutions developed in Chapter 14, Section
14.6 for the quasi-stationary fine alignment Kalman filter.

The additional fundamental background material to be presented derives a continuous form
Kalman filter error covariance propagation/reset equation based on an alternate form of the
Kalman gain equation (derived using the so-called “matrix inversion lemma”).  A general
solution to the continuous Kalman filter equation is then developed based on the solution
approach outlined in Reference 6, Section 4.6.

15.1.5.1  THE MATRIX INVERSION LEMMA

The matrix inversion lemma states that:

A-1 + BT C -1 B
 -1

  =  A - A BT C + B A BT  -1
 B A (15.1.5.1-1)

or equivalently:

A-1 + BT C -1 B  A - A BT C + B A BT  -1
 B A   =  I (15.1.5.1-2)

where

A, C  =  Square non-singular matrices (i.e., non-zero determinant).

B  =  An arbitrary matrix of appropriate dimensions.

To prove the validity of Equation (15.1.5.1-2) we first expand the left side as:

A-1 + BT C -1 B  A - A BT C + B A BT  -1
 B A

 

           =  I - BT C + B A BT   -1
 B A + BT C-1 B A

                  - BT C-1 B A BT C + B A BT  -1
 B A

(15.1.5.1-3)

where

I  =  Identity matrix.

The farthest right term in (15.1.5.1-3) can be further expanded as follows:

BT C -1 B A BT C + B A BT  -1
 B A

=  BT C -1 - C + C + B A BT  C + B A BT  -1
 B A (15.1.5.1-4)

=  - BT C + B A BT  -1
 B A + BT C -1 B A
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Substituting (15.1.5.1-4) into (15.1.5.1-3) shows that (15.1.5.1-3) equals I which proves
(15.1.5.1-2) (and (15.1.5.1-1)).

15.1.5.2  ALTERNATE KALMAN GAIN EXPRESSION

The basic equation for the Kalman gain is given by (15.1.2.1-28) repeated below:

K n  =  Pn(-) Hn
T

 Hn Pn(-) Hn
T

 + GM n Rn GM n

T  -1
 (15.1.5.2-1)

where

n  =  Subscript indicating value for parameter at Kalman filter computer cycle n.

K  =  Kalman gain matrix.

P(-)  = Error state covariance matrix immediately prior to processing the measurement.

H  =  Measurement matrix.

GM  =  Measurement noise dynamic coupling matrix.

R  =  Covariance matrix of independent measurement noise sources.

An alternative form for Kn can be developed using the (15.1.5.1-1) matrix inversion lemma

with A, B and C identified as P, H and GM R GM
T

 respectively:

P -1 + HT GM R GM
T  -1

 H
 -1

  =  P - P HT GM R GM
T

 + H P HT  -1
 H P (15.1.5.2-2)

Multiplying (15.1.5.2-2) by HT GM R GM
T  -1

 finds with expansion:

P -1 + HT GM R GM
T  -1

 H
 -1

 HT GM R GM
T  -1

=  P - P HT GM R GM
T

 + H P HT  -1
 H P  HT GM R GM

T  -1

=  P HT GM R GM
T  -1

 - P HT GM R GM
T

 + H P HT  -1
 H P HT GM R GM

T  -1
(15.1.5.2-3)

=  P HT GM R GM
T  -1

- P HT H P HT + GM R GM
T  -1

 H P HT + GM R GM
T

 - GM R GM
T

 GM R GM
T  -1

=  P HT H P HT + GM R GM
T  -1



15-70     KALMAN FILTERING TECHNIQUES

Augmenting the (15.1.5.2-3) result with n subscripts and (-) designation for P then, upon
comparison with (15.1.5.2-1, obtains an alternative equivalent expression for the Kalman gain:

K n  =  Pn(-) -1 + Hn
T

 GM n Rn GM n

T  -1
 Hn

 -1
 Hn

T
 GM n Rn GM n

T  -1
 (15.1.5.2-4)

15.1.5.3  THE CONTINUOUS FORM KALMAN FILTER

The following sections derive the covariance and error state vector propagation/reset
differential time rate equations for a continuous form Kalman filter that matches the
performance characteristics of the conventional discrete Kalman filter discussed previously.
The method will be to first present the equations for a hypothetical discrete Kalman filter having
an update rate (m cycle) that is faster than the discrete filter (at n cycle rate) we are attempting to
match.  The continuous filter is then determined by letting the m cycle filter update time period
go to zero in the limit.  In the process, equivalencies will be developed for the noise parameters
in the continuous filter compared to the conventional discrete n cycle Kalman filter to achieve
equivalent performance.

15.1.5.3.1  Covariance Propagation/Reset Rate Equation

Consider a Kalman filter operating at a faster cycle time than the n cycle rate.  The error state
covariance propagation/reset equations for the faster filter are from (15.1.2.1.1-4) and
(15.1.2.1.1-12):

Pm(-)  =  Φm Pm-1(+) Φm
T

 + Qm
 

Pm(+)  =  Pm(-) - KFstm Hm Pm(-)
(15.1.5.3.1-1)

where

m  =  Subscript indicating values for the parameters at the faster filter m cycle rate.

P(-), P(+)  = Error state covariance matrix immediately before (-) and immediately
after (+) processing the measurement.

Φ  =  Error state transition matrix.

Q  =  Integrated process noise covariance matrix.

KFst  =  Kalman gain matrix for the faster Kalman filter.

Let us define the following:

ΔPΦQm  ≡  Φm Pm-1(+) Φm
T

 + Qm - Pm-1(+)
 

ΔPKm  ≡  - KFstm Hm Pm(-)
(15.1.5.3.1-2)
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where

ΔPΦQm, ΔPKm  = Change in P over cycle m caused by P propagation (ΔPΦQm) and

Kalman reset (ΔPKm).

From the ΔPΦQm, ΔPKm
  definitions, we see from (15.1.5.3.1-1) that:

Pm(-)  =  Pm-1(+) + ΔPΦQm Pm(+)  =  Pm(-) + ΔPKm (15.1.5.3.1-3)

or in combination:

Pm(+)  =  Pm-1(+) + ΔPΦQm + ΔPKm (15.1.5.3.1-4)

The total change in P over an m cycle is given by:

Pm(+) - Pm-1(+)  =  ΔPΦQm + ΔPKm (15.1.5.3.1-5)

For the Kalman gain matrix in the (15.1.5.3.1-2) ΔPKm expression, we use the alternative

(15.1.5.2-4) form:

K Fstm  =  Pm(-) -1 + Hm
T

  GM m R Fstm GM m

T
 

 -1
 Hm

 -1
 Hm

T
 GM m R Fstm GM m

T
 

 -1
 (15.1.5.3.1-6)

where

Fst  = Designation for parameter value associated with the m cycle faster Kalman filter.

RFstm  = Covariance matrix of independent measurement noise sources associated with
the m cycle faster Kalman filter measurement.  We anticipate the m cycle
measurement noise RFst to be different from, though related to, the n cycle
measurement noise R.

We substitute (15.1.5.3.1-6) into the (15.1.5.3.1-2) ΔPKm
  expression and expand:

ΔPKm  =  - Pm(-) -1 + Hm
T

  GM m R Fstm GM m

T
 

 -1
 Hm

 -1
 Hm

T
 GM m R Fstm GM m

T
 

 -1
 Hm Pm(-)

=  - Pm(-) -1 + Hm
T

  GM m R Fstm GM m

T
 

 -1
 Hm

 -1
 - Pm (-) -1  

 
(15.1.5.3.1-7)

            + Pm(-) -1 + Hm
T

 GM m R Fstm GM m

T
 

 -1
 Hm  Pm(-)

(Continued)
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=  - Pm (-) + Pm (-) -1 + Hm
T

 GM m R Fst m GM m

T  -1
 Hm

 -1
 

=  - Pm (-) + Pm (-) -1 I + Pm (-) Hm
T

 GM m R Fstm GM m

T
 

 -1
 Hm

 -1
 

(15.1.5.3.1-7)
(Continued)

=  I + Pm (-) Hm
T

 GM m R Fstm GM m

T
 

 -1
 Hm

 -1
 - I  Pm (-)

Post-multiplying the (15.1.5.3.1-7) result by Pm(-)  -1 and rearranging yields:

I + ΔPKm Pm (-) -1  =  I + Pm (-) Hm
T

 GM m R Fstm GM m

T
 

 -1
 Hm

 -1
 (15.1.5.3.1-8)

or taking the inverse:

I + ΔPKm Pm (-) -1  -1
  =  I + Pm (-) Hm

T
 GM m R Fstm GM m

T
 

 -1
 Hm (15.1.5.3.1-9)

We now make the approximation that for the short m cycle time,  ΔP  K  m
   will be small

compared to Pm(-) , hence, ΔPKm Pm (-) -1
  will be small compared to the identity matrix I.  Then

by truncated binomial series expansion we can approximate:

I + ΔP Km Pm  (-) -1
 

 -1
  ≈  I - ΔP Km Pm  (-) -1 (15.1.5.3.1-10)

with which (15.1.5.3.1-9) becomes:

ΔPKm Pm (-) -1  ≈  - Pm (-) Hm
T

 GM m R Fstm GM m

T
 

 -1
 Hm (15.1.5.3.1-11)

or

ΔPKm  ≈  - Pm (-) Hm
T

 GM m R Fstm GM m

T
 

 -1
 Hm Pm (-) (15.1.5.3.1-12)

Equation (15.1.5.3.1-12) is equivalently:

ΔPKm  =  - Pm (-) Hm
T

 GM m R Fstm Tm GM m

T
 

 -1
 Hm Pm (-) Tm (15.1.5.3.1-13)

We define:

R♦
m  ≡  R Fstm Tm (15.1.5.3.1-14)

with which (15.1.5.3.1-13) becomes:
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ΔPK m  =  - Pm (-) Hm
T

 GM m R♦
m GM m

T
 

 -1
 Hm Pm (-) Tm (15.1.5.3.1-15)

where

Tm  =  Time period for the m Kalman filter propagation/update cycle.

R♦  =  High speed Kalman filter equivalent measurement noise matrix.

Equation (15.1.5.3.1-15) can be used to establish an approximate equivalency relationship

between R♦
m and Rn, the discrete n cycle Kalman filter measurement noise matrix.  The

equivalency is obtained by summing (15.1.5.3.1-15) over an n cycle and setting the result to the

equivalent ΔPK obtained from the n cycle filter based on the same approximations (using
(15.1.5.3.1-12) with m = n and RFst = R):

ΔPKn  =  ΔPKm∑
m = 1

r

  =  - Pm (-) Hm
T

 GM m R♦
m GM m

T
 

 -1
 Hm Pm (-) Tm∑

m = 1

r

 

                                    =  - Pn (-) Hn
T

 GM n Rn GM n

T
 

 -1
 Hn Pn (-) (15.1.5.3.1-16)

where

r  =  Number of m cycles in an n cycle.

Over the tn-1 to tn time interval, we then approximate:

Pm(-)  ≈  Pn(-) (15.1.5.3.1-17)

and set:

From tn-1 To tn:
 

GM m  =  GMn          Hm  =  Hn          R♦
m  =  Constant  ≡  R♦

n

(15.1.5.3.1-18)

Then, recognizing that r Tm = Tn , where

Tn  =  Time period for the n Kalman filter propagation/update cycle.

Equation (15.1.5.3.1-16) becomes:

Pn(-) Hn
T

 GM n R♦
n GMn

T  -1
 Hn Pn(-) r Tm

=  Pn(-) Hn
T

 GM n 
R♦

n

Tn
 GM n

T
 -1

 Hn Pn(-) (15.1.5.3.1-19)

=  Pn(-) Hn
T

 GM n Rn GM n

T
 

 -1
 Hn Pn(-)
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Equation (15.1.5.3.1-19) yields the approximate equivalency relationship between R♦ and R
from which we see that:

R♦
n  =  Rn Tn (15.1.5.3.1-20)

Returning to our original task of developing the continuous Kalman filter covariance
propagation/reset equation, we divide (15.1.5.3.1-15) by the m cycle time (which will
eventually become a time derivative as we let the m cycle time go to zero in the limit):

ΔP K m

Tm
  =  - Pm (-) Hm

T
 GM m R♦

m GM m

T
 

 -1
 Hm Pm (-) (15.1.5.3.1-21)

Returning to (15.1.5.3.1-5) and dividing by Tm finds:

Pm(+) - Pm-1(+)

Tm
  =  

ΔPΦQm

Tm
 + 

ΔPKm

Tm
(15.1.5.3.1-22)

The equation for the continuous Kalman filter is obtained from (15.1.5.3.1-22) by

substituting ΔPΦQm from (15.1.5.3.1-2), Equation (15.1.5.3.1-21) for 
ΔPKm

Tm
, letting Tm go to

zero in the limit, and applying the limit procedure used in Section 15.1.2.1.1 for the 
ΔPΦQm

Tm

term.  The final result so obtained is:

P(t)  =  A(t) P(t) + P(t) A(t)T + GP (t) QPDens(t) GP (t)T

 

             - P(t) H(t)T GM (t) R♦(t) GM (t)T  -1
 H(t) P(t)

 (15.1.5.3.1-23)

where

A(t)  =  Error state dynamic matrix.

QPDens(t)   =  Process noise density matrix.

GP(t)  =  Process noise dynamic coupling matrix.

R♦(t)  =  Continuous form Kalman filter uncorrelated measurement noise matrix.

Equation (15.1.5.3.1-23) is the continuous form Kalman filter covariance propagation/reset
equation.  The analytical form of (15.1.5.3.1-23) is of a general mathematical type known as the
matrix Ricatti equation which has classical solution approaches (such as outlined in Section



KALMAN FILTERING IN GENERAL     15-75

15.1.5.4).  We further note based on Equations (15.1.5.3.1-18) and (15.1.5.3.1-20) that R♦(t),
H(t) and GM(t) in (15.1.5.3.1-23) can be approximated as continuous functions with:

R♦(tn-1/2)  =  Rn Tn H(tn-1/2)  = Hn GM (tn-1/2)  =  GM n (15.1.5.3.1-24)

Finally, as an interpretation of R♦(t) and its relation to Rn, we can also define R♦(t) as the
density of a white noise process by considering the state dynamic equation:

vM(t)  ≡  
1

Tn
 nM

♦ (t) vM(tn-1)  =  0 (15.1.5.3.1-25)

where

nM
♦ (t)  =  White noise measurement vector whose density is R♦(t).

vM(t)   =  Integral of nM
♦ (t) scaled by 1 / Tn.

The integral of (15.1.5.3.1-25) over the tn-1 to tn time interval is:

vM(tn)  =  
1

Tn
 nM

♦ (t) dt
tn-1

tn

(15.1.5.3.1-26)

Thus, vM(t)  evaluated at tn is the average over the tn-1 to tn time interval of the white noise

vector nM
♦ (t).  We also know from the integral of generalized Equation (15.1.2.1.1-30) (by

setting A(t) = 0 , GP(t) = 1 / Tn, QPDens(t) = R♦(t)  and vM(tn-1) = 0 to correspond with

(15.1.5.3.1-25)) that the covariance of vM(tn) is:

E vM(tn) vM(tn)T   =  
1

Tn
2

 R♦(t) dt
tn-1

tn

  =  
1

Tn
2

 R♦
n Tn  =  

R♦
n

Tn
(15.1.5.3.1-27)

which with (15.1.5.3.1-20) shows that:

E vM(tn) vM(tn)T   =  Rn (15.1.5.3.1-28)

But from Equation (15.1.2.1-13):

Rn  =  E nMn nMn

T
(15.1.5.3.1-29)
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where

nMn  =  Discrete Kalman filter measurement noise at cycle n.

Hence, from (15.1.5.3.1-28) - (15.1.5.3.1-29) and (15.1.5.3.1-26):

nMn  =  
1

Tn
 nM

♦ (t) dt
tn-1

tn

(15.1.5.3.1-30)

We see from (15.1.5.3.1-29) - (15.1.5.3.1-30), that (15.1.5.3.1-20) is equivalent to representing
the n cycle Kalman filter measurement noise nMn as the average value of the integral over the

Kalman filter n cycle update interval, of a white process noise vector nM
♦ (t) having density R♦

n

given by (15.1.5.3.1-20), or as the continuous R♦(t)  form with the R♦(tn-1/2) points defined

by (15.1.5.3.1-24).

15.1.5.3.2  Error State Vector Propagation/Reset Rate Equation

The continuous form Kalman filter error state vector propagation/reset rate equations have
three elements; error state vector propagation/reset, estimated error state vector propagation/reset
and estimated error state uncertainty vector propagation/reset.  Let’s deal with element one first.
For our fast m cycle Kalman filter using the idealized control reset Kalman filter configuration
as a base, we can write from (15.1.2-2) and (15.1.2-5) in combination:

xm(+c)  =  Φm xm-1(+c) + wm + ucFstm (15.1.5.3.2-1)

where

(+c)  =  Designation for value immediately after a control reset.

ucFst  =  Control vector for the fast m cycle Kalman filter.

The change in x over an update cycle divided by the m cycle time is from (15.1.5.3.2-1):

xm(+c) - xm-1(+c)

Tm
  =  

1
Tm

 Φm - I  xm-1(+c) + wm  + 
1

Tm
 ucFstm (15.1.5.3.2-2)

Applying (15.1.2.1.1-17) - (15.1.2.1.1-18) and letting Tm go to zero in the limit then finds for
the continuous form error state vector propagation/reset equation:

x(t)  =  A(t) x(t) + GP (t) nP (t) + uc
♦

(t) (15.1.5.3.2-3)

with
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uc
♦

(t)  ≡  
1

Tm
 ucFstm  

Tm → 0

 (15.1.5.3.2-4)

where

uc
♦(t)   =  Continuous form Kalman filter control vector.

The continuous form estimated error state vector propagation/reset equation is developed
from the m cycle version of (15.1.2-7) - (15.1.2-9), (15.1.2-12) and (15.1.2-3) using the
linearized z in place of ZObs:

xm (-)  =  Φm xm-1(+c)
 

zFstm  =  Hm xm (-)
 

xm (+e)  =  xm (-) + K Fst m zFstm - zFstm
 

 

xm (+c)  =  xm (+e) + ucFstm

(15.1.5.3.2-5)

with

zFstm  =  Hm xm(-) + GMm nMFstm (15.1.5.3.2-6)

where

(-), (+e)  = Designation for values immediately before (-) and immediately after (+e)
an estimation (e) update.

zFst , zFst   = Linearized measurement and Kalman filter expected value of the
measurement for the fast m cycle filter.

nMFstm  = Measurement noise for the fast m cycle Kalman filter, which from Section

15.1.5.3.1, has covariance matrix RFstm
 .

Equations (15.1.5.3.2-5) combined are:

xm (+c)  =  Φm xm-1(+c) + K Fst m zFstm - Hm xm (-)  + ucFstm (15.1.5.3.2-7)

The change in x over an update cycle divided by the m cycle time is from (15.1.5.3.2-7):

xm (+c) - xm-1(+c)

Tm
  =  

1
Tm

 Φm - I  xm-1(+c) + 
1

Tm
 K Fst m zFstm - Hm xm (-)  + 

1
Tm

 ucFstm 

(15.1.5.3.2-8)
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The 
1

Tm
 K Fst m

   term in (15.1.5.3.2-8) is handled by comparing (15.1.5.3.1-15) with the ΔPKm
 

expression in (15.1.5.3.1-2) which shows that:

1
Tm

 K Fst m  =  K♦
m (15.1.5.3.2-9)

in which

K♦
m  ≡  Pm (-) Hm

T
 G M  m R♦

m G 

M  m

T
  

 -1
 (15.1.5.3.2-10)

where

Km
♦  =  High speed Kalman filter equivalent Kalman gain matrix at cycle m.

The zFstm
  term in (15.1.5.3.2-8) is provided by (15.1.5.3.2-6), but with the nMFstm

  term

replaced by an equivalency relation based on the nM
♦ (t) white noise type measurement vector

concept introduced at the end of Section 15.1.5.3.1 (which defined nM
♦ (t) as a white noise vector

whose density is R♦(t) ).  We know from Equation (15.1.5.3.1-14) that nMFstm
  must have a

covariance matrix RFstm
  equal to 

1
Tm

 R♦
m.  Based on the form of (15.1.5.3.1-26), let’s try the

following and see if it fits the previous covariance requirement:

nMFstm  =  
1

Tm
 nM

♦
(t) dt

tm-1

tm

 (15.1.5.3.2-11)

Using (15.1.5.3.2-11) and the approach leading to (15.1.5.3.1-27), we see that:

RFstm  ≡  E nMFstm nMFstm
T

   =  
1

Tm
2

 R♦
m Tm  =  

1
Tm

 R♦
m (15.1.5.3.2-12)

which matches the (15.1.5.3.1-14) requirement.  Thus, (15.1.5.3.2-11) is a valid representation
of nMFstm

 .

We now substitute (15.1.5.3.2-9) in (15.1.5.3.2-8), (15.1.5.3.2-11) in (15.1.5.3.2-6), let Tm
go to zero in the limit, and define zFstm

  in the limit as the continuous form Kalman filter

measurement.  The result with (15.1.5.3.2-10) is the continuous form estimated error state
vector propagation/reset equation:
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x(t)  =  A(t) - K♦(t) H(t)  x(t) + K♦(t) z♦(t) + uc
♦

(t) (15.1.5.3.2-13)

in which

z♦(t)  =  H(t) x(t) + GM (t) nM
♦

 (t)
 

K♦(t)  =  P(t) H(t)T GM (t) R♦(t) GM (t)T  -1
(15.1.5.3.2-14)

where

z♦(t)   =  Continuous form Kalman filter measurement vector.

with H(t), GM(t), R♦(t)  provided by (15.1.5.3.1-24) and u 

c
♦

(t) as defined in (15.1.5.3.2-4).

Using the (15.1.2.1-1) error state uncertainty definition

Δx(t)  ≡  x(t) - x(t) (15.1.5.3.2-15)

we subtract (15.1.5.3.2-3) from (15.1.5.3.2-13) to obtain the continuous form error state
uncertainty vector propagation/reset equation:

Δx(t)  =  A(t) - K♦(t) H(t)  Δx(t) - GP (t) nP (t) + K♦(t) GM (t) nM
♦

 (t) (15.1.5.3.2-16)

Note, as usual, that the previous error state uncertainty vector propagation/reset rate equation is

independent of the control vector u 

c
♦

(t), as is error state uncertainty covariance rate Equation

(15.1.5.3.1-23) which represents the statistical equivalent of (15.1.5.3.2-16).

We conclude this section with a discussion of the continuous form error state vector and
estimated error state vector rate equations under two control vector conditions: no control which
corresponds to a pure estimation problem, and complete idealized closed-loop control which

controls the estimated error state vector to zero.  Under the former conditions, uc
♦(t) = 0 , and

Equations (15.1.5.3.2-3) and (15.1.5.3.2-13) become:

For A Pure Estimator:

x(t)  =  A(t) x(t) + GP 

 (t) nP 

 (t) (15.1.5.3.2-17)

x(t)  =  A(t) - K♦(t) H(t)  x(t) + K♦(t) z♦(t)

with (15.1.5.3.2-14) for K♦(t) and z♦(t) .



15-80     KALMAN FILTERING TECHNIQUES

For the complete idealized closed-loop control case, Equation (15.1.2.3-1) applies which for
the high speed filter m cycle rate is:

ucFstm  =  - xm(+e) (15.1.5.3.2-18)

Then from (15.1.5.3.2-5):

xm(+c)  =  xm(+e) + ucFstm  =  0 → xm(-)  =  Φm xm-1(+c)  =  0 (15.1.5.3.2-19)

or in the limit:

x(t)  =  0 (15.1.5.3.2-20)

Substituting (15.1.5.3.2-20) in Equation (15.1.5.3.2-13) shows that:

uc
♦

(t)  =  - K♦(t) z♦(t) (15.1.5.3.2-21)

Finally, we substitute (15.1.5.3.2-21) in (15.1.5.3.2-3) to obtain:

For Complete Closed-Loop Control:
 

            x(t)  =  A(t) x(t) + GP  (t) nP  (t) - K♦(t) z♦(t)
(15.1.5.3.2-22)

with (15.1.5.3.2-14) for K♦(t) and z♦(t) .

An alternative version of (15.1.5.3.2-22) substitutes z♦(t)  from (15.1.5.3.2-14) yielding:

x(t)  =  A(t) - K♦(t) H(t)  x(t) + GP  (t) nP  (t) - K♦(t) GM (t) nM
♦

 (t) 15.1.5.3.2-23)

Note from (15.1.5.3.2-15) and (15.1.5.3.2-20) that the effect of the closed-loop control is to

set x(t) = - Δx(t).  If we now substitute x(t) = - Δx(t) and its derivative in (15.1.5.3.2-3), we find
that the result is Equation (15.1.5.3.2-16).

15.1.5.4 GENERAL SOLUTION TO THE CONTINUOUS
KALMAN FILTER COVARIANCE EQUATION

Equation (15.1.5.3.1-23) for the continuous form Kalman filter is a non-linear differential
equation for the error state covariance matrix P(t).  The analytical form of the continuous
Kalman filter is of the mathematical type known as the “matrix Ricatti equation”.  Its general
solution can be found by applying the method of Reference 6 - Section 4.6 as outlined below
(as in Section 15.1.2.1.1.3, but expanded to include the W(t) term):
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We first define:

λ(t)  ≡  P(t) y(t) (15.1.5.4-1)

y(t)  ≡  - A(t)T y(t) + H(t)T GM (t) R♦(t) GM (t)T  -1
 H(t) P(t) y(t) (15.1.5.4-2)

where

λ(t) , y(t)   =  Column matrix vectors of the same dimension as P(t).

Substituting (15.1.5.4-1) in (15.1.5.4-2) obtains:

y(t)  =  - A(t)T y(t) + H(t)T GM (t) R♦(t) GM (t)T  -1
 H(t) λ(t) (15.1.5.4-3)

Taking the derivative of (15.1.5.4-1) finds:

λ(t)  =  P(t) y(t) + P(t) y(t) (15.1.5.4-4)

Substituting (15.1.5.4-2) and (15.1.5.3.1-23) in (15.1.5.4-4) yields:

λ(t)  =  A(t) P(t) + P(t) A(t)T + GP (t) QPDens(t) GP (t)T

                 - P(t) H(t)T GM (t) R♦(t) GM (t)T  -1
 H(t) P(t)  y(t)

     + P(t) - A(t)T y(t) + H(t)T GM (t) R♦(t) GM (t)T  -1
 H(t) P(t) y(t)

 

         =  A(t) P(t) y(t) + GP (t) QPDens(t) GP (t)T y(t)

(15.1.5.4-5)

or with (15.1.5.4-1):

λ(t)  =  GP(t) QP Dens(t) GP (t)T y(t) + A(t) λ(t) (15.1.5.4-6)

Equations (15.1.5.4-3) and (15.1.5.4-6) in matrix form are:

y(t)

λ(t)

  =  
- A(t) T     H(t) T GM(t) R♦(t) GM(t) T  -1

 H(t)

GP(t) QPDens(t) GP(t) T A(t)
  

y(t)

λ(t)

(15.1.5.4-7)

Equation (15.1.5.4-7) is a linear homogeneous differential equation for the y(t) , λ(t)  vector
parameters whose solution is readily obtained by classical Section 15.1.1 techniques:



15-82     KALMAN FILTERING TECHNIQUES

y(t)

λ(t)
  =  

Φyy(t) Φyλ(t)

Φλy(t) Φλλ(t)
   

y(0)

λ(0)
(15.1.5.4-8)

where

y(0), λ(0)   =  Initial values for y(t) , λ(t)   at time t = 0.

Φyy(t), Φyλ(t), Φλy(t), Φλλ(t)   =  Elements of the state transition matrix associated
with the Equation (15.1.5.4-7) state dynamic matrix for propagation

of initial conditions on the y(t) , λ(t)  vectors to the current time.

The error state covariance matrix P(t) is then determined by application of (15.1.5.4-1) to the

individual y(t)  and λ(t)  rows of (15.1.5.4-8):

λ(t)  =  Φλy(t) y(0) + Φλλ(t) λ(0)  =  Φλy(t) y(0) + Φλλ(t) P(0) y(0)
 

                              =  Φλy(t) + Φλλ(t) P(0)  y(0)
 

           =  P(t) y(t)  =  P(t) Φyy(t) y(0) + Φyλ(t) P(0) y(0)
 

                              =  P(t) Φyy(t) + Φyλ(t) P(0)  y(0)

(15.1.5.4-9)

where

P(0)  =  P(t) at time t = 0.

Since (15.1.5.4-9) is valid for any y(0) , it follows that:

P(t) Φyy(t) +Φyλ(t) P(0)   =  Φλy(t) +Φλλ(t) P(0) (15.1.5.4-10)

Rearrangement then solves for P(t):

P(t)  =  Φλy(t) + Φλλ(t) P(0)  Φyy(t) + Φyλ(t) P(0)
 -1

(15.1.5.4-11)

Equation (15.1.5.4-11) with (15.1.5.4-7) - (15.1.5.4-8) for state transition matrix component
definition is the general solution to Equation (15.1.5.3.1-23) for the continuous form Kalman
filter.  These generally apply for situations in which the coupled-measurement-noise matrix

GM (t) R♦(t) GM (t)T is non-singular (see (15.1.5.4-7)).  For cases when GM (t) R♦(t) GM (t)T is
singular (i.e., zero determinant) these equations have no general solution, however, under
particular conditions, can be converted to an equivalent non-singular form that can be solved.
The following subsection deals with the singular coupled-measurement-noise case in which

R♦(t)  is zero under particular constraint conditions.
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15.1.5.4.1 General Covariance Response With Zero Measurement Noise
Under Particular Constraint Conditions

In this section we will seek the general solution to continuous Kalman filter covariance rate
Equation (15.1.5.3.1-23) for a singular coupled-measurement-noise condition in which the

following particular constraint conditions exist: 1) The measurement noise R♦(t)  is zero, 2) The
error states directly affecting the measurement have no coupling into the other error states, 3)
The process noise feeding the non-measurement input error states has no coupling to the
measurement-input error states, and 4) The process noise feeding the measurement-input error
states has no coupling to the non-measurement-input error states.  Analytically, the conditions
we impose follow, including a re-statement of the associated generalized continuous form error
state dynamic and measurement equations from (15.1.5.3.2-17) and (15.1.5.3.2-14):

x(t)  =  A(t) x(t) + GP (t) nP (t) (15.1.5.4.1-1)

z♦(t)  =  H(t) x(t) + GM (t) nM 

♦
(t) (15.1.5.4.1-2)

H(t)  =  0 HM(t)           nM
♦ (t)  =  0          R♦(t)  =  0

x(t)  ≡  
x*(t)

xM(t)
               A( t)  =  

A*(t) 0

AM*(t) AMM(t)
 

GP(t)  =  
GP*(t) 0

0 GPM(t)
           nP(t)  =  

nP*(t)

nPM(t)

(15.1.5.4.1-3)

QPDens(t)  =  
 QP*Dens(t)              0   

 

   0          QPM Dens(t)

where

xM(t)  =  Error states directly affecting the measurement.

x*(t)  =  Error states not directly affecting the measurement.

nP*(t)  =  Portion of nP (t) that through GP*(t), feeds x*(t) but not xM(t).

nPM(t)  =  Portion of nP (t) that through GPM(t) , feeds xM(t) but not x*(t).

nM
♦ (t)  = The continuous form measurement noise vector defined as the white noise

vector whose density matrix is R♦(t) , the continuous Kalman filter
measurement noise matrix.
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A*(t), AM*(t), AMM(t), GP*(t), GPM(t) , QP*Dens(t) , QPM Dens(t) , HM(t)  =  

Partitions of A(t), GP(t), QPDens(t) and H(t) as defined in (15.1.5.4.1-3) based
on the indicated x(t) error state vector and nP (t) process noise partitions.

Note that the error state vector x(t) is defined in (15.1.5.4.1-3) as having x*(t) and xM(t) as

separate columns at the top and bottom of x(t).  Since the ordering of the error states in x(t) is
arbitrary, the form assumed for x(t) in (15.1.5.4.1-3) suffers no loss in generality.

In addition to (15.1.5.4.1-3), we will constrain the measurement vector to have the same or
greater than the number of elements in xM(t) (call it n/xM) with the measurement matrix

containing at least one partition of n/xM rows that is non-singular.  Thus, we also require as a

minimum for at least one of the n/xM row partitions:

Dtr HMn/xM(t)   ≠  0 For At Least one of the HMn/xM
(t)’s (15.1.5.4.1-4)

where

n/xM  =  The number of elements in xM(t).

( )n/xM  = Square matrix formed from n/xM rows of ( ).  It is assumed that the

number of rows in ( ) is greater or equal to n/xM.  Thus, ( )n/xM can be any

of the set of n/xM rows of ( ).

Dtr ( )  =  Determinant of the square matrix ( ).

From the general form of continuous covariance rate Equation (15.1.5.3.1-23) (and its

transformed linear form (15.1.5.4-1) and (15.1.5.4-7)), we see that for zero R♦(t) , the
equations are singular.  By imposing the (15.1.5.4.1-3) and (15.1.5.4.1-4) constraints, we will
show in this section how these equations can be converted to an equivalent singular free form in

which the H(t) T GM(t) R♦(t) GM(t) T  -1 H(t) term is replaced by a similar term, but

containing process noise.  The form of the singular free equations is identical to the original
Equations (15.1.5.4-1) and (15.1.5.4-7), hence, the form of (15.1.5.4-8) and (15.1.5.4-11), the
original equation solution for P(t) will also apply for the revised singular free equations.

We begin our analysis by defining a partitioned error state uncertainty vector based on x(t) in
(15.1.5.4.1-3) as:

Δx(t)  ≡  
Δx*(t)

ΔxM(t)
(15.1.5.4.1-5)
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where

Δx*(t), ΔxM(t)   =  Uncertainty in the Kalman filter’s estimate of x*(t), xM(t) .

For our fast m cycle Kalman filter of Sections 15.1.5.3.1 and 15.1.5.3.2, the general error
uncertainty Kalman update equation is from (15.1.2.1-8) with (15.1.2.1-28):

Δxm (+)  =  I - KFstm Hm  Δxm (-) + KFstm G M  m nM m
 

K Fst m  =  Pm (-) Hm
T

 Hm Pm (-) Hm
T

 + G M  m RFstm G 

M  m

T
  

 -1
 

(15.1.5.4.1-6)

For zero noise, nMm
  and RFstm

   are zero, and Equations (15.1.5.4.1-6) combined become:

Δxm (+)  =  I - K Fst m Hm  Δxm (-)  =   I - Pm (-) Hm
T

 Hm Pm (-) Hm
T  -1

 Hm  Δxm (-)

(15.1.5.4.1-7)
Now multiply (15.1.5.4.1-7) by Hm:

Hm  Δxm(+)  =  Hm - Hm Pm(-) Hm
T

 Hm Pm(-) Hm
T  -1

 Hm  Δxm(-)
 

                       =  Hm - Hm  Δxm(-)  =  0
(15.1.5.4.1-8)

or with (15.1.5.4.1-3) for H(t):

HMm ΔxMm(+)  =  0 (15.1.5.4.1-9)

or in the limit for the equivalent continuous (infinitely fast m cycle) Kalman filter:

HM(t)  ΔxM(t)  =  0 (15.1.5.4.1-10)

Based on the (15.1.5.4.1-4) constraint, Equation (15.1.5.4.1-10) shows that:

ΔxM(t)  =  0 (15.1.5.4.1-11)

Thus, for the hypothesized zero measurement noise conditions, the uncertainty in the error
states directly feeding the measurement is zero.  Equation (15.1.5.4.1-11) makes sense

intuitively when one recognizes from (15.1.5.4.1-2), that for this particular problem, the z♦(t)
measurement vector is equal to measurement noise plus the measurement matrix HM(t)
multiplied by xM(t).  For zero coupled-measurement-noise and our (15.1.5.4.1-4) constraint on

HM(t), the xM(t) error state vector is completely observable, hence, can be estimated exactly

without error.
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General Equation (15.1.2.1-4) defines the covariance matrix P(t) as the expected value of

Δx(t) multiplied by its transpose.  Using (15.1.5.4.1-5) with (15.1.5.4.1-11) for ΔxM(t), we

see then that the partitioned form of P(t) is:

P(t)  =  E  

Δx*(t)

ΔxM(t)
 Δx*(t) T ΔxM(t)

T

 

         =  
E Δx*(t) Δx*(t) T E Δx*(t) ΔxM(t)

T

E ΔxM(t) Δx*(t) T E ΔxM(t) ΔxM(t)
T

  =  P*(t) 0
0 0

(15.1.5.4.1-12)

where

P*(t)  =  Estimated error state x*(t) uncertainty covariance matrix.

Let’s apply (15.1.5.4.1-12) in (15.1.5.4-1).  We first introduce partitioning for λ(t) and y(t):

λ( t)  ≡  
λ*(t)

λM(t)
y(t)  ≡  

y*(t)

yM(t)
(15.1.5.4.1-13)

where

λ*(t) , y*(t)   =  Top elements in y(t) and λ(t) of length equal to the length of x*(t).

λM(t), yM(t)  = Bottom elements in y(t) and λ(t) of length equal to the length

of xM(t).

Substituting (15.1.5.4.1-13) with (15.1.5.4.1-12) for P(t) in (15.1.5.4-1) shows that the
equivalent to (15.1.5.4-1) for zero measurement noise is:

λ*(t)  =  P*( t) y*(t) (15.1.5.4.1-14)

λM(t)  =  0 (15.1.5.4.1-15)

We now address Equation (15.1.5.4-6) by first substituting the (15.1.5.4.1-3) partitioned
forms of GP(t) and QPDens(t) to find:

GP(t) QPDens(t) GP(t) T  =  
 GP*(t) QP*Dens(t) GP*(t) T                   0        

 

        0               GPM(t) QPM Dens(t) GPM(t) T
(15.1.5.4.1-16)
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Substituting (15.1.5.4.1-16) with A(t) from (15.1.5.4.1-3), y(t) and λ(t) from (15.1.5.4.1-13),

and λM(t) from (15.1.5.4.1-15) in (15.1.5.4-6) yields:

λ*(t)  =  GP*(t) QP*Dens(t) GP*(t) T  y*(t) + A*(t) λ*(t) (15.1.5.4.1-17)

λM(t)  =  0

=  GPM( t) QPM Dens(t) GPM(t)
T  yM(t) + AM*(t) λ*(t) + AMM(t) λM(t) (15.1.5.4.1-18)

=  GPM( t) QPM Dens(t) GPM(t)
T  yM(t) + AM*(t) λ*(t)

Equation (15.1.5.4.1-18) rearranged is:

yM(t)  =  - GPM( t) QPM Dens(t) GPM(t)
T  -1

 AM*(t) λ*(t) (15.1.5.4.1-19)

Lastly, we address Equation (15.1.5.4-3) by first noting from the definitions for A(t) and
H(t) in (15.1.5.4.1-3) that:

A(t) T  ≡  
A*(t) T AM*(t) T

0 AMM(t) T

(15.1.5.4.1-20)

H(t) T GM(t) R♦(t) GM(t) T  -1 H(t)

=  
0    0

0    HM(t) T GM(t) R♦(t) GM(t) T  -1
 HM(t)

Substituting (15.1.5.4.1-20) in (15.1.5.4-3) gives for y*(t):

y*(t)  =  - A*(t) T y*(t) - AM*(t) T yM(t) (15.1.5.4.1-21)

or with (15.1.5.4.1-19) for yM(t):

y*(t)  =  - A*(t) T y*(t)
 

               + AM*(t) T GPM( t) QPM Dens(t) GPM(t)
T  -1

 AM*(t) λ*(t)
(15.1.5.4.1-22)

Equations (15.1.5.4.1-14), (15.1.5.4.1-17) and (15.1.5.4.1-22) comprise our final result and
are summarized below in matrix form:
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λ*(t)  ≡  P*(t) y*(t) (15.1.5.4.1-23)

y*(t)

λ*(t)
  =  

           - A*(t)T             AM*(t)T GPM(t) QPM Dens(t) GPM(t)
T  -1

 AM*(t) 

GP*(t) QP*Dens(t) GP*(t)T                                     A*(t)                          
 

y*(t)

λ*(t)

(15.1.5.4.1-24)

If we compare Equations (15.1.5.4.1-23) and (15.1.5.4.1-24) with the non-partitioned
Equations (15.1.5.4-1) and (15.1.5.4-7), we see that they are of identical form.  In our revised

Equations (15.1.5.4.1-23) and (15.1.5.4.1-24), the y*(t) , λ*(t) , P*(t), A*(t) a n d

GP*(t) QP*Dens(t) GP*(t) T partitions are used in place of the non-partitioned y(t) , λ(t) , P(t),

A(t) and GP(t) QPDens(t) GP(t) T.  Of primary significance, however, is that AM*(t) is used in

place of the measurement matrix H(t), and GPM(t) QPM Dens(t) GPM(t) T is used in place of

the coupled-measurement-noise matrix GM(t) R♦(t) GM(t) T.  Thus, we have eliminated the

singularity condition caused by R♦(t) in (15.1.5.4-7).  We can now write the continuous form
covariance equation corresponding to (15.1.5.4.1-23) and (15.1.5.4.1-24).  The result is
obtained by inspection of the non-partitioned covariance rate Equation (15.1.5.3.1-23) and the
relationship between its contributing terms and the matrix elements of (15.1.5.4-7).  Then from
(15.1.5.4.1-24) compared with (15.1.5.4-7) and (15.1.5.3.1-23) we directly write:

P*(t)  =  A*(t) P*(t) + P*(t) A*(t)T + GP*(t) QP*Dens(t) GP*(t)T 

- P*(t) HRev (t)T GMRev(t) RRev
♦ (t) GMRev(t)T

 -1
 HRev (t) P*(t)

(15.1.5.4.1-25)

HRev (t)  =  AM*(t) GM Rev( t)  =  GPM(t) RRev
♦

 (t)  =  QPM Dens(t)

where

HRev (t), GM Rev(t), RRev
♦ (t)  = Revised versions of the continuous form H(t), GM(t),

R♦(t) parameters.

Equation (15.1.5.4.1-24) can be derived from (15.1.5.4.1-25) following the identical procedure
used to derive (15.1.5.4-7) from (15.1.5.3.1-23).

Similarly, we can write the corresponding continuous form error state uncertainty equation
by comparing (15.1.5.4.1-25) with (15.1.5.3.1-23) and its relationship to (15.1.5.3.2-16) and
(15.1.5.3.2-14).
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Δx*(t)  =  A*(t) - K 

Rev
♦

 (t) HRev (t)  Δx*(t) - GP*(t) nP*(t) + K 

Rev
♦

 (t) GMRev(t) nMRev
♦ (t)

K 

Rev
♦

(t)  =  P*(t) HRev (t)T GMRev(t) RRev
♦

 (t) GMRev(t)T  -1
(15.1.5.4.1-26)

nMRev
♦ (t)  =  nPM(t)

where

K 

Rev
♦

 (t)  =  Revised version of the continuous form K♦(t)  Kalman gain matrix.

nMRev
♦ (t)   = Revised version of the continuous form nM

♦ (t) measurement noise vector

corresponding to the RRev
♦ (t) continuous form measurement noise matrix

definition in Equations (15.1.5.4.1-25).

Finally, by comparison of (15.1.5.4.1-26) with (15.1.5.3.2-16) and its relationship to
(15.1.5.3.2-17) and (15.1.5.3.2-14), we can also write the equations for a pure Kalman error
state estimator configuration having the (15.1.5.4.1-26) error state uncertainty propagation/reset
model:

x*(t)  =  A*(t) x*(t) + GP*(t) nP*(t) (15.1.5.4.1-27)

zRev
♦ (t)  =  HRev(t) x*(t) + GM Rev(t) nMRev

♦ (t)

H Rev(t)  =  AM*(t) GM Rev( t)  =  GPM(t) nMRev
♦ (t)  =  nPM(t) (15.1.5.4.1-28)

x *(t)  =  A*(t) - K 

Rev
♦

 (t) H Rev (t)  x*(t) + K 

Rev
♦

 (t) zRev
♦

 (t)

where

zRev
♦

 (t)  =  Revised version of the continuous form z♦(t)  measurement vector.

The equivalent discrete n cycle measurement equation version of (15.1.5.4.1-28) is with
(15.1.5.3.1-30):

zRev n  =  HRev n x*n + GM/Revn nM/Revn        nM/Revn  =  
1
Tn

 nM Rev

♦
(t) dt

tn-1

tn

 (15.1.5.4.1-29)

where

zRev n  =  Revised n cycle Kalman filter measurement.

nM/Revn  =  Revised n cycle Kalman filter measurement noise.
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Equation (15.1.5.4.1-29) is the measurement equation for a revised Kalman filter whose
covariance is P*n, the upper left partition of the Pn covariance associated with the x*(t) error
state partition of x(t) at Kalman filter cycle n.  Equation (15.1.5.4.1-28) is the corresponding
continuous form measurement equation and (15.1.5.4.1-27) is the associated error state
dynamic equation.  Note from x(t) in (15.1.5.4.1-1) using the (15.1.5.4.1-3) partition

definition, that Equation (15.1.5.4.1-27) for x*(t) is merely the upper (x*(t)) partition of x(t).
Thus, we can conclude that for zero measurement noise (and compatibility with the
(15.1.5.4.1-3) - (15.1.5.4.1-4) constraints), the P*(t) covariance partition in P(t) can be
determined using a revised Kalman filter configuration based on the original error state dynamic
equation, but whose measurement equation is (15.1.5.4.1-29) (or (15.1.5.4.1-28) for the

continuous form), instead of the original z♦(t)  in (15.1.5.4.1-2).  Additionally, from
(15.1.5.4.1-12), the remaining elements of P(t) for the constrained zero measurement case will
be zero.  The identical conclusions apply for Kalman filter estimates; the x(t) estimate for the
constrained zero measurement noise case has its x*(t) partition equal to the estimate obtained

from a Kalman filter operating from the revised zRev
♦ (t)  measurement, with the remaining

partition in x(t) (i.e., the xM(t) partition) having its estimate equal to the true xM(t) value (i.e.,

error free).

Based on the above results and Equation (15.1.5.4.1-25) compared to (15.1.5.3.1-23), we
conclude that the following simple procedure can be used for determining P(t) for the case of
zero measurement noise, based on the general P(t) covariance solution in Section 15.1.5.4:

1) Partition the (15.1.5.4.1-1) - (15.1.5.4.1-2) error state dynamic and measurement
equations and verify that the partitioned forms fit the (15.1.5.4.1-3) - (15.1.5.4.1-4)
constraint conditions.

2) Assuming that the constraint conditions are satisfied, apply the following conversion
formulas for the matrices in (15.1.5.3.1-23):

A(t)  =  A*(t) GP(t)  =  GP*(t) QPDens(t)  =  QP*Dens( t)

H(t)  =  AM*( t) GM(t)  =  GPM(t) R♦(t)  =  QPM Dens( t)

3) Using the matrix definitions from 2), solve (15.1.5.3.1-23) for P(t) by applying the
Section 15.1.5.4 general covariance solution Equations (15.1.5.4-7), (15.1.5.4-8) and
(15.1.5.4-11) with P(0) in (15.1.5.4-11) set equal to P*(0), the initial value for P*(t).

4) Identify the P(t) solution from (15.1.5.4-11) in 3) as P*(t).

5) Find the desired P(t) solution by setting the P*(t) partition to the 4) result and equating
the remaining elements of P(t) to zero (as in (15.1.5.4.1-12)).
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15.2 EXAMPLES OF KALMAN FILTERING APPLIED
TO STRAPDOWN INERTIAL NAVIGATION

The following subsections provide examples illustrating the application of Kalman filtering
to INS quasi-stationary initialization (gain determination for the Chapter 6 Fine Alignment
process), dynamic moving base INS initialization (i.e., “transfer alignment”), INS updating
using a body mounted velocity sensor (e.g., Doppler radar), and INS updating based on GPS
(Global Positioning System) range-to-satellite measurements.

15.2.1 KALMAN FILTERING APPLIED TO THE
QUASI-STATIONARY FINE ALIGNMENT PROBLEM

The Fine Alignment process discussed in Section 6.1.2  is typically structured using feed-
back gains derived from Kalman filter theory.  The Kalman gain calculations are derived from
the N Frame form of Fine Alignment process propagation Equations (6.1.2-1) (with zero gains

- i.e., no Kalman filter estimation/control) and with ωIL 
L

, ωIE
N

 from (6.1.2-2):

CB
N

  =  CB
N

 ωIB
B

×  - ωIE
N

×  CB
N

ωIE
N

  =  ωIEH

N
 + uZN

N
 ωe sin l

 

vH
N

  =  CB
N

 aSF
B

 

 H

(15.2.1-1)

ΔRH
N

  =  vH
N

The Fine Alignment process consists of integrating “foreground” Equations (6.1.2-1) (or

their N Frame equivalent as defined by (15.2.1-1)), periodically sampling the ΔRH
N

 integrated

horizontal velocity term (the “position divergence”), and using ΔRH
N

 in feed-back fashion

through appropriate gains to level the CB
N

 body direction cosine matrix and to estimate the ωIEH

N

horizontal earth rate components.  The estimated horizontal earth components define the CB
N

matrix heading relative to true north.  At Fine Alignment completion, the estimated horizontal

earth components are either used for heading initialization in the CN
E

 position direction cosine

matrix, or to rotate the CB
N

 matrix to the proper true north heading (as described in Sections

6.2.1 and 6.2.2).
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Note that the integral of (15.2.1-1) includes an integration of velocity vH
N

 into position ΔRH
N

.

When structuring the software used to perform the velocity-into-position integration, it is
important that the repetition rate for the integration algorithm be fast enough that position
algorithm folding effect errors are not introduced (i.e., folding of linear vibration excitation of
the strapdown sensor assembly during the alignment process).  Chapter 10, Sections 10.1.3.2.4,
10.4.2, 10.6.2 and the position error response in Equations (10.3-20) and (10.6.1-25) describe
various methods for evaluating the position integration algorithm folding effect error as a
function of algorithm repetition rate and input vibration level.  Sections 7.4 and 7.4.1 of Chapter
7 provides further discussion on the impact of folding on horizontal earth rate estimation
accuracy.  In this section, we will assume that the algorithm repetition rate is sufficiently fast
that folding effects are negligible in the Kalman filter error model for the alignment process.

To cast the Fine Alignment process in a Kalman filter framework, we first define the
observation equation (as in Section 15.1):

ZObs  =  ΔRH
N

 - ΔRRefH
N ΔRRefH

N
  =  0 (15.2.1-2)

where

ΔRRefH
N

  = Reference position divergence approximated as zero (i.e., zero net horizontal

motion except for small bounded quasi-stationary random vibration type
movement caused, for example in an aircraft INS, by wind gusts, fuel-
stores loading, crew/passenger movement).

To construct the Fine Alignment Kalman filter, we now write the error form of foreground
Equations (15.2.1-1).  Using Equations (14.2-18) (the error form of Equations (14.1-1)) as a
template (but without the Kalman feedback), the result is:

γZN  =  - uZN
N

 ⋅ CB 
N

 δωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × γH

N
 + uZN

N
 ⋅ CB

N
 ωVib 

B
× δα Quant

δωIEH

N
  =  0

(15.2.1-3)

γH
N

  =  - CB 
N

 δωIB
B

 

 H
 - γZN ωIEH

N
 × uZN

N
 - uZN

N
 × γH

N
 ωe sin l + δωIEH

N

+ CB
N

 

 H
 ωVib

B
 × δαQuant

(Continued)
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δωIB
B

  =  δKScal/Mis CB
N T

 ωIE
N

 + δKBias + δωRand

δvH
N

  =  CB
N

 δaSF
B  

 H
 + g uZN

N
 × γH

N
 - g uZN

N ×  CB
N

 δαQuant

- CB
N

 

 H
 aVib

B
 × δαQuant + ωVib

B
 × δυQuant

(15.2.1-3)
(Continued)

δaSF
B

  =  g δLScal/Mis CB
N T

uZN
N

 + δLBias + δaRand

δΔRH
N

  =  δvH
N

 + CB
N

 δυQuant  

 H

where

δ( )  =  Error in the bracketed quantity.

For Kalman filter gain determination, Equations (15.2.1-3) can be simplified by recognizing
the horizontal-tilt/earth-rate and vibration/quantization-noise products to be negligibly small.
We further recognize (from experience and knowledge of error effects on Kalman filter
performance) that for this quasi-stationary application (also assuming a quasi-stationary
attitude), the Kalman filter will not be able to distinguish constant inertial sensor errors from
horizontal tilt and earth rate component uncertainties.  Thus, we only include the random
component of the (15.2.1-3) sensor errors in the Kalman filter error model.  Since the N Frame
is an arbitrary locally level frame used for navigation integration, we can arbitrarily define it to

have its initial heading correspond with the CB
N

 heading at Fine Alignment initiation.  This

selection defines γZN to zero at the start of Fine Alignment.  We also assume that Fine

Alignment will be completed in a reasonably short time period such that the heading error γZN

will not have sufficient time to build from its starting zero value due to sensor error.  Hence, the

γZN coupling term in the horizontal tilt rate equation can also be ignored.  With these

approximations, Equations (15.2.1-3) simplify to the following form for Kalman filter design:

δωIEH

N
  =  0

γH
N

  =  - CB 
N

 δωRand  

 H
 + δωIEH

N

 

δvH
N

  =  CB
N

 δaRand  

 H
 + g uZN

N
 × γH

N
 - g uZN

N ×  CB
N

 δαQuant

(15.2.1-4)

δΔRH
N

  =  δvH
N

 + CB
N

 δυQuant  

 H



15-94     KALMAN FILTERING TECHNIQUES

We also must not forget that (15.2.1-3) (the basis for (15.2.1-4)) does not allow for error
effects produced by computational algorithm error (e.g., from inadequate update rates) which
can add additional noise-like terms.  If these effects are significant compared to the (15.2.1-3)
noise terms, they should be accounted for in (15.2.1-4).

Equations (15.2.1-4) can be reformatted for Kalman filter error state dynamic equation
equivalency by noting that for any arbitrary vector V:

CB 
N

 V  

 H
  =  IH CB 

N
 V (15.2.1-5)

where

IH  =  Identity matrix with the 3,3 element (vertical component) set to zero.

By inference, parameters with the H notation in (15.2.1-4) - (15.2.1-5) represent column or
square matrices with row 3 set to zero.  In formulating the Kalman filter error state vector we
want to eliminate the null rows.  Therefore, for greater specificity, we will apply (15.2.1-5) to
(15.2.1-4) to obtain the following more explicit form of the quasi-stationary Fine Alignment
Kalman filter error state dynamic equations that identifies the dimensions of each matrix
element and which deletes the null rows in (15.2.1-4):

δωIE  2x1

N
  =  0

γ 2x1
N

  =  δ ωIE 2x1
N

 - I2x3 CB
N

 δ ωRand
 

δv 2x1
N

  =  g uZN
N ×  

 2x2
 γ 2x1

N
 - g uZN

N ×   

2x3
 CB

N
 δ αQuant + I2x3 CB

N
 δ aRand

 (15.2.1-6)

δΔR2x1
N

  =  δv2x1
N

 + I2x3 CB
N

 δυQuant

where

2x1  = Subscript designation on vector ( ) indicating that ( )2x1 is a two element column
matrix (one column) equal to the top two elements of the associated three
element column matrix ( ).

2x3  = Subscript designation on matrix ( ) indicating that ( )2x3 has two rows and three
columns equal to the top two rows of the associated ( ) three-by-three square
matrix.

2x2  = Subscript designation on matrix ( ) indicating that ( )2x2 has two rows and two
columns equal to the upper left two-by-two matrix partition in the associated ( )
three-by-three square matrix.

I2x3  =  First two rows of the three-by-three identity matrix.
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Vector and matrix elements in (15.2.1-6) without specific row/column designation are normal
notation three element vectors or three-by-three matrices.

The measurement equation for the Kalman filter is the differential of (15.2.1-2):

zN  =  δZObs  =  δΔRH
N

 - δΔRRefH
N

(15.2.1-7)

where

δΔRRefH
N

  =  Error in ΔRRefH
N

 caused by its approximation in (15.2.1-2) as zero.

The δΔRRefH
N

 error can be defined as the difference between its true value and the value

utilized in the strapdown INS computer software:

δΔRRefH
N

  ≡  ΔRRefH
N

 - ΔRTrueH

N
(15.2.1-8)

where

ΔRTrueH

N
  =  Actual horizontal position motion during initial alignment.

We attribute ΔRTrueH

N
 to quasi-stationary random vibration type motion, hence:

ΔRTrueH

N
  =  ΔRVibH

N
(15.2.1-9)

where

ΔRVibH

N
  = Horizontal random position disturbance during alignment from a nominally

stationary position.

Then with (15.2.1-9) and (15.2.1-2) for ΔRRefH
N

, Equation (15.2.1-8) is:

δΔRRefH
N

  =  - ΔRVibH

N
(15.2.1-10)

and (15.2.1-7) becomes:

zN  =  δΔRH
N

 + ΔRVibH

N
(15.2.1-11)

With Kalman filter row/column notation reformatting as in (15.2.1-6), Equation (15.2.1-11) is
equivalently:
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zn
N

  =  δΔR2x1n

N
 + ΔRVib/2x1n

N
 (15.2.1-12)

Error state dynamic Equations (15.2.1-6) and measurement Equation (15.2.1-12) can now
be used to define the quasi-stationary Fine Alignment Kalman filter for leveling and control of
foreground Equations (15.2.1-1), and for estimation of horizontal earth rate for initial heading
determination.  From (15.2.1-6) compared with general Equation (15.1-1), we first define the
error state vector, the error state dynamic matrix, the process noise vector, and the process noise
dynamic coupling matrix for the Kalman filter as:

x  =  δ ωIE2x1

N T
, γ2x1

N T
,  δ v2x1

N T
, δΔR2x1

N T  T

 (15.2.1-13)

nP  =  δ ωRand
T

, δ αQuant
T

, δ aRand
T

, δ υQuant
T  T

 (15.2.1-14)

A  =  

0 0 0 0

I2x2 0 0 0

0 g uZN
N ×  

2x2
0 0

0 0 I2x2 0

(15.2.1-15)

GP  =  

0 0 0 0

- I2x3 CB
N

0 0 0

0 - g uZN
N ×  

 2x3
 CB

N
   I2x3 CB

N
0

0 0 0 I2x3 CB
N

(15.2.1-16)

where

I2x2  =  Two by two identity matrix.

We assume that the three components for each of the random and quantization noise vectors
in (15.2.1-14) have equal densities. Then, from its definition in Equations (15.1.2.1.1-25) -
(15.1.2.1.1-28), we can write for the nP process noise density matrix QPDens:
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QPDens  =  

qωRand I 0 0 0

0 qαQuant I 0 0

0 0 qaRand I 0

0 0 0 qυQuant I

(15.2.1-17)

where

qω  Rand, qα Quant, qaRand , qυ Quant   = Noise density for each component of δ ωRand ,

δαQuant, δ aRand , δ υQuant .

I  =  Three-by-three identity matrix.

Equation (15.2.1-15) shows that for the Fine Alignment Kalman filter, the error state
dynamic matrix is constant.  This particularly simple form of the error state dynamic matrix

allows the state transition matrix Φn to be calculated exactly in closed-form by analytical

integration of the elements of general Equation (15.1.1-15).  The result is:

Φn  =  

I2x2 0 0 0

Tn I2x2 I2x2 0 0

1
2

 g Tn
 2

 uZN
N ×  

 2x2
g Tn uZN

N ×  

 2x2
I2x2 0

1
6

 g Tn
 3

 uZN
N ×  

 2x2

1
2

 g Tn
 2

 uZN
N ×  

 2x2
Tn I2x2 I2x2

(15.2.1-18)

where

Tn  =  Kalman filter estimation time cycle interval.

Thus, we see that for this problem, the error state transition matrix is constant and independent

of attitude, position location, or time in alignment.  This allows Φn to be calculated once as part

of the Fine Alignment initialization process, and then applied during Fine Alignment operations
as required.

The coupled process noise density matrix (GP QPDens GP
T

) for covariance propagation (see

Equation (15.1.2.1.1-30)) is obtained by combining Equations (15.2.1-16) and (15.2.1-17)
while recognizing that:

 CB
N

 CB
N  T

  =  I I2x3 I2x3
 T

  =  I2x2 (15.2.1-19)
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In the process we also note that the transpose of uZN
N ×  is its negative so that (13.1-8) with our

previous definitions is:

uZN
N ×  uZN

N ×
 T

  =  IH uZN
N ×   =  

uZN
N ×  

 2x3

0
IH  =  

I2x2 0

0 0
(15.2.1-20)

Thus,

uZN
N ×  uZN

N ×
 T

  =  

uZN
N ×  

 2x3
 uZN

N ×  

 2x3

T
0

0 0
  =  

I2x2 0

0 0
(15.2.1-21)

Hence,

uZN
N ×  

 2x3
 uZN

N ×  

 2x3

T
  =  I2x2 (15.2.1-22)

Combining Equations (15.2.1-16) - (15.2.1-17) while applying (15.2.1-19) and (15.2.1-22)

then yields for GP QPDens GP
T

:

GP QPDens GP
T

  =  

0   0 0 0

0   qω Rand I2x2 0 0

0   0 g2 qα Quant + qaRand  I2x2 0

0   0 0 qυ Quant I2x2

(15.2.1-23)

Thus, the coupled process noise density matrix GP QPDens GP
T

 as well as the error state

dynamic matrix A (from Equation (15.2.1-15)) are constant and independent of attitude,
position location, or time in alignment.  This allows the integrated process noise matrix Qn in

(15.1.2.1.1-12) (computed from GP QPDens GP
T

 and A) to be pre-calculated once as part of the

Fine Alignment initialization process; then used as required during Fine Alignment operations.
A second order approximation for Qn can be obtained from Equations (15.1.2.1.1.3-37)
compared to (15.1.2.1.1-12):

Q1n   =   GP QPDens GP
T
 Tn Qn  ≈  

1
2

 Q1n + 
1
2

 Φn Q1n Φn
T

(15.2.1-24)

However, because Qn need only be calculated once during Fine Alignment initialization,
computer throughput is not an issue, and Qn can also be evaluated to higher order using the
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more elaborate Equations (15.1.2.1.1.3-28) algorithm for m = n with ΔΦλyn and ΔΦλλn from

(15.1.2.1.1.3-21):

ΔΦλλn  =  A Tn ΔΦλyn  =  GP QPDens GP
T
 Tn (15.2.1-25)

The measurement matrix, measurement noise vector, and measurement noise dynamic
coupling matrix can be identified from Equations (15.2.1-12) and (15.2.1-13) compared with
general measurement Equation (15.1-2):

Hn  =  0 0 0 I2x2 nMn  =  ΔRVib2x1

N
GM n  =  I2x2 (15.2.1-26)

Assuming that the elements of nM are uncorrelated with equal variance, we use the
(15.1.2.1-13) definition to write for the measurement noise matrix:

Rn  ≡  E nMn nMn

T
  =  PRVibH I2x2 (15.2.1-27)

where

PRVibH  =  Horizontal quasi-stationary position random motion variance.

Thus, Hn, GM n and Rn are also constant and independent of initial attitude, position location,

and time in Fine Alignment.

Using the pre-calculated value for Φn, Qn as described previously, and Hn, GM n and Rn

from (15.2.1-26) - (15.2.1-27) (all constant and independent of time in Fine Alignment),
Equations (15.1.2.1.1-12), (15.1.2.1-28) and (15.1.2.1.1-4) then directly apply for covariance
propagation, Kalman gain determination, and covariance reset:

Pn(-)  =  Φn Pn-1(+e) Φn
T

 + Qn

K n  =  Pn(-) Hn
T

 Hn Pn(-) Hn
T

 + G M  n Rn G 

M  n

T
 

 -1
 (15.2.1-28)

Pn(+e)  =  I - K n Hn  Pn(-)

Equations (15.2.1-28) processed repetitively allow the gain matrix Kn to be calculated for Fine
Alignment estimation and control reset operations.  Note, however, that because all the
coefficient matrices in (15.2.1-28) are constant and independent of time in Fine Alignment,
Equations (15.2.1-28) can be pre-computed during the previous n cycle so that the gain matrix
Kn is available for application at time tn.  This allows the ideal control reset Kalman filter
configuration of Equations (15.1.2-6) - (15.1.2-13) to be realized for which we write for the
ideal control vector:
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uc n  =  - xn(+e) (15.2.1-29)

Substituting (15.2.1-29) in (15.1.2-12) and (15.1.2-7) - (15.1.2-9) (with (15.1.2-13)) finds:

xn-1(+c)  =  xn-1(+e) + uc n-1  =  0

xn(-)  =  Φn xn-1(+c)  =  0
 

zn  =  Hn xn(-)  =  0
(15.2.1-30)

xn(+e)  =  xn(-) + K n ZObsn - zn   =  K n ZObsn 

The observation in matrix dimension form is from (15.2.1-2):

ZObsn  =  ΔR2x1n

N
(15.2.1-31)

With (15.2.1-29) - (15.2.1-31) we see then that:

ucn  =  - Kn ZObsn  =  - Kn ΔR2x1n

N
(15.2.1-32)

Equation (15.2.1-32) using Kn from Equations (15.2.1-28) represents the total Kalman filter
computational requirement, with the resulting control vector uc n then only applied to the

foreground Equation (15.2.1-1) navigation parameters.  The method for applying uc n to the

foreground is developed by first defining the individual components of uc as:

uc  ≡  δ  ωIE/2x1c

N
 

T
, γ 

2x1c

N
 

T
,  δ  v2x1c

N
 

T
, δ   ΔR2x1c

N
 

T  T

 (15.2.1-33)

where

c  = Subscript designation for the uc control vector component to be applied to the
indicated (15.2.1-13) error state vector component.

With the (15.2.1-33) definition and using Section 15.1.2.3 (particularly Equation (15.1.2.3-13))
as a guide, application of uc n to the Equation (15.2.1-1) parameters is then given in matrix

dimension form by:
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ωIE /2x1n

N
(+c)  =  ωIE /2x1n

N
(-) + δ ωIE /2x1/cn

N
 

γHcn

N
  =  

γ2x1/cn

N

0
 

CB n

N
(+c)  =  I - 

sin γHcn

γHcn

 γHcn

N
×  + 

1 - cos γHcn

γHcn

2
 γHcn

N
×

 2
 CB n

N
(-)

 

v2x1n

N
(+c)  =  v2x1n

N
(-) + δ v2x1/cn

N

(15.2.1-34)

ΔR2x1n

N
(+c)  =  ΔR2x1n

N
(-) + δΔR2x1/cn

N

Equations (15.2.1-34) constitute the operation represented symbolically by Equation
(15.1.2-11).

The overall Fine Alignment process consists of integrating foreground Equations (15.2.1-1)
while applying control Equations (15.2.1-32) - (15.2.1-34) at the Kalman cycle time using the
Kalman gain matrix calculated from covariance propagation/reset Equations (15.2.1-28).  The
matrix coefficient terms in (15.2.1-28) are constant as defined by Equations (15.2.1-18) and
(15.2.1-24) - (15.2.1-27).  By the (15.2.1-13) definition for the error state vector x, eight error
states are identified, two horizontal components for each vector element.  Thus, by implication,
Equations (15.2.1-28) would involve an 8 by 8 covariance matrix and associated matrix
products.  The interesting aspect about this particular problem is that by rearrangement of the x
elements so that they are organized by horizontal axis, Equations (15.2.1-28) partition into two
independent sets with identical dynamics and solutions, each consisting of 4 simultaneous
equations.  Recognition of this concept allows Equations (15.2.1-28) to be reduced to a series of
4 by 4 matrix operations, with the resulting Kalman gain matrix then applied separately through
control Equations (15.2.1-32) - (15.2.1-34) to each horizontal axis of the (15.2.1-1) foreground
navigation parameters.  The following subsections develop the partitioned form of the quasi-
stationary fine alignment Kalman filter including initialization of the foreground and Kalman
filter parameters.

15.2.1.1 PARTITIONED VERSION OF THE QUASI-STATIONARY
FINE ALIGNMENT KALMAN FILTER

If we expand the general error state dynamic Equation (15.1-1) into its individual scalar
components using (15.2.1-13) - (15.2.1-16) for x , nP, A and GP, it will be seen after
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reordering, rearrangement and regrouping, that they are equivalent to the following alternative
partitioned forms:

xa  =  Aa xa + GPa nPa xb  =  Ab xb + GPb nPb (15.2.1.1-1)

in which

xa  ≡  - δωIENY, - γNY , δvNX , δΔRNX
T

xb  ≡  δωIENX, γNX , δvNY , δΔRNY
T

(15.2.1.1-2)

Aa  =  Ab  =  

0 0 0 0
1 0 0 0
0 g 0 0
0 0 1 0

and

nPa  ≡  δ ωRand NY, δ αQuantNY, δ aRand NX, δ υQuantNX
 T

 

nPb  ≡  δ ωRand NX, δ αQuantNX, δ aRand NY, δ υQuantNY
 T

 
(15.2.1.1-3)

GPa  =  

0 0 0 0
1 0 0 0
0 g 1 0
0 0 0 1

GPb  =  

0 0 0 0
- 1 0 0 0
0 - g 1 0
0 0 0 1

where

xa, xb, Aa, Ab, nPa, nPb, GPa, GPb  =  Rearranged four component partitions of x, A,

nP, GP defined in Equations (15.2.1-13) - (15.2.1-16).

NX, NY  =  Subscripts denoting N Frame horizontal components (X, Y).

δωIENi, γNi, δvNi, δΔRNi  = Components of the original Equation (15.2.1-13) x error
state vector along N Frame axis i.

δ ωRand Ni, δ αQuantNi, δ aRand Ni, δ υQuantNi  = N Frame i axis components of the
original Equation (15.2.1-14) B Frame process
noise vector (nP), as projected on the N Frame.

The process noise density matrices associated with GPa nPa and GPb nPb in Equations

(15.2.1.1-1) can be found by first writing δωIENi, γNi, δvNi, δΔRNi from the previous

definitions in vector form, and restating the (15.2.1-14) definition for nP:
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nP
N

  ≡  

δωRand
N

δαQuant
N

δaRand
N

δυQuant
N

  =  

CB
N

 δωRand

CB
N

 δαQuant

CB
N

 δaRand

CB
N

 δυQuant

nP  ≡  

δωRand

δαQuant

δaRand

δυQuant

(15.2.1.1-4)

in which it is understood by their original definitions in Sections 12.4, 8.1.1.1 and 8.1.1.2 that

δ ωRand , δ αQuant, δ aRand , δ υQuant  (without superscripts) are implicitly defined (to simplify

notation) as being in B Frame coordinates, and where:

nP
N

  =  Process noise vector nP, but with components projected on N Frame axes.

Recognizing the components of nP as defined to be independent, that CB
N

 CB
N  T

= I, and

assuming for each of the nP component vectors that their elements have equal densities, we see
from (15.2.1.1-4):

         E nP
N

 nP
N  T

  =  E nP nP
 T   =  

E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

 

E1  =  E δ ωRand δ ωRand
 T

          E2  =  E δ αQuant δ αQuant
 T

 

E3  =  E δ aRand δ aRand
 T

            E4  =  E δ υQuant δ υQuant
 T

(15.2.1.1-5)

where

E ( )   =  Expected value operator.

Equation (15.2.1.1-5) with Equations (15.1.2.1.1-25) - (15.1.2.1.1-28) show that the process

noise densities for nP
N

 and nP are equal.  Thus, with (15.2.1-17), we can write for the nP
N

process noise density matrix:

QPDens

N
  =  

qωRand I 0 0 0

0 qαQuant I 0 0

0 0 qaRand I 0

0 0 0 qυQuant I

(15.2.1.1-6)
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where

QPDens

N
  =  White noise density matrix associated with nP

N
.

As defined in (15.2.1.1-3), the nPa, nPb vectors are partitions of nP
N

.  By matching the

individual components of nPa, nPb with nP
N

 we can identify the associated white noise densities

using (15.2.1.1-6).  The obvious result is:

QPDens/a  =  QPDens/b  =  

qωRand 0 0 0

0   qαQuant 0 0

0   0 qaRand 0

0   0 0 qυQuant

(15.2.1.1-7)

where

QPDens/a, QPDens/b  =  White noise densities associated with nPa, nPb.

Using (15.2.1.1-7) and GPa, GPb from (15.2.1.1-3), the coupled process noise density

matrices associated with GPa nPa and GPb nPb in Equations (15.2.1.1-1) for xa , xb covariance

propagation (see Equation (15.1.2.1.1-30)) are then:

GPa QPDens/a GPa

T
  =  GPb QPDens/b GPb

T

 

            =  

0   0 0 0

0   qωRand 0 0

0   0 g2 qαQuant + qaRand 0

0   0 0 qυQuant

(15.2.1.1-8)

where

GPa QPDens/a GPa

T
, GPb QPDens/b GPb

T
 =  Coupled process noise density matrices

associated with GPa nPa and GPb nPb in Equations (15.2.1.1-1).

We also write the components of the Kalman filter measurement equation in the generalized
(15.1-2) format based on the (15.2.1.1-1) xa, xb definitions, and using (15.2.1-26) - (15.2.1-27)
for H, nM, GM and R:
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za  n  =  Ha xa  n + ΔrVibNX/n zb n  =  Hb xb n + ΔrVibNY/n

Ha  =  Hb  =  0 0 0 1 (15.2.1.1-9)

Ra n  ≡  E ΔrVibNX/n

2
  =  Rbn  ≡  E ΔrVibNY/n

2
  =  PRVibH

where

za, zb  =  N Frame X, Y (horizontal) components of the measurement vector z.

ΔrVibNX, ΔrVibNY  = N Frame X, Y components of the horizontal position vibration

disturbance vector ΔRVibH

N
.

PRVibH  = Variance for each of the horizontal position disturbance vibration
components.

From (15.2.1.1-1) - (15.2.1.1-3) and (15.2.1.1-8) - (15.2.1.1-9), we see that the xa, za and
xb, zb equation sets are completely uncoupled with identical error state dynamic matrices (Aa

and Ab), identical coupled process noise densities (GPa QPDens/a GPa

T
 and GPb QPDens/b GPb

T
),

identical measurement matrices (Ha, Hb), and identical measurement noise variances (Ra, Rb).
Therefore, Kalman filter operations associated with xa, za will also be uncoupled from xb, zb

Kalman filter operations, resulting in two parallel four-state Kalman filters for separately
estimating and controlling the four components in xa and in xb, each filter having identical
covariance propagation/reset dynamics, process noise and measurement noise.  Finally, if we
stipulate that the initial uncertainties in xa and xb will be identical, the covariance
propagation/reset equations in each filter will be initialized identically, thereby generating
identical Kalman gain profiles.  The net result is that we need only implement a single four-state
filter covariance propagation/reset operation, using the resulting Kalman gains to then separately
estimate xa and xb.  The single four-state Kalman filter will be based on error state dynamic and
measurement equations of the general (15.2.1.1-1) - (15.2.1.1-3) and (15.2.1.1-8) - (15.2.1.1-9)
form:

x*  =  A* x* + GP* nP* z*n  =  H* x*n + GM* nM*n (15.2.1.1-10)

with
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x*  =  δωIEH, γH, δvH, δΔRH
 T

A*  =  

0 0 0 0
1 0 0 0
0 g 0 0
0 0 1 0

nP*  =  δωRandH, δαQuantH, δaRandH, δυQuantH
 T

GP*  =  

0 0 0 0
- 1 0 0 0
0 - g 1 0
0 0 0 1

QP*Dens  =  

qωRand 0 0 0

0 qαQuant 0 0

0 0 qaRand 0

0 0 0 qυQuant

(15.2.1.1-11)

GP* QP*Dens GP*
 T

  =  

0   0 0 0

0   qωRand 0 0

0   0 g2 qαQuant + qaRand 0

0   0 0 qυQuant

H*  =  0 0 0 1 GM*  =  1

R*  ≡  E nM*n

2
  =  PRVibH nM*  =  ΔrVibH

where

*  = Designation for the equivalent to the a, b versions of the same parameters in
Equations (15.2.1.1-1) - (15.2.1.1-3) and (15.2.1.1-8) - (15.2.1.1-9).

QP*Dens  =  White noise density associated with nP*.

H  =  Designation for horizontal component in general (either X or Y).

The associated covariance propagation/reset and Kalman gain equations then are as in
(15.2.1-28) with (15.2.1-18), but for the four-state filter:

P*n(-)  =  Φ* P*n-1(+e) Φ*
T

 +  Q*

K*n  =  P*n(-) H*T H* P*n(-) H*T + PRVibH
 -1

(15.2.1.1-12)

P*n(+e)  =  I - K*n H*  P*n(-)

with
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Φ*  =  

1 0 0 0

Tn 1 0 0

1
2

 g Tn
2
 g Tn 1 0

1
6

 g Tn
3 1

2
 g Tn

2
Tn 1

(15.2.1.1-13)

where

P*  =  Error state covariance matrix for the partitioned four-state Kalman filter.

Q*  =  Integrated process noise matrix for the four-state Kalman filter.

K*  =  Four-state filter Kalman gain matrix.

Φ*  =  Four-state Kalman filter error state transition matrix.

To second order accuracy, the Q* matrix in (15.2.1.1-12) can be calculated (as in
(15.2.1-24)) from:

Q1*   =   GP* QP*Dens GP*
 T

 Tn          Q*  ≈  
1
2

 Q1* + 
1
2

 Φ* Q1* Φ*
T (15.2.1.1-14)

or Q* can be calculated to higher order accuracy using the more elaborate Equations
(15.1.2.1.1.3-28) algorithm with m = n, Q* = Qn, and from (15.1.2.1.1.3-21):

ΔΦλλn  =  A* Tn            ΔΦλyn  =  GP* QP*Dens GP*
 T

 Tn (15.2.1.1-15)

The K* Kalman gain matrix from the (15.2.1.1-12) four-state partitioned covariance
propagation/reset operations is used to set the control vectors for the xa and xb error state
vectors.  The xa and xb control vectors can then be recombined into uc, the unpartitioned x
control vector form, for control of x.  Based on the forms of xa and xb in (15.2.1.1-2) and the
uc definition in (15.2.1-33), we define:

uc a  =  - δωIE/cNY, - γc NY, δvc NX, δΔR NX
 T

 

uc b  =  δωIE/cNX, γc NX, δvc NY, δΔRc NY
 T

(15.2.1.1-16)

where

uc a, uc b  =  Control vectors for the xa and xb error state vectors.



15-108     KALMAN FILTERING TECHNIQUES

We also write for the components of the (15.2.1-31) observation equation, the non-linear
version of the linearized (15.2.1.1-9) measurement equation:

ZObs/a n  =  ΔRNXn ZObs/bn  =  ΔRNYn (15.2.1.1-17)

where

ZObs/a, ZObs/b  = N Frame X, Y (horizontal) components of the observation vector
ZObs.

ΔRNX , ΔRNY   =  N Frame X, Y (horizontal) components of ΔRH
N

.

As in (15.2.1-29), the uc a
 , uc b

  control vectors are set to control the estimated values of xa

and xb to zero.  As in (15.2.1-32), this corresponds to:

uc/a n  =  - K*n ΔRNXn uc/b n  =  - K*n ΔRNYn (15.2.1.1-18)

Now define:

K*  ≡  K δωIE, K γ    , K δ v, K δΔR
 T (15.2.1.1-19)

where

K δωIE, K γ    , K δ v, K δΔR  =  Components of K*.

Then substitute (15.2.1.1-19) in (15.2.1.1-18), equate the result to (15.2.1.1-16), condense into

matrix dimension form, and incorporate the definition of uZN
N ×  

 2x2
 from (15.2.1-6).  The

result is the elements of the (15.2.1-33) uc control vector in terms of ΔR2x1
N

 observation and K*

gain components:

δ ωIE /2x1/cn

N
  =  K δωIEn uZN

N ×  

 2x2
 ΔR2x1n

N
        γ2x1/cn

N
  =  K γ     n uZN

N ×  

 2x2
 ΔR

 2x1n

N
 

 

δ v2x1/cn

N
  =  - K δ vn ΔR2x1n

N
                                 δ ΔR2x1/cn

N
  =  - K δΔR n ΔR2x1n

N
(15.2.1.1-20)

Foreground control Equations (15.2.1-34) remain valid using (15.2.1.1-20) for the control
inputs.

Summarized below, are the previous Fine Alignment processing routines described by
Equations (15.2.1-1), (15.2.1.1-11) - (15.2.1.1-15), (15.2.1.1-19) - (15.2.1.1-20) and
(15.2.1-34):
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FOREGROUND:

CB
N

  =  CB
N

 ωIB
B

×  - ωIE
N

×  CB
N

ωIE
N

  =  ωIEH

N
 + uZN

N
 ωe sin l

vH
N

  =  CB
N

 aSF
B

 

 H

ΔRH
N

  =  vH
N

GAIN CALCULATION:

P*n(-)  =  Φ* P*n-1(+e) Φ*
T

 + Q*

K*n  ≡  K δωIE, K γ    , K δ v, K δΔR  n
 T

  =  P*n(-) H*T H* P*n(-) H*T + PRVibH
 -1

 

P*n(+e)  =  I - K*n H*  P*n(-)

with the following constant matrices set-up once at the start of Fine Alignment:

Φ*  =  

1 0 0 0

Tn 1 0 0

1
2

 g Tn
2
 g Tn 1 0

1
6

 g Tn
3 1

2
 g Tn

2
Tn 1

(15.2.1.1-21)

H*  ≡  0 0 0 1

GP* QP*Dens GP*
 T

  =  

0   0 0 0

0   qωRand 0 0

0   0 g2 qαQuant + qaRand 0

0   0 0 qυQuant

(Continued)
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Q* To Second Order Accuracy:

Q1*   =   GP* QP*Dens GP*
 T

 Tn Q*  ≈  
1
2

 Q1* + 
1
2

 Φ* Q1* Φ*
T

Q* To Higher Order Accuracy:

Equations (15.1.2.1.1.3-28) with  m = n,
Q* = Qn , and from (15.1.2.1.1.3-21):

ΔΦλλn  =  A* Tn ΔΦλyn  =  GP* QP*Dens GP*
 T

 Tn

FOREGROUND CONTROL:
(15.2.1.1-21)
(Continued)

ωIE /2x1n

N
(+c)  =  ωIE /2x1n

N
(-) + KδωIEn uZN

N ×  

 2x2
 ΔR2x1n

N
 

γHcn

N
  =  

Kγ  n uZN
N ×  

 2x2
 ΔR

 2x1n

N

0
 

CB n

N
(+c)  =  I - 

sin γHcn

γHcn

 γHcn

N
×  + 

1 - cos γHcn

γHcn

2
 γHcn

N
×

 2
 CB n

N
(-)

 

v2x1n

N
(+c)  =  v2x1n

N
(-) - Kδvn ΔR2x1n

N

ΔR2x1n

N
(+c)  =  ΔR2x1n

N
(-) - KδΔR n ΔR2x1n

N
 

Note that the Foreground Control equations in (15.2.1.1-21) are equivalent to the continuous
form Fine Alignment process Equations (6.1.2-2) discussed in Section 6.1.2.  Equivalency is

achieved by equating the K1 - K4 gains in (6.1.2-2) to the K♦(t) continuous form of the discrete

K δωIE, K γ, K δv, K δΔR gains using Section 15.1.5.3.2, Equation (15.1.5.3.2-14) for K♦(t).

15.2.1.2  FOREGROUND AND KALMAN FILTER PARAMETER INITIALIZATION

We complete this section with a discussion of foreground and Kalman filter parameter
initialization for the Section 15.2.1.1 partitioned quasi-stationary Fine Alignment Kalman filter
configuration.  Kalman filter parameters requiring initialization are the 4 by 4 P* covariance
matrix, the vibration disturbance variance PRVibH, the elements of the coupled process noise

density matrix GP* QP*Dens GP*
 T

 and the Kalman control reset time interval Tn.
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Initialization of the foreground navigation parameters in Equations (15.2.1.1-21) is
performed at completion of Coarse Leveling (Section 6.1.1) as follows:

Foreground Initialization:

ωIEH

N
  =  0 vH

N
  =  0 ΔRH

N
  =  0 (15.2.1.2-1)

CB
N

  =  Value at completion of Coarse Leveling

The P* covariance matrix is initialized to reflect the error state uncertainties of Equations
(15.2.1.2-1) along the horizontal N Frame axes.  We assume that the initial horizontal earth rate
and tilt errors in (15.2.1.2-1) are uncorrelated from each other and from the other initial
position/velocity errors, which then defines the form of the initial P* matrix.  Using the
(15.2.1.1-2) and (15.2.1.1-11) ordering for the error state vector components, the initial P*
matrix thereby has the following form:

P*0  =  

PδωIE/H 0 0 0 0

0 Pγ/H0 0 0

0 0 Pδv/H0 PδvδΔR/H0

0 0 PδΔRδv/H0 PδΔR/H0

(15.2.1.2-2)

where
P*0  =  Initial value for P*.

PδωIE/H 0, Pγ/H0, Pδv/H0, PδvδΔR/H0, PδΔRδv/H0, PδΔR/H0  =  Initial values of the

Equation (15.2.1.1-2) xa or xb error state vector uncertainty
covariance elements.

From the ωIE
N

 earth rate vector expression in (6.1.2-2), since the vertical component of ωIE
N

 is

ωe sin l and the ωIE
N

 magnitude is ωe, the magnitude of the horizontal ωIE
N

 component, is

ωe cos l.  Because either horizontal N Frame axis (i) can be at any arbitrary heading relative to

true north ψTi, the component of true earth rate along one of the horizontal axes ωIEi is in

general:

ωIEi  =  ωe cos l cos ψTi (15.2.1.2-3)

The initial uncertainty in the i axis earth rate δωIEi is the difference between the initial

foreground value in (15.2.1.2-1) and the true (15.2.1.2-3) value:

δωIEi  =  - ωe cos l cos ψTi (15.2.1.2-4)
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The PδωIE/H 0 variance in (15.2.1.2-2) is the expected value of (15.2.1.2-4) squared.  If we

assume that the initial heading ψTi is equally likely to be at any value over all 360 degrees of

possible headings, the expected value of cos2ψTi is 0.5, hence:

PδωIE/H 0  =  
1
2

 ωe
2
 cos2l (15.2.1.2-5)

The initial tilt variance Pγ/H0 in (15.2.1.2-2) is based on the expected residual tilt error

following Coarse Leveling (Section 6.1.1).  A conservative estimate (good general practice in
setting Kalman filter matrix numerical values) is to set Pγ/H0 to correspond with 1 degree, or

1 × 1 / (57.32) = 0.000305 radians squared.

The Pδv/H0, PδvδΔR/H0, PδΔRδv/H0, PδΔR/H0 initial horizontal velocity/position covariance

elements are evaluated based on an assumed dynamic model for the quasi-stationary vibration
type motion along each horizontal i axis, e.g.:

vVibi  =  - k RVibi - c vVibi + nVibi RVibi  =  vVibi (15.2.1.2-6)

where

RVibi, vVibi  =  Quasi-stationary position, velocity motion along horizontal axis i.

nVibi  = White noise quasi-stationary random acceleration forcing function input along
horizontal axis i (e.g., wind gusts, stores/fuel loading, crew/passenger motion).

k, c  = Spring, damping coefficients associated with the structure that prevents the
vehicle carrying the INS from translating (e.g., for an aircraft, the landing gear
connecting the fuselage to the wheels and runway, when the parking brake is on
or wheels chocked).

Equations (15.2.1.2-6) when combined have the classic form:

RVibi + 2 ζ ωn RVibi + ωn
2 

 RVibi  =  nVibi
 

k  =  ωn
2 

                    c  =  2 ζ ωn

(15.2.1.2-7)

where

ωn, ζ  = Undamped natural frequency and damping ratio of the (15.2.1.2-7) dynamic
response characteristic.

Using the (15.2.1.2-7) definitions for k and c, Equations (15.2.1.2-6) are equivalently:

vVibi  =  - ωn
2
 RVibi - 2 ζ ωn vVib i + nVibi RVibi  =  vVibi (15.2.1.2-8)
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The uncertainties δvi, δΔRi in the initial foreground horizontal velocity/position are defined

as the difference between the (15.2.1.2-1) horizontal velocity/position and the true horizontal
velocity/position of Equations (15.2.1.2-8), hence:

δvi  =  - vVibi δΔRi  =  - RVibi (15.2.1.2-9)

Thus, Pδv/H0, PδvδΔR/H0, PδΔRδv/H0, PδΔR/H0 (the initial expected value of the δvi, δΔRi

uncertainty covariance elements), equal the initial covariance of vVibi, RVibi.  The initial

covariance of vVibi, RVibi can be defined as the steady state solution to the covariance form of

Equations (15.2.1.2-8) which, using (15.1-1) and (15.1.2.1.1-30) as templates, is:

PVib  =  AVib PVib + PVib AVib
T

 + QVib/Dens

AVib  =  
- 2 ζ ωn - ωn

2

1 0
QVib/Dens  =  

qVib/Dens   0

0   0
(15.2.1.2-10)

PVib  ≡  
Pvv/Vib PvR/Vib

PRv/Vib PRR/Vib

where

PVib  =  Covariance matrix associated with the state vector vVibi, RVibi
T.

qVib/Dens  =  Density of nVibi (assumed equal for each axis i).

In the steady state (assuming convergence of (15.2.1.2-8) to a stable random solution), PVib

in (15.2.1.2-10) is zero and we find from Pvv/Vib, PvR/Vib, PRv/Vib and PRR/Vib that:

- 4 ζ ωn Pvv/Vib - ωn
2
 PRv/Vib + PvR/Vib  + qVib/Dens  =  0 (15.2.1.2-10a)

Pvv/Vib - ωn
2
 PRR/Vib - 2 ζ ωn PvR/Vib  =  0 (15.2.1.2-11)

Pvv/Vib - ωn
2
 PRR/Vib - 2 ζ ωn PRv/Vib  =  0 (15.2.1.2-12)

PvR/Vib + PRv/Vib  =  0 (15.2.1.2-13)

Summing (15.2.1.2-11) - (15.2.1.2-12) and substituting (15.2.1.2-13) shows that:

Pvv/Vib  =  ωn
2
 PRR/Vib (15.2.1.2-14)

Differencing (15.2.1.2-11) - (15.2.1.2-12) and substituting (15.2.1.2-13) shows that:
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PvR/Vib  =  PRv/Vib  =  0 (15.2.1.2-15)

which with (15.2.1.2-10a) shows that

qVib/Dens  =  4 ζ ωn Pvv/Vib (15.2.1.2-15a)

We now identify PRR/Vib as identically the same parameter as in the Equation (15.2.1-27)
measurement noise variance PRVibH, hence, from (15.2.1.2-14) and (15.2.1.2-15a):

PRR/Vib  =  PRVibH Pvv/Vib  =  ωn
2
 PRVibH qVib/Dens  =  4 ζ ωn

3
 PRVibH (15.2.1.2-16)

Based on the sentence following Equation (15.2.1.2-9), we see from (15.2.1.2-15) and
(15.2.1.2-16) that the initial velocity/position error covariance elements in (15.2.1.2-2) are given
by:

Pδv/H0  =  ωn
2
 PRVibH          PδΔR/H0  =  PRVibH

 

PδvδΔR/H0  =  PδΔRδv/H0  =  0
(15.2.1.2-17)

Equations (15.2.1.2-17) allow the initial horizontal velocity uncertainty variance Pδv/H0 to be

expressed in terms of the quasi-stationary horizontal position disturbance motion variance in
PRVibH and the undamped natural frequency associated with the random translational motion

process.  The Equations (15.2.1.2-17) form for Pδv/H0 and (15.2.1.2-16) form for qVib/Dens

are advantageous because they have to be frequently evaluated based on a very rudimentary
understanding of the quasi-stationary process.  The random position amplitude squared PRVibH,

undamped natural frequency ωn, and damping ratio ζ can generally be estimated reasonably
well by intuition.  We also allow a safety factor of two squared in setting PRVibH.  As an

example, for an aircraft/landing-gear model, we might estimate the position disturbance root-
mean-square amplitude at 0.1 inch, the undamped natural frequency at 6.28 radians per second
(i.e., 1 Hz), and the damping ratio to be 0.5.  Then, providing the safety factor of 2 squared;

PRVibH = 0.1/12
  2 × 22 = 2.78E-4 ft2, Pδv/H0 = 6.282 × 2.78E-4 = 0.0109 (fps)2 and qVib/Dens

= 4 × 0.5 × 6.283 × 0.1/12
  2 × 22 = 0.138 (fps)2/sec.

The qω  Rand , qaRand  elements of the coupled process noise density matrix GP* QP*Dens GP*
 T

are equated to the values that characterize the particular angular rate sensors and accelerometers

being used.  The qαQuant, qυQuant terms in GP* QP*Dens GP*
 T

 are calculated from a model for

the quantization error.  If the pulse size is ε for say, an accelerometer, then without quantization
compensation (See Section 8.1.3), the computed velocity obtained by summing accelerometer
pulses will, at a given point in time, be in error by a random number xε that can lie anywhere in

the interval 0 to ε with equal likelihood.  If quantization compensation is included in the system
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software, ε can be interpreted as the fraction of a pulse error that remains after compensation is
applied.

We can characterize the xε error as being uniformly distributed from 0 to ε with a mean

value of 0.5 ε.  The probability density px of xε is constant (i.e., a uniform distribution).  The

integral of px over the xε range of 0 to ε is one (i.e., the probability is one that xε lies in this

range).  Therefore, px = 1 / ε.  The uncertainty in a random parameter is typically measured by

the variance about its mean defined as the expected value of the square of the difference between

the parameter and its mean value.  The variance of xε about its 0.5 ε mean (i.e., the

“quantization error”) can be calculated as the integral of px times (xε - 0.5  ε)
2
 which the reader

can verify to be  
1

12
 ε2

.

The velocity including the quantization error is integrated by a sample/summing process to
calculate position.  Each velocity sample will contain the xε random quantization error, each
being independent from the previous sample.  Then, the position integral will contain an
integrated quantization error equal to the sum of the xε’s on the sampled velocities multiplied by

the integration update time interval Δt .  Each xε thereby increases the position error by xε Δt ,
corresponding to an increase in the position error variance by the variance in xε multiplied by

the square of the integration update time interval (i.e., 
1
12

 ε2
 Δt2).  The position variance is

thereby increased at a rate equal to 
1

12
 ε2

 Δt2 divided by Δt , or at 
1
12

 ε2
 Δ t = 

1
12

 
ε2

f Intg
 in which

fIntg  is the position algorithm integration rate (i.e., the reciprocal of Δt).  The 
1
12

 
ε2

f Intg
 quantity

represents qυQuant in G*P QP*Dens G*P
 T

.  From this reasoning we then write for qαQuant and

qυQuant:

qαQuant  =  
1

12
 

εα
2

f Att/Vel
qυ Quant  =  

1
12

 
ευ

2

f Vel/Pos
(15.2.1.2-18)

where

εα, ευ  = Angular rate sensor and accelerometer output pulse sizes (or equivalent
remaining after applying quantization compensation if used) (measured in
radians and feet per second).

f Att/Vel  = Frequency that attitude is used in the foreground calculations for
acceleration-transformation/velocity-integration update (Hz).

f Vel/Pos  = Frequency that velocity is used in the foreground calculations for position
integration update (Hz).
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We finally discuss the selection of the Tn Kalman filter update time interval.  For the quasi-
stationary Fine Alignment problem, the Kalman filter update time is selected long enough to
validate the fundamental assumption implied in the measurement noise model; namely, that the
measurement noise will be uncorrelated with itself from measurement to measurement.  The
measurement noise is the quasi-stationary horizontal position motion (per Equation
(15.2.1-26)), hence, its dynamic model along each horizontal axis is as defined by Equations
(15.2.1.2-8).  The Tn used should be long enough that the transient response of (15.2.1.2-8) to
the RVibi position at the previous measurement time, has decayed to near zero at the current

measurement time.  The characteristic roots of Equation (15.2.1.2-8) contain a transient time

constant of 
1

ζ ωn

.  Hence, to assure a valid Kalman filter structure, Tn should be selected to be

two or three times 
1

ζ ωn

.  Estimation of the damping ratio ζ for Tn determination is usually

based on intuitive judgment (e.g., 0.5 for the aircraft/landing-gear structure).  If the undamped

natural frequency in the previous example is 1 Hz (or 6.28 radians per second for ωn), the

corresponding time constant would be 
1

0.5 × 6.28
 = 0.318 seconds.  Allowing three time

constants for safety would set Tn = 1 second.

15.2.2 KALMAN FILTERING APPLIED TO DYNAMIC
MOVING BASE INS INITIAL ALIGNMENT

In some circumstances, INS initial alignment is required under dynamic motion in which the
INS to be initialized is located on a dynamically moving vehicle (i.e., “moving base” INS
alignment).  For such a scenario, a reference aiding device is required in the observation
calculation for Kalman filter input (unlike the quasi-stationary alignment process discussed in
Section 15.2.1 for which the aiding device was replaced by knowledge that the INS was quasi-
stationary).  For the moving base alignment, the aiding device is typically another INS located
in the same vehicle.  A classic example of moving base alignment is the initialization of an INS
in an air-launched missile prior to missile launch, using the launching aircraft INS as the
reference aiding device.  In effect, the missile INS alignment initialization operation transfers the
aircraft INS attitude/heading into the missile INS, thus the terminology “transfer alignment” to
describe the moving base alignment process when using a reference INS for the aiding device.

The basic principle used in defining the observation equation for the moving base transfer
alignment Kalman filter is that INS attitude/heading errors affect the calculation of navigation
frame acceleration, thereby developing velocity errors in the inertial navigation computation.  A
comparison between velocity (or integrated velocity) data between the INS and reference aiding
device, therefore, provides a measurement of the effect of attitude/heading error.  Use of such a
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measurement is sometimes referred to as “velocity matching” or “integrated velocity
matching”, depending on the form of the observation utilized.

In the following subsections we will describe two forms of the integrated velocity matching
moving base alignment filter; a version based on an E Frame observation and a version based
on an N Frame observation.  The final subsection discusses the alternative of velocity matching
compared to the integrated velocity matching methods described.

15.2.2.1  MOVING BASE ALIGNMENT USING AN E FRAME OBSERVATION

In this section we describe an integrated velocity matching scheme in which the observation
is formed in the earth fixed E Frame.  The rationale for choosing the E Frame is that it is well
defined without singularities for all INS position locations, and is known in both the INS and
aiding reference, hence, is a convenient frame for vector data communication between
navigation devices.

An observation equation for moving base alignment can be developed in the E Frame by
considering the relationship between the position location of the INS that is being aligned
(initialized), and the position location of the reference aiding device:

RINS
E

  =  RREF
E

 + lE (15.2.2.1-1)

where

RINS
E

  =  E Frame position vector from earth’s center to the INS being initialized.

RREF
E

  =  E Frame position vector from earth’s center to the reference aiding device.

lE  = E Frame components of the lever arm from the reference aiding device to the
INS being initialized.

The derivative of (15.2.2.1-1) is:

RINS
E

  =  RREF
E

 + l
E

(15.2.2.1-2)

Using the Equation (4.3-1) definition for velocity relative to the earth, we see that (15.2.2.1-2) is
equivalently:

vINS
E

  =  vREF
E

 + l
E

(15.2.2.1-3)

From (4.3-1), we can integrate Equation (15.2.2.1-2) from the start of the moving base
alignment computational process to obtain the equivalent position change form at time t:
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ΔRINS
E

(t)  =  ΔRREF
E

(t) + lE(t) - l
 0
E

(15.2.2.1-4)

with

ΔRINS
E

(t)  =  vINS
E

 dt
0

t

ΔRREF
E

(t)  =  vREF
E

 dt
0

t

(15.2.2.1-5)

where

ΔRINS
E

(t), ΔRREF
E

(t)   = Position change relative to the earth of the INS and the

reference aiding device at time t into alignment operations.

vINS
E

, vREF
E

  = Velocity relative to the earth in the E Frame of the INS and reference

aiding device.

0  = Subscript designating initial value at the start of the moving base alignment
process.

Equations (15.2.2.1-4) - (15.2.2.1-5) are the basis for the moving base alignment
observation equation which we now state as:

ZObsn  =  Mn
E

 - l n
E

 - l 0
E

(15.2.2.1-6)

M
E

(t)  =  ΔRINS
E

(t) - ΔRREF
E

(t)  =  CN
E

 v
N

 -  vREF
E

 dt
0

t

(15.2.2.1-7)

where

ZObs  =  Observation vector.

    = Designates parameters calculated in the INS or aiding device computer, hence,
contain errors.

v
N

  = vINS
N

 with the INS label dropped for simplicity.  For the remainder of this
section, the INS subscript will be dropped for all INS computed parameters.

Equation (15.2.2.1-6) can be clarified by defining the lever arm components in the
strapdown sensor axis (“body”) B Frame in which they are stationary, thus:

l n
E

  =  CBn
E

 l
B

l0
E

  =  CB0
E

 l
B

(15.2.2.1-8)

With (15.2.2.1-8), Equation (15.2.2.1-6) becomes:

ZObsn  =  Mn
E

 - CBn
E

 - CB0
E

 l
B

(15.2.2.1-9)
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Assuming a set of foreground navigation equations in which the L Frame is used for B Frame
referencing and the N Frame for velocity/position referencing, the direction cosine matrices in
(15.2.2.1-9) would be calculated from:

CB n
E

  =  CNn
E

 CL
N

 CB n
L

 

CB 0
E

  =  Provided as input to the INS as attitude initialization data.

(15.2.2.1-10)

Equations (15.2.2.1-7) and (15.2.2.1-9) - (15.2.2.1-10) constitute the observation equations for
the moving base alignment.  The corresponding measurement equation is obtained as the
differential of observation Equation (15.2.2.1-9):

zn  =  δ Mn
E

 - δ CB n

E
 - δ CB0

E
 l

B
 - CB n

E
 - CB0

E
 δ l n

B
(15.2.2.1-11)

The direction cosine error terms in (15.2.2.1-11) can be related to attitude error vector
equivalents using Equation (12.2.1-3).  We also assume that the attitude uncertainty during the
moving base alignment process approximately equals the initial attitude uncertainty (assuming
that Kalman filter attitude estimate updates will also be used to update the initial attitude error
uncertainty).  Thus:

δ CB n

E
  =  - ψn

E
 ×  CB n

E

 

δ CB 0
E   =  - ψ0

E
 ×  CB 0

E
  ≈  - ψn

E
 ×  CB 0

E
 

(15.2.2.1-12)

and from (12.2.1-7):

ψn
E

  =  CNn
E

 ψn
N

(15.2.2.1-13)

The δlB lever arm uncertainty in (15.2.2.1-11) is the difference between l
B

 and the true lever

arm value lB.  The true lever arm can be modeled as a constant plus a dynamic flexing
component:

lB  =  l
 Cnst
B

 + l
 Flex
B

l Cnst
B

  =  0 (15.2.2.1-14)

where

l
 Cnst
B

, l
 Flex
B

  =  Constant and flexing portions of portion lB.

The computer’s estimate for the lever arm (l
B

) is modeled as a constant:
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l
B

  =  l Cnst
B

l Cnst
B

  =  0 (15.2.2.1-15)

The δlB lever arm uncertainty in (15.2.2.1-11) is (15.2.2.1-15) minus (15.2.2.1-14):

δlB  =  l
B

 - lB  =  δl
 Cnst
B

 -  l
 Flex
B δlCnst

B
  =  0 (15.2.2.1-16)

With (15.2.2.1-12), (15.2.2.1-13) and (15.2.2.1-16) in (15.2.2.1-11), we obtain the
equivalent measurement equation form:

zn  =  δMn
E

 - CBn
E

 - CB0
E

 l
B

 ×  CNn
E

 ψn
N

 - CBn
E

 - CB0
E

 δl
 Cnst
B

 + CBn
E

 - CB0
E

 l
 Flexn

B
 (15.2.2.1-17)

Using (15.2.2.1-17) for the measurement equation, we see from the (15.1-2) standard form that

l
 Flex
B

 is the measurement noise for the moving base alignment Kalman filter defined thus far.

This is a very convenient result because an estimate for flexure position vibration amplitude (for
the Kalman filter measurement noise matrix) is generally fairly easy to assess by engineering

judgment for a given application.  In fact, knowing that l
 Flex
B

 would be the measurement noise

was part of the rationale in choosing integrated velocity matching to form the observation.

The δMn
E

 term in (15.2.2.1-17) can be related to velocity error equivalents (defined in the E

Frame) from the differential of (15.2.2.1-7) evaluated at tn, using the (12.2.2-1) and (12.2.2-3)
velocity error definitions:

δME(t)  = δM
E

 dt
0

t

(15.2.2.1-18)

δ M
E

  =  δ  CN
E

 v
N

 - vREF
E

  =  δ v
E
 - δ vREF

E

 

          =  δ VE -  δ VREF
E

  =  CN
E

 δ VN -  δ VREF
E

(15.2.2.1-19)

Note in (15.2.2.1-18), that the initial value of δME(t)  is zero.  This is justified from the formal

definition of δME as the difference between M
E

 in (15.2.2.1-7) and its true value; i.e.,

δME ≡ M
E

 - ΔRINS
E

 - ΔRRef
E

.  We see from (15.2.2.1-7), that M
E

 is zero at time t = 0 as is

ΔRINS
E

 - ΔRRef
E

 based on (15.2.2.1-4).  Thus, δME is also zero at t = 0 as stipulated in

(15.2.2.1-18).
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For the dynamic moving base alignment problem, accurate synchronization between the INS
and reference aiding device is critical in forming the Equations (15.2.2.1-7) and (15.2.2.1-9)
observation input to the Kalman filter.  Assuming that the (15.2.2.1-7) integration is performed
in the INS computer, synchronization inaccuracy between the INS and aiding device can be

attributed to timing uncertainty in the vREF
E

 data input to the INS.  Inaccuracy in the vREF
E

 input

due to timing uncertainty (known as “senescence” error) is part of the δVRef
E

 error in

(15.2.2.1-19) which can be expanded to read:

δVRef
E

  =  δVRef/Sen
E

 + δVRef/Other
E

(15.2.2.1-20)

where

δVRef/Sen
E

  = Reference velocity error due to vREF
E

 time stamp uncertainty data
senescence.

δVRef/Other
E

  =  Remaining errors in δVRef
E

 other than δVRef/Sen
E

.

The δVRef/Sen
E

 error is created by velocity change (acceleration) in the presence of data

senescence for which we can write:

δVRef/Sen
E

  =  vREF
E

 δτSen (15.2.2.1-21)

where

 δτSen  =  Data senescence time stamp uncertainty.

The vREF
E

 term in (15.2.2.1-21) can be calculated from INS data using the derivative of

(15.2.2.1-3), rearranged:

vREF
E

  =  v
E

 -  l 

E
(15.2.2.1-22)

The v
E

 term in (15.2.2.1-22) is the derivative of:

v
E

  =  CN
E

 v
N

(15.2.2.1-23)

Taking the derivative of (15.2.2.1-23) and applying generalized Equation (3.3.2-6) yields:

v
E

  =  CN
E

 v
N

 + CN
E

 v
N

  =  CN
E

 v
N

 + ωEN
N

 × v
N

(15.2.2.1-24)
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The  l 

E
 term in (15.2.2.1-22) is evaluated from the double derivative of the transformed B

Frame lever arm components, while recognizing l
B

 to be approximately constant:

 l 

E
  = CB

E
 l

B (15.2.2.1-25)

The CB
E
 term in (15.2.2.1-25) is determined by successive application of generalized Equation

(3.3.2-6) and its derivative, and approximating the angular rate of the B Frame relative to the
earth as the B Frame rate relative to inertial space:

CB
E

  =  
d
dt

 CB
E

  =  
d
dt

 CB
E

 ωEB
B

 ×   =  CB
E

 ωEB
B

 ×  + CB
E

 ωEB

B
 ×

=  CB
E

 ωEB
B

 ×
 2

 + CB
E

 ωEB

B
 ×   =  CB

E
 ωEB

B
 ×

 2

 + ωEB

B
 × (15.2.2.1-26)

≈  CB
E

 ωIB
B

×
 2

 + ωIB

B
×

where

    = Designation for sensor inputs containing errors (in this case, the angular rate
sensors).

With (15.2.2.1-24) - (15.2.2.1-26) and (15.2.2.1-21) - (15.2.2.1-22), Equation (15.2.2.1-20)

for the δVRef
E

 term in (15.2.2.1-19) becomes:

δVRef
E

  =  CN
E

 v
N

 + ωEN
N

 × v
N

 - CB
E

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen + δVRef/Other

E
(15.2.2.1-27)

The δτSen  senescence error in (15.2.2.1-27) might be modeled as the sum of a random walk

changing constant δτSen/RndCnst , a first order Markov process δτSen/Mark (see Section 12.5.6

for definition), plus a completely random jitter component δτSen/Jit :

δτSen  =  δτSen/RndCnst + δτSen/Mark + δτSen/Jit (15.2.2.1-28)

δτSen/RndCnst  =  nSen/RndCnst

δτSen/Mrk  =  - CSen/Mrk δτSen/Mrk + nSen/Mrk
(15.2.2.1-29)

Simplified versions of (15.2.2.1-28) - (15.2.2.1-29) are also possible.  For example,

δτSen/RndCnst  and δτSen/Mark can be merged into a combined single error state that uses the

δτSen/RndCnst model initially (when δτSen/RndCnst  is large), and then switches to the δτSen/Mrk
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model when the δτSen/RndCnst  variance is reduced by the Kalman filter estimation process to

the δτSen/Mark initial uncertainty.

We now substitute (15.2.2.1-27) with (15.2.2.1-28) into (15.2.2.1-19) to obtain for δM:

             δM
E

  =  CN
E

 δVN

- CN
E

 v
N

 + ωEN
N

 × v
N

 - CB
E

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen/RndCnst + δτSen/Mark

 

     - CN
E

 v
N

 + ωEN
N

 × v
N

 - CB
E

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen/Jit - δVRef/Other

E

(15.2.2.1-30)

Let us summarize the results we have obtained thus far before continuing the discussion.
The observation equation for the moving base alignment Kalman filter is given by (15.2.2.1-9)
- (15.2.2.1-10) with input from Equations (15.2.2.1-7).  The measurement equation is given by
(15.2.2.1-17) with input from (15.2.2.1-16), (15.2.2.1-18), (15.2.2.1-29) and (15.2.2.1-30).
Both equation sets are repeated below for easy reference:

Observation Equation:

ZObsn  =  Mn
E

 - CB n
E

 - CB 0
E

 l
B

CB  n
E

  =  CNn
E

 CL
N

 CB  n
L

 
 

CB  0

E
  =  Provided as input to the INS as attitude initialization data.

M
E

(t)  =  CN
E

 v
N

 -  vREF
E

 dt
0

t

(15.2.2.1-31)

Measurement Equation:

zn  =  δ Mn
E

 - CB n
E

 - CB 0
E

 l
B

 ×  CNn
E

 ψn
N

 - CB n
E

 - CB 0
E

 δ l
 Cnst
B

 + CB n

E
 - CB 0

E
 l

 Flexn

B
 

δlCnst
B

  =  0

δME(t)  = δM
E

 dt
0

t

(Continued)
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δM
E

  =  CN
E

 δVN

-  CN
E

 v
N

 + ωEN
N

 × v
N

 - CB
E

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen/RndCnst + δτSen/Mark

 

     - CN
E

 v
N

 + ωEN
N

 × v
N

 - CB
E

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen/Jit - δVRef/Other

E

δ τSen/RndCnst  =  nSen/RndCnst (15.2.2.1-31)
(Continued)

δτSen/Mrk  =  - CSen/Mrk δτSen/Mrk + nSen/Mrk

The measurement equation in (15.2.2.1-31) identifies the error states required from the Kalman

filter error models to include δME, δVN, ψN
, δ l Cnst

B
, δ τSen/RndCnst , δ τSen/Mark  and

δVRef/Other
E

 .  The error state vector for the moving base alignment filter must include these

error effects to properly account for potential errors in the observation vector ZObs input to the
Kalman filter.

Error state dynamic equations for δVN and ψN
 can be provided from the INS error model

such as described by Equations (12.5.1-1) (or a simplified equivalent).  Classical models for the

inertial sensor errors in Equations (12.5.1-1) are discussed in Section 12.5.6.  The δME, δ l Cnst
B

,

δ τSen/RndCnst , δ τSen/Mark  error state dynamic models are the δM
E

, δ l Cnst
B

, δ τSen/RndCnst ,

δ τSen/Mrk expressions in (15.2.2.1-31).  The error model for δVRef/Other
E

 typically assumes a

perfect reference, except for random output errors approximated as white noise (which then

would be considered as process noise in the (15.2.2.1-31) δM
E

 expression).  If the reference

aiding device is another inertial navigation system, δVRef/Other
E

 can be equated to the

accelerometer quantization error in the reference INS velocity data, augmented in magnitude to
also account for other random effects such as angular rate sensor error.  If the reference aiding
device is an inertial navigation system with an error model similar to the INS being aligned, a

more sophisticated approach can be considered; δVRef/Other
E

 can be approximated by the

reference device accelerometer quantization error, with the remaining contributing process noise

terms to δVRef/Other
E

 then absorbed into the process noise contributing to the δVN error state.

This latter approach is possible due to the form of the δM
E

 expression in (15.2.2.1-31) which

contains as input, the direct difference between δVRef/Other
E

 and transformed δVN .
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Control resets for the moving base alignment filter can be designed for the measurement

δME, the INS navigation and inertial sensor errors, and for the lever arm δ l Cnst
N

.  The

techniques described in Section 15.1.2.3 can be utilized to implement the foreground control
reset process.  For example, if all of the Equations (12.5.1-1) navigation error terms are
included as error states, the error state vector would be of the form:

x  =  δ ME T
, ψN T

, δVN T
, δRN T

, SensErrT, δ l Cnst
B T

, δ τSen/RndCnst , δ τSen/Mark

 T

(15.2.2.1-32)
where

SensErr  =  Vector of inertial sensor error states.

The associated uc control vector calculated from error state vector estimates would then be:

uc  =  δ Mc
E T

, ψc
N T

, δ Vc
N T

, δ Rc
N T

, SensErrc
T

, δ l Cnstc
B T

, 0, 0
 T

(15.2.2.1-33)

The control vector would be set to the negative of the estimated error states being controlled to
drive the controlled error states to zero (as discussed in Section 15.1.2).  If the method of
delayed resets is being used as applied in Section 15.1.2.4 with Equation (15.1.2.4-8), we
would then set:

uc n+c  =  - xCntrldn(+e) (15.2.2.1-34)

where

xCntrld   = The estimated error state vector x, but substituting zero for the components
not being controlled.

Assuming that the INS navigation parameters are integrated by the foreground in N Frame
coordinates (e.g., Equations (12.1-1) - (12.1-12)), Equations (15.1.2.3-16) - (15.1.2.3-20)

would be used for control reset of the foreground navigation parameters.  Additionally, the CB 0
E

matrix, provided as input initialization data, would be updated for the ψc
N

 control resets based

on Equations (15.2.2.1-12) - (15.2.2.1-13) using (15.1.2.3-20) for the form of matrix update
operation:

ψc
E

  =  CNn
E

 ψc
N

CB 0 

E
(+)  =  I - 

sin ψc

ψc

 ψc
E

×  + 
(1 - cos ψc)

ψc
2

 ψc
E

×
 2

 CB 0 

E
(-) (15.2.2.1-35)

The measurement, lever arm and inertial sensor error controls would be applied as:
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δME(+)   =  δME(-)  + δMc
E

l
B

(+)  =  l
B

(-) + δ l Cnstc
B

 (15.2.2.1-36)

Coef(+)  =  Coef(-) + SensErrc 

where

Coef  = Inertial sensor compensation coefficients whose errors are represented by
SensErr .

Based on the foregoing analytical discussion, the moving base alignment Kalman filter is
then easily constructed from the defined error states in (15.2.2.1-32), their associated error state
dynamic equations (from (12.5.1-1) and (15.2.2.1-31) with format Equation (15.1-1)), the
(15.2.2.1-31) observation and measurement equations (with format Equation (15.1-2)) and the
previously described control reset implementation.  Equations (15.1.2.4-1) - (15.1.2.4-11) can
be used for the overall Kalman filter configuration with the error state transition and Kalman
gain matrices calculated as described in Sections 15.1.2.1, 15.1.2.1.1 and 15.1.2.1.1.1 -
15.1.2.1.1.3.

Foreground initialization for the previous moving base alignment process initializes M
E

(t)  to

zero, l
B
, Coef at their last calibrated values, and the attitude, velocity, position navigation

parameters (CB
L

, v
N

, CN
E

, h) based on inputs from the aiding device or other systems in the

vehicle executing the overall alignment process.  The initial N Frame definition for this process
would be selected for consistency with the available navigation input data format (e.g.,
North/East/Vertical).  The initial L Frame orientation is set once the N Frame is selected (from

the L Frame definition as provided numerically by Equation (4.1.1-2)).  The initial CN
E

, h

position data can generally be set to the equivalent initial position data provided.  For enhanced
accuracy, the initial position can be adjusted for the known lever arm between the INS and the

device providing the initial position input.  In the case of the velocity v
N

 initialization using

aiding device input velocity, the l
B
 lever arm effect should generally be taken into account.  For

example, using Equation (15.2.2.1-3) transformed to the N Frame with generalized Equation

(3.4-4), and approximating l
B

 as constant

vINS
N

  =  CE
N

 vREF
E

 + CE
N

 l
E

  =  CE
N

 vREF
E

 + CE
N

 CB
E

 ωEB
B

 × l
B

                       ≈  CE
N

 vREF
E

 + CB
N

 ωIB
B

 × l
B

(15.2.2.1-37)
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The error state vector would be initialized at zero (i.e., as in Equation (15.1.2.4-11)) and the
initial value for the covariance matrix would be based on the error in the foreground

initialization.  Based on the (15.2.2.1-31) definition for δME(t)  as a closed integral from time

t = 0, the initial value for the δME(t)  uncertainty would be equated to zero.  Initial uncertainties
selected for SensErr would be based on knowledge of the inertial sensor calibration accuracy

and stability since calibration.  The initial uncertainty in δ l Cnst
B

 would be based on an estimate

for the l
B

 determination accuracy.  The uncertainty in the initial attitude error ψN
 would be

based on an estimate for the alignment uncertainty between the INS and the device providing
the attitude initialization data, including vehicle flexing under acceleration (e.g., 1 degree as a

conservative estimate).  The initial uncertainty in the velocity error δVN can be based on an
estimate for lever arm dynamic flexing between the INS and referencing aiding device using a
simplified dynamic flexure model (e.g., similar to Equations (15.2.1.2-8) and (15.2.1.2-10) -
(15.2.1.2-16) with RVib and vVib interpreted as dynamic position/velocity flexure), plus the

effect of l
B

 uncertainty in (15.2.2.1-37) which can be approximated as CB
N

 ωIB
B

 × δ l Cnst
B

.  The

initial position uncertainty can be approximated as zero.  Even though it is recognized that the
uncertainty between some error states may be correlated (e.g., initial lever arm and velocity
error uncertainties), it is conservative to approximate them as being initially uncorrelated (i.e.,
setting the initial covariance matrix off-diagonal elements to zero).

The process noise source density matrix QPDens for the moving base alignment Kalman filter

would be set based on engineering knowledge of the process noise terms in (12.5.1-1) and
(15.2.2.1-31).  The (12.5.1-1) inertial sensor QPDens terms would be set as described in Section

15.2.1.

Initialization of the Equation (15.2.2.1-31) δτSen/Mrk first order Markov process noise

density would be based on the steady state δτSen/Mrk uncertainty variance.  As in Section

15.2.1.2 (Equations (15.2.1.2-10) - (15.2.1.2-16)), we write from (15.1-1), (15.1.2.1.1-30) and

(15.2.2.1-31) for δτSen/Mrk:

PSen/Mrk  =  - 2 CSen/Mrk PSen/Mrk + QSen/Mrk  =  0
 

           ⇒        QSen/Mrk  =  2 CSen/Mrk PSen/Mrk/Std

(15.2.2.1-38)

where

PSen/Mrk, PSen/Mrk/Std, QSen/Mrk  =  Instantaneous variance, steady state variance,

and process noise density for the uncertainty in δτSen/Mrk.
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The δ τSen/RndCnst  process noise density (QSen/RndCnst) can be calculated from (15.2.2.1-31)

for δ τSen/RndCnst  using (15.1.2.1.1-30), as the estimated potential change in the δ τSen/RndCnst 

variance (ΔPSen/RndCnst) over the moving base alignment period TAlign:

PSen/RndCnst  =  QSen/RndCnst     ⇒     QSen/RndCnst  =  ΔPSen/RndCnst / TAlign (15.2.2.1-39)

The measurement noise variance for the (15.2.2.1-31) zn measurement equation would be set

to the estimated variance of the lever arm flexure l
 Flex
B

.

In an actual implementation of the above described Kalman filter, approximations would
probably be incorporated such as neglecting the angular-rate/quantization-noise product terms in

Equations (12.5.1-1), and excluding the δR N error state as having negligible impact on the
alignment process.  It is common to neglect senescence and lever arm error states in moving
base alignment implementations, although not necessarily advisable.

A disadvantage in the (15.2.2.1-31) observation equation is that to minimize error build-up in

the M(t)  digital integration of vREF
E

, a high data rate would typically be required for vREF
E

 data

transfer to the INS under dynamic acceleration/vibration conditions.  To minimize the rate at
which reference device data must be transferred, the (15.2.2.1-31) observation equation can be
restructured as follows:

ZObsn  =  ΔRn
E

 - ΔRREFn
E

 - CBn
E

 - CB0
E

 l
B

ΔR
E

(t)   =  CN
E

 v
N

 dt
0

t

ΔRREF
E

(t)  =  SvREF
E

 (tREF = t) - SvREF
E

 (tREF = 0) (15.2.2.1-40)

SvREF
E

 (tREF)  =  vREF
E

 dt

tR E F

where

t  =  Time since alignment initiation as determined by the INS being aligned.

t REF  = Equivalent time parameter for the reference device that is nominally equal to
the t time parameter, but may differ due to senescence uncertainty error.

SvREF
E

 (tREF)  = Running integral of vREF
E

 computed in the reference device since
before t = 0.

ΔRREFn
E

  =  Integral of vREF
E

 since the start of alignment.
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Note, from the (15.2.2.1-1) - (15.2.2.1-5), that the ΔRn
E

 and ΔRREFn
E

 terms in (15.2.2.1-40) are

actual position vector RE changes, hence, can also be computed from the INS and reference
aiding device position data, providing they have sufficient resolution and accuracy.

Equations (15.2.2.1-40) allow the vREF
E

 integration to be performed in the reference aiding

device computer and delivered to the INS in the form of SvREF
E

 (tREF).  The ΔRREFn
E

 input to

the ZObsn is set to SvREF
E

 (tREF) minus its value at the start of alignment.  Note that for this type

of observation, reference data senescence uncertainty has a different effect on the
observation/measurement than in the previous example.  For the (15.2.2.1-40) case, data

senescence introduces an error in ΔRREFn
E

 during position change (i.e., velocity) equal to

vREF
E

 δ τSen  which directly impacts the observation.  The impact on the zn measurement

equation in (15.2.2.1-31) is to eliminate the senescence terms in the δM
E

 expression and replace

them with a vREF
E

 δ τSen  term in zn.  The revised measurement equation thereby becomes:

zn  =  δ Mn
E

 - vREFn
E

 δ τSen/RndCnst + δ τSen/Mark n  - CB n
E

 - CB 0
E

 l
B

 ×  CNn
E

 ψn
N

- CB n
E

 - CB 0
E

 δ l Cnst
B

 - vREFn
E

 δ τSen/Jit n + CB n
E

 - CB 0
E

 l
 Flexn

B
 (15.2.2.1-41)

δME(t)  =  δM0
E

 + δM
E

 dt
0

t

δM
E

  =  CN
E

 δVN - δVRef/Other
E

where

δM0
E

  =  Initial value for δME(t) .

Based on the analytical definition for ZObs n
  in (15.2.2.1-40), we see that the initial value is

identically zero.  Hence, zn in (15.2.2.1-41) (the differential of ZObs n
 ) should also be initially

zero.  The zn constraint in (15.2.2.1-41) with δME(t) = δM0
E

 then sets the following

requirement on δM0
E

:

δ M0
E

  =  vREF0
E

 δ τSen/RndCnst + δ τSen/Mark 0  + vREF0
E

 δ τSen/Jit 0 (15.2.2.1-42)

where

0  =  Subscript reference to value for the parameter at time t = 0.
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Note in Equation (15.2.2.1-41), that the δτSen/Jit  term now becomes part of the
measurement noise, while in (15.2.2.1-31), it was part of the process noise.  The error models

for δ τSen/RndCnst , δ τSen/Mark  in (15.2.2.1-41) would be as in (15.2.2.1-31).  A fundamental
difference in the (15.2.2.1-41) measurement compared to the zn measurement equation in

(15.2.2.1-31) relates to the initial value for δME(t)  uncertainty.  For the (15.2.2.1-31)

measurement, the initial value for δME(t)  uncertainty is zero, which satisfies the zn = 0
condition at t = 0 in the (15.2.2.1-31) zn equation.  In contrast, for the (15.2.2.1-41)

measurement, Equation (15.2.2.1-42) is required for δM0
E

 which accounts for initial senescence

error in SvREF
E

 (tREF = 0) when forming ΔRREFn
E

 in (15.2.2.1-40).  The initial uncertainty in

δM0
E

 then goes toward initialization of the covariance matrix, including initial correlation of

δM0
E

 with the initial uncertainties in δ τSen/RndCnst and δ τSen/Mark 0
 .

The previous approaches to the moving base alignment problem generate a set of error
models that are well defined analytically (with only minor approximations), and which are
consistent with the error models usually employed in strapdown inertial navigation Kalman
filter configurations.

15.2.2.2  MOVING BASE ALIGNMENT USING AN N FRAME OBSERVATION

In this section we will describe an integrated velocity matching scheme in which the
observation is formed in the locally level navigation N Frame.  The N Frame observation
approach has been more commonly used in practice because the velocity data provided from
typical INS reference devices is usually formatted in a locally level coordinate frame.

The equation for the N Frame observation is derived beginning with Equation (15.2.2.1-3) of
the previous section transformed to the N Frame:

vINS
N

  =  vREF
N

 + CE
N

 l
E

(15.2.2.2-1)

Applying generalized Equation (3.4-6), the lever arm term is:

CE
N

 l
E

  =  l
N

 + ωEN
N

 × lN  ≈  l
N

(15.2.2.2-2)

With (15.2.2.2-2), the integral of (15.2.2.2-1) becomes:

vINS
N

 dt
0

t

  =  vREF
N

 dt
0

t

 + lN(t)  - l
 0
N

(15.2.2.2-3)
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Following the same process leading to (15.2.2.1-9), we then structure the N Frame observation
equation from (15.2.2.2-3) as:

ZObsn  =  Mn
N

 - l n
N

 - l 0
N

  =  Mn
N

 - CBn
N

 - CB0
N

 l
B

M
N

(t)  ≡  v
N

 - vREF
N

 dt
0

t

(15.2.2.2-4)

CB n
N

  =  CL
N

 CB n
L

 CB 0
N

  =  CL
N

 CB 0
L

 

Under horizontal maneuvering, the horizontal (i.e., X, Y) components of the (15.2.2.2-4)
observation equation are generally sufficient for a successful transfer alignment.  For analytical
expediency, this section will be based on the full (15.2.2.2-4) vector form for the observation
equation, with the derivation of the equivalent horizontal component form left as an exercise for
the interested reader.

The associated measurement equation is derived as the differential of (15.2.2.2-4) using
(12.2.1-9) for attitude error definition:

zn  =  δ Mn
N

 - δ CB n

N
 - δ CB 0

N  l
B

 - CB n
N

 - CB 0
N

 δ lB

 

δ CB n

N
  =  - γn

N
×  CB n

N
               δ CB 0

N
  =  - γ0

N
×  CB 0

N
  ≈ - γn

N
×  CB 0

N
 

(15.2.2.2-5)

Combining and incorporating the (15.2.2.1-16) lever arm error model then obtains for the N
Frame measurement equation:

zn  =  δ Mn
N

 - CB n
N

 - CB 0
N

 l
B

 ×  γn
N

 - CB n
N

 - CB 0
N

 δ l 
 Cnst
B

 + CB n
N

 - CB 0
N

 l
 Flexn

B
(15.2.2.2-6)

The δMn
N

 term in (15.2.2.2-6) is δMN(t)  at tn which, from the differential of (15.2.2.2-4)

using (12.2.2-2) for velocity error definition, is given by:

δMN(t)  = δM
N

 dt
0

t

(15.2.2.2-7)

δM
N

  ≡  δvN - δvREF
N

(15.2.2.2-8)

As in Equations (15.2.2.1-20) - (15.2.2.1-21), the δvREF
N

 term in (15.2.2.2-8) can be modeled

to account for data senescence error:
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δvRef
N

  =  δvRef/Sen
N

 + δvRef/Other
N δvRef/Sen

N
  =  vREF

N
 δτSen (15.2.2.2-9)

The vREF
N

 in (15.2.2.2-9) is derived from the derivative of (15.2.2.2-1) with (15.2.2.2-2) using

the (15.2.2.1-25) - (15.2.2.1-26) approach for the lever arm term:

vREF
N

  ≈  v
N

 -  l 

N
  ≈  v

N
 - CB

N
 ωIB

B
×

 2
 + ωIB

B
×  l

B
(15.2.2.2-10)

Using (15.2.2.2-10) and the (15.2.2.1-28) model for δτSen  in (15.2.2.2-9), and substitution of

the result in (15.2.2.2-8) then obtains for δM
N

:

δM
N

  =  δvN -  v
N

 - CB
N

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen/RndCnst + δτSen/Mark

 

             -  v
N

 - CB
N

 ωIB
B

×
 2

 + ωIB

B
×  l

B
 δτSen/Jit - δvRef/Other

N

(15.2.2.2-11)

The models for δτSen/RndCnst and δτSen/Mark are provided by (15.2.2.1-29).

Moving base observation/measurement Equations (15.2.2.2-4), (15.2.2.2-6) - (15.2.2.2-7)
and (15.2.2.2-11) are the N Frame equivalents to E Frame Equations (15.2.2.1-31).  The
fundamental difference between these equations is the form of the navigation error states
contained in the measurement; for the (15.2.2.1-31) E Frame version, the navigation error states

appearing in zn are ψN
 and δVN; for the N Frame version, the navigation error states appearing

in zn are γN
 and δvN .  Thus, for the N Frame version, the more appropriate navigation error

model would be Equations (12.5.2-1) containing γN
, δvN as contrasted with navigation error

Equations (12.5.1-1) containing ψN
, δVN for the E Frame observation.  In practice, the moving

base alignment Kalman filter would probably continue to be used for general inertial aiding
operations following alignment completion.  If the general Kalman filter applications are based

on the ψN
, δVN Equations (12.5.1-1) error model, a disparity exists if the N Frame

measurement is used for alignment based on the γN
, δvN Equation (12.5.2-1) model.  To

reconcile this disparity, the approximation can be made of using ψN
, δVN for γN

, δvN in N
Frame measurement Equations (15.2.2.2-6) and (15.2.2.2-11).  From equivalency Equations

(12.2.1-17) and (12.2.2-5) we see that this is equivalent to approximating εN
 as zero which,

from equivalency Equation (12.2.3-24), approximates the horizontal component of δRN as zero
during moving base alignment.

Note that for N Frame observation Equation (15.2.2.2-4), the reference velocity input data is
in the N Frame which then implicitly sets the N Frame for the INS to correspond with the N
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Frame of the reference aiding device.  The CB
L

, vN, CN
E

 foreground navigation parameters in the

INS must then be initialized to reflect this N Frame selection.  Also note that by continuously

updating CN
E

 during the alignment process, εN
 is implicitly controlled to zero, thereby validating

the εN
 = 0 approximation of the previous paragraph.

As in Section 15.2.2.1 Equations (15.2.2.1-40) - (15.2.2.1-42), a revised version of the N
Frame observation is also possible for which the reference velocity data is pre-integrated in the
reference device computer.  Starting from (15.2.2.2-4) and (15.2.2.2-6), and following the same
steps used for development of the Section 15.2.2.1 E Frame version, the results obtained for the
N Frame equivalent are as follows:

ZObsn  =  ΔSvn
N

 - ΔSvREFn
N

 - CBn
N

 - CB0
N

 l
B

ΔSv
N

(t)  ≡  v
N

 dt
0

t

ΔSvREF
N

(t)  =  SvREF
N

 (tREF = t) - SvREF
N

 (tREF = 0)

SvREF
N

 (tREF)  ≡  vREF
N

 dt
0

tR E F

zn  =  δ Mn
N

 - vREFn
N

 δ τSen/RndCnst + δ τSen/Mark n  - CB n
N

 - CB 0
N

 l
B

 ×  γn
N

(15.2.2.2-12)

- CB n

N
 - CB 0

N
 δ l Cnst

B
 - vREF

N
 δ τSen/Jit n + CB n

N
 - CB 0

N
 l Flexn

B

δMN(t)  =  δM0
N

 + δM
N

 dt
0

t

δM
N

  =  δvN - δvRef/Other
N

δ M0
N

  =  vREF0
N

 δ τSen/RndCnst + δ τSen/Mark 0  + vREF0
N

 δ τSen/Jit 0

Control reset operations for the N Frame observation moving base Kalman filter directly
parallel those described in Section 15.2.2.1 for the E Frame observation configuration (i.e., the
discussion surrounding Equations (15.2.2.1-33) - (15.2.2.1-36)).  Control resets would be

designed for the measurement δMN, the INS navigation and inertial sensor errors, and for the

lever arm δl
 Cnst
N

.  The techniques described in Section 15.1.2.3 can be utilized to implement the

foreground control reset process.  For example, if all of the Equations (12.5.2-1) navigation
error terms are included as error states, the error state vector would be of the form:
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x  =  δ MN T
, γN T

, δ vN T
, εN T

, δ h, SensErrT, δ l 
 Cnst
B T

, δ τSen/RndCnst , δ τSen/Mark

 T

(15.2.2.2-13)

The associated uc control vector calculated from error state vector estimates would then be:

uc  =  δ Mc
N T

, γc
N T

, δ vc
N T

, εc
N T

, δ hc, SensErrc
T

, δ l 
 Cnstc
B T

, 0, 0
 T

(15.2.2.2-14)

The control vector would be set to the negative of the estimated error states being controlled to
drive the controlled error states to zero (as discussed in Section 15.1.2).  If the method of
delayed resets is being used as applied in Section 15.1.2.4, Equation (15.2.2.1-34) of the
previous section would apply for setting the control vector.

Assuming that the INS navigation parameters are integrated by the foreground in N Frame
coordinates (e.g., Equations (12.1-1) - (12.1-12)), Equations (15.1.2.3-20) would be used for

control reset of the foreground navigation parameters.  Additionally, the CB0
N

 matrix which was

provided as input initialization data, would be updated for the γc
N

 control resets based on

Equations (15.2.2.2-5) using (15.1.2.3-20) for the form of matrix update operation:

CB0
N

(+)  =  I - 
sin γc

γc

 γc
N

×  + 
(1 - cos γc)

γc
2

 γc
N

×
 2

 CB0
N

(-) (15.2.2.2-15)

The measurement, lever arm and inertial sensor error controls would be applied as in Equations
(15.2.2.1-36) of the previous section.

The discussion in Section 15.2.2.1 regarding foreground and Kalman filter parameter
initialization also applies for the N Frame observation version.

15.2.2.3  VELOCITY VERSUS INTEGRATED VELOCITY MATCHING

Sections 15.2.2.1 and 15.2.2.2 describe moving base alignment techniques based on using
integrated velocity matching for the observation/measurement.  We could also have formulated
the observation as a velocity matching process.  For example, for an N Frame velocity

matching observation, we can have from Equation (15.2.2.2-1) with l 

B
= 0 (as in (15.2.2.1-15))

and application of generalized Equation (3.4-4):
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ZVel/Obsn  =  v
N

 - vREF
N

 - CE
N

 l
E

 =  v
N

 - vREF
N

 - CE
N

 CB
E

  l 

B
 + ωEB

B
 × l

B

 

                  ≈  v
N

 - vREF
N

 - CB
N

  l 

B
 + ωIB

B
 × l

B

 

                  =  v
N

 - vREF
N

 - CB
N

 ωIB
B

 × l
B

(15.2.2.3-1)

where

ZVel/Obsn  =  Velocity matching observation.

The corresponding measurement equation is the differential of the (15.2.2.3-1) expression

following the ≈ sign using (15.2.2.1-16) for δlB, whence:

zVeln  =  δvn
N

 + ⋅ ⋅ ⋅  + CB
N

 lFlexn

B
(15.2.2.3-2)

where

zVeln  =  Velocity matching measurement.

For analysis purposes, we now substitute the integral of δv
N

 from (12.5.2-1) for δvn
N

 while

making the approximation that γN
 is essentially constant over the alignment period.  The result

is:

zVeln  =  ΔvSFn

N
 × γN

 + ⋅⋅⋅ + CB
N

 l Flexn

B
(15.2.2.3-3)

with

ΔvSFn

N
  ≡  aSF

N
 dt

0

tn

(15.2.2.3-4)

where

ΔvSFn

N
  = Equivalent to velocity change produced by specific force acceleration since the

Equation (15.2.2.3-3) illustrates the relationship between the principal error state to be

estimated during alignment (i.e., the CB
L

 attitude error γ) and the principal measurement noise

term l Flexn

B
 .  The equation shows that the observability of γ for Kalman estimation is dependent

on the ΔvSFn

N
  specific force velocity change.  Under non-maneuvering conditions, ΔvSFn

N
  is a

large vertical linear ramping function caused by the balancing of gravity (downward) by 1 g

specific force acceleration (upward).  In Equation (15.2.2.3-3), the vertical ΔvSFn

N
 cross-product
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with γ amplifies the horizontal components of γ  (i.e., the CB
L

 attitude “tilt” errors) in the

measurement.  To amplify the vertical component of γ (i.e., the CB
L

 heading error), a horizontal

component in ΔvSFn

N
 is required, which is typically generated by an intentional maneuver.  The

magnitude of the required maneuver depends on the accuracy to which the heading error is to be
estimated compared with the magnitude of the (15.2.2.3-3) flexure rate measurement noise.

As an example, let us estimate the required ΔvSFn

N
  based on the magnitude of l Flex

B
 using a

simple second order vibration model for flexure such as described in Section 15.2.1.2.  Using
the square root of Equation (15.2.1.2-14) as a guide for the relationship between vibration

amplitude and rate, the magnitude of the flexure rate l Flex
B

 (call it lFlex) is related to the l Flex
B

flexure amplitude (call it lFlex) by:

lFlex  =  ωn lFlex (15.2.2.3-5)

where

ωn  = Undamped natural frequency of the lever arm structure connecting the INS being
aligned to the INS reference device.

For a flexure amplitude lFlex of 0.1 ft and a flexure frequency of 2 Hz (e.g., an air launched

missile mounted on an aircraft pylon in flight), we see from (15.2.2.3-5) that

lFlex = 2 π × 2 × 0.1 = 1.3 fps.  To determine the required ΔvSFn

N
  maneuver, we first stipulate

that the accuracy to which the ΔvSFn

N
 × γN

 product in (15.2.2.3-3) can be discriminated from

l Flex
B

 with a single measurement is on the order of lFlex.(i.e., a “signal-to-noise” ratio of 1 in

the measurement).  We then set γN
 to the allowable estimation error and solve for ΔvSFn

N
 .  If we

wish to estimate the heading error to an accuracy of 1 milli-radian with a single measurement,

ΔvSFn

N
  would thereby require a horizontal component on the order of

1.3 fps / 0.001 rad = 1,300 fps.  Mission constraints generally do not allow such an extreme
maneuver, however, the equivalent result can be achieved with a smaller maneuver by
processing successive measurements in the Kalman filter (in effect, filtering the flexure noise).

To retain observability, the horizontal component of ΔvSFn

N
 must be maintained at an acceptable

magnitude during the resulting alignment process.  For compatibility with mission
requirements, the typical result for an aircraft application is the need for a repetitive  oscillating
high g horizontal velocity maneuver across the average flight path direction during the
alignment period (i.e., a sequence of the so-called “S Turn” maneuver consisting of repetitive
segments of roll right - turn right - roll left - turn left).
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Now, let’s look at the equivalent treatment for the N Frame integrated velocity measurement
zn.  From Equations (15.2.2.2-6) - (15.2.2.2-8) we see that:

zn  =  δvN dt
0

tn

 +  + CBn
N

 - CB0
N

 l
 Flexn

B
(15.2.2.3-6)

and with δv
N

 from (12.5.2-1):

zn  =  ΔRSFn

N
 × γN

 +  + CBn
N

 - CB0
N

 l
 Flexn

B
(15.2.2.3-7)

with

ΔRSFn

N
  ≡   

0

tn

aSF
N

 dτ dt
0

t

(15.2.2.3-8)

where

ΔRSFn

N
  = Equivalent to position change produced by specific force acceleration since

the start of alignment.

Equation (15.2.2.3-7) shows that the accuracy to which γ can be estimated is dependent on

the magnitude of the position change ΔRSFn

N
  in the presence of the measurement flexure noise

l
 Flex
B

.  With the same procedure used for the velocity matching maneuver requirement we see

from (15.2.2.3-7) that the single measurement maneuver requirement for 1 milli-rad heading
estimation accuracy (with the same 0.1 ft flexure vibration) is 0.1 ft / 0.001 rad = 100 ft.  In
other words, for integrated velocity matching, a horizontal position change maneuver of only
100 feet allows the heading error to be estimated to the same accuracy for which velocity
matching required a 1,300 fps horizontal velocity maneuver.  Moreover, for successive filter
estimation cycles, the position maneuver executed at the start of alignment remains and does not
have to be repeated.  For the velocity matching technique, the lateral velocity maneuver has to be
a continuing cyclic pattern to assure an average velocity in the desired flight direction.

The previous discussion illustrates the obvious advantage of integrated velocity matching
over velocity matching for the moving base alignment Kalman filter application.  The main
advantage for the velocity matching technique is that the integrated velocity error state is not
required, thereby reducing the overall Kalman filter error state vector and related matrix
dimensions.

The above simplified discussion should be viewed as only qualitative in nature.  The actual
maneuver requirements for a given application are also dependent on the magnitude of the other



15-138     KALMAN FILTERING TECHNIQUES

effects appearing in the measurement (i.e., the  terms in Equations (15.2.2.3-3) and
(15.2.2.3-7)).  Covariance simulation numerical analysis techniques are generally used to
accurately determine overall requirements (See Chapter 16).

15.2.3 INS KALMAN FILTER AIDING USING A
BODY MOUNTED VELOCITY SENSOR

This section discusses a Kalman filter measurement using reference velocity data provided in
body B Frame axes (e.g., similar to the form of data measured by a Doppler radar), to illustrate
the form of the observation and measurement equation.  For this type of reference data, we
might form the observation from the following modified form of (15.2.2.2-1):

vINS
N

  =  CB
N

 vREF
B

 + CE
N

 l
E

(15.2.3-1)

The observation equation derived from (15.2.3-1) would be:

ZObs  =  v
N

 - CB
N

 vREF
B

 - CE
N

  l 

E
(15.2.3-2)

or following the approach that led to (15.2.2.3-1):

ZObs  ≈  v
N

 - CB
N

 vREF
B

 - CB
N

 l
B

 + ωIB
B

 × l
B

 

          =  v
N

 - CB
N

 vREF
B

 - CB
N

 ωIB
B

 × l
B

(15.2.3-3)

The associated measurement equation is obtained from the differential of the (15.2.3-3)

expression following the ≈ sign.  Using the (15.2.2.1-16) lever arm error model for δlB,

applying (12.2.1-9) for the CB
N

 error (i.e., δCB
N

 = - γN
 ×  CB

N
 ≈ - γN

 ×  CB
N

), and dropping

δCB
N

 l
B
 + ωIB

B
 × l

B
 and CB

N
 δωIB

B
 × l

B
 as negligibly small, we obtain for the measurement:

z  =  δvN - δCB
N

 vREF
B

 - CB
N

 δvREF
B

 - CB
N

 δl
B

 + ωIB
B

 × δlB

=  δvN + γN
 ×  CB

N
 vREF

B
 - CB

N
 δvREF

B
 - CB

N
 - l Flex

B
 + ωIB

B
 × δl

 Cnst
B

 - l
 Flex
B

(15.2.3-4)

=  δvN - vREF
N

 × γN
 - CB

N
 δvREF

B
 - CB

N
 ωIB

B
 × δl

 Cnst
B

 + CB
N

 l Flex
B

 + ωIB
B

 × l
 Flex
B

The vREF
N

 term in (15.2.3-4) is calculated from (15.2.3-1) using the approximations applied in

(15.2.3-3):
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vREF
N

  =  v
N

 - CB
N

 ωIB
B

 × l
B

(15.2.3-5)

Substituting (15.2.3-5) into (15.2.3-4) then yields:

z  =  δvN - v
N

 - CB
N

 ωIB
B

 × l
B

 × γN
 - CB

N
 δvREF

B

 

                         - CB
N

 ωIB
B

 × δl
 Cnst
B

 + CB
N

 l Flex
B

 + ωIB
B

 × l
 Flex
B

(15.2.3-6)

Equation (15.2.3-6) shows the presence of a v
N

 × γN
 term in the measurement which is

characteristic of B Frame reference velocity measurements.  Note also that if we include δl Cnst
B

in our error state vector, the l
B

 term in (15.2.3-6) can be chosen to equal zero (i.e., the rigid

lever arm effect thereby being totally accounted for in δl Cnst
B

).  Under these conditions, we can

apply equivalency Equations (12.2.1-17) and (12.2.2-5) in Equation (15.2.3-6) to obtain the

equivalent measurement equation in terms of ψN
, δVN error parameters:

z  =  δVN - v
N

 × γN
 - εN

 - CB
N

 δvREF
B

 - CB
N

 ωIB
B

 × δl
 Cnst
B

 + CB
N

 l Flex
B

 + ωIB
B

 × l
 Flex
B

                            =  δVN - v
N

 × ψN
 - CB

N
 δvREF

B
 - CB

N
 ωIB

B
 × δl

 Cnst
B

(15.2.3-7)

                                            + CB
N

 l Flex
B

 + ωIB
B

 × l
 Flex
B

15.2.4  KALMAN FILTERING APPLIED TO GPS - INS POSITION AIDING

Use of the outputs from a GPS (Global Positioning System) receiver provides the ability to
obtain accurate measurements of position relative to the earth derived from range measurements
to orbiting GPS satellites.  Range is obtained from the measured time interval for a satellite
signal to travel from the satellite to the user GPS receiver antenna.  Satellite orbit ephemeris data
provided on the signal transmission allows receiver determination of satellite position relative to
the earth.  Range measurements to the satellites coupled with the satellite-to-earth data allows
determination of vehicle position relative to the earth.  For an unambiguous fix, range data from
three separate satellites is required.  Data from a fourth satellite is required for receiver clock
calibration against the synchronized satellite transmission clock system.

The observation for the GPS measurement is the difference between the range to each
satellite obtained from the GPS receiver data, compared with comparable data derived from
INS inertially derived range, the latter corrected for lever arm displacement between the GPS
receiver antenna and INS:
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ZObs/i  =  ρi - ρGPSi (15.2.4-1)

where

i  =  Satellite number for the measurement.

ZObs/i  =  Observation vector component for the ith GPS satellite range observation.

ρi  = Range from the GPS receiver antenna to the ith satellite as determined using INS
data and satellite ephemeris data.

ρGPSi  = Range from the user GPS receiver antenna to the ith satellite as determined
from the satellite-to-GPS receiver antenna signal transmission time
measurement.

The GPS derived range data in Equations (15.2.4-1) is calculated from the measured time
interval for a GPS satellite transmission signal to reach the user receiver.

ρGPSi = c tRECi - tGPSi (15.2.4-2)

where

tGPSi  =  The time of signal transmission from the ith GPS satellite.

tRECi  = The GPS receiver clock time when the ith satellite transmission signal is
received.  Nominally, the GPS receiver clock time is synchronous with the
GPS satellite clock time.

c  =  Speed of light.

The GPS measurement equation for the Kalman filter is obtained from the differential form
of Equations (15.2.4-1) - (15.2.4-2):

zi  =  δρi - c δtRECi - δtGPSi (15.2.4-3)

where

zi  =  ith GPS satellite range measurement.

δ  =  Error in the indicated quantities.

The δρi term in Equation (15.2.4-3) can be expanded in terms of INS and GPS satellite

ephemeris errors by first defining the range vector from the GPS receiver antenna to the satellite
in earth fixed E Frame coordinates as calculated by the INS:

ρi
E

  =  RSi
E

 - R
E

 - l
E

(15.2.4-4)



EXAMPLES OF KALMAN FILTERING APPLIED TO STRAPDOWN INERTIAL NAVIGATION     15-141

where

ρi
E

  =  Range vector from the GPS antenna to satellite i.

RSi
E

  = Vector from the center of the earth to satellite i based on transmitted satellite i
ephemeris data.

R
E

  = Vector from the center of the earth to the INS based on inertially computed data
(e.g., using Section 4.4.2.2 - Equations (4.4.2.2-2) and (4.4.2.2-4) - (4.4.2.2-5)

for conversion of altitude and latitude/longitude position to RE).

l
E

  =  Vector from the INS to the GPS antenna as calculated with INS data.

The computed range to satellite i (ρi) is the magnitude of ρi
E

.  Its square, then, is given by:

ρi
2
  =  ρi

E T
 ρi

E
(15.2.4-5)

An analytical expression for the range error (δρi) is obtained from the differential of

(15.2.4-5):

2 ρi δρi  =  δρi
E T

 ρi
E

 + ρi
E T

 δρi
E

 =  2 ρi
E T

 δρi
E

(15.2.4-6)

or

δρi  =  
ρi

E T
 δρi

E

ρi

(15.2.4-7)

or, with the differential of (15.2.4-4) for δρi
E

:

δρi  =  
ρi

E T
 δRSi

E
 - δRE - δlE

ρi

(15.2.4-8)

Since δρi is calculated from a vector dot product, its value is identical (invariant) when

evaluated in any coordinate frame (See generalized Equation (3.1.1-29)).  Using the locally level

navigation N Frame to evaluate δρi, we thereby obtain:
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δρi  =  
CE

N
 ρi

E T
 CE

N
 δRSi

E
 - δRN - δlN

ρi

(15.2.4-9)

The δlN term in the previous expression is expanded using (12.2.1-9):

δlN  =  δ CB
N

 l
B

  =  δCB
N

 l
B

 + CB
N

 δlB  =  CB
N

 l
B

 × γN
 + CB

N
 δlB (15.2.4-10)

With (15.2.4-10) in (15.2.4-9), the expression for δρi in Equation (15.2.4-3) is determined:

δρi  =  
CE

N
 ρi

E T
 CE

N
 δRSi

E
 - δRN - CB

N
 l

B
 × γN

 - CB
N

 δlB

ρi

(15.2.4-11)

The range terms in (15.2.4-11) can be calculated with Equations (15.2.4-4) - (15.2.4-5).

Summarizing, Equations (15.2.4-1) and (15.2.4-3) with (15.2.4-2), (15.2.4-4), (15.2.4-5),
and (15.2.4-11) comprise a set of observation/measurement equations for GPS - INS aiding for
each (i) of the GPS satellite measurements.  An error model for the INS navigation error terms

(δRN, δVN, γN
) in these equations is provided by Equations (12.5.3-1).  Equations

(15.2.2.1-16) can be used to model the lever arm error δlB.  We conclude this section with a

discussion of error models for the δtRECi, δtGPSi , δRSi
E

 terms in (15.2.4-3) and (15.2.4-11)

associated with the GPS measurement.

For the Kalman filter GPS aiding of an INS, it is typically assumed that the satellite position

locations and transmission data are perfect, thus, δRSi
E

 and δtGPSi  would be equated to zero.

For suboptimal covariance simulation performance analysis (See Section 16.1.1.1) δRSi
E

  and

δtGPSi  might be included in the real world error state vector based on classical GPS satellite
system error models (e.g., Reference 27 - Chapter 11).

The δtRECi error in (15.2.4-3) can be defined from a model of the GPS receiver clock time

generation process, assuming a common clock for all (i) satellite measurements.  The GPS
receiver clock time is generated by counting pulses from a GPS receiver high frequency source.
Hence, the receiver clock time is, in effect, given by:

tRECn  =  tRECn-1 + TOsc 0  =  tRECn-1 + 
1

f Osc 0

(15.2.4-12)

where
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n  =  Receiver clock frequency source pulse count cycle.

TOsc 0  =  Nominal time interval between receiver clock frequency source pulses.

f Osc 0  =  Nominal receiver frequency source pulse rate.

Rearranging (15.2.4-12) and dividing by the actual time between clock pulses obtains:

tRECn - tRECn-1

Δ t
  =  

1

f Osc 0 Δ t
(15.2.4-13)

The 
1

Δ t
 term on the right in (15.2.4-13) is the actual frequency of the receiver clock input

oscillator.  With this substitution, Equation (15.2.4-13) in the limit as Δt → 0, is given by the
equivalent differential equation:

tREC  =  
f Osc

f Osc 0

 (15.2.4-14)

where

f Osc  =  Actual GPS receiver clock input oscillator pulse frequency.

A δtRECi error state model for (15.2.4-3) can be derived as the differential of (15.2.4-14)
plus a random term (uncorrelated from satellite-to-satellite and cycle-to-cycle measurement) due
to frequency source jitter and pulse quantization:

δ tf  =  
δ fOsc

fOsc0

δ tREC i  =  δ t f + nt (15.2.4-15)

where

δ t f  =  GPS receiver clock time error exclusive of random jitter/pulse quantization.

nt   =  Random uncorrelated GPS receiver clock time jitter and quantization error.

δfOsc  =  GPS receiver clock input oscillator frequency error.

The receiver clock oscillator frequency error can be modeled as a randomly varying constant
plus a first order Markov process:

δfOsc  =  δfOsc/RndCnst + δfOsc/Mark

δfOsc/RndCnst  =  nOsc/RndCnst (15.2.4-16)

δfOsc/Mark  =  - COsc/Mark δfOsc/Mark + nOsc/Mark



15-144     KALMAN FILTERING TECHNIQUES

where

δfOsc/RndCnst, δfOsc/Mark  = Receiver clock frequency random constant and first order
Markov process errors.

COsc/Mark, nOsc/Mark  =  Correlation frequency and white source noise input for the
GPS receiver oscillator frequency error first order Markov process.

nOsc/RndCnst  = White source noise input for the GPS receiver oscillator frequency
random constant error model.
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16     Covariance Simulation Programs

16.0  OVERVIEW

Covariance simulation programs are commonly used to provide numerical time histories
depicting the accuracy of a given system configuration in terms of the covariance of its
associated linearized error state vector.  For a Kalman filter aided system, the covariance
simulation is also utilized as a basic design tool during the synthesis and test of the suboptimal
Kalman filter configuration used in the actual system.  The suboptimal Kalman filter
configuration is typically based on a simplified error state dynamic/measurement model
(compared to the “real world” error state dynamics/measurements) with numerical values for
its defining matrix elements that may differ from real world values.  The covariance simulation
is used to evaluate the performance of the suboptimal filter operating in a real world
environment, and to provide the design engineer with useful sensitivities for identifying sources
of undesirable performance characteristics during the design process.  As part of the suboptimal
Kalman filter design process, the covariance simulation is also typically structured to provide an
optimal solution based on the hypothetical “optimal real world” Kalman gain matrix based on
the “real world” model, for use as a yardstick to measure suboptimal filter performance.

In the following sections we will define the analytical basis for suboptimal covariance
analysis, the structure of typical covariance simulation programs, and the use of covariance
simulation programs in the design and performance analysis of suboptimal Kalman filters.

16.1  COVARIANCE SIMULATION ANALYTICAL DEFINITION

The covariance simulation contains error state dynamic and measurement models for the real
world and for the simplified world of the suboptimal Kalman filter that operates from real
world measurements.  This section develops real world and suboptimal Kalman filter analytical
models for covariance simulation based on the analytical forms presented in 15.1.2.  This
section is divided into two parts; Section 16.1.1 (and its subsections) based on idealized control
resets, and Section 16.1.2 (and its subsections) based on delayed control resets.

16.1.1  FORMULATION BASED ON IDEALIZED CONTROL RESETS

Using (15.1.2-2), (15.1.2-3) and (15.1.2-5) as a template for the idealized control reset case,
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we first define a general real world model as the following computations executed in the
indicated sequence:

xn(-)  =  Φxxn xn-1(+c) + Φxyn yn-1(+c) + wxn (16.1.1-1)

yn(-)  =  Φyxn xn-1(+c) + Φyyn yn-1(+c) + wyn (16.1.1-2)

zn  =  Hxn xn(-) + Hyn yn(-) + GM n nM n (16.1.1-3)

xn(+c)  =  xn(-) + uc n (16.1.1-4)

yn(+c)  =  yn(-) (16.1.1-5)

where

(+c)  = Designation for parameter value at its designated time stamp (tn in this case)
immediately after (“a posteriori”) the application of control resets (c subscript)
at the same designated time.

(-)  = Designation for parameter value at its designated time stamp (tn in this case)
prior to the application of any resets (estimation or control) at the same
designated time.

x  = Real world error state vector components that are used as the basis for the
suboptimal Kalman filter error state vector model.

y  = Real world error state vector components that are not accounted for in the
suboptimal Kalman filter error state model.  The total real world error state vector
is the composite of x and y.

Φxx , Φxy, Φyx, Φyy  = Elements of the real world error state transition matrix Φ
defined analytically by (15.1.1-15).  The suboptimal Kalman

filter is based on the Φxx  component.

wx, wy  = Elements of the real world integrated process noise vector defined
analytically by (15.1.1-16).  The suboptimal Kalman filter is based on the
wx component.

Hx, Hy  = Elements of the real world measurement matrix H.  The suboptimal Kalman
filter is based on the Hx component.

uc  = Control vector calculated within the suboptimal Kalman filter based on its
estimate of x.

The equivalent version of (16.1.1-1) - (16.1.1-5) contained within the suboptimal Kalman
filter is from (15.1.2-6) - (15.1.2-13):
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xn(-)  =  Φxxn

*
 xn-1(+c) (16.1.1-6)

zn  =  Hxn

*
 xn(-) (16.1.1-7)

xn(+e)  =  xn(-) - K n zn - zn (16.1.1-8)

uc n  =  function of xn(+e) (16.1.1-9)

xn(+c)  =  xn(+e) + uc n (16.1.1-10)

x0  =  0 (16.1.1-11)

yn  =  0 (16.1.1-12)

where

*  = Superscript designator for value of the parameter used in the suboptimal Kalman
filter which may differ from the correct real world value.

(+e)  = Designation for parameter value at its designated time stamp (tn in this case)
immediately after (“a posteriori”) the application of estimation resets (e
subscript) within the suboptimal Kalman filter at the same designated time.

Note in Equation (16.1.1-8) that we have used the real world measurement zn (i.e., the
linearized form of the observation vector ZObsn) to approximate ZObsn in (15.1.2-9).  Also note

that we have added Equation (16.1.1-12) as a formal statement that the filter is only designed to
account for the x error states.

As in (15.1.2.1-1) we now define the suboptimal Kalman filter estimated error state vector
uncertainty as:

Δx  ≡  x - x (16.1.1-13)

where

Δx  =  Uncertainty in x, the Kalman filter estimate for x.

For the idealized control reset filter, we have for Δx from (15.1.2.1-2):

Δxn(-)  =  xn(-) - xn(-)

Δxn(+e)  =  xn(+e) - xn(-) (16.1.1-14)

Δxn(+c)  =  xn(+c) - xn(+c)
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The value for Δx immediately following an estimation update is found by combining
suboptimal filter Equations (16.1.1-7) - (16.1.1-8) with the real world zn measurement formula

(16.1.1-3) using the first and second equation in (16.1.1-14) for the Δx’s:

Δxn(+e)  =  xn(+e) - xn(-)  =  xn(-) - K n zn - zn  - xn(-)

=  xn(-) - xn(-) - K n H 

xn

*
 xn(-) - Hxn xn(-) - Hyn yn(-) - GM n nM n

=  Δxn(-) - K n H 

xn

*
 xn(-) - H 

xn

*
 xn(-) + H 

xn

*
 xn(-) - Hxn xn(-) (16.1.1-15)

- Hyn yn(-) - GM n nMn

=  Δxn(-) - K n H 

xn

*
 Δxn(-) + H 

xn

*
 - Hxn  xn(-) - Hyn yn(-) - GMn nM n

or

Δxn(+e)  =  Ix - K n H 

xn

*
 Δxn(-) - K n H 

xn

*
 - Hxn  xn(-)

 

                           + K n Hyn yn(-) + K n GM n nM n

(16.1.1-16)

where

Ix  =  Identity matrix with same dimension as x.

The x error state uncertainty immediately following a control update is developed by
combining suboptimal filter Equation (16.1.1-10) with real world Equation (16.1.1-4) using the

second and third equation in (16.1.1-14) for the Δx’s:

Δxn(+c)  =  xn(+c) - xn(+c)
 

               =  xn(+e) + uc n - xn(-) + uc  n
   =  xn(+e) - xn(-)  =  Δxn(+e)

(16.1.1-17)

The x error state uncertainty immediately preceding the estimation update is derived by
combining suboptimal filter Equation (16.1.1-6) with real world Equation (16.1.1-1) using the

first and third equation in (16.1.1-14) for the Δx’s:

Δxn(-)  =  xn(-) - xn(-)

=  Φxxn

*
 xn-1(+c) - Φxxn xn-1(+c) - Φxyn yn-1(+c) - wxn 

=  Φxxn

*
 xn-1(+c) - Φxxn

*
 xn-1(+c) + Φxxn

*
 xn-1(+c) (16.1.1-18)

- Φxxn xn-1(+c) - Φxyn yn-1(+c) - wxn 

=  Φxxn

*
 Δxn-1(+c) + Φxxn

*
 - Φxxn  xn-1(+c) - Φxyn yn-1(+c) - wxn 
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Substituting (16.1.1-17), (16.1.1-4) and (16.1.1-5) into (16.1.1-18) gives:

Δxn(-)  =  Φxxn

*
 Δxn-1(+e) + Φxxn

*
 - Φxxn  xn-1(-) + uc n-1

 

                                    - Φxyn yn-1(-) - wxn

(16.1.1-19)

It is convenient at this point to hypothesize a form for the control vector uc.  For inertial
navigation estimation applications, uc in (16.1.1-9) is typically a linear function of the

suboptimal filter estimated error state vector xn(+e) with phasing to control xn(+e) to zero.

Hence, with the second equation in (16.1.1-14):

uc n  =  - Lxn xn(+e)  =  - Lxn Δxn(+e) + xn(-) (16.1.1-20)

where

Lx  =  The “control matrix” for x error state vector control.

We then substitute (16.1.1-20) into (16.1.1-19) to obtain:

Δxn(-)  =  Φxxn

*
 - Φxxn

*
 - Φxxn  Lxn-1  Δxn-1(+e)

 

                  + Φxxn

*
 - Φxxn  Ix - Lxn-1  xn-1(-) - Φxyn yn-1(-) - wxn 

(16.1.1-21)

The (16.1.1-1) - (16.1.1-2) real world error state propagation formula can also be expanded
by first substituting (16.1.1-4) and (16.1.1-5):

xn(-)  =  Φxxn xn-1(-) + uc n-1  + Φxyn yn-1(-) + wxn 
 

yn(-)  =  Φyxn xn-1(-) + uc n-1  + Φyyn yn-1(-) + wyn 
(16.1.1-22)

and then applying (16.1.1-20):

xn(-)  =  - Φxxn Lxn-1 Δxn-1(+e) + Φxxn Ix - Lxn-1  xn-1(-) + Φxyn yn-1(-) + wxn 
 

yn(-)  =  - Φyxn Lxn-1 Δxn-1(+e) + Φyxn Ix - Lxn-1  xn-1(-) + Φyyn yn-1(-) + wyn 
(16.1.1-23)

The pertinent results of the above development are provided by Equations (16.1.1-21),
(16.1.1-23) and (16.1.1-16) summarized (and slightly rearranged) below:
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Δxn(-)  =  Φxxn

*
 - Φxxn

*
 - Φxxn  Lxn-1  Δxn-1(+e)

                  - Φxyn yn-1(-) + Φxxn

*
 - Φxxn  Ix - Lxn-1  xn-1(-) - wxn

 

yn(-)  =  - Φyxn Lxn-1 Δxn-1(+e) + Φyyn yn-1(-) + Φyxn Ix - Lxn-1  xn-1(-) + wyn 
(16.1.1-24)

xn(-)  =  - Φxxn Lxn-1 Δxn-1(+e) + Φxyn yn-1(-) + Φxxn Ix - Lxn-1  xn-1(-) + wxn 
__________________________________________________________________________

Δxn(+e)  =  Ix - Kn Hxn

*
 Δxn(-) + Kn Hyn yn(-)

                    - Kn Hxn

*
 - Hxn  xn(-) + Kn GM n nM n 

(16.1.1-25)

It will prove beneficial for subsequent optimal Kalman filter formulations to also introduce
the concept of a y estimate and associated uncertainty as:

Δy  ≡  y - y (16.1.1-26)

where

y  =  Kalman filter estimate for y.

Δy  =  Uncertainty in y.

For the suboptimal Kalman filter, y is not accounted for, hence, from (16.1.1-12) and
(16.1.1-26):

For The Suboptimal Kalman Filter:
 

y  =  0          ⇒          y  =  - Δy
(16.1.1-27)

With (16.1.1-27), Equations (16.1.1-24) and (16.1.1-25) can now be converted to a more
familiar form if we define an augmented error state vector with associated error state transition
matrix, integrated process noise vector, measurement model, and estimation gain matrix as
follows:
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x'  ≡  

Δx

Δy

- x

w'  ≡  

wx

wy

wx

Φn
'
  ≡  

Φxx n

*
 -  Φxx n

*
 - Φxx n  Lxn-1     Φxyn     - Φxx n

*
 - Φxx n  Ix - Lxn-1

Φyxn Lxn-1     Φyyn Φyxn Ix - Lxn-1

Φxx n Lxn-1     Φxyn Φxx n Ix - Lxn-1

(16.1.1-28)

Hn
'
  ≡  Hxn

*
   Hyn   - Hxn

*
 - Hxn

K 

n
'
  ≡  

K n
0
0

I '  ≡  

Ix 0 0

0 Iy 0

0 0 Ix

where

x'  = Augmented error state vector having Δx, Δy, and - x for elements as shown in
(16.1.1-28).

w', Φ', H', K', I '  = Integrated process noise vector, error state transition matrix,
measurement matrix, estimation gain matrix and identity matrix
associated with x' in Equations (16.1.1-28).

Iy  =  Identity matrix with same dimension as y.

Using (16.1.1-27) - (16.1.1-28), Equations (16.1.1-24) - (16.1.1-25) reduce to the following
familiar forms:

xn
'
(-)  =  Φn

' 
 xn-1

'
(+e) - wn

'
 (16.1.1-29)

xn
'
(+e)  =  I ' - K 

n
'
 Hn

'
 xn

'
(-) + K 

n
'
 GM  n nM  n (16.1.1-30)

where

xn
'
(+e)  =  x' as defined in (16.1.1-28) with Δx = Δx(+e), Δy = Δy(+e) and x = x(-) .

Because Equations (16.1.1-29) - (16.1.1-30) are identical in form to Equations
(15.1.2.1.1-5) and (15.1.2.1-8), the covariance equivalents of (16.1.1-29) - (16.1.1-30) should
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also be identical in form to Equations (15.1.2.1.1-12) and (15.1.2.1-15) (the covariance
equivalents of (15.1.2.1.1-5) and (15.1.2.1-8)).  Thus, with (15.1.2.1-4):

Pn
'
  ≡  E xn

'
 xn

' T
(16.1.1-31)

Pn
'
(-)  =  Φn

'
 Pn-1

'
(+e) Φn

' T
 + Qn

'
(16.1.1-32)

Pn
'
(+e)  =  I ' - K 

n
'
 Hn

'
 Pn

'
(-) I ' - K 

n
'
 Hn

' T
 + K 

n
'
 GM n Rn GM n

T
 K 

n
' T

 (16.1.1-33)

with from (15.1.2.1-13), (15.1.2.1.1-10) and (16.1.1-28):

Rn  =  E nMn nMn

T

Qn
'
  =  E wn

'
 wn

' T
  =  E  

wxn

wyn

wxn

 wxn

T
wyn

T
wxn

T (16.1.1-34)

=  

E wx wx
T

 E wx wy
T

 E wx wx
T

E wy wx
T

 E wy wy
T

 E wy wx
T

E wx wx
T

 E wx wy
T

 E wx wx
T

 n

  ≡  

Qxx Qxy Qxx

Qyx Qyy Qyx

Qxx Qxy Qxx  n

where

Q'  =  Equation (16.1.1-28) w' integrated process noise vector covariance.

The augmented error state transition matrix Φn
'
 in (16.1.1-32) and the integrated process

noise matrix Qn
'
 in (16.1.1-34) can be calculated using the methods defined in Sections

15.1.2.1.1.1 and 15.1.2.1.1.2.  Alternative versions of the (16.1.1-32) covariance propagation
equation can be defined using the methods of 15.1.2.1.1.3.  The suboptimal Kalman filter gain
matrix Kn in (16.1.1-28) is calculated using the techniques of Section 15.1.2.1 based on the
suboptimal filter covariance propagation/reset versions of Equations (15.1.2.1-15) and
(15.1.2.1.1-12) with (15.1.2.1-28):

Pn
*
(-)  =  Φxxn

*
 Pn-1

*
(+e) Φxxn

* T
 + Qxxn

*
 (16.1.1-35)

K n  =  IEst Pn
*
(-) Hxn

* T
 Hxn

*
 Pn

*
(-) Hxn

* T
 + GM n

*  Rn
*
 GM n

* T -1
 (16.1.1-36)
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Pn
*
(+e)  =  Ix - Kn Hxn

*
 Pn

*
(-) Ix - Kn Hxn

* T
 + Kn GMn

*
 Rn

*
 GMn

* T
 Kn

T (16.1.1-37)

where

P*  = Covariance matrix calculated in the actual Kalman filter for evaluating the
suboptimal Kalman gain matrix.

IEst  = “Estimation matrix” defined as a diagonal matrix with unity on the diagonal of
each row for which the corresponding error state vector component is being
estimated (or zero otherwise).  If all error state vector components are being
estimated, IEst  = Ix.  The IEst matrix provides the mechanism for implementing
the “considered variable” approach in the suboptimal estimator (See Section
15.1.2.1.1 following Equation (15.1.2.1.1-4) for further detail).

It is to be noted from Sections 15.1.2.1 and 15.1.2.1.1, that Equations (16.1.1-35) - (16.1.1-37)
for suboptimal covariance analysis represent the suboptimal gain calculation for the idealized
control reset filter configuration discussed in this section, as well as for the delayed control reset
Kalman filter to be discussed subsequently in Section 16.1.2.

Equations (16.1.1-32) - (16.1.1-33) with (16.1.1-28) define the covariance effects in the real
world of the suboptimal Kalman filter (represented by covariance Equations (16.1.1-35) -
(16.1.1-37)) operating from real world inputs and providing control feedback to the real world
through control matrix Lx based on idealized control resets.  A covariance analysis program
implements these equations in a digital computer simulation to generate numerical solutions as
a function of time that define suboptimal Kalman filter performance in the real world.  The
following subsections discuss additional details associated with these equations.

16.1.1.1  SUBOPTIMAL KALMAN FILTER PERFORMANCE EVALUATION

The inaccuracy in the suboptimal Kalman filter real world performance is defined as the
uncertainty in the Kalman filter's estimate of the x error state vector (i.e., by the error state

uncertainty vector Δx).  The covariance of Δx is generally used for suboptimal Kalman filter
performance evaluation.  From (16.1.1-31) with (16.1.1-28) for x', we see that the covariance of

Δx equals PΔx Δx , the upper left partition of P':
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               P'  =  E x' x'T   =  E  

Δx

Δy

- x

 ΔxT Δy
T

- xT

 

=  

E Δx Δx
T

  E Δx Δy
T

 - E Δx xT

E Δy Δx
T

  E Δy Δy
T

 - E Δy xT

- E x Δx
T

  - E x Δy
T

 E x xT

  ≡  

PΔx Δx PΔx Δy - PΔx x

PΔyΔx PΔyΔy - PΔy x

- PxΔx - PxΔy Pxx

(16.1.1.1-1)

where

P'  =  Covariance of x'.

16.1.1.2  COVARIANCE MATRIX INITIALIZATION

In the covariance simulation, the Equation (16.1.1.1-1) P' covariance matrix is initialized
based on Equations (16.1.1-11) - (16.1.1-13), (16.1.1-26) and (16.1.1-27):

Δx0  =  x0 - x0  =  - x0
 

Δy0  =  - y0

(16.1.1.2-1)

where

0  =  Subscript denoting initial condition at time t = 0.

Then, with (16.1.1.2-1), we see from (16.1.1.1-1) that:

P0
'
  =  

Pxx 0 Pxy0 Pxx 0

Pyx0 Pyy0 Pyx0

Pxx 0 Pxy0 Pxx 0

(16.1.1.2-2)

The Suboptimal Kalman filter P* covariance matrix is initialized based on the particular
Kalman filter initialization implementation (e.g., Sections 15.2.1.2 and 15.2.2.1).

16.1.1.3  OPTIMAL KALMAN FILTER PERFORMANCE EVALUATION

The PΔx Δx  performance in (16.1.1.1-1) will be suboptimal because of variations in the

suboptimal Kalman filter error models compared to the real world.  The degree of
suboptimality in PΔx Δx  is measured by the difference between PΔx Δx  and a reference

covariance matrix based on an optimal Kalman filter formulation.  The optimal Kalman filter is
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defined as one whose error model matches the real world error model including all real world
error states, and whose Kalman gain is based on the full real world model.  As such, the
optimal Kalman filter provides the theoretically best performance possible with the real world
model.  To define the optimal Kalman filter, we first introduce the following real world error
model definitions based on the parameters in Equations (16.1.1-1) - (16.1.1-5) and the Section
16.1.1 notation:

χ  ≡  x
y

Φ  ≡  
Φxx Φxy

Φyx Φyy

w  ≡  
wx

wy

(16.1.1.3-1)

H  ≡  Hx Hy I  =  
Ix 0

0 Iy

where

χ  = Error state vector containing all real world error states and used to formulate the
optimal Kalman filter configuration.

Using the (16.1.1.3-1) definitions, we first rewrite Equations (16.1.1-1) - (16.1.1-5) in the
more compact notation:

χn(-)  =  Φn χn-1(+c) + wn (16.1.1.3-2)

zn  =  Hn χn(-) + GM n nMn (16.1.1.3-3)

χn(+c)  =  χn(-) + ucOptn (16.1.1.3-4)

where

ucOpt  =  Control vector calculated in the optimal filter to control χ.

The optimal Kalman filter is based on a full exact implementation of the (16.1.1.3-2) -
(16.1.1.3-4) model using Equations (15.1.2-7) - (15.1.2-10) and (15.1.2-12) - (15.1.2-13) (for
ideal control resets) with the ZObs observation replaced by the linearized equivalent
measurement z (as in Section 16.1.1):

χn(-)  =  Φn χn-1(+c) (16.1.1.3-5)

zOptn  =  Hn χn(-) (16.1.1.3-6)

χn(+e)  =  χn(-) - KOptn zOptn - zn (16.1.1.3-7)
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ucOpt n  =  function of χn(+e) (16.1.1.3-8)

χn(+c)  =  χn(+e) + ucOpt n (16.1.1.3-9)

χ0  =  0 (16.1.1.3-10)

where

χ  =  Optimal Kalman filter estimate for χ.

KOpt  =  Optimal Kalman gain matrix based on the χ error model.

Following the same steps that led to Equations (16.1.1-24) - (16.1.1-25), the previous real
world and Kalman filter models translate into the following optimal Kalman filter estimated
error state uncertainty propagation/reset equations:

Δχ  ≡  χ - χ (16.1.1.3-11)

Δχn(-)  =  Φn Δχn-1(+e) - wn (16.1.1.3-12)

Δχn(+e)  =  I - KOptn Hn  Δχn(-) + KOptn GM  n nM  n (16.1.1.3-13)

where

Δχ  =  Uncertainty in the optimal Kalman filter's estimate for χ.

The covariance equivalent to (16.1.1.3-11) - (16.1.1.3-13) is then obtained as was Equations
(15.1.2.1-15) and (15.1.2.1.1-12) from Equations (15.1.2.1-8) and (15.1.2.1.1-5):

POptn  ≡  E Δχn Δχn
T

(16.1.1.3-14)

POptn(-)  =  Φn POptn-1(+e) Φn
T

 + QRWn (16.1.1.3-15)

POptn(+e)  =  I - KOptn Hn  POptn(-) I - KOptn Hn
T + KOptn GM  n Rn GM  n

T
 KOptn

T
(16.1.1.3-16)

where

POpt  =  Optimal Kalman filter error state uncertainty covariance matrix.

QRW  =  Real world integrated process noise covariance matrix.

with from (15.1.2.1-13), (15.1.2.1.1-10) and (16.1.1.3-1):
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Rn  =  E nMn nMn

T

QRWn  ≡  E wn wn
T

  =  E  

wxn

wyn

 wxn

T
wyn

T (16.1.1.3-17)

=  
E wx wx

T
 E wx wy

T

E wy wx
T

 E wy wy
T

 n

  ≡  
Qxx Qxy

Qyx Qyy  n

The KOpt Kalman gain for the previous development is obtained directly from the
(16.1.1.3-15) POpt(-) solution using the (15.1.2.1-28) format:

KOptn  =  IOptEst  POptn(-) Hn
T

 Hn POptn(-) Hn
T

 + GMn Rn GMn

T  -1
(16.1.1.3-18)

where

IOptEst  = “Optimal estimation matrix” defined as a diagonal matrix with unity on the
diagonal of each row for which the corresponding error state vector
component is being optimally estimated (or zero otherwise).  For all error
state components being optimally estimated, IOptEst  = I.

The IOptEst matrix provides the mechanism for implementing the “considered variable”
approach in the optimal estimator (See Section 15.1.2.1.1 for further detail) for situations when
it is known that the associated error effect cannot actually be estimated in practice.  An example
would be a vibration sensitive sensor error whose error coefficient may be constant but whose
state dynamic coupling element is random vibration acceleration squared .  The random
vibration appears as a constant average mean squared value in the (16.1.1.3-15) error state
transition matrix.  In a real application, the vibration squared value would not be available to an
actual Kalman filter as it truly represents the instantaneous random vibration being experienced
in real time.  We account for the effect in Equations (16.1.1.3-14) - (16.1.1.3-16) b y
representing the vibration as the average mean squared value, but not allowing the “optimal”
Kalman filter to estimate the sensor error coefficient.

Initialization of POpt for Equations (16.1.1.3-14) - (16.1.1.3-16) is based on (16.1.1.3-10)
and (16.1.1.3-11):

Δχ0  =  χ0 - χ0  =  - χ0 (16.1.1.3-19)

Then, with (16.1.1.3-19), we find from (16.1.1.3-1) and (16.1.1.3-14) that:
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POpt0  =  E Δχ0 Δχ0
T

  =  E χ0 χ0
T

  =  E  

x0

y0
 x0

T
y0

T

 

            =  
E x0 x0

T
  E x0 y0

T

E y0 x0
T

  E y0 y0
T

  ≡  
Pxx 0 Pxy0

Pyx0 Pyy0

(16.1.1.3-20)

We also see from (16.1.1.3-1) and (16.1.1.3-11) that in general:

POpt  =  E Δχ ΔχT
  =  E  

ΔxOpt

ΔyOpt

 ΔxOpt
T ΔyOpt

T

 

          =  
E ΔxOpt ΔxOpt

T
E ΔxOpt ΔyOpt

T

E ΔyOpt ΔxOpt
T

E ΔyOpt ΔyOpt
T

  ≡  
POptΔx Δx POptΔx Δy

POptΔyΔx POptΔyΔy

(16.1.1.3-21)

where

ΔxOpt, ΔyOpt  =  Uncertainties in x and y when using the optimal Kalman filter.

Equation (16.1.1.3-21) shows the format of the optimal Kalman filter covariance matrix for
comparison against the equivalent data format in (16.1.1.1-1) for suboptimal Kalman filter
performance evaluation.  The upper left 2 by 2 suboptimal covariance array in (16.1.1.1-1)
should be compared against the (16.1.1.3-21) optimal covariance equivalent to evaluate the
degree of suboptimality in the Section 16.1.1 suboptimal Kalman filter.

Note in Equation (16.1.1.1-1) that the PΔx Δx , PΔx Δy, PΔyΔx , PΔyΔy upper two left

covariance partitions for the suboptimal Kalman filter in the real world (based on Equations
(16.1.1-28), (16.1.1-32) - (16.1.1-37) and (16.1.1.2-2)), can be converted to Equation
(16.1.1.3-21) for optimal Kalman filter real world performance evaluation (i.e., based on
Equations (16.1.1.3-1), (16.1.1.3-14) - (16.1.1.3-18) and (16.1.1.3-20)), by setting Lx = Ix,

setting Hx
*

 = Hx, and replacing the suboptimal Kalman gain matrix K' with the optimal Kalman

gain matrix equivalent 
KOpt

0
.  Application of the previous observation allows common

software code to be used in the covariance simulation program for calculating the suboptimal P'
and optimal POpt covariance performance matrices.
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16.1.1.4  SIMPLIFIED COVARIANCE ANALYSIS EQUATIONS

A fundamental problem associated with the implementation of Equations (16.1.1-32) -
(16.1.1-33) in a covariance analysis digital computer simulation program is the throughput for
execution of the matrix operations.  In this regard, the dimension of the P' covariance matrix is
the governing factor, which, as can be seen from (16.1.1.1-1), is 2 a + b where:

a  =  Dimension of x.

b  =  Dimension of y.

If we only require the Δx, Δy covariance for output, the dimension of P' can be reduced to

a + b by excluding the x terms, but only for applications with zero coupling of x into Δx and Δy
(See Equation (16.1.1.1-1)).  From Equations (16.1.1-28) - (16.1.1-30) we see that there will

be zero coupling of x into Δx, Δy under the following Φ' and H' matrix conditions:

Φxx
*

 - Φxx  Ix - Lx   =  0 Φyx Ix - Lx   =  0 Hx
*

 - Hx  =  0 (16.1.1.4-1)

Equations (16.1.1.4-1) are satisfied by:

Conditions For Zero x Coupling Into Δx, Δy:

Lx  =  Ix Hx
*

  =  Hx

or

Φxx
*

  =  Φxx Φyx  =  0 Hx
*

  =  Hx (16.1.1.4-2)

or

Lx  =  Diagonal Hx
*

  =  Hx

If  Lx(i=j, j) ≠ 1   Then   Φxx
*

(i,j) = Φxx(i,j)   And   Φyx(i,j) = 0    For  All i

where

i, j  =  Designation of element in row i, column j of the associated matrix.

The (16.1.1.4-2) conditions are satisfied for a broad range of Kalman filter performance
analysis problems requiring covariance simulation analysis for suboptimal performance
evaluation.  Under Equations (16.1.1.4-2), Equations (16.1.1-28) and (16.1.1-31) - (16.1.1-34)
simplify to:
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x"  ≡  
Δx

Δy
w  ≡  

wx

wy

Φ  ≡  
Φxx Φxy

Φyx Φyy

H =  Hx Hy (16.1.1.4-3)

K"  ≡  K
0

I  ≡  
Ix 0

0 Iy
__________________________________________________________________

P"  ≡  E x" x"T

Pn
"
(-)  =  Φn Pn-1

"
(+e) Φn

T
 + Qn

 

Pn
"
(+e)  =  I - Kn

"
 Hn  Pn

"
(-) I - Kn

"
 Hn

T
 + Kn

"
 GM n Rn GMn

T
 Kn

"T
(16.1.1.4-4)

Rn  =  E nMn nMn

T
Qn  = E wn wn

T
  =   

Qxx Qxy

Qyx Qyy  n

where

"  = Equivalent to augmented ' parameter indicator, but simplified by elimination of x
components.

Suboptimal Kalman filter covariance Equations (16.1.1-35) - (16.1.1-37) would still be as
shown for calculation of the Suboptimal Kalman gain matrix K in (16.1.1.4-3), but with

substitution of the (16.1.1.4-2) Hx
*

 condition:

Pn
*
(-)  =  Φxx n

*
 Pn-1

*
(+e) Φxx n

* T
 + Qxx n

*

K n  =  IEst Pn
*
(-) Hxn

T Hxn Pn
*
(-) Hxn

T + GM n

*
 Rn

*
 GM n

* T -1
 (16.1.1.4-5)

Pn
*
(+e)  =  Ix - K n Hxn  Pn

*
(-) Ix - K n Hxn

T + K n GM n

*
 Rn

*
 GM n

* T
 K n

T 

Suboptimal Kalman filter performance from (16.1.1.4-4) would be obtained from PΔx Δx  in

the resulting reduced form of (16.1.1.1-1):

P"  =  
PΔx Δx PΔx Δy

PΔyΔx PΔyΔy
(16.1.1.4-6)

Initialization of the P" matrix would be based on the resulting reduced form of (16.1.1.2-2):
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P0
"
  =  

Pxx 0 Pxy0

Pyx0 Pyy0

(16.1.1.4-7)

Note that the simplified version Equations (16.1.1.4-3) - (16.1.1.4-4) and (16.1.1.4-6) -
(16.1.1.4-7) for suboptimal Kalman filter performance in the real world, is identical to
Equations (16.1.1.3-1), (16.1.1.3-14) - (16.1.1.3-17) and (16.1.1.3-20) for the optimal Kalman
filter real world performance, if we substitute the optimal Kalman gain matrix KOpt (from
Equation (16.1.1.3-18)) for the suboptimal equivalent K".  Thus, the same software code can be
applied in a covariance simulation program for either optimal or suboptimal covariance
performance evaluation by using Equation (16.1.1.3-18) for the optimal gain matrix, or K" as in
(16.1.1.4-3) with K from Equations (16.1.1.4-5) for the suboptimal gain matrix calculation.

16.1.2  FORMULATION BASED ON DELAYED CONTROL RESETS

In Section 16.1.1 and its subsections we derived equations to be used for suboptimal
covariance analysis of Kalman filters based on the Equations (15.1.2-1) - (15.1.2-13) idealized
control reset formulation.  In this section we perform a similar analysis for the delayed control
reset configuration defined by Equations (15.1.2-14) - (15.1.2-26).  We begin by using
(15.1.2-16) - (15.1.2-18) as a template for the delayed control reset case, to first define the
following general real world model (in the computation sequence indicated) based on delaying
the control application until after error state vector propagation:

xn(-)  =  Φxxn xn-1(+c) + Φxyn yn-1(+c) + wxn (16.1.2-1)

yn(-)  =  Φyxn xn-1(+c) + Φyyn yn-1(+c) + wyn (16.1.2-2)

xn(+c)  =  xn(-) + uc n (16.1.2-3)

yn(+c)  =  yn(-) (16.1.2-4)

zn  =  Hxn xn(+c) + Hyn yn(+c) + GM n nM n (16.1.2-5)

The equivalent version of (16.1.2-1) - (16.1.2-5) contained within the delayed control reset
Kalman filter configuration is from Equations (15.1.2-19) - (15.1.2-26) and the Section 16.1.1
notation:

xn(-)  =  Φxxn

*
 xn-1(+e) (16.1.2-6)

xn(+c)  =  xn(-) + uc n (16.1.2-7)

zn  =  Hxn

*
 xn(+c) (16.1.2-8)
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xn(+e)  =  xn(+c) - Kn zn - zn (16.1.2-9)

uc n+1  =  function of xn(+e) (16.1.2-10)

x0  =  0 (16.1.2-11)

yn  =  0 (16.1.2-12)

In Equation (16.1.2-9) we have used the real world measurement zn (i.e., the linearized form of
the observation vector ZObsn) to approximate ZObsn in (15.1.2-24), and have added Equation

(16.1.2-12) as a formal statement that the filter is only designed to account for the x error states.

As in Section 16.1.1 - Equation (16.1.1-14), but for the delayed control reset filter, we then

write from (15.1.2.1-3) for Δx as defined in (16.1.1-13):

Δxn(-)  =  xn(-) - xn(-)

Δxn(+c)  =  xn(+c) - xn(+c) (16.1.2-13)

Δxn(+e)  =  xn(+e) - xn(+c)

Following the development steps that led to (16.1.1-16), the estimated error state uncertainty

Δx following the estimation update is obtained by combining suboptimal filter Equations
(16.1.2-8) - (16.1.2-9) with the real world measurement zn from (16.1.2-5) using the second

and third equation in (16.1.2-13) for the Δx’s:

Δxn(+e)  =  Ix - Kn H 

xn

*
 Δxn(+c) - Kn H 

xn

*
 - Hxn  xn(+c)

 

                             + Kn Hyn yn(+c) + Kn GM n nM n

(16.1.2-14)

Equation (16.1.2-14) relates the uncertainty after the estimation update to the uncertainty after

the control update, at the current Kalman n cycle.  From the Δx uncertainty definition in the
second and third equation of (16.1.2-13), the uncertainty after the control update can be related
to the previous cycle uncertainty following estimation update using (16.1.2-7), (16.1.2-3),
(16.1.2-6) and (16.1.2-1):
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Δxn(+c)  =  xn(+c) - xn(+c)  =  xn(-) + uc n  -  xn(-) + uc n   =  xn(-) - xn(-)

=  Φxxn

*
 xn-1(+e) - Φxxn xn-1(+c) - Φxyn yn-1(+c) - wxn 

=  Φxxn

*
 xn-1(+e) - Φxxn

*
 xn-1(+c) + Φxxn

*
 xn-1(+c) - Φxxn xn-1(+c) (16.1.2-15)

- Φxyn yn-1(+c) - wxn 

=  Φxxn

*
 Δxn-1(+e) + Φxxn

*
 - Φxxn  xn-1(+c) - Φxyn yn-1(+c) - wxn 

The equivalent to Equation (16.1.2-15) for the real world error state vector x component can
be determined by first introducing a hypothesized form of the control vector uc.  As in Section

16.1.1, we model the control vector from (16.1.2-10) as a linear function of xn(+e) with

phasing to control xn(+e) to zero, and to be applied at the next Kalman cycle time.  Hence, with

the third equation in (16.1.2-13):

uc n+1  =  - Lxn+1 xn(+e)  =  - Lxn+1 Δxn(+e) + xn(+c) (16.1.2-16)

Substituting (16.1.2-16) and (16.1.2-1) into (16.1.2-3), we now derive an expression for the
current cycle real world x error state vector following control update, in terms of the error state
uncertainty and real world error state values after the previous cycle estimation/control update:

xn(+c)  =  xn(-) + ucn  =  xn(-) - Lxn Δxn-1(+e) + xn-1(+c)

=  Φxxn xn-1(+c) + Φx yn yn-1(+c) + wxn - Lxn Δxn-1(+e) + xn-1(+c) (16.1.2-17)

=  - Lxn Δxn-1(+e) + Φxxn - Lxn  xn-1(+c) + Φx yn yn-1(+c) + wxn 

In a similar manner, using (16.1.2-4) with (16.1.2-2), the expression for the (+c) value of y in
terms of previous (+c) error state components at the current Kalman cycle is:

yn(+c)  =  yn(-)  =  Φyxn xn-1(+c) + Φyyn yn-1(+c) + wyn (16.1.2-18)

The results of the previous development are provided by Equations (16.1.2-15), (16.1.2-17)
- (16.1.2-18) and (16.1.2-14) summarized (and slightly rearranged) below:

Δxn(+c)  =  Φxxn

*
 Δxn-1(+e) - Φxyn yn-1(+c) + Φxxn

*
 - Φxxn  xn-1(+c) - wxn 

yn(+c)  =  Φyyn yn-1(+c) + Φyxn xn-1(+c) + wyn (16.1.2-19)

xn(+c)  =  - Lxn Δxn-1(+e) + Φxyn yn-1(+c) + Φxxn - Lxn  xn-1(+c) + wxn 
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Δxn(+e)  =  Ix - Kn Hxn

*
 Δxn(+c) + Kn Hyn yn(+c)

                     - Kn Hxn

*
 - Hxn  xn(+c) + Kn GM n nM n 

(16.1.2-20)

As in Section 16.1.1 we introduce the concept of a y estimate and associated uncertainty as:

Δy  ≡  y - y (16.1.2-21)

For the suboptimal Kalman filter y is not accounted for, hence, from (16.1.2-12) and
(16.1.2-21):

For The Suboptimal Kalman Filter:     y  =  0      ⇒     y  =  - Δy (16.1.2-22)

With (16.1.2-22), Equations (16.1.2-19) and (16.1.2-20) can now be converted to a more
familiar form (as in Section 16.1.1) using an augmented error state vector with associated error
state transition matrix, integrated process noise vector, measurement model, and estimation gain
matrix as follows:

x'  ≡  

Δx

Δy

- x

w'  ≡  

wx

wy

wx

Φ'  ≡  

Φxx
*

    Φxy     - Φxx
*

 - Φxx

0     Φyy Φyx

Lx     Φxy Φxx  - Lx

(16.1.2-23)

H'  ≡  Hx
*

Hy - Hx
*

 - Hx

K'  ≡  
K
0
0

I '  ≡  

Ix 0 0

0 Iy 0

0 0 Ix

Using (16.1.2-22) - (16.1.2-23) with definitions for the parameters provided in Section
16.1.1, Equations (16.1.2-19) - (16.1.2-20) reduce to the following familiar forms:

xn
'
(+c)  =  Φn

' 
 xn-1

'
(+e) - wn

'
 (16.1.2-24)

xn
'
(+e)  =  I ' - Kn

'
 Hn

'
 xn

'
(+c) + Kn

'
 GM n nM n (16.1.2-25)
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where

xn
'
(+e)  =  x' as defined in (16.1.2-23) with Δx = Δx(+e), Δy = Δy(+e) and x = x(+c).

As in Sections 16.1.1 and 16.1.1.1, the covariance equivalent to (16.1.2-24) - (16.1.2-25)
then follows as:

P'   ≡  E x' x'T   =  

E Δx Δx
T

  E Δx Δy
T

 - E Δx xT

E Δy Δx
T

  E Δy Δy
T

 - E Δy xT

- E x Δx
T

  - E x Δy
T

 E x xT

 

≡  
PΔxΔx PΔxΔy - PΔx x
PΔyΔx PΔyΔy - PΔy x
- PxΔx - PxΔy Pxx

(16.1.2-26)

Pn
'
(+c)  =  Φn

'
 Pn-1

'
(+e) Φn

' T
 + Qn

'
(16.1.2-27)

Pn
'
(+e)  =  I ' - Kn

'
 Hn

'
 Pn

'
(+c) I ' - Kn

'
 Hn

' T
 + Kn

'
 GM n Rn GMn

T
 Kn

' T
(16.1.2-28)

For the delayed control reset filter configuration, the Rn, Qn
'
 matrices in (16.1.2-27) -

(16.1.2-28) and the suboptimal Kalman gain matrix Kn in Equations (16.1.2-23) are calculated
as in Section 16.1.1 (for idealized control resets) using Equations (16.1.1-34) - (16.1.1-37).
Initialization of the P' covariance matrix for delayed control resets and the suboptimal
performance evaluation from P' in Equations (16.1.2-26), is identical to Equation (16.1.1.2-2)
and the discussion in Section 16.1.1.1 for the idealized control reset filter.

The following subsections discuss optimal Kalman filter performance evaluation for delayed
control resets, and potential simplifications to delayed control reset suboptimal covariance
analysis Equations (16.1.2-27) - (16.1.2-28).

16.1.2.1  OPTIMAL KALMAN FILTER PERFORMANCE EVALUATION

The delayed control reset optimal Kalman filter is based on the compact version of real world
model Equations (16.1.2-1) - (16.1.2-5) using the Equation (16.1.1.3-1) notation.

χn(-)  =  Φn χn-1(+c) + wn (16.1.2.1-1)

χn(+c)  =  χn(-) + ucOpt n (16.1.2.1-2)

zn  =  Hn χn(+c) + GM n nM n (16.1.2.1-3)
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where

χ  = Error state vector containing all real world error states and used to formulate the
optimal Kalman filter configuration.

ucOpt  =  Control vector calculated in the optimal filter to control χ.

The optimal delayed control reset Kalman filter is based on a full exact implementation of the
(16.1.2.1-1) - (16.1.2.1-3) model using Equations (15.1.2-21) - (15.1.2-26) with the ZObs
observation replaced by the linearized equivalent measurement z (as in Equation (16.1.2-9)):

χn(-)  =  Φn χn-1(+e) (16.1.2.1-4)

χn(+c)  =  χn(-) + ucOpt n (16.1.2.1-5)

zOptn  =  Hn χn(+c) (16.1.2.1-6)

χn(+e)  =  χn(+c) - K Opt n zOptn - zn (16.1.2.1-7)

ucOptn+1  =  function of χn(+e) (16.1.2.1-8)

χ0  =  0 (16.1.2.1-9)

where, as in Section 16.1.1.3:

χ  =  Optimal Kalman filter estimate for χ.

K Opt  =  Optimal Kalman gain matrix based on the χ error model.

Following the same steps that led to Equations (16.1.2-19) - (16.1.2-20), the previous real
world and Kalman filter models translate into the following optimal delayed control Kalman
filter estimated error state uncertainty propagation/reset equations:

Δχ  ≡  χ - χ (16.1.2.1-10)

Δχn(+c)  =  Φn Δχn-1(+e) - wn (16.1.2.1-11)

Δχn(+e)  =  I - K Opt n Hn  Δχn(+c) + K Opt n GM n nM n (16.1.2.1-12)

where

Δχ  =  Uncertainty in the optimal Kalman filter's estimate for χ.

The covariance equivalent to (16.1.2.1-11) - (16.1.2.1-12) is as in Section 16.1.1.3:
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POptn  ≡  E Δχn Δχn
T

(16.1.2.1-13)

POptn(+c)  =  Φn POptn-1(+e) Φn
T

 + QRWn (16.1.2.1-14)

POptn(+e)  =  I - K Opt n Hn  POptn(+c) I - K Opt n Hn
T 

                              + K Opt n GM n Rn GM n

T
 K 

Opt n

T   (16.1.2.1-15)

where

POpt  =  Optimal Kalman filter error state uncertainty covariance matrix.

The  KOpt Kalman gain for the previous development is obtained (as in Equation (16.1.1.3-18))
from the (16.1.2.1-14) POpt(+c) solution using the (15.1.2.1-28) format while recognizing from
(15.1.2.1-11) that the (-) and (+c) values of P are identical for delayed control reset filters at the
same time points:

K Opt n  =  IOptEst POpt n(+c) Hn
T

 Hn POpt n(+c) Hn
T

 + GM n Rn GM n

T -1
 (16.1.2.1-16)

Values for the Rn, QRWn, matrices and POpt initialization for Equations (16.1.2.1-14) -

(16.1.2.1-15) are as defined for the idealized optimal control reset Kalman in Equations
(16.1.1.3-17) and (16.1.1.3-20).

As in Equation (16.1.1.3-21), the partitioned form of POpt for the delayed control reset
Kalman filter is given by:

POpt  =  
E ΔxOpt ΔxOpt

T
E ΔxOpt ΔyOpt

T

E ΔyOpt ΔxOpt
T

E ΔyOpt ΔyOpt
T

  ≡  
POptΔx Δx POptΔx Δy

POptΔyΔx POptΔyΔy
(16.1.2.1-17)

Equation (16.1.2.1-17) shows the format of the optimal delayed control reset Kalman filter
covariance matrix for comparison against the equivalent data format in (16.1.2-26) for the
suboptimal delayed control reset Kalman filter.  The upper left 2 by 2 suboptimal covariance
array in (16.1.2-26) should be compared against the (16.1.2.1-17) optimal covariance equivalent
to evaluate the degree of suboptimality in the Section 16.1.2 delayed control reset suboptimal
Kalman filter.

Note in Equation (16.1.2-26) that the PΔx Δx , PΔx Δy, PΔyΔx , PΔyΔy upper two left

covariance partitions for the suboptimal delayed control reset Kalman filter in the real world
(based on Equations (16.1.2-23), (16.1.2-27) - (16.1.2-28) and (16.1.1.2-2)), can be converted
to Equation (16.1.2.1-17) for optimal delayed control reset Kalman filter real world
performance evaluation (i.e., based on Equations (16.1.1.3-1) and (16.1.2.1-13) - (16.1.2.1-16),

(16.1.1.3-17) and (16.1.1.3-20), by setting Φxx
*

 = Φxx , Hx
*

 = Hx, interchanging the first and



16-24     COVARIANCE SIMULATION PROGRAMS

third partitions in the second partition row of Φ'
, and replacing the suboptimal Kalman gain

matrix K' with the optimal Kalman gain matrix equivalent 
KOpt

0
.  Application of the previous

observation allows common software code to be used in the covariance simulation program for
calculating the suboptimal P' and optimal POpt covariance performance matrices.

16.1.2.2  SIMPLIFIED COVARIANCE ANALYSIS EQUATIONS

As in Section 16.1.1.4 for the idealized control reset Kalman filter, Equations (16.1.2-27) -
(16.1.2-28) for the delayed control reset Kalman filter can be reduced in dimension by

excluding the x terms for applications with zero coupling of x into Δx, Δy.  From Equations

(16.1.2-23) - (16.1.2-25) we see that there will be zero x coupling into Δx, Δy under the

following Φ' and H' matrix conditions:

Conditions For Zero x Coupling Into Δx, Δy:
 

Φxx
*

  =  Φxx           Φyx  =  0          Hx
*
  =  Hx

(16.1.2.2-1)

The (16.1.2.2-1) conditions are satisfied for a broad range of delayed control reset Kalman
filter performance analysis problems requiring covariance simulation analysis for suboptimal
performance evaluation.  Under Equations (16.1.2.2-1), Equations (16.1.2-23),  (16.1.2-26) -
(16.1.2-28) and (16.1.1-34) simplify to:

x"  ≡  
Δx

Δy
w  ≡  

wx

wy

Φ  ≡  
Φxx Φxy

0 Φyy

H =  Hx Hy (16.1.2.2-2)

K"  ≡  K
0

I  ≡  
Ix 0

0 Iy
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P"  ≡  E x" x"T

Pn
"
(+c)  =  Φn Pn-1

"
(+e) Φn

T
 + Qn

 

Pn
"
(+e)  =  I - Kn

"
 Hn  Pn

"
(+c) I - Kn

"
 Hn

T
 + Kn

"
 GM n Rn GMn

T
 Kn

"T
(16.1.2.2-3)

Rn  =  E nMn nMn

T
Qn  = E wn wn

T
  =   

Qxx Qxy

Qyx Qyy  n

Suboptimal Kalman filter covariance Equations (16.1.1-35) - (16.1.1-37) are applicable for
calculation of the Suboptimal Kalman gain matrix K in (16.1.2.2-3).  Under the (16.1.2.2-1)
conditions, these equations become:

Same As (16.1.1.4-5) But With Φxx
*

  =  Φxx (16.1.2.2-4)

Suboptimal Kalman filter performance from (16.1.2.2-3) would be obtained from PΔx Δx  as

shown in (16.1.1.4-6).  Initialization of the P" matrix would be as presented in Equation
(16.1.1.4-7).

Note that the simplified version Equations (16.1.2.2-2) - (16.1.2.2-4) with (16.1.1.4-6) -
(16.1.1.4-7) for suboptimal delayed control reset Kalman filter performance in the real world is
identical to Equations (16.1.1.3-1), (16.1.2.1-13) - (16.1.2.1-15), (16.1.1.3-17) and

(16.1.1.3-20) (with Φyx = 0 as in (16.1.2.2-1)) for the optimal delayed control reset Kalman

filter real world performance, if we substitute the optimal Kalman gain matrix KOpt (from
Equation (16.1.2.1-16)) for the suboptimal equivalent K".  Thus, the same software code can be
applied in a covariance simulation program for either optimal or suboptimal covariance
performance evaluation by using either Equation (16.1.2.1-16) for the optimal gain matrix, or
K" as in (16.1.2.2-2) with K from Equations (16.1.2.2-4) for the suboptimal gain matrix
calculation.

16.2 SUBOPTIMAL COVARIANCE ANALYSIS
SIMULATION PROGRAM CONFIGURATION

In this section we discuss the basic structure of the suboptimal covariance analysis
simulation program built around the analytical framework of Section 16.1.1.  Topics covered
include a summary of the typical Section 16.1.1 equations implemented; methods for
calculating the key terms in these equations; performance evaluation output routines; generating
performance sensitivities to initial covariance values, process/measurement noise terms and step
transients; error budget analysis; general program structure; and use of the program in
suboptimal Kalman filter design and/or performance evaluation.
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16.2.1 BASIC SUBOPTIMAL COVARIANCE SIMULATION
ANALYSIS PROGRAM EQUATIONS

A suboptimal covariance simulation implements the equations developed in Section 16.1.1 to
enable performance evaluation of Kalman aided systems and to assist in the Kalman filter
design process.  In particular, for the idealized control reset Kalman filter configuration, the
equations implemented would typically consist of a version of (16.1.1-28), (16.1.1-32) -
(16.1.1-37), (16.1.1.2-2), (16.1.1.3-1), (16.1.1.3-15) - (16.1.1.3-18) and (16.1.1.3-20) repeated
below:

Suboptimal Kalman Filter Covariance Performance Calculations

Pn
'
(-)  =  Φn

'
 Pn-1

'
(+e) Φn

' T
 + Qn

'
(16.2.1-1)

Pn
'
(+e)  =  I ' - Kn

'
 Hn

'
 Pn

'
(-) I ' - Kn

'
 Hn

' T
 + Kn

'
 GM n Rn GMn

T
 Kn

' T
(16.2.1-2)

P0
'
  =  

Pxx 0 Pxy0 Pxx 0

Pyx0 Pyy0 Pyx0

Pxx 0 Pxy0 Pxx 0

(16.2.1-3)

_____________________________________________________________________

Φn
'
  ≡  

Φxx n

*
 -  Φxx n

*
 - Φxx n  Lxn-1     Φxyn     - Φxx n

*
 - Φxx n  Ix - Lxn-1

Φyxn Lxn-1     Φyyn Φyxn Ix - Lxn-1

Φxx n Lxn-1     Φxyn Φxx n Ix - Lxn-1

Qn
'
  ≡  

Qxx Qxy Qxx

Qyx Qyy Qyx

Qxx Qxy Qxx  n

(16.2.1-4)

Hn
'
  ≡  Hxn

*
   Hyn   - Hxn

*
 - Hxn

Kn
'
  ≡  

Kn

0

0

I'  ≡  

Ix 0 0

0 Iy 0

0 0 Ix
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Suboptimal Kalman Filter Gain Calculations

Pn
*
(-)  =  Φxx n

*
 Pn-1

*
(+e) Φxx n

* T
 + Qxx n

*
(16.2.1-5)

Kn  =  IEst Pn
*
(-) Hxn

* T
 Hxn

*
 Pn

*
(-) Hxn

* T
 + GM  n

*
 Rn

*
 GM  n

* T -1
(16.2.1-6)

Pn
*
(+e)  =  Ix - Kn Hxn

*
 Pn

*
(-) Ix - Kn Hxn

* T
 + Kn GM  n

*
 Rn

*
 GM  n

* T
 Kn

T (16.2.1-7)

Optimal Kalman Filter Covariance Performance Calculations

POptn(-)  =  Φn POptn-1(+e) Φn
T

 + QRWn (16.2.1-8)

K Opt n  =  IOptEst POpt n(-) Hn
T

 Hn POpt n(-) Hn
T

 + GM n Rn GM n

T
 

 -1
 (16.2.1-9)

POpt n(+e)  =  I - K Opt n Hn  POpt n(-) I - K Opt n Hn
T + K Opt n GM  n Rn GM  n

T
 K 

Opt n

T
 (16.2.1-10)

POpt0  ≡  
Pxx 0 Pxy0

Pyx0 Pyy0

(16.2.1-11)

Φn  ≡  
Φxx Φxy

Φyx Φyy   n

          QRWn  ≡  
Qxx Qxy

Qyx Qyy   n
 

          I  ≡  
Ix 0

0 Iy
                    Hn ≡  Hx Hy  

 n

(16.2.1-12)

Suboptimal and optimal Kalman filter performance would be evaluated for output from the
covariance simulation program from P' and POpt in the previous equations as described in
Sections 16.1.1.1 and 16.1.1.3.

The equivalent to Equations (16.2.1-1) - (16.2.1-12) for the delayed control reset Kalman
filter configuration is provided in Sections 16.1.2 and 16.1.2.1.

Simplified versions of the previous equations for the idealized control reset and delayed
control reset Kalman filters are provided in Sections 16.1.1.4 and 16.1.2.2 subject to specified
error model configuration conditions defined in these sections.
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16.2.2  EXTENDED COVARIANCE PROPAGATION CYCLE

The covariance propagation equations in Section 16.2.1 are based on one propagation cycle
per Kalman update cycle.  In many applications, Kalman filter estimation updates are infrequent
(or nonexistent in the case of a free-inertial navigation system).  In order to reduce the power

series expansion order in calculating the error state transition matrix (Φ) and propagated process
noise matrix (Q) (i.e., as described in Sections 15.1.2.1.1.1 and 15.1.2.1.1.2), the covariance
simulation program propagation algorithm in general applications is typically based on
successive intermediate propagations between Kalman updates (as described in Section
15.1.2.1.1.3).  This also allows the covariance propagation cycle time to be tailored to the
particular application so that longer propagation times can be used during benign trajectory
segments in which the error state dynamic matrix elements have slow rates of change.  The
expansion order for the error state transition and integrated process noise matrices can thereby
still be maintained at a reasonable level.  The net result is a faster overall covariance simulation
program execution time for a given trajectory profile.

When using intermediate covariance updates between Kalman updates, the control reset
matrix (Lx) in Equations (16.2.1-4) must only be applied for the propagation cycles following
the corresponding control times.  This would typically be designed to occur for the covariance
propagation cycle following the Kalman estimation update cycle.  For the intermediate
covariance propagation cycles, Lx would be set to zero.

16.2.3  SPECIFYING ERROR MODELS

Implementing the equations described in Section 16.2.1 in a covariance simulation program
generally requires that several key terms be provided, either by input, or for the most part, by
computation within the simulation program:

• Real world error state transition and integrated process noise matrix elements

Φxx , Φxy, Φyx, Φyy, Qxx , Qxy, Qyx, Qyy.

• Real world measurement and measurement coupling/noise matrix elements Hx, Hy,
GM, R.

• Real world initial error state covariance matrix values Pxx 0, Pxy0, Pyx0, Pyy0.

• Suboptimal Kalman filter error state transition and integrated process noise matrices

Φxx
*

, Qxx
*

.
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• Suboptimal Kalman filter measurement matrix and measurement coupling/noise

matrices Hx
*

, GM
*

, R*.

• Suboptimal Kalman filter initial error state covariance matrix P0
*
.

• Kalman filter error state control matrix Lx.

The real world and Kalman filter initial error state covariance matrices Pxx0
  , Pxy0

  , Pyx0
  ,

Pyy0
  , P0

*
 would be provided by the user to the covariance simulation program as part of

input/initialization operations.  The same is generally true for the Kalman filter error state
control matrix Lx, except for the unusual situation when it is time varying, in which case it must

be programmed into the simulation as a function of time.  For a generalized simulation program
designed to handle a broad class of system error model configurations, it is generally difficult to
define a simple classical input interface for setting values for the remaining terms.  The typical
result is that the covariance simulation program must be structured to allow users to directly,
but easily, program their error model configuration into subroutines assigned for error model
definition.  Using this approach, the simulation can be designed for user system error model
definition in its most easily represented form, with the simulation program then calculating
parameters for the Section 16.2.1 equations from this model form.  The basic model
representing error state behavior is defined by Equations (15.1-1) - (15.1-2) which for the real
world error state vector are:

xRW  =  A xRW + GP nP (16.2.3-1)

zn  =  HRWn xRWn + GM  n nM  n (16.2.3-2)

with, as in Section 16.1.1.3:

xRW  ≡  x
y

HRW  ≡  Hx Hy (16.2.3-3)

where

xRW  =  Real world complete error state vector.

HRW  =  Real world complete measurement matrix.

It is also be useful to define the partitions of A and GP as:

A  ≡  
Axx Axy

Ayx Ayy
GP  ≡  

GPx

GPy

(16.2.3-4)
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The nP vector of independent white process noise sources in (16.2.3-1) would be
characterized by the diagonal elements of its density matrix QPDens.  The nM vector of

independent white sequence measurement noise sources in (16.2.3-2) would be characterized
by the diagonal elements of its covariance matrix R.  The A, GP, QPDens, HRW, GM and R
matrices for (16.2.3-1) - (16.2.3-2) would be programmed into the simulation by the user
(generally as a function of time).  Note, as discussed following Equation (15.1.2.1.1.3-31), that

because GP is only used in the form GP QPDens GP
T

 to calculate Q, many elements of GP cancel

when forming GP QPDens GP
T

.  This allows the user programming of GP to be simplified by

setting these aforementioned GP elements to the corresponding identity matrix.  Note also, that
A, GP, HRW, GM are generally functions of angular rate, acceleration, attitude, velocity and
position navigation data parameters that vary as a function of time.  Thus, to program A, GP,
HRW, GM into the simulation, a trajectory generator must also be interfaced to the covariance
simulation to provide the required navigation data inputs.  A trajectory generator is a computer
program that simulates the kinematic angular-rate/acceleration history along a user specified
trajectory and calculates the corresponding attitude, velocity, position history for output.  Section
17.0 describes the structure of trajectory generators.

With A, GP, QPDens programmed into the covariance simulation by the user, standard
subroutines built into the simulation can then be used to calculate the error state transition matrix

Φ (with its defined elements Φxx , Φxy, Φyx, Φyy) and the integrated coupled process noise
matrix Q (with its defined elements Qxx , Qxy, Qyx, Qyy) for the Section 16.2.1 equations (for

example, as described in Sections 15.1.2.1.1.1 and 15.1.2.1.1.2).  Note that the option to replace
Equation (16.2.1-1) and (16.2.1-8) with the iterative processing algorithm between Kalman
estimation cycles (as described in Section 15.1.2.1.1.3), is also based on using A, GP, QPDens
for input.  The programmed HRW, GM, R would be used directly in the Section 16.2.1
equations.

The suboptimal Kalman filter error model for the covariance simulation would be defined
similarly using the basic Equations (15.1-1) - (15.1-2) format with the Section 16.1.1 and
16.2.3 nomenclature:

x*  =  Axx
*

 x* + GPx

*
 nP

*
(16.2.3-5)

zn
*
  =  Hxn

*
 xn

*
 + GM n

*
 nM n

*
 (16.2.3-6)

where

x*  =  Error state vector definition for the suboptimal Kalman filter (i.e., neglecting y).

z*  =  Measurement model used for the suboptimal Kalman filter.
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*  = Designation for values used in the suboptimal Kalman filter for the equivalent
Equation (16.2.3-1) - (16.2.3-4) parameters.

The nP
*

 vector of independent white process noise sources in (16.2.3-5) would be characterized

by the diagonal elements of its density matrix QPDens
*

 .  The nM
*

 vector of independent white

sequence measurement noise sources in (16.2.3-6) would be characterized by the diagonal

elements of its covariance matrix R*.  The Axx
*

, GPx

*
, QPDens

*
, Hx

*
, GM

*
 and R* matrices for

(16.2.3-5) - (16.2.3-6) would be programmed into the simulation by the user (generally as a
function of time).

With Axx
*

, GPx

*
, QPDens

*
 programmed into the covariance simulation by the user, standard

subroutines built into the simulation can then be used to calculate the suboptimal filter error state

transition matrix Φxx
*

 and the integrated coupled process noise matrix Qxx
*

 for the Section

16.2.1 equations (for example, as described in Sections 15.1.2.1.1.1 and 15.1.2.1.1.2).  Note
that the option to replace Equation (16.2.1-5) with the iterative processing algorithm between
Kalman estimation cycles (as described in Section 15.1.2.1.1.3), is also based on using

Axx
*

, GPx

*
, QPDens

*
 for input.  Alternatively, the actual algorithms planned for calculating Φxx

*
,

Qxx
*

 and propagating P* in the suboptimal Kalman filter can be programmed directly into the

covariance simulation (in lieu of programming Axx
*

, GPx

*
, QPDens

*
 and using Sections

15.1.2.1.1.1 - 15.1.2.1.1.2 or Section 15.1.2.1.1.3).  The programmed Hx
*

, GM
*

, R* would be

used directly in the Section 16.2.1 equations.

The following subsections discuss modeling of particular elements of the error state dynamic
equation including process noise, acceleration squared error effects and gravity error.

16.2.3.1  PROCESS NOISE ERROR MODELS

For the most part, the definition for the process noise density matrix elements (for

QPx, QPy, QPx

*
) are easily definable from the error state dynamic equations containing the

associated nP and nP
*

 process noise components.  In general, the process noise density

components are defined directly in terms of the variance of their integrals divided by the
integration time (e.g., the noise density for angular rate sensor output white noise is typically
measured in terms of its integral in degrees squared per hour of integration time).  For a first
order Markov process having the general form:
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x  =  - C x + GP n (16.2.3.1-1)

the process noise density associated with the white noise n is sometimes defined in terms of the
steady state variance for the error state x.  The steady state variance for x is analytically obtained

from (16.2.3.1-1) using Equations (15.1.2.1.1-30) and (15.1-1) as a template, with P set to
zero:

PStdy State  =  0  =  - 2 C PStdy State + GP
2

 QPDens (16.2.3.1-2)

or

QPDens  =  
2 C PStdy State

GP
2

 (16.2.3.1-3)

Process noise densities for the inertial sensor quantization noise terms (e.g., in Equations
(12.5.1-1)) are specified using the Section 15.2.1.2 technique leading to Equation (15.2.1.2-18).
To properly account for each of these terms, the Equation (12.6-2) and (12.6-3) vibration terms
should be included which results in the following revised (12.5.1-1) form (showing only the
quantization terms):

ψ
N

  =   + CB
N

 ωIB 
B

× δαQuant  + CB
N

 ωVib 
B

× δαQuant

δ V
N

  =   - aSF
N

 ×  CB
N

 δ α Quant - CB
N

 ωIB
B

 ×  CB
N

 δ υ Quant 

                          - CB
N

 aVib
B

 × δ α Quant +  ωVib 
B

 × δ υ Quant

(16.2.3.1-4)

δR
N

  =   + CB
N

 δυQuant

If we assume that the attitude update, acceleration-transformation/velocity-update and

position update frequencies are identical, the leading δαQuant noise terms in the (16.2.3.1-4)

ψ
N

, δV
N

 expressions and the leading δυQuant noise terms in the δV
N

, δR
N

 expression have

component noise densities as defined by Equation (15.2.1.2-18):

qψVαQuant  =  
1

12
 

εα
2

fAtt/Vel
qVRυQuant  =  

1
12

 
ευ

2

fVel/Pos
(16.2.3.1-5)

where

qψVαQuant  = δαQuant process noise density elements for the aSF
N

 ×  CB
N

 δ α Quant  term

in the δV
N

 expression and for the CB
N

 ωIB 
B

× δαQuant  term in the ψ
N

expression.
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qVRυQuant  = δυQuant process noise density elements for the CB
N

 δυQuant term in the

δR
N

 expression and for the CB
N

 ωIB
B

 ×  CB
N

 δυQuant term in the δV
N

expression.

If the attitude update, acceleration-transformation/velocity-update and position update
frequencies are different, we must also address the more fundamental question of how to deal
with the same noise source applied at different rates to different error state dynamic equations.
For example, consider the case when the attitude rate is updated at twice the acceleration-

transformation/velocity-update rate, and how δαQuant process noise should then be modeled in

the Equation (16.2.3.1-4) ψ
N

, δV
N

 expressions (exclusive of the vibration terms in these
expressions - To be discussed subsequently).  For this situation, we consider the noise source in

question to be composed of the sum of two independent noise sources; the δαQuant portion

affecting ψ
N

 due to the attitude update cycle between velocity updates, and the remaining

δαQuant portion affecting both ψ
N

 and δV
N

 due to the common time point attitude update and

acceleration-transformation/velocity-update cycle.  Then the ψ
N

, δV
N

 expressions in
(16.2.3.1-4) become:

ψ
N

  =   + 
1
2

 CB
N

 ωIB 
B

 × δ α ψ Quant + δ α ψ VQuant  + 

 

δ V
N

  =   - aSF
N

 ×  CB
N

 δ α ψ VQuant + 

(16.2.3.1-6)

where

δαψQuant  = Portion of δαQuant affecting only ψ
N

 due to the attitude update cycle
between velocity updates.

δαψVQuant  = Portion of δαQuant affecting both ψ
N

 and δV
N

 due to the common cycle
attitude update and acceleration-transformation/velocity-update.

The associated elements of error state dynamic Equation (16.2.3.1-4) have the form:

ψ
N

δV
N

  =   + GPψV 
δαψQuant

δαψVQuant

 + (16.2.3.1-7)
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GPψV  =  

1
2

 CB
N

 ωIB
B

 × 1
2

 CB
N

 ωIB
B

 ×

0 - aSF
N

 ×  CB
N

(16.2.3.1-8)

where

GPψV  = Portion of GP that couples the Equation (16.2.3.1-4) δαψQuant process noise

term into ψ
N

 and δV
N

 (but not including the vibration - δαQuant product
terms).

Because the δαψQuant and δαψVQuant process noise vectors have been defined to be

independent members of the same noise process δαQuant, and because there are equal amounts

of δαψQuant and δαψVQuant (because the attitude update rate is assumed to be twice the

acceleration-transformation/velocity-update rate), the process noise density matrix associated

with 
δαψQuant

δαψVQuant

 is easily defined (as for Equation (16.2.3.1-5)) to be:

QψVαQuant  ≡  
qψVαQuant I 0

0 qψVαQuant I
(16.2.3.1-9)

where

QψVαQuant  =  Process noise density matrix for 
δαψQuant

δαψVQuant

.

with qψVαQuant as calculated in Equation (16.2.3.1-5) and fAtt/Vel set to the acceleration-
transformaion/velocity-update frequency.

A similar analysis applies for the δυQuant noise in the (16.2.3.1-4) δV
N

,δR
N

 expressions

(exclusive of vibration effects - to be treated subsequently).  For example, consider the case
when the velocity update frequency is higher the position update frequency.  The equivalent

treatment for δυQuant in the δV
N

, δR
N

 expressions begins from (16.2.3.1-4) with:

δV
N

δR
N

  =   + GPVR 
δυVQuant

δυVRQuant

 + (16.2.3.1-10)
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GPVR  =  

- 
1
r
 CB

N
 ωIB

B
 ×  CB

N
   - 

1
r
 CB

N
 ωIB

B
 ×  CB

N

0    CB
N

(16.2.3.1-11)

where

δυVQuant  = Portion of δυQuant affecting only δV
N

 due to the acceleration-
transformation/velocity-update cycle between position updates.

δυVRQuant  = Portion of δυQuant affecting both δV
N

 and δR
N

 due to the common
cycle acceleration-transformation/velocity-update/position-update.

GPVR  = Portion of GP that couples the Equation (16.2.3.1-4) δυQuant process noise

term into δV
N

 and δR
N

 (but not including the vibration - δυQuant product
terms to be discussed subsequently).

r  = Number of acceleration-transformation/velocity-update cycles per position update
cycle.

For this case we write the more general form for the process noise density matrix associated

with 
δυVQuant

δυVRQuant

 as:

QVRυQuant  ≡  
(r-1) qVRυQuant I 0

0 qVRυQuant I
(16.2.3.1-12)

in which qVRυQuant is calculated as in Equation (16.2.3.1-5) and fVel/Pos is set to the position
update frequency.  The r-1 term in (16.2.3.1-12) arises because there are r-1 contributions of

δυVQuant to δV
N

 between position update cycles.  Sections 19.2.9 and 19.2.10 in the detailed
Section 19.2 paper on quantization error modeling provide a more general rigorous treatment of
the previous development.

A fine point in the previous discussion relates to values assigned to the r and Equations
(16.2.3.1-5) fVel/Pos frequency terms as applied in Equation (16.2.3.1-12).  As discussed
earlier, fVel/Pos should be set to the position update frequency and r to the ratio of acceleration-
transformation/velocity-update to position-update frequencies.  These frequencies represent the
rate at which velocity and position parameters are updated in the strapdown system computer.
But what if two-speed algorithms (Chapters 7 and 19 (Section 19.1)) are used for parameter
updating?  For example, let's say that high speed algorithms are used to compute changes in
velocity and position (i.e., sculling and scrolling) over lower speed velocity and position update
intervals, with the velocity/position changes then used to update velocity/position at lower rate
frequencies.  As before, let r represent the ratio between the velocity and position update
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frequencies.  What should be used for r and what frequency should be used for fVel/Pos in the
Equations (16.2.3.1-5) qVRυQuant expression when applied in (16.2.3.1-12), those associated
with the high speed algorithms or those associated with the low rate update frequencies?  The
answer is that the high speed scrolling computation frequency (for position change
computation) should be used for fVel/Pos with r set to the ratio of sculling (velocity change) to
scrolling (position change) computation frequencies.  The rationale is provided in the Section
19.2 quantization paper, heuristically in Section 19.2.11, and by rigorous analysis in Section
19.2.16.

Similar reasoning applies for the attitude/velocity example provided previously (ending with
Equation (16.2.3.1-9)) in which attitude was updated at twice the velocity update frequency.
The attitude/velocity update frequencies should be interpreted as the high speed rates at which
attitude/velocity change (i.e., coning/sculling) is computed, with fAtt/Vel in the Equations
(16.2.3.1-5) qψVαQuant expression set to the sculling computation frequency for use in
Equation (16.2.3.1-9).

Let us now address the process noise modeling for the vibration terms in (16.2.3.1-4).  For

example, consider the ωVib
B

 × δαQuant term in the ψ
N

 expression.  We assume that ωVib
B

 is a

random vector.  As such, in the (16.2.3.1-4) ψ
N

 expression, the composite noise vector

ωVib 
B

× δαQuant can be considered uncorrelated with the other quantization term ωIB 
B

× δαQuant

treated previously.  Hence, ωVib 
B

× δαQuant can be treated as an independent process noise

vector.  The X axis component of ωVib 
B

× δαQuant is given by:

ωVib 
B

× δαQuant  

X
  =  ωVibY δαQuantZ - ωVibZ δαQuantY (16.2.3.1-13)

where

ωVibi, δαQuanti  =  Components of ωVib
B

, δαQuant along B Frame axis i.

If we assume that δαQuant and ωVib
B

 are independent, that the δαQuanti components are

uncorrelated, and approximate the ωVibi components as being uncorrelated, we can write for the

variance of the X component of ωVib 
B

× δαQuant:

E ωVib
B

 × δαQuant  

X

 2
  =  E ωVibY δαQuantZ - ωVibZ δαQuantY

 2

=  E ωVibY

2
 δαQuantZ

2
 + ωVibZ

2
 δαQuantY

2
(16.2.3.1-14)

=  E ωVibY

2
 E δαQuantZ

2
 + E ωVibZ

2
 E δαQuantY

2
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or, from the discussion leading to (15.2.1.2-18), and assuming equal quantization noise
variances per axis:

E ωVib
B

 × δαQuant  

X

 2
  =  

1
12

 σωYVib
2

 + σωZVib
2

 εα
2

(16.2.3.1-15)

where

σωiVib  =  Root-mean-square angular rate vibration magnitude around axis i.

We can also define for σωYVib and σωZVib:

σωYVib  =  μωYVib σωVib σωZVib  =  μωZVib σωVib (16.2.3.1-16)

where

σωVib  = Root-mean-square angular vibration rate vector magnitude, the parameter that
is typically used to specify angular vibration.

μωYVib, μωZVib  =  Ratios of σωYVib and σωZVib to σωVib.

Following the same process, we would find that the covariances between the components of

ωVib
B

 × δα Quant (e.g., E ωVib
B

 × δα Quant  

X
 ωVib

B
 × δα Quant  

Y
) equal zero. Hence, generalizing

from (16.2.3.1-15) - (16.2.3.1-16) to arbitrary axis i, the components of the process noise

density matrix associated with ωVib
B

 × δα Quant would be as in Equation (15.2.1.2-18):

qψαVibQuantii  =  
1

12
 μ ω  i+1Vib

2
 + μ ω  i+2Vib

2
 

εα
2

fAtt /Att
 σωVib

2
 

qψαVibQuantij  =  0    For i ≠ j
(16.2.3.1-17)

with in general:

σωiVib  =  μωiVib σωVib (16.2.3.1-18)

where

qψαVibQuant ij  = Element in row i column j of the ωVib 
B

× δαQuant process noise
density matrix.

μωiVib  =  Ratio of σωiVib to σωVib.

fAtt/Att   =  Frequency that attitude is used for attitude updating (Hz).
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and in which i+1 or i+2 equal to 4 is interpreted as 1, and i+1 or i+2 equal to 5 is interpreted as
2.  We also note from its definition that:

μωXVib
2

 + μωYVib
2

 + μωZVib
2

  =  1 (16.2.3.1-19)

The component of GP that couples ωVib 
B

× δαQuant into ψ
N

 is CB
N

 as seen in (16.2.3.1-4).

The remaining vibration/quantization process noise densities and coupling matrices for
Equations (16.2.3.1-4) are obtained similarly.  The result is:

qVαVibQuantii  =  
1

12
 μ 

a i+1Vib
2

 + μ 

a i+2Vib
2

 
εα
2

fAtt /Vel
 σaVib

2
 

qVαVibQuantij  =  0    For i ≠ j
 

qVυVibQuantii  =  
1

12
 μ ω  i+1Vib

2
 + μ ω  i+2Vib

2
 

ευ
2

fAtt /Vel
 σωVib

2
 

(16.2.3.1-20)

qVυVibQuant ij  =  0    For i ≠ j

with

σa iVib  =  μ  a iVib σaVib μ 

a XVib
2

 + μ 

a YVib
2

 + μ 

a ZVib
2

  =  1 (16.2.3.1-21)

where

qVαVibQuant ij  = Element in row i column j of the aVib 
B × δαQuant process noise

density matrix associated with the aVib 
B × δαQuant term in the

(16.2.3.1-4) δV
N

 expression.  The associated GP coupling term is

- CB
N

.

qVυVibQuant ij  = Element in row i column j of the ωVib 
B

× δυQuant process noise

density matrix associated with the ωVib 
B

× δυQuant term in the

(16.2.3.1-4) δV
N

 expression.  The associated GP coupling term is

- CB
N

.

σaiVib  =  Root-mean-square specific force acceleration vibration along axis i.

σaVib  = Acceleration vibration vector magnitude, the parameter that is typically used to
specify linear vibration.

μaiVib  =  Ratio of σaiVib to σaVib.
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fAtt/Vel   = Frequency that attitude is used in the foreground calculations for
acceleration-transformation/velocity-integration update (Hz).

We also assume that ωVib 
B

× δαQuant, aVib 
B × δαQuant, and ωVib 

B
× δυQuant can be treated as

independent noise sources.  This implies that the components of ωVib 
B

 and aVib 
B

 are

uncorrelated.  This is, at best, an approximation since in practice, both ωVib 
B

 and aVib 
B

 are

created from the same input vibration sources.  However, in the interests of simplifying the
analysis, we will accept the minor deficiencies of this modeling inaccuracy.

The σωVib and σaVib terms in the previous development represent angular and linear

vibrations of the strapdown inertial sensor assembly.  These vibrations are produced from user
vehicle vibrations transmitted through the INS mount and into the sensor assembly (generally
across elastomeric isolators used to isolate the sensor assembly from external
thermal/vibration/shock environments).  The vehicle vibrations are generally specified in terms
of a linear specific force acceleration power spectrum (versus frequency), which is transmitted
into the sensor assembly as linear acceleration vibration along the input acceleration axis, and as
angular vibration across the input acceleration axis (due to sensor assembly mount imbalance).

Numerical values for σωVib and σaVib can be evaluated using the methods of Chapter 10

Section 10.6 as a function of input acceleration vibration and sensor assembly mount dynamic
response characteristics.  For example, from Equations (10.6.1-25) we see that:

E aSF (t)2   =  BA
2

(ω) GaVib(ω) dω
0

∞

E θ (t)
2

  =  Bϑ
2

(ω) GaVib (ω) dω 
0

∞

(16.2.3.1-22)

E aVib(t)2   =  GaVib (ω) dω 
0

∞

where

GaVib (ω)  = Random acceleration vibration power spectral density input to the sensor
assembly mount.
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B ϑ (ω), BA (ω)  = Sensor-assembly/mount-isolator dynamic response characteristics

calculated as Bϑ(Ω), BA(Ω) in Equation (10.6.1-8) with Ω = ω (and

for worst case analysis, ε’s set to have the same polarity).

E aSF (t)2 , E θ(t)
2

  = Mean squared values of the sensor assembly linear acceleration
and angle vibrations induced by the vibration input to the
sensor assembly mount.

E aVib(t)2   = Mean squared value of the random vibration acceleration input to the
sensor assembly mount.

Recognizing that the sensor assembly angular rate response to vibration is the derivative of
its angle vibration response, the methods of Chapter 10 easily show that the angular rate

vibration response equivalent to the (16.2.3.1-22) E θ(t)
2

 expression is:

E ω  (t)
2

  =  ω2
 Bϑ

2
(ω) GaVib(ω) dω

0

∞

(16.2.3.1-23)

where

E ω  (t)
2

  = Mean squared value of the vibration induced sensor assembly angular rate
oscillation.

Then, using the definitions for σωVib and σaVib, we see that:

σωVib  =  E ω  (t)
2 σaVib  =  E aSF (t)2 (16.2.3.1-24)

We can also define:

aRMSVibIn  ≡  E aVib(t)2 (16.2.3.1-25)

where

aRMSVibIn   =  Root-mean-square (RMS) input vibration acceleration.

From Equations (16.2.3.1-22) - (16.2.3.1-25), we see that σωVib and σaVib vary linearly
with the input mean squared vibration acceleration aRMSVibIn .  As such, normalized values of

σωVib, σaVib can be obtained by dividing the (16.2.3.1-24) values by aRMSVibIn :

Gω/a  ≡  
σωVib

aRMSVibIn
Ga/a  ≡  

σaVib

aRMSVibIn
(16.2.3.1-26)
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where

Gω  /a, Ga/a  = Transmissibility of input specific force acceleration RMS vibration into
strapdown sensor assembly RMS angular rate and linear specific force
acceleration vibration.

Once calculated, the Gω  /a, Ga/a  vibration transmission coefficients can be used in the
covariance simulation to calculate the current sensor vibration effects:

σωVib  =  Gω/a aRMSVibIn σaVib  =  Ga/a aRMSVibIn (16.2.3.1-27)

with aRMSVibIn  programmed as a function of time to simulate the expected vibration history

for the particular trajectory profile used in the simulation.

16.2.3.2 ACCELERATION SQUARED ERROR EFFECTS MODELING

Some error effects in strapdown inertial navigation systems are excited by the product of
acceleration components along the same or different B Frame axes.  Examples are angular rate
sensor and accelerometer “g2 error” effects, and residual (uncompensated) coning/sculling (or
pseudo coning/sculling) error.

Residual coning/sculling (or pseudo coning/sculling) error effects can be represented by:

δ Coni  =  K PsConi Coni + δ ConAlgi
 

δ Sculi  =  LPsSculi Sculi + δ SculAlgi 
(16.2.3.2-1)

where

δ Coni, δ Sculi  =  Total residual coning, sculling error along B Frame axis i.

Coni, Sculi  = Actual average coning, sculling magnitude around (along) axis i (a
function of input vibration and sensor assembly mount characteristics).

KPsConi
 , LPsSculi  = Pseudo-coning, pseudo-sculling error coefficients for B Frame

axis i defined as a fraction of average per axis true coning, sculling
magnitude.

δConAlgi, δSculAlgi  =  Coning, sculling algorithm error.

To facilitate numerical evaluation, Equations (16.2.3.2-1) are first expanded as:
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δ Coni  =  aRMSVibIn
2

 
aRMSVibIni

aRMSVibIn

 2

 KPsConi 
Coni

aRMSVibIni

2
 + 

δ ConAlgi

aRMSVibIni

2

 

            =  aRMSVibIn
2

 ηa iVib
2

 KPsConi 
Coni

aRMSVibIni

2
 + 

δ ConAlgi

aRMSVibIni

2

(16.2.3.2-2)

               δ Sculi  =  aRMSVibIn
2

 LPsSculi 
Sculij

aRMSVibInj

2
 
aRMSVibInj

2

aRMSVibIn
2

 

 

+ 
Sculik

aRMSVibInk

2
 
aRMSVibInk

2

aRMSVibIn
2

 + 
δ SculAlgij

aRMSVibInj

2
 
aRMSVibInj

2

aRMSVibIn
2

 + 
δ SculAlgik

aRMSVibInk

2
 
aRMSVibInk

2

aRMSVibIn
2

 

            =  aRMSVibIn
2

 LPsSculi 
Sculij

aRMSVibInj

2
 ηajVib

2
 + 

Sculik

aRMSVibInk

2
 ηa kVib

2

 

                                         + 
δ SculAlgij

aRMSVibInj

2
 ηa jVib

2
 + 

δ SculAlgik

aRMSVibInk

2
 ηa kVib

2

(16.2.3.2-3)

where

aRMSVibIn   = Root-mean-square value for the input acceleration vibration vector
magnitude.

aRMSVibIn i, j, k  = Root-mean-square value for the input acceleration vibration vector
component along sensor assembly axis i, j, or k.

ηa i, j, kVib  =  Ratio of aRMSVibIn i, j, k over aRMSVibIn .

j, k  =  Mutually perpendicular sensor assembly axes perpendicular to axis i.

Sculij, Sculik, δSculAlgij, δSculAlgik  = Portions of Sculi and δSculAlgi generated by
linear vibration along axes j and k.

Equations (16.2.3.2-2) and (16.2.3.2-3) are based on the assumptions that acceleration
vibration components along sensor assembly axes are uncorrelated from each other, and that i
axis acceleration vibration produces j and k axis angular vibration (due to mounting
imbalances), but negligible i axis angular vibration.  The j, k axis angular vibrations then

generate i axis coning δ Con i  .  Sculling along sensor axis i (δSculi) is produced by j axis angular
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vibration created by k axis linear vibration, and by k axis angular vibration created by j axis
linear vibration.

As shown in Chapter 10, coning, sculling and associated algorithm error terms vary linearly
with the input mean squared vibration acceleration (e.g., see Equations (10.6.1-23)).  Based on
this observation, we can define the coning/sculling ratio terms in the (16.2.3.2-2) - (16.2.3.2-3)
results as normalized values.  If we assume equal dynamic and imbalance response
characteristics for each sensor assembly axis, we can make the further assumption that the
normalized values are the same for each axis.  In this manner (16.2.3.2-2) - (16.2.3.2-3)
simplify to the following:

δ Coni  =  aRMSVibIn
2

 ηaiVib
2

 KPsConi ConNorm + δ ConAlgNorm
 

δSculi  =  aRMSVibIn
2

 ηajVib
2

 + ηakVib
2

 LPsSculi SculNorm + δSculAlgNorm

(16.2.3.2-4)

or equivalently:

δConi  =  aRMSVibIn
2

 KResConi δSculi  =  aRMSVibIn
2

 LResSculi (16.2.3.2-5)

with

KResConi  =  ηaiVib
2

 KPsConi ConNorm + δConAlgNorm
 

LResSculi  =  ηajVib
2

 + ηakVib
2

 LPsSculi SculNorm + δSculAlgNorm

(16.2.3.2-6)

where

KResConi, LResSculi  =  Composite residual coning, sculling error coefficients.

ConNorm , SculNorm , δConAlgNorm , δSculAlgNorm  =  Normalized values for Coni,

Sculij, Sculik, δConAlgi, δSculAlgij and δSculAlgik in
Equations (16.2.3.2-2) - (16.2.3.2-3).

Numerical values for ConNorm , SculNorm , δConAlgNorm , δSculAlgNorm  in (16.2.3.2-6)

can be evaluated using the methods of Chapter 10 by dividing the equivalent Chapter 10
calculated values (e.g., based on Equations (10.6.1-25)) by the associated input mean squared
vibration acceleration:
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ConNorm  ≡  
E ΦConz

aRMSVibIn
2

                       SculNorm  ≡  
E vSF/Scul z

  

aRMSVibIn
2

 

δ ConAlgNorm  ≡  
E  δΦAlgo-mz

aRMSVibIn
2

          δ  SculAlgNorm  ≡  
E δvSF/Algo-mz

aRMSVibIn
2

 

aRMSVibIn
2

  =  E aVib(t)2

(16.2.3.2-7)

where

E ΦConz , E   δΦAlgo-m z , E vSF/Sculz
  , E δvSF/Algo-mz , E aVib(t) 2  =  Coning,

coning algorithm error, sculling, sculling algorithm error and average
acceleration vibration input squared calculated using Equations (10.6.1-25)
of Chapter 10 with the vibration input set to the input vibration vector
magnitude power spectrum.

It is useful to evaluate the potential error in Equations (16.2.3.2-5) - (16.2.3.2-6) if their
underlying assumption of uncorrelated linear vibration components is invalid.  For example, as
a worst case, consider a situation when the linear vibration vector is along a fixed direction in
the sensor frame, not necessarily along i, j or k.  The magnitude of the coning error coefficient

in this case (call it KResCon0
 ) can be calculated from KResConi

  in (16.2.3.2-6) by setting ηa iVib

equal to 1.  If the vibration was along axis i, this would be the correct solution (with zero for the
KResConj

 , KResConk
  components).  However, if the vibration is along another general axis

direction, say one which projects equal linear vibrations along i, j and k (i.e.,

ηa iVib = ηa jVib = ηa kVib = 
1

3
), the (16.2.3.2-6) solution (for equal KPsCon pseudo-coning

coefficients per axis) would be KResConi = KResConj = KResConk = 
1
3

 KResCon0
  .  The

corresponding vector magnitude is the square root of the sum of the squares or 
1

3
 KResCon0

  ,

hence, somewhat smaller than the actual magnitude KResCon0
  .

For the sculling case, consider the same worst case scenario in which the linear vibration
vector is along a fixed direction in the sensor frame, say along axis k.  The magnitude of the i
axis sculling error coefficient in this case (call it LResScul0

  ) can be calculated from LResSculi
  in

(16.2.3.2-6) by setting ηa kVib equal to 1 and ηajVib  to zero.  For equal LPsScul pseudo-sculling

coefficients per axis, the j axis composite residual sculling error coefficient (LResScul j
 ) would

also equal LResScul0
 .  The k axis coefficient (LResScul k

 ) would be zero.  If the vibration was

actually along axis k, this would be the correct solution for the i, j and k axis LResScul 
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components.  However, if the vibration is along another general axis direction, say one which

projects equal linear vibrations along i, j and k (i.e., ηa iVib = ηa jVib = ηa kVib = 
1

3
), the

(16.2.3.2-6) solution (for equal LPsScul pseudo-sculling coefficients per axis) would be

LResSculi = LResSculj = LResResk = 
2
3

 LResScul0
 .  The corresponding vector magnitude is the

square root of the sum of the squares or 
2

3
 LResScul0

  .  The actual LResScul  coefficients in this

case would equal LResScul0
  along each of the two axes perpendicular to the vibration vector

with zero along the vibration axis.  The associated actual LResScul  vector magnitude would then

be 2 LResScul0
  , somewhat larger than the 

2

3
 LResScul0

   magnitude resulting from the

Equation (16.2.3.2-6) solution.  The ratio between the two is 2 / 2 / 3  = 3 / 2.

From the previous discussion we see that the assumption of uncorrelated linear acceleration
vibration input components produces a smaller estimate for coning/sculling effects than for
correlated linear vibration components.  On the other hand, the Chapter 10 solutions for the

E ΦConz , E   δΦAlgo-m z , E vSF/Sculz
 , E δvSF/Algo-mz , E aVib(t) 2  terms in (16.2.3.2-7)

(used to calculate the (16.2.3.2-6) normalized coefficients) were based on conservative worst
case phasing analysis.  Thus, the combination of both assumptions in (16.2.3.2-6) results in a
more realistic approximation.

Using the previous formulation, δConi, δSculi would be treated as additions to δωIB
B

, δaSF
B

  in

the strapdown inertial navigation error state dynamic equations (e.g., Equations (12.5.1-1)) with

the KResConi, LResSculi
  coefficients treated as unknown constant error states and aRMSVibIn

2

being part of the error state dynamic matrix.  In practice, the variances for each i axis
component of KResConi, LResSculi

  would be set to the same value.  In a covariance simulation

program, aRMSVibIn  would typically be programmed as a function of time to simulate the

expected vibration history for the particular trajectory profile used in the simulation.  Note, that
Equations (16.2.3.2-5) would generally not be included in a real Kalman filter error model

because the aRMSVibIn
2

 coefficient is generally not available.  In the real world model of a

covariance simulation using (16.2.3.2-5), the “optimal” Kalman filter (see Section 16.1.1.3 or
16.1.2.1) would then be configured to not estimate KResConi, LResSculi

  by setting the

appropriate elements in IOptEst to zero (in Equation (16.1.1.3-18) or (16.1.2.1-16)).  If

aRMSVibIn
2

 was measured in the actual INS, then KResConi, LResSculi
  could in principle also be

included in the suboptimal Kalman filter.  However, due to the uncertainty in the basic model
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for KResConi, LResSculi
  (as represented by (16.2.3.2-6) using the simplified models of Chapter

10), if KResConi, LResSculi
  is to be included in the suboptimal filter, the “considered variable”

approach would probably be taken (by which KResConi, LResSculi
  are not estimated) by setting

the appropriate Kalman gain elements to zero (i.e., in the IEst matrix of Equation (16.1.1-36)).

Let us now consider an inertial sensor error characteristic of the form:

δi  =  Kjki aSFTotj aSFTotk (16.2.3.2-8)

where

δi  =  Inertial sensor error along B frame axis i.

aSFTotj, aSFTotk  = Total specific force acceleration along B Frame axes j and k.  Axes
i, j, k may be the same axis or different axes, depending on the
particular sensor error.

Kjki  = General specific force acceleration product sensor error coefficient (for general
j, k axis acceleration products).

In general, the total specific force acceleration along an arbitrary B Frame axis i can be
defined as:

aSFTot i  =  aSFi + aVibi (16.2.3.2-9)

where

aSFi  = Specific force acceleration along B Frame axis i caused by all effects except
vibration.

aVibi  =  Specific force acceleration vibration along B Frame axis i.

With (16.2.3.2-9), we see that the acceleration product term in (16.2.3.2-8) is:

aSFTotj aSFTotk  =  aSFj + aVibj  aSFk + aVibk
 

                          =  aSFj aSFk + aSFj aVibk + aVibj aSFk + aVibj aVibk 
(16.2.3.2-10)

The average value of (16.2.3.2-10) in (16.2.3.2-8) produces a systematic error in δi that leads

to attitude/velocity error build-up.  Considering the vibration terms to be random, the average
value of (16.2.3.2-10) is given by:

aSFTot j aSFTot k
 

Avg
  =  aSFj aSFk + aVibj aVibk

 

Avg
 (16.2.3.2-11)

where

Avg  = Subscript designation for the average value of the associated term in brackets.
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As a worst case, we consider the i and j axis vibration terms to be perfectly correlated (i.e., in a
fixed proportion and in phase with one another, which would be the case for a vibration vector
input to the INS along a fixed direction in the B Frame).  Then the vibration term in
(16.2.3.2-11) is given by:

aVibj aVibk
 

Avg
  =  σa jVib σa kVib (16.2.3.2-12)

where

σa jVib, σa kVib  = Root-mean-square specific force acceleration vibration along axes j
and k.

We can also write as in (16.2.3.1-21):

σa jVib  =  μa jVib σaVib          σa kVib  =  μa kVib σaVib 
 

μaXVib
2

 + μaYVib
2

 + μaZVib
2

  =  1

(16.2.3.2-13)

where

σaVib  =  Root-mean-square specific force acceleration vector magnitude.

μa iVib  =  Ratio of σa iVib to σaVib.

With (16.2.3.2-11) - (16.2.3.2-13), the average value of Equation (16.2.3.2-8) becomes:

δiAvg  =  aSFj aSFk + μa jVib μa kVib σaVib
2

 Kjki (16.2.3.2-14)

For simulation purposes, σaVib can be evaluated using Equation (16.2.3.1-27) in the previous
section with aRMSVibIn  provided as a programmed function of time for the trajectory profile

being simulated.

Depending on whether it was an angular rate sensor or accelerometer error, δiAvg would be

treated as an addition to δωIB
B

 or δaSF
B

  in the strapdown inertial navigation error state dynamic

equations (e.g., Equations (12.5.1-1)) with the Kjki coefficient treated as an unknown constant

error state and aSFj aSFk + μa jVib μa kVib σaVib
2

 being part of the error state dynamic matrix.  In

general practice, δi type error effects are not usually modeled in the actual suboptimal Kalman

filter, hence, Equation (16.2.3.2-14) would normally represent a real world effect that would

only be used in the real world covariance simulation error state model.  If δi type errors are to

be included in the actual (suboptimal) Kalman filter error state vector, means must be provided
for determining the associated vibration effects for the error state dynamic matrix.  The basic
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choices are to use (16.2.3.2-14) with a predetermined estimate for σaVib, or to calculate the
average vibration product aVibj aVibk

 

Avg
 in (16.2.3.2-11) using actual acceleration

measurements (high-passed to calculate the vibration components).  The former technique adds

an uncertainty to the error state dynamic matrix (i.e., the difference between Φxx
*

 and Φxx  in

Equations (16.1.1-28) for suboptimal filter performance assessment); the author has no
knowledge of the latter technique ever being used.  The comments following Equation

(16.2.3.2-7) regarding use of the “considered variable” approach may also apply for δi type

errors, depending on the degree of uncertainty in the δi error model.

16.2.3.3  GRAVITY ERROR MODELING

In the development of the strapdown inertial navigation error state dynamic equations in

Chapter 12, we have included a gravity error term δgMdl  representing the difference between

the gravity model used in the inertial navigation software and true gravity.  For covariance

simulation analysis (and at times, but rarely, in the actual suboptimal Kalman filter), δgMdl  is

included as part of the error state dynamic equation.  The error model for δgMdl  is typically

designed to statistically account for gravity anomalies (in magnitude and angular deflection)
caused by local earth mass density/distribution aberrations.  A simple and effective gravity error

model considers δgMdl  to vary as a first order Markov process in linear distance traveled:

d δgMdl

ds
  =  - 

1
lg

 δgMdl  + nδg (16.2.3.3-1)

where

ds  =  Infinitesimal distance traveled relative to the earth.

d δgMdl   =  Infinitesimal change in δgMdl  over ds.

lg  =  Gravity model error correlation distance.

nδg  =  White process noise input vector.

The analytical solution to (16.2.3.3-1) can be shown to equal δgMdl 0 e
- 
Δs

lg  + (Integrated

Effect of nδg Over Δs) , in which δgMdl 0 equals δgMdl  at some initial location and Δs  is the

linear distance traveled relative to the earth from that location.  From this analytical form we see

that lg can also be defined as the value of Δs  that attenuates the effect of δgMdl 0 on δgMdl  by

e- 1.
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The equivalent distance derivative form of generalized time derivative error state dynamic
Equation (15.1-1) and its associated covariance rate Equation (15.1.2.1.1-30), is:

d
ds

 x  =  A' x + G'P nP
'

 

dP
ds

  =  A' P + P A'T + G'P QPDens
'

 G'P
T

(16.2.3.3-2)

where

'  =  Designation for parameters based on the distance derivative formulation.

Using (16.2.3.3-2), we can write the equivalent covariance form of (16.2.3.3-1) as:

d Pδ g

ds
  =  - 

2
lg

 Pδ g + Qδ gDens (16.2.3.3-3)

where

Pδg  =  Covariance of δgMdl .

Qδ gDens  = Process noise density matrix associated with nδg in (16.2.3.3-1).  Note that
since (16.2.3.3-1) is a distance differential equation, the units of Qδ gDens  are
g2 per ft.

But we can also write:

d Pδg

ds
  =  

d Pδg

dt
 
dt
ds

  =  Pδg 
1
v

(16.2.3.3-4)

where

v  =  Magnitude of the velocity relative to the earth.

Substituting (16.2.3.3-4) into (16.2.3.3-3) then yields after rearrangement:

Pδg  =  - 
2 v
lg

 Pδ g + v Qδ gDens (16.2.3.3-5)

Equation (16.2.3.3-5) can now be used for covariance simulation purposes based on time
integration for the gravity modeling error.  The initial value for Pδg would be based on known
statistics of the gravity anomalies at the simulation trajectory profile starting point.  The QδgDens

process noise density matrix would be set to match the steady state value of (16.2.3.3-3) (i.e.,

when 
d Pδg

ds
 = 0) for which:
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QδgDens  =  
2
lg

 PδgStdSt (16.2.3.3-6)

where

PδgStdSt  =  Steady state value for Pδg.

Note from Equation (16.2.3.3-5) compared with generalized covariance time derivative rate
Equation (15.1.2.1.1-30) (and its (15.1-1) error state dynamic equation equivalent), that the time
derivative form error state dynamic equation for the gravity model uncertainty can be written as:

δgMdl   =  - 
v
lg

 δgMdl  + v nδg (16.2.3.3-7)

We finally note that to be more general, we can represent lg and PδgStdSt as time varying

functions along the particular trajectory we are simulating.  For more generality, Equations

(16.2.3.3-5) - (16.2.3.3-6) can also be written independently for each component of δgMdl

along each axis of the navigation coordinate frame in which δgMdl  is used for input to the
velocity error rate equation.  With this approach, individual values of lg can be assigned for each

navigation axis.  We also have the option of representing ds in the previous derivation as
horizontal distance or as distance along a particular navigation frame axis, for which the v
parameter in (16.2.3-3-5) would be then be set to horizontal velocity magnitude or the
magnitude of the velocity component along the particular navigation frame axis.  The horizontal
velocity magnitude approach is commonly used for applications involving long distance
trajectories near the earth’s surface.

16.2.4  SENSITIVITIES AND ERROR BUDGETS

To effectively utilize a covariance simulation program in the design and evaluation of
Kalman filter aided (or unaided) inertial navigation systems, it is beneficial to include the
capability of evaluating the sensitivity of the error state vector uncertainty components to factors
affecting their values.  These include initial error state values, process noise inputs,
measurement noise input during the estimation update process, and error state uncertainty
transients that may appear at arbitrary time points.  It is also helpful to translate the sensitivities
into their individual numerical impact on the error state uncertainties based on numerical values
for the error state uncertainty input sources.  This is sometimes denoted as an error budget.

The sensitivity of the generalized error state vector x' in Equations (16.1.1-28) to initial
values of x' is readily determined by application of Equations (16.1.1-29) - (16.1.1-30) with the
process/measurement noise terms set to zero.  Consider the response of these equations to a
unity initial condition on one of the x' components (with zero for the other components):
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Sjn(-)  =  Φn
' 
 Sjn-1(+e)               Sjn(+e)  =  I' - Kn

'
 Hn

'
 Sjn(-)

 

Sij0  =  1   For i = j                    Sij0  =  0   For i ≠ j
(16.2.4-1)

where

Sjn  = Response of x' at propagation cycle n to unity initial value on the jth element of x'
with initial values of zero for the other x' elements.

Sijn  =  Element i of Sjn.

As defined above, Sjn is the error state vector initial condition sensitivity vector relating the

sensitivity of x' to initial values of x' component i.  We can also define an initial condition
sensitivity matrix as the collection of Sjn’s for all j’s:

SIC  ≡  S1 S2 ⋅ ⋅ ⋅ ⋅ Sm-1 Sm (16.2.4-2)

where

SIC  = Error state vector initial condition sensitivity matrix whose element in row i,
column j is Sij.

m  =  Dimension of x'.

Combining (16.2.4-1) - (16.2.4-2) obtains the dynamic equations for SIC:

SICn(-)  =  Φn
' 
 SICn-1(+e)               SICn(+e)  =  I ' - Kn

'
 Hn

'
 SICn(-)

 

SIC0  =  I '
(16.2.4-3)

Equations (16.2.4-3) can be computed in parallel with the (16.2.1-1) - (16.2.1-2) to evaluate the
initial condition sensitivity matrix corresponding to the covariance matrix P'.

Equation (16.2.4-3) can also be utilized to investigate the sensitivity of x' to step transients in
the error state components applied at a selected n cycle time:

STrn(-)  =  Φn
' 
 STrn-1(+e)             STrn(+e)  =  I' - Kn

'
 Hn

'
 STrn(-)

 

STr0  =  0                                      STrnTrans  =  I
(16.2.4-4)

where

nTrans  =  Cycle number when the transient step in x' occurs.

STr  = Error state vector transient input sensitivity matrix whose element in row i,
column j is the response of x' element i to a unit step change in x' element j at
cycle time nTrans.
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The sensitivity of the error states to individual process and measurement noise terms can be
obtained as the covariance response to the associated covariance process noise
density/measurement noise matrix elements.  As such, parallel versions of Equations (16.2.1-1)
- (16.2.1-2) are executed with zero for the initial P' value, and unity for the particular process
noise density/measurement noise elements whose sensitivity on P' is to be determined.  For the
process noise density sensitivity runs, the Q' value in (16.2.1-1) would be calculated using the
methods of Sections 15.1.2.1.1.1 and 15.1.2.1.1.2 with unity for the particular process noise
density terms whose sensitivity is to be determined (and zero for the remaining noise density
elements).  In order to keep the number of parallel versions of (16.2.1-1) - (16.2.1-2) to a
minimum, common process noise densities with equal values can be run as a group in a single
run (e.g., the sensitivity of P' to the combined effect of X, Y, Z angular rate sensor random
output noise can be assessed in a single run by setting each of their associated process noise
densities to unity.  The same is true for common measurement noise forms along different
measurement axes.).

Equations (16.2.4-1) - (16.2.4-4) and the previous paragraph are based on the idealized
control reset Kalman filter formulation.  A similar set of sensitivities and procedures can be
derived for the delayed control reset Kalman filter configuration from Equations (16.1.2-24) -
(16.1.2-25) for initial-condition/transient sensitivities and Equations (16.1.2-27) - (16.1.2-28)
for process/measurement noise sensitivities.

Once the sensitivities are evaluated for each error source as described above, an error budget
matrix can be prepared depicting a breakdown of all error contributions to each element of x'.
In general, the basic error budget does not include the transient effects described above, as these
are considered to be abnormal effects requiring individual error budget analysis.  The analytics
for the basic error budget are developed by first writing the deterministic relationship for the ith

element in x' as a sum of its contributing elements:

x'i  =  SICi x'0 + x'Proci + x'Measi (16.2.4-5)

where

x'i  =  Element i of x'.

x'0  =  Initial value of x'.

SICi  =  Row i of SIC.

x'Proci  =  Portion of x'i produced by process noise.

x'Measi  = Portion of x'i produced by measurement noise during the estimation reset
process.
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The variance of x'i is the expected value of its square which, assuming that initial conditions,

transients, process noise and measurement noise terms are uncorrelated, is from (16.2.4-5):

σx'i
2

  ≡  E x'i
 2

  =  E SICi x'0  SICi x'0
T  + E x'Proci

 2
 + E x'Measi

 2
(16.2.4-6)

where

σx' i  =  Root-mean-square value for x'i.

The initial condition term in (16.2.4-6) can be expanded as follows:

E SICi x'0  SICi x'0
T   =  E SICij

2
 x'j0

 2∑
j

 + 2 E SICij SICik x'j0 x'k0∑
k > j

∑
j

 

                                       =  SICij

2
 E  x'j0

 2∑
j

 + 2 SICij SICik E x'j0 x'k0∑
k > j

∑
j

(16.2.4-7)

where

SICij  =  Element in row i, column j of SIC.

Equation (16.2.4-7) is equivalently:

E SICi x'0  SICi x'0
T   =  SICij σx'j0

 2∑
j

 + 2 SICij SICik Pjk0

'∑
k > j

∑
j

(16.2.4-8)

where

σx'j0  =  Root-mean-square value for x'j0, the initial value of x'j.

Pjk0

'
  =  Element in row j, column k of the initial P ' covariance matrix.

The process and measurement noise terms in (16.2.4-6) can be defined as the sum of the
contributions from the individual common noise groupings for which process/measurement
noise covariance sensitivities were determined (see previous discussion on
process/measurement noise sensitivities):

E x'Proci

 2
  =  PProc/iil

'
 qPDensl∑

l

  =  PProc/iil
' σPDensl

 2

∑
l

E x'Measi

 2
  =  PMeas/iim

'
 r Measm∑

m

  =  PMeas/iim
' σMeasm

 2

∑
m

(16.2.4-9)

where



16-54     COVARIANCE SIMULATION PROGRAMS

PProc/iil
'

  = Element in row i, column i of the P' covariance response to unity process

noise density for all process noise elements in process noise sensitivity run
group l.

qPDensl  = Process noise density for each independent process noise element in process
noise sensitivity group l.

PMeas/iim
'

  = Element in row i, column i of the P' covariance response to unity

measurement noise density for all measurement noise elements in
measurement noise sensitivity run group m.

r Measm  = Measurement noise variance for each independent measurement noise
element in measurement noise sensitivity group m.

σPDensl, σMeasm  =  Square root of qPDensl
 , r Measm

 .

We now substitute (16.2.4-8) - (16.2.4-9) into (16.2.4-6) to obtain:

σx'i
2

  =  SICij σx'j0
 2∑

j

 + PProc/iil
' σPDensl

 2

∑
l

                + PMeas/iim
' σMeasm

 2

∑
m

 + σMisci

2
(16.2.4-10)

with

σMisci

2
  =  2 SICij SICik Pjk0

'∑
k > j

∑
j

 +
Small Process Noise, Measurement

Noise Terms Not Included
In The l, m Summations

(16.2.4-11)

where

σMisci  = Composite of miscellaneous contributions to σx' i, each of which are
considered too small for individual identification.

In general, the Pjk0

'
 cross-correlation terms in (16.2.4-11) are small or zero, hence, have fairly

minor impact on σx' i
2

.  Note, that the Equation (16.2.4-11) definition for σMisci allows for the

fact that, to reduce simulation running time, a complete set of process/measurement noise
sensitivities (i.e., a full set of l, m runs) might not have been obtained, hence, the effect of those

not run has been included in σMisci.
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From its definition, σx' i
2

 in (16.2.4-10) should equal Pii
'

 where:

Pii
'

  =  Element in row i, column i of P'.

Setting σx' i
2

 Equation (16.2.4-10) to Pii
'

 with rearrangement provides an expression for

calculating  σMisci

2
:

σMisci

2
  =  Pii

'
 - SICij σx'j0

 2∑
j

 - PProc/iil
' σPDensl

 2

∑
l

                            - PMeas/iim
' σMeasm

 2

∑
m

(16.2.4-12)

Equation (16.2.4-10) with (16.2.4-12) is now in a convenient form for generating an error
budget matrix such as the matrix mapping of these equations in Table 16.2.4-1.  Such an error
budget table would be prepared for each x'i element of interest.

The error source sensitivity column entries and Pii
'

 (for the  miscellaneous calculation) in

Table 16.2.4-1 would be the numerical results from the covariance and sensitivity simulation
runs.  The error source value column entries would be the numerical values used in the P'
covariance run.  Note, that if the miscellaneous term is specified as an allowance (an assigned

numerical value), Pii
'

 would not be required.  As a result, the entire error source value column

can then be treated as an independent numerical input for which the table can be used to

calculate the resulting σx' i value.  For such a case, the sensitivity column would be determined

once from a set of sensitivity simulation runs.
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Table 16.2.4-1  Basic Error Budget For Error Parameter x'i

ERROR SOURCE
ERROR

SOURCE
VALUE

ERROR
SOURCE

SENSITIVITY

ERROR SOURCE
VALUE TIMES
SENSITIVITY

  (ERROR SOURCE
  VALUE TIMES
  SENSITIVITY) -

  SQUARED

Initial Uncertainties
(For All j)

σx'j0 SICij SICij σx'j0   SICij σx'j0
 2

Process Noise
(For All l)

σPDensl PProc/iil

' PProc/iil

'  σPDensl   PProc/iil

'  σPDensl
 

 2

Measurement Noise
(For All m)

σMeasm PMeas/iim

' PMeas/iim

'  σMeasm   PMeas/iim

'  σMeasm
 

 2

Miscellaneous --- --- ---   
Pii

'  Minus Sum

Of All Above

SUM OF SQUARES

σx'i
2 --- --- ---   Sum Of All Above

ROOT-SUM-SQUARE
σx'i

--- --- ---   
Square Root

Of Above Element

An error budget can also be prepared for the portion of x'i produced by transients at a

selected nTrans cycle time.  Starting with the equivalent to (16.2.4-5) we can write:

x'Tri  =  STri ∂ x'TrnTrans (16.2.4-13)

where

x'Tri  = Portion of x'i produced from a step transient in x' occurring at the selected
nTrans cycle time.

∂ x'TrnTrans  =  Step transient in x' at the nTrans cycle time.

STri  =  Row i of STr.

As in Equation (16.2.4-6), we then define the variance in x'Tr i from (16.2.4-13) as:

σx' Tri
2

  ≡  E x'Tri
 2

  =  E STri ∂ x'TrnTrans  STri ∂ x'TrnTrans
 T

 (16.2.4-14)
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where

σx' Tr i  =  Root-mean-square value for x'Tr i.

Expansion of (16.2.4-14) yields:

σx' Tr i

2
  =  STrij σx'jnTrans

 2∑
j

 + 2 STrij STrik ∂PjknTrans
'∑

k > j
∑
j

(16.2.4-15)

where

STrij  =  Element in row i, column j of STr.

σx'jnTrans  =  Root-mean-square value of the jth element in ∂x'TrnTrans

∂PjknTrans

'
  =  Element in row j, column k of the covariance of ∂x'TrnTrans.

For simplicity, we restrict the transient analyses to conditions when ∂PjknTrans

'
 is zero.  Then

(16.2.4-15) reduces to:

σx' Tri
2

  =  STrij σx'jnTrans
 2∑

j

 (16.2.4-16)

Equation (16.2.4-16) is in a convenient form for error budget analysis using the tabular
technique of Table 16.2.4-1.

16.2.5  PERFORMANCE EVALUATION OUTPUT ROUTINES

As discussed in Section 16.1.1.1, the performance of the suboptimal filter in the real world is
characterized by the upper left partition of the P' matrix defined as PΔx Δx .  The square root of
the diagonal elements in PΔx Δx  provides the root-mean-square (RMS) value for the uncertainty

in each element of the suboptimal filter estimated error state vector x.  The RMS values for the
remaining real world error states not accounted for in the suboptimal filter (i.e., the y portion of

the real world error state vector) are provided by the square root of the diagonal elements of the
PΔyΔy partition of P' (See Equation (16.1.1.1-1)).  The RMS values so obtained are in terms of

the error parameters in the error state vector.

A common requirement is that suboptimal Kalman filter attitude, velocity or position
performance be expressed in terms of error parameters that differ from those used to represent
attitude/velocity/position error in the error state vector.  A conversion routine is then required to
transform the relevant PΔx Δx  elements into an equivalent output covariance in terms of the

desired output error definitions.
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As an example, consider the case when the Kalman filter error state vector uses ψN
 to

represent attitude (see Equations (12.2.1-4) and (12.2.1-7) for definition) but the desired output

is attitude in terms of roll, pitch, true heading error (δφ, δθ, δψT) (as defined in Section 12.2.1).

The required covariance conversion formula is derived from Equations (12.2.1-43) -
(12.2.1-45) which, for the corresponding error state uncertainties, when combined and cast in
matrix form is given by:

Δδφ

Δδθ

ΔδψT

  =  

- sec θ sin ψP - sec θ cos ψP 0 - 
1
R

 sec θ cos ψP
1
R

 sec θ  sin ψP

- cos ψP sin ψP 0
1
R

 sin ψP
1
R

 cos ψP

- tan θ sin ψP - tan θ cos ψP 1
1
R

 
- tan θ cos ψP

+ tan l cos α
 
1
R

 
tan θ  sin ψP

- tan l sin α

  

ΔψXN

ΔψYN

ΔψZN

ΔδRXN

ΔδRYN

(16.2.5-1)
where

Δ    =  Uncertainty in  .

Equation (16.2.5-1) has the form:

aOut  =  B x' (16.2.5-2)

where

aOut  =  Vector of desired output uncertainty parameter forms.

B  =  Conversion matrix.

Equation (16.2.5-2) is a general form representing the calculation of output parameters in
general as functions of x' vector elements.

We now determine the covariance of aOut in terms of the covariance of x'.  Using the

(15.1.2.1-4) definition we find:

PaOut  =  E aOut aOut
T

  =  E B x' B x' T   =  E B x' x' T BT   =  B E x' x' T  BT (16.2.5-3)

or

PaOut  =  B P' BT (16.2.5-4)

where

PaOut  =  Covariance of aOut.
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Once PaOut is calculated from (16.2.5-4), the root-mean-square (RMS) values for the desired
output parameter can be obtained as the square root of the corresponding PaOut diagonal

elements.

As another example that fits into the previous format, consider the case when the Kalman

filter error state vector uses δVN to represent velocity error (see Equations (12.2.2-1) and
(12.2.2-3) for definition) but the desired output is velocity error uncertainty in locally level

east/north/up geographic coordinates as represented by the δV 
 Geo

  velocity error parameter (see

Equation (12.2.2-17) for definition).  An equation in the (16.2.5-2) format for δV 
 Geo

 

uncertainty in terms of δVN (and δRH
N

) uncertainty can be developed by combining Equations

(12.2.2-19) - (12.2.2-20) and (12.2.2-29) - (12.2.2-30), with the error state components treated
as uncertainties.

As a final example, consider the case when the Kalman filter error state vector uses

ψN
 and δVN to represent attitude and velocity error (see Equations (12.2.1-4), (12.2.1-7),

(12.2.2-1) and (12.2.2-3) for definitions) but the desired output is attitude/velocity error

uncertainty in terms of γN
 and δvN attitude/velocity error parameters (see Equations

(12.2.1-10) and (12.2.2-2) for definition).  The associated (16.2.5-2) format formula is derived

from the converse of Equations (12.2.1-17) and (12.2.2-5) relating ψN
, δVN and γN

, δvN:

γN
  =  ψN

 + εN δvN  =  δVN - εN
 × vN (16.2.5-5)

Conversion Equations (16.2.5-5) require the εN
 position parameter for input (see Equation

(12.2.3-4) for definition).  Let’s assume that position error parameters are included in the

suboptimal filter error state vector in the form of δRN as defined in Equations (12.2.3-1) -
(12.2.3-2).  From Equation (12.2.3-25) we see that:

εN
  =  

1
R

 uZN
N

 × δRN  + εZN uZN
N

(16.2.5-6)

Thus, to calculate εN
 in terms of δRN, the εZN vertical component of εN

 is required.  Let us

assume that εZN is not included in the suboptimal Kalman filter error state vector.  Then to

evaluate εN
 in (16.2.5-6) we have two choices; assume εZN is small enough to be neglected in

(16.2.5-6), or add it to the y portion of the real world error state vector.  Let us assume we adopt

the latter approach in which case we will incorporate the error state dynamic equation for εZN

(as a function of δRN  from Equations (12.3.5-29)) into the y error state dynamic equation:
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εZN  =  - 
1
R

 ωENH

N
 ⋅ δRH

N
 + δ ρZN

δρZN  =  0 For Wander Azimuth Implementation (16.2.5-7)

δρZN  =  - 
1
R

 ωIEH

N
 ⋅ δRH

N
For Free Azimuth Implementation

Let us now combine Equations (16.2.5-5) - (16.2.5-6) to obtain:

γN
  =  ψN

 + 
1
R

 uZN
N ×  δRN + uZN

N
 εZN

 

δvN  =  δVN + 
1
R

 vN×  uZN
N ×  δRN + vN × uZN

N
 εZN

(16.2.5-8)

or in matrix form:

γN

δvN
  =  

I   0   
1
R

 uZN
N ×    - uZN

N

0   I   
1
R

 vN×  uZN
N ×    - vN × uZN

N
 

ψN

δVN

δRN

- εZN

(16.2.5-9)

Note in (16.2.5-9) that we have represented εZN by its negative in the column vector on the

right.  This anticipates compatibility with the covariance simulation analysis error state vector x'
as defined in (16.1.1-28) with (16.1.1-27).  Using the (16.1.1-13) and (16.1.1-26) definitions,
the uncertainty in Equation (16.2.5-9) is then written as:

ΔγN

Δ δvN
  =  

I   0   
1
R

 uZN
N ×    - uZN

N

0   I   
1
R

 vN×  uZN
N ×    - vN × uZN

N
 

ΔψN

Δ δVN

Δ δRN

Δ - εZN

(16.2.5-10)

Equation (16.2.5-10) is in the (16.2.5-2) format for application of covariance conversion
Equation (16.2.5-4).

Sensitivity expressions can also be developed for output parameters from conversion
Equation (16.2.5-2).  For the initial condition, process noise and measurement effects
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contributing to the basic error budget, the equivalent output parameter sensitivity expressions
are derived beginning with the vector form of (16.2.4-5):

x'  =  SIC x'0 + x'Proc + x'Meas (16.2.5-11)

Substituting (16.2.5-11) into (16.2.5-2) finds for the output parameter vector aOut:

aOut  =  B x'  =  B SIC x'0 + B x'Proc + B x'Meas (16.2.5-12)

From (16.2.5-12) we then define:

SaOut/IC  ≡  B SIC (16.2.5-13)

aOut/Proc  ≡  B x'Proc aOut/Meas  ≡  B x'Meas (16.2.5-14)

where

SaOut/IC  =  Output parameter vector sensitivity matrices to x' initial conditions.

aOut/Proc, aOut/Meas  = Portions of aOut produced by process and measurement noise.

with which (16.2.5-12) becomes:

aOut  =  SaOut/IC x'0 + aOut/Proc + aOut/Meas (16.2.5-15)

The covariance form of (16.2.5-14) is:

PaOut/Proc  =  B P'Proc BT PaOut/Meas  =  B P'Meas B
T (16.2.5-16)

where

PaOut/Proc, PaOut/Meas  =  Covariance of aOut/Proc, aOut/Meas.

P'Proc, P'Meas  =  Covariance of x'Proc, x'Meas .

As in (16.2.4-9), the P'Proc, P'Meas  covariance matrices can be constructed as a sum of the
noise sensitivity run results multiplied by the noise values for the noise sensitivity groups:

P'Proc  =  P'Procl qPDensl∑
l

 P'Meas  =  P'Measm rMeasm∑
m

 (16.2.5-17)

From (16.2.5-17) and (16.2.5-16) we define:

PaOut/Procl  ≡  B P'Procl B
T PaOut/Measm  ≡  B P'Measm BT (16.2.5-18)
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where

PaOut/Procl, PaOut/Measm  =  Sensitivity of PaOut/Proc, PaOut/Meas  to qPDensl, qPDensm
 .

Then with (16.2.5-16) - (16.2.5-18) we see that:

PaOut/Proc  =  PaOut/Procl qPDensl∑
l

 PaOut/Meas  =  PaOut/Measm rMeasm∑
m

 (16.2.5-19)

Using (16.2.5-19), we are now in a position to write the equation for the variance of the ith
component of aOut in (16.2.5-15).  By direct analogy, the result is obtained from inspection of

Equations (16.2.4-10) and (16.2.4-12) derived from (16.2.4-5):

σaOuti
2

  =  SaOut/ICij σx'j0
 2∑

j

 + PaOut/Proc/iilσPDensl
 2∑

l

                     + PaOut/Meas/iim σMeasm
 2∑

m

 + σaOut/Misci

2
(16.2.5-20)

σaOut/Misci

2
  =  PaOut/ii - SaOut/ICij σx'j0

 2∑
j

 - PaOut/Proc/iilσPDensl
 2∑

l

                                            - PaOut/Meas/iim σMeasm
 2∑

m

(16.2.5-21)

where

σaOuti  =  Root-mean-square value for aOut i, the ith component of aOut.

SaOut/ICij  = Element in row i, column j of SaOut/IC calculated with Equation
(16.2.5-13).

PaOut/Proc/iil, PaOut/Meas/iim, PaOut/ii  = Elements in row i, column i of PaOut/Procl,

PaOut/Measm, PaOut calculated with Equations (16.2.5-18) and (16.2.5-4).

A basic error budget table equivalent to Equations (16.2.5-20) - (16.2.5-21) can also be
generated by analogy to Table 16.2.4-1 by replacing the x'i error sensitivities in the right three
columns of Table 16.2.4-1 with the aOut i sensitivities, and P'ii in the miscellaneous calculation

with PaOut/ii.

An output parameter error budget can also be prepared for the portion of aOut i produced by

transients at the nTrans cycle time.  We begin with the vector form of (16.2.4-13):

x'Tr  =  STr ∂ x'TrnTrans (16.2.5-22)
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Substituting (16.2.5-22) into (16.2.5-2) finds for the portion of aOut produced by transients:

aOutTr =  B x'Tr  =  B STr ∂ x'TrnTrans (16.2.5-23)

where

aOutTr  =  Portion of aOut produced by ∂ x'TrnTrans
  transients at the nTrans cycle time.

From (16.2.5-23) we then define:

SaOut/Tr  ≡  B STr (16.2.5-24)

with which (16.2.5-23) becomes:

aOutTr = SaOut/Tr ∂ x'TrnTrans (16.2.5-25)

By direct analogy, the variance of the ith component of aOutTr in (16.2.5-25) is obtained

through inspection of Equation (16.2.4-16) derived from (16.2.4-13):

σaOut/Tr i

2
  =  SaOut/Tr ij σx'jnTrans

 2∑
j

(16.2.5-26)

where

σaOut/Tr i  =  Root-mean-square value for aOut/Tr i, the ith component of aOutTr.

SaOut/Tr ij  = Element in row i, column j of SaOut/Tr calculated with Equation
(16.2.5-24).

16.2.6  GENERAL COVARIANCE SIMULATION PROGRAM STRUCTURE

This section summarizes the material covered in Sections 16.2.1 - 16.2.5 and provides an
overall description of the principal functions and capabilities that can be incorporated in a
covariance simulation program for generalized usage.

16.2.6.1  BASIC COVARIANCE PROPAGATION/RESET EQUATIONS

Equations (16.2.1-1) - (16.2.1-4) define the general operations implemented in a covariance
simulation program for initializing, propagating and resetting the augmented covariance matrix
P' (for real world and suboptimal Kalman filter error state uncertainties), based on idealized
Kalman filter control resets.  For a delayed control reset Kalman filter, the equivalent equations
are (16.1.2-23), (16.1.2-27) - (16.1.2-28) and (16.2.1-3).  The covariance simulation program
also executes Equations (16.2.1-5) - (16.2.1-7) defining the equivalent operations performed in
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the suboptimal Kalman filter to evaluate the P* actual (suboptimal) covariance matrix including
generation of the suboptimal Kalman gain matrix K (used in the augmented P' calculations).
For the idealized control reset Kalman filter, Equations (16.2.1-8) - (16.2.1-12) would be
processed in the covariance simulation for evaluating the theoretical optimal (“best achievable”)
Kalman filter performance in the form of the POpt covariance matrix.  For the delayed control
reset Kalman filter, the POpt covariance matrix would be calculated with Equations (16.1.2.1-
14) - (16.1.2.1-16) and (16.2.1-11).

In a typical covariance simulation program, the actual (suboptimal) Kalman filter equations
would be executed first over the input trajectory profile, with the computed suboptimal gains K
saved as a function of trajectory time when computed.  The augmented covariance P'
propagation/reset equations would then be run over the same trajectory profile using the
suboptimal saved gains K for input.  For reference performance comparison, the POpt
covariance propagation/reset equations can then be run for the same trajectory profile to
calculate the ideal best achievable performance for P' comparison.  A more sophisticated
simulation program would automatically configure itself for a P*, P', or POpt run based on
operator input command.

We also note in passing, that the covariance simulation can also be used to evaluate unaided
inertial navigation system performance by operation of the program without Kalman resets.
The unaided inertial mode can be configured from a user specified input condition that calls the
covariance propagation equation in the optimal Kalman filter performance routines.

As part of the covariance propagation/reset operations described above, positive definite tests
can be incorporated (for output status information) to measure the deleterious effect of
numerical finite word length round-off on P', P* and POpt.  These tests will also measure the
effect on covariance positive definiteness of integrated process noise matrix algorithm power
series expansion truncation error.  Simplified covariance positive definite tests can be structured
from Equation (15.1.2.1.1.4-2) as:

εij  =  Pii Pjj -   Pij Pji (16.2.6.1-1)

where

εij  = Test parameter for covariance elements Pii, Pjj, Pij, Pji.  The εij parameter should
remain positive if P is positive definite.  A typical simulation program might

output the εij’s that become negative.

Controls can also be incorporated in the simulation program to assure that the covariance
matrices satisfy basic inherent characteristics of the processing algorithms (e.g., to remain
symmetrical, the controls for which are described in Section 15.1.2.1.1.4).



SUBOPTIMAL COVARIANCE ANALYSIS SIMULATION PROGRAM CONFIGURATION     16-65

16.2.6.2  SIMPLIFIED COVARIANCE SIMULATION PROGRAM CONFIGURATIONS

To reduce throughput in a covariance simulation program, the P' covariance computations are
often simplified based on the simplifying assumptions of Section 16.1.1.4 (for idealized control
resets) or Section 16.1.2.2 (for delayed control resets).  In either case, the simplifying
assumptions eliminate the presence of the control matrix Lx in the covariance
propagation/update equations.  A more sophisticated covariance simulation program might be
structured to automatically reconfigure itself from the general case to the simplified version
based on user input instructions.

16.2.6.3  ERROR STATE CONFIGURATION

The assignment of error states to their selected location in the error state vector is part of the
initialization process in a covariance simulation program.  A useful feature is the ability to
assign (or reassign) error state locations arbitrarily without the need to eliminate error state
locations not being used.  The basic covariance propagation/update software structure would
then be configured to eliminate the null arithmetic associated with unused (null) error state
locations.  The advantage of this approach is the ability to easily define the suboptimal (reduced)
error state vector from the complete real world error state model without reordering vector
locations, and the ability to easily convert a previous covariance error state model configuration
to a new one by adding or deleting error states in arbitrary locations, without the need for
reordering.  The initialization process with such an approach would identify the numerical
assignment for the active states in the error state vector for a particular simulation run
configuration.

16.2.6.4  ESTIMATION/CONTROL CONFIGURATION

The general ability to select which error states are to be estimated and which are to be
controlled is a useful feature to be built into a covariance simulation program.  This can be
implemented by operator selection of the required states to be estimated/controlled which would
then be translated by the simulation software into the equivalent IEst (or IOptEst for an optimal
performance run) and Lx matrix configurations (see Equations (16.2.1-4), (16.2.1-6) and
(16.2.1-9) for idealized control resets or (16.1.2-23), (16.2.1-6) and (16.1.2.1-16) for delayed
control resets).  For simulations incorporating several types of Kalman measurements, a
different estimation and control matrix might be required for each measurement type.

When the general P' updating equations are implemented, the control matrix Lx is applied
during the covariance propagation cycle following the Kalman estimation reset.  The application

of Lx is manifested in the Φ' matrix (see Equation (16.2.1-4) for idealized control resets or
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(16.1.2-23) for delayed control resets).  For simulation configurations in which several P'
propagation cycles are utilized between Kalman updates, Lx should be applied during the P'
propagation cycle immediately following the Kalman estimation update.  Otherwise Lx should
be treated as equal to zero.

16.2.6.5  COVARIANCE PROPAGATION TIMING STRUCTURE

For most covariance simulation programs, the covariance matrix is propagated through
several cycles of different time duration between Kalman update cycles.  For example, during
dynamic maneuver segments of the trajectory profile, the time interval for the covariance
propagation cycle might be reduced to improve the accuracy of the state transition and
propagated process noise truncated power series expansion algorithms.  Conversely, for benign
trajectory profile segments (e.g., straight and level aircraft flight), the propagation cycle might
be increased to reduce simulation run time.  If the trajectory profile is created by a trajectory
generator with discrete profile segments (see Chapter 17), for improved accuracy, it might be
required that the covariance propagation update include the trajectory generator segment
transition time points.  A basic covariance propagation time point at fixed time intervals is
usually implemented corresponding to the user desired data output times.  The covariance
propagation cycle time points must, of course, also include the Kalman update times which
may be arbitrarily spaced depending on the measurement type, and for situations when several
different measurements are being simulated.  A generalized covariance simulation program will
be typically configured to automatically select the covariance propagation intervals based on the
previous (and possibly other) considerations.

16.2.6.6  KALMAN ESTIMATION RESET TIMING STRUCTURE

A covariance simulation program must provide the ability for operator selection of the update
times (and/or frequency) for Kalman estimation resets.  For an application involving several
types of measurements applied at different times, it is convenient to embody all measurements
into a single measurement equation (i.e., Equation (16.2.3-2) for the real world and (16.2.3-6)
for the suboptimal Kalman filter world) in which all measurements are considered to occur
simultaneously whenever a Kalman estimation update is made.  With this approach, simulation
of a particular measurement at its assigned measurement time is achieved by retaining the rows

of the measurement matrix (HRW and Hx
*

) associated with that measurement and zeroing the

remaining rows.  When using the integrated measurement approach, it is important that the full

measurement noise matrices be retained for all measurements (i.e., GM, R, GM
*

, R*); otherwise

singularities may be created in the Kalman gain calculation (Equations (16.2.1-6) or (16.2.1-9))
from the matrix inverse operation.



SUBOPTIMAL COVARIANCE ANALYSIS SIMULATION PROGRAM CONFIGURATION     16-67

16.2.6.7  ERROR MODEL SPECIFICATION

As discussed in Section 16.2.3, specification of the error model in a given covariance
simulation program is typically handled by direct user programming of the continuous form

equation matrices A, GP, QPDens, HRW, GM, R, Axx
*

, GPx

*
, QPDens

*
, Hx

*
, GM

*
 and R*.  Sections

16.2.3.1 - 16.2.3.3 provide examples of analytical error models that can be used to characterize
different process noise effects, acceleration squared effects and gravity uncertainty.  For ease in
programming, it is convenient if the covariance simulation program architecture assigns
separate subroutines for programming the A, GP , QP D e n s , HR W , GM , R,

Axx
*

, GPx

*
, QPDens

*
, Hx

*
, GM

*
 and R* matrices.  Calculation of the error state transition matrix

and integrated process noise matrix for covariance propagation (Φ, Φxx
*

, Q, Qxx
*

) would then

be performed within the covariance simulation from A, GP, QPDens, Axx
*

, GPx

*
, QPDens

*
 using

the power series expansion algorithms of Sections 15.1.2.1.1.1 - 15.1.2.1.1.3.

The covariance simulation program architecture should allow operator selection of the
expansion order for the error state transition matrix and integrated process noise matrix

(Φ, Φxx
*

, Q, Qxx
*

) power series expansion algorithms.  The number of terms carried in the

expansions may vary from application to application and includes a tradeoff between added
computation time for increasing expansion order versus increased simulation covariance
propagation time interval for more expansion terms.  In the case of the integrated process noise
matrix expansions, it is useful to employ a positive definite test on the result (e.g., Equation
(16.2.6.1-1) applied to elements of Q or Q*) as an operator alert that sufficient expansion terms
may have not been carried.  Most integrated process noise expansion algorithms employ a final
routine that forces the result to have the proper symmetric structure (e.g., Equations
(15.1.2.1.1.3-28)).  In the case of the error state transition matrix, a general ground rule to
follow is that the computation expansion order be equal to or greater than the maximum
number of integrators between the error state vector elements and the measurement.

16.2.6.8  TRAJECTORY GENERATOR INTERFACE

The structure of the covariance program must contain an interface with a trajectory generator
computer program supplying angular rate, acceleration, attitude, velocity and position data for

calculating the elements of the A, GP, HRW, GM, Axx
*

, GPx

*
, Hx

*
, GM

*
 matrices.  The simulated

time data rates from the trajectory generator must be sufficient to enable accurate calculation of

Φ, Φxx
*

, Q, Qxx
*

 from A, GP, QPDens, Axx
*

, GPx

*
, QPDens

*
 using the covariance simulation
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computation algorithms.  Chapter 17 describes the general structure of a typical trajectory
generator program.

16.2.6.9  SENSITIVITY AND ERROR BUDGET OUTPUTS

To aid in the design/evaluation of the suboptimal Kalman filter, the covariance simulation
program is typically structured to provide sensitivity and error budget output information.  The
sensitivity outputs define the sensitivity of each element of the error state vector to unity values
for initial error state component uncertainties, transients on the error state components, process
noise groupings and measurement noise groupings.  The basic error budget provides a breakout
of the individual contributions to each error state vector component of the effects of initial error
state component uncertainties, process noise groupings and measurement noise groupings for
their assigned numerical values in the particular simulation run.  A separate budget can also be
calculated providing a breakout of the individual contributions to each error state vector
component of transients on the error states.  Section 16.2.4 describes how the sensitivities and
error budget parameters are calculated.

The sensitivities to initial error state uncertainties and transients (SIC and STr) are evaluated
with Equations (16.2.4-3) and (16.2.4-4).  These equations can be processed in parallel with the
basic P' covariance propagation/update operations for little computation time penalty because

their inputs (Φ', K', H') are already evaluated as part of the P' calculations.  The sensitivities to
the process noise and measurement noise groupings are obtained (as explained in Section
16.2.4) by running a parallel P' propagation/reset calculation starting with zero P' initial
condition for each process noise and measurement noise group for which the sensitivity is to be
obtained.  For several noise sensitivity groupings, the added parallel noise sensitivity
computations can add considerably to the processing time, however, it is less than proportional

to the basic P' computation time because Φ', K', H' do not have to be recomputed for the
sensitivity calculations.

The error budget for each error state is evaluated from the sensitivities and error source
values using the approach described in Section 16.2.4 (e.g., Table 16.2.4-1 for preparation of
the basic error budget).  Usually the error budget is evaluated only for the time points that the
output is desired.

16.2.6.10  OUTPUT ROUTINES

Section 16.1.1.1 defines how the P' augmented covariance matrix is interpreted to evaluate
suboptimal Kalman filter performance.  Section 16.2.5 describes the analytical conversion
process for evaluating error parameters other than those directly represented in the P'
covariance.  The conversion process applies to error parameters that are linearly related to the P'
error state vector elements.  Section 16.2.5 describes the conversion process to obtain the
equivalent output parameter covariance elements, sensitivities and error budget breakout.
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16.2.7 COVARIANCE SIMULATION PROGRAM USE IN SUBOPTIMAL
KALMAN FILTER DESIGN AND/OR PERFORMANCE EVALUATION

The initial design/verification process for a suboptimal Kalman filter requires the use of a
covariance simulation program as the basic design tool.  The covariance simulation allows the
design engineer to numerically determine suboptimal Kalman filter performance from the
appropriate elements of the augmented P' covariance matrix.  It also provides the designer with
a best achievable reference Kalman filter performance profile in the form of the “optimal” filter
covariance POpt.  Suboptimal filter performance is evaluated by comparing P' with POpt for a
selected group of “representative” trajectory profiles.  Suboptimal Kalman filter design is the
iterative numerical process by which the suboptimal filter is adjusted (in the P*
propagation/reset equations resident in the covariance simulation) until P' performance
approaches POpt goals.  Adjustments to the suboptimal filter configuration are based on the
simulation sensitivity/error budget outputs and the designer’s knowledge of error propagation
effects and their impact on Kalman aided system performance.  Adjustments to the Kalman
filter during the design iteration process typically consist of additions or deletions of error states,
and increasing process and/or measurement noise to artificially account for deleted error states.
The object is to obtain reasonable filter performance with as few error states as possible to
minimize the final impact on target computer throughput (in which the suboptimal Kalman
filter covariance propagation/reset equations will be implemented in real time).

The basic error budget is typically the principal tool for identifying the cause of observed
suboptimal Kalman filter anomalous behavior.  A typical analysis of the basic error budget
entails identification of the elements having the largest impact on deficient suboptimal filter
performance.  The primary factors producing anomalies are usually deleted error states.
However, the obvious solution of including the principal deleted states having the greatest
impact does not always resolve the problem.  There are times when deleting an error state (e.g.,
because of its small impact on the measurement) causes the filter to erroneously attribute its
effect on the measurement to a large uncertainty in one of the included error states.  For this
situation, a small increase in process or measurement noise (to have the same magnitude effect
on the measurement as the deleted error state) can sometimes prevent the filter from attributing
the measurement variation to the included states.  Based on engineering judgment, the likely
change to the suboptimal filter is then implemented and run in the covariance simulation to
evaluate the expected performance improvement achieved.  The process continues until
reasonable performance for an acceptable number of included error states is achieved (hence,
acceptable impact on target computer throughput).  In the final analysis, design of the
suboptimal Kalman filter is a cut-and-try process whose final result is significantly influenced
by the experience and analytical capability of the design engineer.

The transient effects error budget is typically used to assess the effects of anomalous
behavior on system performance after the Kalman filter design has been completed.  In one
interesting application in which the author participated, a Kalman filter was used as an external
monitor of strapdown INS performance during stationary fine alignment (using the same inputs
provided to the Fine Alignment Kalman filter resident in the actual INS).  Monitoring of
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the estimated error states provided a measure of system/sensor performance that could be
compared against previous signatures from the same system.  Deviations from past
performance identified the presence of anomalies.  During the design of the monitor software,
transient sensitivities and error budgets were used to verify that transient shifts in the INS
sensor error characteristics during fine alignment would register measurable signatures on the
monitor error state estimates.
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17     Trajectory Generators

17.0  OVERVIEW

A trajectory generator is a software simulator used to create a numerical data history of
navigation parameters corresponding to a user specified trajectory profile.  The trajectory
generator provides input data to various simulation programs used to analyze performance and
validate software operations associated with inertial navigation systems.  Classical applications
for trajectory generators are to provide input data for covariance analysis programs (See Chapter
16) and for data input to Kalman filter software validation programs (See Section 15.1.4).
Basic outputs from trajectory generators used for strapdown inertial navigation applications are
the components of specific force acceleration and inertial angular rate (i.e., the input to the
strapdown angular rate sensors and accelerometers) in addition to their associated attitude,
velocity and position navigation data.  In general, the trajectory generator must be designed to
provide for two basic functions; trajectory shaping and trajectory regeneration.

The trajectory shaping function allows the user to create trajectories corresponding to selected
application characteristics.  In general, this translates into the capability for creating specific-
force/angular-rate profiles that when integrated, generate an attitude/velocity/position history
representative of the user’s specified application trajectory profile.  The trajectory shaping
function is generally implemented in segments.  Linking the segments in a continuous time
sequence then creates the desired trajectory profile.  Due to the diverse nature of typical
trajectory segment specifications, the segment shaping function invariably consists of an
interactive process by which the user selects an acceleration/angular-rate profile for the segment,
monitors its effect on the trajectory, and adjusts the acceleration/angular-rate components until
the generated trajectory satisfies requirements.  That segment is then recorded and the next
segment is shaped.  The process continues until the complete trajectory is formed.  To facilitate
the segment shaping process, the trajectory generator software can be designed to provide
shaping aids that allow the user to create particular characteristics over a segment (e.g., a
specified average specific force acceleration component over the segment, a specified attitude at
completion of the segment, a specified position location or velocity condition at completion of
the segment).  Once a particular segment has been declared acceptable, it is advantageous if it
can be characterized by a minimum number of parameters for storage.

The trajectory regeneration function consists of retrieving the saved trajectory segment
characteristic parameters in the time sequence in which they were created, and using the
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retrieved parameters to recreate the trajectory profile.  This generally consists of converting the
segment parameters to the corresponding specific-force/angular-rate profile for each segment,
then integrating the specific-force/angular-rate to generate the corresponding
attitude/velocity/position data.  A smoothing function may also be incorporated to assure that
the angular-rate/acceleration data is free of discontinuities at the segment junctions (e.g., a sharp
step change in the angular-rate/acceleration from one segment to the next).  The integration
process is typically based on the strapdown inertial navigation routines normally implemented
in the strapdown INS computer (i.e., as described in differential equation format in Chapter 4
and by the equivalent digital processing algorithms in Chapters 7 and 19 (Section 19.1)).  The

result is a time history of the basic navigation parameters (e.g., aSF
B

 , ωIB
B

 , CB
L

 , vN, CN
E

 , h )

generated at an output rate selected by the software program requiring trajectory data input
(Note that the basic form of the acceleration/angular-rate output data would typically be in the

form of the integral of aSF
B

 , ωIB
B

 over the selected output time interval).  Using the conversion

routines of Chapter 3, other classic navigation parameters can also be generated for output (e.g.,
attitude quaternion, position vector, north/east geographic coordinate referenced components)
from the basic navigation parameters.

As a specific detailed example, the remainder of this chapter describes the design of a
particular trajectory generator for applications in which the vehicle longitudinal axis is generally
in the direction of the velocity vector, hence, the velocity vector profile approximates the attitude
history of the longitudinal axis.  Applications that fit the previous constraint include aircraft,
missiles, underwater vehicles and oil-well-survey probes.  The trajectory generator shaping
function is designed to create the trajectory segments based on the vehicle velocity/longitudinal-
axis constraint.  Once the profile segments are shaped, capabilities are added for smoothing the
interface between trajectory segments, generating simulated strapdown inertial sensor input
specific force acceleration and angular rate, changing the orientation of the inertial sensor axes
from the velocity direction (to simulate, for example, angle of attack/sideslip effects or
mounting the sensor assembly on a rotating platform), simulating a sensor assembly mount at a
specified lever arm location in the vehicle, adding wind gust induced aerodynamic force
accelerations, and adding high frequency angular/linear motion effects.  These added capabilities
are incorporated as part of the trajectory regeneration function.

Coordinate frames used in this chapter are the B, N, L, Geo, E, and I Frames defined in
Section 2.2 plus specialized coordinate frames defined in the particular sections in which they
are introduced.

17.1  TRAJECTORY SHAPING FUNCTION

The trajectory shaping function is divided into three basic operations:
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• Segment parameter selection

• Quick-look projection

• End-of-segment data generation

For the trajectory generator being described, each trajectory segment is characterized by five
basic parameters; the time duration of the segment, the change in signed velocity magnitude
across the trajectory segment (“signed” to be clarified subsequently), and three components of a
rotation vector defining the angular rotation of the velocity vector across the trajectory segment.
The rotation vector is specified in a coordinate frame that rotates with the velocity vector.  It is
further assumed in the definition of the segment parameters that the angular rate components
and the rate of change of the velocity magnitude are constant across the segment.  Selection of
the segment parameters can be performed directly, or through the assistance of computational
aids used to create desired trajectory segment characteristics.

Once a trial set of segment parameters are selected, the Quick-Look Projection option quickly
calculates and displays the trajectory segment characteristics produced by application of the
selected parameters (e.g., attitude/velocity/position at segment end, average specific force
acceleration across the segment, angle of attack/sideslip effects during forthcoming trajectory
regeneration).  In order to minimize computation time, the Quick-Look calculations are based
on closed-form equations that rapidly provide the desired segment characteristics for user
assessment.  Although the closed-form equations are exact for the end-of-segment
attitude/velocity parameters, the position projection is based on simplifying assumptions. Based
on the approximate Quick-Look projection, the user can accept the trial set of segment
parameters, or select a modified set that more closely creates the desired trajectory segment
characteristics.

After the trajectory segment parameters are selected and accepted, the End-of-Segment
Position Generation option is used to calculate the end-of-segment attitude, velocity and position
location with precision.  The end-of-segment attitude and velocity are computed exactly from
the trajectory segment parameters.  The end-of-segment position location is calculated as a
velocity integration process using precision strapdown inertial navigation algorithms to arrive at
an accurate end-of-segment solution.  Initial conditions for the end-of-segment
attitude/velocity/position computations are the previous end-of-segment values created by the
End-of-Segment Data Generation routines.

The following subsections describe the analytical processes involved in the trajectory shaping
operations.
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17.1.1  SEGMENT PARAMETER SELECTION

The basic parameters used to characterize a trajectory segment are defined symbolically by

TS, ΔVS, φS
V

 where:

TS  =  Trajectory segment time interval.

ΔVS  = Change across the trajectory segment in the “signed velocity vector magnitude”
(to be defined subsequently)

V   = Velocity vector referenced coordinate frame having its X axis parallel to the
velocity vector.  For an idealized vehicle that maintains its longitudinal axis along
the velocity vector direction, the V Frame would correspond to vehicle fixed
reference coordinates (assuming that the vehicle frame has its X axis defined in
the general direction of motion).

φS
V

   = Rotation vector describing the rotation of velocity vector referenced coordinate

Frame V across the trajectory segment as projected on V Frame axes.  The

φS
V

 rotation vector is defined as a rotation of the V Frame relative to the locally
level navigation N Frame of the wander azimuth type (See Section 4.5 for

definition).  For φS
V

 equal to zero, the V Frame maintains a fixed orientation
relative to the N Frame.

For the trajectory shaping function, the V Frame can be considered as equivalent to the
strapdown sensor assembly B Frame.  We distinguish between the V and B Frames so that the
B Frame attitude can be subsequently separated from the V Frame (by specification) as part of
Section 17.2 Trajectory Regeneration operations.

Based on the previous V Frame definition, the signed velocity vector magnitude is defined as
V where:

V  = “Signed velocity vector magnitude” equal to the velocity vector component along
the V Frame X axis.

By definition of the V Frame, the magnitude of V is equal to the magnitude of the velocity
vector, however, it can be positive or negative depending on whether the V Frame X axis is in
the same or opposite direction to the velocity vector.  Application of the V definition proves
useful for simulating “backing up” from an original forward motion without requiring a 180
degree rotation of the V Frame X axis.

Selection of the basic segment parameters is facilitated by aiding routines that enable the user
to create specified trajectory characteristics.  For example, aiding routines can be designed for
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selecting trajectory segment parameters that produce the following trajectory segment
characteristics:

• A specified end-of-segment attitude and velocity.

• Specified average specific force acceleration characteristics during the segment.

• Rotation vector attitude change defined in the locally level attitude reference
L Frame.

• True heading and segment time to reach a desired long range destination.

• Turn to a specified heading.

Aiding routines can be defined to create other effects as well.  For those enumerated above,
the associated analytics follow.

17.1.1.1  SPECIFIED END-OF-SEGMENT ATTITUDE/VELOCITY

The attitude specification applies to the orientation of the V Frame.  We define the end-of-
segment attitude requirement analytically using the Equation (3.2.1-5) chain rule as:

CV End

V Start  =  CV Start

L T
 CV End

L
(17.1.1.1-1)

where

Start, End  = Designation for the indicated coordinate frame (or parameter) attitude (or
value) at the start and end of the trajectory segment.

L  = Locally level attitude reference coordinate frame parallel to the locally level
navigation N Frame as defined in Equation (4.1.1-2).  For the trajectory shaping
function, the N frame is of the azimuth wander type (See Section 4.5 for
definition).

The CV Start

L
 matrix in (17.1.1.1-1) is the attitude direction cosine matrix generated at the end of

the last trajectory segment using the End-of-Segment Data Generation option.  The CV End

L

matrix in (17.1.1.1-1) is the desired V Frame attitude at the end of the current segment.  The

CV End

L
 matrix is computed as in Equations (3.2.3.1-2) from user specified roll/pitch/platform

heading Euler angles with platform heading calculated from specified true heading corrected for
the wander angle (as in the converse of Equation (4.1.2-2)).  The wander angle for the previous
platform heading calculation is approximated as the wander angle at the start of the trajectory

segment defined from the CN
E

 matrix using Equations (4.4.2.1-3).



17-6     TRAJECTORY GENERATORS

Once CV End

V Start is calculated from (17.1.1.1-1), the equivalent φS
V

 rotation vector for the

trajectory segment is evaluated using generalized direction cosine matrix to rotation vector
conversion Equations (3.2.2.2-10) - (3.2.2.2-12) and (3.2.2.2-15) - (3.2.2.2-19).

The end-of-segment velocity vector is defined in terms of its orientation and magnitude.
From the definition of the V Frame, specification of the V Frame orientation at the end-of-the

segment (by the previous φS
V

 selection process) automatically fixes the line of action of the end-

of-segment velocity vector (i.e., along the X axis of the rotated V Frame).  The magnitude of the
velocity vector and its direction along the V Frame X axis (i.e., along the positive or negative X

axis direction) is defined by the “signed velocity magnitude” V.  The ΔVS value to achieve a

desired end-of-segment V value is then given by:

ΔVS  =  VEnd - VStart (17.1.1.1-2)

where

VEnd  =  Desired end-of-segment signed velocity vector magnitude.

VStart   =  Signed velocity vector magnitude at the start of the velocity segment.

The VStart  value is the value of V calculated as the sum of ΔVS values for the previous

trajectory segments, or in recursive algorithm form:

Vk  =  Vk-1 + ΔVS k (17.1.1.1-3)

where

k  = Trajectory segment number since trajectory start (numbered consecutively starting
from 1).  The VStart  value in (17.1.1.1-2) is the k-1 value for V.

17.1.1.2  SPECIFIED V  FRAME AVERAGE SPECIFIC FORCE ACCELERATION

A typical trajectory segment shaping problem is to define the segment time interval TS that
will produce a specified average specific force acceleration (along a particular V Frame axis).
When performing trajectory shaping, the V Frame is interpreted as simulating classical aircraft
axes having the X-axis “forward”, the Y-axis along the “right wing”, with the Z axis along the
negative lift direction (i.e., down during normal level flight).  With this interpretation, typical
average V Frame acceleration requirements might be to simulate a coordinated turn (defined as
a maneuver with zero average Y axis specific force acceleration), or a maneuver with a specified
average lift specific force (a negative Z axis acceleration).  A typical problem is to determine the
TS segment time interval to achieve a particular axis average specific force, given
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that the φS
V

, ΔVS segment parameters have already been selected.  A variation might be to

determine TS and ΔVS that achieves specified average specific force acceleration conditions

along two V Frame axes given φS
V

.  The analytical equations used to achieve such objectives can

be derived by neglecting the effect of N Frame and E Frame rotation during the trajectory
segment so that a simplified rearranged version of Equation (4.3-18) applies:

aSF
N

  ≈  v
N

 - gP
N

(17.1.1.2-1)

or transformed to the V Frame:

aSF
V

  =  CN
V

 aSF
N

  ≈  CN
V

 v
N

 - CN
V

 gP
N

(17.1.1.2-2)

Using generalized Equation (3.4-4) (with B, A replaced by V, N), we find after

multiplication by CN
V

 that the second term in (17.1.1.2-2) is given by:

CN
V

 v
N

  =  v
V

 + ω 

NV
V

  × vV (17.1.1.2-3)

where

ω 

NV
V

  = Angular velocity of the V Frame relative to the N Frame as projected on

V Frame axes.

Substitution in (17.1.1.2-2) then yields:

aSF
V

  =  v
V

 + ω 

NV
V

  × vV - CN
V

 gP
N

 (17.1.1.2-4)

From the definition of the V Frame we can write:

vV  =  V u 

XV
V

 (17.1.1.2-5)

and its derivative:

v
V

  =  V u 

XV
V

 (17.1.1.2-6)

where

u 

XV
V

  =  Unit vector along the V Frame X axis as projected on V Frame axes.

and V is the signed velocity vector magnitude as defined previously.
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The trajectory generator shaping function is based on a linearly increasing velocity (i.e.,

constant V) over each trajectory segment, hence:

V  =  VStart  + V t (17.1.1.2-7)

where

t  =  Time from the start of the trajectory segment.

For the segment parameter selection process, it is reasonable to approximate plumb-bob

gravity (gP
N

) as a constant g directed along the negative of the N Frame vertical uZN
N

.  Using this

approximation and (17.1.1.2-5) - (17.1.1.2-7) in (17.1.1.2-4), then gives after rearrangement:

aSF
V

  =  V u 

XV
V

  + VStart + V t  ω 

NV
V

  × u 

XV
V

  - gP
V

 
 

gP
V

  ≈  - g CN
V

 uZN
N

(17.1.1.2-8)

where

g  =  Magnitude of plumb-bob gravity gP.

We define the average of the V Frame acceleration terms in (17.1.1.2-8) as:

aSFAvg

V
  ≡  

1
TS

 aSF
V

 dt
0

TS

(17.1.1.2-9)

gPAvg

V
  ≡  - 

g
TS

 CN
V

 uZN
N

 dt
0

TS

(17.1.1.2-10)

where

aSFAvg

V
  =  Average V Frame specific force acceleration over the trajectory segment.

gPAvg

V
  = Average V Frame plumb-bob gravity acceleration over the trajectory segment.

With (17.1.1.2-8) and (17.1.1.2-10), the average specific force acceleration from (17.1.1.2-9)
becomes:

aSFAvg

V
  =  V u 

XV
V

  + VStart + 
1
2

 V TS  ω 

NV
V

  × u 

XV
V

   - gPAvg

V
 (17.1.1.2-11)

From (17.1.1.1-2) and (17.1.1.2-7) it should be obvious that:
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ΔVS  =  V TS (17.1.1.2-12)

The trajectory generator shaping function is based on constant V Frame angular rate ω 

NV
V

  over

each trajectory segment, hence, as in Equation (7.1.1.1-14), we can also write:

ω 

NV
V

   =  
1

TS
 φS

V
 (17.1.1.2-13)

Substituting (17.1.1.2-12) - (17.1.1.2-13) into (17.1.1.2-11) yields the desired equivalent form

in terms of the TS, ΔVS, φS
V

 basic segment parameters:

aSFAvg

V
  =  

1
TS

 ΔVS u 

XV
V

  + VStart + 
1
2

 ΔVS  φS
V

 × u 

XV
V

  - gPAvg

V
 (17.1.1.2-14)

To make use of Equation (17.1.1.2-14), it remains to derive and equation for gPAvg

V
 in terms

of segment parameters.  This is achieved by first applying generalized Equation (3.2.2.1-5) with

(3.2.2.1-6) to the Equation (3.2.1-5) chain rule for CN
V

, at arbitrary time t within the trajectory

segment time interval

CN
V

  =  CV Start

V
 CL

V Start CN
L

  =  I - sin φ uφ
V×  + (1 - cos φ) uφ

V×
 2

 CL
V Start CN

L
(17.1.1.2-15)

in which

uφ
V

  =  
1

φS

 φS
V

 (17.1.1.2-16)

where

φS  =  Magnitude of φS
V

.

uφ
V

   =  Unit vector along φS
V

.

φ  = Magnitude of the rotation vector associated with CV Start

V 
 in which V is interpreted

as the V Frame orientation at some general time within the current trajectory

segment.  φ is generated as a rotation about uφ
V

 defined by (17.1.1.2-16).

We then note as in the magnitude of Equation (7.1.1.1-14) that:

φ  = ω NV  t φS  = ω NV  TS (17.1.1.2-17)

where

ω NV  =  Magnitude of ω 

NV
V

  (assumed constant).
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t  =  Time from the start of the current trajectory segment.

The differential of φ in (17.1.1.2-17) gives:

dt  =  
1

ω NV
 dφ (17.1.1.2-18)

Using (17.1.1.2-17) - (17.1.1.2-18), the integral of the time varying terms in (17.1.1.2-15) over
the trajectory segment are:

sin φ dt
0

TS

  =  
1

ω  NV
 sin φ dφ

0

φ S

  =  
1

ω NV
 - cos φ  0

 φ S
  =  

1

ω NV
 1 - cos φS

                                     =  
1

φS
2

 1 - cos φS  φS TS  =  h1 φS TS

(17.1.1.2-19)

h1  ≡  
1

φS
2

 1 - cos φS   =  
1
2 !

 - 
φS

2

4 !
 + 

φS
4

6 !
 - (17.1.1.2-20)

(1 - cos φ) dt
0

TS

  =  
1

ω NV
 (1 - cos φ) dφ

0

φ S

  =  
1

ω NV
 φ - sin φ  0

 φS

                =  
1

ω NV
 φS - sin φS   =  1 - 

sin φS

φS

 TS  =  h2 φS
2

 TS

(17.1.1.2-21)

h2  ≡   
1

φS
2

 1 - 
sin φS

φS

  =  
1
3 !

 - 
φS

2

5 !
 + 

φS
4

7 !
 - (17.1.1.2-22)

where

h1, h2  =  Defined trigonometric functions of φS
2
.

Finally, we substitute (17.1.1.2-15) into (17.1.1.2-10) with (17.1.1.2-19) and (17.1.1.2-21),

and apply (17.1.1.2-16) to obtain the desired expression for gPAvg

V
 as a function of the φS

V
 basic

segment parameter:

gPAvg

V
  =  - g I - h1 φS

V
×  + h2 φS

V
×

 2
 CL

V Start CN
L

 uZN
N

(17.1.1.2-23)
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The h1, h2 terms in (17.1.1.2-23) are a function of φS
2
 as calculated with Equations (17.1.1.2-20)

and (17.1.1.2-22).

In summary, Equation (17.1.1.2-14) with (17.1.1.2-20), (17.1.1.2-22) and (17.1.1.2-23)

defines the average specific force acceleration aSFAvg

V
 as a function of the basic trajectory

segment parameters TS, ΔVS and φS
V

.  Selected inverses of this equation enable particular basic

trajectory segment parameters to be calculated that will create specified average specific force
acceleration component maneuvers.  To best understand the basic procedure involved, let us
first write the component form of Equation (17.1.1.2-14):

aSFAvgXV  =  
1

TS
 ΔVS - gPAvgXV (17.1.1.2-24)

aSFAvgYV  =  
1

TS
 VStart + 

1
2

 ΔVS  φS ZV
  - gPAvgYV (17.1.1.2-25)

aSFAvg ZV  =  - 
1

TS
 VStart + 

1
2

 ΔVS  φSYV
  - gPAvgZV (17.1.1.2-26)

where

φS i V
  , gPAvgi V   =  V Frame component i of φS

V
, gPAvg

V
.

Given previously selected values of ΔVS and φS
V

, Equation (17.1.1.2-24) can be inverted to

find the TS that achieves a desired average acceleration along V Frame X axis:

TS  =  
1

aSFAvgXV + gPAvgXV

 ΔVS (17.1.1.2-27)

Note that φS
V

 is required in the previous expression to calculate gPAvgXV from (17.1.1.2-23).

Alternatively, given ΔVS and φS
V

, the TS segment time can be calculated to achieve a specified

average V Frame Y or Z axis specific force acceleration from (17.1.1.2-25) or (17.1.1.2-26):

TS  =  
VStart + 

1
2

 ΔVS

aSFAvgYV  + gPAvgYV
 

 φS ZV (17.1.1.2-28)

or

TS  =  - 
VStart + 

1
2

 ΔVS

aSFAvgZV  + gPAvg ZV
 

 φSYV (17.1.1.2-29)
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As another variation, given φS
V

, we can calculate both TS and ΔVS to achieve specified

average X and Y axis accelerations by combining/inverting Equations (17.1.1.2-27) and
(17.1.1.2-28).  The result is:

ΔVS  =  
aSFAvgXV  + gPAvgXV  VStart

aSFAvgYV  + gPAvgYV
  - 

1
2

 aSFAvgXV  + gPAvgXV
  φS ZV

 φS ZV 

 

TS  =  
VStart

aSFAvgYV  + gPAvgYV
  - 

1
2

 aSFAvgXV  + gPAvgXV
  φSZV

 φS ZV 

(17.1.1.2-30)

Combining/inverting Equations (17.1.1.2-27) and (17.1.1.2-29) provides an equivalent result

for TS and ΔVS to achieve specified average X and Z axis accelerations:

ΔVS  =  - 
aSFAvgXV  + gPAvgXV

  VStart

aSFAvgZV  + gPAvgZV
  + 

1
2

 aSFAvgXV  + gPAvgXV
  φSYV

 φS YV 

 

TS  =  - 
VStart

aSFAvgZV  + gPAvgZV
  + 

1
2

 aSFAvgXV  + gPAvgXV
  φSYV

 φS YV 

(17.1.1.2-31)

Extending the previous approach to include φS
V

 component determination is more involved

because of the presence of φS
V

 in the gPAvg

V
 components.  In principle, an iterative procedure can

be implemented by which any three of the five basic segment parameters (TS, ΔVS and the

components of φS
V

) can be calculated to generate specified X, Y and Z axis accelerations.

It is important to note that when using the above techniques to calculate basic segment
parameters, logic must be incorporated to avoid unrealistic results (e.g., negative TS or infinity

singularities).  These can easily be developed based on the form of the equation being applied.
For example, if Equations (17.1.1.2-31) are being utilized, we can assure that TS will remain

positive and both TS and ΔVS will remain finite if:

aSFAvgZV  + gPAvgZV
  + 

1
2

 aSFAvgXV  + gPAvgXV
  φSYV

   Sign VStart φSYV
    <  0 

(17.1.1.2-32)



TRAJECTORY SHAPING FUNCTION     17-13

Equation (17.1.1.2-32) can be used to guide the user in selecting realistic values of X, Z specific

force acceleration components for compatibility with the previously selected φS
V

 values.  Similar

techniques can be used when implementing Equations (17.1.1.2-27) - (17.1.1.2-30).

17.1.1.3  ROTATION VECTOR DEFINED IN THE L FRAME

At times it is advantageous to treat rotation of the V Frame over a trajectory segment as the
analytical equivalent of rotating the locally level L Frame while considering the V Frame fixed
in the rotating L Frame.  Then we can define the rotation effect as a rotation vector in the L
Frame.  An example might be an aircraft maneuver in which V Frame rotates around the local
vertical.  Clearly, this maneuver is easily specified as an L Frame rotation vector along the L
Frame Z axis.  Once the L Frame rotation vector is specified, it must be translated into its

equivalent V Frame form to set the φS
V

 segment parameters.  The following development

derives the obvious relationship between the L and V Frame rotation vectors by applying the
(3.2.1-5) chain rule, direction-cosine/rotation-vector equivalency Equation (3.2.2.1-8), and
cross-product operator transformation Equation (3.2.1-8):

CV End

L
  =  CV Start

L
 CV End

V Start  =  CV Start

L
 CV End

V Start CL
V Start CV Start

L

=  CV Start
L  I + 

sin φS

φS

 φS
V

×  + 
(1 - cos φS)

φS
2

 φS
V

×
 2

 CL
V Start CV Start

L

=  I + 
sin φS

φS

 CV Start

L
 φS

V
×  CL

V Start (17.1.1.3-1)

 + 
(1 - cos φS)

φS
2

 CV Start
L  φS

V
×  CL

V Start CV Start
L  φS

V
×  CL

V Start  CV Start
L

or

CV End
L   =  I + 

sin φS

φS

 φS
L

×  + 
(1 - cos φS)

φS
2

 φS
L

×
 2

 CV Start
L (17.1.1.3-2)

with

φS
L

  =  CV Start

L
 φS

V
 (17.1.1.3-3)

Equations (17.1.1.3-1) - (17.1.1.3-2) show that the identical CV End

L
 matrix can be created

using φS
V

 or the L Frame equivalent φS
L

 as defined by (17.1.1.3-3).  Moreover, from the form of

(17.1.1.3-2) (compared with generalized Equation (3.2.2.1-8) and the (3.2.1-5) chain rule), we
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see that φS
L

 corresponds to a rotation vector in the L Frame interpreted as rotating the L Frame

from the Start to the End attitude, considering the V Frame fixed.  Thus, φS
L

 can be selected

based on this interpretation with confidence that its application will produce the equivalent effect

on CV End

L
 as applying φS

V
.  The equivalent φS

V
 corresponding to the selected φS

L
 is then calculated

from (17.1.1.3-3) multiplied by CL
V Start:

φS
V

  =  CL
V Start φS

L
(17.1.1.3-4)

17.1.1.4 STARTING HEADING AND SEGMENT TIME
TO REACH A SPECIFIED POSITION LOCATION

Consider the case when it is desired to simulate a straight and level constant velocity flight
portion to a specified long range location defined in terms of geodetic latitude and longitude.
Such a condition can be easily accommodated using a single trajectory segment after first
maneuvering to the proper attitude, heading and velocity to start the long range cruise.  Section
17.1.1.1 describes how the cruise velocity and a level attitude (i.e., zero roll/pitch) can be created
to begin the long range cruise for an arbitrarily assigned heading.  Section 17.1.1.5 to follow
describes realistic methods for turning to the proper heading from the level attitude flight
condition.

For the long range cruise segment, the ΔVS and φS
V

 segment parameters would be set to zero.

Setting ΔVS to zero assures a constant velocity magnitude along the cruise segment.  The

rationale for setting φS
V

 to zero is based on the definition for φS
V

 as a rotation angle produced by

angular rate relative to the local wander azimuth N Frame, and that the long range cruise
trajectory segment will be along a great circle flight path.  A great circle between two earth
referenced position locations (of the same altitude) is the shortest constant altitude distance path
between the two points over the surface of the earth (assuming an approximate spherical earth
shape).  It is defined as a constant altitude flight path in the earth fixed plane defined by earth’s
center and the two (start, end) earth referenced position locations.  Along the great circle, the
angular rate of the local vertical is perpendicular to the earth fixed great circle plane, hence, is
horizontal at fixed orientation relative to the earth (and constant in magnitude for the assumed
constant velocity).  The wander azimuth N Frame is defined to have zero vertical angular rate
relative to the earth, with horizontal angular rate equal to the angular rate of the local horizontal
relative to the earth (See Section 4.5 for definition of the wander azimuth frame).  Along the
great circle, therefore, the local wander azimuth N Frame will have its angular rate vector
relative to the earth equal to the constant great circle angular rate vector.
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Section 3.2.2.1 (Equation (3.2.2.1-6)) shows that when a coordinate frame is rotated from a
starting orientation around a fixed axis in the starting frame, that the rotation axis will remain
fixed as viewed from the rotating frame.  Thus, for N Frame rotation along the great circle, the
direction of the great circle rotation rate vector (i.e., the rotation axis) will remain constant in the
N Frame, hence, the horizontal N Frame X, Y axes will remain at fixed angular orientation
relative to the great circle plane.  We also know from its definition that the V  Frame remains at

constant attitude relative to the N Frame if φS
V

 is zero.  Therefore, if the V  Frame is initially

oriented to be horizontal (Z axis down) with its X axis in the great circle plane pointing toward
the desired destination, this attitude will be maintained along the great circle trajectory segment

if φS
V

 is set to zero.  Because the velocity direction is along the V  Frame X axis, we will thereby

achieve the objective of creating a horizontal velocity vector toward the desired destination along
the great circle flight path.

The desired starting heading along the great circle trajectory segment is calculated from
vertical unit vectors at the segment start and end position locations, projected on the start of
segment N Frame.  The start of segment vertical projected on the start of segment N Frame is

simply uZN
N

.  The Figure 17.1.1.4-1 Method of Least Work diagram (derived from Figure

4.4.2.1-2) with the Section 2.2 definitions for the E and Geo Frames, is useful for defining the
end of segment vertical:

•
•

l

Local
Geographic
Coordinates
(Frame Geo)

L

Earth
Coordinates
(Frame E)

Figure 17.1.1.4-1  Latitude/Longitude Definition

Recall from Section 2.2 that the Z axis of the N and Geo Frames are parallel (i.e., along the
upward local vertical).  Then using Figure 17.1.1.4-1, we can write the E Frame components
for the end of segment position local vertical unit vector uZN ( i.e., along the Geo Frame Z
axis), and transform the result to the N Frame at the start of the segment:

uZNEnd

NStart   =  CNStart

E T
 uZNEnd

E
  =  CNStart

E T
 uZGeoEnd

E

              =  CNStart

E T
 CGeoEnd

E
 uZGeoEnd

GeoEnd   =  CNStart

E T
 

cos lEnd sin LEnd

sin lEnd

cos lEnd cos LEnd

(17.1.1.4-1)
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where

uZNEnd

NStart   = Unit vector along the N Frame Z axis at the end of the trajectory segment, as

projected onto the N Frame axes at the start of the trajectory segment.

uZGeoEnd  =  Unit vector along the end of segment Geo Frame Z axis (upward).

The cross-product of uZN
N

 with uZNEnd

NStart  defines a horizontal vector in the starting location N

Frame, that is perpendicular to the great circle plane, and which lies along the angular rate vector
for local vertical rotation along the great circle.  Then the cross-product of the previous cross-

product vector with uZN
N

, describes a vector that lies along the great circle flight path at the start

of the trajectory segment:

wGC
LStart  =  CN

L
 uZN

N
 × uZNEnd

NStart  × uZN
N

(17.1.1.4-2)

where

wGC
LStart  = Vector along the great circle flight path at the start of the great circle

trajectory segment, projected on the L Frame at the start of the segment.

Given that wGC
LStart is horizontal (as defined and calculated), the “platform heading” of wGC

LStart

is the angle from the L Frame X axis to wGC
LStart, measured positive for wGC

LStart having a positive

Y component in the L Frame:

ψGC/StartP  =  tan -1 
wGCYLStrt

wGCXLStrt

(17.1.1.4-3)

where

ψGC/StartP  = Platform heading of the great circle flight path in the L Frame at the start
of the great circle trajectory segment (See Section 4.1.2 for definition).

wGCXLStrt, wGCYLStrt  =  X, Y components of wGC
LStart.

The equivalent starting great circle true heading is then calculated from (4.1.2-2):

ψGC/StartTrue  =  ψGC/StartP - αStart (17.1.1.4-4)

where

ψGC/StartTrue  = True heading of the great circle flight path at the start of the great circle
trajectory segment.
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αStart   = Wander angle of the N Frame at the start of the great circle trajectory segment

(calculated from CNStart

E
 using Equations (4.4.2.1-3)).

To generate a great circle during the great circle trajectory segment, the true heading of  V 

Frame axis X must be shaped during the previous segment to match ψGC/StartTrue, and φS
V

 

must be zero for the great circle segment.  The trajectory segment time interval required to
move from the start to end position locations on the great circle equals the total angular
movement of the local vertical along the great circle (the “range angle”) divided by the great
circle angular velocity.  The angular velocity equals the velocity along the great circle divided by
the great circle radius.  We define the range angle to lie in the interval from 0 to 180 degrees,
hence, the sine of the range angle is positive.  This definition assures that the great circle
distance between the selected end points will be the shortest (as opposed to a great circle
between the same end points, but starting in the opposite direction).  Then, the sine of the range

angle is the magnitude of uZN
N

 × uZNEnd

NStart .  Since uZN
N

 is a unit vector perpendicular to

uZN
N

 × uZNEnd

NStart , the magnitude of uZN
N

 × uZNEnd

NStart  also equals the magnitude of

uZN
N

 × uZNEnd

NStart  × uZN
N

, which from Equation (17.1.1.4-2) is the magnitude of wGC
LStart.  Because

the magnitude of a vector is the same in any coordinate frame, we therefore can calculate the

sine of the range angle as the magnitude wGC
LStart.  The cosine of the range angle is simply the dot

product between uZN
N

 and uZNEnd

NStart .  Thus, the range angle can be computed as:

θGC/Range  =  tan-1
  wGC

LStart
  

uZN
N

 ⋅ uZNEnd

NStart
 (17.1.1.4-5)

where

θGC/Range  =  Great circle trajectory segment range angle.

The segment time interval to cover θGC/Range  is given by:

TS/GC  =  
RAvg θGC/Range

VGC
 (17.1.1.4-6)

where

TS/GC  =  Great circle trajectory segment time interval.

VGC  = Velocity along great circle (established at the end of the previous trajectory
segment).
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RAvg  = Average distance to earth's center over the θGC/Range angle (See R calculation
in Table 5.6-1).  Can be approximated as R at the trajectory segment start.

17.1.1.5  TURN TO A SPECIFIED HEADING

In this section we discuss the particular problem of realistically turning from an initial level
attitude condition (i.e., from V Frame Z axis down which corresponds to zero pitch/roll) to a
specified heading at level attitude.  At first we might try a simple single trajectory segment

maneuver for which the X, Y components of φS
V

 are zero, and the Z component of φS
V

 is set

equal to the difference between the specified heading and the heading at the end of the last
trajectory segment.  We would find, however, from Equation (17.1.1.2-25), that such a
maneuver requires a corresponding lateral acceleration (i.e., along the V Frame Y axis).  For
most manned aircraft, such a maneuver is not comfortable (for the pilot and passengers), and
would only be used for small turn angles (over long segment times) to keep the lateral
acceleration low.  The more common method for executing a heading change is through what is
known as a “coordinated turn” in which the aircraft is held at a constant bank angle with
zero V Frame pitch angle, while the aircraft is turned in heading at an angular rate that maintains
zero V Frame Y axis acceleration.  The total maneuver required to execute the heading change
(e.g., a right turn) would then consist of three trajectory segments: 1. Roll right, 2. Turn right
while holding the roll angle, 3. Roll back to wings level at the desired heading.

Let us first address how the roll angle and heading rate can be selected for the turning portion
(at constant velocity).  During the turn at constant velocity magnitude, the following simplified
form of (17.1.1.2-8) applies:

aSF
V

  =  VStart ω 

NV
V

  × u 

XV
V

  + g u 

ZN
V

 (17.1.1.5-1)

For a constant turning rate about the vertical, ω 

NV
V

  is easily expressed as a function of the

platform heading rate around an L Frame vertical:

ω 

NV
V

  =  ψ u 

Z L
V

 (17.1.1.5-2)

where

u 

Z L
V

  = Unit vector along the L Frame Z axis (i.e., locally down) as projected

on V Frame axes.

with the platform heading Euler angle ψ as defined in Section 3.2.3.  Since the Z axes of the N
and L Frames are parallel but opposite in direction (See Section 2.2), we can also write:

u 

ZN
V

  =  - u 

Z L
V

 (17.1.1.5-3)
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Substituting (17.1.1.5-2) - (17.1.1.5-3) into (17.1.1.5-1) then gives:

aSF
V

  =  VStart ψ  u 

Z L
V

 × u 

XV
V

   - g u 

Z L
V

 (17.1.1.5-4)

Recognizing that u 

Z L
V

 × u 

XV
V

    is a unit vector during the turn (because u 

XV
V

 is horizontal and

perpendicular to the vertical u 

Z L
V

), the dot product of (17.1.1.5-4) with u 

Z L
V

  and u 

Z L
V

 × u 

XV
V

   

yields:

u 

Z L
V

 ⋅ aSF
V

  =  - g u 

Z L
V

 × u 

XV
V

     ⋅ aSF
V

  =  VStart ψ (17.1.1.5-5)

Generalized Equation (3.2.1-6) shows that u 

Z L
V

  is the third column of CL
V

, hence, its elements

correspond to the third row of CV
L

 .  Using (3.2.3.1-2) for the general form of CV
L

 , we see then

from the third row that during the turn ( for which the pitch angle θ = 0):

u 

Z L
V

  =  

0

sin φ

cos φ

(17.1.1.5-6)

where

φ  =  Roll (or bank) angle during the turn.

Substituting (17.1.1.5-6) into (17.1.1.5-5) then obtains:

aSF YV  sin φ + aSF ZV  cos φ  =  - g
 

aSF YV  cos φ - aSF ZV  sin φ  =  VStart ψ
(17.1.1.5-7)

where

aSFiV  =  Component of aSF
V

  along V Frame axis i.

For a coordinated turn, aSFYV  = 0 .  Then (17.1.1.5-7) can be solved for the sine and cosine

of φ in terms of a specified starting velocity, heading rate, and V Frame Z axis specific force
acceleration during the turn (i.e., the negative of a specified lift acceleration):

sin φ  =  - 
VStart ψ
aSF ZV

cos φ  =  - 
g

aSF ZV
 (17.1.1.5-8)
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For a realistic turn, the magnitude of φ will be less than 90 degrees.  Then cos φ will always be

positive, hence, aSF ZV  will always be negative (and never smaller than g), and φ will always

have the same sign as ψ (assuming a positive velocity VStart).  Under these conditions, we can
rearrange and combine Equations (17.1.1.5-8) into the equivalent relationships:

φ  =  tan -1  sin φ

cos φ
  =  tan -1 VStart  ψ

g
aSF ZV  =  - 

g

cos φ
(17.1.1.5-9)

Equations (17.1.1.5-9) show how φ can be calculated to achieve a specified turning rate ψ,
and the aSFZV  that would be generated as a result.  Alternatively, (17.1.1.5-8) can be rearranged

and combined as follows:

φ  =  Sign (ψ) sec-1
 aSF ZV

g
 ψ  =  - 

aSF ZV

VStart
 sin φ (17.1.1.5-10)

Equations (17.1.1.5-10) show how φ and ψ can be calculated for a specified normal acceleration
aSF ZV  and turn rate direction.  Note that for very shallow bank angles, aSF ZV  is very close to g

(See Equation (17.1.1.5-9)), hence, the inverse arc secant calculation in (17.1.1.5-10) tends to

lose accuracy (becomes zero for very small values of φ).

After the bank angle φ is calculated (from (17.1.1.5-9) or (17.1.1.5-10)), the basic trajectory

parameters are shaped for a single trajectory segment to generate φ.  The φ angle so generated

will then be the proper initial condition for the ψ turning rate to be applied during the next

trajectory segment.  A common error made in generating φ is to set the X component of

φS
V

 equal to φ with the Y, Z components set to zero.  This will indeed produce the desired φ
bank angle, however, it will also generate an average V Frame Y axis specific force acceleration

in the process from gPAvgYV  in Equation (17.1.1.2-25).  (For an X axis φS
V

  rotation substituted

in Equation (17.1.1.2-23), it is readily demonstrated that gPAvgYV is non-zero.)  To generate a

bank angle using a coordinated maneuver (i.e., with zero Y axis lateral specific force), Equation

(17.1.1.2-25) shows that φS
V

 must also contain a φS ZV  component which when multiplied by

1
TS

 VStart  + 
1
2

 ΔVS , balances gPAvgYV .  The following procedure can be used to achieve the

desired result of generating the desired bank angle φS ZV with zero average Y axis V Frame

specific force during the maneuver.
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We first assume that a small heading change will occur during the roll-to-bank angle φ
maneuver where:

ΔψRoll   =  Small platform heading change during the roll-to-bank maneuver.

We then arbitrarily select a reasonable value for ΔψRoll  with the same sign as φ, and calculate

the corresponding φS
V

 rotation vector that will create φ and ΔψRoll  such that the pitch angle is

zero at the end of the maneuver.  The corresponding platform heading at completion of roll-to-
bank will be:

ψEnd  =  ψStart  + ΔψRoll (17.1.1.5-11)

The Euler angle attitude at completion of the roll-to-bank maneuver should, therefore,

correspond to a platform heading of ψEnd, a roll angle of φ, and zero pitch angle (θ).  The

corresponding φS
V

 rotation vector is calculated using the procedure of Section 17.1.1.1 to

compute CV End

L
 from ψEnd, φ, θ, then CV End

V Start from Equation (17.1.1.1-1), and finally φS
V

 from

CV End

V Start (using the direction cosine to rotation vector conversion formula).

Once φS
V

 is determined, we then find the TS value for zero V Frame Y axis specific force

using Equation (17.1.1.2-28) with aSFAvgYV  set to zero (and zero for ΔVS based on no

velocity change during the roll-to-bank maneuver).  The TS so calculated should then be

checked for reasonableness (e.g., by verifying that the associated roll rate is reasonable as

calculated from the X axis component of φS
V

 divided by TS).  If the TS value is not deemed

reasonable (e.g., should be larger by a certain factor), the ΔψRoll  value is adjusted (e.g., by the
“certain factor”) and the process repeated until TS satisfies the reasonableness criteria.

The previous process lends itself nicely to implementation in a recursive computer

algorithm structure.  When the process converges, the result will be φS
V

 and TS values that

achieve the desired roll bank angle condition φ for a reasonable TS value, and for which the
average V  Frame Y axis specific force is zero during the maneuver.  These are the desired
conditions to begin the coordinated turn to the desired heading.

The next two trajectory segments are designed to execute the coordinated turn and then return
to a “wings level” attitude at the desired heading.  The final segment is a roll-to-level maneuver

from the φ bank angle, which is the inverse of the roll-to-bank angle maneuver discussed in the
previous paragraph.  The TS value for this maneuver is identical to the value for the previously
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discussed roll-to-bank maneuver; the φS
V

 value has the same Y and Z component values but the

negative X component value.  Applying these φS
V

, TS values will produce a heading change of

ΔψRoll  (as in Equation (17.1.1.5-11)) while the roll angle φ is being reduced to zero with zero

average Y axis specific force, and generating zero pitch angle at segment end.  Thus, the total

heading change for the initial roll-to-bank and final bank-to-zero-roll maneuvers is 2 ΔψRoll .

To achieve a specified heading at the end of the combined maneuver, the heading change
during the turning portion of the trajectory segment must, therefore, be:

ΔψTurn  =  ψDesired - ψStart  - 2 ΔψRoll (17.1.1.5-12)

where

ψDesired  =  Desired platform heading.

ψStart   =  Platform heading at the start of the overall turning maneuver.

ΔψTurn  =  Platform heading change during the coordinated turn trajectory segment.

The φS
V

 value that will generate ΔψTurn during the turn is easily calculated as in Section 17.1.1.3

by defining the segment rotation vector in the L Frame.  To achieve ΔψTurn heading change

during the turn (positive around a downward vertical) we set the Z component of φS
L

 to ΔψTurn,

and the X, Y components to zero.  The corresponding φS
V

 value is then obtained with Equation

(17.1.1.3-4).  The segment time TS to achieve ΔψTurn is simply ΔψTurn divided by the

specified turning rate ψ.  During the turning segment (as for the roll-to-bank and bank-to-zero

roll segments), ΔVS would be set to zero corresponding to constant velocity.

17.1.2  QUICK-LOOK PROJECTION

Before a selected set of “trial” basic trajectory parameters (φS
V

, ΔVS, TS) can be finalized for

a particular trajectory segment, their impact on the trajectory navigation parameters must be
assessed.  This is achieved through an approximate closed-form analytical estimate (“Quick-
Look” projection) of the navigation parameters based on application of the “trial” parameters.
The navigation parameters typically of interest are the average V Frame angular rate and specific
force acceleration components over the trajectory segment, the V Frame specific force
acceleration components at the beginning and end of the segment, and the velocity, position
and V Frame attitude at the end of the segment.  If, during trajectory regeneration, the
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simulation program includes angular variations of vehicle coordinate axes (the AC Frame)
relative to V Frame axes (i.e., angle of attack/sideslip effects), then the angle of attack/sideslip,
and associated AC Frame attitude, specific force acceleration and angular rate components are
also of interest during trajectory segment shaping operations.

17.1.2.1 PROJECTED VELOCITY, ATTITUDE, TIME, ANGULAR RATE,
AND SPECIFIC FORCE ACCELERATION

The attitude and signed velocity magnitude (V) at the end of the segment can be calculated
from a rearranged form of Equations (17.1.1.1-1) - (17.1.1.1-2):

CV End

L
  =  CV Start

L
 CV End

V Start VEnd  =  VStart  + ΔVS (17.1.2.1-1)

The initial value for V in (17.1.2.1-1) at the beginning of the trajectory would be an input

specification.  The CV End

V Start matrix in (17.1.2.1-1) is calculated using generalized Equation

(3.2.2.1-8) with φS
V

 for the rotation vector.  The initial value for CV
L

  at the beginning of the

trajectory profile would be calculated using Equation (3.2.3.1-2) from input roll, pitch, heading
(assuming zero wander angle).  Zero wander angle is achieved by appropriate initial setting of

the CN
E

 matrix using Equations (4.4.2.1-2) (with latitude/longitude set at input values).  The

end-of-segment N Frame velocity vector components can be calculated from VEnd and CV End

L

using (17.1.1.2-5) transformed to the N Frame:

vEnd
N

  =  VEnd CL
N

 CV End

L
 uXV

V
 (17.1.2.1-2)

Once CV End

L
 is calculated from (17.1.2.1-1), the associated end-of-segment roll, pitch,

platform heading attitude Euler angles can be extracted using Equations (4.1.2-1).  End-of-
segment true heading can be determined from platform heading using (4.1.2-2) with the wander

angle calculated from the end-of-segment CN
E

 matrix using Equations (4.4.2.1-3).  Similarly,

the end-of-segment north/east/up velocity components can be calculated from vEnd
N

 using

(4.3.1-4) and the wander angle.

The V Frame angular rate and average specific force acceleration components over the
trajectory segment are easily calculated from Equations (17.1.1.2-13) - (17.1.1.2-14) using

(17.1.1.2-23) for gPAvg

V
.  The V Frame specific force acceleration components at the start and

end of the trajectory segment can be computed with Equations (17.1.1.2-8) and (17.1.1.2-12) -
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(17.1.1.2-13) using CN
V

 = CV Start

L T
 CN

L
 and t = 0 for the start-of-segment components, and

CN
V

 = CV End

L T
 CN

L
 with t = TS for the end-of-segment components:

aSF Start

V
  =  

1
TS

 ΔVS uXV
V

 + VStart φS
V

 × uXV
V

  + g CL
V 

 Start CN
L

 uZN
N

 

aSF End

V
  =  

1
TS

 ΔVS uXV
V

 + VStart + ΔVS  φS
V

 × uXV
V

  + g CL
V 

 End CN
L

 uZN
N

(17.1.2.1-3)

The CV End

L
 matrix in (17.1.2.1-3) is as calculated in (17.1.2.1-1), and CV Start

L
 is the CV

L
 value at

the end of the previous trajectory segment.

Trivially, the end-of-segment time is calculated as simply:

tEnd  =  tStart  + TS (17.1.2.1-4)

17.1.2.2  END-OF-SEGMENT POSITION QUICK-LOOK PROJECTION

The end-of-segment position, in the form of the CN
E

 matrix and altitude h, is estimated for

quick-look projection using a version of Equations (7.3.1-1), (7.3.1-3), (7.3.1-4), (7.3.1-6),

(7.3.1-8) and (7.3.1-9) in which ρN
 (or ωEN

N
 by definition) is calculated from the ωEN

N

expression in Equations (12.1.2-6) with ρZN  set to zero (for the wander azimuth N Frame -

See Section 4.5), ∂GC
N

 is approximated as ∂GCStart

N
, rl is approximated as rlStart, and other

related calculations from (12.1.2-6) apply:

ΔRN  ≡  vN

0

TS

 dt (17.1.2.2-1)

____________________________________________________________________

hEnd  =  hStart + u 

ZN
N

  ⋅ ΔRN 

CNEnd
E

  =  CNStart
E

 CNEnd

NStart

 

CNEnd

NStart  =  I + 
sin ξ

ξ
 ξN×  + 

(1 - cos ξ)

ξ2
 ξN×

 2
(17.1.2.2-2)

ξN
  ≈  

1
rlStart

 (I + ∂GCStart

N
) uZN

N
 × ΔRN

(Continued)
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u 

ZN
E

  =  

uZNXE

uZNYE

uZNZE

  =  CN
E

 u 

ZN
N

  =  
D13
D23
D33

RSStart  ≈  1 - uZNYE/Start

2
 e  R0

rlsStart  =  1 + 2 2 uZNYE/Start

2
 - 1  e  RSStart

(17.1.2.2-2)
(Continued)

rlStart  =  rlsStart + hStart

∂GCStart

N
  =   - 

2 e

1 + hStart  / RS
′

 

D21
2

D21 D22 0

D21 D22 D22
2

0

0 0 0  

 Start

Once CNEnd
E

 is calculated in (17.1.2.2-2), the end-of-segment latitude, longitude and wander

angle can be extracted using Equations (4.4.2.1-3).

A closed-form expression for the ΔRN integrated N Frame velocity in (17.1.2.2-1) can be

obtained from the double integral of v
N

 as defined by Equation (17.1.1.2-3) in the N Frame:

v
N

  =  CV
N v

V
 + ω 

NV
V

  × vV (17.1.2.2-3)

Using (17.1.1.2-5) - (17.1.1.2-7), the bracketed term in (17.1.2.2-3) is:

v
V

 + ω 

NV
V

  × vV  =  V u 

XV
V

  + VStart + V t  ω 

NV
V

  × u 

XV
V

 

 

                  =  V u 

XV
V

  + VStart ω 

NV
V

  × u 

XV
V

  + V ω 

NV
V

  × u 

XV
V

  t 
(17.1.2.2-4)

The CV
N

 matrix in (17.1.2.2-3) is the transpose of (17.1.1.2-15):

CV
N  =   CL

N
 CV Start

L  I + sin φ uφ
V×  + (1 - cos φ) uφ

V×
 2

(17.1.2.2-5)

Substituting (17.1.2.2-4) - (17.1.2.2-5) in (17.1.2.2-3) yields:

v
N

  =  CL
N

 CV 

 Start
L   I + sin φ uφ

V×  + (1 - cos φ) uφ
V×

 2
 V u 

XV
V

 (17.1.2.2-6)

+ VStart ω 

NV
V

  × uXV
V

   + I t + t sin φ uφ
V×  + (1 - cos φ) t uφ

V
 ×

 2
 V ω 

NV
V

  × u 

XV
V

  



17-26     TRAJECTORY GENERATORS

The position change ΔRN is the double integral of (17.1.2.2-6) over the trajectory time

segment TS including initial conditions on velocity vN:

ΔRN  =  vStart
N

 TS +  
0

TS

v
N

 dt dτ
0

τ

(17.1.2.2-7)

where

vStart
N

  = vN at the start of the trajectory segment (which is vN at the end of the previous

segment).

τ  =  Dummy time integration parameter.

As in Section 17.1.1.2, we apply Equations (17.1.1.2-17) - (17.1.1.2-18) for double
integration of the time varying terms to obtain:

 
0

TS

sin φ dt dτ
0

τ

  =  
1

ω 

NV
2

  
0

φ S

sin φ dφ dθ
0

θ

  =  
1

ω 

NV
2

 1 - cos θ  dθ
0

φ S

     =  
1

ω 

NV
2

 θ - sin θ  0
 φ S

  =  
1

ω 

NV
2

 φS - sin φS   =  
1

φS
2

 1 - 
sin φS

φS

 φS TS
2

  =  h2 φS TS
2

 

(17.1.2.2-8)

 
0

TS

(1 - cos φ) dt dτ
0

τ

  =  
1

ω 

NV
2

  
0

φ S

(1 - cos φ) dφ dθ
0

θ

  =  
1

ω 

NV
2

 θ - sin θ  dθ
0

φ S

 

=  
1

ω 

NV
2

 
1
2

 θ2
 + cos θ

 0

 φ S

  =  
1

ω 

NV
2

 
1
2

 φS
2

 - 1 + cos φS (17.1.2.2-9)

=  
1

φS
4

 
1
2

 φS
2

 - 1 + cos φS  φS
2

 TS
2

  =  h3 φS
2

 TS
2

h3  ≡  
1

φS
4

 
1
2

 φS
2

 - 1 + cos φS   =  
1

4 !
 - 

φS
2

6 !
 + 

φS
4

8 !
 - (17.1.2.2-10)
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0

TS

t sin φ dt dτ
0

τ

  =  
1

ω 

NV
3

  
0

φ S

φ sin φ dφ dθ
0

θ

  =  
1

ω 

NV
3

 sin θ - θ cos θ  dθ
0

φ S

=  
1

ω 

NV
3

 - 2 cos θ - θ sin θ  0
 φ S

  =  
1

ω 

NV
3

 2 - 2 cos φS - φS sin φS (17.1.2.2-11)

=  
1

φS
4

 2 - 2 cos φS - φS sin φS  φS TS
3

  =  h4 φS TS
3

h4  ≡  
1

φS
4

 2 - 2 cos φS - φS sin φS   =  
1
3 !

 - 
2
4 !

 - 
1
5 !

 - 
2
6 !

 φS
2
 + 

1
7 !

 - 
2
8 !

 φS
4
 - 

                                       =  
2

4 !
 - 

4
6 !

 φS
2
 + 

6
8 !

 φS
4
 - 

(17.1.2.2-12)

 
0

TS

(1 - cos φ) t  dt dτ
0

τ

  =  
1

ω 

NV
3

  
0

φ S

φ (1 - cos φ) dφ dθ
0

θ

= 1

ω 

NV
3

 
θ2

2
 + 1 - cos θ - θ sin θ  dθ

0

φ S

 = 1

ω 

NV
3

 
θ3

3 !
 + θ - 2 sin θ + θ cos θ

 0

 φ S

 

            = 1

ω 

NV
3

 
φS

3

3 !
 + φS - 2 sin φS + φS cos φS

(17.1.2.2-13)

=  
1

φS
5

 
φS

3

3 !
 + φS - 2 sin φS + φS cos φS  φS

2
 TS

3
 =  h5 φS

2
 TS

3

h5  ≡  
1

φS
5

 
φS

3

3 !
 + φS - 2 sin φS + φS cos φS

 

      =  
1

4 !
 - 

2
5 !

 - 
1

6 !
 - 

2
7 !

 φS
2

 + 
1

8 !
 - 

2
9 !

 φS
4

 -   =  
3

5 !
 - 

5
7 !

 φS
2

 + 
7

9 !
 φS

4
 - 

(17.1.2.2-14)

with h2 as calculated in (17.1.1.2-22) and where

θ  =  Dummy angle integration parameter.

h3, h4, h5  =  Defined trigonometric functions of φS.



17-28     TRAJECTORY GENERATORS

Substituting (17.1.2.2-6) in (17.1.2.2-7) with (17.1.2.2-8) - (17.1.2.2-14), (17.1.1.2-22) and

(17.1.1.2-16), then obtains for ΔRN:

          ΔRN  =  vStart
N

 TS + TS
2

 CL
N

 CV Start
L   

1
2

 I + h2 φS
V

 ×  + h3 φS
V

×
 2

 V u 

XV
V  

 

   
 

+ VStart ω  

NV
V

  × u 

XV
V

   + TS 
1
6

 I + h4 φS
V

 ×  + h5 φS
V

 × 

 2
 V ω 

NV
V

  × u 

XV
V

   

(17.1.2.2-15)

With (17.1.1.2-13) for ω 

NV
V

  and the converse of (17.1.1.2-12) for V, Equation (17.1.2.2-15)

for ΔRN assumes the desired form in terms of the basic trajectory segment parameters:

       ΔRN  =  vStart
N

 TS + CL
N

 CV Start
L   

1
2

 I + h2 φS
V

 ×  + h3 φS
V

 × 

 2
 ΔVS u 

XV
V  

 
 
 

+ VStart φS
V

 × u 

XV
V

   + 
1
6

 I + h4 φS
V

 ×  + h5 φS
V

 × 

 2
 ΔVS φS

V
 × uXV

V
    TS

(17.1.2.2-16)

17.1.2.3 PROJECTED AIRCRAFT AXIS ATTITUDE, SPECIFIC
FORCE ACCELERATION AND ANGULAR RATE UNDER
ANGLES OF ATTACK AND SIDESLIP

For an aircraft type vehicle, the specific force acceleration calculated by the trajectory
generator is created by aerodynamic force and engine thrust.  A large portion of the
aerodynamic force arises from the angle of attack and angle of sideslip of the aircraft coordinate
axes relative to the local airflow velocity vector passing over the aircraft.  The aircraft axis
orientation to create the angles of attack and sideslip, also defines the direction of the aircraft
engine thrust vector in its contribution to the net specific force.  To describe the angle of
attack/sideslip effects analytically, we must first define the relationship between the local airflow
velocity vector vArspd , an intermediate relative airspeed coordinate frame (V  W ) aligned with the
vArspd  vector, and aircraft coordinate axes (the AC Frame) where:

vArspd   = Velocity of the aircraft relative to the local air mass.  The vArspd  airflow
velocity vector is produced by aircraft motion relative to the earth surface
minus the average movement of the local air mass (or average wind) relative
to the earth’s surface.

V  W  = Coordinate frame whose X axis is aligned with vArspd  .  The relative orientation
between the V  W  and V Frames is nominally defined to minimize
the V - to - V  W  Frame rotation vector magnitude.  Sections 17.1.2.3.1 and
17.1.2.3.2 describe variations from the nominal  V  W - to - V Frame orientation
for control of the roll angle between the AC and V Frames.
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AC  = Coordinate frame parallel to user vehicle (“aircraft” - AC) reference axes.  The
AC frame for an aircraft is defined to be parallel to the V  W  Frame under non-
maneuvering flight conditions (and parallel to the V Frame under non-
maneuvering flight conditions in still air).  A non-parallel angular orientation
between the AC Frame X (longitudinal) axis and the V  W  Frame X axis is
produced by the angle of attack (about the V  W  Frame Y axis) and angle of
sideslip (about the V  W  Frame Z axis).  The angular orientation between the AC
and V  W  Frames is defined to include the constraint that the V  W - to - AC Frame
rotation vector magnitude be minimized.

A simulation of angle of attack/sideslip effects is designed to create an AC Frame attitude (in

the form of a CAC
V

 matrix) that will generate aerodynamic and thrust accelerations

corresponding to the trajectory generator specific force acceleration.  The CAC
V

 matrix is

computed from the angular relationships between the AC, V  W  and V Frames, and the local
airflow velocity vector components viewed in these coordinate frames:

CAC
V

  =  CV W
V

 CAC
V W

(17.1.2.3-1)

vArspd
V W

  =  CAC
V  W

 vArspd
AC

(17.1.2.3-2)

vArspd
V

  =  CV W
V

 vArspd
V W

(17.1.2.3-3)

Once determined (as will be described subsequently), the CAC
V

 matrix can be used to

calculate AC Frame attitude relative to the local level L Frame using:

CAC
L

  =  CV
L

  CAC
V

(17.1.2.3-4)

The AC Frame specific force acceleration components are computed from CAC
V

 as:

aSF
AC

  =  CAC
V T

 aSF
V

(17.1.2.3-5)

For the Quick Look projection of aSF
AC

 at the start and end of the trajectory segment, aSF
V

  in

(17.1.2.3-5) is calculated using Equations (17.1.2.1-3).

The AC components of angular rate are approximated for Quick Look projection as the

average AC Frame angular rate relative to the L Frame, and are determined from the CAC
L

matrix calculated from (17.1.2.3-4) at the start and end of the trajectory:



17-30     TRAJECTORY GENERATORS

CACEnd

ACStart  =  CACStart

L T
 CACEnd

L
(17.1.2.3-6)

where

CACEnd

ACStart  = Direction cosine matrix relating the AC Frame attitude at the start and end

of the trajectory segment, relative to the L Frame.

The average AC Frame angular rate is then computed from CACEnd

ACStart as:

ωLACAvg

AC
  =  

1
TS

 φAC
(17.1.2.3-7)

where

ωLACAvg

AC
  = Average angular rate of the AC Frame relative to the L Frame as projected

on AC Frame axes.

φAC
  = Rotation vector equivalent to CACEnd

ACStart computed using generalized Equations

(3.2.2.2-10) - (3.2.2.2-12) and (3.2.2.2-15) - (3.2.2.2-19).

Equations (17.1.2.3-4) - (17.1.2.3-7) provide useful Quick-look AC Frame attitude, angular
rate and specific acceleration data during trajectory shaping.  The fundamental input to these

equations is CAC
V

 which must be calculated based on the balance of aerodynamic and thrust

forces against the product of vehicle mass with the trajectory generator specific force
acceleration.  Equations (17.1.2.3-1) - (17.1.2.3-3) are the basic relationships we will now use

to solve for CAC
V

.  The derivation procedure is fairly involved consisting of the following steps.

First we will calculate vArspd
V

 from vehicle velocity relative to the earth minus a specified

average wind velocity.  The vArspd
V W

 vector will then be defined from the signed magnitude of

vArspd
V

 based on the definition for the V  W  Frame.  Next we will compute vArspd
AC

 in

(17.1.2.3-2) based on an assumed angle of attack and sideslip condition.  The solutions for

vArspd
V

, vArspd
V W

 and vArspd
AC

 will be used to calculate CV W
V

 and CAC
V W

 using Equations

(17.1.2.3-2) - (17.1.2.3-3) based on the previous definitions for the AC Frame and the nominal

V W Frame.  The computed CAC
V W

 and CV W
V

 matrices allow CAC
V

 to be calculated using

(17.1.2.3-1).  Finally, the angle of attack and sideslip assumed for calculating vArspd
AC

 will be

equated to values needed for the vehicle aerodynamic force and thrust components to balance
the trajectory generator computed specific force acceleration.  Because the results from the

previous step are used earlier in calculating vArspd
AC

, an iteration loop is required to compute the
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angles of attack/sideslip for CAC
V

 determination that also satisfy the force balance equations.  At

the conclusion of this section, the overall results obtained will be summarized in order of
execution for a simulation program.

We begin with the derivation of the vArspd
V

 expression.  In the V Frame, the air flow velocity

vector can be calculated from its definition as:

vArspd
V

  =  V u 

XV
V

  - vAvgWnd
V

 (17.1.2.3-8)

where

vAvgWnd
V

  = Local average wind velocity relative to the earth in V Frame axes.  The

average wind velocity is defined as the total wind velocity minus high
frequency wind gust effects.  Wind gust effects will be handled as part of
Trajectory Regeneration operations.

Equation (17.1.2.3-8) is based on the underlying assumption for the trajectory generator that the
vehicle velocity relative to the earth is along the X axis of the V Frame with signed magnitude
V.

The vAvgWnd
V

 average wind vector components in (17.1.2.3-8) are computed from:

vAvgWnd
V

  =  CV
L

 

T
 CN

L
 CGeo

N
 vAvgWnd

Geo
(17.1.2.3-9)

where

Geo  =  Local geographic coordinate frame with Z up and Y north.

The wander azimuth N Frame is rotated from the Geo Frame by the wander angle about the

positive Z axis, hence, from Figures 4.4.2.1-2 and 17.1.1.4-1, CGeo
N

  is given by:

CGeo
N

  =  

cos αWand  sin αWand  0

- sin αWand  cos αWand  0

0  0  1

(17.1.2.3-10)

where

αWand  =  Wander angle computed from the CN
E

 matrix as in Equations (4.4.2.1-3).
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The vAvgWnd
Geo

 wind vector would be programmed into the simulation as a smooth continuous

function of latitude, longitude and altitude.  It should be a continuous function to avoid

introducing discontinuities in the angles of attack/sideslip calculated from vAvgWnd
Geo

.

The magnitude of vArspd  will also be useful in subsequent calculations, and can be evaluated
from the V Frame vArspd  components using the invariance property of vector dot products

between coordinate frames (generalized Equation (3.1.1-29)) by which it is recognized (from
(3.1.1-4) - (3.1.1-5)) that the magnitude squared of vArspd  is the dot product of vArspd  with

itself in any coordinate frame:

vArspd  =  vArspd
V

 ⋅ vArspd
V

(17.1.2.3-11)

where

vArspd   =  Magnitude of vArspd .

The V  W  Frame components of vArspd  (i.e., vArspd
V W

) are easily defined from vArspd  and the

definition of the V  W  Frame having its X axis along vArspd :

vArspd
V W

   =   vArspd  uXV W
V W

(17.1.2.3-12)

where

uXV W
V W

  =  Unit vector along the V  W  Frame X axis.

The AC Frame components of vArspd  (i.e., vArspd
AC

) are calculated as a function of angle of

attack, angle of sideslip and vArspd .  The angles about the AC Frame Y, Z axes from vArspd  to

the AC Frame X axis (i.e., the angles of attack and sideslip) can be defined analytically as:

α  =  tan -1 
vArspd ZAC

vArspd XAC

β  =  - tan -1 
vArspd YAC

vArspd XAC

(17.1.2.3-13)

where

α  =  Angle of attack.

β  =  Angle of sideslip.

vArspd iAC  =  Component of vArspd
AC

 along axis i of the AC Frame.
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Given the angles of attack and sideslip, the Y and Z components of vArspd
AC

 can be calculated

from the inverse of (17.1.2.3-13):

vArspdYAC  =  - vArspdXAC tan β vArspdZAC  =  vArspdXAC tan α (17.1.2.3-14)

The X component of vArspd
AC

 in (17.1.2.3-13) can be computed from the magnitude squared

formula:

vArspd XAC

2
 + vArspd YAC

2
 + vArspd ZAC

2
  =  vArspd

2
(17.1.2.3-15)

Dividing (17.1.2.3-15) by vArspd XAC

2
, substituting (17.1.2.3-14) for the Y, Z components of

vArspd
AC

, rearranging, and taking the positive square root (for a positive vArspd
AC

 forward

component), we obtain for vArspd XAC:

vArspd XAC  =  vArspd  
1

1 + tan 2α + tan 2β
(17.1.2.3-16)

Using (17.1.2.3-16), Equations (17.1.2.3-14) and (17.1.2.3-16) become the normalized set:

vArspdXAC

vArspd
  =  1 + tan2α + tan2β

 - 1

2

vArspdYAC

vArspd
  =  -  tan β 1 + tan2α + tan2β

 - 1

2 (17.1.2.3-17)

vArspdZAC

vArspd
  =  tan α 1 + tan2α + tan2β

 - 1

2

The α, β angles in the above expressions create vehicle aerodynamic force and thrust vector
direction whose sum equals the trajectory generator computed specific force acceleration.

Calculation of α, β values that satisfy the previous condition will be described subsequently.

Once the vArspd
V

, vArspd
V W

 and vArspd
AC

 component forms of vArspd  are obtained with

Equations (17.1.2.3-8) - (17.1.2.3-10), (17.1.2.3-12) and (17.1.2.3-17), the CV W
V

 and CAC
V W

 

matrices can be calculated from Equations (17.1.2.3-2) and (17.1.2.3-3).  There is no unique

solution for CV W
V

 and CAC
V W

  that can be determined from (17.1.2.3-2) and (17.1.2.3-3) without

imposing an additional constraint.  The constraint we impose is that CV W
V

 and CAC
V W

  satisfy
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(17.1.2.3-2) and (17.1.2.3-3) using associated rotation vectors of minimum magnitude.  Note
that this same constraint was also used in the definition for the AC Frame and for the nominal
V  W  Frame given previously.  Then generalized Equations (3.2.1.1-1), (3.2.1.1-22) and
(3.2.1.1-26) apply and we can write from (17.1.2.3-2), (17.1.2.3-3) and (17.1.2.3-12):

D  ≡  uXV W
V W  T

 
vArspd

V

vArspd
               E  ≡  uXV W

V W
 ×  

vArspd
V

vArspd

                  CV W
V

  =  I + E×  + 
1

1 + D
 E×  2

(17.1.2.3-18)

G  ≡  
vArspd

AC

vArspd

 T

 uXV W
V W

               H  ≡  
vArspd

AC

vArspd
 ×  uXV W

V W

                   CAC
V W

  =  I + H×  + 
1

1 + G
 H×  2

(17.1.2.3-19)

It remains to define α, β angles of attack/sideslip to balance the trajectory generator specific
force acceleration.  We begin by writing expressions for the V Frame components of force on
the vehicle produced by aerodynamic effects and thrust:

F V  =  CV W
V

 FAero
V W

 + Thrst CAC
V W

 uThrst
AC

(17.1.2.3-20)

where

F  =  Total force vector acting on the vehicle.

Thrst  =  Magnitude of vehicle engine thrust.

uThrst   =  Unit vector along the vehicle thrust direction.

The CV W
V

 matrix in (17.1.2.3-20) is obtained from (17.1.2.3-18) and the CAC
V W

 matrix is

calculated from (17.1.2.3-19).

Assuming that the thrust vector direction is perpendicular to the AC Frame Y (pitch) axis,

we can write in general for uThrst
AC

 in (17.1.2.3-20):

uThrst
AC

  =  cos θThrst , 0, - sin θThrst
T

(17.1.2.3-21)

where

θThrst   = Angle from the AC Frame X axis to the engine thrust direction axis measured
as a positive Euler rotation about the AC Frame Y axis.
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The V  W  Frame components of FAero
V W

 in (17.1.2.3-20) are traditionally defined as:

FAero
V W

  =  - FDrag  FSide - FLift
T (17.1.2.3-22)

where

FLift, FDrag, FSide  = Aerodynamic lift, drag and side forces produced by airflow over

the vehicle at α, β angles of attack, sideslip.

The FLift, FDrag, FSide  force components in (17.1.2.3-22) can be expressed in terms of
classical aerodynamic coefficients (e.g., Reference 28, Section 1-2) as:

FLift   =  CL S q FSide  =  CSide S q FDrag  =  CD S q (17.1.2.3-23)

with

q  =  
1
2

 ρ vArspd
2

(17.1.2.3-24)

where

CL, CD, CSide  =  Normalized lift, drag, side force aerodynamic coefficients.

S  = Vehicle reference area (typically the wing area for an aircraft) which would be an
input parameter for the simulation program.

q  = Dynamic pressure produced from vehicle velocity relative to the air-mass.  If the
free air-stream velocity is brought to a stand-still at the aircraft by a loss-less
process, the free-stream air pressure would change by q.

ρ  = Density of undisturbed air around the vehicle.  In a simulation, ρ would be a
programmed function of altitude based on “standard” temperature conditions.

Variations of ρ due to non-standard temperature can be calculated as the standard

ρ multiplied by the standard absolute temperature divided by the simulated non-
standard absolute temperature.

The CL, CD, CSide  coefficients for an aircraft can be approximated for simulation purposes
(e.g., using Reference 28 - Sections 2-1 through 2-3 as a guide) by the following functions of
angle of attack and sideslip:

CL  ≈  CLα α + α0 + αFlaps

CSide  ≈  CSd β β (17.1.2.3-25)

CD  ≈  CDf + CDthk + KDInd/L CL α + α0 + αFlaps  + KDInd/Sd CSide β
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where

α0  = Equivalent angle of attack corresponding to the lift coefficient generated under

zero α conditions (a simulation program input parameter).

αFlaps  = Equivalent angle of attack bias corresponding to an addition to the lift
coefficient generated by extending the vehicle aerodynamic flaps (a simulation
program input which can be programmed at different values corresponding to
different trajectory times).

CLα , CSd β  =  Lift and side force slope aerodynamic coefficients.

CDf, CDthk  =  Friction and thickness drag coefficients.

KDInd/L, KDInd/Sd  =  Lift and side force induced drag coefficients.

Values for the (17.1.2.3-25) aerodynamic coefficients depend on the vehicle aerodynamic shape
and Mach number (ratio of true air speed divided by the speed of sound - the speed of sound is
proportional to the square root of absolute temperature (Reference 17 - Section 2.8)).
Coefficients for different aerodynamic shapes can be found in classical text books such as
Reference 1 - Sections 5-4, 5-5, 6-2 and 6-3, and Reference 28 - Chapter 2).  In general, the
aerodynamic coefficients are approximately constant for low speed subsonic airflow but for
higher speed flight, can vary with Mach number.  The CDthk thickness drag coefficient is
created by local aerodynamic shock wave induced effects, hence, is zero for subsonic flow.

The angles of attack and sideslip α, β in (17.1.2.3-25) as well as the engine thrust (Thrst) in

(17.1.2.3-20) are selected so that the F V components in (17.1.2.3-20) equal the effect on
trajectory generator specific force acceleration through Newton’s law:

FV  =  M aSF
V

 (17.1.2.3-26)

where

M  =  Vehicle mass.

For the Quick Look projection, aSF
V

 in (17.1.2.3-26) can be calculated using Equations

(17.1.2.1-3).  The vehicle mass M in (17.1.2.3-26) can be computed as the starting input mass,
minus the mass of jettisoned elements and fuel expended:

M  =  M0 - ΔMJtsn∑  - ΔMFuel

ΔMFuel  =  KFuel Thrst dt
(17.1.2.3-27)
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where

M0  =  Vehicle mass at simulation start.

ΔMJtsn  =  Mass jettisoned since simulation start.

ΔMFuel  =  Fuel mass expended since simulation start.

KFuel  =  Fuel mass expenditure rate per unit thrust.

For the Quick-Look projection, ΔMFuel in (17.1.2.3-27) at a time point within a particular

trajectory segment can be determined by the approximate trapezoidal integration algorithm:

ΔMFuel  =  ΔMFuelStart + K Fuel 
1
2

 ThrstStart + Thrst  t (17.1.2.3-28)

where

t  =  Time from the start of the trajectory segment.

Thrst  =  Vehicle engine thrust at time t.

The ΔMFuel value at the end of the trajectory segment (i.e., ΔMFuelEnd) is calculated from

(17.1.2.3-28) with t set equal to TS.  The ΔMFuelStart value in (17.1.2.3-28) is ΔMFuel at the

end of the previous segment.

Equations (17.1.2.3-17) - (17.1.2.3-28) constitute a complete set that can be solved uniquely

for α, β and Thrst .  Due to the nonlinear character of these equations, it is difficult to combine
them into a closed-form solution.  The alternative is to use an iteration procedure in which a
previous approximate solution is used iteratively to determine a more accurate solution for the
next iteration cycle.  The iteration cycle continues until the solution error is within prescribed
limits.

For the previous system of equations, the iterative solution error can be calculated as the

difference between F V calculated with Equations (17.1.2.3-20) and (17.1.2.3-26):

δ Fj
V

  =  CV W
V

 FAeroj

V W
 + Thrstj CACj

V W
 uThrst

AC
 - Mj aSF

V
 (17.1.2.3-29)

where

j  = Iteration procedure cycle index.  As a subscript for a parameter, j indicates that the
parameter is calculated based on data computed during the jth iteration cycle.

δFj
V

   = The difference for iteration cycle j between F V calculated with Equations

(17.1.2.3-20) and (17.1.2.3-26).
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We wish to adjust α, β and Thrst  in iterative fashion so that δFj
V

  in (17.1.2.3-29) goes to zero.

Then Equations (17.1.2.3-20) and (17.1.2.3-26) will balance which corresponds to the correct

solution for α, β and Thrst .  To streamline the analytical development, we define the sought

after parameters α, β and Thrst  in a column matrix:

P  ≡  

Thrst 

β

α

(17.1.2.3-30)

where

P  =  Column matrix with components equal to Thrst, β and α.

The Pj-1 value for P (i.e., P  determined during the previous iteration cycle) is used to

calculate the j value parameters in Equations (17.1.2.3-29).  Let’s call the result δFj-1
V

 

corresponding to Pj-1.  Thus, δFj-1
V

 from (17.1.2.3-29) is a measure of the error in Pj-1.  As the

iteration process continues, we adjust P iteratively which changes δFj
V 

 using (17.1.2.3-29).

The change in δFj
V 

 for each iteration can be approximated as a linear variation from its last

computed (17.1.2.3-29) value:

ΔδFj
V

  ≈  
∂δF

V 

∂P j-1

 ΔPj (17.1.2.3-31)

with 
∂δF

V 

∂P j-1

 given by the general form:

∂   

∂P
  ≡  

∂   

∂Thrst
  

∂   

∂β
  

∂   

∂α
(17.1.2.3-32)

where

∂   

∂   
  =  Partial derivative of ( ) with respect to variations in the [ ] parameter.

∂   

∂P
  =  As defined by Equation (17.1.2.3-32) in which ( ) is a vector or scalar quantity.

ΔPj  =  Variation in P from its j-1 previous iteration cycle value.
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ΔδFj
V

   =  Variation in δFj-1
V

 from its (17.1.2.3-29)  j-1 computed value due to ΔPj.

To make the iteration process converge to a zero δFj
V

 , we set ΔδFj
V

  in (17.1.2.3-31) to the

negative of δFj-1
V

 determined by (17.1.2.3-29) (i.e., δFj
V

  calculated using Pj-1):

ΔδFj
V

  =  - δFj-1
V 

(17.1.2.3-33)

If 
∂δF

V 

∂P j-1

 is known, ΔPj corresponding to ΔδFj
V

  can be calculated from the inverse of

(17.1.2.3-31) using (17.1.2.3-33) for ΔδFj
V

 :

ΔPj  =  - 
∂δF

V 

∂P j-1

-1

 δFj-1
V

 (17.1.2.3-34)

and P can then be corrected from its previous cycle  j-1 value to its current j cycle value:

Pj  =  Pj-1 + ΔPj (17.1.2.3-35)

Equations (17.1.2.3-34) and (17.1.2.3-35) constitute the iteration process for determining P

using (17.1.2.3-29) for δFj
V

.  The iteration process is complete when the δFj
V

 components fall

within prescribed limits.

It finally remains to determine an analytical expression for 
∂δF

V  

∂P
 in (17.1.2.3-34).  This is

derived by applying (17.1.2.3-32) to (17.1.2.3-29) while recognizing that uThrst
AC

, CV W
V

 and aSF
V

 

are independent of P:

∂δFV

∂P
  =  CV W

V
 

∂FAero
V W

∂P
 + CAC

V W
 uThrst

AC
 
∂Thrst

∂P
 + Thrst 

∂  CAC
V W

 uThrst
AC

∂P
 - aSF

V
 
∂M

∂P

(17.1.2.3-36)

From (17.1.2.3-30) and (17.1.2.3-32), the second term on the right in (17.1.2.3-36) is
simply:

∂Thrst

∂P
  =  1  0  0 (17.1.2.3-37)
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The fourth term on the right in (17.1.2.3-36) is with (17.1.2.3-27) - (17.1.2.3-28):

∂ M

∂ P
  =  - 

∂ ΔM Fuel

∂ P
  =  - 

1
2

 K Fuel t     0     0 (17.1.2.3-38)

The first term on the right of (17.1.2.3-36) can be evaluated from (17.1.2.3-22) for the FAero
V W

components.  Recognizing from(17.1.2.3-22), (17.1.2.3-23) and (17.1.2.3-25) that 
∂FSide

∂α
,

∂FLift

∂β
, and 

∂FAero
V W

∂Thrst
 are zero, we can write from the (17.1.2.3-30) and (17.1.2.3-32) definitions:

∂FAero
V W

∂P
  =  

0     - 
∂FDrag

∂β
- 

∂FDrag

∂α

0     
∂FSide

∂β
0

0     0 - 
∂FLift

∂α

(17.1.2.3-39)

The individual terms in (17.1.2.3-39) are evaluated from Equations (17.1.2.3-22),
(17.1.2.3-23) and (17.1.2.3-25) combined:

FDrag  =  S q CDf + CDthk + KDInd/L CLα α + α0 + α  Flaps
 2

 + KDInd/Sd CSd β β2

FSide  =  S q CSd β β (17.1.2.3-40)

FLift   =  S q CLα α + α0 + αFlaps

Using (17.1.2.3-40), the components of (17.1.2.3-39) are given by:

∂FDrag

∂β
  =  2 S q KDInd/Sd CSd β β 

∂FDrag

∂α
  =  2 S q KDInd/L CLα α + α0 + αFlaps

∂FSide

∂β
  =  S q CSd β

(17.1.2.3-41)

∂FLift

∂α
  =  S q CLα



TRAJECTORY SHAPING FUNCTION     17-41

The third term on the right in (17.1.2.3-36) is evaluated using (17.1.2.3-19) and generalized
Equation (3.1.1-15) as:

CAC
V W

 uThrst
AC

  =  uThrst
AC

 + H × uThrst
AC

 + 
1

1 + G
 H × H × uThrst

AC
(17.1.2.3-42)

Applying (17.1.2.3-32) to (17.1.2.3-42) initially gives:

∂  CAC
V W

 uThrst
AC

∂P
  =  

∂  H × uThrst
AC

∂P
 - 

1

1 + G  2
 H × H × uThrst

AC
 
∂G

∂P
 

                                         + 
1

1 + G
 
∂  H × H × uThrst

AC

∂P

(17.1.2.3-43)

The first and third 
∂   

∂P
 terms on the right in (17.1.2.3-43) are then expanded being careful to

maintain the definition for ( ) in 
∂   

∂P
 as being a scalar or vector quantity.  For the first term we

obtain using general formulas (3.1.1-8) and (3.1.1-13):

∂  H × uThrst
AC

∂P
  =  - uThrst

AC ×  
∂H

∂P
(17.1.2.3-44)

For the third term we obtain with (17.1.2.3-44) and (3.1.1-15):

∂  H × H × uThrst
AC

∂P
  = H×  

∂  H × uThrst
AC

∂P
 - H × uThrst

AC
 ×  

∂H

∂P

=  - H×  uThrst
AC

 × 
∂H

∂P
 - H × uThrst

AC
 ×  

∂H

∂P
(17.1.2.3-45)

=  - H×  uThrst
AC ×  + H × uThrst

AC
 ×  

∂H

∂P

Substituting (17.1.2.3-44) - (17.1.2.3-45) in (17.1.2.3-43) then yields with (3.1.1-15):

∂  CAC
V W

 uThrst
AC

∂P
  =  - uThrst

AC ×  
∂H

∂P
 - 

1
1 + G

 H×  uThrst
AC ×  + H × uThrst

AC
 ×  

∂H

∂P

                                                  - 
1

1 + G  2
 H×  2

 uThrst
AC

 
∂G

∂P

(17.1.2.3-46)

or upon compression:
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∂  CAC
V W

 uThrst
AC

∂P
  =  - uThrst

AC ×  + 
1

1 + G
 H×  uThrst

AC ×  + H × uThrst
AC

 ×  
∂H

∂P

                                                     - 
1

1 + G  2
 H×  2

 uThrst
AC

 
∂G

∂P

(17.1.2.3-47)

From (17.1.2.3-19) and (17.1.2.3-12), using generalized Equations (3.1.1-7), (3.1.1-8),
(3.1.1-12) and (3.1.1-13), we see that:

G  =  
vArspd

V W T

vArspd
 
vArspd

AC

vArspd
H  =  - 

vArspd
V W ×

vArspd
 

vArspd
AC

vArspd
(17.1.2.3-48)

Recognizing that vArspd
V W

 and vArspd  are independent of P, we obtain from (17.1.2.3-48) for 
∂G

∂P

and 
∂H

∂P
:

∂G

∂P
  =  

vArspd
V W T

vArspd
 
∂  vArspd

AC
 / vArspd

∂P

∂H

∂P
  =  - 

vArspd
V W

 ×
vArspd

 
∂  vArspd

AC
 / vArspd

∂P
(17.1.2.3-49)

Substituting (17.1.2.3-49) into (17.1.2.3-47) then yields 
∂  CAC

V W
 uThrst

AC

∂P
 as a function of the

single parameter 
∂  vArspd

AC
 / vArspd

∂P
:

∂  CAC
V W

 uThrst
AC

∂P
  =  uThrst

AC ×  + 
1

1 + G
 H×  uThrst

AC
 ×  + H × uThrst

AC
 ×  

vArspd
V W

 ×
vArspd

 

 

                                      - 
1

1 + G  2
 H×  2

 uThrst
AC

 
vArspd

V W T

vArspd
  

∂  vArspd
AC

 / vArspd

∂P
 

(17.1.2.3-50)

At this point it is beneficial if we define the components of 
∂  vArspd

AC
 / vArspd

∂P
 in (17.1.2.3-50)

based on the (17.1.2.3-30) and (17.1.2.3-32) definitions, while recognizing from (17.1.2.3-17)

that vArspd
AC

 / vArspd  is independent of Thrst:
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∂  vArspd
AC

 / vArspd

∂P
  =  

0     
∂  vArspdXAC / vArspd

∂β
   

∂  vArspdXAC / vArspd

∂α

0     
∂  vArspdYAC / vArspd

∂β
   

∂  vArspdYAC / vArspd

∂α

0     
∂  vArspdZAC / vArspd

∂β
   

∂  vArspdZAC / vArspd

∂α

(17.1.2.3-51)

The individual elements of (17.1.2.3-51) are easily evaluated from (17.1.2.3-17) as:

∂  vArspdXAC / vArspd

∂β
  =  - 1 + tan2α + tan2β

 - 3

2 tan β sec2β

∂  vArspdXAC / vArspd

∂α
  =  - 1 + tan2α + tan2β

 - 3

2 tan α sec2α 

∂  vArspdYAC / vArspd

∂β
  =  - 1 - 1 + tan2α + tan2β

 -1
 tan2β  1 + tan2α + tan2β

 - 1

2 sec2β

∂  vArspdYAC / vArspd

∂α
  =  1 + tan2α + tan2β

 - 3

2 tan β tan α sec2α (17.1.2.3-52)

∂  vArspdZAC / vArspd

∂β
  =  - 1 + tan2α + tan2β

 - 3

2 tan α tan β sec2β

∂  vArspdZAC / vArspd

∂α
  =  1 - 1 + tan2α + tan2β

 -1
 tan2α  1 + tan2α + tan2β

 - 1

2 sec2α 

Equations (17.1.2.3-36) with (17.1.2.3-37) - (17.1.2.3-39), (17.1.2.3-41) and (17.1.2.3-50) -

(17.1.2.3-52) define 
∂δF

V 

∂P j

 for input to (17.1.2.3-34) in the iteration routine for evaluating P.

Let us now summarize the overall results we have obtained for calculating CAC
V

.  The

pertinent analytical expressions required are given by Equations (17.1.2.3-1), (17.1.2.3-8) -
(17.1.2.3-11), (17.1.2.3-17) - (17.1.2.3-19), (17.1.2.3-21) - (17.1.2.3-25), (17.1.2.3-27) -
(17.1.2.3-30), (17.1.2.3-34) - (17.1.2.3-39), (17.1.2.3-41), and (17.1.2.3-50) - (17.1.2.3-52).
These equations are repeated below in the order they would be executed in a typical simulation
program software structure:
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Inputs From Other Routines

αWand, CV  
L , vAvgWnd

Geo
, ρ, aSF

V
, V, θThrst, KFuel, S, CSd β, CLα, α0,

α Flaps, CDf, CDthk, KDInd/L, KDInd/Sd, ThrstStart, M0, ΔMJtsn

V Frame Air Flow Components

CGeo
N

  =  

cos αWand  sin αWand  0

- sin αWand  cos αWand  0

0  0  1

vAvgWnd
V

  =  CV
L

 

T
 CN

L
 CGeo

N
 vAvgWnd

Geo
(17.1.2.3-53)

vArspd
V

  =  V uXV
V

  - vAvgWnd
V

vArspd  =  vArspd
V

 ⋅ vArspd
V

CV W
V

 Calculation

D  ≡  uXV W
V W  T

  
vArspd

V

vArspd
               E  ≡  uXV W

V W
 ×  

vArspd
V

vArspd

                  CV W
V

  =  I + E×  + 
1

1 + D
 E×  2

(17.1.2.3-54)

Engine Thrust Direction

uThrst
AC

  =  cos θThrst , 0, - sin θThrst
T

(17.1.2.3-55)

Dynamic Pressure

q  =  
1
2

 ρ vArspd
2

(17.1.2.3-56)

δF V Variation With P (For Partials That Are Independent Of P)

Thrust Variation

∂Thrst

∂P
  =  1  0  0 (17.1.2.3-57)
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Mass Variation

∂M

∂P
  =  - 

1
2

 K Fuel t     0     0 (17.1.2.3-58)

Aerodynamic Force Variation

∂FSide

∂β
  =  S q CSd β

∂FLift

∂α
  =  S q CLα (17.1.2.3-59)

Iteration Loop Initialization

P  =  

Thrst 

β

α

   =   
0
0
0

(17.1.2.3-60)

Iteration Loop

DO UNTIL δF V COMPONENTS ARE WITHIN SPECIFIED LIMITS

vArspd
AC

 Calculation

vArspdXAC

vArspd
  =  1 + tan2α + tan2β

 - 1

2

vArspdYAC

vArspd
  =  -  tan β 1 + tan2α + tan2β

 - 1

2 (17.1.2.3-61)

vArspdZAC

vArspd
  =  tan α 1 + tan2α + tan2β

 - 1

2

CAC
V W

 Calculation

G  ≡  
vArspd

AC

vArspd

 T

 uXV W
V W

               H  ≡  
vArspd

AC

vArspd
 ×  uXV W

V W

                   CAC
V W

  =  I + H×  + 
1

1 + G
 H×  2

(17.1.2.3-62)



17-46     TRAJECTORY GENERATORS

Aerodynamic Forces

CL  ≈  CLα α + α0 + αFlaps

CSide  ≈ CSd β β 

CD  ≈  CDf + CDthk + KDInd/L CL α + α0 + αFlaps  + KDInd/Sd CSide β (17.1.2.3-63)

FLift   =  CL S q FSide  =  CSide S q FDrag  =  CD S q

FAero
V W

  =  - FDrag   FSide - FLift
 T 

Vehicle Mass

ΔMFuel  =  ΔMFuelStart + KFuel 
1
2

 ThrstStart + Thrst  t 

M  =  M0 - ΔMJtsn∑  - ΔMFuel

(17.1.2.3-64)

Balance Of Applied And Inertial Reaction Forces

δFV  =  CV W
V

 FAero
V W

 + Thrst CAC
V W

 uThrst
AC

 - M aSF
V

 (17.1.2.3-65)

IF ALL δF V COMPONENTS ARE WITHIN SPECIFIED LIMITS,
EXIT ITERATION LOOP.  OTHERWISE, CONTINUE

δF V Variation With P (For Partials That Are Functions Of P)

Aerodynamic Force Variation

∂FDrag

∂β
  =  2 S q KDInd/Sd CSd β β

∂FDrag

∂α
  =  2 S q KDInd/L CLα α + α0 + αFlaps

 

(17.1.2.3-66)

∂FAero
V W

∂P
  =  

0     - 
∂FDrag

∂β
- 

∂FDrag

∂α

0     
∂FSide

∂β
0

0     0 - 
∂FLift

∂α
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CAC
V W

 uThrst
AC

 Variation

∂  vArspdXAC / vArspd

∂β
  =  - 1 + tan2α + tan2β

 - 3

2 tan β sec2β

∂  vArspdXAC / vArspd

∂α
  =  - 1 + tan2α + tan2β

 - 3

2 tan α sec2α

∂  vArspdYAC / vArspd

∂β
  =  - 1 - 1 + tan2α + tan2β

 -1
 tan2β  1 + tan2α + tan2β

 - 1

2 sec2β 

∂  vArspdYAC / vArspd

∂α
  =  1 + tan2α + tan2β

 - 3

2 tan β tan α sec2α

∂  vArspdZAC / vArspd

∂β
  =  - 1 + tan2α + tan2β

 - 3

2 tan α tan β sec2β (17.1.2.3-67)

∂  vArspdZAC / vArspd

∂α
  =  1 - 1 + tan2α + tan2β

 -1
 tan2α  1 + tan2α + tan2β

 - 1

2 sec2α

∂   vArspd
AC

 / vArspd

∂P
  =  

0     
∂  vArspdXAC / vArspd

∂β
   

∂  vArspdXAC / vArspd

∂α

0     
∂  vArspdYAC / vArspd

∂β
   

∂  vArspdYAC / vArspd

∂α

0     
∂  vArspdZAC / vArspd

∂β
   

∂  vArspdZAC / vArspd

∂α

∂  CAC
V W

 uThrst
AC

∂P
  =  uThrst

AC ×  + 
1

1 + G
 H×  uThrst

AC ×  + H × uThrst
AC

 ×  
vArspd

V W ×
vArspd

 

 

                                      - 
1

1 + G  2
 H×  2

 uThrst
AC

 
vArspd

V W T

vArspd
  

∂  vArspd
AC

 / vArspd

∂P

Combined δF V Variation

∂δFV

∂P
  =  CV W

V
 

∂FAero
V W

∂P
 + CAC

V W
 uThrst

AC
 
∂Thrst

∂P
 + Thrst 

∂  CAC
V W

 uThrst
AC

∂P
 - aSF

V
 
∂M

∂P
(17.1.2.3-68)

End δF V Variation With P (For Partials That Are Functions Of P)
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Error In Trial P

ΔP  =  - 
∂δF

V 

∂P

-1

 δF V (17.1.2.3-69)

P Update

P  =  P + ΔP (17.1.2.3-70)

ENDDO

CAC
V

 Calculation

CAC
V

  =  CV W
V

 CAC
V W

(17.1.2.3-71)

The previous process for calculating CAC
V

 is based on specifying the V  W  Frame attitude as a

minimum rotation angle movement from the V Frame.  The result of this definition is that to

second order in the CAC
V

 rotation angle, the roll Euler angle between the AC and V Frames may

be non-zero.  The following sections discuss refinements to the CAC
V

 computational process that

can be incorporated to directly control the CAC
V

 roll Euler angle.

17.1.2.3.1  Refinement To CAC
V  For Control Of AC Relative To V Frame Roll Euler Angle

In order to control the CAC
V

 roll Euler angle, we must introduce a roll control parameter in the

CV W
V

 matrix that causes it to deviate from the minimum rotation angle configuration.  We

thereby define:

CV W
V

  =  CV W0

V
 CV W

V W0 (17.1.2.3.1-1)

where

V  W0   = Coordinate frame with X axis along vArspd  and with minimum rotation angle
from the V Frame (i.e., as the V  W  Frame was defined in Section 17.1.2.3).

V  W   = Coordinate frame with X axis along vArspd , and oriented relative to the V  W0  

Frame by a rotation about the V  W0   Frame X axis.
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Based on these definitions, we can write for CV W
V W0 using generalized Equation (3.2.2.1-4):

CV W
V W0  =  I + sin φCntrl uXV W0

V W0 ×  + (1 - cos φCntrl) uXV W0

V W0 ×
 2

(17.1.2.3.1-2)

where

uXV W0  =  Unit vector along the V  W0   Frame X axis.

φCntrl   =  Roll control parameter.

and from Equations (17.1.2.3-54):

D  ≡  uXV W0

V W0  T
  

vArspd
V

vArspd
               E  ≡  uXV W0

V W0  ×  
vArspd

V

vArspd

                    CV W0

V 
  =  I + E×  + 

1
1 + D

 E×  2
(17.1.2.3.1-3)

It will prove convenient for the development to rewrite force/inertial balance Equation
(17.1.2.3-29) in the following equivalent form:

F j
V W

  =  FAeroj

V W
 + Thrst j CACj

V W
 uThrst

AC

 

δFj
V

  =  CV Wj

V
 F j

V W
 - Mj aSF

V
(17.1.2.3.1-4)

Due to the added roll control parameter, iteration loop Equation (17.1.2.3-31) becomes the
expanded form:

Δ δ  F 

j
V

  ≈  
∂ δ F 

V

∂ P
   

j-1

 Δ Pj + 
∂ δ  F 

V

∂ φCntrl

 

j-1

 Δ φCntrl j (17.1.2.3.1-5)

where

ΔφCntrl j  = Correction to the previous iteration cycle estimate for φCntrl  to achieve the

desired control objective (i.e., in this case, control of the CAC
V

 roll angle).

or with (17.1.2.3-33):

δ  F 

j-1
V

  ≈  - 
∂ δ F 

V

∂ P
   

j-1

 Δ Pj - 
∂ δ F 

V

∂ φCntrl

 

j-1

 Δ φCntrl j (17.1.2.3.1-6)
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Substituting (17.1.2.3.1-1) into the (17.1.2.3.1-4) δF V expression, recognizing that F V W and

CV W0

V
 are independent of φCntrl , and taking the partial derivative with respect to φCntrl , we

obtain for 
∂δF V

∂φCntrl

 in (17.1.2.3.1-6):

∂ δ FV

∂ φCntrl

  =  CV W0

V
 
∂ CV W

V W0

∂ φCntrl

 FV W (17.1.2.3.1-7)

The partial in the previous expression is from (17.1.2.3.1-2):

∂ CV W
V W0

∂ φCntrl

  =  cos φCntrl uXV W0

V W0 ×  + sin φCntrl uXV W0

V W0 ×
 2

(17.1.2.3.1-8)

In order to solve (17.1.2.3.1-6) for ΔPj and ΔφCntrl j, an additional expression is needed

defining the roll control requirement.  We provide this in the form of the general constraint
equation:

ϑ  =  uZV 
   ⋅ uYAC - φAC/V      which should be zero (17.1.2.3.1-9)

where

ϑ  =  General constraint parameter.

φAC/V   =  Desired roll Euler angle between the AC and V Frames.

uZV , uYAC   =  Unit vectors along the V Frame Z axis and the AC Frame Y axis.

The uZV 
   ⋅ uYAC product in (17.1.2.3.1-9) represents the direction cosine between the V 

Frame Z axis and the AC Frame Y axis which from generalized Equations (3.2.3.1-2) (the C32

term) equals sin φ cos θ (φ, θ  are roll, pitch Euler angles).  Assuming small roll and pitch

angles between the AC and V Frames, sin φ cos θ is approximately φ.  Thus, uZV 
   ⋅ uYAC in

(17.1.2.3.1-9) measures the computed roll angle between the AC and V Frames, and ϑ
measures the error in the computed roll angle satisfying the φAC/V  requirement.  The error in

the constraint equation is the difference between ϑ and its desired zero value:

δϑ  =  ϑ (17.1.2.3.1-10)

where

δϑ  =  Error in ϑ meeting its zero requirement.
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Numerical evaluation of (17.1.2.3.1-9) for ϑ is the following equivalent form using
coordinate frame designations for vectors and (3.1.1-12) for the dot product:

ϑ  =  uZV
V

  

T
 CAC

V
 uYAC

AC
 - φAC /V (17.1.2.3.1-11)

As in (17.1.2.3.1-5), we also define a variation in δϑ produced by the iteration loop
adjustments:

Δδϑj  ≈  
∂ δ ϑ

∂ P
 

j-1

 Δ Pj + 
∂ δ ϑ

∂ φCntrl

 

j-1

 Δ φCntrl j (17.1.2.3.1-12)

where

Δδϑj  = Variation in δϑ from its (17.1.2.3.1-10) j-1 computed value due to ΔPj

and Δ φCntrl j
 .

To make the iteration loop converge to a zero δϑ, we set Δδϑj equal to the negative of the past

value of δϑ (similar to (17.1.2.3-33)):

Δδϑj  =  - δϑj-1 (17.1.2.3.1-13)

with which (17.1.2.3.1-12) becomes:

δϑj-1  ≈  - 
∂δϑ

∂P j-1

 ΔPj - 
∂δϑ

∂φCntrl j-1

 ΔφCntrl j (17.1.2.3.1-14)

Equations (17.1.2.3.1-6) and (17.1.2.3.1-14) in combined matrix form are:

δF V

δϑ  j-1

  =  - 

∂δF
V

∂P

∂δF V

∂φCntrl

∂δϑ

∂P

∂δϑ

∂φCntrl  j-1

 
ΔP

ΔφCntrl  j

(17.1.2.3.1-15)

whose solution is the inverse relationship similar to Equation (17.1.2.3-34):
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ΔP

ΔφCntrl  j

  =  - 

∂δF
V

∂P

∂δF V

∂φCntrl

∂δϑ

∂P

∂δϑ

∂φCntrl  j-1

 -1

 
δF V

δϑ  j-1

(17.1.2.3.1-16)

which is then used to update our estimates for P and φCntrl  similar to Equation (17.1.2.3-35):

P

φCntrl  j

  =  
P

φCntrl  j-1

 + 
ΔP

ΔφCntrl  j

(17.1.2.3.1-17)

The 
∂δF

V

∂P
 partial derivative in (17.1.2.3.1-16) is provided by Equation (17.1.2.3-36) from

the previous section.  The 
∂δF V

∂φCntrl

 partial derivative is given by Equations (17.1.2.3.1-7) and

(17.1.2.3.1-8).  The 
∂δϑ

∂ φCntrl

 partial derivative in (17.1.2.3.1-16) is determined from

(17.1.2.3.1-10) and (17.1.2.3.1-11), treating φAC/V  as a constant, and using (17.1.2.3-1) with

(17.1.2.3.1-1) to expand CAC
V

:

∂δϑ

∂ φCntrl

  =  uZV
V

  

T
 CV W0

V
 
∂ CV W

V W0

∂ φCntrl

 CAC
V W

 uYAC
AC

(17.1.2.3.1-18)

The 
∂ CV W

V W0

∂ φCntrl

  term in (17.1.2.3.1-18) is provided by (17.1.2.3.1-8).

The 
∂δϑ

∂P
 partial derivative in (17.1.2.3.1-16) is derived from (17.1.2.3.1-10) -

(17.1.2.3.1-11) using (17.1.2.3-1) to expand CAC
V

:

∂δϑ

∂P
  =  uZV

V
  

T
 CV W

V 
 
∂  CAC

V W
 uYAC

AC

∂P
(17.1.2.3.1-19)
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An expression for 
∂  CAC

V W
 uYAC

AC

∂P
 in (17.1.2.3.1-19) is derived using the identical procedure

leading to Equation (17.1.2.3-50):

∂  CAC
V W

 uYAC
AC

∂P
  =  uYAC

AC ×  + 
1

1 + G
 H×  uYAC

AC ×  + H × uYAC
AC

 ×  
vArspd

V W ×
vArspd

 

 

                                  - 
1

1 + G  2
 H×  2

 uYAC
AC

 
vArspd

V W T

vArspd
 
∂  vArspd

AC
 / vArspd

∂P

(17.1.2.3.1-20)

The 
∂  vArspd

AC
 / vArspd

∂P
 term in (17.1.2.3.1-20) is provided by Equations (17.1.2.3-51) -

(17.1.2.3-52) of the previous section.

Let us now summarize the previous results in context with variations from the Equations
(17.1.2.3-53) - (17.1.2.3-71) summary of the previous section.  The pertinent expressions from
above are Equations (17.1.2.3.1-1) - (17.1.2.3.1-4), (17.1.2.3.1-7) - (17.1.2.3.1-8),
(17.1.2.3.1-10) - (17.1.2.3.1-11) and (17.1.2.3.1-16) - (17.1.2.3.1-20) which when integrated
into (17.1.2.3-53) - (17.1.2.3-71), summarize as follows in order of execution in a digital
computer program:

Inputs From Other Routines

αWand, CV  
L , vAvgWnd

Geo
, ρ, aSF

V
, V, θThrst, KFuel, S, CSd β, CLα, α0,

α Flaps, CDf, CDthk, KDInd/L, KDInd/Sd, ThrstStart, M0, ΔMJtsn

V Frame Air Flow Components

Equations (17.1.2.3-53)

CV W0

V
 Calculation

D  ≡  uXV W0

V W0  T
  

vArspd
V

vArspd
               E  ≡  uXV W0

V W0  ×  
vArspd

V

vArspd

                    CV W0

V 
  =  I + E×  + 

1
1 + D

 E×  2
(17.1.2.3.1-21)
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Engine Thrust Direction

Equation (17.1.2.3-55)

Dynamic Pressure

Equation (17.1.2.3-56)

δF V Variation With P (For Partials That Are Independent Of P)

Equations (17.1.2.3-57) - (17.1.2.3-59)

Iteration Loop Initialization

P  =  

Thrst 

β

α

   =   
0
0
0

φCntrl   =  0 (17.1.2.3.1-22)

Iteration Loop

DO UNTIL δϑ AND δF V COMPONENTS ARE WITHIN SPECIFIED LIMITS

CV W
V

 Calculation

CV W
V W0  =  I + sin φCntrl uXV W0

V W0 ×  + (1 - cos φCntrl) uXV W0

V W0 ×
 2

 

CV W
V

  =  CV W0

V
 CV W

V W0
(17.1.2.3.1-23)

vArspd
AC

 Calculation

Equations (17.1.2.3-61)

CAC
V W

 Calculation

Equations (17.1.2.3-62)

CAC
V

 Calculation

Equation (17.1.2.3-71)

Aerodynamic Forces

Equations (17.1.2.3-63)
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Vehicle Mass

Equations (17.1.2.3-64)

Balance Of Applied And Inertial Reaction Forces

F V W  =  FAero
V W

 + Thrst CAC
V W

 uThrst
AC

 

δF V  =  CV W
V

 F V W - M aSF
V

(17.1.2.3.1-24)

Error In Meeting AC Frame Roll Angle Constraint

ϑ  =  uZV
V

 

T
 CAC

V
 uYAC

AC
 - φAC/V δϑ  =  ϑ (17.1.2.3.1-25)

IF δϑ AND ALL δF V COMPONENTS ARE WITHIN SPECIFIED LIMITS,
EXIT ITERATION LOOP.  OTHERWISE, CONTINUE

δF V Variation With P (For Partials That Are Functions Of P)

Equations (17.1.2.3-66) - (17.1.2.3-68)

δF V  Variation With φCntrl

∂ CV W
V W0

∂ φCntrl

  =  cos φCntrl uXV W0

V W0 ×  + sin φCntrl uXV W0

V W0 ×
 2

∂ δ  FV

∂ φCntrl

  = CV W0

V
 
∂ CV  W

V  W0

∂ φCntrl

 FV W

(17.1.2.3.1-26)

δϑ Variation

∂δϑ

∂φCntrl

  =  uZV
V

 

T
 CV W0

V
 
∂CV W

V W0

∂φCntrl

 CAC
V W

 uYAC
AC

(17.1.2.3.1-27)

∂  CAC
V W

 uYAC
AC

∂P
  =  uYAC

AC ×  + 
1

1 + G
 H×  uYAC

AC ×  + H × uYAC
AC

 ×  
vArspd

V W ×
vArspd

 

 
(Continued)
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                      - 
1

1 + G  2
 H×  2

 uYAC
AC

 
vArspd

V W T

vArspd
 
∂  vArspd

AC
 / vArspd

∂P
 

∂δϑ

∂P
  =  uZV

V
 

T
 CV W

V
 
∂  CAC

V W
 uYAC

AC

∂P

(17.1.2.3.1-27)
(Continued)

Error In Trial P And φCntrl

ΔP

ΔφCntrl

  =  - 

∂δF
V

∂P

∂δF V

∂φCntrl

∂δϑ

∂P

∂δϑ

∂φCntrl

 -1

 
δF V

δϑ
(17.1.2.3.1-28)

P And φCntrl  Update

P

φCntrl

  =  
P

φCntrl

 + 
ΔP

ΔφCntrl

(17.1.2.3.1-29)

ENDDO

17.1.2.3.2  Utilization Of Constraint Formulation To Calculate CAC
V

 With Zero φCntrl

Given that the Section 17.1.2.3.1 formulation is to be used under particular circumstances to

calculate CAC
V

, it may be advantageous to recast the basic Section 17.1.2.3 equations into the

same format using the ϑ constraint parameter approach.  This is easily achieved by setting ϑ to

constrain the control parameter φCntrl  to zero (which is the defining condition in Section

17.1.2.3 for CAC
V

 determination):

Error In Meeting φCntrl  Control Parameter Constraint
 

             ϑ  =  φCntrl                            δϑ  =  ϑ
(17.1.2.3.2-1)

with the associated partials then becoming:
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ϑ Variation
 

           
∂δϑ

∂P
  =  0 0 0                      

∂δϑ

∂φCntrl

  =  1

(17.1.2.3.2-2)

Substitution of (17.1.2.3.2-1) - (17.1.2.3.2-2) for (17.1.2.3.1-25) and (17.1.2.3.1-27) in Section

17.1.2.3.1 converts the 17.1.2.3.1 summary equations into a computation for CAC
V

 that will set

the φCntrl  control parameter to zero, which is equivalent to the Section 17.1.2.3 result for CAC
V

.

17.1.3  END-OF-SEGMENT DATA GENERATION

An accurate end-of-segment attitude, velocity and position (and time) solution is calculated
by the End-Of-Segment Data Generation routine.  The attitude, velocity, time solution is

determined directly from the φS
V

, ΔVS and TS segment parameters.  The end-of-segment

position is calculated as a velocity integration process over the trajectory segment.

End-of-segment attitude is obtained as in Equations (17.1.2.1-1) with the CV End

V Start matrix

computed from φS
V

 using generalized Equation (3.2.2.1-8):

CV End
L   =  CV Start

L  CV End

V Start

 

CV End

V Start  =  I + 
sin φS

φS

 φS
V

×  + 
(1 - cos φS)

φS
2

 φS
V

×
 2

(17.1.3-1)

End-of-segment velocity and time are calculated as in Equations (17.1.2.1-1), (17.1.2.1-2)
and (17.1.2.1-4):

VEnd  =  VStart  + ΔVS            tEnd  =  tStart  + TS
 

vEnd
N

  =  VEnd CL
N

 CVEnd

L
 uXV

V
 

(17.1.3-2)

The vN integration routines used for the end-of-segment position determination are executed
at a selected repetition rate over the trajectory segment.  The time interval from the start of the
segment to the current integration time within the segment is calculated as:

tm  =  tm-1 + Tm tm  =  0    At Start Of Trajectory Segment (17.1.3-3)
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where

m  = Trajectory segment computer integration cycle index. As a subscript,
m designates values for parameters at the corresponding cycle time.

Tm  =  Trajectory segment integration time interval for cycle m.

tm  =  Integration time interval since trajectory segment start.

In general, Tm will be constant over the segment integration period (and the same constant for
all segments), however, we allow that for the last integration increment in a given segment, Tm

will be adjusted to a smaller value so that the last tm exactly fits TS.

The velocity vN at tm is then calculated from (17.1.1.2-7) and (17.1.1.2-12) using a version
of (17.1.2.1-1) - (17.1.2.1-2) for the tm time point:

Vm  =  Vm-1 + 
tm

TS
 ΔVS CV 

L
 

 m
  =  CV Start

L
 CV

V  Start  

 m
vm

N
  =  Vm CL

N
 CV 

L
 

 m
 uXV

V
 

(17.1.3-4)

The CVm

V Start matrix in (17.1.3-4) is computed from the equivalent rotation vector based on

(7.1.1.1-14) and (17.1.1.2-13) for constant ω 

NV
V

  angular rate:

φm
V

  =  
tm

TS
 φS

V
 (17.1.3-5)

where

φm
V

  = Rotation vector defining the attitude of the V Frame at time tm relative to the

V Frame attitude at the start of the trajectory segment.

Then using generalized Equation (3.2.2.1-8), CVm

V Start is calculated as:

CV
V Start  

 m
  =  I + 

sin φm

φm

 φm
V

×  + 
(1 - cos φm)

φm
2

 φm
V

×
 2

(17.1.3-6)

The position change ΔRm
N

 over Tm is defined formally for the position integration algorithm

as in (7.3.1-4):

ΔRm
N

  ≡  vN

tm - 1

tm-1+Tm

 dt (17.1.3-7)
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Using vN at the m-1 time point from (17.1.3-3) - (17.1.3-6), the position change ΔRm
N

 over Tm

is evaluated as in (17.1.2.2-16) based on constant angular-rate/longitudinal-acceleration over

cycle m, using (17.1.1.2-13) for the ω 

NV
V

  angular rate and the converse of (17.1.1.2-12) for the

longitudinal acceleration V:

ΔRm
N

  =  vm-1
N

 Tm + CL
N

 CV 
L  

 m-1
  

1
2

 I + h2ψ ψm
V

 ×  + h3ψ ψm
V

 ×
 2

 ΔVm u 

XV
V

+ Vm-1 ψm
V

 × u 

XV
V

   + 
1
6

 I + h4ψ ψm
V

 ×  + h5ψ ψm
V

 ×
 2

 ΔVm ψm
V

 × u 

XV
V

   Tm 
(17.1.3-8)

with

ψm
V

  =  
Tm

TS
 φS

V
 (17.1.3-9)

ΔVm  =  
Tm

TS
 ΔVS (17.1.3-10)

where

ψm
V

  = Rotation vector defining the relative orientation of Frame V at the m and m-1
cycle times.

ΔVm  =  Integrated signed velocity magnitude over the m-1 to m cycle time interval.

h2ψ, h3ψ, h4ψ, h5ψ  = h2, h3, h4, h5 from Equations (17.1.1.2-22), (17.1.2.2-10),

(17.1.2.2-12) and (17.1.2.2-14) using ψm (the magnitude of ψm
V

)

in place of φS.

Once ΔRm
N

 and vm
N

 are determined as outlined above, the position at cycle m is calculated to

precision in the form of the CN
E

 matrix and altitude h using a version of Equations (7.3.1-1),

(7.3.1-3), (7.3.1-6), (7.3.1-8) and (7.3.1-11) with ρZN  set to zero (for the wander azimuth N

Frame - See Section 4.5):

hm  =  hm-1 + u 

ZN
N

 ⋅ ΔRm
N

 

CN
E

 

 m
  =  CN

E
 

 m-1
 CNm

Nm-1
(17.1.3-11)

(Continued)
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CNm

Nm-1  =  I + 
sin ξ m

ξ m

 ξ 

m
N

×  + 
(1 - cos ξ m)

ξ 

m
2

 ξ 

m
N

×
 2

 

ξ m  =  FCm-1/2

N
 u 

ZN
N

 × ΔRm
N

(17.1.3-11)
(Continued)

The FC
N

 curvature matrix in (17.1.3-11) (a function of position being computed) is calculated

for an ellipsoidal shape earth model with Equation (5.3-18).  The FCm-1/2

N
 evaluation (at the

m-1/2 cycle time) is performed by extrapolation of past FC
N

 data (as in Equation (7.3.1-12)).

Equations (17.1.3-11) are processed repetitively (a digital integration process) from the start

to the end of the trajectory segment.  The h and CN
E

 position parameters at the start of the

segment integration process are initialized at their computed values at the end of the previous
trajectory segment.  For the first trajectory segment, h would be initialized at a specified input

altitude value, and CN
E

 set to correspond with input initial latitude, longitude and zero wander

angle (using Equations (4.4.2.1-2)).

The end-of-segment latitude, longitude and wander angle would be calculated for output display

at the end of the segment integration process from CNEnd

E
 using (4.4.2.1-3).

17.2  TRAJECTORY REGENERATION FUNCTION

The trajectory regeneration function creates a navigation data profile at a selected timing rate

from the basic trajectory segment parameters (TS, ΔVS, φS
V

) that were developed (and saved)

during trajectory shaping.  The trajectory regeneration function includes smoothing of the basic
trajectory parameters to eliminate step changes in angular-rate/acceleration at the segment
interfaces, selection of the B Frame attitude relative to the V Frame, creating integrated B Frame
inertial angular rate and specific force acceleration increments at a selected timing rate
(simulating the input to stapdown angular rate sensors and accelerometers), and generating
attitude, velocity and position corresponding to the B Frame angular-rate/specific-force profile
(i.e., the result that would be generated by strapdown inertial navigation integration of the B
Frame angular-rate/specific-force data).  Additionally, we can add wind gusts and high
frequency angular/linear motion effects as an option.  The following subsections describe each
of these operations.
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17.2.1  SEGMENT JUNCTION SMOOTHING

Smoothing of the junctions between trajectory segments is accomplished by filtering the

angular rate and acceleration defined from the TS, ΔVS, φS
V

 parameters.  In particular, we will be

regenerating the trajectory data from incremental integrated angular rate and acceleration
increments defined during each trajectory segment as:

ψm
V

  ≡  ω 

NV
V

 dt
tm - 1

tm

  =  
Tm

TS
 φS

V
 ΔVm  ≡  V dt

tm - 1

tm

  =  
Tm

TS
 ΔVS (17.2.1-1)

where

t  =  Trajectory regeneration time from the start of the trajectory profile.

m  = Trajectory regeneration function computer cycle rate index corresponding to
simulation time tm.

Tm  =  Trajectory data regeneration time interval tm - tm-1.

ψm
V

  =  Integrated V Frame angular rate ω 

NV
V

  from time tm-1 to tm.

ΔVm  =  Change in signed velocity magnitude from time tm-1 to tm.

Equations (17.2.1-1) are based on our definition for the trajectory segments as consisting of

constant V and ω 

NV
V

  over the segment time TS.  Note that the definitions for t and m are now

relative to the start of the trajectory profile (in contrast with their definition in subsections of
Section 17.1 as being referenced to the start of each trajectory segment).

For the trajectory regeneration function, we generally require Tm to be constant for the total
trajectory profile for interface compatibility with simulators receiving the generated trajectory
data (i.e., a fixed update time interval).  Because the trajectory segment TS time periods are not
generally integer multiples of Tm, Equations (17.2.1-1) must be modified accordingly at the
trajectory segment junctions as follows:

Do At Trajectory Segment Junction:

ψm
V

  =  
TFin/Cr nt

TS Cr  nt

 φS Cr nt

V
 + 

Tm - TFin/Cr nt

TSNext

 φS Next

V
 (17.2.1-2)

ΔVm  =  
TFin/Crnt

TS Cr nt

 ΔVS Cr nt + 
Tm - TFin/Cr nt

TS Next

 ΔVS Next 

where

Cr  nt , Next  = Subscripts designating parameter values for the currently ending
trajectory segment and for the next upcoming trajectory segment.
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TFin/Crnt   = Last (final) time increment in the current trajectory segment just prior to
the next trajectory segment.

The smoothing function can be accomplished using the following general linear filtering

operation on ψm
V

 and ΔVm:

ψFm

V
  =  a0 ψm

V
 + a1 ψm-1

V
 + a2 ψm-2

V
 +  + b1 ψFm-1

V
 + b2 ψFm-2

V
 + 

 

ΔVFm  =  a0 ΔVm + a1 ΔVm-1 + a2 ΔVm-2 +  + b1 ΔVFm-1 + b2 ΔVFm-2 + 
(17.2.1-3)

where

a i , b i  =  Smoothing filter coefficients (constants).

ψFm

V
, ΔVFm  =  Filtered (smoothed) values of ψm

V
, ΔVm.

We also impose the so-called “exactness” constraint on the filter coefficients which for our

case can be stated as the requirement that for extended periods of constant input (i.e., ψm
V

 and

ΔVm), the filter output will converge in the steady state to the filter input (assuming a stable

filter design).  Under extended constant input ψm
V

, in the steady state, the ψFm

V
 values for

successive m cycles will be equal, i.e. ψFm

V
 = ψFm-1

V
 = ψFm-2

V
 = etc.  (The same is true for

successive ΔVFm under extended periods of constant ΔVm input).  Thus, for extended constant

ψm
V

 we can write for ψFm

V
 from (17.2.1-3):

ψFm

V
  =  a0 + a1 + a2 +  ψm

V
 + b1 + b2 +  ψFm

V

or

ψFm

V
 1 - b1 - b2 -    =  a0 + a1 + a2 +  ψm

V

The exactness constraint requires ψFm

V
 in the previous expression to equal ψm

V
 which is

equivalent to the bracketed coefficient groupings being equal, hence:

1 - b1 - b2 -   =  a0 + a1 + a2 + 

or

a0 + a1 + a2 +  + b1 + b2 +   =  1 (17.2.1-4)
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As we shall see shortly, imposing exactness Equation (17.2.1-4) on the filter coefficients
implicitly bounds the integrated filter output to track the integrated filter input within a
predictable “following error”.  This is an important characteristic of the smoothing filter
because the integrated filter output represents the attitude/velocity that will result when using the

filter outputs (in place of the unfiltered ψm
V

, ΔVm data) during trajectory regeneration.  From

their definition, the digital integral of ψm
V

, ΔVm (i.e., their summation) over the trajectory profile

is the sum of φS
V

, ΔVS over the profile.  To preserve the essential trajectory characteristics of the

φS
V

, ΔVS segment parameters for the entire trajectory, the integral (summation) of ψFm

V
 and

ΔVFm must also track the integral of ψm
V

 and ΔVm (within filter transient effects).  Before

returning to this issue, let us now develop the integration algorithm for generating velocity and

attitude from ψFm

V
 and ΔVFm.  The velocity algorithm is simply the sum of the ΔVFm’s:

VFm  =  VFm-1 + ΔVFm (17.2.1-5)

where

VF  =  Signed velocity magnitude derived from the filtered ΔVFm increments.

The velocity vector corresponding to VF is then obtained as in (17.1.3-4):

vm
N

  =  VFm CL
N

 CV  F
L

 

 m
 uXV  F

V F
 (17.2.1-6)

where

V  F  = Coordinate frame whose attitude orientation is generated by integrating the ψFm

V
 

data.  In effect, the V   F   Frame represents the filtered V Frame.

uXV  F
V  F

  =  Unit vector along the V   F   Frame X axis.

The integration algorithm to generate CV F
L

 

 m
 from ψFm

V
   is designed using the (3.2.1-5) chain

rule as an extension of the CV 
L

 

 m
 integration algorithm:

CV 
L

 

 m
  =  CV 

L
 

 m-1
 CVm

Vm-1 (17.2.1-7)

The CVm

Vm-1 matrix is evaluated from its equivalent rotation vector using generalized Equation

(3.2.2.1-8).  Assuming constant angular rate over the m-1 to m interval (as in Equation
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(7.1.1.1-14)), we equate ψm
V

 (the integrated angular rate) to the CVm

Vm-1 equivalent rotation vector.

This is generally consistent with ψm
V

 being defined as in (17.2.1-1) as the integral of constant

trajectory segment angular rate.  We note in passing, however, that at the trajectory segment

junctions, the ω 

NV
V

  angular rate from m-1 to m is generally not constant because it spans the

end and beginning of two different trajectory segments.  For the trajectory regeneration function

we, never-the-less, still define ψm
V

 once calculated (from (17.2.1-1) - (17.2.1-2)) as a rotation

vector.  The minor error this will introduce will be to generate a V Frame attitude history during
trajectory regeneration that may have very slight deviation from the V Frame attitude history
generated during trajectory shaping.  Since the shaped trajectory profile is generally somewhat
arbitrary to begin with, the profile created during trajectory regeneration is probably equally

valid.  Proceeding with ψm
V

 calculated from (17.2.1-1) - (17.2.1-2), and treating it as a rotation

vector, we then have, using generalized Equation (3.2.2.1-8):

CVm

Vm-1  =  I + 
sin ψm

ψm

 ψm
V

  ×  + 
(1 - cos ψm)

ψm
2

 ψm
V

  ×
 2

(17.2.1-8)

Having computed CV 
L

 

 m
 by the (17.2.1-7) - (17.2.1-8) integration process, we then calculate

the equivalent version based on the filtered ψFm

V
  data as:

CV F
L

 

 m
  =  CV 

L  

 m
 CV Fm

Vm  (17.2.1-9)

where

CV Fm

Vm   = Direction cosine matrix relating the V   F   Frame and V Frame attitudes at cycle

time m.

The CV  Fm

Vm
   matrix is obtained from the rotation vector between the V   F   and V Frames using

generalized Equation (3.2.2.1-8):

CV Fm

Vm   =  I + 
sin γ m

γ m

 γ 

m
V

  ×  + 
(1 - cos γ m)

γ 

m
2

 γ 

m
V

  ×
 2

(17.2.1-10)

where

γm
V

  = Difference between the integrated (cumulative) ψm
V

 and the integrated ψFm

V
 

increments.
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From its definition, γm
V

 is given by:

γm
V

  =  ψFi

V∑
i = 1

i = m

 - ψi
V∑

i = 1

i = m

  =  ψFi

V
 - ψi

V ∑
i = 1

i = m

(17.2.1-11)

The recursive algorithm equivalent to (17.2.1-11) for calculating γm
V

 in the trajectory generator

software is:

γm
V

  =  γm-1
V

 + ψFm

V
 - ψm

V
(17.2.1-12)

Equations (17.2.1-7) - (17.2.1-10) with (17.2.1-12) define a method for calculating CV F
L

 

 m

as the integrated effect of ψFm

V
, and which deviates from CV 

L
 

 m
 by γm

V
, the difference between

the integrated ψFm

V
 and ψm

V
 increments.  At first look you might believe it easier to simply

calculate CV F
L

 

 m
 using a direct ψFm

V
 integration algorithm similar to (17.2.1-7) - (17.2.1-8) (i.e.,

with CVm

Vm-1 replaced by CV Fm

V Fm-1 and calculated as in (17.2.1-8), but using ψFm

V
).  The problem

with this approach is that the V   F   Frame orientation would not be constrained to remain at a γm
V

rotation vector attitude relative to the V Frame, and due to second order effects, might gradually

drift away from the V Frame by a value that differed more and more from γm
V

.  The resulting

regenerated trajectory might thereby differ significantly from the trajectory profile created

during the trajectory shaping process.  By directly constraining the V   F   Frame to remain at γm
V

relative to the V Frame, we are limiting the regenerated trajectory to small variations from the
shaped profile, created only by the filtering effect itself.  As explained below, imposing the

(17.2.1-4) exactness constraint on the selected smoothing filter assures that γm
V

 will be bounded

and will always return to zero during zero angular rate trajectory periods.  The same, of course,

will be true for the difference between V and VF (i.e., the difference between integrated ΔVFm

and ΔVm), because the same smoothing filter is used in (17.2.1-3) to generate ΔVFm from

ΔVm.

Let us summarize the results obtained for generating smoothed V Frame attitude and velocity
data during trajectory regeneration.  We first apply Equations (17.2.1-1) - (17.2.1-2) to calculate

the smoothing filter inputs ΔVm and ψm
V

.  Equations (17.2.1-3) are then processed to calculate

the smoothing filter outputs ΔVFm and ψFm

V
.  Equation (17.2.1-5) is applied next to compute the
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V   F   Frame signed velocity magnitude VFm as a ΔVFm integration process.  Then γm
V

 is

determined from (17.2.1-12) as the cumulative difference between ψFm

V
 and ψm

V
.  Finally, the

smoothed attitude matrix CV  F
L

 

 m
  is obtained by first performing the (17.2.1-7) - (17.2.1-8)

integration process to calculate CV 
L

 

 m
, and then computing CV  F

L
 

 m
  from CV 

L
 

 m
 and γm

V
 using

(17.2.1-9) - (17.2.1-10).

One additional point we might note regards the interpretation of ψm
V

 compared to ψFm

V
 .  From

its basic definition in (17.2.1-1), ψm
V

 represents a rotation vector created by constant angular

rate.  If a strapdown sensor assembly was somehow constrained to remain parallel to the V 

Frame, ideal angular rate sensors would output ψm
V

 as integrated angular rate increments (plus

the L Frame rotation increment).  If, on the other hand, the strapdown sensor assembly was

parallel to the V   F   Frame, we might expect ψFm

V
 (plus the L Frame increment) to be the angular

rate sensor output.  This is not exactly true however (in error to second order), due to the

manner in which we have calculated CV  F
L

 

 m
  in (17.2.1-9) rather than from a direct CV F

L
 

 m

integration algorithm using ψFm

V
 for input (as we did for CV 

L
 

 m
 from ψm

V
 in (17.2.1-7) -

(17.2.1-8)).  To calculate the correct angular rate sensor output for sensors that are parallel to the

V   F   Frame, we must use a rotation vector extraction algorithm based on successive CV  F
L

 

 m
 ’s

(i.e., Equations (3.2.2.2-10) - (3.2.2.2-12) and (3.2.2.2-15) - (3.2.2.2-19)), and on the L Frame
attitude history relative to non-rotating inertial space.  This will be the approach used during
Section 17.2.3 Trajectory Regeneration Operations.

For the remainder of this section we will analyze the (17.2.1-3) - (17.2.1-4) smoothing filter
properties in more detail to confirm behavior patterns of the integrated filter output alluded to

previously.  Using the ψFm

V
 filter as representative, we first expand (17.2.1-11) for γm

V
 using

(17.2.1-3) for ψFm

V
 to obtain:

γm
V

  =  a0 - 1  ψi
V

 + a1 ψi-1
V

 + a2 ψi-2
V

 +  + b1 ψFi-1

V
 + b2 ψFi-2

V
 + ∑

i = 1

i = m

(17.2.1-13)

The summation of individual i-k terms in (17.2.1-13) can be expanded to the following
equivalent form:
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ψi-k
V∑

i = 1

i = m

  =   ψi
V∑

i = 1

i = m

  - ψi
V∑

i = m- k+1

i = m

 + ψi
V∑

i =1- k

i = 0

 

(17.2.1-14)

ψFi-k

V∑
i = 1

i = m

  =   ψFi

V∑
i = 1

i = m

  - ψFi

V∑
i = m- k+1

i = m

 + ψFi

V∑
i =1- k

i = 0

We assume that prior to m = 1 (i.e., prior to the start of the trajectory profile), the ψm
V

’s will be

zero, hence, from (17.2.1-3), the ψFm

V
’s will also be zero.  Thus, the last terms in (17.2.1-14) are

zero and we can write:

ψi-k
V∑

i = 1

i = m

  =   ψi
V∑

i = 1

i = m

  - ψi
V∑

i = m- k+1

i = m

 

(17.2.1-15)

ψFi-k

V∑
i = 1

i = m

  =   ψFi

V∑
i = 1

i = m

  - ψFi

V∑
i = m- k+1

i = m

Substituting (17.2.1-15) into (17.2.1-13) then obtains:

γm
V

  =  a0 - 1 + a1 + a2 +  ψi
V

 + b1 + b2 +  ψFi

V∑
i = 1

i = m

           - a1 ψm
V

 - a2 ψm
V

 + ψm-1
V

 -   - b1 ψFm

V
 - b2 ψFm

V
 + ψFm-1

V
 - 

(17.2.1-16)

Exactness constraint Equation (17.2.1-4) is equivalently:

b1 + b2 +   =  - a0 + a1 + a2 +  - 1 (17.2.1-17)

With (17.2.1-17) and the (17.2.1-11) definition for γm
V

, the summation term in (17.2.1-16)

becomes:

a0 + a1 + a2 +  - 1  ψi
V

 + b1 + b2 +  ψFi

V∑
i = 1

i = m

        =  - a0 + a1 + a2 +  - 1  ψFi

V
 - ψi

V
 ∑

i = 1

i = m

  =  - a0 + a1 + a2 +  - 1  γm
V

(17.2.1-18)

Substituting (17.2.1-18) in (17.2.1-16) then yields after rearrangement:
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γm
V

  =  - 
1

a0 + a1 + a2 + 
 a1 ψm

V
 + a2 ψm

V
 + ψm-1

V
 +  

                                             + b1 ψFm

V
 + b2 ψFm

V
 + ψFm-1

V
 + 

(17.2.1-19)

Let us now analyze Equation (17.2.1-19) under sustained constant angular rate conditions.
Using the logic that led to the Equation (17.2.1-4) exactness constraint, under sustained constant

ψm
V

 conditions, all ψV
 and ψF

V
 terms become equal to the current input ψm

V
, and (17.2.1-19)

reduces to:

γm
V

  =  - 

i ai∑
i = 1

ra

 + i bi∑
i = 1

rb

ai∑
i = 0

ra
 ψm

V
(17.2.1-20)

where

ra, rb  = Highest numerical subscript for the non-zero ai, bi smoothing filter past value
coefficients.

Equation (17.2.1-20) also applies for the (17.2.1-3) velocity smoothing filter under steady
input:

μm  =  - 

i ai∑
i = 1

ra

 + i bi∑
i = 1

rb

ai∑
i = 0

ra
 ΔVm (17.2.1-21)

where

μm  =  Integral of the difference between the ΔVF filter input and output at cycle m.

Equations (17.2.1-20) - (17.2.1-21) show that under the (17.2.1-4) exactness constraint, the
smoothing filter described by Equations (17.2.1-3) has an output under steady input, whose
integral follows the integrated input within a fixed value proportional to the input.  The constant

of proportionality can be expressed as the equivalent to a dynamic response time τFilt  in the

filter output relative to the input where:

τFilt   = Filter dynamic response time defined as the time required under constant
angular rate for the V Frame to rotate from the V   F   attitude to its current attitude

at cycle m (i.e., from V   F   through minus γm
V

).  We also define τFilt  to be
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positive for a “lag” condition when γm
V

 is negative (i.e., the sum (or integral) of

ψFm

V
  is lagging the sum of ψm

V
).  A negative τFilt  is denoted as a dynamic

“lead” condition in which the sum of ψFm

V
  leads the sum of ψm

V
.  To achieve

dynamic lead, prediction is implied in the filter coefficients.

From Equation (17.2.1-1) under constant angular rate, the angular rate at cycle m is ψm
V

divided by Tm, and the above τFilt  definition translates analytically to:

γm
V

  =  - 
1

Tm
 ψm

V
 τFilt (17.2.1-22)

Combining Equations (17.2.1-20) and (17.2.1-22) we see that:

τFilt   =  

i ai∑
i = 1

ra

 + i bi∑
i = 1

rb

ai∑
i = 0

ra
 Tm (17.2.1-23)

An example of a simple filter that might be used for the smoothing function is the so-called
“walking window” filter which has zero for the bi coefficients and equal values for the ai
coefficients.  For this filter configuration, Equations (17.2.1-3) with (17.2.1-4) simplify to:

ψFm

V
  =  

1
ra + 1

 ψm-i
V∑

i = 0

ra

ΔVFm  =  
1

ra + 1
 ΔVm-i∑
i = 0

ra

(17.2.1-24)

and τFilt  from (17.2.1-23) is:

τFilt   =  

i∑
i = 1

ra

ra + 1
 Tm (17.2.1-25)

The i terms in the previous expression form a simple arithmetic progression whose sum is
ra ra + 1  / 2.  Then, (17.2.1-25) becomes:

τFilt   =  
ra

2
 Tm (17.2.1-26)
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It may be desirable to have the V   F   Frame attitude and velocity (i.e., the equivalent of the
integrated filter output) match the V Frame attitude/velocity under steady angular-
rate/longitudinal-acceleration conditions.  Because this is a simulation program, a particularly

simple way of accomplishing this is to modify the ψm
V

, ΔVm input data time base to occur τFilt

seconds earlier.  Then the ΔVF, ψF
V

 smoothing filter outputs will be brought into time

synchronization with the original ψm
V

, ΔVm input data due to the filter dynamic lag.

Alternatively, an additional constraint can be placed on the smoothing coefficients by which

τFilt  is set to zero.  From Equation (17.2.1-23), we see that this occurs for:

i ai∑
i = 1

ra

 + i bi∑
i = 1

rb

  =  0 (17.2.1-27)

By imposing the (17.2.1-27) constraint, we are in effect, forcing the filter to “catch up”
under steady inputs, to time lags developed under previous dynamic conditions.  In general, the
net effect is a penalty in the smoothing properties of the filter.  For example, consider the simple
filter configuration (for even values of ra) defined by:

 bi  =  0                a0  =  a
 

ai  =  
a
i
   for i = 1  to  

ra

2
              ai  =  - 

a
i
   for   i = 1 + 

ra

2
    to  ra

(17.2.1-28)

which satisfies (17.2.1-27).  With exactness constraint (17.2.1-4) and the (17.2.1-28)

coefficients, Equations (17.2.1-3) become for the ψFm

V
 smoothing filter:

ψFm

V
  =  K ψm

V
 + 

1
i

∑
i = 1

ra  /2

 ψm-i
V

 - 
1
i

∑
i = 1+ra  /2

ra

 ψm-i
V

 

              K  ≡  
1

1 + 
1
i

∑
i = 1

ra  /2

 - 
1
i

∑
i = 1+ra  /2

ra

(17.2.1-29)

For ra equal to 10 as an example, consider the response of (17.2.1-29) to a step change in ψm
V

(call it ΔψV
) from a steady state ψm

V
 (and ψFm

V
) condition.  The filter smoothing effectiveness

can be measured by the magnitude of the maximum change in the filter output ψFm

V
 from cycle

to cycle (i.e., ψFm

V
 - ψFm-1

V
) compared to the maximum cycle-to-cycle change in the filter input.
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The filter input cycle-to-cycle change profile ψm
V

 - ψm-1
V

 for the steady input plus the ΔψV
 step is

the sequence , 0, 0, ΔψV
, 0, 0, .  The (17.2.1-29) filter output cycle-to-cycle change

response (ψFm

V
 - ψFm-1

V
) to the steady input plus the ΔψV

 step is the sequence , 0, 0, K ΔψV
 ,

K ΔψV
 , 

K
2

 ΔψV
 , 

K
3

 ΔψV
 , 

K
4

 ΔψV
 , 

K
5

 ΔψV
 , - 

K
6

 ΔψV
 , - 

K
7

 ΔψV
 , - 

K
8

 ΔψV
 , - 

K
9

 ΔψV
 ,

- 
K
10

 ΔψV
 , 0, 0, .  The sum of the ψFm

V
 - ψFm-1

V
 changes (with K from (17.2.1-29)) adds

exactly to ΔψV
 (as it should due to the exactness constraint).  For the previous sequence, the

largest change in ψFm

V
 is K ΔψV

 occurring for the first two cycles following the ΔψV
 change.

For the 10 stage filter selected, K from (17.2.1-29) is 0.3791.  Thus, the filter has the effect of

smoothing the input step from a 1.0 ΔψV
 maximum cycle-to-cycle input change to a 0.3791

ΔψV
 maximum filter cycle-to-cycle output change.

The advantage for the (17.2.1-29) filter is that the integral of its output eventually balances the

integral of the input following the ΔψV
 step input.  For the ra value of 10 discussed previously,

the (17.2.1-29) filter integrated output (i.e., the sum of the ψFm

V
’s would balance the integrated

filter input (the sum of the ψm
V

’s) after 11 filter cycles following application of a step input (for

confirmation, try it as an exercise with ψm
V

 going from a steady zero condition to a steady

ΔψV
 condition).  This, of course, is the direct result of applying the Equation (17.2.1-27)

constraint in the (17.2.1-29) filter design to achieve zero steady state integral dynamic lag.

Now consider the response of the walking window filter as described by Equations
(17.2.1-24).  For a ten stage version of this filter (i.e., ra of 10), the output change (i.e.,

ψFm

V
 - ψFm-1

V
) response to the ΔψV

 input step would be K ΔψV
 for 11 successive cycles,

followed by zero.  However, K for this case is 
1

ra + 1
, which equals 0.0909 for the ra of 10.

Thus, the maximum step change in the walking window filter output would be 0.0909 of the
input step compared to 0.3791 for the Equation (17.2.1-29) filter.  The penalty for the walking
window filter is the (17.2.1-26) dynamic lag response time (5 Tm for the 10 stage filter)

compared to zero dynamic response time for the Equation (17.2.1-29) filter.  For a ΔψV
 step

filter input (i.e., ψm
V

 going from a steady zero condition to a steady ΔψV
 condition), Equation

(17.2.1-22) shows that the 5 Tm response time would eventually cause the integrated filter
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output (i.e., the sum of the ψFm

V
’s) to lag the integrated filter input (the sum of the ψm

V
’s) by

5 ΔψV
 .  By analysis of the 10 stage walking window filter integrated output response, we

would find that the steady 5 ΔψV
  lag condition would be reached after 11 filter cycles following

application of the step input.  Using the simple technique of inputting time advanced data to the
walking window (by 5 Tm), the dynamic response time lag can be eliminated while retaining

the 0.0909 smoothing factor.

17.2.2  SPECIFYING B FRAME ATTITUDE

The B Frame attitude is created during trajectory regeneration operations by specifying the B
Frame orientation in the user vehicle and the orientation of the user vehicle relative to the
smoothed V Frame (i.e., V F) attitude:

CB
V F

  =  CAC
V F

 CB
AC

(17.2.2-1)

CB
L

  =  CV F
L

 CB
V F

(17.2.2-2)

The CV  F
L

  matrix in (17.2.2-1) is provided from the smoother integration operations described

in Section 17.2.1.  The CB
AC

 matrix would be a specified constant for a “hard-mounted”

strapdown INS.  In some very high accuracy applications, the strapdown sensor assembly may
be mounted on a multi-axis mechanical platform so that its orientation (i.e., the B Frame
attitude) relative to AC axes can be controlled in a rotation pattern that cancels error effects.  For

such an arrangement, a set of Euler angles can be defined to describe the CB
AC

 attitude of the B

Frame relative to the AC frame using Equations similar to (3.2.3.1-2) (depending on the Euler
angle sequence represented by the multi-axis platform).  The Euler angles for these equations
would typically be generated during the trajectory regeneration process by integrating a specified
set of Euler angle rate equations.  An interesting application of the Euler angle technique arises
in spinning sensor assembly applications in which the V   F   Frame is defined for a hypothetical
non-spinning body with the real B Frame considered to be rotating around the V   F   Frame at a
roll Euler angle rate.  The spinning vehicle trajectory is shaped for the non-spinning V   F   Frame,
and the B Frame attitude is superimposed on the non-spinning coordinates using a single roll
Euler angle rotation.  The roll Euler angle rate is then set to an input specified profile.

The CAC
V  F

 matrix in (17.2.2-1) is typically used to handle angle of attack/sideslip effects if

desired to be included in the simulation.  Otherwise, CAC
V  F

 can be simply set to the identity
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matrix.  To include angle of attack and sideslip effects, the CAC
V  F

 matrix would be calculated

using the methods of Section 17.1.2.3 (summarized by Equations (17.1.2.3-53) -
(17.1.2.3-71)), Section 17.1.2.3.1 (summarized by Equations (17.1.2.3-53) - (17.1.2.3-71) with
the Equation (17.1.2.3.1-21) - (17.1.2.3.1-29) modifications), or Section 17.1.2.3.2
(summarized by Equations (17.1.2.3-53) - (17.1.2.3-71) with the Equation (17.1.2.3.1-21) -
(17.1.2.3.1-29) and (17.1.2.3.2-1) - (17.1.2.3.2-2) modifications).  The following particulars
would also apply:

• All V and V designations would be replaced by V  F   and VF (i.e., smoothed) designations.  In
particular:

V → VF             
 ( )
 V ( )

 →  
 ( )
 V F( )

             
 ( )V ( )
 ( )  →  

 ( ) V F ( )
 ( )

 

              C
 ( )

 V ( )
 → C

 ( )
 V F( )

             C
 V ( )

 ( )
 → C

 V F( )
 ( )

(17.2.2-3)

in which ( ) designates other parameters (or no parameter).

• Equation (17.1.2.3-58) and the ΔMFuel expression in Equation (17.1.2.3-64) (derived from

the (17.1.2.3-27) integral expression) would be replaced by the more accurate repetition rate
algorithm:

ΔMFuelm  =  ΔMFuelm-1 + K Fuel 
1
2

 Thrstm + Thrstm-1  Tm 

Thrst m = 0  =  0 (17.2.2-4)

∂M

∂P
  =  - 

1
2

 KFuel Tm     0     0

where

m  =  Computation cycle rate index for the trajectory regeneration function.

Tm  =  Time interval for the trajectory regeneration function computation cycle.

• The aSF
V

 → aSF
V F

 term in Equations (17.1.2.3-65) and (17.1.2.3.1-24) would be calculated

from:

aSFm

V F
  ≈  CV F

L
 

 m

 T
 CN

L
 aSFm

N
 (17.2.2-5)
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with CV F
L

 

 m
 computed from smoother Equations (17.2.1-7) - (17.2.1-10) and

(17.2.1-12), and aSFm

N
  calculated with the revised form of (7.2-2):

aSFm

N
  ≈  

1
2 Tm

 ΔvSFm+1

N
 + ΔvSFm

N
   ≈  

1
2 Tm

 vm+1
N

 - vm-1
N

 - 2 ΔvG/CORm

N
(17.2.2-6)

The vm
N

 terms in (17.2.2-6) would be computed with smoothed data as in (17.2.1-6).

Note that Equation (17.2.2-6) requires vm
N

 data at the m+1 cycle time.  This implies that

the smoothing algorithms in Section 17.2.1 will be operated one cycle in advance to

provide the required VFm+1, CV F 
L

 

 m+1
 inputs to (17.2.1-6).  Alternatively, a less

accurate algorithm can be used such as:

aSFm

N
  ≈  

1
Tm

 vm
N

 - vm-1
N

 - ΔvG/CORm

N
(17.2.2-7)

The ΔvG/CORm

N
 term in (17.2.2-6) and (17.2.2-7) would be calculated as part of

trajectory regeneration operations (See Section 17.2.3) based on Equation (7.2.1-1).

• Provisions can be incorporated for a control function to transition into and out of
aerodynamic flight during take-off and landing.  The control function would allow the above

defined CAC
V F

 matrix to be “faded” in or out from the identity matrix to its full angle of

attack/sideslip value during selected time periods as follows:

CACα/β
V F

 

 m
  = Value for CAC

V F
 calculated as described above that incorporates the full

angle of attack/sideslip values.

φAC / V     F α /βm, θAC / V     F α/ βm, ψAC / V    F α /βm  =  
Euler angle extraction from CACα /β

V     F
 

 m
using Equations (3.2.3.2-1) - (3.2.3.2-2).

φAC / V     Fm  =  1 - fφ  Cntrl  φAC / V     F α /βm 

θAC / V     Fm  =  1 - fθ Cntrl  θAC / V    F α /βm (17.2.2-8)

ψAC / V     Fm  =  1 - fψ  Cntrl  ψAC / V    F α /βm 

CAC
V F

 

 m
  =  

Direction cosine matrix reconstruction from φAC/V Fm, 

θAC/V Fm, ψAC/V Fm using Equations (3.2.3.1-2).
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where

fφCntrl , fθCntrl , fψCntrl   = Roll, pitch, heading control parameter ranging from
zero (for no control) to one (for complete control).

CAC
V F

 

 m
  = Value for CAC

V F
 used in Equation (17.2.2-1) during trajectory

regeneration.

The fφCntrl , fθCntrl , fψCntrl  parameters would be programmed to transition linearly

from one to zero during simulated take-off/runway-lift-off, and to linearly transition
from zero to one during simulated landing/runway-touchdown.  During simulated take-
off, the fφCntrl , fψCntrl  parameters would be programmed to transition from one to zero

from the time of vehicle lift-off.  To simulate angle of attack build-up prior to liftoff, the
fθCntrl  parameter would be programmed to transition from one to zero prior to runway
liftoff.  During simulated landing, the fφCntrl , fψCntrl  parameters would b e

programmed to transition from zero to one so that the transition completes at the instant
of runway touch-down.  During landing, fθCntrl  would be programmed to transition to

one immediately following runway touchdown.

• Provisions can be incorporated for selecting the desired form of CAC
V F

 generation algorithm

for different trajectory segments (i.e., for direct CAC
V F

 Euler roll angle control as in Section

17.1.2.3.1, or for minimum CV WF
V F

 rotation angle magnitude as in Section 17.1.2.3), and for

smoothly transitioning from one form to another.  The transition operation can be handled
similar to the (17.2.2-8) approach:

CAC-1
V F

 

 m
  =  Value for CAC

V F
 based on one computation method (call it Method 1).

φAC/V F-1m, θAC/V F-1m, ψAC/V F-1m  =  
Euler angle extraction from CAC-1

V F
 

 m

using Equations (3.2.3.2-1) - (3.2.3.2-2).

CAC-2
V F

 

 m
  =  

Value for CAC
V F

 based on the other

computation method (call it Method 2).
(17.2.2-9)

φAC/V F-2m, θAC/V F-2m, ψAC/V F-2m  =  
Euler angle extraction from CAC-2

V F
 

 m

using Equations (3.2.3.2-1) - (3.2.3.2-2).

φAC/V Fm  =  1 - f1-2  φAC/V F-1m + f1-2 φAC/V F-2m 

(Continued)



17-76     TRAJECTORY GENERATORS

θAC/V Fm  =  1 - f1-2  θAC/V F-1m + f1-2 θAC/V F-2m

ψAC/V Fm  =  1 - f1-2  ψAC/V F-1m + f1-2 ψAC/V F-2m
(17.2.2-9)

(Continued)

CAC
V F

 

 m
  =  

Direction cosine matrix reconstruction from φAC/V Fm, 

θAC/V Fm, ψAC/V Fm using Equations (3.2.3.1-2).

where

f1-2  = Control parameter ranging from zero to one that will transition CAC
V F

 from

CAC-1
V F

 

 m
 to CAC-2

V F
 

 m
.

CAC
V F

 

 m
  = Value for CAC

V F
 used in Equation (17.2.2-1) during trajectory

regeneration.

The f1-2 control parameter would be programmed to transition linearly from zero to one

during the time period that the CAC
V F

 solution is required to transition from CAC-1
V F

 

 m
 to

CAC-2
V F

 

 m
.

• Provisions can be incorporated for including AC Frame high frequency angular rotation
effects (See Section 17.2.3.2.3 for details).

17.2.3  TRAJECTORY REGENERATION

Trajectory regeneration operations take the smoothed data from Section 17.2.1 and the B
Frame attitude data from Section 17.2.2 to create a consistent set of position (in the E Frame),
N Frame velocity, and B Frame specific-force-acceleration/inertial-angular-rate data at the
trajectory generator m cycle times.  The B Frame specific-force-acceleration/inertial-angular-rate
data are in the form of integrated increments over each m cycle, simulating the output from an
error free strapdown inertial sensor assembly.  The simulated sensor data is designed such that
when operated upon by the high precision strapdown inertial navigation integration algorithms
of Chapters 7 and 19 (Section 19.1), the resulting attitude, velocity and position data will be
identical to the attitude, velocity position data provided by the trajectory generator.  The previous
requirement is an important constraint because it goes to proving the validity of the trajectory
generator to users during simulation applications.  It is reassuring to a user that a documented
set of verifiable precision integration algorithms exist that can be applied to the trajectory
generator strapdown sensor data outputs and produce attitude, velocity and position time
histories that match the equivalent trajectory generator attitude, velocity, position outputs.
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The previous operations constitute the basic trajectory regeneration function.  Variations can
also be incorporated to include the effects of wind gust induced aerodynamic force acceleration,
sensor assembly lever arm position displacement in the AC Frame, and additional high
frequency linear/angular motion measured by the inertial sensors.  The following sections
address each of these topics.

17.2.3.1  BASIC TRAJECTORY REGENERATION OPERATIONS

The basic trajectory regeneration operations begin with the Section 17.2.1 and 17.2.2 filtering
and B Frame attitude calculations as defined by Equations (17.2.1-1) - (17.2.1-3), (17.2.1-5) -
(17.2.1-10), (17.2.1-12) and (17.2.2-1) - (17.2.2-2) repeated below in their order of execution in
a typical simulation program software structure.  Included are provisions for AC Frame attitude
output.

V Frame Incremental Data

ψm
V

 =  
Tm

TS
 φS

V
 ΔVm  =  

Tm

TS
 ΔVS

Do At Trajectory Segment Junctions:

ψm
V

  =  
TFin/Cr nt

TS Cr  nt

 φS Cr  nt

V
 + 

Tm - TFin/Cr nt

TS Next

 φS Next

V
 

ΔVm  =  
TFin/Cr nt

TS  Cr  nt

 ΔVS Cr nt + 
Tm - TFin/Cr nt

TS  Next

 ΔVS Next (17.2.3.1-1)

V Frame Attitude

CVm

Vm-1  =  I + 
sin ψm

ψm

 ψm
V

×  + 
(1 - cos ψm)

ψm
2

 ψm
V

×
 2

CV 
L

 

 m
  =  CV 

L
 

 m-1
 CVm

Vm-1

Smoothed Attitude Increments

ψFm

V
  =  a0 ψm

V
 + a1 ψm-1

V
 + a2 ψm-2

V
 +  + b1 ψFm-1

V
 + b2 ψFm-2

V
 + 

(Continued)
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V  F Frame Attitude

γm
V

  =  γm-1
V

 + ψFm

V
 - ψm

V

CV Fm

Vm   =  I + 
sin γm

γm

 γm
V

×  + 
(1 - cos γm)

γm
2

 γm
V

×
 2

CV F
L

 

 m
  =  CV 

L
 

 m
 CV Fm

Vm

B And AC Frame Attitude

CB
V F

 

 m
  =   CAC

V F
 

 m
 CB

AC
 

 m

CAC
V F

 and CB
AC

 calculated

as described in Section 17.2.2.
(17.2.3.1-1)
(Continued)

CB
L

 

 m
  =  CV F

L
 

 m
 CB

V F
 

 m

CAC
L

 

 m
  =  CB

L
 

 m
 CB

AC
 

 m

T
For Output Information

Smoothed Velocity Increments

ΔVFm  =  a0 ΔVm + a1 ΔVm-1 + a2 ΔVm-2 + ⋅⋅⋅ + b1 ΔVFm-1 + b2 ΔVFm-2 + ⋅⋅⋅

N Frame Velocity

VFm  =  VFm-1 + ΔVFm

vm
N

  =  VFm CL
N

 CV F
L

 

 m
 uXV F

V F

The basic outputs from Equations (17.2.3.1-1) are the B Frame attitude CB
L

 and N Frame

velocity vN at computer cycle m.  The E Frame position and B Frame integrated specific-force-
acceleration/inertial-angular-rate increments are computed from these parameters using an
inverted form of the Chapter 7 stapdown integration algorithms.  For the trajectory regeneration
function, we place the following restrictions on the Chapter 7 integration algorithms:

• The trajectory generator N Frame is of the azimuth wander type, hence from Section

4.5, ρZN = 0.

• The trajectory regeneration function will use a single updating rate identified as the m
cycle, hence, the Table 7.5-1 algorithms will be set so that n = m .

• The high resolution algorithms will be used for position updating.
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• We will assume constant B Frame angular rate and specific force acceleration over an
m cycle.

The constant angular-rate/specific-force restriction is incorporated to simplify the trajectory
regeneration computations.  This assumption should not restrict the generality of the trajectory
generator if it is acknowledged that the m cycle rate can be increased to whatever the user feels
is required to adequately account for high frequency effects in the simulator generated data.  The
previous approach is justified because real-time throughput restrictions are generally not an
issue for simulation programs.  It is important to recognize that while the trajectory generator
computations are based on the Chapter 7 algorithms, the m cycle rate selected for the trajectory
generator is not related to the execution rate for Chapter 7 algorithms implemented in a real
strapdown inertial navigation system, whose execution rate structure is based on performance
issues and real-time computer throughput restrictions (see Section 7.4).  At the conclusion of
this section we will discuss how the trajectory generator can be modified for enhanced accuracy
and realism.

Subject to the previous constraints, let us now list the applicable Chapter 7 strapdown
integration algorithms we will apply for trajectory regeneration.  Using Table 7.5-1 as a guide,

but with φm = αm in (7.1.1.1-12) and (7.1.1.1-3), using (7.2.2.2.1-5) for ΔvSFm

BI(m-1)
, with

(7.3.3.1-9) and (7.3.3.1-11) for ΔRSFm

B
  (all based on constant B Frame angular rate and specific

force), and eliminating the I and E subscripts in the BI, LI and NE Frame notation for
simplicity, the resulting integration algorithms in their order of execution are as follows:

VELOCITY

ΔvSFm

Bm-1  =  I +  
1 - cos αm

αm
2

 αm×  + 
1

αm
2

 1 - 
sin αm

αm

 αm×  2
 υm (17.2.3.1-2)

ΔvSFm

Lm-1  =  CB
L

 

 m-1
 ΔvSFm

Bm-1 (17.2.3.1-3)

ΔRvm

N
  ≈  Tm 

3
2

 vm-1
N

 - 
1
2

 vm-2
N

(17.2.3.1-4)

FCm-1

N
  =  f CN

E
 

  m-1
, hm-1 Using Equations (5.3-18) (17.2.3.1-5)

FCm-1/2

N
  =  

3
2

 FCm-1

N
 - 

1
2

 FCm-2

N
(17.2.3.1-6)

ωIEm-1

N
  =  CN

E
 

  m-1

 T
 ωIE

E
(17.2.3.1-7)
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ωIEm-1/2 
N

  ≈  
3
2

 ωIEm-1 
N

 - 
1
2

 ωIEm-2

N
(17.2.3.1-8)

ζvm  ≈  CN
L

 ωIEm-1/2 
N

 Tm + FCm-1/2

N
 uZN

N
 × ΔRvm

N
(17.2.3.1-9)

CLm-1

Lm   ≈  I - 
1
2

 ζvm× (17.2.3.1-10)

ΔvSFm

Lm   =  CLm-1

Lm  ΔvSFm

Lm-1 (17.2.3.1-11)

vm-1/2
N

  ≈  
3
2

 vm-1
N

 - 
1
2

 vm-2
N

(17.2.3.1-12)

gPm-1/2

N
  ≈  

3
2

 gPm-1

N
 - 

1
2

 gPm-2

N
(17.2.3.1-13)

ΔvG/CORm

N
  ≈  gPm-1/2

N
 -  2 ωIEm-1/2 

N
 + FCm-1/2

N
 uZN

N
 × vm-1/2

N
 × vm-1/2

N
 Tm (17.2.3.1-14)

vm
N

  =  vm-1
N

 + CL
N

 ΔvSFm

Lm  + ΔvG/CORm

N
(17.2.3.1-15)

POSITION

ΔRSFm

B
  =  

1
2

 I + 
1

αm
2

 1 - 
sin αm

αm

 αm×  + 
1

αm
2

 
1
2

 - 
(1 - cos αm)

αm
2

 αm
2

×  υm Tm (17.2.3.1-16)

ΔRSFm

L
  =  - 

1
6

 ζvm × ΔvSFm

Lm-1
 Tm + CB

L
 

  m-1
 ΔRSFm

B
  (17.2.3.1-17)

ΔRm
N

  =  vm-1
N

 + 
1
2

 ΔvG/CORm

N
 Tm + CL

N
 ΔRSFm

L
 (17.2.3.1-18)

Δhm  =  uZN
N

 ⋅ ΔRm
N

(17.2.3.1-19)

ξm  ≈  FCm-1/2

N
 uZN

N
 × ΔRm

N
(17.2.3.1-20)

CNm

Nm-1  =  I + 
sin ξm

ξm

 ξm×  + 
(1 - cos ξm)

ξm
2

 ξm×  ξm× (17.2.3.1-21)

hm = hm-1 + Δhm (17.2.3.1-22)

CN
E

 

  m
  =  CN

E
 

  m-1
 CNm

Nm-1 (17.2.3.1-23)
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ATTITUDE

CBm

Bm-1  =  I + 
sin αm

αm

 αm×  + 
(1 - cos αm)

αm
2

 αm×  αm× (17.2.3.1-24)

CBm

Lm-1  =  CB
L

 

  m-1
 CBm

Bm-1 (17.2.3.1-25)

ζm  ≈  CN
L

 ωIEm-1/2

N
 Tm + FCm-1/2

N
 uZN

N
 × ΔRm

N
(17.2.3.1-26)

CLm-1

Lm   =  I - 
sin ζm

ζm

 ζm×  + 
(1 - cos ζm)

ζm
2

 ζm×  ζm× (17.2.3.1-27)

CB
L

 

  m
  =  CLm-1

Lm  CBm

Lm-1 (17.2.3.1-28)

where

ζvm, CLm-1

Lm , ΔRvm

N
  = Estimated values for ζm, CLm-1

Lm , ΔRm
N

 used in the velocity

calculations based on extrapolated past value data available at the
time the associated equation is processed.  The different symbols
used for these parameters have been introduced to avoid
confusion in subsequent inversion operations.

Given CB
L

 

  m
 and vm

N
 from (17.2.3.1-1), let us now find an inverted form of (17.2.3.1-2) -

(17.2.3.1-28) for position in the E Frame (hm and CN
E

 

  m
), and for the integrated B Frame

inertial-angular-rate/specific-force increments (αm and υm).  The algorithms for calculating the

B Frame integrated inertial angular rate increment αm are obtained directly from Equations

(17.2.3.1-5) - (17.2.3.1-8) and (17.2.3.1-26) - (17.2.3.1-27) using the combined inverse of
(17.2.3.1-25) and (17.2.3.1-28), the inverse of (17.2.3.1-24), and a linear interpolation

algorithm for ΔRm
N

:

FCm-1

N
  =  f CN

E
 

  m-1
, hm-1 Using Equations (5.3-18)

FCm-1/2

N
  =  

3
2

 FCm-1

N
 - 

1
2

 FCm-2

N
(17.2.3.1-29)

ωIEm-1

N
  =  CN

E
 

  m-1

 T
 ωIE

E

(Continued)
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ωIEm-1/2 
N

  ≈  
3
2

 ωIEm-1 
N

 - 
1
2

 ωIEm-2

N

ΔRAttm
N

  ≈  
1
2

 vm
N

 + vm-1
N

 Tm 

ζm  ≈  CN
L

 ωIEm-1/2

N
 Tm + FCm-1/2

N
 uZN

N
 × ΔRAttm

N

 

CLm-1

Lm   =  I - 
sin ζ m

ζ m

 ζ m×  + 
(1 - cos ζ m)

ζ m
2

 ζ m×  ζ m×

(17.2.3.1-29)
(Continued)

CBm

Bm-1  =  CB
L

 

 m-1

 T
 CLm-1

Lm  T
 CB

L
 

 m

αm  =  Rotation angle extraction from CBm

Bm-1 
 using (3.2.2.2-10) - (3.2.2.2-12)
and (3.2.2.2-15) - (3.2.2.2-19).

where

ΔRAttm
N

  = Value for position change increment ΔRm
N

 used for attitude updating based

on trapezoidal integration of velocity.

Note that ΔRAttm
N

  is used in (17.2.3.1-29) rather than ΔRm
N

 as in (17.2.3.1-26).  This is

because ΔRm
N

 has not yet been calculated when ΔRm
N

 is needed in Equation (17.2.3.1-29).  For

enhanced accuracy (in having the (17.2.3.1-29) result being the exact inverse of the
(17.2.3.1-24) - (17.2.3.1-28) integration process, Equations (17.2.3.1-29) can be repeated using

ΔRm
N

 in place of ΔRAttm
N

 , once ΔRm
N

 is determined.  A discussion on continuing this process

iteratively for refined accuracy is provided at the conclusion of this section.  Note that if ΔRAttm
N

as calculated in (17.2.3.1-29) is used for ΔRm
N

 in (17.2.3.1-26), then Equations (17.2.3.1-29) as

shown will exactly represent the inverse of the (17.2.3.1-24) - (17.2.3.1-28) integration process
without iteration.

Using αm, ωIEm-1/2

N
 and FCm-1/2

N
 from (17.2.3.1-29), the algorithms for calculating the B

Frame integrated specific force increment υm are obtained from Equations (17.2.3.1-12) -

(17.2.3.1-14) directly, from the inverse of (17.2.3.1-15), from (17.2.3.1-4) and (17.2.3.1-9) -
(17.2.3.1-10) directly, from the inverse of (17.2.3.1-11) and (17.2.3.1-3), and from the inverse
of (17.2.3.1-2):
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vm-1/2
N

  ≈  
3
2

 vm-1
N

 - 
1
2

 vm-2
N

gPm-1/2

N
  ≈  

3
2

 gPm-1

N
 - 

1
2

 gPm-2

N

ΔvG/CORm

N
  ≈  gPm-1/2

N
 -  2 ωIEm-1/2 

N
 + FCm-1/2

N
 uZN

N
 × vm-1/2

N
 × vm-1/2

N
 Tm

ΔvSFm

Lm   =  CL
N T

 vm
N

- vm-1
N

 - ΔvG/CORm

N

ΔRvm

N
  ≈  Tm 

3
2

 vm-1
N

 - 
1
2

 vm-2
N

(17.2.3.1-30)

ζvm  ≈  CN
L

 ωIEm-1/2 
N

 Tm + FCm-1/2

N
 uZN

N
 × ΔRvm

N

CLm-1

Lm   ≈  I - 
1
2

 ζvm×

ΔvSFm

Lm-1
  =  CLm-1

Lm -1
ΔvSFm

Lm
 

ΔvSFm

Bm-1  =  CB
L

 

 m-1

 T
 ΔvSFm

Lm-1

υm  =  I + 
1 - cos αm

αm
2

 αm×  + 
1

αm
2

 1 - 
sin αm

αm

 αm×  2
 -1

 ΔvSFm

Bm-1

Finally, using αm and FCm-1/2

N
 from (17.2.3.1-29), and υm and ΔvSFm

Lm-1 from (17.2.3.1-30),

the algorithms for calculating position in the E Frame (hm and CN
E

 

 m
) are Equations

(17.2.3.1-16) - (17.2.3.1-23) directly:

ΔRSFm

B
  =  

1
2

 I + 
1

αm
2

 1 - 
sin αm

αm

 αm×  + 
1

αm
2

 
1
2

 - 
(1 - cos αm)

αm
2

 αm
2

×  υm Tm 

ΔRSFm

L
  =  - 

1
6

 ζvm × ΔvSFm

Lm-1
 Tm + CB

L
 

  m-1
 ΔRSFm

B
  (17.2.3.1-31)

ΔRm
N

  =  vm-1
N

 + 
1
2

 ΔvG/CORm

N
 Tm + CL

N
 ΔRSFm

L
 

 

Δhm  =  uZN
N

 ⋅ ΔRm
N

(Continued)
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ξm  ≈  FCm-1/2

N
 uZN

N
 × ΔRm

N

CNm

Nm-1  =  I + 
sin ξ m

ξ m

 ξ m×  + 
(1 - cos ξ m)

ξ m
2

 ξ m×  ξ m×

 

hm  =  hm-1 + Δhm

(17.2.3.1-31)
(Continued)

CN
E

 

 m
  =  CN

E
 

 m-1
 CNm

Nm-1

Equations (17.2.3.1-1) and (17.2.3.1-29) - (17.2.3.1-31) define the basic computational
requirements for the trajectory regeneration function.  The output from these equations are B

Frame integrated inertial angular rate and specific force increments (α and υ) with a

corresponding set of attitude, velocity and position data (CB
L

, vN, CN
E

, h).  The CB
L

, vN attitude,

velocity data correspond to the trajectory shaping results, modified for data smoothing and B

Frame attitude selection.  The α and υ data are such that (with one minor exception) if they are
processed through high precision strapdown inertial integration algorithms (i.e., Equations

(17.2.3.1-2) - (17.2.3.1-28)), the solutions obtained will identically match the CB
L

, vN, CN
E

, h

trajectory generator outputs.  The previous noted exception refers to ΔRAtt
N

 used in

(17.2.3.1-29) rather than ΔRN as in (17.2.3.1-26).  As noted under the discussion following

(17.2.3.1-29), this is because ΔRN has not yet been calculated.  For enhanced accuracy, an
iteration process can be invoked following the first (17.2.3.1-29) - (17.2.3.1-31) solution, in

which Equations (17.2.3.1-29) - (17.2.3.1-31) are processed repeatedly using the ΔRN value

from (17.2.3.1-31) in place of ΔRAtt
N

 in (17.2.3.1-29).  The iteration process is complete when

the ΔRN solution from (17.2.3.1-31) matches its previous value within prescribed limits.  The
prescribed limits can be set to the overall regenerated trajectory accuracy requirement divided by
the total number of m cycles in the trajectory.  Accuracy in this context refers to the accuracy to
which we desire the (17.2.3.1-29) - (17.2.3.1-31) solution to match the (17.2.3.1-2) -

(17.2.3.1-28) solution when using α and υ from (17.2.3.1-29) - (17.2.3.1-30) in (17.2.3.1-2) -

(17.2.3.1-28).  Note, as mentioned  under the discussion following (17.2.3.1-29), that if ΔRAtt
N

as calculated in (17.2.3.1-29) is used for ΔRN in (17.2.3.1-26), then Equations (17.2.3.1-29) as
shown will exactly represent the inverse of the (17.2.3.1-24) - (17.2.3.1-28) integration process
without an iteration requirement.
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17.2.3.2  VARIATIONS FROM BASIC REGENERATED TRAJECTORY SOLUTION

In this section and its subsections we will discuss methods for generating a consistent set of
navigation data parameters for a trajectory that has a specified attitude and position variation
from the Section 17.2.3.1 basic regenerated trajectory solution.  For convenience, we will
identify the Section 17.2.3.1 navigation solution as the “reference trajectory” and the variation
navigation solution to be developed as the “variation trajectory”.  As in Section 17.2.3.1, the
equations to be developed will be based on the requirement that integration of the resulting
integrated specific-force/inertial-angular-rate increments using the Section 17.2.3.1 precision
integration algorithms (Equations (17.2.3.1-2) - (17.2.3.1-28)) will generate the identically
same attitude, velocity, position solutions as the equations we will now derive for the variation
trajectory attitude, velocity, position.  Thus, the equations to follow are based on the inverse of
Equations (17.2.3.1-2) - (17.2.3.1-28) with the additional requirement of having a specified
attitude and position variation from the reference trajectory.

For a specified difference in the earth referenced position between the reference and variation
trajectories, the altitude of the variation solution at computer cycle m will be:

hVarm  =  hm + uZN
N

 ⋅ SVarm
N

 (17.2.3.2-1)

where

SVarm
N

  = N Frame components of the difference between earth referenced position

locations for the variation trajectory compared to the Section 17.2.3.1 basic
regenerated trajectory reference solution.

Var  = Subscript identifying that the associated parameter is for the variation trajectory.
In Equation (17.2.3.2-1), hVarm is the altitude for the variation trajectory at
computer cycle m.

We can also describe the horizontal position displacement from the reference solution at

cycle m by the rotation vector equivalent to ξ of Equation (17.2.3.1-20):

λm
N

  =  
1
2

 FCm

N
 + FCVarm

N
  uZN

N
 × SVarm

N
 (17.2.3.2-2)

where

λm
N

  = Horizontal angular position displacement over the earth’s surface corresponding

to SVarm
N

.
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FCVarm
N

  = FC
N

 curvature matrix calculated from hVarm
  and CNVar

E
 

 m
 position data

(Note: NVar is defined next).

NVar  =  N Frame for the variation trajectory position location.

with FCm

N
 provided from the reference solution.  Since CNVar

E
 

 m
 is not yet calculated for

FCVarm
N

  evaluation, past value extrapolation must be used to determine FCVarm
N

 , such as the

linear extrapolation formula:

FCVarm
N

  ≈  FCVarm-1

N
 + FCVarm-1

N
 - FCVarm-2

N
  =  2 FCVarm-1

N
 - FCVarm-2

N
 (17.2.3.2-3)

Alternatively, FCVarm
N

  can be approximated as FCm

N
.  If (17.2.3.2-3) is used, the past value

FCVar
N

 terms would be calculated with Equations (5.3-18) using past values of hVar (from

Equation (17.2.3.2-1)) and CNVar
E

 as calculated next.

From generalized Equation (3.2.2.1-8), the λN
 angular displacement defines the equivalent

direction cosine matrix between the reference solution N Frame and the N Frame corresponding
to the displaced position:

CNVar
N

 

 m
  =  I + 

sin λm

λm

 λm
N

 ×  + 
(1 - cos λm)

λm
2

 λm
N

 ×
 2

(17.2.3.2-4)

The NVar Frame orientation relative to the E Frame is calculated at cycle m from the (3.2.1-5)
chain rule as:

CNVar
E

 

 m
  =  CN

E
 

 m
 CNVar

N
 

 m
(17.2.3.2-5)

Equations (17.2.3.2-1) and (17.2.3.2-5) define the position of the variation trajectory relative to

the earth (hVarm
  and CNVar

E
 

 m
) as a specified variation from the reference trajectory.  We will

now use the inverse of position integration Equations (17.2.3.1-19) - (17.2.3.1-23) to obtain the

equivalent to ΔR 

m
N

  for the variation trajectory.

The (17.2.3.2-5) computed value for CNVar
E

 

 m
 can be applied over successive m cycles to

calculate the horizontal angular position movement of the NVar Frame over an m cycle using,
by analogy, the inverse of Equation (17.2.3.1-23):
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CNVar m

NVar m-1  =  CNVar
E

 

 m-1

 T
 CNVar

E
 

 m
(17.2.3.2-6)

The equivalent horizontal rotation vector corresponding to CNVar m

NVar m-1 is obtained by analogy

from the inverse of (17.2.3.1-21):

ξVarm  =  
Rotation angle
extraction from

 CNVar m

NVar m-1 
 using (3.2.2.2-10) - (3.2.2.2-12)
and (3.2.2.2-15) - (3.2.2.2-19)

(17.2.3.2-7)

By direct analogy with the inverse of (17.2.3.1-19) - (17.2.3.1-20) and (17.2.3.1-22) using

hVar and ξVar from (17.2.3.2-1) and (17.2.3.2-7) as input, the NVar Frame components of the

variation trajectory position change relative to the earth over an m cycle are then calculated:

uZNVar
NVar

 × ΔRVarm
NVar

  =  FCVarm-1/2

N  -1
 ξVarm 

 

uZNVar
NVar

 ⋅ ΔRVarm
NVar

  =  hVarm - hVarm-1

(17.2.3.2-8)

where

ΔRVarm

NVar
  = Position change relative to the earth over an m cycle for the variation

trajectory position, expressed in NVar Frame coordinates.

uZNVar
NVar

  =  NVar Frame components of a unit vector along the NVar Frame Z axis.

with FCVarm-1/2

N
 calculated by linear extrapolation as in (17.2.3.1-6) from past computed values:

FCVarm-1/2

N
  ≈  

3
2

 FCVarm-1

N
 - 

1
2

 FCVarm-2

N
(17.2.3.2-9)

The past value FCVar
N

 terms in (17.2.3.2-9) would be calculated with Equations (5.3-18) using

past values of hVar and CNVar
E

 as input.

The ΔRVarm

NVar
 position change vector is derived from (17.2.3.2-8) using generalized Equation

(13.1-9) rearranged with (3.1.1-15):

ΔRVarm
NVar

  =  uZNVar
NVar

 uZNVar
NVar

 ⋅ ΔRVarm
NVar

 - uZNVar
NVar

 × uZNVar
NVar

 × ΔRVarm
NVar

(17.2.3.2-10)
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Substituting (17.2.3.2-8) into (17.2.3.2-10) obtains the equation for the variation trajectory
position change increment:

ΔRVarm

NVar
  =  hVarm - hVarm-1  uZNVar

NVar
 - uZNVar

NVar
 × FCVarm-1/2

N  -1
 ξVarm (17.2.3.2-11)

We can apply CNVar
N

 

 m
 from(17.2.3.2-4) and ΔRVarm

NVar
 from (17.2.3.2-11) to calculate the

body B Frame attitude associated with the variation trajectory.  First, we rewrite Equations
(17.2.2-1) and (17.2.2-2) based on a modified body (strapdown sensor) coordinate frame
definition:

CBVar
V F

 

 m
  =  CAC

V F
 

 m
 CBVar

AC
 

 m
CBVar

L
 

 m
  =  CV F

L
 

 m
 CBVar

V F
 

 m
(17.2.3.2-12)

where

BVar  =  Sensor coordinate frame associated with the variation trajectory.

The CAC
V F

 

 m
 matrix in (17.2.3.2-12) is provided from the reference trajectory solution.  The

orientation of the BVar Frame depends on our choice for the BVar Frame attitude relative to the

AC Frame as manifested in the CBVar
AC

 

 m
 matrix.  The discussion on B Frame selection in

Section 17.2.2 also applies for BVar Frame selection.  We may also choose to include
additional specified angular rotation components associated with the variation trajectory, based
on the (3.2.1-5) chain rule:

CBVar
AC

 

 m
  =  CACVar

AC
 

 m
 CBVar

ACVar
 

 m
(17.2.3.2-13)

where

ACVar  = AC Frame associated with the variation trajectory that includes the additional
specified variation trajectory angular rotation effects.

The CBVar
ACVar

 

 m
 matrix in Equation (17.2.3.2-13) would be specified based on the Section

17.2.2 discussion on B Frame orientation selection relative to AC, but applied to BVar

orientation relative to ACVar.  The CACVar
AC

 

 m
 matrix in (17.2.3.2-13) describes the angular

displacement of the ACVar Frame from the reference solution AC Frame and can be defined
by a rotation vector using generalized Equation (3.2.2.1-8):

CACVar
AC

 

 m
  =  I + 

sin φVarm

φVarm

 φVarm×  + 
(1 - cos φVarm)

φVarm
2

 φVarm×  2
(17.2.3.2-14)
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where

φVarm  = Rotation vector specified in the AC Frame representing the ACVar Frame
angular orientation relative to the AC Frame.

φVarm  =  Magnitude of φVarm.

To determine the BVar Frame orientation relative to the local level of the variation trajectory

position, we apply CNVar
N

 

 m
 from (17.2.3.2-4) to CBVar

L
 

 m
 from (17.2.3.2-12):

CBVar
LVar

 

 m
  =  CNVar

LVar
 CNVar

N
 

 m

 T
 CL

N
 CBVar

L
 

 m
  =  CN

L
 CNVar

N
 

 m

 T
 CL

N
 CBVar

L
 

 m
(17.2.3.2-15)

where

LVar  = Locally level coordinate frame parallel to the NVar Frame, but with Z axis

down and X, Y axes interchanged.  The CN
L

 matrix also defines the relative

LVar to NVar attitude (i.e., CNVar
LVar

 = CN
L

).

Summarizing for a moment, we have found a solution for hVarm, CNVar
E

 

 m
, ΔRVarm

N
  and

CBVar
LVar

 

 m
 from Equations (17.2.3.2-1) - (17.2.3.2-7), (17.2.3.2-9), and (17.2.3.2-11) -

(17.2.3.2-15) repeated below:

hVarm  =  hm + uZN
N

 ⋅ SVarm
N

 

FCVarm-1

N
  =  f CNVar

E
 

 m-1
, hVarm-1 Using Equations (5.3-18)

FCVarm
N

  ≈  2 FCVarm-1

N
 - FCVarm-2

N
 

λm
N

  =  
1
2

 FCm

N
 + FCVarm

N
 uZN

N
 × SVarm

N
 (17.2.3.2-16)

CNVar
N

 

 m
  =  I + 

sin λm

λm

 λm
N

 ×  + 
(1 - cos λm)

λm
2

 λm
N

 ×
 2

CNVar
E

 

 m
  =  CN

E
 

 m
 CNVar

N
 

 m
 

CNVar m

NVar m-1  =  CNVar
E

 

 m-1

 T
 CNVar

E
 

 m

(Continued)
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ξVarm  =  Rotation angle extraction from CNVarm

NVarm-1 
 using (3.2.2.2-10) - (3.2.2.2-12)
and (3.2.2.2-15) - (3.2.2.2-19)

FCVarm-1/2

N
  ≈  

3
2

 FCVarm-1

N
 - 

1
2

 FCVarm-2

N

ΔRVarm

NVar
  =  hVarm - hVarm-1  uZNVar

NVar
 - uZNVar

NVar
 × FCVarm-1/2

N  -1
 ξVarm

CACVar
AC

 

 m
  =  I + 

sin φVarm

φVarm

 φVarm×  + 
(1 - cos φVarm)

φVarm
2

 φVarm×  2 (17.2.3.2-16)
(Continued)

CBVar
AC

 

 m
  =  CACVar

AC
 

 m
 CBVar

ACVar
 

 m
CBVar

ACVar
 
from Section 17.2.2, substituting
BVar for B and ACVar for AC

CBVar
V F

 

 m
  =  CAC

V F
 

 m
 CBVar

AC
 

 m

CBVar
L

 

 m
  =  CV F

L
 

 m
 CBVar

V F
 

 m

CBVar
LVar

 

 m
  =  CN

L
 CNVar

N
 

 m

 T
 CL

N
 CBVar

L
 

 m

The ΔRVarm
N

  and CBVar
LVar

 

 m
 terms from (17.2.3.2-16) can now be used to obtain the

integrated specific-force/inertial-angular-rate increments associated with the BVar Frame, and
the NVar components of velocity relative to the earth for the variation trajectory.  The associated
equations to follow are based on the inverse of Equations (17.2.3.1-2) - (17.2.3.1-28).

By direct analogy to Equations (17.2.3.1-29) for the B Frame inertial angular increment, the
BVar Frame angular increment is obtained as follows:

ωIEm-1

NVar
  =  CNVar

E
 

 m-1

 T
 ωIE

E

ωIEm-1/2 
NVar

  ≈  
3
2

 ωIEm-1 
NVar

 - 
1
2

 ωIEm-2

NVar

ζVarm  ≈  CN
L

 ωIEm-1/2

NVar
 Tm + FCVarm-1/2

N
 uZNVar

NVar
 ΔRVarm

N

 

CLVarm-1

LVarm   =  I - 
sin ζVarm

ζVarm

 ζVarm×  + 
(1 - cos ζVarm)

ζVarm
2

 ζVarm×  ζVarm×

(17.2.3.2-17)

CBVarm
BVarm-1  =  CBVar

LVar
 

 m-1

 T
 CLVarm-1

LVarm T
 CBVar

LVar
 

 m

αVarm  =  Rotation angle extraction from CBVarm

BVarm-1 
 using (3.2.2.2-10) - (3.2.2.2-12)
and (3.2.2.2-15) - (3.2.2.2-19)
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where

αVarm  =  Integrated BVar Frame inertial angular rate increment over the m cycle.

The FCVar
N

 terms in (17.2.3.2-17) are provided from Equations (17.2.3.2-16).  Note in

Equations (17.2.3.2-17) that ζVarm uses ΔRVarm
N

, the proper equivalent to ΔRm
N

 in Equation

(17.2.3.1-26), rather than an approximate form as in Equations (17.2.3.1-29).  This is because

ΔRVarm
N

 is available from Equations (17.2.3.2-16) for the variation trajectory while it had not

yet been computed prior to Equations (17.2.3.1-29) for the reference trajectory.

Using αVarm
  from (17.2.3.2-17) and ΔRVarm

NVar
 from (17.2.3.2-16), we can now calculate the

integrated BVar Frame specific force increment associated with the variation trajectory.  This is
accomplished in two steps; calculation of the LVar Frame position change due to specific force
followed by simultaneous solution of velocity/position updating relationships to determine the
BVar Frame specific force increment.  Treating velocity/position updating Equations
(17.2.3.1-2) - (17.2.3.1-23) as a generalized integration algorithm applied to the lever arm offset
position, we have from (17.2.3.1-12) - (17.2.3.1-14) directly and the inverse of (17.2.3.1-18),
for the LVar specific force generated position change:

vVarm-1/2

NVar
  ≈  

3
2

 vVarm-1

NVar
 - 

1
2

 vVarm-2

NVar

gPm-1/2

NVar
  ≈  

3
2

 gPm-1

NVar
 - 

1
2

 gPm-2

NVar

ΔvG/COR/Varm

NVar
  ≈  gPm-1/2

NVar
 -  2 ωIEm-1/2 

NVar
(17.2.3.2-18)

+ FCVarm-1/2

N
 uZNVar

NVar
 × vVarm-1/2

NVar
 × vVarm-1/2

NVar
 Tm

ΔRSFVarm
LVar

  =  CL
N T

 ΔRVarm

NVar
 - vVarm-1

NVar
 + 

1
2

 ΔvG/COR/Varm

NVar
 Tm

The BVar Frame integrated specific force increment is then calculated by simultaneous
solution of the following direct forms of (17.2.3.1-4) and (17.2.3.1-9), inverted forms of
(17.2.3.1-16) - (17.2.3.1-17) and direct variation forms of (17.2.3.1-2) - (17.2.3.1-3):

ΔRvVarm

NVar
  ≈  Tm 

3
2

 vVarm-1

NVar
 - 

1
2

 vVarm-2

NVar

 

ζvVarm  ≈  CN
L

 ωIEm-1/2 
NVar

 Tm + FCVarm-1/2

N
 uZNVar

NVar
 × ΔRvVarm

NVar
(17.2.3.2-19)
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ΔRSFVarm
BVar

  =  CBVar
LVar

 

 m-1

 T
 ΔRSFVarm

LVar
 + 

1
3

 ζvVarm × ΔvSFVarm
LVarm-1 Tm

υVarm  =  
1

Tm
 

1
2

 I + 
1

αVarm
2

 1 - 
sin αVarm

αVarm

 αVarm×

+ 
1

αVarm
2

 
1
2

 - 
(1 - cos αVarm)

αVarm
2

 αVarm
2

×
 -1

 ΔRSFVarm
BVar

(17.2.3.2-20)

ΔvSFVarm

BVarm-1
  = I + 

1 - cos αVarm

αVarm
2

 αVarm×  +   
1

αVarm
2

 1 - 
sin αVarm

αVarm

 αVarm×  2
 υVarm 

ΔvSFVarm
LVarm-1  =  CBVar

LVar
 

 m-1

 

 ΔvSFVarm
BVarm-1

where

υVarm  = Integrated BVar Frame specific force acceleration increment for the variation
trajectory over an m cycle.

The Equations (17.2.3.2-20) simultaneous solution for υVarm
  is simplified if we introduce

the notation:

GαRVarm  ≡  
1
2

 I + 
1

αVarm

2
 1 - 

sin αVarm

αVarm

 αVarm×

+ 
1

αVarm
2

 
1
2

 - 
(1 - cos αVarm)

αVarm
2

 αVarm
2

× (17.2.3.2-21)

GαvVarm  ≡  I + 
1 - cos αVarm

αVarm

2
 αVarm×  +   

1

αVarm

2
 1 - 

sin αVarm

αVarm

 αVarm×  2

where

Gα RVarm  =  Matrix function of αVarm that translates υVarm Tm into ΔRSFVarm
BVar

.

Gα vVarm  =  Matrix function of αVarm
  that translates υVarm into ΔvSFVarm

BVarm-1.

Applying (17.2.3.2-21), Equations (17.2.3.2-20) have the simpler form:
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ΔRSFVarm
BVar

  =  CBVar
LVar

 

 m-1

 T
 ΔRSFVarm

LVar
 + 

1
3

 ζvVarm × ΔvSFVarm
LVarm-1 Tm

υVarm  =  
1

Tm
 GαRVarm

-1
 ΔRSFVarm

BVar

 

ΔvSFVarm
BVarm-1  = GαvVarm υVarm

(17.2.3.2-22)

ΔvSFVarm
LVarm-1  =  CBVar

LVar
 

 m-1
 ΔvSFVarm

BVarm-1

By combining the last two of the (17.2.3.2-22) expressions, substituting the result in the first

equation, substituting that result in the second equation, rearranging the υVarm term from the

right to the left side of the result, and factoring υVarm
  from the result, we obtain the combined

form:

I - 
1
3

 Gα RVarm
-1

 CBVar
LVar

 

 m-1

 T
 ζvVarm×  CBVar

LVar
 

 m-1
 Gα vVarm  υVarm 

 

                  =  
1

Tm
 Gα RVarm

-1
 CBVar

LVar
 

 m-1

 T
 ΔRSFVarm

LVar
(17.2.3.2-23)

The solution for υVarm
  is then easily obtained as the inverse of (17.2.3.2-23):

υVarm  =  
1

Tm
 I  

 
(17.2.3.2-24)

- 
1
3

 GαRVarm

-1
 CBVar

LVar
 

 m-1

 T
 ζvVarm×  CBVar

LVar
 

 m-1
 GαvVarm

 -1
 GαRVarm

-1
 CBVar

LVar
 

 m-1

 T
 ΔRSFVarm

LVar

In order to calculate the NVar Frame velocity associated with the variation trajectory, we

utilize ζvVarm
  from (17.2.3.2-19), υVarm from (17.2.3.2-24) and ΔvG/COR/Varm

NVar
 from

(17.2.3.2-18) as input to the last two equations in set (17.2.3.2-22) and the variation version of
(17.2.3.1-10) - (17.2.3.1-11) and (17.2.3.1-15):

ΔvSFVarm

BVarm-1
  = GαvVarm υVarm 

ΔvSFVarm
LVarm-1  =  CBVar

LVar
 

 m-1
 ΔvSFVarm

BVarm-1 (17.2.3.2-25)

CLVarm-1

LVarm   ≈  I - ζvVarm×

(Continued)
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ΔvSFVarm

LVarm
  =  CLVarm-1

LVarm  ΔvSFVarm

LVarm-1

 

vVarm
NVar

  =   vVarm-1

NVar
 + CL

N
 ΔvSFVarm

LVarm
 + ΔvG/COR/Varm

NVar
 

(17.2.3.2-25)
(Continued)

In summary, the αVar BVar Frame integrated inertial angular rate increment is computed

with Equations (17.2.3.2-17), the υVar BVar Frame components of the variation trajectory

integrated specific force acceleration increment is provided by Equations (17.2.3.2-18) -
(17.2.3.2-19), (17.2.3.2-21) and (17.2.3.2-24), and the NVar Frame velocity components

vVar
NVar

 of the variation trajectory are calculated from Equations (17.2.3.2-25).  Equations

(17.2.3.2-16) provide BVar Frame attitude orientation relative to the LVar Frame (CBVar
LVar

) and

the variation trajectory position in the E Frame as defined by CNVar
E

 and hVar.  The variation

trajectory parameters so calculated have been designed to be at a specified N Frame position

location SVar
N

 relative to the reference position solution, and to have a specified BVar Frame

attitude orientation relative to the reference solution AC Frame (CBVar
AC

) as defined in Equations

(17.2.3.2-16) by CBVar
ACVar

 plus a specified angular variation φVar between the reference solution

AC Frame and the ACVar Frame.  The αVar and υVar BVar Frame integrated inertial angular

rate and specific force acceleration increments have been designed so that if processed by the
high accuracy Equation (17.2.3.1-2) - (17.2.3.1-28) integration algorithms, they will generate

CBVar
LVar

, vVar
NVar

, CNVar
E

 and hVar with identical values as those computed from (17.2.3.2-16) and

(17.2.3.2-25).

Equations (17.2.3.2-16) - (17.2.3.2-19), (17.2.3.2-21), (17.2.3.2-24) and (17.2.3.2-25)

define how user specified φVar, CBVar
ACVar

, and SVar
N

 parameters can be used to generate a

consistent complete set of navigation data for a variation trajectory relative to a reference
trajectory.  The discussion on B Frame selection in Section 17.2.2 also applies for user selection

of the attitude between the ACVar and BVar Frames (as manifested in the CBVar
ACVar

 matrix).  In

the following subsections, we will discuss how φVar and SVar
N

 can be used to account for three

effects: 1. Aerodynamic wind gusts, 2. The trajectory followed by a position location in the
vehicle that is displaced from the reference solution by an AC Frame specified lever arm
displacement, and 3. High frequency angular and linear motion effects in general.
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17.2.3.2.1  Adding Wind Gust Aerodynamic Force Effects

The effect of wind gusts can be added to the trajectory regeneration function using the

procedure of Section 17.2.3.2, as a variation in position SVarm
N

  from the Section 17.2.3.1

reference trajectory produced by wind gust induced variations in the aerodynamic specific force.
Neglecting rotations of the local level N Frame, we can write from Newton’s basic law:

ΔvVar
N

  =  
1

M
 ΔFWndGst

N
(17.2.3.2.1-1)

where

ΔvVar  = Variation in the Section 17.2.3.1 calculated velocity relative to the earth due to
additional wind gust induced aerodynamic forces.

M  =  Vehicle mass.

ΔFWndGst  = Wind gust induced modifications to the Section 17.1.2.3 aerodynamic
force.

Using the (3.2.1-5) chain law, the N Frame components of ΔFWndGst can be expressed in

terms of components in the relative airspeed coordinate frame used for ΔFWndGst evaluation:

ΔFWndGst
N

 =  CL
N

 CV F
L

 CV WF
V F

 ΔFWndGst
V WF

(17.2.3.2.1-2)

where

V  W F  =  V  W Frame generated using smoothed trajectory segment parameter data.

The aerodynamic force variation is the difference between the aerodynamic force with and
without wind gusts:

ΔFWndGst
V WF

  =  FTotAero
V WF

 - FAero
V WF

(17.2.3.2.1-3)

where

FAero
V WF

  = Aerodynamic force exclusive of wind gust effects as calculated with

Equations (17.1.2.3-63) in the Section 17.1.2.3 iteration loop (but based on
smoothed trajectory profile segment data).

FTotAero
V WF

  = Total aerodynamic force including wind gust effects, but calculated with

Equations (17.1.2.3-63) following the Section 17.1.2.3 iteration loop using

an addition to Equations (17.1.2.3-53) for vArspd
V F

 that includes wind gusts

effects.
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Using the (3.2.1-5) chain law, the previously mentioned addition to the smoothed version of
(17.1.2.3-53) for wind gust effects is as follows:

vWndGst
V F

  =  CV F
L T

 CN
L

 CGeo
N

 vWndGst
Geo

ΔvVar
V F

  =  CV F
L T

 CL
N T

 ΔvVar
N

 

vTotArspd
V F

  =  VF uXV F
V F

 + ΔvVar
V F

 - vAvgWnd
V F

 - vWndGst
V F

(17.2.3.2.1-4)

vTotArspd  =  vTotArspd
V  F

 ⋅ vTotArspd
V  F

where

V   F  =  V Frame generated in Section 17.1.2.3 using smoothed trajectory segment
parameter data.

vAvgWnd  =  Local average wind velocity relative to the earth.

vWndGst  =  Wind gust velocity relative to the earth.

vTotArspd   = Total vehicle velocity relative to the air mass including wind gust effects.

vTotArspd   =  Magnitude of vTotArspd .

The dynamic pressure associated with vTotArspd  is the smoothed revised form of

(17.1.2.3-56):

qTot  =  
1
2

 ρ vTotArspd
2

(17.2.3.2.1-5)

where

qTot  =  Total airspeed dynamic pressure (i.e., including wind gust velocity).

The AC Frame components of vTotArspd  are given by:

vTotArspd
AC

  =  CAC
V F T

 vTotArspd
V F

(17.2.3.2.1-6)

which generates AC Frame angles of attack and sideslip per Equations (17.1.2.3-13) of:

αTot  =  tan-1vTotArspdZAC

vTotArspdXAC

βTot  =  - tan-1vTotArspdYAC

vTotArspdXAC

(17.2.3.2.1-7)

where

vTotArspdiAC  =  Axis i component of vTotArspd
AC

.
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αTot, βTot  =  Angles of attack and sideslip generated by vTotArspd
AC

.

The FTotAero
V WF

 vector in (17.2.3.2.1-3) is calculated with Equations (17.1.2.3-63) using αTot,

βTot from (17.2.3.2.1-7) for α, β, and qTot from (17.2.3.2.1-5) for q:

FTotAero
V WF

  =  f αTot, βTot, qTot with Equations (17.1.2.3-63) (17.2.3.2.1-8)

The vWndGst
Geo

 wind gust vector in (17.2.3.2.1-4) can be modeled as a first order Markov

process as in (16.2.3.1-1):

vWndGst
Geo

  =  - CWndGst vWndGst
Geo

 + nWndGst
Geo

(17.2.3.2.1-9)

where

nWndGst
Geo

  =  Vector of independent white noise components.

CWndGst  =  Wind gust correlation frequency (the reciprocal of the correlation time).

For digital simulation purposes, we can approximate nWndGst
Geo

 as a finite constant vector over

each computer update cycle m that varies randomly from cycle, with a value equal to the

integral of nWndGst
Geo

 over the m cycle divided by the m cycle time interval.  Based on this

approximation and using standard methods for solving linear differential equations with

constant coefficients (e.g., Reference 38 - Section 18-9), the vWndGst
Geo

 components at each m

cycle are then provided by the integral solution to the (17.2.3.2.1-9) differential equation over

the m cycle, using the vWndGst
Geo

 value at the previous cycle as the initial condition (as in (15.1-1),

(15.1.1-1), (15.1.1-3), (15.1.1-4), (15.1.1-6) and (15.1.1-12)):

vWndGst/iGeom  =  e- CWndGst Tm  vWndGst/iGeom-1 + 
1 - e- CWndGst Tm

CWndGst
 
wWndGst/iGeom

Tm

(17.2.3.2.1-10)

where

vWndGst/iGeom  =  Component i of vWndGst
Geo

 at computer cycle m.

wWndGst/iGeom  = Component i of the integral of nWndGst
Geo

 over a computer cycle.  In a

simulation program, wWndGst/iGeom would be programmed as a
random number generator with a specified variance.
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The variance of wWndGst/iGeom for the random number generator can be found from the

variance form of (17.2.3.2.1-10).  The variance form of (17.2.3.2.1-10) is obtained by squaring
the right and left sides, taking the expected value, identifying the expected values of

wWndGst/iGeo
2 and vWndGst/iGeo

2 as their variances, and recognizing from the definitions of

nWndGst
Geo

 and wWndGst/iGeom, that wWndGst/iGeom is uncorrelated from cycle to cycle with zero

expected value for any m cycle.  The result is:

PWndGstim  =  e- 2 CWndGst Tm   PWndGstim-1 + 
1 - e- CWndGst Tm

CWndGst Tm

 2

 QWndGstim 

(17.2.3.2.1-11)

where

PWndGstim  =  Variance of vWndGst/iGeom.

QWndGstim  = Variance of wWndGst/iGeom in (17.2.3.2.1-10) for the simulation
program.

In the steady state, PWndGstim
  will equal PWndGstim-1 which allows us to solve (17.2.3.2.1-11)

for QWndGstim
  as a function of the steady state value for PWndGsti:

QWndGstim  =  
1 - e- 2 CWndGst Tm

1 - e- CWndGst Tm

CWndGst Tm

 2
 σWndGstim

2
 

(17.2.3.2.1-12)

where

σWndGstim  = Wind gust velocity standard deviation (i.e., root-mean-square value for

PWndGsti  in the steady state).

The QWndGstim
  wind gust noise variance can be calculated from (17.2.3.2.1-12) using

σWndGstim
  specified by the user as a function of the variation trajectory latitude, longitude and

altitude.

Equation (17.2.3.2.1-1) with (17.2.3.2.1-2) - (17.2.3.2.1-8), (17.2.3.2.1-10) and

(17.2.3.2.1-12) defines the rate of change of ΔvVar
N

 due to wind gusts.  The double integral of

(17.2.3.2.1-1) generates ΔvVar
N

 for input to Equation (17.2.3.2.1-4), and SVar
N

 for input to the

Section 17.2.3.2 variation trajectory regeneration procedure.  We also artificially constrain the

double integration routines to assure that ΔvVar
N

 and SVar
N

 will be bounded and reduce to zero in



TRAJECTORY REGENERATION FUNCTION     17-99

the absence of wind gusts.  Using (17.2.3.2.1-10) as a template with (17.2.3.2.1-1) as the input,
we thereby approximate the integration routines in recursive m cycle form as:

ΔvVarm

N
  =  1 - CCnstrnt  Tm  ΔvVarm-1

N
 + 

1
2

 ΔvVarm

N
 + ΔvVarm-1

N
 Tm

 

SVarm

N
  =  1 - CCnstrnt  Tm  SVarm-1

N
 +  

1
2

 ΔvVarm

N
 + ΔvVarm-1

N
 Tm

(17.2.3.2.1-13)

where

CCnstrnt  = Divergence constraint correlation time.  The value for CCnstrnt should be
smaller than CWndGst (say one half CWndGst).

Without the CCnstrnt terms, Equations (17.2.3.2.1-13) would provide a trapezoidal double

digital integration of the ΔvVar
N

 input.  The CCnstrnt terms provide feedback to prevent ΔvVar
N

and SVar
N

 build-up to unreasonably large values, and to control ΔvVar
N

 and SVar
N

 toward zero in

the absence of wind gusts (i.e., when the ΔvVar
N

 input is zero).

The SVarm
N

  position variation obtained from (17.2.3.2.1-13) would be used as input to the

Section 17.2.3.2 procedure to generate the variation trajectory that includes wind gust effects.

For this application, the φVarm
  parameter for Section 17.2.3.2 input would be equated to zero.

17.2.3.2.2  Adding Sensor Assembly Lever Arm Displacement Effects

Thus far, we have not distinguished between different location points in the vehicle with
regard to position/velocity.  Obviously, different position locations in the vehicle will have
different navigational position solutions in the E Frame, being displaced from one another by
the difference in their respective vehicle position locations.  The earth referenced velocity of
separated vehicle position locations will also differ under vehicle angular rate due to the
resulting circular movement of one point about the other.  Using the trajectory variation method
of Section 17.2.3.2, the trajectory profile for a location point in the vehicle, that is displaced
from the reference solution by an AC Frame defined lever arm, is easily determined by setting:

l m
AC

  =  l 0
AC

 + Δl HiFm

AC
 SVarm

N
  =  CL

N
 CACm

L
 l m

AC
(17.2.3.2.2-1)

where

l  = Lever arm displacement of the strapdown sensor assembly from the Section
17.2.3.1 reference solution position location.
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l 0
AC

  =  Fixed AC Frame components of l.

Δl HiF
AC

  = High frequency variation of the l lever arm position location in the AC Frame

(e.g., due to vehicle linear flexing).  If Δl HiF
AC

 is to be included in the
simulation, it would be calculated using the procedure described subsequently
in Section 17.2.3.2.3.

High frequency angular motion at the displaced lever arm position location can be accounted
for by setting:

φVarm  =  φHiFlevm

AC
 (17.2.3.2.2-2)

where

φHiFlevm

AC
  = High frequency angular variation between the ACVar Frame and the

reference AC Frame at the lever arm location (e.g., due to vehicle angular

flexing).  If φHiFlevm

AC
  is to be included in the simulation, it would be

calculated using the procedure described subsequently in Section
17.2.3.2.3.

If the above lever arm effects are to be included in addition to the Section 17.2.3.2.1 wind
gust effects, Equations (17.2.3.2.2-1) - (17.2.3.2.2-2) would be applied using the Section
17.2.3.2 method as a variation on the Section 17.2.3.2.1 solution (rather than on the reference

Section 17.2.3.1 solution).  Alternatively, the SVar
N

 wind gust solution from Equation

(17.2.3.2.1-13) of the previous section can be added to SVar
N

 from Equations (17.2.3.2.2-1),

with the result and φVar from (17.2.3.2.2-2) applied, using the Section 17.2.3.2 method, as a

variation on the reference Section 17.2.3.1 solution.  The latter method introduces a small
second order error which is usually negligible, but which should be verified to be insignificant if
lever arm effects are to be simulated for two different vehicle locations in which second order
effects can introduce position errors between the two relative lever arm displaced locations.

17.2.3.2.3  Adding High Frequency Effects

High frequency linear and angular rotation effects (e.g., vehicle dynamic bending) can be
added to the Section 17.2.3.1 basic reference solution using the variation technique of Section

17.2.3.2 with SVar
N

 and φVar representing the high frequency linear and angular motion.  For

example, consider that we represent the bending effect as a variational movement of a
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generalized mass m from the rigid body solution, in which m is connected to the rigid solution
by a linear spring of constant k, and experiences damping forces by a linear friction coefficient c
acting on the mass motion relative to the rigid solution.  Further, consider that the total
acceleration of the mass (that makes it generally follow the rigid body solution) is generated
from only the spring/damper plus the effect of gravity.  Then a simplified one dimensional
model for the generalized mass movement can be described from Newton’s law as:

m v + Δv   =  m g - c Δv - k Δx Δx  =  Δv (17.2.3.2.3-1)

where

v  =  Velocity for the rigid body solution.

Δv  =  Velocity of the generalized mass relative to the rigid solution.

Δx  =  Displacement of the generalized mass from the rigid solution.

g  =  Gravitational acceleration.

We can also write for the rigid solution:

v  =  aSF + g (17.2.3.2.3-2)

where

aSF  =  Total specific force acceleration for the rigid body solution.

Substituting (17.2.3.2.3-2) into (17.2.3.2.3-1) and rearranging terms then obtains:

Δv  =  - aSF - 
c
m

 Δv - 
k
m

 Δx Δx  =  Δv (17.2.3.2.3-3)

Let’s now extend Equations (17.2.3.2.3-3) to three dimensions in the AC Frame including
rotational response.  In general, the response of a flexible body can be described as the linear
sum of the responses of its “natural vibration modes” to externally applied forces (Reference 1
- Chapter 3).  Each vibration mode has a characteristic shape (linear and angular in three-
dimensions), frequency, and damping characteristic defined by the body’s internal structure,
material and mass distribution.  The amplitude of each mode is determined by the amplitude,
distribution and time history of externally applied force acting on the flexible structure.
Recognizing (17.2.3.2.3-3) as a classical second order system, we can write a simplified model
(as in Section 15.2.1.2, Equations (15.2.1.2-8)) for the generalized response of the lth bending
mode as:

μl bndi  =  - aSFiAC - 2 ζl bnd ωnl bnd μl bndi - ωnl bnd
2

 ρl bndi

ρl bndi  =  μl bndi

(17.2.3.2.3-4)
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ΔRl bndji  =  KRρl bndji ρl bndli Δφl bndji  =  Kφρl bndji ρl bndli (17.2.3.2.3-5)

where

l bnd  =  Designation for the lth bending mode.

aSFiAC  =  Total rigid body specific force acceleration along AC Frame axis i.

ζl bnd, ωnl bnd  = Damping ratio and undamped natural frequency for the lth bending

mode.

μl bndi, ρl bndi  = Damped sinusoidal generalized velocity and position response

characteristics of the lth bending mode induced by specific force along
the AC Frame i axis.

ΔRl bndji  = Translational position movement along AC Frame axis j of the lth bending
mode from the rigid body solution at a particular vehicle location, induced
by aSFiAC.

Δφl bndji  = Angular displacement around AC Frame axis j of the lth bending mode
from the rigid body solution at a particular vehicle location, induced by
aSFiAC.

KRρl bndji, Kφρl bndji  =  Translational position movement and angular displacement

influence coefficients for the lth bending mode that shape the response of

ΔRl bndji and Δφl bndji as functions of the ρl bndi generalized position

response characteristic.  Values for KRρl bndji and Kφρl bndji depend on the
particular location in the flexing body where bending effects are being
evaluated.

The SVar
N

 and φVar  parameters for Section 17.2.3.2 are then calculated as the sum of the

Equations (17.2.3.2.3-4) - (17.2.3.2.3-5) solutions for the three AC Frame axis specific force
acceleration inputs for the number of l bending modes being simulated.  Generally, the principal

bending effects are produced by wind gusts.  Then it makes sense to form SVar
N

 and φVar as the

sum of the Section 17.2.3.2.1 solution plus the previous solution:

SVar
N

  =  SWndGst
N

 + CL
N

 CAC
L

 ΔRl bnd
AC∑

l
 

φVar  = Δφl bnd
AC∑

l

(17.2.3.2.3-6)
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where

SWndGst
N

  =  SVar
N

 calculated in Equation (17.2.3.2.1-13).

ΔRl bnd
AC

  = Vector in the AC Frame having each of its j components equal to the sum

over i (i = 1, 2, 3)  of the Equation (17.2.3.2.3-5) ΔRl  bndj i
 ’s.

Δφl bnd
AC

  = Vector in the AC Frame having each of its j components equal to the sum

over i (i = 1, 2, 3)  of the Equation (17.2.3.2.3-5) Δφl  bndj i’s.

The CAC
L

 matrix in (17.2.3.2.3-6) would be provided from the reference trajectory (e.g., from

Equations (17.2.3.1-1)).  The variation trajectory would be built upon the Section 17.2.3.1

reference trajectory using (17.2.3.2.3-6) for SVar
N

 and φVar with the Section 17.2.3.2 procedure.

The integration of Equations (17.2.3.2.3-4) to obtain μl bndi, ρl bndi would be handled

digitally at the m cycle rate.  The digital integration equation can be derived from the general
matrix form of (17.2.3.2.3-4)

x  =  A x + y (17.2.3.2.3-7)

with for this case:

x  ≡  
μl bndi

ρl bndi

A  ≡  
- 2 ζl bnd ωnl bnd - ωnl bnd

2

1 0
y  ≡  

- aSFiAC

0
(17.2.3.2.3-8)

Using the principle of linear superposition, the general solution to (17.2.3.2.3-7) is constructed
as:

x  =  xHmg +xPrt (17.2.3.2.3-9)

where

xHmg  = Homogeneous solution to (17.2.3.2.3-7) defined as the solution for zero
y input.

xPrt   = Particular solution to (17.2.3.2.3-7) that satisfies (17.2.3.2.3-7) for the particular
form of y.

Using Section 15.1.1 as a guide, we construct xHmg as:

xHmg  =  Φ(t, tm-1) C (17.2.3.2.3-10)
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where

Φ(t, tm-1)  = State transition matrix that propagates x from a value at simulation time
cycle m-1 to time t following cycle time m-1.

C  =  Constant vector.

Substituting (17.2.3.2.3-10) for x in (17.2.3.2.3-7) with y set to zero, and using the definition

for Φ(t, tm-1) in the form of Equation (15.1.1-6), shows that (17.2.3.2.3-10) satisfies the

requirement for the homogeneous solution.

We structure the particular solution based on A being constant, and the approximation that y
is constant from cycle m-1 to m:

xPrt   =  D (17.2.3.2.3-11)

where

D  =  Constant vector.

Substituting (17.2.3.2.3-11) in (17.2.3.2.3-7) with y (and A) constant shows that:

D  =  - A-1 y (17.2.3.2.3-12)

Substituting (17.2.3.2.3-10) - (17.2.3.2.3-12) in (17.2.3.2.3-9) then gives:

x  =  Φ(t, tm-1) C - A-1 y (17.2.3.2.3-13)

The value for C is obtained from (17.2.3.2.3-13) by evaluation at m-1 with, from (15.1.1-4),

Φ(tm-1,tm-1) equal to the identity matrix:

C  =  xm-1 + A-1 y (17.2.3.2.3-14)

Finally, we substitute (17.2.3.2.3-14) in (17.2.3.2.3-13) and evaluate x at cycle m to obtain the
digital integration algorithm equivalent to (17.2.3.2.3-7):

xm  =  Φ xm-1 + Φ - I  A-1 y Φ  ≡  Φ( tm,tm-1) (17.2.3.2.3-15)

The Φ state transition matrix is evaluated as in (15.1.2.1.1.1-10) - (15.1.2.1.1.1-11) as:

Φ  =  e ATm (17.2.3.2.3-16)

The aSFiAC components for (17.2.3.2.3-8) can be calculated from:
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aSF
AC

  =  
1

Tm
 CAC

L T
 ΔvSF

L
 (17.2.3.2.3-17)

with CAC
L

 and ΔvSF
L

  provided from the Section 17.2.3.1 reference trajectory (i.e. from

Equations (17.2.3.1-1) and (17.2.3.1-30)).

As another example, consider the general problem of accounting for high frequency angular
and linear motion (e.g., caused by air turbulence or other high frequency random effects).  This
general problem can be handled using (17.2.3.2.3-7) as a general equation defining the overall
dynamic response x of a particular vehicle station to random acceleration inputs in y.  The
(17.2.3.2.3-15) - (17.2.3.2.3-16) incremental form would still apply.  The general state vector x
would include all pertinent AC Frame high frequency velocity, position, angular rate and

angular components (relative to the rigid body solution).  The SVar
N

 and φVar  parameters would

be calculated as the sum of the position and angular components of x similar to Equations
(17.2.3.2.3-6).  In this case, the y acceleration components would be modeled to simulate
specified noise/bandwidth characteristics.  For example, if we choose to model the acceleration
components as having components in a prescribed frequency band, the acceleration can be
analytically modeled as the response of a linear band-pass filter to a white noise input.  The
band-pass filter can be modeled as a high pass filter feeding a low pass filter.  The high pass
filter can be modeled as its input minus the response of a low pass filter to the same input.
Thus, the band-pass filter satisfies the following equations:

z1  =  ωHi zIn - z1

zHi  =  zIn - z1 (17.2.3.2.3-18)

zOut  =  ωLo zHi - zOut   =  ωLo zIn - z1 - zOut

where

zIn, zOut  =  Band-pass filter input and output.

zHi  =  Output of high-pass filter stage.

z1  =  Output of low-pass filter used to form the first stage high-pass filter.

ωHi, ωLo  = Break frequencies for the high-pass and low-pass band-pass filter stages.

Note that with this definition, ωLo is greater than ωHi.

For this application, we identify:

zIn  =  nSFiRnd aSFiAC  =  zOut (17.2.3.2.3-19)
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where

nSFiRnd  =  White acceleration noise along the AC Frame i axis.

aSFiAC  = Acceleration input to Equation (17.2.3.2.3-7) (as defined in Equation

(17.2.3.2.3-8)) having frequency content from ωHi to ωLo.

Equations (17.2.3.2.3-18) and (17.2.3.2.3-19) can be written in the equivalent state vector
form:

z  =  B z + ω nSFiRnd
 

z  ≡  
z1

aSFiAC

          B  ≡  - 
ωHi 0

ωLo ωLo

          ω  ≡  
ωHi

ωLo

(17.2.3.2.3-20)

The nSFiRnd
  white noise term can be characterized in terms of its density by the covariance

form of (17.2.3.2.3-20) (using (15.1.2.1.1-30) with (15.1-1) as a guide):

Pz  =  B Pz + Pz B
T + ω ω T

 QSFiRnd (17.2.3.2.3-21)

where

Q SFiRnd  =  Density for nSFiRnd
 .

Pz  =  Covariance of z.

In the steady state the derivative term in (17.2.3.2.3-21) is zero and the equation reduces to:

B Pz + Pz B
T  =  - ω ω T

 QSFiRnd (17.2.3.2.3-22)

Equation (17.2.3.2.3-22) in component form provides three simultaneous scalar equations
for the elements of Pz in terms of QSFiRnd

  (including the fact that because Pz is symmetrical, its

off-diagonal terms are equal).  The solution to these scalar equations finds that:

QSFiRnd  =  
2 ωLo + ωHi

ωLo
2

 PaSFiAC (17.2.3.2.3-23)

where

PaSFiAC  =  Variance of aSFiAC
 , the 2, 2 element of Pz.

Equation (17.2.3.2.3-23) defines the QSFiRnd
  white noise density in terms of the variance of

aSFiAC
  which can be specified by the user.  We also note that (17.2.3.2.3-23) can be obtained
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more rapidly using Table E.2-1 of Reference 26 as will be discussed at the conclusion of this
section.

In a digital simulation program, an algorithmic version of (17.2.3.2.3-20) would be
incorporated as a digital integration operation to obtain aSFiAC

 .  Using Equations (17.2.3.2.3-7),

(17.2.3.2.3-15) and (17.2.3.2.3-16) as a template, we can write for the z digital integration
algorithm (assuming B is constant):

zl  =  θ zl-1 + θ - I  B-1 ω wSFiRndl θ  =  eB Tl (17.2.3.2.3-24)

where

l  =  Computer integration rate cycle index for calculating z.

Tl  =  Time interval for l cycle.

θ  =  State transition matrix for Equation (17.2.3.2.3-20).

wSFiRndl  = Constant over computer cycle l that varies randomly from l cycle to l cycle.

Used as an approximation to the integrated effect of nSFiRnd.

Equations (17.2.3.2.3-24) are shown at an l cycle rate rather than an m cycle rate to allow for a
normally faster l rate to properly account for the frequency width of the band-pass filter (i.e., the

magnitude of the highest frequency root ωLo).

The wSFiRndl parameter would be obtained from a random number generator with a variance

equivalent to QSFiRnd
 .  The QSFiRnd

  equivalence can be defined from the requirement that the

Pz variance change produced by the integral of (17.2.3.2.3-21) over Tl match the variance
change in zl as computed by Equations (17.2.3.2.3-24).  To first order in B Tl , Equations

(17.2.3.2.3-24) are given by:

zl  ≈  I + B Tl  zl-1 + ω wSFiRndl Tl (17.2.3.2.3-25)

where

Δzl  =  Change in z over an l cycle (Δzl ≡ zl - zl-1).

The covariance form of (17.2.3.2.3-25) using the (15.1.2.1-4) definition is to first order in B Tl :

ΔPzl  ≈  B Pzl-1 Tl + Pzl-1 BT Tl + ω ω T
 PwSFiRnd Tl

 2
(17.2.3.2.3-26)

where

ΔPzl  =  Change in the z covariance over an l cycle.
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PwSFiRnd  =  Variance of wSFiRndl
 .

The integral of (17.2.3.2.3-21) over an l cycle is easily found to first order (in B Tl) by
treating the terms on the right as constant (at their last computed values) and multiplying by the
l cycle time interval:

ΔPzl  ≈  B Pzl-1 Tl + Pzl-1 BT Tl + ω ω T
 QSFiRnd Tl (17.2.3.2.3-27)

Comparing Equations (17.2.3.2.3-26) and (17.2.3.2.3-27) we see that equivalency is achieved if
we set:

PwSFiRnd  =  
1
Tl

 QSFiRnd (17.2.3.2.3-28)

or with (17.2.3.2.3-23):

PwSFiRnd  =  
1
Tl

 
2 ωLo + ωHi

ωLo
2

 PaSFiAC (17.2.3.2.3-29)

Equation (17.2.3.2.3-29) provides an analytical method for evaluating PwSFiRnd, the variance
of wSFiRndl

 .  PwSFiRnd would then be applied as the specified variance of the random number

generator used in the simulation for generating the wSFiRndl
  random number sequence.  If this

is the approach taken for selecting PwSFiRnd, the wSFiRndl
  sequence created by the random

number generator, when applied as the input to Equation (17.2.3.2.3-24), will produce a zl

history with an aSFiAC
  variance (i.e., PaSFiAC

 ) that approximately matches the desired PaSFiAC
 

value used in (17.2.3.2.3-29).  The match will only be approximate because of the
simplifications used in the derivation of (17.2.3.2.3-29).  If more accuracy is required, an
empirical method can be applied as an alternate, based on directly measuring the response of
(17.2.3.2.3-24) to a unity variance random number generator input.

The empirical method for determining PwSFiRnd consists of first running Equation
(17.2.3.2.3-24) for many cycles using unity for PwSFiRnd, and computing the resulting
“normalized PaSFiAC

 ” as the mean squared average of the aSFiAC output.  The correct PwSFiRnd

value is then calculated as the desired specified value for PaSFiAC divided by the computed

normalized PaSFiAC
 .  Subsequently applying the so determined “correct” PwSFiRnd in

(17.2.3.2.3-24) for the wSFiRndl random number sequence variance, will then generate an

aSFiAC
  steady state output variance that matches the specified PaSFiAC

  value.  When using this

process, it is important that the “normalized PaSFiAC
 ” mean-squared average computation begin

after Equation (17.2.3.2.3-24) has been run for at least four time constants (i.e., the reciprocal of

ωHi) to assure that covariance transients have had time to decay.
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Equations (17.2.3.2.3-25) with (17.2.3.2.3-29) show how z can be computed at the l cycle
rate to generate a random aSFiAC

  output (see (17.2.3.2.3-20) for z definition) that has a specified

variance PaSFiAC
  and frequency bandwidth ωHi, ωLo.  These equations would be repeated for

each i axis of the AC Frame using a different random number sequence for wSFiRndl, but

having the same variance.  The aSFiAC
  output would then be input to Equation (17.2.3.2.3-15)

in the y vector as defined in Equation (17.2.3.2.3-8), for each i axis being simulated (using the
broader interpretation of (17.2.3.2.3-15) provided in the paragraph following Equation
(17.2.3.2.3-17)).  For the general case when the m cycle rate is slower than the l cycle rate, the
value for aSFiAC

  used at the m cycle rate in y (in Equations (17.2.3.2.3-8) and (17.2.3.2.3-15))

must be compatible with the aSFiAC
  value calculated by (17.2.3.2.3-25) at the l cycle rate.  The

compatibility is based on the integrated effect of aSFiAC
  used in y over an m cycle, matching the

integral of aSFiAC
  from (17.2.3.2.3-25) over an m cycle.  Because aSFiAC

  used in y is treated as

a constant over an m cycle, the compatibility relation is defined simply by:

aSFiAC-m Tm  =  aSFiAC-l Tl∑
r

 (17.2.3.2.3-30)

or

aSFiAC-m  =  
1
r

 aSFiAC-l∑
r

 (17.2.3.2.3-31)

where

r  =  Number of l cycles in an m cycle.

aSFiAC-l  =  aSFiAC
  calculated from l cycle rate Equations (17.2.3.2.3-25).

aSFiAC-m  =  aSFiAC
  value used in y for Equations (17.2.3.2.3-15) at the m cycle rate.

For the remainder of this section we will address the general problem of calculating the
steady variance of a linear system driven by white noise.  This is the same problem addressed
previously based on Equations (17.2.3.2.3-20) and (17.2.3.2.3-22) leading to Equation
(17.2.3.2.3-23) for the input white noise density that will produce a given output variance.  The
solution method we will use now is based on Table E.2-1 of Reference 26 which is simpler
than the approach used previously (given that Table E.2-1 exists).  We begin by restating the
Chapter 10 definition Equations (10.2.2-9) - (10.2.2-10) for the auto-correlation function of a
general stationary random noise process p(t):

ϕpp(t, τ)  ≡  E p(t) p(t+ τ) ϕpp(t, τ)  =  ϕpp(τ) (17.2.3.2.3-32)

where

τ  =  Correlation time for the p(t) ensemble random process.
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ϕpp(t, τ)  =  Autocorrelation function for p(t).

Section 10.2.2, Equation (10.2.2-21) defines a power spectral density function associated

with ϕpp(τ) as:

G(ω)  ≡  
2

π
 ϕpp(τ) cos ωτ dτ

0

∞

 (17.2.3.2.3-33)

where

ω  =  Fourier transform frequency parameter.

G(ω)  =  Power spectral density function as defined by Equation (17.2.3.2.3-33).

Equation (4.2-2) of Reference 26 also defines a power spectral density function for ϕpp(τ)
as:

F(S)  ≡  
1

2 π
 ϕpp(τ) e- S τ dτ

- ∞

∞

(17.2.3.2.3-34)

where

S  =  Laplace transform parameter.

F(S)  =  Power spectral density function as defined by Equation (17.2.3.2.3-34).

An equivalency between G(ω) and F(S) can be established by substituting S = j ω in
(17.2.3.2.3-34) and expanding using (10.2.1-12) while recognizing from Section 10.2.2 that

ϕpp(τ) is a symmetrical function of τ:

F(jω)  =  
1

2 π
 ϕpp(τ) cos ωτ - j sin ωτ  dτ

- ∞

∞

            =  
1

2 π
 φpp(τ) cos ωτ dτ

- ∞

∞

  =  
1

π
 φpp(τ) cos ωτ dτ

0

∞
(17.2.3.2.3-35)

Comparing Equations (17.2.3.2.3-33) and (17.2.3.2.3-35) we see immediately that:

G(ω)  =  2 F(j ω) (17.2.3.2.3-36)

The converse of (17.2.3.2.3-36) is obtained by substituting ω = 
S
j

 = - j S and rearranging:

F(S)  =  
1
2

 G(-  j S) (17.2.3.2.3-37)
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Equation (17.2.3.2.3-37) allows us to apply Equation (4.4-2) of Reference 26 for calculation
of the mean squared value of p(t) in which p(t) is defined as the output of a linear system:

E pOut (t)2   =  
1
j
 FOut(S) dS

- j ∞

j ∞

(17.2.3.2.3-38)

where

Out  =  Designation for linear system output.

pOut (t)2  =  Mean value of pOut (t)2.

We also know from Equation (4.4-2) of Reference 26 that:

FOut (S)  =  H(S) H(- S) FIn(S) (17.2.3.2.3-39)

where

In  =  Designation for linear system input.

H(S)  = Linear system input-to-output transfer function as defined in Section 10.2.1
Equation (10.2.1-3).

As in Section 10.2.1, Equation (10.2.1-30), we expand H(S) to:

H(S)  =  
HNum(S)

HDen(S)
(17.2.3.2.3-40)

where

HNum(S) , HDen (S)  =  H(S) numerator and denominator polynomials (in powers of S).

Substituting (17.2.3.2.3-39) - (17.2.3.2.3-40) in (17.2.3.2.3-38), and using (17.2.3.2.3-37) for
FIn(S)  obtains:

E pOut (t)2   =  
1

2 j
 

HNum(S) HNum(- S)

HDen(S) HDen(- S)
 GIn(- j S) dS

- j ∞

- j ∞

(17.2.3.2.3-41)

We now specialize Equation (17.2.3.2.3-41) to the case in which the input to the linear
system is white noise.  For this situation, we apply Equation (15.1.2.1.1-34) relating the power
spectral density of a white noise process to its process noise density so that:

GIn(ω)  =  
1

π
 QIn (17.2.3.2.3-42)
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where

QIn  =  Process noise density of the linear system white noise input.

Based on (17.2.3.2.3-42), the input power spectral density is constant and we can, therefore,
write:

GIn(-  j S)  =  
1

π
 QIn (17.2.3.2.3-43)

We can also define the numerator and denominator H(S) polynomials as:

HNum(S)  =  cn-1 Sn-1 +  + c0 
 

HDen (S)  =  dn Sn +  + d0

(17.2.3.2.3-44)

where

ci, di  =  Coefficients for the H(S) numerator and denominator polynomials in S.

Finally, we substitute (17.2.3.2.3-43) into (17.2.3.2.3-41) to find in factored form:

E pOut (t)2   =  In QIn (17.2.3.2.3-45)

with

In  ≡  
1

2 π j
 

HNum(S) HNum(- S)

HDen (S) HDen (- S)
 dS

- j ∞

- j ∞

 (17.2.3.2.3-46)

where

In  = Function given by Equation (17.2.3.2.3-46) in which n refers to the number of
terms in the (17.2.3.2.3-44) polynomials.

Equation (17.2.3.2.3-45) for In with (17.2.3.2.3-44) for the H(S) polynomials is now in a form
that can be easily evaluated using Table E.2-1 of Reference 26.  Table E.2-1 provides values for
In as a function of the ci’s and di’s for values of n ranging from 1 to 10.

As an example of the application of the Reference 26 - Table E.2-1 technique, let us return to
the linear system described by Equations (17.2.3.2.3-20) to determine the input white noise
density that will produce a given steady (average) output variance.  Using the Section 10.2.1
methodology, the combined Laplace transform of the previous equation components yields for
aSFiAC

 :

aSFiAC(S)  =  
ωLo S

S2 + ωLo + ωHi  S + ωLo ωHi

 nSFiRnd(S) (17.2.3.2.3-47)
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where

(S)  =  Indicates Laplace transform of the associated quantity.

From Equation (17.2.3.2.3-47) we see that the n = 2 and that the ci’s and di’s in
(17.2.3.2.3-44) are given by:

c 0  =  0                      c1  =  ωLo
 

d0  =  ωLo ωHi          d1  =  ωLo + ωHi          d2  =  1
(17.2.3.2.3-48)

Using Reference 26 - Table E.2-1, the In value for n = 2 is:

I2  =  
c1

2
 d0 + c0

2
 d2

2 d0 d1 d2
(17.2.3.2.3-49)

Identifying E pOut (t)2  in (17.2.3.2.3-45) as the aSFiAC
  steady state variance PaSFiAC

 , and QIn

as the nSFiRnd
  process noise density QSFiRnd

 , we now substitute (17.2.3.2.3-48) into

(17.2.3.2.3-49) and the result in (17.2.3.2.3-45) to find:

PaSFiAC  =  
ωLo

2

2 ωLo + ωHi

 QSFiRnd (17.2.3.2.3-50)

which shows that:

Q SFiRnd  =  
2 ωLo + ωHi

ωLo
2

 PaSFiAC (17.2.3.2.3-51)

Equation (17.2.3.2.3-51) is identical to the (17.2.3.2.3-23) result obtained previously by a more
involved analytical process.

17.3 USING A TRAJECTORY GENERATOR IN
AIDED STRAPDOWN INS SIMULATIONS

A trajectory generator has various applications in the simulation of aided inertial navigation
systems.  It should be noted at the onset, however, that a trajectory generator should not be the
primary vehicle used to validate strapdown inertial navigation integration algorithms (i.e., such
as developed in Chapters 7 and 19 (Section 19.1)).  The reason should be obvious.  Since
trajectory generators are in general formed from strapdown integration algorithms, their use
becomes suspect in validating algorithms of the type from which they were constructed.  The
basic method for strapdown algorithm verification should generally be based on comparisons
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with known closed-form analytical navigation solutions, rather than solutions derived from a
numerical integration process (e.g., Chapter 11).  In fact, the validation process for the trajectory
generator itself should be based on a Chapter 11 type approach.  Never-the-less, an
independently created trajectory generator can be used to provide inputs to strapdown inertial
navigation algorithms to verify that the algorithm solution matches the trajectory generator
within prescribed limits.  Of course, a mismatch in such a comparison can be caused by errors
in the strapdown algorithms being tested, or in the trajectory generator.  If this approach is to be
utilized, it is important that the trajectory generator be previously validated accurately including
documentation for later substantiation.

Two common uses for trajectory generators are for input to covariance simulation programs,
and for input to simulators used in validating Kalman filter operations.

For covariance simulation purposes, the CB
L

 attitude matrix, vN velocity vector, CN
E

 angular

position, h altitude, B Frame integrated inertial-angular-rate/specific-force increments (α and υ),
and other parameters computed by the trajectory generator (e.g., gravity, earth rate, and
transport rate components) are used in forming the error model matrices (i.e., A, GP, HRW,

GM, Axx
*

, GPx

*
, Hx

*
 and GM

*
 in Equations (16.2.3-1) -(16.2.3-6)).  Note that for the trajectory

generator described in the previous sections, the B Frame inertial angular rate and specific force

(ωIB
B

 and aSF
B

 ) are approximated as constant over an m cycle, hence, can be calculated for an m

cycle as α and υ divided by Tm.  This provides two values for ωIB
B

 and aSF
B

  at each m cycle

junction (for the end of the previous cycle and the start of the current cycle).  A simple average

of the two can be used to single-value the ωIB
B

, aSF
B

  components at the m cycle junctions (i.e.,

the average of the m and m+1 values of α and υ divided by Tm to obtain the m cycle values for

ωIB
B

 and aSF
B

 ).  However, at cycle m, the m+1 values are not yet available for α and υ.  To

resolve the difficulty three methods can be used: 1. Approximate ωIB
B

 and aSF
B

  at cycle m as

equal to α and υ divided by Tm, 2. Use the previous junction averaging technique with

extrapolation to obtain ωIB
B

 and aSF
B

  at m from previously computed m-2 and m-1 values for

ωIB
B

 and aSF
B

 , and 3. Use the previous junction averaging technique but run the trajectory

generator one cycle faster so that the m+1 values for α and υ are available one cycle earlier to

calculate ωIB
B

 and aSF
B

.

When using a trajectory generator in an aided strapdown INS time domain simulation, the B

Frame integrated inertial angular rate and specific force increments (α and υ) would typically be
used for input to a simulation model of a strapdown inertial sensor assembly that includes
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sensor error characteristics.  The output from the strapdown sensor assembly simulator would
then be input to a simulation containing the strapdown INS integration algorithms including
inertial sensor compensation (e.g., Chapter 7 - Table 7.5-1 and Sections 8.1.2.1 - 8.1.2.2).  The
output from the simulated strapdown integration algorithms represents a simulated strapdown
INS output history including the effect of inertial sensor error and INS sensor compensation
error.  A similar procedure can be used to simulate the strapdown INS aiding device in which
trajectory generator navigation parameters would be used to formulate a simulation of the aiding
device and its error characteristics.  The simulated strapdown INS and aiding device outputs
would then be input to a simulation of a Kalman filter configuration (e.g., for validation
purposes as described in Section 15.1.4).  The “truth solution” for the simulation would be the
trajectory generator output attitude, velocity and position data.

The following sections provide more detail regarding strapdown INS sensor error simulation
and an example of a GPS receiver simulation for INS aiding purposes.

17.3.1  SIMULATING STRAPDOWN INS SENSOR ERRORS

In a strapdown INS simulation, sensor errors are accounted for in the sensor assembly
simulator (driven by the trajectory generator) and in the simulation of the INS sensor
compensation algorithms.  The strapdown sensor assembly simulation would implement an
integrated increment form of Equations (8.1.1.1-1) and (8.1.1.2-1), e.g.:

αCntm  =  
1

ΩWt0

 I + FScal  FAlgn αm + δωBias Tm + ΔαQuantm + αRandm

 

υCntm  =  
1

AWt0
 I + GScal  GAlgn υm + δaBias Tm + ΔυQuantm + υRandm

(17.3.1-1)

in which size effect and anisoinertia effects have not been included (for simplicity) and where:

α Cntm
 , υ Cntm  =  Pulse count outputs from the sensor assembly over cycle m.

αm, υm  = Integrated cycle m B Frame inertial angular rate and specific force
increments from the trajectory generator.

ΔαQuantm, ΔυQuantm  = Integrated angular rate sensor and accelerometer quantization
noise over the m cycle.

α Randm, υ Randm  = Integrated angular rate sensor and accelerometer random noise over
the m cycle.
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For simulation purposes, α Randm, υ Randm
  would be created from a zero mean Gaussian

random number generator with variances set to match the angular rate sensor and accelerometer

random noise densities multiplied by Tm.  The Δα Quantm, ΔυQuantm
  quantization terms can be

elaborately modeled to reflect the quantization mechanism in each inertial component.  A
simpler approximation for the quantization terms is to model them (similar to the approach
taken in Section 12.5) such that their cumulative sum (i.e., digital integral) is a random number

of specified variance.  Then Δα Quantm, ΔυQuantm
  would be calculated as:

ΔαQuantm  =  αQuantm - αQuantm-1
 

ΔυQuantm  =  υQuantm - υQuantm-1

(17.3.1-2)

where

αQuantm, υQuantm  = Angular rate sensor and accelerometer quantization noise
associated with the continuous integrated sensor output.

The αQuantm, υQuantm quantities would be generated from a zero mean random number

generator having a uniform statistical distribution over the sensor output pulse size.  The
associated variance for the random number sequence can be shown to equal the pulse size
squared divided by twelve.  The pulse size used would generally represent the effective pulse
size following quantization compensation (assuming that quantization compensation algorithms
will not be explicitly applied in the simulation).

For constant B Frame angular rates and accelerations assumed for the trajectory generator
over an m cycle, the S terms for the precision position compensation algorithm would be
obtained from Equations (8.1.2.1-1) and (8.1.2.2-1) as:

SαCntm  =  
1
2

 α Cntm Tm SυCntm  =  
1
2

 υ Cntm Tm (17.3.1-3)

The strapdown INS sensor compensation simulator would then operate from the (17.3.1-1) -
(17.3.1-2) outputs using a simulation of the sensor compensation algorithms (e.g., Equations
(8.1.2.1-3) - (8.1.2.1-6) and (8.1.2.2-3) - (8.1.2.2-6) neglecting the quantization, size effect and
anisoinertia terms).  As mentioned previously, quantization compensation would not be
included based on the assumption that the simplified (17.3.1-2) model describes the
quantization noise following compensation in the INS computer.  Outputs from the sensor
compensation simulator would be input to the strapdown integration algorithm simulation (e.g.,
Chapter 7 Table 7.5-1) with the coning, sculling, and scrolling terms set to zero (i.e.,
corresponding to constant B Frame angular-rate/specific-force over an m cycle assumed for the
trajectory generator).
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17.3.2  GPS RECEIVER SIMULATION FOR KALMAN AIDED INS APPLICATION

The simulation of a GPS receiver from a trajectory generator input must calculate the range
from the GPS receiver antenna to selected GPS satellites.  In the earth E Frame (See Section 2.2
for definition) this can be achieved through:

ρi
E

  =  RSi
E

 - RGPSAnt
E ρi  =  ρi

E
 ⋅ ρi

E
(17.3.2-1)

where

RGPSAnt
E

  = E Frame components of the position vector from earth’s center to the

strapdown INS GPS receiver antenna.

RSi
E

  = E Frame components of the position vector from earth’s center to the ith GPS
satellite.

ρi
E

  = E Frame components of the range vector from the GPS receiver to the ith GPS
satellite.

ρi  =  Range from the GPS receiver to the ith GPS satellite.

The RSi
E

  vector would be computed from a simulation of the GPS satellite orbit in a specified

inertial (I) coordinate frame and then transformed from the I to the E Frame (which accounts

for the angular rotation of the earth relative to the I Frame).  The RGPSAnt
E

 vector would be

calculated from trajectory generator input data.  For example, the method of Section 17.2.3.2.2

can be used by which a complete navigation solution (with position in terms of CN
E

 and h) is

calculated for the GPS antenna whose lever arm position location in the vehicle is defined

relative to the trajectory generator reference navigation solution.  Then RGPSAnt
E

 would be

calculated using a variation of generalized Equations (4.4.2.2-2) and (4.4.2.2-5):

RGPSAnt
E

  =  RS/GPSAnt
E

 + uZN/GPSAnt
E

 hGPSAnt

uZN/GPSAnt
E

  =  CN/GPSAnt
E

 uZN/GPSAnt
N/GPSAnt

 

RS/GPSAnt
E

  =  RS/GPSAnt
′  

uZN/GPSAnt XE

1 - e  2 uZN/GPSAnt YE

uZN/GPSAnt ZE

(17.3.2-2)

RS/GPSAnt
′   =  Ro / 1 + uZN/GPSAnt YE

2
 1 - e  2 - 1
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where

GPSAnt  =  Reference to GPS antenna navigation solution parameters.

uZN/GPSAnt iE  =  E Frame i axis component of uZN/GPSAnt
E

.

The nomenclature in Equations (17.3.2-2) is further defined in Section 4.4.2.2.

The previous method is useful if a complete detailed navigation solution is to be accurately
modeled for the INS, the GPS antenna, and other devices in the vehicle.  Alternatively, a

RGPSAnt
E

 solution can be developed that only accounts for relative position between the INS and

GPS antenna using:

RGPSAnt
E

  =  RINS
E

 + CN/INS
E

 CL
N

 CAC
L/INS

 l INS/GPS
AC

(17.3.2-3)

where

INS  =  Reference to INS (inertial navigation system) navigation solution data.

RINS
E

  = E Frame components of the position vector from earth’s center to the

strapdown INS.

l INS/GPS
AC

  = Lever arm position displacement vector from the strapdown INS to the

GPS receiver antenna (in AC Frame axes).

For this case, the INS data would be the trajectory generator reference navigation solution, RINS
E

would be calculated from this data using the equivalent to (17.3.2-2) (for RINS
E

 extraction from

CN/INS
E

 and hINS), and CAC
L/INS

 would be provided from Equations (17.2.3.1-1) (using CB
L

 from

(17.2.3.1-28) or its variation from Equations (17.2.3.2-16) and the  subsections of 17.2.3.2 ).

The l INS/GPS
AC

 lever arm can be modeled as a constant or to include bending effects as in

Equation (17.2.3.2.2-1).

If GPS receiver derived range rate is to be simulated, the range rate can be calculated from

the derivative of the square of the (17.3.2-1) ρi expression with rearrangement:

ρi  =  
1

ρi

 ρi
E

 ⋅ ρi
E

(17.3.2-4)

The ρi
E

 term in (17.3.2-4) is the derivative of the ρi
E

 expression in (17.3.2-1):
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ρi
E

  =  RSi
E

  - RGPSAnt
E

 (17.3.2-5)

and using (4.3-1) and (4.3-2) as general equations:

RGPSAnt
E

  =  CN/GPSAnt
E

 vGPSAnt
N/GPSAnt

(17.3.2-6)

The RSi
E

  term in (17.3.2-5) would be obtained from the GPS satellite orbit parameter

simulation in the I Frame using generalized Equation (3.4-4) (with ωAB
A

 = - ωBA
A

) to compute

RSi
E

  from RSi
I

 , RSi
I

  and ωIE
I

.  If the Section 17.2.3.2.2 approach is being used in which a

complete navigation solution (with velocity terms) is being calculated for the GPS antenna

station, vGPSAnt
N/GPSAnt

 in (17.3.2-6) would be the N Frame velocity from this solution.  A

simplified alternative can be used for cases when the position of the GPS antenna in the AC

frame can be approximated as constant (i.e., no bending effects).  Then RGPSAnt
E

 can be

calculated from the derivative of (17.3.2-3) holding lINS/GPS
AC

 constant and using (4.3-1) -

(4.3-2):

RGPSAnt
E

  =  RINS
E

 + CAC
E

 l INS/GPS
AC

  =  CN/INS
E

 vN/INS + CAC
E

 l INS/GPS
AC

 (17.3.2-7)

Using generalized Equation (3.3.2-6) for CAC
E

, we then obtain:

RGPSAnt
E

  =  CN/INS
E

 vN/INS + CAC
E

 ωE AC
AC

 × l INS/GPS
AC

 

                =  CN/INS
E

 vN/INS + CL
N

 CAC
L /INS

 ωE AC
AC

 × l INS/GPS
AC

(17.3.2-8)

in which CAC
L/INS

 is obtained as described following Equation (17.3.2-3), and where:

ωE AC  =  Angular rate of the AC Frame relative to the E Frame.

The ωE AC
AC

 angular rate can be expanded at cycle m as follows, recognizing that angular rates

relative to the N Frame and relative to the L Frame are equal because L is fixed relative to N:

ω 

E ACm

AC
  =  ω 

N/INS-ACm

AC
 - ω 

EN/INSm

AC
  =  ω 

L /INS-ACm

AC
 - CN/INS

AC
 

 m
 ωEN/INSm

N/INS
 

=  ω 

L /INS-ACm

AC
 - CB/INS

AC
 

 m
 CB/INS

L /INS
 

 m

 T
 CN

L
 ω 

EN/INSm

N/INS
(17.3.2-9)
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where

ωN/INS-AC , ω L /INS-AC  = Angular rate of the AC Frame relative to the INS N and L
Frame navigation solutions.

The CB/INS
L /INS

, ω 

EN/INS
N/INS

 terms in (17.3.2-9) are normally computed m cycle parameters within

the trajectory generator INS navigation solution, and CB/INS
AC

 is determined as in Section 17.2.2.

The ωL/INS-AC  term in (17.3.2-9) can be computed from the rotation angle associated with the

change in the CAC
L/INS

 matrix over an m cycle:

CACm

ACm-1  =  CACm-1

L /INS T
CACm

L /INS

 

α 

L /INS-ACm

AC
  =  

Rotation angle
extraction from

 CACm

ACm-1 
using (3.2.2.2-10) - (3.2.2.2-12)
and (3.2.2.2-15) - (3.2.2.2-19)

(17.3.2-10)

Then ω 

L /INS-AC
AC

 can be calculated as α 

L /INS-AC
AC

 divided by Tm, treating the result as the average

value midway between m-1 and m:

ω 

L /INS-ACm -1/2

AC
  ≈  

1
Tm

 α 

L /INS-ACm

AC
 (17.3.2-11)

where

m  -1/2  =  Designation for time point midway between the m-1 and m cycle times.

To obtain ω 

L /INS-AC
AC

 at cycle m for Equation (17.3.2-9), the following variation of

(17.3.2-11) might be tried:

ω 

L /INS-ACm

AC
  ≈   

1
2 Tm

 α 

L /INS-ACm+1

AC
 + α 

L /INS-ACm

AC
(17.3.2-12)

Equation (17.3.2-12) requires the m +1 value for α 

L /INS-AC
AC

 which can be obtained by running

the trajectory generator one cycle faster, or by extrapolation from the m and m-1 values:

α 

L /INS-ACm+1

AC
  ≈  α 

L /INS-ACm

AC
 + α 

L /INS-ACm

AC
 - α 

L /INS-ACm-1

AC

                        =  2 α 

L /INS-ACm

AC
 - α 

L /INS-ACm-1

AC

 

ω 

L /INS-ACm

AC
  ≈   

1
2 Tm

 α 

L /INS-ACm+1

AC
 + α 

L /INS-ACm

AC
(17.3.2-13)

≈  
1

2 Tm
 3 α 

L /INS-ACm

AC
 - α 

L /INS-ACm-1

AC
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18     Strapdown Inertial System Testing

18.0  OVERVIEW

In this chapter we will describe four system level tests that can be used to estimate inertial
sensor errors in strapdown inertial navigation systems: the Schuler Pump test, the Strapdown
Drift test, the System Level Angular Rate Sensor Random Noise Estimation test and the
Strapdown Rotation test.  Each of these tests is primarily based on the measured response of
the strapdown analytical platform acceleration output components (specific force acceleration
transformed through computed attitude) under controlled angular rotation inputs.  Use of the
analytic platform eliminates the need for a stable test fixture base because angular base motion
is sensed by the strapdown angular rate sensors, hence, integrated into a change in the computed
attitude.  The registered attitude change in turn, modifies the transformed specific force
acceleration to cancel the change in accelerometer output produced by the same angular base
motion.  Eliminating a stable base requirement for the test fixture allows the tests to be
conducted in any quasi-stationary test bed.

Of the four tests described, the Strapdown Drift test, the System Level Angular Rate Sensor
Noise Estimation test, and the Strapdown Rotation test are the most useful for reasonably
accurate sensor error determination.  The Schuler Pump test has been included because of its
popularity for use as a means of understanding classical behavior patterns of a strapdown INS
under test.

18.1  SCHULER PUMP TEST

The Schuler Pump test is a method for exciting the Schuler oscillation error characteristic of
an INS under test (See Section 13.2.2) while the INS is inertially navigating.  Schuler
oscillations are excited by intentionally rotating the INS about the vertical at an average rate
equal to the Schuler frequency (i.e., 84 minutes for a full 360 degree rotation).  The induced
angular motion excites (“Schuler pumps”) the strapdown INS horizontal fixed angular rate and
accelerometer errors into measurable horizontal velocity error Schuler oscillations.  By properly
interpreting the Schuler velocity error response (i.e., sinusoidal or cosinusoidal), several inertial
sensor errors can be ascertained as well as initial INS heading error caused by sensor random
noise during INS initial self-alignment operations.  The Schuler frequency input “pumping”
action amplifies fixed horizontal sensor errors in the resulting Schuler response.  In contrast,
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sensor noise induced Schuler errors are not amplified by rotation.  As a result of the effective
increase in signal to noise ratio (for fixed sensor error compared to sensor noise induced
Schuler oscillations), calculation of sensor errors from the velocity measurements is fairly
accurate for stable inertial sensors.

Inertial sensor errors determined from the Schuler Pump test are the following:

• Horizontal angular rate sensor bias

• Composite horizontal-accelerometer bias, horizontal-accelerometer vertical
misalignment, and horizontal-angular-rate-sensor vertical misalignment.

• Initial heading error caused by horizontal inertial sensor random noise
during initial self- alignment.

Composite vertical accelerometer bias, scale factor and scale factor asymmetry error can also
be ascertained by analysis of INS vertical acceleration response (if available as an output) during
stationary periods.  Additionally, vertical angular rate sensor bias error can be estimated from
measured heading change during stationary test segments.  A more accurate measure of vertical
angular rate sensor error can be obtained, however, by repeating the test with the INS at 90
degrees roll angle (assuming the original test was at zero roll angle) so that the previously
vertical angular rate sensor becomes horizontal.  A repeated test at 90 degrees roll angle also
positions the previously vertical accelerometer in a horizontal orientation so that the normal
Schuler Pump test horizontal acceleration measurement can be used to ascertain its composite
horizontal performance.

In a Schuler Pump test, the strapdown INS is mounted to a test fixture having a vertical
rotation axis.  The INS is typically positioned on the test fixture with the sensor assembly Z or
Y axis vertical (depending on whether the Y or Z axis inertial sensors are to be horizontal for
test measurement performance assessment.  The X sensor axis is horizontal in either case).
Initially, the INS self-alignment mode is engaged (e.g., as described in Chapter 6) to align the
INS in vertical and heading using the INS inertial sensors.  Although not absolutely necessary,
the INS initial alignment orientation is typically chosen to position the horizontal INS inertial
sensors along north/east axes so that the normal INS north/east velocity output data can be used
for data analysis.  To minimize the likelihood of turn-on sensor error transients, the INS is
typically allowed to operate with power applied for several minutes prior to engaging the initial
alignment mode.  After self-alignment is complete, the navigation mode is entered with the
vertical control loop engaged to prevent vertical loop divergence, using the test laboratory
altitude as a reference input (See Section 4.4.1.2.1).  To simplify the test procedure, a square
wave (rather than circular) Schuler pumping procedure is then initiated which sequentially
positions the INS at 180, then 0 degree heading orientations (relative to the initial heading) at
half Schuler cycle (42 minute) time intervals.
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Immediately following navigation mode engagement, the INS is rotated plus 180 degrees in
heading and allowed to navigate statically for a half Schuler period (42 minutes).  At 42
minutes, the INS is then rotated minus 180 degrees in heading to its original alignment heading
orientation for the second half Schuler cycle.  (A minus rather than a plus 180 degree rotation is
used when repositioning the INS, to cancel vertical angular rate sensor scale factor error induced
heading error incurred in the original plus 180 degree heading rotation.).  At one Schuler period
(84 minutes from navigation mode entry) the test can be terminated, or the INS can be again
rotated through plus 180 degrees and the test continued.  Continued testing would add minus
and plus 180 rotations at successive 42 minute intervals for extended error amplification.

Data typically taken during a Schuler Pump test consists of elapsed time from navigation
mode entry, north velocity, east velocity and platform heading at quarter Schuler cycle time
points (i.e., every 21 minutes).  At the half Schuler cycle time points, the heading
measurements are taken prior to and after completion of the 180 degree rotations.  Vertical
acceleration can also be recorded if available for vertical accelerometer error determination.  If
not available, vertical acceleration can be estimated from the slope of vertical velocity with the
vertical control loop disabled.  The vertical control loop can be disabled by setting the INS
altitude reference input equal to the INS altitude output signal.  However, the previous
procedure does not disengage integral compensation terms that may be present in the vertical
loop (e.g., the evc3 signal in Section 4.4.1.2.1) that may have been initialized during initial

alignment operations to balance accelerometer error effects (See Section 6.3).

At test conclusion, the velocity and heading data are combined to estimate the INS sensor
error parameters.

18.1.1  ANALYTICAL BASIS FOR THE SCHULER PUMP TEST

The Schuler Pump test is based on the analytical response of the N Frame horizontal velocity
error for a strapdown INS in a static orientation.  The effect of the 180 degree rotations at half
Schuler cycles is analytically treated as a phase reversal of horizontal angular rate sensor errors
feeding the attitude/acceleration-transformation algorithms.  Between half Schuler cycle
rotations, the velocity error propagates as derived in Section 13.3.2 (Equations (13.3.2-25)), but

under zero horizontal velocity (vH0

N
) and velocity change (ΔvSFH

N
) conditions, for which we find

in slightly modified notation:

δVH
N

  =  g uUp
N

 × γ 

H0

N
 

1

ωS

 sin ωS t - γ Up0 R ωIEH

N
 (1 - cos ωS t)

+ δaSFH

N
 

1

ωS

 sin ωS t - R uUp
N

 × δωIBH

N
 (1 - cos ωS t) (18.1.1-1)

+ R δωIBUp ωIEH

N
 t - 

1

ωS

 sin ωS t
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with

δaSFH

N
  ≡  CB

N
 δaSF

B
 

 H

δωIBH

N
  ≡  CB

N
 δωIB

B
 

 H
δωIBUp  ≡  CB 

N
 δωIB

B
 

 ZN
(18.1.1-2)

uUp
N

  ≡  uZN
N γUp0  ≡  γZN0

where

B  = Strapdown sensor assembly “body” coordinate frame as defined in
Section 2.2.

δaSF
B

 , δωIB
B

  = Composite accelerometer and angular rate sensor B Frame output error

vectors (composite effect of fixed bias, scale factor, and misalignment
error as defined in Equations (13.3-14)).

N  = Navigation coordinate frame (defined for the general case in Section 2.2) of the
wander azimuth type (See Section 4.5) that maintains its attitude relative to the
earth for an INS that is stationary relative to the earth.

H  =  Designator for horizontal component.

Up  =  Designator for upward vertical component.

Equation (18.1.1-1) describes the horizontal velocity error response of an INS as a linear

function of initial attitude/heading error (γH0

N
, γUp0) and constant N Frame inertial sensor errors

(δaSFH

N
, δωIBH

N
, δωIBUp).  Because the equation is linear, we can apply the principle of linear

superposition to decompose (18.1.1-1) into parts excited by misalignment and sensor errors
(that in the Schuler Pump test are constant during half Schuler cycle time segments), and then
recombine the parts to form the total solution.  To apply this approach, we first describe the
inertial sensor errors in a compatible analytical form.

δaSFH

N
(t)  =  δaSFH1

N
 Step (t) + δaSFH2

N
 - δaSFH1

N
 Step  t - 

π

ωS

+ δaSFH3

N
 - δaSFH2

N
 Step  t - 

2 π

ωS

 + 

δωIBH

N
(t)  =  δωIBH1

N
 Step (t) + δωIBH2

N
 - δωIBH1

N
 Step  t - 

π

ωS

                          + δωIBH3

N
 - δωIBH2

N
 Step  t - 

2 π

ωS

 + 

(18.1.1-3)

(Continued)
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δωIBUp(t)  =  δωIBUp1 Step (t) + δωIBUp2 - δωIBUp1  Step  t - 
π

ωS

                           + δωIBUp3 - δωIBUp2  Step  t - 
2 π

ωS

 + 

(18.1.1-3)
(Continued)

where

1, 2, 3,   = Designation for the indicated parameter values during the first, second,
third,  half Schuler cycle time periods.

Step ( )  =  Unit step function having a value of zero for ( ) < 0 and unity for ( )  ≥ 0.

It should be apparent by inspection of (18.1.1-3) that the δaSFH

N
(t), δωIBH

N
(t), δωIBUp(t)

functions equal the 1, 2, 3,  parameter values during the first, second, third,  half Schuler
cycles.

Let us now apply Equations (18.1.1-3) in (18.1.1-1) to develop a solution for the horizontal
velocity error using the principle of linear superposition.  We first decompose Equation

(18.1.1-1) into two parts; a part generated by the γH0

N
, γUp0 initial conditions, and a part

generated by the sensor error terms δaSFH

N
, δωIBH

N
, δωIBUp.  The sensor error part is then

decomposed into parts excited by each of the unit step function portions of (18.1.1-3) with the
results interpreted as starting from the time that the unit steps become unity.  We also add
additional “initial” tilt and heading error components to account for tilt/heading error introduced
during the initial and half Schuler cycle 180 degree heading rotations, generated from horizontal
angular rate sensor misalignment (to vertical) and vertical angular rate sensor scale factor error.
The total horizontal velocity solution is then obtained as the sum of the decomposed parts.
Thus:

δVH
N

(t)  =  g uUp
N

 × γ 

H0

N
 

1

ωS

 sin ωS t - γUp0 R ωIEH

N
 (1 - cos ωS t)

+ δVH1
N

 + δVH2
N

 + δVH3
N

 +  (18.1.1-4)

δVH1
N

  =  δaSFH1

N
 + g uUp

N
 × δγH1

N
 

1

ωS

 sin ωS t 

(Continued)



18-6     STRAPDOWN INERTIAL SYSTEM TESTING

- R uUp
N

 × δωIBH1

N
 + δγUp1 ωIEH

N
 (1 - cos ωS t)

+ R δωIBUp1 ωIEH

N
 t - 

1

ωS

 sin ωS t

δVH2
N

  =  Step  t - 
π

ωS

 δaSFH2

N
 - δaSFH1

N
 + g uUp

N
 × δγH2

N
 

1

ωS

 sin ωS t - 
π

ωS

- R uUp
N

 × δωIBH2

N
 - δωIBH1

N
 + δγUp2 ωIEH

N
  1 - cos ωS   t - 

π

ωS

(18.1.1-4)
(Continued)

+ R δωIBUp2 - δωIBUp1  ωIEH

N
 t - 

π

ωS

 - 
1

ωS

 sin ωS  t - 
π

ωS

δVH3
N

  =  Step  t - 
2 π

ωS

 δaSFH3

N
 - δaSFH2

N
 + g uUp

N
 × δγH3

N
 

1

ωS

 sin ωS  t - 
2 π

ωS

- R uUp
N

 × δωIBH3

N
 - δωIBH2

N
 + δγUp3 ωIEH

N
  1 - cos ωS  t - 

2 π

ωS

+ R δωIBUp3 - δωIBUp2  ωIEH

N
 t - 

2 π

ωS

 - 
1

ωS

 sin ωS  t - 
2 π

ωS

δVH4
N

  =  

where

i  = Subscript on δγHi

N
, δγUpi  terms (defined below) referring to the ith 180 degree

rotation in the Schuler Pump test (i = 1, 2, 3, ).

δγHi

N
  = Horizontal tilt due to horizontal angular rate sensor misalignment (into vertical)

excited by the 180 deg heading rotation immediately preceding the ith half

Schuler cycle time period (equivalent to the ΔψTMis term in Equation
(13.2.4-16)).

δγUpi  = Heading error due to vertical angular rate sensor scale factor (and
orthogonality) error excited by the 180 deg heading rotation immediately
preceding the ith half Schuler cycle time period (as in Equation (13.4.1.1-17)).

The time offsets in the (18.1.1-4) sinusoidal term arguments are present because of the time
offsets in the (18.1.1-3) sensor error inputs that generate the sinusoidal wave forms from the
instant their step functions become unity.
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Because the INS orientation only changes in heading during the Schuler Pump test, the B
Frame specific force acting on the INS inertial components will be the same constant value for

all static test orientations, hence, the B Frame accelerometer error δaSF
B

  will be constant,

including scale-factor/misalignment error effects.  For the particular B Frame orientation during

INS initial self-alignment operations, δaSF
B

  will generate a particular value for δaSFH

N
 in

Equations (18.1.1-4), depending on the orientation of the B Frame relative to the N Frame.

Because δaSF
B

  is constant, its horizontal value in the N Frame will be of opposite polarity during

the Schuler Pump test when the INS is at 180 degrees around the vertical from its initial
alignment orientation.  Thus, from the heading orientation profile for the Schuler Pump test
described in Section 18.1, we see that the accelerometer error terms in (18.1.1-4) are given by:

δaSF H1

N
  =  - δaSF H0

N
 δaSF H2

N
  =  δaSF H0

N δaSF H3

N
  =  - δaSF H0

N
(18.1.1-5)

where

δaSF H0

N
  =  Value for δaSF H

N
 at the INS initial self-alignment heading orientation.

Unlike the B Frame accelerometer error characteristic (which was constant for all INS

heading orientations), the B Frame angular rate sensor error δωIB
B

 will have a different value at

the 180 degree heading orientations due to phase reversal (in B Frame coordinates) of the
horizontal earth rate component measured by the angular rate sensors.  Angular rate sensor
scale-factor/misalignment errors multiplying B Frame horizontal earth rate components will
thereby be opposite in sign at the 180 degree heading compared to the values at the alignment
orientation.  Thus, the equivalent to (18.1.1-5) for the angular rate sensor error components in
Equations (18.1.1-4) are defined by the more complicated expressions:

δωIBH1

N
  =  - δωIBH0

N
 + δωIBH00

N

δωIBH2

N
  =  δωIBH0

N
 + δωIBH00

N
(18.1.1-6)

δωIBH3

N
  =  - δωIBH0

N
 + δωIBH00

N

δωIBUp1  =  δωIBUp0 - δωIBUp00

δωIBUp2  =  δωIBUp0 + δωIBUp00 (18.1.1-7)

δωIBUp3  =  δωIBUp0 - δωIBUp00
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where

δωIBH0

N
, δωIBUp0  = Values for δωIBH

N
, δωIBUp at the INS initial self-alignment heading

orientation, but exclusive of scale-factor/misalignment error effects
coupling horizontal B Frame angular rate (i.e., horizontal earth
rate).

δωIBH00

N
, δωIBUp00  = Values for the portion of δωIBH

N
, δωIBUp at the INS initial self-

alignment heading orientation produced by scale-
factor/misalignment error coupling of horizontal B Frame
angular rate (i.e., horizontal earth rate).

Due to the equal magnitude but alternating sign of the half Schuler cycle 180 degree rotations

(See Section 18.1), the δγHi

N
, δγUpi terms in (18.1.1-4) will be equal in magnitude but will

alternate in sign, hence:

δγH2

N
  =  - δγH1

N
δγUp2  =  - δγUp1

δγH3

N
  =  δγH1

N
δγUp3  =  δγUp1 (18.1.1-8)

The γH0

N
, γUp0 terms in Equation (18.1.1-4) can also be expressed in terms of the sensor

errors during alignment by applying the Equation (14.3-38) initial self-alignment solution

assuming that the initial position error (εN
) is zero so that at alignment completion, using

equivalency Equation (12.2.1-17):

γN
  =  ψN

(18.1.1-9)

Using (18.1.1-9) with the previous inertial sensor error definitions in Equation (14.3-38), and
applying the (3.1.1-35) mixed vector dot/cross product identity, we find:

γH0

N
  ≈  

1
g

 uUp
N

 × δaSFH0

N

γUp0  =  
1

ωIEH

2
 uUp

N
 ⋅ ωIEH

N
 × δωIBH0

N
 + δωIBH00

N
 + δγUp0 (18.1.1-10)

=  - 
1

ωIEH

 δωIBH0

N
 + δωIBH00

N
 ⋅ 1

ωIEH

 ωIEH

N
 × uUp

N
 + δγUp0 
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where

δγUp0

N
  = Initial heading error component produced by other than constant angular rate

sensor bias error effects during initial alignment.

The γH0

N
 expression in (18.1.1-10) with generalized Equation (13.1-8) shows that the

horizontal tilt term in (18.1.1-4) is given by:

g uUp
N

 × γH0

N
  =  - δaSFH0

N
(18.1.1-11)

The γUp0 expression in (18.1.1-10) can be simplified by recognizing that ωIEH

N
 is in the

direction of north (because north is along the horizontal, pointing toward the positive earth
rotation axis), and the cross product between north and upward directed vectors, lies east:

1

ωIEH

 ωIEH

N
  =  uNorth

N
uNorth

N
 × uUp

N
  =  uEast

N
(18.1.1-12)

where

uNorth
N

, uEast
N

  =  Horizontal unit vectors pointing north and east.

Substituting (18.1.1-12) and generalized Equation (3.1.1-12) in the (18.1.1-10) γUp0 expression

shows the heading error term in (18.1.1-4) to be:

γUp0 ωIEH

N
  =  - uNorth

N
 uEast

N T
 δωIBH0

N
 + δωIBH00

N
 + δγUp0 ωIEH

N
(18.1.1-13)

The following derives an identity that will prove useful based on the cross product between
east and north vectors being up:

uUp
N

  =  uEast
N

 × uNorth
N

(18.1.1-14)

Applying (18.1.1-14) to the cross product of uUp
N

 with an arbitrary vector WN yields, with

generalized Equations (3.1.1-12), (3.1.1-13) and (3.1.1-16):

uUp
N

 × WN  =  uUp
N ×  WN  =  uEast

N
 × uNorth

N
 × WN

=  uNorth
N

 uEast
N

 ⋅ WN  - uEast
N

 uNorth
N

 ⋅ WN (18.1.1-15)

=  uNorth
N

 uEast
N T

 - uEast
N

 uNorth
N T

 WN
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or, since WN is arbitrary:

uUp
N ×   =  uNorth

N
 uEast

N T
 - uEast

N
 uNorth

N T
(18.1.1-16)

Thus:

uUp
N ×  - uNorth

N
 uEast

N T
  =  - uEast

N
 uNorth

N T
(18.1.1-17)

We also know that for the Schuler Pump test, the test measurements are taken at a static
condition for which the true horizontal velocity is zero.  Hence, the INS output horizontal

velocity measurements equal the velocity error δVH
N

(t) .  At this point we can also generalize

Equations (18.1.1-4) by transformation to any convenient coordinate frame for evaluation (e.g.,
east, north, up geographic axes).  With (18.1.1-5) - (18.1.1-7), (18.1.1-11), (18.1.1-13),
(18.1.1-17) and (3.1.1-13), Equations (18.1.1-4) then become:

VINSH(t)  =  - 2 δ aSFH0 - 
g
2

 uUp × δ γH1  
1

ωS

 sin ωS t 

+ R uUp×  + uNorth uEast
T

 δωIBH0 - δ γUp1 ωIEH  (1 - cos ωS t)

- R δγUp0 ωIEH  1 - cos ωS t  + R δ ωIBUp0 - δ ωIBUp00  ωIEH t - 
1

ωS

 sin ωS t

+ R uEast uNorth
T

 δ ωIBH00  (1 - cos ωS t)

+ Step  t - 
π

ωS

 2 δ aSFH0 - 
g
2

 uUp × δ γH1  
1

ωS

 sin ωS  t - 
π

ωS

- R 2 uUp × δ ωIBH0 - δ γUp1 ωIEH   1 - cos ωS  t - 
π

ωS

(18.1.1-18)

+ R 2 δ ωIBUp00 ωIEH t - 
π

ωS

 - 
1

ωS

 sin ωS  t - 
π

ωS

+ Step  t - 
2 π

ωS

 - 2 δ aSFH0 - 
g
2

 uUp × δ γH1  
1

ωS

 sin ωS  t - 
2 π

ωS

+ R 2 uUp × δ ωIBH0 - δ γUp1 ωIEH   1 - cos ωS  t - 
2 π

ωS

- R 2 δ ωIBUp00 ωIEH t - 
2 π

ωS

 - 
1

ωS

 sin ωS  t - 
2 π

ωS
+ 
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where

VINSH(t)   = Horizontal velocity output from the INS during the Schuler Pump test at
the stationary test orientations.

Note that Equation (18.1.1-18) has the superscript designator removed from the vector
quantities, indicating that this is a general vector equation that can be evaluated in any selected

coordinate frame.  Note also that only the north component of δωIBH00 appears in (18.1.1-18).

This is because the east component produces an initial heading error in Equation (18.1.1-13)

(not included in δγUp0) that cancels the effect of east δωIBH00 error during navigation.

As an adjunct to Equation (18.1.1-18), static heading measurements can be taken at the start
and end of each half Schuler cycle time segment to provide a more direct means for estimating

the δωIBUp0, δωIBUp00 vertical inertial sensor error terms.  The approach is based in part on

Equations (12.2.1-38) which show that for zero pitch angle, the γUp error (i.e., γZN) is

equivalent to a platform heading error δψP.  We also know from Equations (13.3.2-1) that

during the stationary periods, γUp = - δωIBUp, hence:

δψP  =  - δωIBUp (18.1.1-19)

where

δψP  =  Error in INS calculated platform heading.

The δψP term in (18.1.1-19) can be measured during a stationary half Schuler cycle period as

the difference between platform heading measurements taken at the beginning and end of the

period divided by the half Schuler cycle time 
π

ωS

.  Thus, (18.1.1-19) with (18.1.1-7) yields:

δωIBUp0 - δωIBUp00  =  - 
1

mOdd
 
ωS

π
 ψP/INS0.5S- - ψP/INS0.0S+

                                      + ψP/INS1.5S- - ψP/INS1.0S+  + 
(18.1.1-20)

δωIBUp0 + δωIBUp00  =  - 
1

mEven
 
ωS

π
 ψP/INS1.0S- - ψP/INS0.5S+

                                       + ψP/INS2.0S- - ψP/INS1.5S+  + 
(18.1.1-21)
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where

ψP/INS  =  INS computed platform heading.

0.0 S +, 0.5 S +, 1.0 S +, 1.5 S +, etc.  = Designation for measurement taken immediately
following the 180 degree rotation at time zero,
the half Schuler cycle time, the full Schuler cycle
time, the 1.5 Schuler cycle time, etc.

0.5 S -, 1.0 S -, 1.5 S -, etc.  = Designation for measurement taken immediately prior to
the 180 degree rotation at the half Schuler cycle time, the
full Schuler cycle time, the 1.5 Schuler cycle time, etc.

mOdd, mEven  =  Number of odd and even half Schuler cycles in the test.

Equations (18.1.1-20) - (18.1.1-21) presume that platform heading (ψP/INS) will be an

available INS output.  If platform heading is not available, the following development shows

how the ψP/INS differences in (18.1.1-20) - (18.1.1-21) can be computed from INS true

heading and longitude outputs.  The method is based on Equation (12.2.1-44) at zero pitch

angle (θ) combined with the (12.2.3-37) δL expression:

δψT  =  ψZN + δL sin l (18.1.1-22)

where

δψT  =  Error in INS calculated true heading.

ψZN  =  Vertical component of ψN
.

δL  =  Error in INS calculated longitude.

l  =  Latitude.

Equation (12.2.1-42) shows that for zero pitch angle (θ):

ψZN  =  δψP - εZN (18.1.1-23)

where

εZN  = N Frame Z axis (vertical) component of εN
, the rotation angle error associated

with the CN
E

 matrix.

The heading and longitude error terms in (18.1.1-22) and (18.1.1-23) are defined by the
relations:

δψT  =  ψT/INS - ψT δψP  =  ψP/INS - ψP δL  =  LINS - L (18.1.1-24)
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where

ψT/INS  =  INS computed true heading.

LINS  =  INS computed longitude.

ψT, ψP, L  = True (error free) values for true heading, platform heading and longitude.

Substituting (18.1.1-23) - (18.1.1-24) in (18.1.1-22) with rearrangement then yields:

ψP/INS - ψP  =  ψT/INS - ψT - LINS - L  sin l + εZN (18.1.1-25)

Because of the Schuler Pump test environment, ψT, L and l in (18.1.1-25) are constant

during each stationary Schuler half cycle time period.  For the selected wander azimuth N and L

Frames (see Section 4.5 for definitions) the vertical transport rate component ρZN is set to zero.

From Equation (4.4.3-3) we see that for the zero longitude rate laboratory test environment, this

equates the wander angle rate α to zero, hence the wander angle α to a constant.  Therefore,

since the true heading ψT is constant during stationary half Schuler cycles, Equation (4.1.2-2)

shows that platform heading ψP will also be constant during half Schuler cycles.  Because ρZN

is zero, the associated error term δρZN will also be zero.  Because of the stationary test

environment (zero horizontal velocity) and the zero ρZN, Equation (5.3-17) shows that

horizontal transport rate (ρH ≡ ωENH) will also be zero.  Therefore, Equation (12.3.5-21) shows

that εZN will be zero and εZN will be constant.  Thus, we see that during each stationary Schuler

half cycle, the ψT, L, l, ψP and εZN parameters in Equation (18.1.1-25) will be constant.  Based

on this observation, we subtract Equation (18.1.1-25) at the start of a Schuler half cycle from its
value at the end of the same Schuler half cycle to obtain:

ψP/INSEnd - ψP/INSStart  =  ψT/INSEnd - ψT/INSStart - LINSEnd - LINSStart  sin l (18.1.1-26)

Equation (18.1.1-26) allows the ψP/INS differences in (18.1.1-20) - (18.1.1-21) to be calculated

from INS true heading and longitude outputs if platform heading outputs are not available.

Equations (18.1.1-18) with adjunct Equations (18.1.1-20)- (18.1.1-21) (and potentially
(18.1.1-26)) are the basis for the Schuler Pump test expressing the relationship between

strapdown INS measurable horizontal velocity VINSH
 (t) and platform heading ψP/INS, the

inertial sensor errors (δ aSFH0, δωIBH0, δωIBUp0, δωIBH00, δωIBUp00), the residual initial

heading error δγUp0, and the heading/tilt error δγH1, δγUp1 induced by angular rate sensor

misalignment/scale-factor error excitation during the 180 degree heading rotations.  During the

test, VINSH
 (t) is measured at selected time points, and ψP/INS is measured at the half Schuler
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cycle times (immediately before and after the 180 degree rotations).  At completion of the test,

the VINSH
 (t), ψP/INS measurements in conjunction with (18.1.1-18) and (18.1.1-20) -

(18.1.1-21) evaluated at the VINSH
 (t) time points, define a system of equations that can be

solved for δ aSFH0, δωIBH0, δωIBUp0, δωIBH00, δωIBUp00, δγUp0, δγH1 and δγUp1.  The

following section describes classical deterministic approaches for the solution based on
VINSH(t) samples taken at quarter Schuler cycle time points.

18.1.2  CLASSIC SCHULER PUMP TEST SOLUTIONS

The Schuler Pump test was originated to provide a simple rapid estimation of strapdown
INS composite inertial sensor errors with a minimum of special purpose test equipment and
processing software.  The classical Schuler Pump test method is to take VINSH

 (t)

measurements at quarter Schuler cycle times and calculate the sensor errors using a
deterministic solution approach.  If we evaluate Equation (18.1.1-18) at the quarter Schuler
cycle time points using (18.1.1-16) when appropriate, we find that:

VINS/H0.25S  =  - 2 δ aSFH0 - 
g
2

 uNorth uEast
T

 - uEast uNorth
T

 δγH1  
1

ωS

+ R uUp×  + uNorth  uEast
T

 δωIBH0 - R δγUp1 ωIEH

- R δγUp0 ωIEH + R δωIBUp0 - δωIBUp00  
π

ωS

 
1
2

 - 
1

π
 ωIEH

(18.1.2-1)

+ R uEast uNorth
T

 δωIBH00

VINS/H 0.5S  =  R uUp×  + uNorth  uEast
T

 2 δωIBH0 - 2 R δγUp1 ωIEH

- R 2 δγUp0 ωIEH + R δωIBUp0 - δωIBUp00  
π

ωS

 ωIEH (18.1.2-2)

+ 2 R uEast uNorth
T

 δωIBH00

VINS/H0.75S  =  4 δ aSFH0 - 
g
2

 uNorth uEast
T

 - uEast uNorth
T

 δγH1  
1

ωS

+ R uEast uNorth
T

 δωIBH0

- R δγUp0 ωIEH + R δωIBUp0 
π

ωS

 
3
2

 + 
1

π
 ωIEH

(18.1.2-3)

- R δωIBUp00 
π

ωS

 
1
2

 + 
3

π
 ωIEH + R uEast uNorth

T
 δωIBH00
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VINS/H 1.0S  =  - R uUp × 4 δωIBH0 + 2 R δγUp1 ωIEH

                        + R δωIBUp0 
π

ωS

 2 ωIEH

(18.1.2-4)

VINS/H1.25S  =  - 6 δ aSFH0 - 
g
2

 uNorth uEast
T

 - uEast uNorth
T

 δγH1  
1

ωS

+ R uUp×  + uNorth  uEast
T

 δωIBH0 - R δγUp1 ωIEH

- R δγUp0 ωIEH + R δωIBUp0 
π

ωS

 
5
2

 - 
1

π
 ωIEH

(18.1.2-5)

+ R uEast uNorth
T

 δωIBH00 - R δωIBUp00 
π

ωS

 
1
2

 - 
5

π
 ωIEH

VINS/H 1.5S  =  2 R 3 uUp×  + uNorth  uEast
T

 δωIBH0 - 4 R δγUp1 ωIEH

- 2 R δγUp0 ωIEH + R δωIBUp0 
π

ωS

  3 ωIEH (18.1.2-6)

- R δωIBUp00 
π

ωS

 ωIEH + 2 R uEast uNorth
T

 δωIBH00

where

0.25 S, 0.5 S, 0.75 S, etc.  = Designation for parameter values at the quarter, half, three
quarter, etc. Schuler cycle times.

Notice in the previous equations, that the horizontal velocity at the half Schuler cycle time

points (i.e., 0.5 S, 1.0 S, 1.5 S) is independent of accelerometer and δγH1 horizontal tilt error.

This will form the basis for using these points to determine the angular rate sensor errors.  Once
the angular rate sensor errors are found, the accelerometer errors can then be determined from
the odd quarter Schuler cycle horizontal velocities (i.e., at 0.25 S, 0.75 S and 1.25 S).

Solutions to Equations (18.1.2-1) - (18.1.2-6) are expedited if we note from Equation
(18.1.1-16) that:

uUp×  + uNorth  uEast
T

  =  2 uNorth  uEast
T

 - uEast uNorth
T

(18.1.2-7)

We also note that the earth rate horizontal component is north (from the definition of north
being in the direction of earth’s positive polar axis), hence, it has zero easterly component.



18-16     STRAPDOWN INERTIAL SYSTEM TESTING

Let’s first look at a classical solution to the previous equations for a simple case when the test
is terminated after half a Schuler cycle.  Then only Equations (18.1.2-1) - (18.1.2-2) apply
during the half Schuler cycle test period.  Let us assume that the available velocity data from the
INS is along north/east axes.  Applying (18.1.2-7) to Equations(18.1.2-1) - (18.1.2-2) and
taking the dot product with uNorth  and uEast then finds for the north/east components:

VINSNorth 0.5S  =  4 R δωIBH0East - 2 R δγUp0 + δγUp1  ωIENorth

                             + R δωIBUp0 - δωIBUp00  
π

ωS

 ωIENorth (18.1.2-8)

VINSEast0.5S  =  - 2 R δωIBH0North - δωIBH00North

VINSNorth0.25S  =  - 2 δ aSFH0North - 
g
2

 δγH1East  
1

ωS

 + 2 R δωIBH0East

           - R δγUp0 + δγUp1  ωIENorth + R δωIBUp0 - δωIBUp00  
π

ωS

 
1
2

 - 
1

π
 ωIENorth (18.1.2-9)

VINSEast0.25S  =  - 2 δ  aSFH0East + 
g
2

 δγH1North  
1

ωS

 - R δωIBH0North - δωIBH00North

where

VINSNorth ( ), VINSEast( )  =  North/east components of VINS/H ( ).

δωIBH0North, δωIBH0East, δωIBH00North, δωIBH00East  = North/east components of

δωIBH0, δωIBH00.

δ aSFH0North, δ aSFH0East, δγH1North, δγH1East  = North/east components of

δaSFH0, δγH1.

ωIENorth  = North component of ωIEH which is also its magnitude since the east

component of ωIEH is zero.

We also know from (18.1.1-20) for a single half Schuler cycle that:

δωIBUp0 - δωIBUp00  
π

ωS

  =  ψP/INS0.0S+ - ψP/INS0.5S- (18.1.2-10)

Equations (18.1.2-8) combined with (18.1.2-10) obtains for the angular rate sensor errors:
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δωIBH0North -  δωIBH00North  =  - 
1

2 R
 VINSEast0.5S

δωIBH0East - 
1
2

 ωIENorth δγUp0 + δγUp1   =  
1
4

 
1
R

 VINSNorth 0.5S

(18.1.2-11)

 
 

- ψP/INS0.0S+ - ψP/INS0.5S-  ωIENorth

Equations (18.1.2-11) allow the angular rate sensor errors to be estimated only in the composite

form shown.  The δωIBH00North, 
1
2

 δγUp0 + δγUp1  ωIENorth terms cannot be separated from

δωIBH0North, δωIBH0East because they have identical horizontal signatures at the quarter and half

Schuler cycle time points.

The accelerometer errors can be evaluated by substituting (18.1.2-10) - (18.1.2-11) into
(18.1.2-9):

δ aSFH0North - 
g
2

 δγH1East  =  - 
ωS

2
 VINSNorth0.25S - 

1
2

 VINSNorth0.5S
 
 

+ R ψP/INS0.0S+ - ψP/INS0.5S-  
1

π
 ωIENorth

(18.1.2-12)

δ  aSFH0East + 
g
2

 δγH1North  =  - 
ωS

2
 VINSEast0.25S - 

1
2

 VINSEast0.5S

Equations (18.1.2-12) allow the accelerometer errors to be estimated, but only in the composite

form shown.  The δγH1 terms cannot be separated from δaSFH0
  because they have identical

horizontal signatures at the quarter and half Schuler cycle time points.  For the accelerometer,
this is a manifestation of the general rule discussed in Section 13.2.4 (following Equation
(13.2.4-28)) that only sensor misalignments relative to one another affect strapdown inertial

navigation performance.  The composite of δγH1 and δaSFH0
  in (18.1.2-12) converts the

accelerometer misalignment terms in δaSFH0
  to be relative to the angular rate sensor input axes.

In this regard, the δγH1, δaSFH0
  composite terms in (18.1.2-12) can be interpreted as

accelerometer errors having the misalignment terms referenced to the angular rate sensor input
axes.

Equat ions (18.1.2-11) and (18.1.2-12) are commonly used with the

ψP/INS0.0S+ - ψP/INS0.5S- term neglected, to obtain an approximate estimate of horizontal

accelerometer and angular rate sensor error.
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Regarding accelerometer error determination, an alternative to Equations (18.1.2-12) is based
on the derivative of Equation (18.1.1-18) at t = 0 for which we find upon differentiation that:

VINSH (t = 0)  =  - 2 δaSFH0 - 
g
2

 uUp × δγH1 (18.1.2-13)

hence,

δaSFH0 - 
g
2

 uUp × δγH1  =  - 
1
2

 VINSH(t = 0) (18.1.2-14)

The VINSH
 (t = 0) term in Equation (18.1.2-14) can be evaluated by measuring the change in

VINSH
 (t) over a small time increment immediately following the first 180 degree rotation at

self-alignment completion.  Then VINSH
 (t = 0) is calculated as the change in VINSH

 (t) divided

by the time interval.  The time interval should be large enough to attenuate accelerometer pulse
quantization uncertainty error in theVINSH

 (t) measurement, but small compared to the Schuler

period so that the computation of VINSH
 (t = 0) is valid (e.g., 10 seconds).

It is interesting to note that the Equation (18.1.2-14) method for measuring accelerometer
error was the original basis for development of the Strapdown Rotation test described in Section
18.4.  The Strapdown Rotation test generalizes the initial rotation (following self-alignment) to a
rotation sequence about different sensor assembly axes.  The result is a coupling of
accelerometer and angular rate sensor errors into measurable horizontal acceleration.  By
structuring a group of such measurements using different rotation sequences, a set of horizontal
acceleration measurements can be obtained, each representing a different linear combination of
the sensor errors.  Post-processing the horizontal acceleration measurements then allows
individual sensor errors to be determined explicitly to high accuracy (i.e., accelerometer
misalignment and bias; angular rate sensor misalignment and scale factor error).  Vertical
acceleration measurements taken during the same test series also allow determination of
accelerometer scale factor errors.

Returning to the Schuler Pump test discussion, a more accurate estimate for the sensor errors
can be made by allowing the test to continue for two half Schuler cycles.  To simplify the
analytical form of our deterministic solution, we will not use the first quarter Schuler cycle data
so that Equations (18.1.2-2) - (18.1.2-4) then apply.  Equations (18.1.2-3) - (18.1.2-4) with
(18.1.1-16) finds for the north/east components:

VINSNorth1.0S  =  - 4 R δωIBH0East + 2 R δγUp1 ωIENorth 

+ R δωIBUp0 
π

ωS

 2 ωIENorth (18.1.2-15)

VINSEast1.0S  =  4 R δωIBH0North
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VINSNorth0.75S  =  4 δaSFH0North - 
g
2

 δγH1East  
1

ωS

 - R δγUp0 ωIENorth

+ R δωIBUp0 
π

ωS

 
3
2

 + 
1

π
 ωIENorth - R δωIBUp00 

π

ωS

 
1
2

 + 
3

π
 ωIENorth

(18.1.2-16)

VINSEast0.75S  =  4 δaSFH0East + 
g
2

 δγH1North  
1

ωS

+ R δωIBH0North + δωIBH00North

We also know from (18.1.1-21) for the second half Schuler cycle that:

δωIBUp0 + δωIBUp00  
π

ωS

  =  - ψP/INS1.0S- - ψP/INS0.5+ (18.1.2-17)

Summing and differencing Equations (18.1.2-17) and (18.1.2-10) yields:

δωIBUp0  =  - 
ωS

2 π
 ψP/INS1.0S- - ψP/INS0.5S+ + ψP/INS0.5S- - ψP/INS0.0S+ (18.1.2-18)

δωIBUp00  =  - 
ωS

2 π
 ψP/INS1.0S- - ψP/INS0.5S+ - ψP/INS0.5S- + ψP/INS0.0S+ (18.1.2-19)

With (18.1.2-18), Equations (18.1.2-15) can be solved for the H0 angular rate sensor errors:

δωIBH0North  =  
1

4 R
 VINSEast1.0S

δωIBH0East - 
1
2

 δγUp1 ωIENorth  =  - 
1
4

 
1
R

 VINSNorth 1.0S

(18.1.2-20)

 
 

+ ψP/INS1.0S- - ψP/INS0.5S+ + ψP/INS0.5S- - ψP/INS0.0S+  ωIENorth

From (18.1.2-20), we see that δωIBH0North can now be determined explicitly, but that the

δωIBH0East angular rate sensor error appears as a composite with 
1
2

 δγUp1 ωIENorth (in contrast

with Equations (18.1.2-11) in which δωIBH0North was combined with δωIBH00North, and

δωIBH0East was combined with 
1
2

 δγUp0 + δγUp1 ).  In general, for a normally calibrated INS,
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the 
1
2

 δγUp1 ωIENorth term in (18.1.2-20) is negligible compared to the δωIBH0East term being

evaluated.

The north H00 angular rate sensor error can be determined by summing the east component
of Equations (18.1.2-15) with two times the east component of Equations (18.1.2-8):

δωIBH00North  =  
1

4 R
 VINSEast1.0S + 2 VINSEast0.5S (18.1.2-21)

The initial heading residual δγUp0 can be calculated by summing the north components of

(18.1.2-8) and (18.1.2-15), and applying (18.1.2-18) - (18.1.2-19):

δγUp0  =  - 
1

2 R ωIENorth

 VINSNorth0.5S + VINSNorth1.0S

                - 
1
2

 ψP/INS1.0S- - ψP/INS0.5S+  + 2 ψP/INS0.5S- - ψP/INS0.0S+

(18.1.2-22)

Finally, the horizontal composite accelerometer errors are evaluated by combining Equations
(18.1.2-8), (18.1.2-15), (18.1.2-16), (18.1.2-18) and (18.1.2-19):

δaSFH0North - 
g
2

 δγH1East  =  
ωS

4
 VINSNorth0.75S - 

1
2

 VINSNorth1.0S + VINSNorth0.5S

 
 

- 
R ωIENorth

π
 ψP/INS1.0S- - ψP/INS0.5S+ - 2 ψP/INS0.5S- + 2 ψP/INS0.0S+ (18.1.2-23)

δaSFH0East + 
g
2

 δγH1North  =  
ωS

4
 VINSEast0.75S - 

1
2

 VINSEast1.0S + VINSEast0.5S

Equations (18.1.2-18) - (18.1.2-23) allow determination of δωIBH0North, δωIBH0East -

1
2

 δγUp1 ωIENorth , δωIBUp0, δ aSFH0North - 
g
2

 δγH1East , δ  aSFH0East + 
g
2

 δγH1North , δγUp0
  ,

δωIBH00North, and δωIBUp00 within the random noise limits of the horizontal velocity data.  In

general, the horizontal velocity random noise is produced primarily by the integrated effect of
accelerometer and angular rate sensor output noise, typically increasing as the square root of
time (See Sections 13.6.1 - 13.6.2).  For increased accuracy in the Schuler Pump test, later time
measurements are generally preferred because their amplification effect on the principal errors
builds linearly with time, hence, the error-signal to noise ratio increases as the square root of
time.  If we extend the test duration for another half Schuler cycle, Equations (18.1.2-5) -
(18.1.2-6) would be included for sensor error evaluation.  The addition of the North component

of Equation (18.1.2-6), in particular, would then allow δωIBH0East and δγUp1 to be explicitly
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evaluated (within the sensor noise limits).  This is a minor (if any) improvement since δγUp1 is

generally small, and its impact on δωIBH0East determination accuracy is generally minimal.

Comparing Equation (18.1.2-6) at the 1.5 Schuler cycle time with (18.1.2-4) at the full
Schuler cycle time, we see (using (18.1.1-16)) that the north and east H0 angular rate sensor
errors are amplified by 6 and 8 respectively in (18.1.2-6), compared with 4 in (18.1.2-4).

However, Equation (18.1.2-6) contains δγUp0 and δωIBH00 error terms that are absent in

(18.1.2-4).  The result is that H0 angular rate error estimates obtained using (18.1.2-6) will not
achieve the full benefit of increased amplification because data from the half cycle response
(Equation (18.1.2-2)) must be included with (18.1.2-6) for H0 error determination (to eliminate

δγUp0 and δωIBH00 in the solution process).  In order to avoid this difficulty, data at the two

Schuler cycle time can be used which would be similar in form to (18.1.2-6) (i.e., without the

δγUp0, δωIBH00 terms), but having an H0 angular rate sensor error amplification factor of 8

instead of 4.  Then H0 error determination would achieve the full benefit of increased
amplification.

Extending the Schuler Pump test duration for increased sensor error amplification has a
fundamental limitation in the analytical solutions presented thus far.  The limitation arises
because of an approximation employed in underlying Equation (18.1.1-1) (a repeat of the
velocity error expression in Equation (13.3.2-25)) that neglected earth rate coupling between
horizontal tilt and velocity error build-up (i.e., derived in the steps going from (13.3-6) -
(13.3-9) to (13.3-15) to (13.3.2-1) to (13.3.2-20)).  This approximation enabled the
development of (18.1.1-1) in the closed-form indicated, in effect based on the accompanying
assumption that Schuler oscillations maintain their planar orientation relative to wander azimuth
N Frame coordinates.  Without the approximation, the correct Schuler response is for sustained
oscillations in free azimuth N Frame coordinates (as discussed in Section 13.2.2).  From
Section 4.5, we see that the angular difference between free and wander axis coordinate frames

(assuming identical initialization of the CN
E

 matrix) is a rotation about the vertical equal to the

vertical component of earth rate multiplied by navigation time t.  Thus, for 45 degrees latitude
for which the vertical earth rate is 11 degrees per hour, the angular separation between the free
and wander azimuth frames is 0.26 radians at one Schuler cycle (84 minutes), or an average of
0.13 radians over the 84 minute time period.  This introduces 13 percent cross-coupling error
between the north/east sensor error estimates, which is generally within the ball-park of
expected accuracy for the Schuler Pump test solutions.  For test periods exceeding one Schuler
cycle, the average cross-coupling error effect may be unacceptable.

To eliminate the previous cross-coupling error effect, numerical techniques can be used to
compute the horizontal velocity error sensitivity to strapdown sensor error without

approximation.  The method, of course, is to calculate the state transition matrix Φ that couples
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B Frame sensor error to N Frame horizontal velocity error by integration of Φ (as in Equation

(15.1.1-13)) from time t = 0, using the state dynamic matrix A(τ) associated with the full
wander azimuth error equation set (e.g., Equations (13.3-6)).  Equations (18.1.2-1) - (18.1.2-6),
etc. would then be replaced by the equivalent to the x(t) expression in Equation (15.1.1-13)
(based on zero process noise w(t)), evaluated at the quarter Schuler cycle times.  Additional
intermediate time points could also be easily included with this approach.  The inertial sensor
errors can then be estimated by a more sophisticated inversion process, such as weighted least
squares (e.g., Reference 24 - Section 6.9) in which the weighting matrix is increased linearly
with time (as the variance in horizontal velocity error caused by inertial sensor output noise).
Carrying this to a more sophisticated level, we can also consider using a Kalman filter to
estimate the sensor errors.

The previous discussion illustrates sophisticated techniques that can be added to enhance
Schuler Pump test data analysis.  However, the penalty is added complexity which, in a sense,
defeats the basic motivation behind the test; i.e., having a simple method for rapidly
determining approximate accelerometer and angular rate sensor error, without requiring
sophisticated software analysis tools.  In fact, if more accurate solutions are required for angular
rate sensor and accelerometer sensor evaluation, simpler and more effective techniques are
available based on analyzing the performance characteristics of the strapdown “platform”
without the attendant navigation solution (e.g., Sections 18.2 and 18.4).  Based on these
considerations, when used, the Schuler Pump test is usually applied based on the simpler
deterministic solution approaches.

18.2  STRAPDOWN DRIFT TEST

The Strapdown Drift test is designed to evaluate angular rate sensor error by processing data
generated during extended self-alignment operations.  The test is performed on a strapdown
analytic platform during an extension of the normal self-alignment initialization mode.  The
principal measurement of the strapdown drift test is the composite north horizontal angular rate
sensor output, determined from the north component of angular rate bias applied to the
strapdown analytic platform to render it stationary in tilt around North attitude.  Subtracting the
known true value of north earth rate from the measurement evaluates the north component of
angular rate sensor composite error.  East and vertical angular rate sensor errors are ascertained
by repeating the test with the previously east and vertical angular rate sensors in the horizontal
north orientation.

For situations when the biasing rate to the strapdown analytic platform is not an available
INS output, an alternative procedure can be utilized based on INS computed true heading
outputs.  In this case the east angular rate sensor error is determined from the test based on the
heading error it generates at the end of an extended self-alignment run.  In order to discriminate
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east angular rate sensor error from earth rate input, the INS heading output is measured for two
individual alignment runs.  The second alignment run is performed at a heading orientation that
is rotated 180 degrees from the first.  The difference between the average heading
measurements so obtained cancels the true earth rate input, thereby becoming the measurement
for east angular rate sensor error determination.  North and vertical angular rate sensor errors
are ascertained by repeating the test with the previously north and vertical angular rate sensors in
the horizontal east orientation.

In the following subsections we will analyze both Strapdown Drift test methods (based on
analytical platform bias measurement, and based on INS heading measurement).  The
concluding subsection shows how the determined angular rate sensor bias errors can be used to
update the INS bias calibration coefficients.

18.2.1 STRAPDOWN DRIFT TEST BASED ON ANALYTICAL
PLATFORM REBALANCE BIAS MEASUREMENT

The analytical basis for this version of the Strapdown Drift test can be derived from
Equations (6.1.2-2) of Chapter 6.  The basic (6.1.2-2) self-alignment equations are processed to
initially align the INS (for approximately 5 minutes, depending on strapdown inertial sensor
noise content).  The Kalman gains are then frozen and the alignment process is extended.  Let

us write the CB
L

 attitude rate equation in (6.1.2-2) as being processed in the INS computer

during the extended fine-alignment period, identifying that the computed parameters contain
error due to initial condition error and inertial sensor input error:

CB
L

  =  CB
L

 ωIB
B

×  - ωIL
L

×  CB
L

(18.2.1-1)

where

    = Designation for angular rate sensor output containing angular rate sensor error (as

opposed to angular rate sensor signals without the   that will, henceforth, signify
error free signals).

    = Designation for computed parameter containing errors (as opposed to quantities

without the    that will, henceforth, signify error free parameters).

L  = Locally level attitude referencing coordinate frame as defined in Section 2.2, and as
specialized for this section, to be of the wander azimuth type (See Section 4.5).

Based on the (15.2.1-1) CB
N

 expression compared with CB
L
 in (18.2.1-1), let’s use the CB

N

error rate equations from (15.2.1-3) (transformed from the N to the L Frames - See Section 2.2
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for definitions) to write the error state dynamic equation for the CB
L

 angular error rate during

alignment.  In the process, recall that (15.2.1-3) was derived from (14.2-18) which, in turn, was

derived from Equation (14.2-7).  From the explanation preceding (14.2-7) we note that γ is

actually γ* as defined by Equation (12.5-5), but with the * deleted for notation simplicity (it is

in sections like these that one sometimes regrets using such simplifications).  The γ* parameter

is γ neglecting quantization noise (See Equation (12.5-5)).  In this section, it is preferred to

restore the original γ meaning to Equation (15.2.1-3) before applying it as outlined above.  We

achieve this by changing all γ’s to γ*’s, then replacing the γ* terms by the derivative of

γL
 + CB

L
 δαQuant per the (12.5-5) γ* definition in the L Frame, and finally, moving the

CB
L

 δαQuant derivative to the right side of the equality with a corresponding sign reversal.  The

result is the desired error state dynamic equation for the CB
L

 rotation angle error γ “without any

shenanigans”:

γH
L

  =  - CB 
L

 δωIB
B

 

 H
 - γ*ZL ωILH

L
 × uZL

L
 + uZL

L
 × γ*H

L
 ωIEUp + δωILH

L

                       + CB
L

 

 H
 ωVib

B
 × δαQuant  - 

d
dt

 δαQuantH
L

 

 

γZL  =  - uZL
L

 ⋅ CB 
L

 δωIB
B

 - uZL
L

 ⋅ ωILH

L
 × γ*H

L
(18.2.1-2)

+ uZL
L

 ⋅ CB
L

 ωVib 
B

× δαQuant  - 
d
dt

 δαQuantZL 

with

γ*
L

  =  γL
 + CB

L
 δαQuant (18.2.1-3)

where

γH
L

, γZL  = Horizontal and vertical (along the L Frame Z axis) components of the

rotation angle error γL
 in CB

L
.

uZL
L

  = Unit vector downward along the L Frame Z axis projected on L Frame axes.

Note that uZL is in the opposite direction from uZN in Equations (15.2.1-3)
which is upward along the N Frame Z axis.

ωIEUp  =  Upward vertical component of earth rate which is ωe sin l.

ωVib 
B

  =  B Frame angular vibration rate during alignment.
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δωILH

L
, δωIB

B
  =  Errors in ωIB

B
 and ωIL

L
.

δαQuant  = Integrated angular rate sensor output quantization error in the Sensor (B)
Frame.

δαQuantH
L

, δαQuantZL  = Horizontal and vertical (along the L Frame Z axis)

components of CB
L

 δαQuant.

The integral of (18.2.1-2) since the start of the extended Fine Alignment process (showing
functional time dependence where needed for clarity), including substitution of (18.2.1-3) in the
ZL component result, is:

γH
L

(t)  =  γHStart

L
 + - CB 

L
 δωIB

B
 

 H
 - γ*ZL(τ) ωILH

L
 × uZL

L

tStart

t

+ uZL
L

 × γ*H
L

 ωIEUp + δωILH

L
 + CB

L
 

 H
 ωVib

B
 × δαQuant  dτ

                - δαQuantH
L

 (t) + δαQuantH
L

 ( tStart )
 

γ*ZL(t)  =  γZLStart + - uZL
L

 ⋅ CB 
L

 δωIB
B  

 
tStart

t
(18.2.1-4)

 
 

- uZL
L

 ⋅ ωILH

L
 × γ*H

L
(τ)  + uZL

L
 ⋅ CB

L
 ωVib 

B
× δα Quant  dτ 

+ δαQuantZL(tStart)

where

tStart  = Time point at the start of the extended alignment period for initiating the
(18.2.1-1) integration process.

Start  =  Subscript indicating the value for the parameter at time tStart.

τ  =  Integration time parameter.

Equation (14.3-39) in Section 14.3 shows that in the absence of sensor and measurement

noise, γ*H will reach a steady offset value at the end of Fine Alignment determined by

horizontal accelerometer error components (Note from our “back-off” discussion preceding

Equation (18.2.1-2), that γH in (14.3-39) is actually γ*H defined by (12.5-5) and (18.2.1-3)).

Chapter 14, Section 14.6 focused on the response of horizontal earth rate estimation error to
random noise during Fine Alignment.  The procedures in Chapter 14 leading to Equations
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(14.6.4.4-1) can also be used to show that the response of horizontal tilt error (γ*H) during Fine

Alignment caused by random sensor errors and measurement noise, diminishes with time in

alignment, becoming negligible at the end of alignment (again, γH in Chapter 14 is actually

γ*H).  We can conclude, therefore, that during extended alignment we can approximate:

γ*H
L

(t)  ≈  γHOffset

L
(18.2.1-5)

where

γHOffset

L
  =  Average offset of CB

L
 from the true CB

L
 during extended alignment.

We can write for the components of CB 
L

 δωIB
B

 in (18.2.1-4):

δωIBZL  =  δωARS/CnstZL + nARS/RndZL
 

δωIBH

L
  =  δωARS/CnstH

L
 + nARS/RndH

L
(18.2.1-6)

where

δωARS/CnstZL, δωARS/CnstH

L
  = Vertical and horizontal constant components of

CB 
L

 δωIB
B

.

nARS/RndZL, nARS/RndH

L
  = Vertical and horizontal random noise components of

CB 
L

 δωIB
B

.

From (18.2.1-1) compared to the (15.2.1-1) CB
N

 expression L Frame equivalent, we should

also recognize that ωILH

L
 in (18.2.1-2) is horizontal earth rate ωIEH

L
, a constant for the wander

azimuth L Frame during alignment.  Then substituting (18.2.1-5), (18.2.1-6), and ωIEH

L
 for

ωILH

L
  in the (18.2.1-4) γ*ZL expression finds:
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γ  *ZL(t)  ≈  γZLStart + - δωARS/Cnst ZL - nARS/Rnd ZL
 
 

tStart

t

- uZL
L

 ⋅ ωIEH

L
 × γ 

HOffset

L
 + uZL

L
 ⋅ CB

L
 ωVib 

B
× δ αQuant  dτ 

+ δαQuantZL(tStart) (18.2.1-7)

=  γZLStart - δ  ωARS/CnstZL + uZL
L

 ⋅ ωIEH

L
 × γ 

HOffset

L
 t - tStart  

- θARS/RndZL(t, tStart) + θARS/ωVib-αQuantZL(t, tStart)

+ δαQuantZL(tStart)

with

θARS/RndZL(t, tStart)  ≡  nARS/RndZL dτ
tStart

t

θARS/ωVib-αQuantZL(t, tStart)  ≡  uZL
L

 ⋅ CB
L

 ωVib 
B

× δα Quant  dτ
tStart

t

 

(18.2.1-8)

Substituting (18.2.1-5) - (18.2.1-8) in the (18.2.1-4) γH
L

 expression obtains at the end of the

extended alignment period:

γHEnd

L
  =  γHStart

L
 + δωILH

L
 dt

tStart

tE n d

- δωARS/CnstH

L
 -  uZL

L
 × γHOffset

L
 ωIEUp  T

- θARS/RndH

L
 + θARS/ωVib-αQuantH

L
 - δαQuant/HEnd

L
 + δαQuant/HStart

L
(18.2.1-9)

- γ ZLStart + δ αQuant/ZLStart  T - 
1
2

 δ  ωARS/CnstZL + uZL
L

 ⋅ ωIEH

L
 × γ 

HOffset

L
 T

 2 

 
 

- SθARS/RndZL + SθARS/ωVib-αQuantZL  ωIEH

L
 × uZL

L

with
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θARS/RndH

L
  ≡  nARS/RndH

L
 dt

tStart

tE n d

θARS/ωVib-αQuantH
L

  ≡  CB
L

 

 H
 ωVib

B
 × δαQuant  dt

tStart

tE n d

SθARS/RndZL  ≡   
tStart

tE n d

nARS/RndZL dτ dt
tStart

t

(18.2.1-10)

SθARS/ωVib-αQuantZL  ≡   
tStart

tEnd

uZL
L

 ⋅ CB
L

 ωVib 
B

× δα Quant  dτ dt 

tStart

t

where

End  =  Subscript identifying parameter values at the end of extended alignment.

T  =  Time duration for the extended alignment period (i.e., tEnd - tStart).

Based on the definition for δωILH

L
  and, as noted previously, ωILH

L
 = ωIEH

L
  we can write:

δωILH

L
  =  ωILH

L
 - ωILH

L
  =  ωILH

L
 - ωIEH

L
(18.2.1-11)

We also define for the integral of the ωILH

L
 term in (18.2.1-11):

φH
L

  ≡  ωILH

L
 dt

tStart

tE n d

(18.2.1-12)

where

φH
L

  =  What will be the measurement for the Strapdown Drift test.

Substituting (18.2.1-11) and (18.2.1-12) in (18.2.1-9), approximating γHStart

L
 as equal to

γHEnd

L
 (i.e., tStart occurs after transients have decayed in the Fine Alignment process), and

solving for δωARS/CnstH

L
:
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δωARS/CnstH
L

  =  
1
T

 φH
L

 - ωIEH

L
 + uZL

L
 × γHOffset

L
 ωIEUp

         - 
1
T

 θARS/RndH

L
 - θARS/ωVib-αQuantH

L
 + δαQuant/HEnd

L
 - δαQuant/HStart

L

- 
1
T

 γZLStart + δαQuant/ZLStart  T - 
1
2

 δωARS/CnstZL + uZL
L

 ⋅ ωIEH

L
 × γHOffset

L
 T2 

            - SθARS/RndZL + SθARS/ωVib-αQuantZL  ωIEH

L
 × uZL

L

(18.2.1-13)

A unit vector along φH
L

 is:

uφH
L

  =  
1

φH

 φH
L

(18.2.1-14)

where

uφH
L

  =  Unit vector along φH
L

.

φH  =  Subscript designation for vector component along φH
L

.

φH  =  Magnitude of φH
L

.

The error in the uφH
L

 unit vector can be found as follows.  First we write the equivalent error

free form of (18.2.1-14) as:

uφH
L

  =  
1

φH

 φH
L

(18.2.1-15)

Then, we express the equivalent error free version of Equation (18.2.1-13) by setting all sensor

error effects to zero and deleting the    notation which finds:

1
T

 φH
L

  =  ωIEH

L
(18.2.1-16)

Thus, as might have been guessed, the nominal φH
L

 lies along the true horizontal earth rate

vector (which, of course, is horizontal true north), hence, for ωIEH

L
 and the unit vector uφH

L
 along

φH
L

:
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ωIEH

L
  =  ωIEH uNorth

L
uφH

L
  =  uNorth

L
(18.2.1-17)

where

uNorth
L

  =  Unit vector in the direction of horizontal true North.

ωIEH  = Magnitude of ωIEH

L
 which is the component of ωIEH

L
 along horizontal true

North, and equals earth rate magnitude times the cosine of geodetic latitude.

The difference between uφH
L

 and uφH
L

 is the error in uφH
L

 which we then express analytically as

the differential of (18.2.1-14).  With (18.2.1-15) this is:

δuφH
L

  =  
φH δφH

L
 - φH

L
 δφH

φH
2

  =  
1

φH

 δφH
L

 - 
φH δφH

φH
2

 uφH
L

(18.2.1-18)

where

δuφH
L

  =  Error in uφH
L

.

δφH
L

, δφH  =  The error in φH
L

 and its magnitude.

An expression for the φH δφH term in (18.2.1-18) is determined from the differential of:

φH
2

  =  φH
L

 ⋅ φH
L

(18.2.1-19)

which, with (18.2.1-15), gives:

φH δφH  =  φH
L

 ⋅ δφH
L

  =  φH uφH
L

 ⋅ δφH
L

(18.2.1-20)

Substituting (18.2.1-20) in (18.2.1-18) yields:

δuφH
L

  =  
1

φH

 δφH
L

 - uφH
L

 ⋅ δφH
L

 uφH
L

(18.2.1-21)

Hence, with (18.2.1-17), we see that uφH
L

 is:

uφH
L

  =  uNorth
L

 + 
1

φH

 δφH
L

 - uNorth
L

 ⋅ δφH
L

 uNorth
L

(18.2.1-22)
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We will subsequently take the dot product of uφH
L

 with Equation (18.2.1-13).  Using

(18.2.1-22) and (18.2.1-17), we find for the dot product of uφH
L

 with particular terms in

(18.2.1-13):

uφH
L

 ⋅ φH
L

  =  φH

uφH
L

 ⋅ ωIEH

L
  =  ωIEH uφH

L
 ⋅ uNorth

L
  ≈  ωIEH

uφH
L

 ⋅ ωIEH

L
 × uZL

L
  =  ωIEH uφH

L
 ⋅ uNorth

L
 × uZL

L

=  - ωIEH uφH
L

 ⋅ uEast
L

  =  - 
ωIEH

φH

 uEast
L

 ⋅ δφH
L

(18.2.1-23)

uφH
L

 ⋅ uZL
L

 × γHOffset

L
  ≈  uφH

L
 ⋅ uZL

L
 × γHOffset

L

=  uNorth
L

 . uZL
L

 × γ  NorthOffset uNorth
L

 + γ  EastOffset uEast
L

=  uNorth
L

 . γ  NorthOffset uEast
L

 - γ  EastOffset uNorth
L

  =  - γ  EastOffset

where

uEast
L

  =  Unit vector in the direction of horizontal East.

γ  NorthOffset, γ  EastOffset  =  North and east components of γ  

HOffset

L
.

We now take the dot product of (18.2.1-13) with uφH
L

, substitute (18.2.1-23) for the

corresponding terms and, based on (18.2.1-22), identify the dot products with uφH
L

 for the

remaining (18.2.1-23) vector elements as being north components.  After dropping products of

δφH
L

 with error terms as second order, the result is:

δωARS/CnstNorth  =  
1
T

 φH - ωIEH - γEastOffset ωIEUp - 
1
T

 θARS/RndNorth

         - θARS/ωVib-αQuantNorth + δαQuant/North End - δαQuant/North Start

(18.2.1-24)

where

North  =  Subscript identifying the North component of the associated vector.
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Equation (18.2.1-24) provides the analytical basis for evaluating the constant portion of

horizontal north angular rate sensor error (δωARS/CnstNorth) using the Strapdown Drift test.  As

an aside, if (18.2.1-24) is compared with the Section 18.1 Schuler Pump method (e.g.,
Equation (18.1.2-11) with (18.1.2-8)) for estimating horizontal angular rate sensor error, it may

be noticed that no term comparable to γEastOffset ωIEUp is present in the Schuler Pump analyses.

This is because the Section 18.1 results are based on Equations (13.3.2-25) which, in turn, are
based on the Equation (13.3-8) approximation of neglecting horizontal tilt error products with

earth rate compared to heading-error/earth-rate products.  The γEastOffset ωIEUp term in

(18.2.1-24) is the effect of the horizontal-tilt-error/earth-rate product term that was neglected in
(13.3-8).

To apply (18.2.1-24), we first specify that T will be of sufficient duration that the noise

contributions will be negligible compared to the δωARS/CnstNorth term being evaluated.  We

also assume that γEastOffset (produced from horizontal accelerometer constant error - See

Equation (14.3-39) in Section 14.3) will be negligible due to an accurate previous calibration.
Then (18.2.1-24) simplifies to:

δωARS/CnstNorth  ≈  
1
T

 φH - ωIEH (18.2.1-25)

The error in (18.2.1-25) is from the γEastOffset and noise terms in (18.2.1-24) which were

dropped as negligible.  For a previously calibrated INS sensor assembly (e.g., individual
accelerometer bias calibration, and use of the Section 18.4 Strapdown Rotation test for

accelerometer misalignment calibration), γEastOffset produced by accelerometer error should be

on the order of 50 μrad (typical for a moderate accuracy INS; i.e., having 1 nmph CEP (i.e.,
“Circular Error Probable” which is a 50% probability radial horizontal position error growth

rate).  For γEastOffset = 50 μrad at 45 degrees latitude (for which ωIEUp is approximately

15 deg/hr sin 45 deg ≈ 11 deg/hr), the γEastOffset ωIEUp term in (18.2.1-24) is 0.0005 deg/hr.

A typical value of δωARS/CnstNorth for a moderate accuracy INS is 0.007 deg/hr, for which the

0.0005 deg/hr uncertainty is negligible.

For the θARS/RndNorth angular rate sensor random noise term in (18.2.1-24) (that we have

neglected in (18.2.1-25)), we know from the integral of covariance rate Equation
(15.1.2.1.1-30), that the variance of the integral of white noise (i.e., for A(t) = 0  and GP(t) = I )

equals the white noise density multiplied by the integration time.  Therefore, for θARS/RndNorth

in (18.2.1-24) as defined by (18.2.1-13), the square root of its mean squared
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value (i.e., the RMS or “root-mean-square” value) is σARS/Rnd T where:

σARS/Rnd  =  Square root of the angular rate sensor random output noise density.

Then the RMS value for the 
1
T

 θARS/RndNorth term in (18.2.1-24) is σARS/Rnd / T.  For a

typical 1.0 nmph CEP INS, σARS/Rnd is on the order of 0.002 deg/sqr-rt-hr.  For a 1 hour test

time T, the error in δωARS/CnstNorth due to θARS/RndNorth, then, is 0.002 deg/sq-rt-hr / 1 hr or

0.002 deg/hr.  For T = 4 hrs, the error is half this value or 0.001 deg/hr.

The reader can verify using the analytical techniques of Section 16.2.3.1 and Equation
(15.1.2.1.1-30) (with A(t) = 0  and GP(t) = I  for integrated random noise variance analysis)

that the θARS/ωVib-αQuantNorth term in (18.2.1-24) is negligible compared to the θARS/RndNorth

effect, particularly under the benign angular rate vibration environment of system testing in the

laboratory.  For a 1 nmph CEP INS, a typical root-mean-square value for the δαQuant/North

angular rate sensor quantization noise term in (18.2.1-24) is 1 / 12 arc sec (i.e., corresponding
to a 1 arc sec output pulse size and an associated quantization error that is statistically uniformly
distributed over the range of - 0.5 to + 0.5 arc sec - See the discussion in the second and third
paragraphs following Equation (15.2.1.2-17)).  In one hour this translates into
1 / 12  arc-sec / 3600 arc-sec per deg / 1 hr = 0.00008 deg/hr for the contribution to the

δωARS/CnstNorth estimation error, clearly negligible compared to the typical δωARS/CnstNorth

accuracy requirement of 0.007 deg/hr.

Equation (18.2.1-25) defines the method for estimating the constant error component in the
horizontal north angular rate sensor for the Strapdown Drift test.  To estimate the constant error
on each angular rate sensor output in a three-axis orthogonal strapdown sensor assembly, the
test is performed three times, each with a different sensor oriented north.  We should also note

that δωARS/CnstNorth is composed mainly of angular rate bias error components.  This is easily

verified from Equation (12.4-12) which shows that the remaining constant errors(in

δωARS/CnstNorth) are products of angular rate sensor scale factor and misalignment errors with

earth rate.  For angular rate sensor scale factor and misalignment error residuals (following

calibration) on the order of 5 ppm and 50 μrad respectively (typical for an aircraft INS), an
analysis similar to the one following Equation (18.2.1-25) would show that their products with
earth rate are negligible compared with typical 0.01 deg/hr bias accuracy requirements.
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18.2.2  STRAPDOWN DRIFT TEST BASED ON INS HEADING MEASUREMENTS

The Strapdown Drift test as described in Section 18.2.1 implies the existence of special
software to execute the associated analytical operations (i.e., extended alignment with integrated

ωILH

L
  measurements).  For situations when such software is not available (internal or external to

the INS) and ωILH

L
  measurements are not accessible, an alternate procedure can be utilized for a

strapdown INS based on true heading output measurements taken at completion of an extended
self alignment using Kalman time varying gains during the overall alignment process.  This
approach differs from the Section 18.2.1 Strapdown Drift Test (based on INS estimated earth
rate measurement) which used fixed gains during the extended alignment period.  The
Strapdown Drift Test based on INS heading measurements is formulated from a single
alignment version of Repeated Alignment Test Equation (18.3.1.2-9) (repeated below) using
the L Frame (Z axis down) for vertical component (ZL) definition (as opposed to ZN in
(18.3.1.2-9) based on Z up in the N Frame):

θARS/RndEast  =  - ωIEH ψT - δαQuantZL  TAlign

+ ωIEH ψT - δωARS/CnstEast + ωIEUp γNorth Offset  TAlign

+ 
1
2

 TAlign
 2

 δωARS/CnstZL + ωIEH γEastOffset  ωIEH (18.2.2-1)

+ δωIE/EastResid TAlign  + θARS/ωVib-αQuantEast

- SθARS/RndZL - θARS/RndZL TAlign  ωIEH

+ SθARS/ωVib-αQuantZL - θARS/ωVib-αQuantZL TAlign  ωIEH

where

TAlign  =  Time from start to end of the overall Fine Alignment process.

ψT, ψT,  = Actual INS true heading and the INS computed true heading output at the
end of alignment.

δωARS/CnstEast, δωARS/CnstZL  = East and downward vertical components of the
constant portion of angular rate sensor error.

θARS/RndEast  = Integral over TAlign of the east component of angular rate sensor
random noise.

δαQuantZL  = Downward vertical component of angular rate sensor output quantization
error.
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θARS/ωVib-αQuantEast  = Integral over TAlign of the east component of angular-
vibration/angular-rate-sensor quantization-noise product as
defined in Equations (18.3-26).

θARS/RndZL, SθARS/RndZL  = Single and double integral over TAlign of the downward
vertical component of angular rate sensor random
noise.

θARS/ωVib-αQuantZL, SθARS/ωVib-αQuantZL  =  Single and double integral over TAlign

of the downward vertical component of angular-vibration/angular-rate-
sensor quantization-noise product as defined in Equations (18.3-24)
and (18.3-26).

δωIE/EastResid  = East earth rate estimation residual error term that is a function of the
time in alignment, the initial values for parameters being estimated
during Fine Alignment, noise effects during alignment, and the
magnitude of the vibration levels present during the alignment

process.  Generally speaking, the magnitude of δωIE/EastResid near
the end of Fine Alignment become negligible compared to the other
terms in (18.2.2-1)).

γNorthOffset
 , γEastOffset  =  North and east components of γHOffset

L
.

Note in (18.2.2-1) that, in comparison with (18.3.1.2-9), we have added the δαQuantZL

quantization error to the ψT readout.  The rationale is the same as in the Section 18.2.1

discussion leading to Equation (18.2.1-2), but applied to the development of (18.3.1.2-9).

Solving (18.2.2-1) for δωARS/CnstEast and rearranging with (14.3-39) substituted for the

γHOffset

L
 components yields:

δωARS/CnstEast  =  - ωIEH ψT - δαQuantZL - ψT  + ωIEUp 
1
g

 δaSFEast 

+ 
1
2

 ωIEH TAlign
 

 δωARS/CnstZL - ωIEH 
1
g

 δaSFNorth

- 
1

TAlign
 θARS/RndEast - θARS/ωVib-αQuantEast (18.2.2-2)

- ωIEH 
1

TAlign
 SθARS/RndZL - θARS/RndZL

+ ωIEH 
1

TAlign
 SθARS/ωVib-αQuantZL - θARS/ωVib-αQuantZL  + δωIE/EastResid
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Equation (18.2.2-2) is of the form:

δωARS/Cnst East  =  - ωIEH ψT - ψT  + ωIEUp 
1
g

 δaSFEast 

+ 
1
2

 ωIEH TAlign
 

 δωARS/CnstZL - ωIEH 
1
g

 δaSFNorth (18.2.2-3)

+ Random error effects

Consider that we perform the extended alignment at two different headings.  Equation
(18.2.2-3) becomes for each alignment:

δωARS/Cnst/East1  =  - ωIEH ψT1 - ψT1  + ωIEUp 
1
g

 δaSF/East1 

+ 
1
2

 ωIEH TAlign
 

 δωARS/Cnst/ZL1 - ωIEH 
1
g

 δaSF/North1

+ Random error effects 1
(18.2.2-4)

δωARS/Cnst/East2  =  - ωIEH ψT2 - ψT2  + ωIEUp 
1
g

 δaSF/East2 

+ 
1
2

 ωIEH TAlign
 

 δωARS/Cnst/ZL2 - ωIEH 
1
g

 δaSF/North2

+ Random error effects 2

where

1, 2  =  Designation for parameter values for the first and second alignment runs.

We further stipulate that the headings for the two alignments will be approximately 180
degrees apart.  Then, since sensor error directions rotate with the sensor assembly axes, we can
stipulate that the horizontal (north and east) sensor error terms in (18.2.2-4) will be opposite in
sign, while the vertical (ZL) sensor components will be of the same sign:

δωARS/Cnst/East2  =  - δωARS/Cnst/East1 

δaSF/East2  =  - δaSF/East1 δaSF/North2  =  - δaSF/North1 (18.2.2-5)

δωARS/Cnst/ZL2  =  δωARS/Cnst/ZL1 

Subtracting the δωARS/Cnst/East2 expression in (18.2.2-4) from the δωARS/Cnst/East1

expression, substituting (18.2.2-5), and dividing by 2 then obtains:
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δωARS/Cnst/East1  =  - 
ωIEH

2
 ψT1 - ψT2 - ψT1 - ψT2

+ ωIEUp 
1
g

 δaSF/East1 - 
1
2

 ωIEH

2
 TAlign

 
 
1
g

 δaSF/North1 (18.2.2-6)

+ 
1
2

 (Random error effects 1 - Random error effects 2)

Equation (18.2.2-6) can be approximated as:

δωARS/Cnst/East1  ≈  - 
ωIEH

2
 ψT1 - ψT2 - ΔψT1-2 (18.2.2-7)

where

ΔψT1-2  = Difference between ψT1 and ψT2 taken by an independent measurement.

Nominally ΔψT1-2 is 180 degrees.

The ΔψT1-2 measurement in (18.2.2-7) can be taken using rotation fixture angle output data, or

can be obtained using INS heading outputs and the following procedure.  At completion of the
first alignment run, the INS is transitioned into the navigation mode and rotated to the heading
for the second alignment.  While in the navigation mode at the new heading, the INS output

heading is recorded (call it ψT2*).  ΔψT1-2 is then calculated by subtracting ψT2* from ψT1.

Equation (18.2.2-7) is the basis for estimating east angular rate sensor error in the
Strapdown Drift Test based on INS heading output measurements.  From (18.2.2-7) and the

previous paragraph for ΔψT1-2 measurement, the following defines the test procedure that

would then be used for estimating δωARS/Cnst/East1.

The INS is initially positioned at an orientation where the angular rate sensor to be evaluated
has its input axis East.  An extended INS initial alignment is then executed using the normal
INS self-alignment mode, and the INS computed true heading is recorded at the end of

alignment (ψT1).  Following the ψT1 heading measurement, INS operation is transitioned to the

free-inertial navigation mode and immediately rotated approximately 180 degrees about the

vertical.  The true heading of the INS is immediately recorded at the new heading.  The ΔψT1-2

heading change is calculated by subtracting ψT1 from the true heading reading taken after the

180 degree rotation.
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An extended INS initial alignment is then executed at the new heading using the normal INS
self-alignment mode, and the INS computed true heading is recorded at the end of alignment

(ψT2).  The east angular rate sensor constant error component is then calculated from ψT1,

ΔψT1-2 and ψT2 using Equation (18.2.2-7).

The procedure is repeated for each angular rate sensor to be evaluated.

The accuracy of the above procedure for estimating east angular rate sensor constant error is
limited by the error (“uncertainty”) in the (18.2.2-7) approximation.  The difference between
(18.2.2-7) and (18.2.2-6) with (18.2.2-2) for the random error terms can be used to assess the
uncertainty in (18.2.2-7):

δδωARS/Cnst/East1  =  
ωIEH

2
 δΔψT1-2 - ΔψT2

- ωIEUp 
1
g

 δaSF/East1 + 
1
2

 ωIEH

2
 TAlign

 
 
1
g

 δaSF/North1 

+ 
1

2 TAlign
 Δ1-2 θARS/RndEast - θARS/ωVib-αQuantEast  - 

ωIEH

2
 Δ1-2 δαQuantZL

        + 
ωIEH

2
 Δ1-2 

1
TAlign

 SθARS/RndZL - θARS/RndZL

(18.2.2-8)

- 
ωIEH

2
 Δ1-2 

1
TAlign

 SθARS/ωVib-αQuantZL - θARS/ωVib-αQuantZL

- 
1
2

 Δ1-2 δωIE/EastResid

where

δδωARS/Cnst/East1  =  Uncertainty in the (18.2.2-7) estimate of δωARS/Cnst/East1.

δΔψT1-2  =  Uncertainty in the ΔψT1-2 measurement.

ΔψT2  = Shift in the actual true heading between the time the ΔψT1-2 measurement was
made and the second alignment initiated.  This additional term is included to
account for potential high frequency angular oscillations of the sensor
assembly during alignment (e.g., such as produced by mechanically dithered
ring laser gyro back reaction torque).

Δ1-2 ( )   = Functional operator representing the difference between values of the
argument ( ) for the two alignment runs.
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The dominant contributor to δδωARS/Cnst/East1 in (18.2.2-8) is east angular rate sensor

random noise (θARS/RndEast) which was analyzed at the conclusion of Section 18.2.1 (for the

north component) regarding its impact on angular rate sensor error determination.  A similar

analysis applies here showing that the square root of the Δ1-2 θARS/RndEast  mean-squared

error (i.e., the RMS or “root-mean-square” value) is σARS/Rnd 2 TAlign  where:

σARS/Rnd  =  Square root of the angular rate sensor random output noise density.

The 2 arises in the previous expression from the two values for θARS/RndEast in the (18.2.2-8)

Δ1-2 θARS/RndEast  term (one for each alignment) being uncorrelated.  Thus, the RMS value for

1
2 TAlign

 Δ1-2 θARS/RndEast  in (18.2.2-8) is σARS/Rnd / 2 TAlign .  For a typical 1.0 nmph

CEP INS, σARS/Rnd is on the order of 0.002 deg/sqr-rt-hr.  For a 1 hour alignment time TAlign,

the error in δωARS/Cnst/East1 due to θARS/RndEast, then, is 0.002 deg/sq-rt-hr / 2 × 1 hr or

0.0014 deg/hr.  For a 4 hour alignment time, the error is half this value or 0.0007 deg/hr.  A

typical value of δωARS/Cnst/East1 for a moderate accuracy INS is 0.007 deg/hr, for which the

0.0007 deg/hr uncertainty is negligible.

To assess the contribution of the 
1

TAlign
 SθARS/RndZL - θARS/RndZL  term in (18.2.2-8),

one must account for the fact that the components SθARS/RndZL and θARS/RndZL are created

from the same noise source (i.e., vertical angular rate sensor random output noise), hence, are
correlated.  To find their combined contribution to (18.2.2-8) we can apply the same technique
utilized in Section 13.6.1 leading to Equation (13.6.1-4) in which each element of noise is first

analyzed independently.  For this case, the effect on 
1

TAlign
 SθARS/RndZL - θARS/RndZL  at the

end of alignment (t = TAlign ) produced by a vertical angular rate sensor output noise element

εωRnd/ZLi occurring over a time interval Δτi at time t = τ is 
TAlign  - τ

TAlign
 - 1  εωRnd/ZLi or

- 
 τ

TAlign
 εωRnd/ZLi.  The 

1
TAlign

 SθARS/RndZL - θARS/RndZL  term in (18.2.2-8) is the sum of

all the - 
 τ

TAlign
 εωRnd/ZLi ’s from τ = 0 to τ = TAlign .  Squaring the sum, taking the expected

value, setting the expected value of the εωRnd/ZLi εωRnd/ZLj products to zero for i ≠ j (i.e., the



18-40     STRAPDOWN INERTIAL SYSTEM TESTING

noise element for interval Δτi is uncorrelated with the noise element for interval Δτj), dividing

by Δτi, letting Δτi go to zero in the limit so that the summation becomes an integral, identifying

the expected value of εωRnd/ZLi

2
 / Δτi in the limit as the angular rate sensor noise density

σARS/Rnd
2

 (as in (13.6.1-20)), carrying out the integral analytically, and taking the square root,

then finds that the 
1

TAlign
 SθARS/RndZL - θARS/RndZL  root-mean-square (RMS) value is

σARS/Rnd TAlign  / 3.  Thus, allowing that this effect contributes twice to δδωARS/Cnst/East1

in (18.2.2-8) (once for each alignment) and that each contribution is uncorrelated (see 2
discussion in previous paragraph), the net  RMS contribution of

ωIEH

2
 Δ1-2  

1
TAlign

 SθARS/RndZL - θARS/RndZL  in (18.2.2-8) is ωIEH σARS/Rnd TAlign  / 6.  At

45 degrees alignment latitude using a 4 hour alignment time and 0.002 deg/sqr-rt-hr for

σARS/Rnd, the resulting RMS numerical contribution to δωARS/Cnst/East1 in (18.2.2-8) is 15

deg/hr earth rate × 0.0175 rad/deg × cosine 45 deg × 0.002 deg/sqr-rt-hr × 4 hr / 6 = 0.0003
deg/hr.  This is also clearly negligible compared to the 0.007 deg/hr angular rate sensor error
allowance in a 1 nmph CEP accuracy INS.

The reader can verify using the analytical techniques of Section 16.2.3.1 and Equation
(15.1.2.1.1-30) (with A(t) = 0  and GP(t) = I  for integrated random noise variance analysis)

that the effects of SθARS/ωVib-αQuantZL and θARS/ωVib-αQuantZL effects on (18.2.2-8)

δωARS/Cnst/East1 uncertainty are negligible compared to the effect of θARS/RndEast, particularly

under the benign angular rate vibration environment of system testing in the laboratory.  We

assume that the alignment time is sufficiently long that the effect of δωIE/H/Residj

N
 can also be

neglected.

The 
1
g

 δaSF/East1 ωIEUp term in (18.2.2-8) is equivalent to the γEastOffset ωIEUp term in the

Section 18.2.1 north angular rate sensor error Equation (18.2.1-24).  The order of magnitude
analysis for this term provided at the conclusion of Section 18.2.1 also applies for the (18.2.2-8)
term showing a value of 0.0005 deg/hr at 45 degrees latitude (small compared to the 0.007
deg/hr angular rate sensor accuracy in a 1 nmph INS).  For a 4 hour alignment time at 45 deg

latitude, the effect of δaSF/North 1 on δδωARS/Cnst/East1 in (18.2.2-8), is 37% of the δaSF/East1

effect.
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Assuming that INS navigation mode heading data is used to calculate ΔψT1-2 (as described

in the paragraph preceding (18.2.2-8)), the δΔψT1-2 error in (18.2.2-8) will equal 180 degrees

times the vertical angular rate sensor scale factor error plus some smaller integrated vertical

angular rate sensor bias and random noise effects.  For an aircraft quality INS, the ΔψT1-2

measurement error should be small (on the order of 5 ppm scale factor error times π or 15
micro-radians).  From Equation (18.2.2-8) we see that an uncertainty is thereby created in

δωARS/Cnst/East1 equal to δΔψT1-2 multiplied by one half horizontal earth rate (earth rate

magnitude times the cosine of geodetic latitude).  Thus, at 45 degrees latitude, the

δωARS/Cnst/East1 uncertainty introduced is 0.5 × 15 deg/hr × (cosine 45 deg) × 15 μrad × 10-6

or 0.000080 deg/hr.  The error is clearly negligible compared to 0.0007 deg/hr.  A similar

conclusion applies to the ΔψT2 and δαQuantZL terms in (18.2.2-8).  If the ΔψT2 is on the order

of 10 arc sec (or 48 μrad), a typical value for a mechanically dithered ring laser gyro sensor

assembly, the associated uncertainty introduced in δωARS/Cnst/East1 would be 0.00026 deg/hr.

For an angular rate sensor pulse size of 1 arc sec (5 μrad), the RMS value for each δαQuantZL

component in (18.2.2-8) is 5 / 12 = 1.4 μrad - Forget about it.

The above procedure for estimating east angular rate sensor error was based on Equation
(18.3.1.2-9).  If Section 18.3.1.2 is reviewed it will be found that (18.3.1.2-9) assumes that
Kalman time varying gains will be used throughout the alignment process, and implicitly, that
the Kalman filter error state model accurately represents the error characteristics of the INS Fine
Alignment process.  In particular, if these conditions are not satisfied, the test procedure
outlined above may produce additional uncertainties in the angular rate sensor error
determination.  The basic question that must be addressed in this regard is the behavior of the
Fine Alignment process for long alignment times when the Kalman gains become increasingly
small.  Selection of the maximum allowable alignment time for the test should address this
question. If there is doubt regarding selection of a long alignment (to reduce random sensor
error effects), the procedure can be altered by executing several shorter alignments at each of the
two alignment attitudes, with the results then linearly averaged to find the equivalent for the
single long alignment scenario.  The penalty for this approach is the potential introduction of

additional ΔψT2 type errors for each additional alignment.  From the ΔψT2 error analysis

provided previously, it would appear that the penalty will not be great if the added alignments
are kept to a reasonable minimum.  The final alignment time selection for the test should be
supported by special validation tests performed with a real INS of the same type to be tested.
One of the advantages of the Section 18.2.1 Strapdown Drift Test approach (based on INS
estimated earth rate measurements) is that it uses fixed gains during the extended alignment
measurement period.  As a result, it can be run for lengthy extended alignment times (for
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increased sensor error estimation accuracy) without incurring an added inaccuracy penalty due
to Kalman filter modeling approximations.

18.2.3 CALIBRATION COEFFICIENT UPDATING FROM
MEASURED ANGULAR RATE SENSOR BIAS ERRORS

The composite angular rate sensor errors determined from the Strapdown Drift test represent
errors in the INS operating with “Sensor Level”, and potentially, previous “System Level”
calibration coefficients (See Sections 8.1.1.1.1 and 8.1.1.2.1 for definitions).  If the INS has
been properly calibrated prior to the Drift test (i.e., for accelerometer error and angular rate
sensor scale factor error, misalignment and bias error), the composite angular rate sensor errors
measured during the Drift test will be dominated by the angular rate sensor bias error.  For
further elaboration on this point, see the discussion following Equation (18.2.1-25).  Thus, the
Strapdown Drift test results represent errors in the current INS angular rate sensor bias
calibration.  In order to update the INS angular rate sensor bias coefficients, we update the

κSystBias  System Level bias coefficients in calibration Equation (8.1.1.1.1-12) (See Table
8.4-1) to equal the values used by the INS during the Strapdown Drift test, plus the corrections

found with Equation (18.2.1-25) (or (18.2.2-7)) for each angular rate sensor.  The δωSensBias 

Sensor Level coefficients in (8.1.1.1.1-12) would be kept at the values used during the test.
Then the overall KBias  compensation coefficients calculated with (8.1.1.1.1-12) would represent

the updated angular rate sensor bias coefficient vector.

18.3 SYSTEM LEVEL ANGULAR RATE SENSOR
RANDOM NOISE ESTIMATION

In this section we describe two INS System Level test methods that can be utilized to
evaluate the random output noise from the strapdown angular rate sensors; the Repeated
Alignment test and the Continuous Alignment test.  Each method is based on the response of a
Kalman filter based INS Fine Alignment process as represented (for example) by Equations
(6.1.2-2) using Kalman filter derived gains.  In this section we will derive the basic relationship
used for random noise estimation; the result will then be applied in the subsections that follow.

To begin, let us write the Chapter 6 quasi-stationary Fine Alignment continuous form
process Equations (6.1.2-2) that would be implemented in the INS computer using a wander
azimuth N Frame (See Sections 2.2 and 4.5 for definition):
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CB
N

  =  CB
N

 ωIB
B

×  - ωIN
N

×  CB
N

ωIN
N

  =  ωIE
N

 + ωTilt
N

ωTilt
N

  =  K 2 uZN
N

 × ΔRH
N

 

ωIE
N

  =  ωIEH

N
 + uZN

N
 ωe sin l (18.3-1)

ωIEH

N

  =  K 1 uZN
N

 × ΔRH
N

 

vH
N

  =  CB
N

 

 H
 aSF

B
 - K 3 ΔRH

N
 

ΔRH
N

  =  vH
N

 - K4 ΔRH
N

where

    =  Designation for angular rate sensor output containing angular rate sensor error.

    = Designation for parameter computed (or estimated) within the INS Fine
Alignment process, and containing errors.  Terms without this designation are
error free.

uZN
N

  = Unit vector along the navigation N Frame vertical axis (Z), projected on N

Frame axes.

K1, K2, K3, K4  =  Fine Alignment process estimation feedback control gains.

ωTilt
N

  =  Angular rate feedback to correct CB
N

 horizontal angular error.

ωe  =  Earth rate magnitude.

l  =  Geodetic latitude (assumed to be available as an error free input).

CB
N

  = Direction cosine matrix that transforms vectors from the B Frame (sensor axes)

to the wander azimuth N Frame.

ωIB
B

  = Angular rate of the B Frame relative to I Frame inertial space (measured by the
system angular rate sensors).

ωIE
N

  =  Angular rate of the earth fixed E Frame relative to the I Frame.

vH
N

  =  Horizontal velocity relative to the earth in the N Frame.
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aSF
B

  = Specific force acceleration in the B Frame (measured by the system
accelerometers).

ΔRH
N

  =  Integrated horizontal velocity in the N Frame (“position” divergence).

Equations (18.3-1) represent the Fine Alignment process using a Kalman filter with error
state controls (the Ki terms) to continuously null the estimated error in the (18.3-1) integration
parameters.  Chapter 15, Section 15.1.5.3.2 shows that an equivalent Kalman filter
configuration can be constructed based on pure estimation in which the basic system equations
are operated without controls.  The equivalent to (18.3-1) for the system equations in this case
would be:

Pure Estimator System Computer Equations

CB
N

  =  CB
N

 ωIB
B

×  - ωIEExp

N
 ×  CB

N

ωIEExp

N
  =  uZN

N
 ωe sin l

ωIEExp

N
  =  0 (18.3-2)

vH
N

  =  CB
N

 

 H
 aSF

B
 

ΔRH
N

  =  vH
N

where

  = Designation for parameters calculated in the equivalent uncontrolled alignment
process operations.

ωIEExp

N
  = Expected (or assumed average) value for the earth rate, and treated as a

constant.  Since the horizontal earth rate components are unknown (i.e., to be
determined as a Fine Alignment process output), and since the N Frame can
be at any arbitrary heading, we use zero for the horizontal components of

ωIEExp

N
.

If the system computer parameters were error free and the ωIEExp

N
 value was equal to the

actual N Frame earth rate value, the result would be what was actually happening during the
quasi-stationary alignment process (the so-called “truth model”):
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Pure Estimator Truth Model Equations

CB
N

  =  CB
N

 ωIB
B

×  - ωIE
N

×  CB
N

ωIE
N

  =  ωIEH

N
 + uZN

N
 ωe sin l

ωIE
N

  =  0 (18.3-3)

vH
N

  =  CB
N

 

 H
 aSF

B
 

ΔRH
N

  =  vH
N

The difference between (18.3-2) and (18.3-3) defines the errors in the (18.3-2) system
computer solution, the basis for the Kalman estimator associated with (18.3-2).  From Chapter
15, Equations (15.1.5.3.2-14), (15.1.5.3.2-17), (15.2.1-13) (expanded to include all

components of γN
 and constant sensor errors), (15.2.1-14) and (15.2.1-26), the Kalman

estimator for the quasi-stationary Fine Alignment Kalman estimator are given by:

Pure Estimator Kalman Filter Configuration:

x(t)  =  A(t) x(t) + GP(t) nP(t) Error State Dynamics

ZObs
♦

(t)  =  ΔRH
N

       Observation
 

z♦(t)  =  δΔRH
N

 - ΔRVib
N♦

  =  H(t) x(t) + GM (t) nM
♦

 (t)      Measurement 
(18.3-4)

x(t)  =  A(t) - K♦(t) H(t)  x(t) + K♦(t) z♦(t) Estimation

with

x  =  δωIEExp

N T
, δωIBCnst

B T
, γN T

, δaSFCnst

B
, δvH

N T
, δΔRH

N T  T
 

nP  =  δωRand
T

, δαQuant
T

, δaRand
T

, δυQuant
T  T

 (18.3-5)

nM
♦ (t)  =  ΔRVib

N♦

where

x  =  Error state vector.

nP  =  Process noise vector.
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nM
♦ (t)   =  Continuous form Kalman filter measurement noise.

ZObs
♦ (t)   =  The continuous form Kalman filter observation vector.

z♦(t)   =  The continuous form Kalman filter measurement vector.

K♦(t)   = The continuous form Kalman filter gain matrix (whose non-zero components
are the Ki terms in Equations (18.3-1)).

A(t), GP(t), H(t), GM(t)  =  The continuous form Kalman filter error state dynamic
matrix, process noise coupling matrix, measurement matrix and measurement
noise coupling matrix.

γN
  =  Rotation angle error vector associated with the CB

N
 matrix.

δωIEExp

N
, δvH

N
, δΔRH

N
  =  Errors in ωIEExp

N
, vH

N
, ΔRH

N
.

δωIBCnst

B
, δaSFCnst

B
  =  Constant error portions of ωIB

B
, aSF

B
 .

δωRand , δαQuant  =  Random output noise and quantization error portions of ωIB
B

.

δaRand , δυQuant  =  Random output noise and quantization error portions of aSF
B

 .

ΔRVib
N♦

  =  Continuous form horizontal position vibration motion.

The non-zero components of the K♦(t)  matrix in (18.3-5) are typically calculated in
traditional Kalman filter fashion from the covariance form of (18.3-5) based on a simplified

reduced state error model that neglects δωIBCnst

B
, δ  aSF Cnst

B
  and the vertical component of γN

(see Chapter 15, Section 15.2.1, 15.2.1.1 and Equations (15.2.1.1-21) for the discrete form
quasi-stationary Fine Alignment Kalman filter).  Chapter 14, Section 14.6 analyzes the
covariance characteristics of the simplified reduced state Kalman estimator as summarized for
typical alignment times by Equations (14.6.4.4-1) and (14.6.5.2-5).  To simplify the analysis,
these equations were derived by assuming zero for the initial estimated error state uncertainty
for all but the earth rate error state.  More extensive analysis would show that for typical
alignment times, the equations are also valid for initial uncertainties in all of the error states.

An important part of the Chapter 14 results is that as alignment time t increases, the effect of
process and measurement noise on horizontal earth rate estimation error becomes dominated by
the angular rate sensor horizontal random output noise (see Equations (14.6.4.4-1) and
(14.6.5.2-5)).  This effect can be confirmed by numerically analyzing the alignment
performance of a simulated or real inertial system.  Thus, for typical alignment times, we can
assume for analysis purposes, that a reasonable assessment of the estimation process
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performance can be achieved by neglecting all noise terms but the horizontal angular rate sensor
output random noise. Chapter 14, Section 14.6.4.3 (and the Chapter 14 subsections leading to it
- Including supporting Sections 15.1.5.4 and 15.1.5.4.1) show that when angular rate sensor
random output noise is the only output source, the covariance response of the simplified
Kalman alignment estimator is equivalent to that of a hypothetical Kalman estimator with the
measurement equal to the derivative of the horizontal attitude angle error state.  This result was
determined in Chapter 14 for a constant error state dynamic matrix, but a similar derivation
would show that in general (using (15.2.1-6) and (18.3-4) as guides for form) for the
hypothetical Kalman estimator:

x ′  =  δ ωIEH, other constant error states
 T

 Error State Vector

z♦′(t)  =  γH (t)  =  A γ   (t) x ′ - δωRandH(t)       Measurement   

x ′  =  0         i.e.,  A x ′ (t) = 0        Error State Dynamics
(18.3-6)

x ′ (t)  =  - K♦′(t) A γ  (t) x ′(t) + K♦′(t) z♦′(t) Estimation

where

x ′  =  Error state vector for the hypothetical Kalman estimator.

A x ′ (t)  =  Error state dynamic matrix for the x ′ error state vector.

δωIEH  =  Earth rate estimation error along one of the horizontal axes.

z♦′(t)   =  Continuous form measurement for the hypothetical Kalman estimator.

γH (t)   =  Component of γN
 along the δωIEH horizontal axis.

A γ   (t)  =  γH (t)  row of the error state dynamic matrix that couples x ′ into γH (t) .

δωRandH(t)  =  Component of CB
N δωRand(t) along the δωIEH horizontal axis.

K♦′(t)   =  Continuous form hypothetical Kalman filter gain matrix.

We see from Equation (18.3-6) that the hypothetical Kalman filter treats the δωRandH(t) angular

rate sensor process noise as measurement noise in the z♦′(t)  measurement.

The δωIEH component of the (18.3-6) estimation equation is:

δωIEH(t)  =  - Kω
♦′(t) A γ   (t) x ′(t) + Kω

♦′(t) z♦′(t) (18.3-7)



18-48     STRAPDOWN INERTIAL SYSTEM TESTING

where

Kω
♦′(t)   =  δωIEH element of the K♦′(t)  matrix.

δωIEH(t)   =  Hypothetical Kalman filter estimate for δωIEH.

For the Fine Alignment problem, the δωIEH element of A γ   (t) is the dominant term (i.e., the

other components of x ′ (call them x ″) have little effect on Fine Alignment estimation accuracy).
This, of course, was the justification for neglecting them in the Chapter 14, Section 14.6

analyses.  It also follows that if all the terms in A γ   (t) were included, the ability to estimate x ″
would be nil because of their small effect (compared with δωIEH) on the measurement z♦′(t)  .

Based on this rationale, we neglect the x ″ components of x ′ in (18.3-7).  Recognizing (as in

(15.2.1-6)) that the δωIEH component of A γ   (t) is unity, then finds:

δωIEH(t)  =  - Kω
♦′(t) δωIEH(t) + Kω

♦′(t) z♦′(t) (18.3-8)

Consistent with the previous approximation, we can use the Chapter 14 results to calculate

the Kω
♦′(t)  gain.  Using Equation (15.1.5.3.2-14) for Kω

♦′(t)  with (from the (18.3-6)

measurement equation) the measurement noise R♦(t)  set to the δωRandH(t) noise density,

GM(t) set to - 1, H(t) set to A γ   (t), the δωIEH component of A γ   (t) set to unity, and P(t) set to

PΩωRand in Equations (14.6.4.4-1), we obtain:

Kω
♦′(t)  =  

PΩ0

qωRand + PΩ0 t
(18.3-9)

where

PΩ0  =  Initial uncertainty in δωIEH(t) .

qωRand  =  δωRandH(t) noise density.

With (18.3-9), Equation (18.3-8) becomes:

δ ωIEH(t)  =  - 
PΩ0

qω  Rand + PΩ0 t
 δ ωIEH

 (t) + 
PΩ  0

qω  Rand + PΩ  0 t
 z♦′(t) (18.3-10)

The solution to (18.3-10) follows (as can be verified by substitution in (18.3-10)):
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δ ω IEH
 (t)  =  

PΩ  0

qω  Rand + PΩ  0 t
 

qω   Rand

PΩ  0

 δ ωIE/H0 + z♦′(τ) dτ
0

t

(18.3-11)

where

δωIE/H0  =  Value for δ ωIEH
 (t) at time t = 0.

For large t (i.e., near the end of alignment) with zero for δ  ωIE /H0
  , and using (18.3-6) for z♦′(t) ,

Equation (18.3-11) reduces to:

δωIEH(t)  ≈  
1
t
 γ H (τ) dτ

0

t

 (18.3-12)

Equation (18.3-12) was derived assuming that angular rate sensor horizontal random noise
was the only noise present (i.e., the other noise sources have negligible impact).  It also uses a

Kω
♦′(t)  value based on A γ   (t) having only the δ  ωIEH

  element active (Chapter 14, Sections

14.6.4.2 and 14.6.4.3 use only δ  ωIEH
  in x ′ - i.e., look at the ** elements in Equations

(14.6.4.2-2))  At this point we make the additional assumption that (18.3-12) can be used in
general when all error states and noise sources are present.  Then, allowing for residual errors in

our approximations and using δωIEExp

N
 for the earth rate error, the equivalent vector form of

(18.3-12) can be written as:

δ  ωIE/ExpH

N
 (t)  =  

1
t
 γ  H (τ) dτ

0

t

 + δ  ωIE/HResid

N
 (t) (18.3-13)

where

δ ωIE/ExpH

N
 (t)  =  Kalman filter estimated value for δ ωIE/ExpH

N
  defined below.

δ ωIE/ExpH

N
  =  Horizontal component of δωIEExp

N
.

δ ωIE/HResid

N
(t)  = Residual term that is a function of the time in alignment, the initial

values of the error state components in Equations (18.3-1), the magnitude of all
noise terms present in Equations (18.3-1), and the magnitude of the vibration
levels present during the alignment process.  Generally speaking, the magnitude
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of δωIE/HResid

N
(t) becomes negligible compared to the 

1
t

 γH (τ) dτ
0

t

 term near

the end of Fine Alignment.

To apply Equation (18.3-13), we need to define δ ωIE/ExpH

N
 (t) in terms of data that is available

in the system computer (i.e., the Equations (18.3-1) data).  First, we can define a Kalman filter

version of the estimated value for the horizontal earth rate by correcting ωIE/ExpH

N
  with the

filter’s estimate of the ωIE/ExpH

N
 error:

ωIEH

N
(t)  =  ωIE/ExpH

N
 - δ ωIE/ExpH

N
 (t) (18.3-14)

where

ωIEH

N
(t)  = Estimate for the constant ωIEH

N
 that would be obtained using the (18.3-4)

Kalman estimate for δ ωIE/ExpH

N
 (t).

But from (18.3-2) we know that:

ωIE/ExpH

N
  =  0 (18.3-15)

so that (18.3-14) becomes:

ωIEH

N
(t)  =  - δωIE/ExpH

N
 (18.3-16)

Next we equate ωIEH

N
(t) generated using the Equations (18.3-2) - (18.3-5) pure estimator

configuration with the equivalent signal generated by the (18.3-1) Kalman controlled
configuration:

ωIEH

N
  =  ωIEH

N
(t) (18.3-17)

so that (18.3-16) becomes with rearrangement:

δωIE/ExpH

N
  =  - ωIEH

N
 (18.3-18)



SYSTEM LEVEL ANGULAR RATE SENSOR RANDOM NOISE ESTIMATION     18-51

Substituting (18.3-18) in (18.3-13) then obtains the important result:

ωIEH

N
  (t)  =  - 

1
t
 γ  H (τ) dτ

0

t

 - δ  ωIE/HResid

N
(t) (18.3-19)

Equation (18.3-19) is the formula that will form the basis for estimating angular rate sensor
random output noise in the Repeated Alignment and Continuous Alignment tests.

Using (15.2.1-3) as a guide, let’s now write the complete error state dynamic equation for

γN
 and δωIE/Exp H

N
 based on (18.3-2) compared with (18.3-3).

γ  H
N

  =  - CB 
N

 δωIB
B

 

 H
 - γ  ZN  ωIEH

N
 × uZN

N
 - uZN

N
 × γ  

H
N

 ωIEUp 

+ δ ωIE/ExpH

N
 + CB

N
 

 H
 ωVib

B
 × δ αQuant

γ  ZN   =  - uZN
N

 ⋅ CB 
N

 δ ωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × γ  

H
N

(18.3-20)

+ uZN
N

 ⋅ CB
N

 ωVib 
B

× δαQuant

δ ωIE/ExpH

N
  =  0 

with, as in (18.2.1-6):

δωIBZN  =  δωARS/CnstZN + nARS/RndZN
 

δωIBH

N
  =  δωARS/CnstH

N
 + nARS/RndH

N
(18.3-21)

where

ωIEUp  =  Vertical component of ωIE
N

 which is ωe sin l.

ωVib 
B

  =  B Frame angular vibration rate during alignment.

δωARS/CnstZN, δωARS/CnstH

N
  = Vertical and horizontal constant components of

CB 
N

 δωIB
B

.

nARS/RndZN, nARS/RndH

N
  = Vertical and horizontal random noise components of

CB 
N

 δωIB
B

.
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The integral of (18.3-20) since the start of Fine Alignment (showing functional time
dependence where needed for clarity) is:

γ  H
N

(t)
0

t

  =  δ ωIE/ExpH

N
 t + - CB 

N
 δ  ωIB

B
 

 H
 - γ  ZN (τ) ωIEH

N
 × uZN

N
 

0

t

 
 

- uZN
N

 × γ  

H
N

(τ)  ωIEUp + CB
N

 

 H
 ωVib

B
 × δ αQuant   dτ 

γ  ZN (t)  =  γ  ZN  

0
 + γ   ZN (τ) dτ

0

t

 (18.3-22)

=  - uZN
N

 ⋅ CB 
N

 δ ωIB
B

 - uZN
N

 ⋅ ωIEH

N
 × γ  

H
N

(τ)  

0

t

 
 

+ uZN
N

 ⋅ CB
N

 ωVib 
B

× δαQuant  dτ 

The γ  ZN
 

0
  initial value for γ  ZN (t) in (18.3-22) is zero based on the following rationale. The

method for finding initial heading in Section 6.1.2 is based on finding N (and L) Frame heading
relative to true north by interpreting N Frame horizontal earth rate components estimated during
Fine Alignment.  Hence, the heading value selected for the N Frame at the start of alignment is
arbitrary, since its value relative to north will be properly found and used in the subsequent
navigation mode phase (within the accuracy of the inertial sensors that produce earth rate
estimation errors).  Stated differently, the initial heading orientation of the N (or L) Frames in

the CB
N

 matrix is error free and, therefore, matches the CB
N

 matrix initial heading.  This sets the

initial value of γ  ZN (t) in (18.3-22) to zero as shown.

To simplify the analytics, we approximate γH
N

(τ)  in the (18.3-22) γ  ZN (t) equation by its

average value over the alignment period.  Then, with (18.3-21), γ  ZN (t) in (18.3-22) becomes:

γ  ZN(t)   ≈  - δ   ωARS/CnstZN - nARS/RndZN
0

t

 

- uZN
N

 ⋅ ωIEH

N
 × γ  

HAvg

N
 + uZN

N
 ⋅ CB

N
 ωVib 

B
× δ αQuant  dτ (18.3-23)

=  - δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ  

HAvg

N
 t 

- θARS/RndZN(t) + θARS/ωVib-αQuantZN(t)
with
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θARS/RndZN(t)  ≡  nARS/RndZN dτ
0

t

θARS/ωVib-α  QuantZN(t)  ≡  uZN
N

 ⋅ CB
N

 ωVib 
B

× δαQuant  dτ 

0

t (18.3-24)

where

γ  

HAvg

N
  =  Average value for γ  

H
N

(t)  over the alignment period t.

Now substitute (18.3-23) with (18.3-24) and (18.3-21) in the (18.3-22) γ  H
N

(t) expression

to obtain:

γ  H
N

(t)
0

t

  =  δ ωIE/ExpH

N
 t - δ  ωARS/CnstH

N
 +  uZN

N
 × γ  

HAvg

N
 ωIEUp  t 

- θARS/RndH

N
(t) + θARS/ωVib-αQuantH

N
(t) (18.3-25)

+ 
1
2

 δ   ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ  

HAvg

N
 t2 

 
 

+ SθARS/RndZN(t) - SθARS/ωVib-αQuantZN(t)  ωIEH

N
 × uZN

N
 

in which

θARS/RndH

N
(t)  ≡  nARS/RndH

N
 dτ

0

t

θARS/ωVib-α  QuantH
N

(t)  ≡  CB
N

 

 H
 ωVib

B
 × δ αQuant  dτ

0

t

SθARS/RndZN(t)  ≡   
0

t

nARS/RndZN dτ1 dτ
0

τ

SθARS/ωVib-α  QuantZN(t)  ≡   
0

t

uZN
N

 ⋅ CB
N

 ωVib 
B

× δ αQuant  dτ1 dτ 

0

τ

(18.3-26)

where

θARS/RndH

N
(t)   =  N Frame integral of horizontal angular rate sensor output noise.
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θARS/ωVib-αQuantH
N

(t)   = N Frame integral of horizontal angular-vibration/angular-

rate-sensor-quantization-noise product.

SθARS/RndZN(t)   = Double integral of the upward vertical component of angular rate
sensor random noise.

SθARS/ωVib-αQuantZN(t)   = Double integral of the upward vertical component of
angular-vibration/angular-rate-sensor-quantization-noise
product.

We also write the definition for the δωIEExp

N
 term in (18.3-25) as the difference between the

horizontal component of ωIEExp

N
 used in (18.3-2) and the true horizontal earth rate value.  Then,

using (18.3-15), we find:

δωIE/ExpH

N
  =  ωIE/ExpH

N
 - ωIEH

N
  =  - ωIEH

N
 (18.3-27)

Now in (18.3-25), we substitute (18.3-27) and apply (14.2-33) to the ωIEH

N
 × uZN

N
 term (as in

(14.2-34)).  Substituting the result in (18.3-19) with rearrangement finds an expression for the
integrated horizontal angular rate sensor random output noise:

θARS/RndH

N
(t)  =  t ωIEH

N
 - t ωIEH

N
 + t δ  ωIE/HResid

N
 (t) 

- δ  ωARS/CnstH
N

 + uZN
N

 × γ  

HOffset

N
 ωIEUp  t + θARS/ωVib-α ' QuantH(t)

+ 
1
2

 δ   ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ  

HOffset

N
 t2

(18.3-28)

 
 

+ SθARS/RndZN(t) - S θARS/ωVib-αQuantZN(t)  ωIEH uEast
N

where

uEast
N

  =  Unit vector in the horizontal East direction.

ωIEH  = Horizontal earth rate magnitude (earth rate times cosine geodetic latitude).

γHOffset

N
  = Portion of γH

N
 that will remain near the end of Fine Alignment due to

horizontal accelerometer error when using the controlled Kalman system
configuration of Equations (18.3-1) (See Section 14.3 - Equation (14.3-39)

for the relationship between γH and accelerometer error).
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Using γHOffset

N
 in (18.3-28) (rather than γHAvg

N
 in (18.3-25)) is more representative of how the

associated terms affect the (18.3-28) result when using the (18.3-1) Kalman controlled system.

Equation (18.3-28) with (18.3-26) defines the integral of horizontal angular rate sensor noise
from alignment initiation to time t in alignment.  This result will be used in the subsections to
follow as the basis for estimating angular rate sensor random noise from measurements taken
during Fine Alignment.

18.3.1  REPEATED ALIGNMENT TEST

The Repeated Alignment test method for estimating horizontal angular rate sensor random
noise is based on applying Equation (18.3-28) to INS self-alignment process output
measurements taken at Fine Alignment completion, for an ensemble of Fine Alignment runs.
In the following subsections we describe two versions of the Repeated Alignment test; one
based on Kalman filter earth rate estimate measurements; the other based on INS true heading
output measurements (for situations when the earth rate estimates are not available outputs).

18.3.1.1 REPEATED ALIGNMENT TEST USING
KALMAN EARTH RATE ESTIMATES

The Repeated Alignment test based on Kalman alignment filter earth rate estimates applies
Equation (18.3-28) to horizontal earth rate measurements taken at Fine Alignment completion
for an ensemble of Fine Alignment runs.  With this approach, Equations (18.3-28) and
(18.3-26) can be written as:

θARS/RndH

N
  ≡  nARS/RndH

N
 dt

0

TAlign

θARS/ωVib-α QuantH
N

  ≡  CB
N

 

 H
 ωVib

B
 × δαQuant  dt

0

TAlign

SθARS/RndZN  ≡   
0

TAlign

nARS/RndZN  dτ dt
0

t

SθARS/ωVib-α QuantZN  ≡   
0

TAlign

uZN
N

 ⋅ CB
N

 ωVib 
B

× δ αQuant  dτ dt 

0

t

(18.3.1.1-1)
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θARS/Rnd/Hj

N
  =  ωIE/H j

N
 TAlign  - ωIEH

N
 + δωARS/CnstH

N

+ uZN
N

 × γ 

HOffset

N
 ωIEUp - δ ωIE/H/Residj

N
 TAlign

 

+ 
1
2

 TAlign
 2

 δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 ωIEH uEast

N
 

(18.3.1.1-2)

+ θARS/ωVib-αQuant/Hj

N
 + SθARS/Rnd/ZNj - SθARS/ωVib-α Quant/ZNj  ωIEH uEast

N
 

where

TAlign  = Time from start to end of the Fine Alignment process, assumed the same for
each jth Fine Alignment test run.

θARS/Rnd/Hj

N
  = N Frame integral over TAlign of horizontal angular rate sensor random

noise for the jth Fine Alignment test run.

θARS/ωVib-α  Quant/Hj

N
  = N Frame integral over TAlign of the horizontal component of

angular - vibration / angular -  rate -  sensor -  quantization -  noise
product for the jth Fine Alignment test run.

SθARS/Rnd/ZNj  = Double integral over TAlign of upward vertical angular rate sensor
random noise for the jth Fine Alignment test run.

SθARS/ωVib-α  Quant/ZNj  = Double integral over TAlign of the upward vertical component
of angular - vibration / angular - rate - sensor - quantization - noise
product for the jth Fine Alignment test run.

ωIE/H j

N
  = Fine Alignment Kalman filter horizontal earth rate estimate at the end of

alignment for the jth Fine Alignment test run.

δωIE/H/Residj

N
  = Value for δωIE/H Resid

N
(t)  at the end of alignment for the jth Fine

Alignment test run.

Equation (18.3.1.1-2) is in a form we can use for determination of angular rate sensor

random noise by statistical analysis.  First we recognize that since θARS/Rnd/Hj

N
,

θARS/ωVib-αQuant/Hj, SθARS/Rnd/ZNj and SθARS/ωVib-αQuant/ZNj are defined to be single and

double integrals of random noise, they are also random, hence, their expected values over the
ensemble of j alignments is zero.  We also assume that the alignment time is of sufficient

duration that the initial transient elements in δωIE/H/Residj

N
 are negligible.  Therefore,
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δωIE/H/Residj

N
 is also random over the ensemble of j alignments.  Taking the expected value of

(18.3.1.1-2) then yields after rearrangement:

E ωIEH

N
 TAlign  =  ωIEH

N
 + δωARS/CnstH

N
 + uZN

N
 × γ 

HOffset

N
 ωIEUp  TAlign 

 

             - 
1
2

 TAlign
 2

 δωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 ωIEH uEast

N
(18.3.1.1-3)

where

E ( )  =  The expected value operator (i.e., average statistical value).

With (18.3.1.1-3), Equation (18.3.1.1-2) reduces to:

θARS/Rnd/Hj

N
  =  ωIE/H j

N
 - E ωIEH

N
 + δωIE/H/Residj

N
 TAlign

 

+ θARS/ωVib-αQuant/Hj

N
 + SθARS/Rnd/ZNj - SθARS/ωVib-αQuant/ZNj  ωIEH uEast

N
(18.3.1.1-4)

Assume that the dominant noise term in (18.3.1.1-4) is θARS/Rnd/Hj

N
 (to be proven later).

We will also assume that the alignment time is sufficiently long that δωIE/H/Residj

N
 is negligible

compared to θARS/Rnd/Hj

N
.  Therefore, we can approximate (18.3.1.1-4) as:

θARS/Rnd/Hj

N
  ≈  ωIE/H j

N
 - E ωIEH

N
 TAlign (18.3.1.1-5)

The variance of θARS/Rnd/Hj

N
 in (18.3.1.1-5) over the ensemble of j alignment runs provides

the desired measure of horizontal angular rate sensor random noise.  From the integral of
covariance rate Equation (15.1.2.1.1-30), we know that the variance of the integral of white
noise (i.e., for A(t) = 0  and GP(t) = I ) equals the white noise density multiplied by the

integration time.  Thus, for θARS/Rnd/Hj

N
 in (18.3.1.1-5):

E θARS/Rnd/H-kj

2
  =  σARS/Rnd/H-k

2
 TAlign (18.3.1.1-6)

where

θARS/Rnd/H-kj  =  Component of θARS/Rnd/Hj

N
 along N Frame horizontal axis k.

σARS/H/Rnd-k  = Square root of the angular rate sensor random process noise density
along N Frame horizontal axis k.
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E θARS/Rnd/H-kj

2
  =  The variance of θARS/Rnd/H-kj.

Based on (18.3.1.1-6), we can then write for our estimate of random noise:

σARS/Rnd/H-k  =  
E θARS/Rnd/H-k

2

TAlign
(18.3.1.1-7)

where

E θARS/Rnd/H-k
2

  =  Variance of θARS/Rnd/H-kj for the ensemble of j alignments.

The Repeated Alignment test for evaluating σARS/H/Rnd-k is based on Equation (18.3.1.1-7)

using (18.3.1.1-5) and the ωIE/H j

N
 measurements for estimating E θARS/Rnd/H-k

2
 in traditional

fashion as follows:

E ωIEH

N
  ≈  

1
n

 ωIE/H j

N
∑
j = 1

n

E θARS/Rnd/H-k
2

  ≈  
TAlign

 2

n - 1
 ωIE/H-k j - E ωIEH

N
 

 k

 2

∑
j = 1

n
(18.3.1.1-8)

where

n  = Number of Fine Alignment run samples used for angular rate sensor random
noise estimation.

ωIE/H-k j, E ωIEH

N
 

 k
  =  The k horizontal axis components of ωIE/H j

N
 and E ωIEH

N
.

The overall result for estimating angular rate sensor random noise then, is (18.3.1.1-7)
combined with (18.3.1.1-8):

E ωIEH

N
  ≈  

1
n

 ωIE/H j

N
∑
j = 1

n

σARS/Rnd/H-k  =  

TAlign  ωIE/H-k j - E ωIEH

N
 

 k

 2

∑
j = 1

n

n - 1

(18.3.1.1-9)

Equations (18.3.1.1-9) allow estimation of angular rate sensor random noise for the two
angular rate sensors along the horizontal axes.  A random noise estimate for the vertical angular
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rate sensor can be obtained by repeating the n alignments and the (18.3.1.1-9) analysis with the
INS oriented so that the originally vertical angular rate sensor is horizontal.

The previous process is based on a particular self-alignment time TAlign .  By repeating the

process for different alignment times, the random noise coefficients can be estimated from
(18.3.1.1-9) as a function of alignment time.  If the sensor noise is white (as implied in

Equation (18.3.1.1-7)), the calculated σARS/Rnd/H-k value should be the same regardless of

TAlign  (within the assumptions used in formulating (18.3.1.1-9)).  Variations in σARS/Rnd/H-k

for different alignment times indicate that the angular rate sensor noise estimate includes other
non-white additional sensor noise components (i.e., random terms that were neglected going
from (18.3.1.1-4) to (18.3.1.1-5)) whose effect on the earth rate estimates differs from that of
white angular rate sensor output noise.  An important point to recognize, however, is that for a

given TAlign , the σARS/Rnd/H-k value calculated with the (18.3.1.1-9) Repeated Alignment test

method is a direct measurement of the earth rate uncertainty at the end of alignment for this
alignment time (exclusive of alignment filter initial transient residuals).  As such, it actually
represents the composite effect of angular rate sensor output noise on earth rate estimation
uncertainty (hence, self-alignment heading determination accuracy), regardless of whether the
sensor noise is pure white or a composite of white and other random effects.

To reduce the magnitude of residual random contributors to σARS/Rnd/H-k, the Kalman filter

convergence time should be minimized by proper selection of the initial covariance uncertainties
and measurement noise.  In this regard, it is beneficial that the Kalman filter measurement noise
(i.e., the PRVibH position disturbance noise in Section 15.2.1, Equation (15.2.1-27) and Section

15.2.1.1, Equation (15.2.1.1-12)) be set to a low value (near zero) that is characteristic of the
static test environment.  Kalman filter convergence time can be further reduced by initializing
the horizontal tilt uncertainty (i.e., Pγ/H0 in Equation (15.2.1.2-2)) at a value representative of

initial coarse pre-alignment leveling under benign vibration test conditions.  Kalman filter
convergence time can also be reduced by initializing the horizontal earth rate estimates to values
corresponding with the INS heading during each alignment (determined from an initial trial
alignment run).  The initial estimated earth rate covariance (i.e., PδωIE/H 0 in Equation

(15.2.1.2-2)) would then be correspondingly reduced to allow for the smaller initial uncertainty
(e.g., by setting it equal to the earth rate uncertainty covariance at the end of the trial alignment
run, multiplied by four for a safety factor).

To assure that angular rate sensor turn-on transient errors will not corrupt results obtained,
the self-alignment series is best run after the INS has had sufficient running time for transient
decay.
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For the remainder of this section we will address the uncertainty in the above σARS/Rnd/H-k

estimation process produced by the terms in the (18.3.1.1-4) θARS/Rnd/Hj

N
 equation that were

neglected in the (18.3.1.1-5) approximation; specifically, the SθARS/Rnd/ZNj, δωIE/H/Residj

N
,

θARS/ωVib-αQuant/Hj

N
, and SθARS/ωVib-αQuant/ZNj terms.  Note in Equation (18.3.1.1-4) that

the SθARS/Rnd/ZNj and SθARS/ωVib-αQuant/ZNj terms are only along the east axis, hence, do

not affect the north θARS/Rnd/Hj

N
 component (and the corresponding north σARS/Rnd/H-k

estimate).

Using covariance rate Equation (15.1.2.1.1-30) we can show that the expected value of the

square of the SθARS/Rnd/ZNj term in (18.3.1.1-4) (i.e., doubly integrated random noise) is:

E SθARS/Rnd/ZNj
 2

  =  
1
3

 σARS/Rnd/ZN
2

 TAlign
3

(18.3.1.1-10)

where

E SθARS/Rnd/ZNj
 2

  =  Variance of the integral of θARS/Rnd/ZNj.

σARS/Rnd/ZN  = Square root of the vertical angular rate sensor random process noise
density.

Note that the Section 13.6.1 method (as was applied in Section 13.6.2 leading to the PRHRH

expression in Equations (13.6.2-3)) can also be used to derive (18.3.1.1-10).  For this case, we

consider each noise pulse (εi) to register instantaneously on the output of the first integrator (at

time τi) and then propagating through the second integrator into εi (t - τi) at time t.  Taking the

sum of the εi (t - τi)’s for the total effect at time t of previous noise contributions, squaring the

sum and taking the expected value with the εi’s assumed uncorrelated, multiplying and dividing

each element in the result by Δτi, letting Δτi go to zero in the limit so that the summation of the

( ) Δτi becomes an integral, identifying the E εi
2

 / Δτi terms in the limit as σARS/Rnd/ZN
2

, and

analytically integrating the result, then yields (18.3.1.1-10).

Taking the ratio of (18.3.1.1-10) to (18.3.1.1-6) multiplied by the ωIEH coefficient squared in

(18.3.1.1-4) provides a measure of the relative contribution of the variance of SθARS/Rnd/ZNj in

Equation (18.3.1.1-4) compared with the θARS/Rnd/Hj

N
 variance.  (We note that the relative

variance is the proper performance evaluation factor when statistically summing independent
error contributions; e.g., as in taking the root-sum-square in an error budget analysis).
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Assuming equal noise densities for the vertical and horizontal angular rate sensors, said

variance ratio of vertical over horizontal sensor noise contributions is 
1
3

 ωIEH

2
 TAlign

 2
.  For a 10

minute alignment time at 45 degrees latitude, 
1
3

 ωIEH

2
 TAlign

 2
 = 

1
3

 × (15 deg/hr × 0.0175 rad/deg

× cosine 45 deg × 10 min × 0.0167 hrs/min)2 = 0.00032; i.e., clearly negligible.

The reader can verify using the analytical techniques of Section 16.2.3.1 and Equation
(15.1.2.1.1-30) (with A(t) = 0  and GP(t) = I  for integrated random noise variance analysis)

that the θARS/ωVib-αQuant/Hj

N
 SθARS/ωVib-αQuant/ZNj angular-vibration/angular-rate-sensor-

quantization product terms in (18.3.1.1-4) are negligible compared to the SθARS/Rnd/ZNj term,

particularly under the benign angular rate vibration environment of system testing in the

laboratory.  We assume that the alignment time is sufficiently long that δωIE/H/Residj

N
 can also

be neglected.

18.3.1.2  REPEATED ALIGNMENT TEST USING INS COMPUTED TRUE HEADING

The Repeated Alignment test described in Section 18.3.1.1 implies the ability to access the
horizontal earth rate estimates during INS self-alignment.  For situations when such access is
not available, an alternate procedure can be utilized for a strapdown INS based on INS true
heading output measurements.  This approach is based on the Section 18.3.1.1 method of
estimating random noise from an ensemble of repeated alignments.  To convert the Section
18.3.1.1 results for heading measurement compatibility, we first define the error in the
measured true heading as:

δψT  =  ψT - ψT (18.3.1.2-1)

where

ψT  =  Actual true heading.

    = Designation for parameter calculated in the INS computer and containing errors, in
contrast with the undesignated same parameter defined to be error free.

Equations (14.2-32) - (14.2-34) and (12.2.1-44) show that for zero pitch angle (with zero
position error), the error in true heading produced by horizontal earth rate estimation uncertainty
during the fine-alignment process is:
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δψT  =  γZN - 
1

ωIEH

 δ ωIEH

N
 ⋅ uEast

N
 (18.3.1.2-2)

with the earth rate estimation error δωIEH

N
 defined as:

δ ωIEH

N
  =  ωIEH

N
 - ωIEH

N
 (18.3.1.2-3)

where

ωIEH  =  Horizontal earth rate magnitude.

uEast
N

  =  Unit vector along the horizontal easterly direction.

γZN  = Vertical component of the rotation angle error associated with the CB
N

 matrix.

For simplicity we define:

ωIEEast  ≡  ωIEH

N
 ⋅ uEast

N
 (18.3.1.2-4)

Note that (18.3.1.2-4) cannot be explicitly evaluated in the INS because uEast
N

 (error free, by

definition) is unknown in the INS computer.  The INS computer version of uEast
N

 is by

definition, perpendicular to ωIEH

N
 (i.e., east is perpendicular to north which by definition lies

along the horizontal earth rate vector pointing toward earth’s positive rotation axis), hence,
would generate zero for the equivalent INS computer version of Equation (18.3.1.2-4).

Recognizing that the true horizontal earth rate (ωIEH

N
) has no east component, we then find from

(18.3.1.2-3) with (18.3.1.2-4) that the δ ωIEH

N
 ⋅ uEast

N
 term in (18.3.1.2-2) is:

δ ωIEH

N
 ⋅ uEast

N
  =  ωIEEast (18.3.1.2-5)

The γZN term in (18.3.1.2-2) is provided analytically by Section 18.3, Equation (18.3-23) if

we recognize that both the theoretical uncontrolled Kalman alignment filter of Section 18.3 (i.e.,
the  version) and the actual controlled Kalman filter configuration (without the ) do not

control the vertical component attitude error.  Thus, we can equate γ ZN in (18.3.1.2-2) to γ ZN

in (18.3-23).  Adopting the Equation (18.3.1.1-2) terminology for the noise terms and

substituting γ 

HOffset

N
 for γ 

HAvg

N
 (based on the rationale following (18.3-28)) then yields at the

end of alignment for the jth alignment run:
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γ ZN j  =  - δωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 TAlign 

             - θARS/Rnd/ZNj + θARS/ωVib-α Quant/ZNj

(18.3.1.2-6)

where

j  =  Designation for parameter value for a particular alignment run j.

γ ZNj  =  γ ZN at the end of alignment for the jth alignment run.

As discussed in the paragraph preceding (18.2.1-2), γZNj in (18.3.1.2-6) is actually the

upward vertical (ZN) component of γ* as defined by Equation (12.5-5), but with the * notation

deleted for simplicity.  The γ* parameter is γ neglecting quantization noise (See Equation

(12.5-5)).  For compatibility with (18.3.1.2-2) (which is for the true γ), we substitute the vertical

component of γ* from (12.5-5) for γZNj in (18.3.1.2-6):

γ ZN j  =  - δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 TAlign 

             - θARS/Rnd/ZNj + θARS/ωVib-α Quant/ZNj - δ αQuant/ZNj 
(18.3.1.2-7)

where

δαQuant/ZNj  = Vertical (along the N Frame Z axis) component of CB
N

 δαQuant (See

Equation (12.5-5) for clarification) at the end of alignment for the jth
alignment run..

Combining Equations (18.3.1.2-1), (18.3.1.2-2), (18.3.1.2-5) and (18.3.1.2-7) for the jth

alignment run yields with rearrangement:

ωIE/East j  =  ωIEH γZNj - δψT

 =  - ωIEH ψT - ψT + δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 TAlign (18.3.1.2-8)

 
 

+ δαQuant/ZNj + θARS/Rnd/ZNj - θARS/ωVib-αQuant/ZNj

where

ωIE/East j  =  ωIEEast at the end of alignment for the jth alignment run.

We now take the dot product of Section 18.3.1.1 - Equation (18.3.1.1-2) with uEast
N

, apply

the (18.3.1.2-4) definition, substitute (18.3.1.2-8) for ωIE/East j, equate the east component of

ωIEH

N
 to zero, apply the (3.1.1-35) mixed vector dot/cross-product identity in the
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uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 and uEast

N
 ⋅ uZN

N
 × γ 

HOffset

N
 terms (recognizing that uEast

N
 × uZN

N
 is south

with unity magnitude and uZN
N

 × ωIEH

N
 is west with ωIEH  magnitude), and re-group.  The result

is:

θARS/Rnd/Eastj  =  - ωIEH ψTj TAlign

+ ωIEH ψT - δ ωARS/CnstEast + ωIEUp γ NorthOffset  TAlign 

- 
1
2

 TAlign
 2

 δωARS/CnstZN - ωIEH γEastOffset  ωIEH (18.3.1.2-9)

+ δωIE/East/Residj - ωIEH δαQuant/ZNj  TAlign  + θARS/ωVib-αQuant/Eastj

+ SθARS/Rnd/ZNj - θARS/Rnd/ZNj TAlign  ωIEH

- SθARS/ωVib-αQuant/ZNj - θARS/ωVib-αQuant/ZNj TAlign  ωIEH

where

ψTj  =  Value for ψT at the end of alignment for the jth alignment run.

θARS/Rnd/Eastj, δωARS/CnstEast, δωIE/East/Residj, θARS/ωVib-αQuant/Eastj  =  

East components of θARS/Rnd/Hj

N
, δωARS/CnstH

N
, δωIE/H/Residj

N
, and

θARS/ωVib-αQuant/Hj.

γ NorthOffset
 , γEastOffset  =  North and east components of γHOffset

N
.

As in Section 18.3.1.1 - Equations (18.3.1.1-3) and (18.3.1.1-4), we recognize

δωIE/East/Residj and the noise terms to be random with zero expected value over the ensemble

of j alignments.  Hence, lines 2 and 3 in (18.3.1.2-9) equal ωIEH TAlign  times the expected

value of ψTj.  Dropping the δωIE/East/Residj and noise terms on the right side of the equality as

negligible (as in Section 18.3.1.1), Equation (18.3.1.2-9) then becomes:

θARS/Rnd/Eastj  ≈  - ωIEH TAlign ψTj - E ψT (18.3.1.2-10)

The extension of the final Equation (18.3.1.1-9) result in Section 18.3.1.1 to Equation
(18.3.1.2-10) should now be obvious:
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E ψT   ≈  
1
n

 ψTj∑
j = 1

n

σARS/Rnd/East  =  ωIEH

TAlign ψTj - E ψT
 2

∑
j = 1

n

n - 1

(18.3.1.2-11)

where

σARS/Rnd/East  = Square root of the horizontal East angular rate sensor random noise
density.

Equations (18.3.1.2-11) allow estimation of random noise for the angular rate sensor along
the East horizontal axis.  Random noise can be estimated for the North angular rate sensor by
repeating the alignment and the Equation (18.3.1.2-11) process with the INS rotated 90 degrees
in heading from the original orientation (placing the previously North angular rate sensor in the
Easterly direction).  An estimate for the vertical angular rate sensor noise can be evaluated by
repeating the process with the INS at a 90 degree roll orientation that places the previously
vertical angular rate sensor in the horizontal Easterly direction.  Each of the previous
orientations should be at zero pitch angle for the processing equations to be valid.

As for the Section 18.3.1.1 Repeated Alignment test, the σARS/Rnd/East value calculated with

the Equations (18.3.1.2-11) method is a direct measurement of the heading uncertainty at the

end of alignment for the selected alignment time.  As such, σARS/Rnd/East calculated with

(18.3.1.2-11) represents the composite effect of inertial sensor output noise on heading
determination accuracy, regardless of whether the sensor noise is pure white, a composite of
white and other random effects, or a mixture of angular rate sensor and accelerometer random
noise effects.

18.3.2  CONTINUOUS ALIGNMENT TEST

For situations in which the alignment process Kalman filter error model accurately represents
the actual INS sensor error characteristics over extended alignment periods, an alternate
approach can be substituted for the Section 18.3.1 Repeated Alignment procedure to estimate
strapdown angular rate sensor random noise.  The alternate approach is based on data
measurements from a continuous single alignment run.  In the following subsections we
describe two versions of the Continuous Alignment test approach; one based on Kalman filter
earth rate estimate measurements and the other based on INS true heading output
measurements.
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18.3.2.1 CONTINUOUS ALIGNMENT TEST USING
KALMAN EARTH RATE ESTIMATES

Included in Equations (18.3-26) is the definition for the integral of horizontal angular rate
sensor random noise from alignment initiation to time t in alignment.  To estimate the angular
rate sensor random noise from a single Fine Alignment run, we will need an ensemble of
successive integrated random noise samples for which the integration period is defined to be
over successive time intervals during alignment.  We define each integrated angular rate sensor

noise sample as follows, relating it to θARS/RndH

N
(t)  in Equations (18.3-26):

ΔθARS/Rnd/Hi

N
  ≡  nARS/RndH

N
 dt

ti-1

ti

  =  θARS/Rnd/Hi

N
 - θARS/Rnd/Hi-1

N
(18.3.2.1-1)

where

ti  =  General time t in alignment for data measurement.

ΔθARS/Rnd/Hi

N
  =  Integral of nARS/RndH

N
 from ti-1 to ti.

Substituting (18.3-28) for the i and i-1 time points into (18.3.2.1-1) yields after combining
terms:

ΔθARS/Rnd/Hi

N
  =  t i ωIE/H i

N
 - ti-1 ωIE/H i-1

N

- ωIEH

N
 + δωARS/CnstH

N
 + uZN

N
 × γHOffset

N
 ωIEUp  ΔT

+ δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 ti - 

1
2

 ΔT  ΔT ωIEH uEast
N

 

+ ti δ ωIE/H/Residi

N
 - ti-1 δ ωIE/H/Residi-1

N
(18.3.2.1-2)

+ θARS/ωVib-αQuant/Hi - θARS/ωVib-αQuant/Hi-1

+ SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1  ωIEH uEast
N

- SθARS/ωVib-αQuant/ZNi - SθARS/ωVib-αQuant/ZNi-1  ωIEH uEast
N

where

ωIE/H i

N
  =  ωIEH

N
 at time t = ti.

( )i  =  Parameter ( ) at time t = ti.
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ΔT  =  time interval from ti-1 to ti which will be constant for data measurements.

The noise terms in the last three lines of (18.3.2.1-2) are defined for general time t in Equations
(18.3-26).

For simplicity, we define the ωIE/H i

N
 estimation term group in (18.3.2.1-2) as:

φHi

N
  ≡  t i ωIE/H i

N
 - ti-1 ωIE/H i-1

N
(18.3.2.1-3)

where

φHi

N
  =  What will be the measurement input for horizontal random noise estimation.

Equation (18.3.2.1-2) with (18.3.2.1-3) is in a form we can use for estimating angular rate
sensor random noise by statistical analysis.  First we recognize that the expected value for the
noise terms at time ti is zero.  If random noise estimation during alignment begins after initial
error state uncertainty estimation transients have subsided, we can also assume that the

δωIE/H/Residi

N
 residual has zero expected value at ti.  Taking the expected value of (18.3.2.1-2)

with (18.3.2.1-3) then yields after rearrangement:

ωIEH

N
 + δ ωARS/CnstH

N
 + uZN

N
 × γ 

HOffset

N
 ωIEUp  ΔT

- δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 t  i - 

1
2

 ΔT  ΔT ωIEH uEast
N

  =  E  φHi

N (18.3.2.1-4)

where

E ( )  =  Expected value operator.

With (18.3.2.1-4), Equation (18.3.2.1-2) with (18.3.2.1-3) reduces to:

ΔθARS/Rnd/Hi

N
  =  φHi

N
 - E φHi

N
 + ti δωIE/H/Residi

N
 - ti-1 δωIE/H/Residi-1

N

+ θARS/ωVib-αQuant/Hi - θARS/ωVib-αQuant/Hi-1
 

+ SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1  ωIEH uEast
N

(18.3.2.1-5)

- SθARS/ωVib-αQuant/ZNi - SθARS/ωVib-αQuant/ZNi-1  ωIEH uEast
N
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It will be shown that the dominant noise term in (18.3.2.1-5) is ΔθARS/Rnd/Hi

N
.  We will also

assume that the alignment time is sufficiently long that δωIE/H/Resid
N

 terms will also be

negligible compared to ΔθARS/Rnd/Hi

N
.  Therefore, we can approximate (18.3.2.1-5) as:

ΔθARS/Rnd/Hi

N
  ≈  φHi

N
 - E φHi

N
(18.3.2.1-6)

The variance of the ΔθARS/Rnd/Hi

N
 components over the alignment period provides the

desired measure of horizontal angular rate sensor random noise.  From the integral of
covariance rate Equation (15.1.2.1.1-30) we know that for a stationary white noise process (i.e.,
constant density independent of time), the variance of the integral of white noise (i.e., for
A(t) = 0  and GP(t) = I ) equals the white noise density multiplied by the integration time.

Therefore, for ΔθARS/Rnd/Hi

N
 in (18.3.2.1-6):

E ΔθARS/Rnd/H-ki

2
  =  σARS/Rnd/H-k

2
 ΔT (18.3.2.1-7)

where

ΔθARS/Rnd/H-ki  =  Component of ΔθARS/Rnd/Hi

N
 along N Frame horizontal axis k.

σARS/Rnd/H-k  = Square root of angular rate sensor random process noise density along
N Frame horizontal axis k (assumed constant independent of time).

E ΔθARS/Rnd/H-ki

2
  =  Variance of ΔθARS/Rnd/H-ki.

Based on (18.3.2.1-7), we can then write for our estimate of random noise:

σARS/Rnd/H-k  =  
E ΔθARS/Rnd/H-ki

2

ΔT
(18.3.2.1-8)

The Continuous Alignment test for evaluating σARS/H/Rnd-k is based on Equation

(18.3.2.1-8) using (18.3.2.1-6) and the φHi

N
 measurements for estimating E ΔθARS/Rnd/H-ki

2
.

In traditional fashion, we assume that the sequence of φHi

N
 measurements taken as a function of

alignment time during a single alignment run can be treated like a set of independent φHi

N

measurements taken from an ensemble of alignment histories at a particular ti (the so-called
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ergodic assumption).  Then we calculate E φHi

N
   based on the ensemble of φHi

N
 measurements

and E ΔθARS/Rnd/H-k
2

 as the variance of the φHi

N
’s about the calculated E φHi

N
  .  Let us first

address the calculation of E φHi

N
  .

Equation (18.3.2.1-4) shows that the theoretical value for E φHi

N
   is a constant plus a term

proportional to ti.  Thus, to estimate the value for E φHi

N
   from the φHi

N
 data, one approach might

be to find the best straight line fit to φHi

N
 over ti (e.g., using the method of least squares as in

Reference 37 - Chapter 9, Section 11).  However, due to the smallness of the term proportional

to ti, we will now show that a simple linear average of φHi

N
 over ti is sufficiently accurate to

calculate E φHi

N
   for our purposes.

For the simple linear averaging approach, since the true value of E φHi

N
   is of the form

A + B t i (in which A and B are constants), the approximate linear average of A + B ti over the

alignment time (TAlign) will be A + 
1
2

 B TAlign .  The associated error is the difference between

the true and approximate E φHi

N
   solutions, or A + B t i - A + 

1
2

 B TAlign   = B ti - 
1
2

 TAlign .

Using the approximate value for E φHi

N
   in (18.3.2.1-6) will create an error in ΔθARS/Rnd/Hi

N
 of

B ti - 
1
2

 TAlign .  Then, assuming zero ensemble mean at each i time for ΔθARS/Rnd/H-ki,

E ΔθARS/Rnd/H-k
2

 to be calculated from the ΔθARS/Rnd/Hi

N
’s will be:

E ΔθARS/Rnd/H-ki

 2
   =  E ΔθARS/Rnd/H-ki + B t  i - 

1
2

 TAlign
 2

=  E ΔθARS/Rnd/H-ki

2
   + 2 B t  i - 

1
2

 TAlign  E ΔθARS/Rnd/H-ki
   + B2 t  i - 

1
2

 TAlign

 2
 

                =  E ΔθARS/Rnd/H-ki

2
  + B2 t  i - 

1
2

 TAlign
 2

(18.3.2.1-9)

where

ΔθARS/Rnd/H-ki  = Value calculated for ΔθARS/Rnd/H-ki using the approximate linear

average of the φHi

N
’s over the alignment time for E φHi

N
  .
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The E ΔθARS/Rnd/H-ki

2
 term in (18.3.2.1-9) is the correct value (based on the correct value

for E φHi

N
   ) whose magnitude is σARS/Rnd/H-k

2
 ΔT as provided by Equation (18.3.2.1-7).  The

ratio of B2 ti - 
1
2

 TAlign
 2

 to E ΔθARS/Rnd/H-ki

2
 provides a measure of the significance of the

B2 ti - 
1
2

 TAlign
 2

 error in estimating angular rate sensor random noise.  The maximum value

for B2 ti - 
1
2

 TAlign
 2

 in (18.3.2.1-9) occurs at time 0 or time TAl ign  for which

B2 ti - 
1
2

 TAlign
 2

 equals 
1
4

 B2 TAlign
 2

.  The value for B is the ti uEast
N

 coefficient in (18.3.2.1-4)

or - δ ωARS/CnstZN + uZN
N

 ⋅ ωIEH

N
 × γ 

HOffset

N
 ΔT ωIEH

 .  For most inertial navigation systems,

the ωIEH

N
 × γ 

HOffset

N
 term is considerably smaller than the δωARS/CnstZN term (e.g., ωIEH times

50 micro radians for ωIEH

N
 × γ 

HOffset

N
  compared to 0.01 deg/hr for δωARS/CnstZN in an aircraft

INS).  Therefore, B can be approximated as - δωARS/CnstZN ΔT ωIEH.  Then, the maximum

value for the B2 ti - 
1
2

 TAlign
 2

 to E ΔθARS/Rnd/H-ki

2
 performance ratio is

1
4

 
ΔT δωARS/CnstZN

2

σARS/Rnd/H-k
2

 ωIEH

2
 TAlign

 2
.  The angular rate sensor performance figures in a 1 nmph

CEP accurate INS are typically 0.01 deg/hr for δωARS/CnstZN and 0.002 deg/sqr-rt-hr for

σARS/Rnd/H-k.  Using these figures with TAlign  = 2 hrs, ΔT = 2 min and 45 deg for the

alignment latitude, the value for the performance ratio is 
1
4

 × 2 min × 0.0167 hrs/min ×

0.01 deg/hr
0.002 deg/sqr-rt-hr

 2
 × (15 deg/hr × 0.0175 rad/deg ×  cosine 45 deg × 2 hrs)

2
 = 0.029.  Thus,

approximating E φHi

N
 as a linear average of φHi

N
 over the alignment time has negligible impact

on estimating horizontal angular rate sensor noise.

Based on the previous analysis, we then write our usual equations for estimating E φHi

N
 in

(18.3.2.1-6) and for evaluating E ΔθARS/Rnd/H-ki

2
 in (18.3.2.1-8).  The combined result for

calculating σARS/Rnd/H-k with (18.3.2.1-3) is:
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φHi

N
  =  t i ωIE/H i

N
 - ti-1 ωIE/H i-1

N

E φHi

N
  ≈  

1
n

 φHi

N
∑

i = 1

n

 (18.3.2.1-10)

σARS/Rnd/H-k  =  

φH-ki - E φH-ki

 2
∑
i = 1

n

(n - 1) ΔT

where

n  =  Total number of φHi

N
 measurements.

φH-ki, E φH-ki   =  Components of φHi

N
, E φHi

N
 along N Frame horizontal axis k.

Note that the (18.3.2.1-10) summations can legitimately start at i = 1 because we assume that

the i-1 value for ωIE/H i

N
 will be available at i = 1 based on the alignment process being initiated

well before random noise estimation begins.

In practice, the following equivalent version of (18.3.2.1-10) can be used that allows

σARS/Rnd/H-k to be evaluated as a function of the time since the random estimation process was

initiated.  The equivalent form is easily derived by expanding the term under the summation in

the (18.3.2.1-10) σARS/Rnd/H-k expression and substituting the equation for E φHi

N
.  The result

is:

φHi

N
  =  t i ωIE/H i

N
 - ti-1 ωIE/H i-1

N

 

σARS/Rnd/H-kn  =  

φH-ki

2
∑
i = 1

n

 - 
1
n

 φH-ki∑
i = 1

n  2

(n - 1) ΔT

(18.3.2.1-11)

where

σARS/Rnd/H-kn  = Square root of angular rate sensor random process noise density
along N Frame horizontal axis k (assumed constant independent of
time) based on data taken up to i = n.
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When using (18.3.2.1-11), the φH-ki

2
∑
i = 1

n

 and φH-ki∑
i = 1

n

 summations are updated as each φHi

N

measurement is taken.  The current value for σARS/Rnd/H-kn is then calculated at each i time

point as an evolving estimate for horizontal random noise during the data taking process.  The

current value for σARS/Rnd/H-kn would be the most accurate since it was generated with the

most data samples.

Equations (18.3.2.1-11) allow estimation of angular rate sensor random noise for the two
angular rate sensors along the horizontal axes.  A random noise estimate for the vertical angular
rate sensor can be evaluated by repeating the alignment and the (18.3.2.1-11) analyses with the
INS at a 90 degree roll orientation, which places the previously vertical angular rate sensor in
the horizontal attitude.

Equations (18.3.2.1-11) are based on several assumed Kalman filter performance
characteristics.  In general, the error in these assumptions becomes smaller as the filter
converges to the final solution (i.e., after initial filter estimation transients have subsided).
Hence, (18.3.2.1-11) should only be applied after the alignment process has been operating for
a while (e.g., 5 minutes).  The time in alignment when random noise estimation should begin

and the time between φHi

N
 samples should be selected based on simulation analysis for the class

of sensor assemblies to be tested (with their characteristic noise values), and the desired
accuracy for the angular rate sensor random noise estimates.  It has been the author’s very
limited experience with a particular sensor assembly configuration that accelerometer
quantization noise magnitude was the determining factor for setting the time between samples
(i.e., setting it long enough to minimize the impact of accelerometer quantization noise on
angular rate sensor random noise estimation).  For that case, the accelerometer output pulse size
was 0.013 fps and the angular rate sensor random noise density being estimated was on the
order of 0.002 deg/sqr-rt-hr.  To limit the impact of accelerometer quantization noise on angular
rate sensor random noise estimation error to 10% of the 0.002 deg/sqr-rt-hr figure, the time
between samples was set to 2 minutes.  For a faster 5 second sample time interval, the
accelerometer quantization noise caused an uncertainty in angular rate sensor random noise
density estimation on the order of 100% of 0.002 deg/sqr-rt-hr.

From a comparison standpoint, even though the Continuous Alignment sensor noise
estimation technique presented in this section is procedurally simpler than the Section 18.3.1
Repeated Alignment approach, the Section 18.3.1 method has generally been preferred because
it doesn’t implicitly rely on assumed internal Kalman filter characteristics, and explicitly
measures performance based on its direct impact on earth rate estimation (the determining
factor for initial heading accuracy) for a specified alignment time.  Hence, the Section 18.3.1
approach will always generate a solution identified as angular rate sensor random noise that is a
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direct measurement of initial heading determination accuracy.  The method summarized by
Equations (18.3.2.1-11) has been designed to implicitly measure the same effect, but without
direct evaluation for a specified alignment time.  Interestingly, the form of Equations
(18.3.2.1-11) would allow implementation within the INS as a means for estimating angular
rate sensor random noise during each alignment.  Such measurements can be useful in
assigning a value to the “Quality” of the alignment just executed.

For the remainder of this section we will address the uncertainty in the above σARS/Rnd/H-k

estimation process produced by the terms in the (18.3.2.1-5) ΔθARS/Rnd/Hi

N
 equation that were

neglected in the (18.3.2.1-6) approximation; specifically, the δωIE/H/Resid
N

,

θARS/ωVib-αQuant/H, SθARS/ωVib-αQuant/ZN, and SθARS/Rnd/ZN terms.  From the discussion

in the third paragraph following Equation (18.3.2.1-11), the δωIE/H/Resid
N

 is controlled to be

negligible by proper selection of the time in alignment when random noise estimation is
initiated and the time between samples for the estimation process.  Based on the discussion in

the last paragraph of Section 18.3.1.1, we can assume that the θARS/ωVib-αQuant/H and

SθARS/ωVib-αQuant/ZN terms have negligible impact on ΔθARS/Rnd/Hi

N
 horizontal noise

assessment.  Some analysis is required to be assured that the SθARS/Rnd/ZN term is also

negligible (Note in (18.3.2.1-5) that SθARS/Rnd/ZNi only appears along the east axis, hence, has

no influence on north horizontal angular rate sensor random noise determination).

The variance of the SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1  term in (18.3.2.1-5) can be

determined from the following development.  Using Equations (18.3-26) and (18.3.2.1-1) we
can write:

θARS/RndZN(t)  =  θARS/Rnd/ZNi-1+ nARS/RndZN(τ) dτ
ti-1

t

(18.3.2.1-12)

SθARS/Rnd/ZNi  =  SθARS/Rnd/ZNi-1 + θARS/RndZN(t) dt
ti-1

ti

(18.3.2.1-13)

Substituting (18.3.2.1-12) into (18.3.2.1-13) and analytically integrating the θARS/Rnd/ZNi-1

portion yields for SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1  after rearrangement:
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SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1

                =  θARS/Rnd/ZNi-1 ΔT +  
ti-1

ti

nARS/RndZN(τ) dτ dt
ti-1

t (18.3.2.1-14)

The θARS/Rnd/ZNi-1 and double integral terms in (18.3.2.1-14) are over different non-

overlapping time periods, hence, because they are both random noise integrals, they are

independent of one another.  Consequently, the variance of SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1

from (18.3.2.1-14) can be calculated as the sum of the variance of θARS/Rnd/ZNi-1 ΔT and the

variance of the random noise double integral.  As discussed in the paragraphs leading to

(18.3.1.1-6) and (18.3.1.1-10), the variance of θARS/Rnd/ZNi-1 is σARS/Rnd/ZN
2

 ti-1 and the

variance of the random noise double integral is 
1
3

 σARS/Rnd/ZN
2

 ΔT
 3

.  Thus, the variance of

SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1  in (18.3.2.1-14) is the sum of σARS/Rnd/ZN
2

 ti-1 ΔT
 2

 and

1
3

 σARS/Rnd/ZN
2

 ΔT
 3

 or:

E ΔSθARS/Rnd/ZNi

2
  =  E SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1

 2

=  ti-1 + 
1
3

 ΔT  ΔT
2
 σARS/Rnd/ZN

2 (18.3.2.1-15)

Taking the ratio of (18.3.2.1-15) to (18.3.2.1-7) multiplied by the ωIEH coefficient squared in

(18.3.2.1-5), provides a measure of the relative contribution of the variance of

SθARS/Rnd/ZNi - SθARS/Rnd/ZNi-1  to Equation (18.3.2.1-5).  Assuming equal noise densities

for the vertical and horizontal angular rate sensors, said variance performance ratio of vertical

over horizontal sensor noise contributions is ti-1 + 
1
3

 ΔT  ΔT ωIEH

2
.  For a 2 hour total

alignment time with measurements taken at 5 minute intervals (i.e., for ti-1 + 
1
3

 ΔT  at the end

of fine alignment approximately equal to 2 hours), the maximum value for the performance

ratio at 45 degrees latitude is 2 hrs × 5 min × 0.0167 hrs/min × (15 deg/hr × 0.0175 rad/deg × 

cosine 45 deg)2 = 0.0057 , i.e., clearly negligible.
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18.3.2.2 CONTINUOUS ALIGNMENT TEST USING
INS COMPUTED TRUE HEADING

The Continuous Alignment angular rate sensor random noise test described in Section
18.3.2.1 implies the ability to access the horizontal earth rate estimates during INS self-
alignment.  For situations when such access is not available, an alternate procedure can be
utilized for a strapdown INS based on INS true heading output measurements.  This approach
is based on the Section 18.3.2.1 method of estimating random noise from an ensemble of
measurements taken during a single alignment run.  To find the equivalent to the Section
18.3.2.1 results for heading measurement compatibility, we can apply the method used in
Section 18.3.1.2 that led to Equation (18.3.1.2-9) and its approximate (18.3.1.2-10) form.
Alternatively, we can begin with (18.3.1.2-9) and treat the j sample as the latest i sample for the
continuous alignment test.  Based on the latter approach, the TAlign  parameter in (18.3.1.2-9)

would be treated as ti, the current time in alignment when the i samples are taken.  We then take
the difference between current and past Equation (18.3.1.2-9) samples at times ti and ti-1 to
form the continuous alignment measurement (as was done in the step leading to Equation
(18.3.2.1-2)) which then obtains the equivalent form based on INS true heading measurements.
Finally, we drop the noise and residual terms as negligible.  The result is the equivalent to
(18.3.2.1-3) and (18.3.2.1-6) for continuous alignment angular rate sensor random noise
estimation based on INS true heading measurements:

φi  ≡  - ωIEH ti ψTi - ti-1 ψTi-1
 

ΔθARS/Rnd/Easti  =  φi - E φi

(18.3.2.2-1)

where

ψTi  =  INS true heading measured at time ti since the start of alignment.

φi  = The ith measurement for east angular rate sensor random output noise assessment.

ΔθARS/Rnd/Easti  = Horizontal east component of ΔθARS/Rnd/Hi

N
, the integrated angular

rate sensor horizontal random output noise from time ti-1 to ti (as
defined in Equation (18.3.2.1-1)).

The extension of the final Section 18.3.2.1 - Equations (18.3.2.1-10) result to Equations
(18.3.2.2-2) should now be obvious:
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φi  =  - ωIEH ti ψTi - ti-1 ψTi-1

E φi   ≈  
1
n

 φi∑
i = 1

n

 (18.3.2.2-2)

σARS/Rnd/East  =  

φi - E φi 

 2
∑

i = 1

n

(n - 1) ΔT

where

n  =  Total number of ψTi measurements.

σARS/Rnd/East  = Square root of the horizontal East angular rate sensor random noise
density.

As in Section 18.3.2.1, Equation (18.3.2.1-11), an alternative version of (18.3.2.2-2) can also

be derived that allows evaluation of σARS/Rnd/East at each i time point based on the total

number of measurements taken up to ti:

φi  =  - ωIEH ti ψTi - ti-1 ψTi-1
 

σARS/Rnd/Eastn  =  

φi
2

∑
i = 1

n

 - 
1
n

 φi∑
i = 1

n  2

(n - 1) ΔT

(18.3.2.2-3)

where

σARS/Rnd/Eastn  = Square root of the East angular rate sensor random process noise
density (assumed constant independent of time) based on data taken
up to i = n.

When using (18.3.2.2-3), the φi
2

∑
i = 1

n

 and φi∑
i = 1

n

 summations are updated as each φi

measurement is taken.  The current value for σARS/Rnd/Eastn is then calculated at each i time

point as an evolving estimate for horizontal random noise during the data taking process.  The

current value for σARS/Rnd/Eastn would be the most accurate since it was generated with the

most data samples.
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Equations (18.3.2.2-3) allow estimation of random noise for the angular rate sensor along
the East horizontal axis.  Random noise is estimated for the North angular rate sensor by
repeating the alignment and the Equation (18.3.2.2-3) process with the INS rotated in heading
by 90 degrees from the original orientation (placing the previously North angular rate sensor in
the Easterly direction).  An estimate for the vertical angular rate sensor noise is determined by
repeating the process with the INS at a 90 degree roll orientation that places the previously
vertical angular rate sensor in the horizontal Easterly direction.  Each of the previous
orientations should be at zero pitch angle for the processing equations to be valid.

A comparison between the Continuous Alignment noise estimation method described in this
section with the Section 18.3.1.2 Repeated Alignment method is identical to the discussion
given in the fourth paragraph following Equation (18.3.2.1-11) in Section 18.3.2.1.

18.4  STRAPDOWN ROTATION TEST

The basic concept for the Strapdown Rotation Test was originally published in 1977
(Reference 30).  Since then, variations of the concept have formed the basis in most strapdown
inertial navigation system manufacturing organizations for system level calibration of
accelerometer/angular-rate-sensor scale-factors/misalignments and accelerometer biases.

The Strapdown Rotation test consists of a series of rotations of the strapdown sensor
assembly using a rotation test fixture for execution.  During the test, special software operates
on the strapdown angular rate sensor outputs from the sensor assembly to form an analytic
platform (L Frame) that nominally maintains a constant orientation relative to the earth.  The
analytic platform is implemented by processing strapdown attitude-integration/acceleration-
transformation algorithms (e.g., as in Chapter 7 - Table 7.5-1 including Chapter 8 - Table 8.4-1
inertial sensor compensation) using a wander azimuth type platform coordinate frame (i.e., Z

axis downward along the local geodetic vertical with vertical transport rate ρZN set to zero as

defined in Section 4.5), assuming zero velocity relative to the earth (v), and with the L Frame

earth rate components (ωIE
L

) set constant.  The ωIE
L

 earth rate components are calculated prior to

rotation test initiation using special test software that implements strapdown initial alignment
algorithms (e.g., Chapter 6 including Chapter 8 sensor compensation).  The initial alignment

operations also serve to initialize the CB
L

 attitude matrix for the test software attitude updating

algorithms.  Section 18.4.2 describes alternative methods for ωIE
L

 and CB
L

 initialization when

testing sensor assemblies of lesser accuracy.

The basic measurement taken during the Strapdown Rotation test is the total L Frame
acceleration vector computed as the transformed accelerometer specific force (from the Section
2.2 defined sensor axis B Frame to the L Frame) plus gravity.  The L Frame acceleration is
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provided in the form of integrated acceleration increments over successive attitude-
update/acceleration-transformation computation cycles based on Equations (7.2-2) and (7.2-4),
with the L Frame acceleration calculated by averaging the integrated acceleration increments:

Δvm
L

  =   ΔvSFm

L
 + gTst uZL

L
 Tm aL  =  

1
Tm

 ΔvAvg
L

(18.4-1)

where

m  =  Test software computation cycle index.

Tm  =  Time interval between m cycles.

gTst  =  Plumb-bob gravity magnitude at the test site.

L  = Locally level attitude referencing coordinate frame as defined in Section 2.2, and as
specialized for this section, to be of the wander azimuth type (See Section 4.5).

uZL
L

  = Unit vector along the L Frame Z axis (i.e., downward along the local plumb-bob

vertical).

ΔvSF
L

  = Integrated specific force acceleration increment in the L Frame measured by
digital integration of transformed accelerometer data (from the B to the L
Frame).

Δvm
L

  = Increment of integrated total acceleration over an m cycle in L Frame

coordinates.

ΔvAvg
L

  = The output from an averaging process performed on the selected succession

of Δvm
L

’s used for the particular stationary acceleration measurement.  See

Equation (18.4.7.3-18) as an example of an algorithm for the “average-of-
averages” averaging process.

aL  =  L Frame total acceleration measurement.

The ΔvSF
L

  input to the (18.4-1) Δvm
L

 expression would be provided by the appropriate Table

7.5-1 “Velocity Calculations” algorithms.

The fundamental theory behind the Strapdown Rotation test is based on the principle that for
a perfectly calibrated sensor assembly (i.e., in effect, error free), following a perfect initial

alignment, the computed total acceleration in the L Frame (i.e., aL) should be zero at any time
the sensor assembly is stationary.  Moreover, this should also be the case if the sensor
assembly undergoes arbitrary rotations between the time periods that it is set stationary.

Therefore, any deviation from zero in aL can be attributed to imperfections in the sensor
assembly (i.e., sensor calibration errors) or in the initial alignment process.
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The initial alignment process produces tilt error (i.e., attitude error measured from the local

horizontal) as well as error in the ωIE
L

 earth rate vector used in the attitude algorithms (primarily

in the horizontal components which is the equivalent to an initial heading error).  The ωIE
L

 error

produces a build-up rate in the attitude tilt which then generates a ramping build-up in aL error.

The timing for the rotation test can be structured to make the ωIE
L

 error effect negligible

(discussed subsequently).  The tilt error generates an error in the specific force transformation

process that produces a constant horizontal error in aL (this will subsequently be demonstrated
analytically).

Based on the previous discussion, for a sensor assembly with zero calibrated sensor error,

we expect the vertical component of aL (call it aZL) to be zero when the sensor assembly is set

stationary, but the horizontal component of aL (call it aH
L

) may be a small slowly changing

constant (the constant portion from the initial horizontal tilt and the slowly changing portion

from ωIE
L

 error).  It is the characteristic of initial horizontal errors that they will remain constant

in the L Frame, regardless of the sensor assembly attitude following initial alignment (to be
subsequently shown analytically).  Therefore, if we execute an arbitrary rotation sequence

between stationary measurement periods, the aH
L

 value measured before the rotation should

approximately equal the value after the rotation.  The approximation error can be minimized by

performing the rotation sequence, and the before/after aH
L

 measurements, rapidly.  Thus, the

difference between the before/after aH
L

 measurements (call them ΔaH
L

) should be zero for a

sensor assembly with zero calibrated sensor error.  Deviations from zero for ΔaH
L

 and aZL

measure the effect of strapdown sensor calibration error.  By structuring a group of rotation
sequences between stationary acceleration measurements, particular sensor error types can be

excited and made visible in the ΔaH
L

, aZL data taken for each rotation sequence.  Processing the

composite set of ΔaH
L

, aZL data taken throughout the rotation test allows the sensor calibration

errors to be calculated explicitly.  Recalibration is then performed by updating the sensor
calibration coefficients based on the measured calibration errors.

As an aside, it is to be noted that in the original Reference 30 paper, the measurement for the
rotation test was the average acceleration taken at the end of each rotation sequence, with a self-
alignment performed before the start of each rotation sequence.  The purpose of the realignment
was to eliminate attitude error build-up caused by angular rate sensor error during previous
rotation sequences.  By now taking the measurement as the difference between average
accelerations before and after rotation sequence execution (as indicated above), the need for
realignment is eliminated.  This is because the attitude error at the start of the sequence remains
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at completion of the sequence (as does is its effect on average horizontal acceleration), hence, its
impact on average acceleration measurement is canceled by taking the measurement as the
difference between before/after horizontal acceleration readings.  The before/after measurement
approach was introduced by Downs in Reference 5 for compatibility with an existing Kalman
filter used to extract the acceleration measurements.  Additional refinements developed by the
author for the Reference 30 method include a simple filtering algorithm for calculating the
average acceleration measurements (to attenuate acceleration quantization error effects - See
Section 18.4.7.3), use of “mean angular rate sensor coordinates” for referencing sensor
misalignments (See Section 18.4.3), and the use of L Frame acceleration from a stand-alone
analytic platform in determining the average acceleration measurements (i.e., transformed B
Frame specific force acceleration, plus gravity).  Average acceleration was determined in
Reference 30 by operating the sensor assembly using a full set of inertial navigation software;
then calculating average acceleration as the change in computed velocity over a specified time
interval divided by the time interval (similar to the method described in Section 18.4.7.3.1).

Particular sensor assembly sensor calibration errors that are quickly and accurately
determined from the Strapdown Rotation test are:

• Angular Misalignments Between Sensor Input Axes

• Angular Rate Sensor Scale Factor Errors

• Angular Rate Sensor Scale Factor Asymmetries

• Accelerometer Bias Errors

• Accelerometer Scale Factor Errors

• Accelerometer Scale Factor Asymmetries

• Sensor Assembly Misalignment Relative To Its Mount

The principal advantage for this particular method of error determination derives from the
combined use of the angular rate sensors and accelerometers to establish a stabilized reference
for measuring accelerations.  This implicitly forces the angular rate sensors to measure the
attitude of the rotation test fixture as the rotations are executed.  Consequently, precision rotation
test table readout or controls are not required (nor a stable test fixture base), hence, a significant
savings can be made in test fixture cost.  Inaccuracies in the rotation fixture manifest themselves
as second order errors in sensor error determination, which can be made negligibly small if
desired through a repeated test sequence.  It has been demonstrated, for example, with precision
ring laser gyro strapdown inertial navigation systems, that the test method can measure and
calibrate gyro misalignments to better than 1 arc sec accuracy with 0.1 deg rotation fixture
inaccuracies.  In addition, because the orientation of the sensor assembly is being measured by
the sensor assembly itself, it is not necessary that the sensor assembly be rigidly connected to
the rotation test fixture.  This is an important advantage for high accuracy
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applications in which the sensor assembly is attached to its chassis and mounting bracket
through elastomeric isolators of marginal attitude stability.

While most of the sensor calibration errors evaluated by the Strapdown Rotation test can be
measured on an individual sensor basis, the rotation test is the only direct method for measuring
the relative misalignments between the sensor input axes.  It should also be noted that
determination of the sensor-assembly-to-mount misalignment (listed above) is not an intrinsic
part of the Strapdown Rotation test, however, because the data taken during the rotation test
allows for this determination, it can easily be included as part of the test data processing.

18.4.1  ROTATION SEQUENCE DESIGN/SELECTION

Selection of the sensor assembly test rotation sequences should be based on the following
general ground-rules:

1. The rotation sequences should excite all sensor calibration errors so that they are made
visible as transformed acceleration (horizontal or vertical) measurements.

2. A sufficient number and type of rotation sequences should be executed so that the accel-
eration measurements taken between rotations have distinctive responses such that the
instrument errors can be ascertained by measurement data analysis.

3. The rotation sequences should be designed so that the sensor errors are excited and
made visible on the acceleration measurements under sensor orientations (relative to
vertical) that are representative of intended usage.

4. The rotation sequences should be designed so that the fewest number of error sources
are excited for each rotation sequence (between measurements).  Ideally, each sequence
should excite only one particular error source.  The measurement for this sequence can,
therefore, be used alone to uniquely determine this error without being corrupted by
other error effects.

5. When more than one sensor error is excited by a rotation sequence, the other
rotations/measurements needed to determine these sensor errors should be performed
near-together in time to assure that sensor errors do not change during the measurement
period.

6. The rotations and measurements should be executed fairly rapidly (30 - 50 deg/sec
rotation rates) to assure that sensor outputs are stable over the test period, and that

angular rate sensor bias errors (and ωIE
L

 error) are not allowed to develop attitude errors

that produce significant acceleration output measurement shifts.
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Based on the above considerations, Tables 18.4.1-l and Table 18.4.1-2 are examples of
rotation sequence sets that have proven useful for calibrating strapdown sensor assemblies
containing ring laser gyro angular rate sensors.  Table 18.4.1-1 defines a set of 16 rotation
sequences and Table 18.4.1-2 defines a set of 21 rotation sequences.  The sequences in Tables
18.4.1-l and 18.4.1-2 are designed for implementation on a two-axis rotation fixture with the
outer rotation axis horizontal and the inner axis perpendicular to the outer axis.

Note that rotation sequences 1 - 6 (which are identical for the 16 and 21 rotation sequence
sets of Tables 18.4.1-l and 18.4.1-2), have the same attitude at the end of the sequence as at the
start of the sequence.  This positions the accelerometers at the same start/end attitude so that

they produce zero accelerometer error contribution to ΔaH
L

 (the difference between the

before/after horizontal aL measurements).  Thus, the ΔaH
L

 measurements in sequences 1 - 6

only respond to the effects of angular rate sensor error, hence, are used to determine angular rate
sensor misalignment and scale factor calibration error.  This, of course, was the rationale used
in the design of rotation sequences 1 - 6.

The advantage of the 21 rotation set over the 16 set is that the last 15 rotations divide into
three sets of 5, with each set of 5 designed to determine the calibration coefficient errors for one
of the accelerometers (sequences 7 - 11 for accelerometer X, 12 - 16 for Y, and 17 - 21 for Z).
Unstable individual accelerometer error effects are thereby more easily isolated, and test repeats
can be performed for an individual accelerometer by re-executing only its 5 rotation sequences.
In the 16 set, the last 10 rotation sequences are used to calibrate all accelerometers as a group,
hence, allows a longer time period (10 sequences) for accelerometer instabilities to corrupt the
calibration.  Additionally, the ability to isolate individual accelerometer instability effects
becomes more difficult due to the inherent coupling in the 10 rotations.  Note that sequence 21
of the 21 rotation set (used for Z accelerometer error determination) is a repeat of sequence 12
of the 21 rotation set (used for Y accelerometer error determination).  If sequences 17 - 21 are
executed immediately before sequences 12 - 16, sequence 12 will occur immediately after
sequence 21.  For this type of rotation sequence ordering, the sequence 21 output data can be
substituted for sequence 12 data, and the need for sequence 12 execution eliminated.  However,
if the sequences are performed in the Table 18.4.1-2 order, sequences 12 and 21 should both be
executed to account for possible performance shifts in the Z accelerometer during the time
interval between sequences 12 and 21.



STRAPDOWN ROTATION TEST     18-83

Table 18.4.1-1

16 Set Rotation Test Sequences

SEQUENCE
NUMBER

ROTATION SEQUENCE
(Degrees, Axis)

STARTING ATTITUDE
(+Z Down, Axis Indicated

Along Outer Rotation
Fixture Axis)

1 +360 Y +Y

2 +360 X +X

3 + 90 Y, +360 Z, - 90 Y +Y

4 +180 Y, + 90 Z, +180 X, - 90 Z +Y

5 +180 X, + 90 Z, +180 Y, - 90 Z +X

6 + 90 Y, + 90 Z, - 90 X, - 90 Z +Y

7 + 90 Y +Y

8 - 90 Y +Y

9 + 90 Y, + 90 Z +Y

10 + 90 Y, - 90 Z +Y

11 - 90 Y, - 90 Z +Y

12 + 90 X, + 90 Z +X

13 + 90 X, - 90 Z +X

14 +180 Z +Y

15 +180 Y +Y

16 +180 X +X

*Note:  Axes Indicated Correspond To Sensor Assembly (B Frame) Axes.
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Table 18.4.1-2

21 Set Rotation Test Sequences

STARTING ATTITUDE

SEQUENCE
NUMBER

ROTATION SEQUENCE
(Degrees, Axis)

Axis Down
Axis Along

Outer Rotation
Fixture Axis

1 +360 Y +Z +Y

2 +360 X +Z +X

3 + 90 Y, +360 Z, - 90 Y +Z +Y

4 +180 Y, + 90 Z, +180 X, - 90 Z +Z +Y

5 +180 X, + 90 Z, +180 Y, - 90 Z +Z +X

6 + 90 Y, + 90 Z, - 90 X, - 90 Z +Z +Y

7 +180 Y +Z +Y

8 +180 Y - Z +Y

9 + 90 X +Z +X

10 + 90 X +Y +X

11 +180 Z +X +Y

12 +180 X +Z +X

13 +180 X - Z +X

14 + 90 Y +Z +Y

15 + 90 Y - X +Y

16 +180 Z +Y +X

17 +180 X - Y +X

18 +180 X +Y +X

19 + 90 Z - Y +X

20 + 90 Z - X -Y

21 +180 X +Z +X

*Note:  Axes Indicated Correspond To Sensor Assembly (B Frame) Axes.
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18.4.2  ROTATION TEST DATA COLLECTION

The data collection procedure for the 16 and 21 rotation sets in Tables 18.4.1-l and 18.4.1-2
is as follows.

A two axis rotation test fixture is employed having its outer (trunion) rotation axis horizontal,
its inner rotation axis perpendicular to the outer axis, with a mounting platform located around
the inner axis for the sensor assembly test article.  The strapdown sensor assembly is mounted
on the test fixture mounting platform with the sensor coordinate (B Frame) Z axis along the
rotation fixture inner axis.  Sensor compensation software (e.g., Chapter 8) is included in the
test software for compensating the sensor for previously determined sensor error effects.  As a
minimum, previously calculated estimates for the angular rate sensor biases should be included
in the sensor compensation.  It is also helpful if accelerometer and angular rate sensor scale
factor estimates are included, however, these can also be estimated using an abbreviated version
of the Strapdown Rotation test procedure.  Note, that approximate values for the angular rate
sensor biases can also be estimated by averaging the sensor assembly angular rate sensor
outputs and subtracting the earth rate inputs, based on the known orientation of the sensor
assembly during the bias determination process.

Prior to Strapdown Rotation test initiation, the rotation table is positioned so that the sensor
assembly B Frame axes are oriented at the “zero starting attitude” defined as Z-axis down with
the Y-axis along the rotation fixture horizontal outer-rotation-axis.  The initial self-alignment

procedure (e.g., Chapter 6) is then executed to initialize the CB
L

 attitude matrix in the test

software and to calculate ωIE
L

.  The L Frame for the rotation test is defined to be nominally

parallel to the B Frame axes during initial alignment, as the Chapter 6 alignment procedure
would create.  For sensor assemblies for which the angular rate sensors lack sufficient accuracy

for an acceptable ωIE
L

 determination during initial alignment, a reasonable estimate for ωIE
L

 can

be computed directly from the horizontal (north) earth rate component at the test site,
transformed around the vertical from north to the “zero starting attitude” heading orientation of
the sensor assembly.  For this method, the Chapter 6 type initial alignment operation could still

be utilized to initialize the CB
L

  matrix attitude, but with ωIE
L

 computed during the alignment

process then replaced at alignment completion by the previous described directly computed

value.  Alternatively, the CB
L

 matrix can be initialized directly based on its approximate known

angular orientation at the “zero starting attitude”.  It should also be noted that for sensor
assemblies having large angular rate sensor bias instabilities, it may be necessary to periodically

reinitialize the CB
L

 matrix during the rotation test by repositioning the sensor assembly at the

zero starting attitude, and repeating the CB
L
 initialization process.
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The rotation sequences are then executed as prescribed in Table 18.4.1-l or Table 18.4.1-2,
while the test software is executing its attitude update and acceleration transformation
computation routines.  Prior to initiation (but after sensor assembly initial attitude positioning
shown in the tables), and after completion of each rotation sequence defined in the tables, the
transformed acceleration vector components (aL) are measured as in Equation (18.4-1) using an
appropriate measurement algorithm (e.g., the “average-of-averages” algorithm described in

Section 18.4.7.3 Equations (18.4.7.3-18)).  The ΔaH
L

, aZL data used to calculate the sensor

calibration errors is obtained from the aL before/after measurements.  After each rotation
sequence data collection, the sensor assembly is rotated to the starting attitude for the next
rotation sequence as defined in the tables.  In structuring the Table 18.4.1-2 sequences, it is
helpful to recognize that the starting attitude for sequences 7, 8, 10, 13, 15, 18, 19 and 20 are the
final attitude of the previous sequence.

After completion of the rotation test series, 16 or 21 sets of ΔaH
L

, aZL data should have been

taken and stored (depending on whether the Table 18.4.1-1 or Table 18.4.1-2 rotation sequences
are used).

18.4.3  MEASUREMENTS IN TERMS OF SENSOR ERRORS

The analytical relationship between the sensor calibration errors and the ΔaH
L

, aZL

measurements are described by Equations (18.4.7-13) with Equations (18.4.7.1-4),

(18.4.7.1-2) and (18.4.7.1-5) for δaSF
B

 , Equations (18.4.7.2-23) and (18.4.7.2-11) for ΔφH
L

, and

the CB
L

 terms calculated as described in the final paragraph of Section 18.4.7.2.

For the particular rotation sequences of Tables 18.4.1-1 and 18.4.1-2, generalized

measurement Equations (18.4.7-13) have been evaluated for ΔaH
L

, aZL in scalar form in terms

of particular sensor calibration error components defined by Equations (18.4.7.1-2) and
(18.4.7.2-11).  The results are summarized in Figure 18.4.3-1 for the 16 rotation set, and in
Figure 18.4.3-2 for the 21 rotation set, where the following definitions apply:

Δai, Δbi  = L Frame X, Y axis components of ΔaH
L

 defined as the difference between

aL horizontal measurements (i.e., aH
L

) taken at the start and end of rotation

sequence i.

ci
1
, ci

2

  = L Frame Z axis (vertical) acceleration measurement (i.e., aZL) taken
immediately before (superscript 1) and after (superscript 2) rotation sequence
i.
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αi  =  i axis accelerometer bias calibration error.

λii  =  i axis accelerometer symmetrical scale factor calibration error.

λiii  =  i axis accelerometer scale factor asymmetry calibration error.

λij  = i axis accelerometer misalignment calibration error, coupling B Frame j axis
specific force into the i axis.

κii  =  i axis angular rate sensor scale factor calibration error.

κij  = i axis angular rate sensor misalignment calibration error, coupling B Frame j axis
angular rate into the i axis.

Note that ring laser gyro angular rate sensors have no scale factor asymmetry error, hence,

the κiii terms (not shown in Figures 18.4.3-1 and 18.4.3-2) are zero.  If the angular rate sensors

being evaluated have scale factor asymmetry, three additional rotation sequences would be
included in Tables 18.4.1-1 and 18.4.1-2 that parallel rotation sequences 1 - 3, except that the
360 degree rotation portion would be executed in the opposite direction.  These additional three

sequences produce opposite ΔaH
L

 signatures from sequences 1 - 3 for symmetrical scale factor

error effects, but the same signatures for asymmetrical scale factor errors.  Summing and
differencing the results allow the symmetrical and asymmetrical scale factor calibration errors to
be individually assessed.

As an aside, let us briefly return to Equation (13.2.4-28) of Section 13.2.4 which shows
transformed acceleration as a function of inertial sensor misalignment (and other effects).

Except for the δLOrth aSF
B

  term, all of the misalignment error terms contributing to transformed

acceleration in (13.2.4-28) are perpendicular to the aSF  specific force vector.  Furthermore, for
the Table 18.4.1-1 or 18.4.1-2 test orientations, aSF  will be along one of the sensor assembly

axes (B Frame) during test measurements.  Since the δLOrth  matrix is defined in Section 13.2.4

with zero along the diagonal, this assures that δLOrth aSF
B

 will also be perpendicular to aSF .  We

recognize that for the Strapdown Rotation test static acceleration measurements, the aSF  specific
force vector is vertical (i.e., 1 g upward to balance against downward gravity).  We conclude
that for the Table 18.4.1-1 or 18.4.1-2 test sequences, the effect of sensor misalignment on the

test measurements will be horizontal.  Thus, we expect no misalignment terms in the ci
1
, ci

2

expressions of Figures 18.4.3-1 and 18.4.3-2.  If misalignment terms did appear in the ci
1
, ci

2

equations, it would signify an error in their analytical derivation.
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Δa1  =  - 2 π g κyy
 

Δb1  =  0
 

c1
1

  =  c1
2

  =  - g λzz - λzzz  + αz 

Δa5  =  π g κyy - κxx

Δb5  =  2 g κzx + κxz + κzy + κy z

c5
1

  =  c5
2

  =  - g λzz - λz z z  + αz

Δa2  =  - 2 π g κxx
 

Δb2  =  0
 

c2
1

  =  c2
2

  =  - g λzz - λzzz  + αz 

Δa6  =  π
2

  g κxx - κyy

Δb6  =  g κzy + κyz + κyx + κxy - κzx - κx z + π
2

 κz z

c6
1

  =  c6
2

  =  - g λzz - λz z z  + αz

Δa3  =  0
 

Δb3  =  2 π g κzz
 

c3
1

  =  c3
2

  =  - g λzz - λzzz  + αz 

Δa7  =  g λzx + λx z - π
2

 κyy  - αx + αz 

Δb7  =  g κxy + κzy + λyx + λyz

c7
1

  =  - g λzz - λzzz  + αz

c7
2

  =  - g λxx + λxxx  - αx

Δa4  =  - π g κxx + κyy
 

Δb4  =  2 g κzy + κyz - κzx - κx z
 

c4
1

  = c4
2

  =  - g λzz - λz z z  + αz

Δa8  =  g λzx + λx z + π
2

 κyy  - αx - αz 

Δb8  =  g κzy - κxy - λyx + λyz

c8
1

  =  - g λzz - λzzz  + αz

c8
2

  =  - g λxx - λxxx  + αx

Figure 18.4.3-1

Acceleration Measurement In Terms
Of Sensor Errors For The 16 Sequence Rotation Test
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Δa9  =  - g κxz + κyz + λzy - λx z + π
2

 κyy

                        - αx + αz
 

Δb9  =  g κxy + κzy + λyz - λxy + π
2

 κz z

                        + αx - αy
 

c9
1

  =  - g λzz - λzzz  + αz
 

c9
2

  =  - g λyy - λyyy  + αy

Δa13  =  g κxz + κyz + λzx - λy z - π
2

 κxx

                       + αy + αz
 

Δb13  =  g κzx - κyx + λyx + λxz - π
2

 κz z

                       - αx + αy
 

c13
1

  =  - g λzz - λzzz  + αz
 

c13
2

  =  - g λxx + λxxx  - αx

Δa10  =  g κyz - κxz + λxz + λz y - π
2

 κyy  - αx + αz

 

Δb10  =  g κxy + κzy + λyz - λxy - π
2

 κz z   - αx - αy

 

c10
1

  =  - g λzz - λz z z  + αz
 

c10
2

  =  - g λyy + λyyy  - αy

Δa14  =  - 2 g κxz - λxz  - 2 αx

Δb14  =  - 2 g κyz - λyz  - 2 αy

c14
1

  =  c1 4
2

  =  - g λzz - λzzz  + αz 

Δa11  =  g κyz - κxz + λzy + λx z + π
2

 κyy  - αx - αz

 

Δb11  =   g κzy - κxy + λyz + λxy + π
2

 κz z   - αx - αy

 

c11
1

  =  - g λzz - λz z z  + αz
 

c11
2

  =  - g λyy - λyyy  + αy

Δa15  =  - π g κyy - 2 αx

Δb15  =  2 g κzy + λy z

c15
1

  =  - g λzz - λzzz  + αz 

c15
2

  =  - g λzz + λzzz  - αz 

Δa12  =  g κyz - κxz - λzx - λy z - π
2

 κxx   + αy + αz

 

Δb12  =  g κzx - κyx + λyx + λx z + π
2

 κz z  - αx - αy

 

c12
1

  =  - g λzz - λz z z  + αz
 

c12
2

  =  - g λxx - λxxx  + αx

Δa16  =  - π g κxx + 2 αy

Δb16  =  2 g κzx + λx z

c16
1

  =  - g λzz - λzzz  + αz 

c16
2

  =  - g λzz + λzzz  - αz 

Figure 18.4.3-1 (Continued)

Acceleration Measurement In Terms
Of Sensor Errors For The 16 Sequence Rotation Test
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Δa1  =  - 2 π g κyy
 

Δb1  =  0
 

c1
1

  =  c1
2

  =  - g λzz - λzzz  + αz 

Δa6  =  π
2

  g κxx - κyy

 

Δb6  =  g κzy + κyz + κyx + κxy - κzx - κx z + π
2

 κz z

 

c6
1

  =  c6
2

  =  - g λzz - λz z z  + αz

Δa2  =  - 2 π g κxx
 

Δb2  =  0
 

c2
1

  =  c2
2

  =  - g λzz - λzzz  + αz 

Δa7  =  - π g κyy - 2 αx
 

Δb7  =  2 g κzy + λy z
 

c7
1

  =  - g λzz - λzzz  + αz 
 

c7
2

  =  - g λzz + λzzz  - αz 

Δa3  =  0
 

Δb3  = 2 π g κzz
 

c3
1

  =  c3
2

  =  - g λzz - λzzz  + αz 

Δa8  =  - π g κyy + 2 αx
 

Δb8  =  - 2 g κzy + λyz   
 

c8
1

  =  - g λzz + λzzz  - αz 
 

c8
2

  =  - g λzz - λzzz  + αz 

Δa4  =  - π g κxx + κyy
 

Δb4  =  2 g κzy + κyz - κzx - κx z
 

c4
1

  = c4
2

  =  - g λzz - λz z z  + αz

Δa9  =  - g λzy + λy z + π
2

 κxx  + αy + αz 

 

Δb9  =  g κzx - κyx + λxz - λxy    
 

c9
1

  =  - g λzz - λzzz  + αz
 

c9
2

  =  - g λyy - λyyy  + αy

Δa5  =  π g κyy - κxx
 

Δb5  =  2 g κzx + κxz + κzy + κy z
 

c5
1

  =  c5
2

  =  - g λzz - λz z z  + αz

Δa10  =  g λzy + λy z - π
2

 κxx  + αy - αz 

 

Δb10  =  g κzx + κyx + λxz + λx y    
 

c10
1

  =  - g λyy - λyyy  + αy
 

c10
2

  =  - g λzz + λzzz  - αz

Figure 18.4.3-2

Acceleration Measurement In Terms
Of Sensor Errors For The 21 Sequence Rotation Test
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Δa11  =  - 2 g κxz + λz x  
 

Δb11  =  - π g κzz - 2 αy   
 

c11
1

  =  - g λxx - λxxx  + αx
 

c11
2

  =  - g λxx + λxxx  - αx

Δa16  =  2 g κyz + λz y

Δb16  =  π g κzz - 2 αx

c16
1

  =  - g λyy - λyyy  + αy

c16
2

  =  - g λyy + λyyy  - αy

Δa21  =  - π g κxx + 2 αy
 

Δb21  =  2 g κzx + λx z
 

c21
1

  =  - g λzz - λzzz  + αz 
 

c21
2

  =  - g λzz + λzzz  - αz 

Δa12  =  - π g κxx + 2 αy 
 

Δb12  =  2 g κzx + λxz   
 

c12
1

  =  - g λzz - λzzz  + αz 
 

c12
2

  =  - g λzz + λzzz  - αz 

Δa17  =  - π g κxx + 2 αz
 

Δb17  =  - 2 g κyx + λxy
 

c17
1

  =   - g λyy + λyyy  - αy
 

c17
2

  =  - g λyy - λyyy  + αy

Δa13  =  - π g κxx - 2 αy
 

Δb13  =  - 2 g κzx + λxz  
 

c13
1

  =   - g λzz + λzzz  - αz 
 

c13
2

  =  - g λzz - λzzz  + αz 

Δa18  =  - π g κxx - 2 αz
 

Δb18  =  2 g κyx + λxy
 

c18
1

  =   - g λyy - λyyy  + αy
 

c18
2

  =  - g λyy + λyyy  - αy

Δa14  =  g λzx + λx z - π
2

 κyy  - αx + αz 

 

Δb14  =  g κxy + κzy + λyx + λyz
 

c14
1

  =  - g λzz - λzzz  + αz
 

c14
2

  =  - g λxx + λxxx  - αx

Δa19  =  g κyz - κxz - λzx + λz y
 

Δb19  =  - g λyx + λxy + π
2

 κz z  - αx - αy

 

c19
1

  =   - g λyy + λyyy  - αy
 

c19
2

  =  - g λxx + λxxx  - αx

Δa15  =  - g λzx + λx z + π
2

 κyy  - αx - αz 

 

Δb15  =  g κzy - κxy + λyz - λyx
 

c15
1

  =   - g λxx + λxxx  - αx
 

c15
2

  =  - g λzz + λzzz  - αz

Δa20  =  g κyz + κxz + λzx + λz y
 

Δb20  =  g λyx + λxy - π
2

 κz z  - αx + αy

 

c20
1

  =   - g λxx + λxxx  - αx
 

c20
2

  =  - g λyy - λyyy  + αy

Figure 18.4.3-2 (Continued)

Acceleration Measurement In Terms
Of Sensor Errors For The 21 Sequence Rotation Test
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It is important to note (as explained analytically in Section 13.2.4) that due to the nature of the
measurement process, only relative sensor misalignment calibration errors affect the L Frame
acceleration measurements during the Strapdown Rotation test (i.e., sensor input axis
misalignments relative to one-another).  This can be seen directly from Equation (13.2.4-28)
which shows that the error in transformed specific force produced by inertial sensor

misalignment has a constant component (dependent on CB
L matrix initialization error and angular

rate sensor triad misalignment relative to sensor assembly reference axes), and additional terms
dependent on relative misalignment between the accelerometers or between the angular rate
sensors (i.e., orthogonality errors).  Due to their differential nature, the Strapdown Rotation test

ΔaSFH

L
 measurements cancel the constant component, and thereby, only measure the effect of

relative misalignment between the angular rate sensor and accelerometer triads, and the relative
misalignment between the sensors in each triad.  The net result is that three scalar misalignment
reference constraints (one for each sensor assembly axis) can be arbitrarily introduced into the
sensor misalignment calibration error definitions, that in effect, define a particular (not relative)

inertial sensor reference frame for the ΔaSFH

L
  measurements.  For the specific Strapdown

Rotation test routines described in this section, we will apply these constraints as the
requirement that sensor misalignment calibration errors be evaluated relative to “mean angular
rate sensor axes” defined in Figure 18.4.3-3.

γk

γk

κji

κij
.

kB

iB

iMARS

i Rate Sensor

j Rate Sensor
jBjMARS

kMARS

Figure 18.4.3-3  Mean Angular Rate Sensor Axes

where the following definitions apply:
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iMARS, jMARS, kMARS  = Mutually orthogonal i, j, k Mean Angular Rate Sensor
(MARS) coordinate axes.

iB, jB, kB  =  Mutually orthogonal i, j, k sensor assembly B Frame coordinate axes.

i Rate Sensor, j Rate Sensor  =  Input axes for the i and j axis angular rate sensors
(including compensation correction applied during the rotation test).  The
Strapdown Rotation test measures the effect of sensor compensation error.

γk  = Angle measured around the kB axis, of the i, j MARS axes relative to the B
Frame i, j axes.

κij, κji  = Misalignment calibration errors (angular errors to first order) for the i, j
angular rate sensors, coupling B Frame j, i axis angular rate into the i, j
angular rate sensor input axes.

The mean angular rate sensor axes are defined as the orthogonal triad that best fits
symmetrically within the actual compensated angular rate sensor input axes.  The “best fit”
condition is specified as the condition for which the angle between the angular rate sensor i
input axis and mean angular rate sensor axis i equals the angle between the j angular rate sensor
input and mean sensor axes.  From Figure 18.4.3-3 we see that this condition corresponds to:

κji + γk  =  κij - γk (18.4.3-1)

or upon rearrangement for each i, j group:

γx  =  
1
2

 κyz - κzy γy  =  
1
2

 κzx - κxz γz  =  
1
2

 κxy - κyx (18.4.3-2)

Recognizing the B Frame i, j sensor axes in Figure 18.4.3-3 to be approximately
perpendicular, allows us to also write for the orthogonality error between the compensated
angular rate sensor input axes:

υxy  =  κxy + κyx υyz  =  κyz + κzy υzx  =  κzx + κxz (18.4.3-3)

where

υij  = Orthogonality compensation error between the i and j angular rate sensor input

axes, defined as π/2 radians minus the angle between the compensated i and j
sensor input axes.

Accelerometer misalignment calibration errors relative to mean angular rate sensor axes can
now be defined as the difference between misalignment relative to B Frame reference axes (the

λij coefficients), and misalignment of the mean angular rate sensor axes relative to the B Frame

(the γk misalignments).  Using Figure 18.4.3-3 as a guide (with λ replacing κ) we see that:
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μxy  =  λxy - γz μyx  =  λyx + γz

μyz  =  λyz - γx μzy  =  λzy + γx (18.4.3-4)

μzx  =  λzx - γy μxz  =  λxz + γy

where

μij  = i axis accelerometer misalignment calibration error, coupling specific force from
the j axis of the mean angular rate sensor axes into the i axis accelerometer input
axis.

Equations (18.4.3-2) through (18.4.3-4) combined provide the equivalent inverse
relationships:

κxy  =  
1
2

 υxy + γz κyx  =  
1
2

 υxy - γz

κyz  =  
1
2

 υyz + γx κzy  =  
1
2

 υyz - γx

κzx  =  
1
2

 υzx + γy κxz  =  
1
2

 υzx - γy

(18.4.3-5)

λxy  =  μxy + γz λyx  =  μyx - γz

λyz  =  μyz + γx λzy  =  μzy - γx

λzx  =  μzx + γy λxz  =  μxz - γy

Equations (18.4.3-5) can be substituted into the 16 and 21 rotation set equations of Figures
18.4.3-1 and 18.4.3-2 to determine the equivalent expressions relating measurement
accelerations to sensor calibration errors, with accelerometer misalignments defined relative to
mean angular rate sensor axes, and angular rate sensor misalignments defined relative to each
other as orthogonality errors.  The final results are summarized in Figures 18.4.3-4 and

18.4.3-5.  Note, that the γk components do not appear in Figures 18.4.3-4 and 18.4.3-5 because

they cancel in the (18.4.3-5) substitution process.  This is yet another statement that

misalignments of the sensor assembly as a whole do not impact the ΔaH
L

, aZL measurements.

If γk components did appear in the Figure 18.4.3-4 and 18.4.3-5 expressions, it would signify

an error in their analytical derivation.
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Δa1  =  - 2 π g κyy
 

Δb1  =  0
 

c1
1

  =  c1
2

  =  - g λzz - λzzz  + αz 

Δa5  =  π g κyy - κxx

Δb5  =  2 g υzx + υyz

c5
1

  =   c5
2
  =  - g λzz - λzzz  + αz 

Δa2  =  - 2 π g κxx
 

Δb2  =  0
 

c2
1

  =  c2
2

  =  - g λzz - λzzz  + αz 

Δa6  =  π
2

  g κxx - κyy

Δb6  =  g υyz + υxy - υz x + π
2

 κz z

c6
1

  =  c6
2

  =  - g λzz - λz z z  + αz

Δa3  =  0
 

Δb3  =  2 π g κzz
 

c3
1

  =  c3
2

  =  - g λzz - λzzz  + αz 

Δa7  =  g μzx + μxz - π
2

 κyy  - αx + αz 

Δb7  =  g 1

2
 υxy + 1

2
 υyz + μyx + μyz

c7
1

  =  - g λzz - λzzz  + αz

c7
2

  =  - g λxx + λxxx  - αx

Δa4  =  - π g κxx + κyy
 

Δb4  =  2 g υyz - υzx  
 

c4
1

  =  c4
2

  =  - g λzz - λzzz  + αz 

Δa8  =  g μzx + μxz + π
2

 κyy  - αx - αz 

Δb8  =  g 1

2
  υy z - 1

2
  υxy - μyx + μyz  

c8
1

  =  - g λzz - λzzz  + αz

c8
2

  =  - g λxx - λxxx  + αx

Figure 18.4.3-4

Acceleration Measurements In Terms Of Revised Sensor

Error Parameters For The 16 Sequence Rotation Test
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Δa9  =  - g 1

2
 υz x + 1

2
 υyz + μzy - μx z + π

2
 κyy

                         - αx + αz
 

Δb9  =  g 1

2
 υxy + 1

2
 υyz + μyz - μxy + π

2
 κz z

                         + αx - αy
 

c9
1

  =  - g λzz - λz z z  + αz
 

c9
2

  =  - g λyy - λyyy  + αy

Δa12  =  g 1

2
 υy z - 1

2
 υzx - μzx - μy z - π

2
 κxx

                           + αy + αz

Δb12  =  g 1

2
 υz x - 1

2
 υxy + μyx + μx z + π

2
 κz z

                           - αx - αy

c12
1

  =  - g λzz - λz z z  + αz

c12
2

  =  - g λxx - λxxx  + αx

Δa10  =  g 1

2
 υy z - 1

2
 υzx + μxz + μz y - π

2
 κyy

                            - αx + αz
 

Δb10  =  g 1

2
 υxy + 1

2
 υyz + μyz - μxy - π

2
 κz z

                            - αx - αy
 

c10
1

  =  - g λzz - λz z z  + αz
 

c10
2

  =  - g λyy + λyyy  - αy

Δa13  =  g 1

2
 υz x + 1

2
 υyz + μzx - μy z - π

2
 κxx

                            + αy + αz

Δb13  =  g 1

2
 υz x - 1

2
 υxy + μyx + μx z - π

2
 κz z

                           - αx + αy

c13
1

  =  - g λzz - λz z z  + αz

c13
2

  =  - g λxx + λxxx  - αx

Δa11  =  g 1

2
 υy z - 1

2
 υzx + μzy + μx z + π

2
 κyy

                             - αx - αz
 

Δb11  =  g 1

2
 υy z - 1

2
 υxy + μyz + μxy + π

2
 κz z

                              - αx - αy
 

c11
1

  =  - g λzz - λz z z  + αz
 

c11
2

  =  - g λyy - λyyy  + αy

Δa14  =  - g υzx - 2 μxz  - 2 αx

Δb14  =  - g υyz - 2 μyz  - 2 αy

c14
1

  =  c1 4
2

  =  - g λzz - λzzz  + αz 

Figure 18.4.3-4 (Continued)

Acceleration Measurements In Terms Of Revised Sensor
Error Parameters For The 16 Sequence Rotation Test
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Δa15  =  - π g κyy - 2 αx
 

Δb15  =  g υyz + 2 μyz
 

c15
1

  =  - g λzz - λzzz  + αz 
 

c15
2

  =  - g λzz + λzzz  - αz 

Δa16  =  - π g κxx + 2 αy

Δb16  =  g υzx + 2 μxz

c16
1

  =  - g λzz - λzzz  + αz 

c16
2

  =  - g λzz + λzzz  - αz 

Figure 18.4.3-4 (Continued)

Acceleration Measurements In Terms Of Revised Sensor
Error Parameters For The 16 Sequence Rotation Test
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Δa1  =  - 2 π g κyy
 

Δb1  =  0
 

c1
1

  =  c1
2

  =  - g λzz - λzzz  + αz 

Δa6  =  π
2

  g κxx - κyy

Δb6  =  g υyz + υxy - υz x + π
2

 κz z

c6
1

  =  c6
2

  =  - g λzz - λz z z  + αz

Δa2  =  - 2 π g κxx
 

Δb2  =  0
 

c2
1

  =  c2
2

  =  - g λzz - λzzz  + αz 

Δa7  =  - π g κyy - 2 αx

Δb7  =  g υyz + 2 μyz

c7
1

  =  - g λzz - λzzz  + αz 

c7
2

  =  - g λzz + λzzz  - αz 

Δa3  =  0
 

Δb3  =  2 π g κzz
 

c3
1

  =  c3
2

  =  - g λzz - λzzz  + αz 

Δa8  =  - π g κyy + 2 αx

Δb8  =  - g υyz + 2 μyz 

c8
1

  =  - g λzz + λzzz  - αz 

c8
2

  =  - g λzz - λzzz  + αz 

Δa4  =  - π g κxx + κyy
 

Δb4  =  2 g υyz  - υzx  
 

c4
1

  =  c4
2

  =  - g λzz - λzzz  + αz 

Δa9  =  -  g μzy + μyz + π
2

 κxx  + αy + αz 

Δb9  =  g 1

2
 υz x - 1

2
 υxy + μxz - μxy

c9
1

  =  - g λzz - λzzz  + αz

c9
2

  =  - g λyy - λyyy  + αy

Δa5  =  π g κyy - κxx
 

Δb5  =  2 g υzx + υyz
 

c5
1

  =   c5
2
  =  - g λzz - λzzz  + αz 

Δa10  =  g μzy + μyz - π
2

 κxx  + αy - αz 

Δb10  =  g 1

2
 υz x + 1

2
 υxy + μxz + μxy

c10
1

  =  - g λyy - λyyy  + αy

c10
2

  =  - g λzz + λzzz  - αz

Figure 18.4.3-5

Acceleration Measurements In Terms Of Revised Sensor
Error Parameters For The 21 Sequence Rotation Test
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Δa11  =  - g υzx + 2 μz x
 

Δb11  =  - π g κzz - 2 αy
 

c11
1

  =  - g λxx - λxxx  + αx
 

c11
2

  =  - g λxx + λxxx  - αx

 

Δa16  =  g υyz + 2 μz y  

Δb16  =  π g κzz - 2 αx

c16
1

  =  - g λyy - λyyy  + αy

c16
2

  =  - g λyy + λyyy  - αy

Δa21  =  - π g κxx + 2 αy
 

Δb21  =  g υzx + 2 μxz
 

c21
1

  =  - g λzz - λzzz  + αz 
 

c21
2

  =  - g λzz + λzzz  - αz 

Δa12  =  - π g κxx + 2 αy
 

Δb12  =  g υzx + 2 μxz
 

c12
1

  =  - g λzz - λzzz  + αz 
 

c12
2

  =  - g λzz + λzzz  - αz 

Δa17  =  - π g κxx + 2 αz

Δb17  =  - g υxy + 2 μxy  

c17
1

  =  - g λyy + λyyy  - αy

c17
2

  =  - g λyy - λyyy  + αy

Δa13  =  - π g κxx - 2 αy
 

Δb13  =  - g υzx + 2 μxz 
 

c13
1

  =  - g λzz + λzzz  - αz 
 

c13
2

  =  - g λzz - λzzz  + αz 

Δa18  =  - π g κxx - 2 αz

Δb18  =  g υxy + 2 μxy

c18
1

  =  - g λyy - λyyy  + αy

c18
2

  = - g λyy + λyyy  - αy

Δa14  =  g μzx + μxz - π
2

 κyy  - αx + αz 

 

Δb14  =  g 1

2
 υxy + 1

2
 υyz + μyx + μyz

 

c14
1

  =  - g λzz - λzzz  + αz
 

c14
2

  =  - g λxx + λxxx  - αx

Δa19  =  g 1

2
 υy z - 1

2
 υzx - μzx + μz y

Δb19  =  - g μyx + μxy + π
2

 κz z  - αx - αy

c19
1

  =  - g λyy + λyyy  - αy

c19
2

  =  - g λxx + λxxx  - αx

Δa15  =  - g μzx + μxz + π
2

 Kyy  - αx - αz 

 

Δb15  =  g 1

2
 υy z - 1

2
 υxy + μyz - μyx

 

c15
1

  =  - g λxx + λxxx  - αx
 

c15
2

  =  - g λzz + λzzz  - αz

Δa20  =  g 1

2
 υy z + 1

2
 υzx + μzx + μz y

Δb20  =  g μyx + μxy - π
2

 κz z  - αx + αy

c20
1

  =  - g λxx + λxxx  - αx

c20
2

  =  - g λyy - λyyy  + αy

Figure 18.4.3-5 (Continued)

Acceleration Measurements In Terms Of Revised Sensor
Error Parameters For The 21 Sequence Rotation Test
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18.4.4  SENSOR CALIBRATION ERRORS COMPUTED FROM MEASUREMENTS

Using Figure 18.4.3-4 for the 16 rotation sequence set, or Figure 18.4.3-5 for the 21 rotation
sequence set, analytical relationships are readily derived relating the sensor calibration errors to

ΔaH
L

, aZL measurements taken during the tests.  In general, the equations in Figures 18.4.3-4

and 18.4.3-5 constitute an over-determined set for computing the sensor calibration errors (i.e.,
there are more equations than unknowns).  The method of Least Squares can be utilized to
calculate the sensor error set that best fits the measurements in a least squares error sense (e.g.,
as in Reference 37 - Chapter 9, Section 11).  Alternatively, a particular deterministic set of
measurement equations can be selected from the Figure 18.4.3-4 and 18.4.3-5 sets as
representing more likely orientations of the sensors in their intended usage.  The sensor errors
can then be directly calculated from these diminished sets by analytical inversion.  Figures
18.4.4-1 and 18.4.4-2 are sensor calibration error solutions to the 16 and 21 rotation sequence
equations in Figures 18.4.3-4 and 18.4.3-5 using the latter deterministic solution approach.  The
Least Squares approach can also be used as a check on the previous results.

If the Least Squares approach is to be incorporated, it is recommended that the measurement

data be divided into two separate groups; one for the ΔaH
L

 measurements and one for the aZL

measurements.  A Least Squares solution can then be performed separately for each group,
with the aZL results used for accelerometer symmetrical/asymmetrical scale factor calibration

error determination, and the ΔaH
L

 results used for determination of the remaining error terms.

The rationale behind this approach is that the aZL measurement might not be accurate enough

for accelerometer bias calibration error determination (when the accelerometers are in the
vertical orientation being exposed to 1 g specific force) due to pseudo-bias effects created by
scale factor deviations from the analytical model, and micro-heating variations.
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ANGULAR RATE SENSOR CALIBRATION ERRORS

Scale Factor Errors Orthogonality Errors

κxx = - 
1

2 π g
  Δa2

κyy = - 
1

2 π g
  Δa1

κz z =
1

2 π g
  Δb3

υxy =
1

g
 Δb6 - 

1

2
 Δb4 - 

1

4
 Δb3

υyz =
1

4 g
 Δb5 + Δb4

υzx =
1

4 g
 Δb5 - Δb4

ACCELEROMETER CALIBRATION ERRORS

Bias Errors Scale Factor Errors

αx =
1

4
 Δa1 - 

1

2
 Δa15

αy =
1

2
 Δa16 - 

1

4
 Δa2

αz =
1

2
 Δa7 - Δa8  - 

1

4
 Δa1

λxx = - 
1

2 g
 c12

2  + c13
2

λyy = - 
1

2 g
 c9

2 + c10
2

λz z = - 
1

2 g
 c14

2  + c15
2

Misalignment Errors Relative To
Scale Factor Asymmetry Mean Angular Rate Sensor Axes

λxxx =
1

2 g
 c12

2  - c13
2  + Δa15 - 

1

2
 Δa1

λyyy =
1

2 g
 c9

2 - c10
2  - Δa16 + 

1

2
 Δa2

λz z z =
1

2 g
 c14

2  - c15
2  - Δa7 + Δa8 + 

1

2
 Δa1

μxy =
1

2 g
 Δb11 - Δb10 + Δb6 - 

3

4
 Δb3 - 

1

2
 Δb4

μyx =
1

2 g
 Δb7 - Δb8 - Δb6 + 

1

2
 Δb4 + 

1

4
 Δb3

μyz =
1

2 g
 Δb14 + Δa16 - 

1

2
 Δa2 + 

1

4
 Δb4 + 

1

4
 Δb5

μzy =
1

2 g
 Δa10 - Δa9 - 

1

4
 Δb4 - 

1

4
 Δb5

μzx =
1

2 g
 Δa13 - Δa12 - 

1

4
 Δb5 + 

1

4
 Δb4

μxz =
1

2 g
 Δa14 - Δa15 + 

1

2
 Δa1 + 

1

4
 Δb5 - 

1

4
 Δb4

Figure 18.4.4-1

Sensor Errors In Terms Of Measurements
For The 16 Rotation Sequence Test
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ANGULAR RATE SENSOR CALIBRATION ERRORS

Scale Factor Errors Orthogonality Errors

κxx = - 
1

2 π g
  Δa2

κyy = - 
1

2 π g
  Δa1

κz z =
1

2 π g
  Δb3

υxy =
1

g
 Δb6 - 

1

2
 Δb4 - 

1

4
 Δb3

υyz =
1

4 g
 Δb5 + Δb4

υzx =
1

4 g
 Δb5 - Δb4

ACCELEROMETER CALIBRATION ERRORS

Bias Errors Scale Factor Errors

αx =
1

4
 Δa8 - Δa7

αy =
1

4
 Δa12 - Δa13

αz =
1

4
 Δa17 - Δa18

λxx = - 
1

2 g
 c11

2  + c11
1

λyy = - 
1

2 g
 c16

2  + c16
1

λz z = - 
1

2 g
 c21

2  + c21
1

Misalignment Errors Relative To
Scale Factor Asymmetry Mean Angular Rate Sensor Axes

λxxx = - 
1

2 g
 c11

2  - c11
1  - 

1

2
Δa7 + 

1

2
 Δa8

λyyy = - 
1

2g
 c16

2  - c16
1  - 

1

2
Δa13 + 

1

2
 Δa12

λz z z = - 
1

2g
 c21

2  - c21
1  - 

1

2
Δa18 + 

1

2
 Δa17

μxy = 1

2 g
 Δb10 - Δb9 - Δb6 + 1

2
 Δb4 + 1

4
 Δb3

μyx = 1

2 g
 Δb14 - Δb15 - Δb6 + 1

2
 Δb4 + 1

4
 Δb3

μyz = 1

2 g
 Δb15 + Δb14 - 1

4
 Δb5 - 1

4
 Δb4

μzy = 1

2 g
 Δa20 + Δa19 - 1

4
 Δb5 - 1

4
 Δb4

μzx = 1

2 g
 - Δa19 + Δa20 - 1

4
 Δb5 + 1

4
 Δb4

μxz = 1

2 g
 Δb10 + Δb9 - 1

4
 Δb5 + 1

4
 Δb4

Figure 18.4.4-2

Sensor Errors In Terms Of Measurements
For The 21 Rotation Sequence Test
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18.4.5 SENSOR ASSEMBLY MISALIGNMENT
CALIBRATION ERROR DETERMINATION

As a supplemental part of the Strapdown Rotation test data processing routines,
misalignment calibration coefficients can also be calculated for the sensor assembly as a unit
relative to the rotation fixture test mount.  For this particular measurement to be meaningful, the
Strapdown Rotation test would have typically been performed with the sensor assembly
installed in its INS chassis, and the INS mounted to a standard INS mount attached to the
rotation test fixture.  Then the calculated misalignment coefficients would correspond to the J
coefficients in Equation (8.3-2).  In determining the J coefficients, the formal definition for the

B Frame must be specified relative to mean angular rate sensor (MARS) axes (i.e., the γ
rotation angle vector of Section 18.4.3 between the B and MARS Frames).

The procedure for sensor assembly alignment-to-mount determination (derived in Section
18.4.7.4) is to process attitude and acceleration data taken at two selected static sensor assembly
attitude orientations during the Strapdown Rotation test.  The two data collection attitude
orientations must be such that projections of the vertical on the sensor assembly mount for the
two orientations are perpendicular to one another.  For the 16 Sequence rotation test, the data is
taken at the start of rotation sequence 1 and at the end of rotation sequence 7 (see Table
18.4.1-1).  For the 21 Sequence rotation test, the data is taken at the start of rotation sequence 1
and at the end of rotation sequence 14 (See Table 18.4.1-2).  Other two-orientation
measurement attitudes are also possible (as explained in Section 18.4.7.4).  At completion of
the Strapdown Rotation test, the data taken at the two selected orientations are combined with
accelerometer error data computed from the test (i.e. from Figures 18.4.4-1 or 18.4.4-2) to
compute the sensor assembly misalignment coefficients.  Equations for the sensor assembly
alignment calculation for the 16 Sequence and 21 Sequence rotation tests are derived in Section
18.4.7.4 and given by Equations (18.4.7.4-8), (18.4.7.4-9), and (18.4.7.4-18) - (18.4.7.4-21)
summarized below.

CM
MARS

  =  FMARS FM -1

FMARS  ≡  - 
1

gTst
 aSF

MARS1
  - 

1
gTst

 aSF
MARS2

  
1

gTst
2

 aSF
MARS1

 × aSF
MARS2

(18.4.5-1)

FM  ≡  uZL
M1

  uZL
M2

  uZL
M1

 × uZL
M2

(Continued)
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aSF
MARS1

 =  I + λLinScal + μMis + λAsym ASFPulsSign

1   -1
 CB1

L T
 a1

L
 - gTst uZL

L
 - λBias

aSF
MARS2

 =  I + λLinScal + μMis + λAsym ASFPulsSign

2  -1
 CB2

L T
 a2

L
 - gTst uZL

L
 - λBias

uZL
M1

  =  
0
0
1

uZL
M2

  =  
-1
0
0 (18.4.5-1)

(Continued)
For B Frame = MARS Frame

CB
M

  =  CM
MARS T

γ  =  0

J  =  Rotation Angle Extraction From CB
M

 
With Equations (3.2.2.2-10) - (3.2.2.2-12)

and (3.2.2.2-15) - (3.2.2.2-17)

For B Frame = M Frame

CMARS
B

  =  CM
MARS T

J  =  0

γ  =  
Rotation Angle

Extraction From
 CMARS

B
 
With Equations (3.2.2.2-10) - (3.2.2.2-12)

and (3.2.2.2-15) - (3.2.2.2-17)

where

M  =  INS standard mount coordinate frame.

MARS  = Mean angular rate sensor axis coordinate frame.  Nominally the M, MARS
and sensor assembly B Frames are parallel.

uZL
M

  = Unit vector along the L Frame Z axis (downward along the plumb-bob vertical)

as projected on M Frame axes.

a
L

  = L Frame total acceleration measurement for the rotation test taken by averaging

transformed accelerometer data plus gravity, defined in Equation (18.4-1) as aL.

gTst  =  Plumb-bob gravity magnitude at the test site.

uZL
L

  = Unit vector along the L Frame Z axis (downward along the plumb-bob vertical)

as projected on L Frame axes.

ASFPulsSign  = Diagonal matrix whose elements are unity in magnitude with sign equal

to the sign of the components of aSFPuls

B
, the uncompensated

accelerometer triad output pulse rate vector.
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1, 2  = Designations for the two attitude orientations selected for data collection (Start of
Sequence 1 and end of Sequence 7 for the 16 Sequence rotation test; Start of
Sequence 1 and end of Sequence 14 for the 21 Sequence rotation test).

M1, MARS1, M2, MARS2  = M, MARS Frames at measurement orientations 1
and 2.

a1
L

, a2
L

, ASFPulsSign

1
, ASFPulsSign

2
  = Values for a

L
 and ASFPulsSign (definitions above)

at test orientations 1 and 2.

λLinScal, μMis, λAsym, λBias  = Accelerometer calibration error terms calculated from
the Strapdown Rotation test data as in Figures 18.4.4-1
or 18.4.4-2.

18.4.6 CALIBRATION COEFFICIENT UPDATING
FROM MEASURED CALIBRATION ERRORS

Once the calibration errors have been determined from the Strapdown Rotation test in the

form of κii, κiii, υij, αi, λii, λiii, μij, γ and J (e.g., using Figures 18.4.4-1 or 18.4.4-2, and

Equations (18.4.5-1)), they are used to update the calibration coefficients in the strapdown
sensor compensation and INS attitude output algorithms.  The individual inertial sensor
misalignment calibration algorithms are referenced to B Frame sensor assembly axes while the

rotation test misalignment calibration error terms (υij, μij) have been calculated relative to mean

angular rate sensor axes.  Before the sensor calibration coefficients can be updated, the
misalignment terms must be converted to their equivalent form referenced to B Frame axes.

Equations (18.4.3-5) can be used to calculate κij, λij from υij, μij, given a specified B Frame

orientation relative to mean angular rate sensor axes (the γk terms in Equations (18.4.3-5)).

Generally, two approaches can be used for B Frame specification; 1. B aligned with mean
angular rate sensor (MARS) axes and 2. B aligned with INS mount (M Frame) axes.

For the first B Frame specification approach (B = MARS), γ is zero by definition which

tends to minimize the magnitude of the κij, λij compensation error terms generated from

Equations (18.4.3-5).  The calculated κij, λij compensation error terms are used to update the

sensor misalignment coefficients.  If the same procedure was used for previous sensor

misalignment determinations, the misalignment coefficients being updated by κij, λij will also

be minimized.  The result is that the magnitudes of the individual sensor misalignment
calibration coefficients will be minimized, thereby reducing second order error effects that have
been neglected in the Strapdown Rotation test error determination equations (i.e., Figures
18.4.4-1, 18.4.4-2 and Equations (18.4.3-5)).  Use of this method for B Frame selection treats
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the B Frame orientation as unique to a particular sensor assembly (and its misalignments),
rather than having it represent a single entity across sensor assemblies.

For the second B Frame specification method (i.e., B = M), J is zero by definition, which
specifies a common fixed B Frame orientation relative to the INS mount.  If the mount is
standardized to be compatible with all INS’s, this fixes the B Frame attitude relative to the user

vehicle for any INS installed on the mount.  Then, from Equation (18.4.5-1), we see that γ

(from CMARS
B

) would be equated to the rotation angle of CMARS
M

.  The κij, λij misalignment

calibration errors generated with Equations (18.4.3-5) would then be larger in magnitude,

generating larger errors in the sensor misalignment coefficients when using κij, λij for

coefficient updating, thereby amplifying second order error effects in the sensor compensation

algorithms.  These added error effects may be significant, considering that CMARS
M

 rotation

angle vector components tend to be larger than υij, μij due to the less stable nature of the sensor

assembly attachment to the INS chassis/mount (compared with the generally stable sensor-to-
sensor alignments on a rigid mount within the sensor assembly).

Once κij, λij are calculated using the previous procedure, these terms together with the

κii, κiii, αi, λii, λiii calibration error terms determined from the Strapdown Rotation test are

used to update the sensor calibration coefficients.  The method for coefficient updating is based
on the form of the sensor compensation algorithms utilized in the strapdown inertial
computation software.  As an example, let us assume that the angular rate sensor compensation
algorithms are based on Equations (8.1.1.1-8) in which non-linear scale factor correction (i.e.,

κiii) is not required (as with ring laser gyros).  For the accelerometers, let us assume that

compensation Equations (8.1.1.3-19) for aSF
′

  and (8.1.1.2-8) for aSF  is being used in which

scale factor asymmetry (λiii) is included for error correction.  Then Table 8.4-1 applies, for

which the compensation coefficients are calculated from Equations (8.1.1.1.1-13),
(8.1.1.1.1-14), (8.1.1.1.1-16), (8.1.1.1-5), (8.1.1.1-6) and (8.1.1.1.1-12) for the angular rate
sensors, and (8.1.1.3-20), (8.1.1.3-23), (8.1.1.2.1-16), (8.1.1.2-6) and (8.1.1.2.1-17) for the

accelerometers.  The κii, κij, αi, λii, λiii, λij calibration error terms would be used to update the

System Level sensor calibration coefficients in these equations by first formatting them into the
following matrix/vector format:

κii, κij  →  ΔκSystScal/Mis 

αi  →  ΔλSystBias λii, λij  →  ΔλSystScalLin/Mis (18.4.6-1)

λiii  →  ΔλSystScalAsym 
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where

Δ  =  Change required in indicated quantity.

The κSystScal/Mis , λSystBias , λSystScalLin/Mis and λSystScalAsym coefficients would then be
updated by adding the (18.4.6-1) corrections to the values used for these parameters during the
Strapdown Rotation test.  The remaining sensor calibration coefficients (e.g., Sensor Level)
would not be changed.  In the case of the J sensor assembly triad misalignment coefficients, the
values determined from Equations (18.4.5-1) would be used to replace the old J values.

18.4.7  ANALYTICAL BASIS FOR THE STRAPDOWN ROTATION TEST

The analytical basis for the Strapdown Rotation test is derived from the continuous form of
Equation (18.4-1) for the rotation test measurement:

aL  =  aSF
L

 + gTst uZL
L

(18.4.7-1)

where

aL  =  L Frame total acceleration measurement.

aSF
L

  =  Specific force acceleration in the L Frame.

For a strapdown sensor assembly containing errors, the aL measured can be represented by:

a
 L

  =  aSF
 L

 + gTst uZL
L

(18.4.7-2)

where

    = Designation for the parameter containing sensor or test system errors.  Without

the    designation, the parameter is assumed to be error free (as in Equation
(18.4.7-1)).

We can also define:

aSF
 L

  =  aSF
L

 + δaSF
L

 (18.4.7-3)

where

δaSF
L

  =  Error in aSF
 L

.
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For the Strapdown Rotation test measurement of aL, the sensor assembly is stationary, hence

aL is zero, and Equation (18.4.7-3) reduces to:

 a
 L

  =  δaSF
L

 (18.4.7-4)

Equation (18.4.7-4) represents the fundamental principle underlying the Strapdown Rotation
test:  Non-zero acceleration measurements in the L Frame are produced by inertial sensor errors
or by system test errors.

Equation (18.4.7-4) can be expressed in terms of particular error sources from the
transformation equation:

aSF
L

  =  CB
L

 aSF
B

 (18.4.7-5)

The differential of (18.4.7-5) is δaSF
L

  in (18.4.7-4):

δaSF
L

  =  δCB
L

 aSF
B

 + CB
L

 δ aSF
B

 (18.4.7-6)

The δCB
L

 term in (18.4.7-6) is from generalized Equation (3.5.2-27):

δCB
L

  =  - φL×  CB
L

(18.4.7-7)

where

φL
  = Rotation angle error vector associated with CB

L
 considering the L Frame to be

misaligned.

From (18.4.7-5) we can also write:

aSF
B

  =  CB
L T

 aSF
L

 (18.4.7-8)

The aSF
L

  term in (18.4.7-8) is obtained from (18.4.7-1) with, as noted previously, aL equal to

zero for the Strapdown Rotation test:

aSF
L

  =  - gTst uZL
L

(18.4.7-9)

With (18.4.7-9), Equation (18.4.7-8) becomes:

aSF
B

  =  - gTst CB
L T

 uZL
L

(18.4.7-10)
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We then substitute (18.4.7-10) and (18.4.7-7) into (18.4.7-6), and the result into (18.4.7-4) to

obtain a more explicit expression for the a
 L

  Strapdown Rotation test measurement:

a
 L

  =  - gTst uZL
L

 × φL
 + CB

L
 δaSF

B
 (18.4.7-11)

The horizontal and vertical components of (18.4.7-11) are obtained by noting that uZL
L

 is

vertical, hence, uZL
L

 × φL
 has no vertical component, and that the vertical component of φL

 has

no contribution to uZL
L

 × φL
:

aZL  =  CB
L

 δaSF
B

 

 Z
 

aH
L

  =  - gTst uZL
L

 × φH
L

 + CB
L

 δaSF
B

 

 H

(18.4.7-12)

where

( )  

H
  , ( )  

Z
  = Designation for the horizontal (H) and Z axis (vertical) component of the

( ) L Frame parameters.

aH
 L

, aZL  =  Horizontal and vertical components of a
 L

 .

The specific measurements for each rotation sequence in the Strapdown Rotation test are the

values for aZL at the start and end of the rotation sequence, and the difference between aH
 L

measurements taken at the start and end of the rotation sequence.  From Equations (18.4.7-12)
we see that these are given:

  aZL
1

  =  CB1
L

 δ aSF
B1

 

 Z
   aZL

2
  =  CB2

L
 δ aSF

B2
 

 Z
 

ΔaH
L

  =  - gTst uZL
L

 × ΔφH
L

 + CB2
L

 δ aSF
B2

 

 H
 - CB1

L
 δ aSF

B1
 

 H
 (18.4.7-13)

ΔaH
L

  ≡  aH2
 L

 - aH1
 L

and

ΔφH
L

  ≡  φH2

L
 - φH1

L
(18.4.7-14)

where

aZL
1

, aZL
2

, aH1
 L

, aH2
 L

  = Values for aZL, aH
 L

 measured at the start (1) and end (2) of the
rotation sequence.
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B1, B2  = B Frame (sensor assembly) orientations at the start (1) and end (2) of the
rotation sequence.

ΔaH
L

  =  Difference between the aH1
L

 and aH2
L

 measurements.

φH1

L
, φH2

L
  =  φH

L
 error in CB

L
 at the start and end of the rotation sequence.

ΔφH
L

  =  Change in the CB
L

 matrix φH
L

 error over the rotation sequence.

The δ aSF
B

  terms in (18.4.7-13) are caused by accelerometer error.  The ΔφH
L

 term in

(18.4.7-13) is produced by the integrated effect of angular rate sensor error over the time period

for the rotation sequence (plus a small negligible error due to earth rate operating on φH
L

 over the

sequence period - To be discussed subsequently).  Once analytical forms are available for δ aSF
B

 

and ΔφH
L

 in terms of particular sensor error effects, the sensor errors can be determined by

inversion of (18.4.7-13).  This, then, is the essence of the Strapdown Rotation test.

Sections 18.4.7.1 and 18.4.7.2 define δ aSF
B

  and ΔφH
L

 in terms of strapdown sensor error

characteristics.  Section 18.4.7.2 defines the CB
L

 terms in Equations (18.4.7-13) for the

executable class of rotations selected for the Strapdown Rotation test.  Section 18.4.7.3

describes a computer algorithm for making the Equation (18.4.7-13) aZL
1

, aZL
2

, aH1
 L

, aH2
 L

Strapdown Rotation test acceleration measurements that minimizes quantization error effects.
Section 18.4.7.4 describes how data taken during the Strapdown Rotation test can be used to
calculate calibration errors in sensor assembly misalignment relative to the rotation test fixture
mount.

18.4.7.1 ACCELEROMETER ERROR MODEL FOR THE
STRAPDOWN ROTATION TEST

The analytical model used for accelerometer error determination in the Strapdown Rotation

test (the δ aSF
B

  terms in Equations (18.4.7-13)) is the following linearized version of Equations

(8.1.1.2.1-5) and (8.1.1.3-2) for λSystScal/Mis, and (8.1.1.3-15):

δ aSF
B

  =  λLinScal/Mis + λAsym ASFSign  aSF
B

 + λBias (18.4.7.1-1)

with



STRAPDOWN ROTATION TEST     18-111

λLinScal/Mis  ≡  

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

          λAsym  ≡  

λ111 0 0

0 λ222 0

0 0 λ333

                                               λBias  ≡  

α1

α2

α3

(18.4.7.1-2)

and

ASFSign  ≡  

Sign aSFXB 0 0

0 Sign aSFYB 0

0 0 Sign  aSFZB

(18.4.7.1-3)

where

Sign ( )  =  1 for ( ) ≥ 0 and - 1 for ( ) < 0.

λLinScal/Mis  =  Accelerometer triad linear scale factor/misalignment error matrix.

λAsym  =  Accelerometer triad scale factor asymmetry error matrix.

λBias  =  Accelerometer triad bias error vector.

aSF iB  =  B Frame component i of aSF
B

 .

Equation (18.4.7-10) shows that the sign of the aSF
B

 components equals the negative sign of

the uZL B Frame components.  Then, using (18.4.7-10) and (18.4.7.1-3), Equation (18.4.7.1-1)

becomes the following for the Strapdown Rotation test acceleration measurements:

δ aSF
B

  =  - gTst λLinScal/Mis - λAsym UZLBSign  uZL
B

 + λBias (18.4.7.1-4)

with

uZL
B

  =  CB
L T

 uZL
L

 

UZLBSign  ≡  

Sign uZLXB 0 0

0 Sign uZLYB 0

0 0 Sign uZLZB

(18.4.7.1-5)
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where

uZLiB  =  B Frame component i of uZL
B

.

Equation (18.4.7.1-4) with (18.4.7.1-2) and (18.4.7.1-5) is used to analytically define the δ aSF
B

 

terms in Equations (18.4.7-13) as a function of the λLinScal/Mis , λAsym and λBias 

accelerometer error parameters.

18.4.7.2 ATTITUDE ERROR AS FUNCTION OF ANGULAR RATE
SENSOR ERRORS FOR THE STRAPDOWN ROTATION TEST

The analytical model used for attitude error in the Strapdown Rotation test (the ΔφH
L

 term in

Equations (18.4.7-13)) as a function of angular rate sensor error parameters, is derived from the
following equivalent version of Equation (4.1-1):

CB
L

  =  CB 
L

 ωIB
B

×  - ωIE
L

×  CB 
L

(18.4.7.2-1)

in which ωIE
L

 is used in place of ωIL
L

 based on the L Frame being of the wander azimuth type

having zero angular rate relative to the earth fixed E Frame for the Strapdown Rotation test
laboratory conditions.

Assuming that the ωIE 
L

 earth rate term is known without error, the following L Frame

version of Equation (12.3.4-10) applies for CB
L

 error propagation:

φ
L

  =  - CB
L

 δωIB
B

 - ωIE 
L

 × φL
(18.4.7.2-2)

where

φL
  = Rotation angle error vector associated with CB

L
 considering the L Frame to be

misaligned.

The φL
 error can be defined during one of the rotation sequences in the Strapdown Rotation

test as:

φL
  =  φ1

L
 + ΔφL

(18.4.7.2-3)
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where

φ1
L

  =  Value for φL
 at the start of the rotation sequence.

ΔφL
  =  Change in φL

 since the start of the rotation sequence.

The derivative of (18.4.7.2-3) gives:

φ
L

  =  Δφ
L

(18.4.7.2-4)

Substituting (18.4.7.2-4) into (18.4.7.2-2) then obtains:

Δφ
L

  =  - CB
L

 δωIB
B

 - ωIE
L

 × φL
(18.4.7.2-5)

We now make the assumption for the Strapdown Rotation test that φL
 will be controlled to

remain relatively small (e.g., by periodically reinitializing CB
L

 if needed to cancel error build-up

caused by large angular rate sensor errors), and that each rotation sequence will be executed

fairly rapidly so that the integral of ωIE
L

 × φL
 over the rotation sequence will be small.  These

assumptions allow us to neglect the ωIE
L

 × φL
 term in (18.4.7.2-5) resulting in the following

simplified form:

Δφ
L

  ≈  - CB
L

 δωIB
B

(18.4.7.2-6)

The horizontal component of (18.4.7.2-6) is the derivative of ΔφH
L

 in Equations (18.4.7-13)

required for Strapdown Rotation test data analysis:

ΔφH
L

  =  - CB
L

 δωIB
B

 

 H
(18.4.7.2-7)

Equation (18.4.7.2-7) is a linear differential equation whose integral solution ΔφH
L

 satisfies

the principle of linear superposition.  Thus, ΔφH
L

 can be defined as the sum of angle errors

generated during each rotation in a particular rotation sequence:

ΔφH
L

  =  ΔφHi

L∑
i

(18.4.7.2-8)

where

ΔφHi

L
  = The portion of ΔφH

L
 created by angular rate sensor error in the ith rotation

during one of the rotation sequences in the Strapdown Rotation test.
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Equation (18.4.7.2-7) applies for any segment of the rotation sequence, hence:

ΔφHi

L
  =  - CB

L
 δωIBi

B
 

 H
(18.4.7.2-9)

where

δωIBi

B
  = Angular rate sensor error during the ith rotation in the particular rotation

sequence of the Strapdown Rotation test

The integral of Equation (18.4.7.2-9) for each ith rotation in a given rotation sequence, when

substituted in (18.4.7.2-8), provides ΔφH
L

 for Equations (18.4.7-13) as a function of angular rate

sensor error δωIB
B

.  Expressing δωIB
B

 in terms of characteristic angular rate sensor error

parameters will then provide an expression for ΔφH
L

 as a function of these parameters.

The analytical model used for angular rate sensor error determination in the Strapdown
Rotation test is the following linearized version of Equations (8.1.1.1.1-5) and (8.1.1.3-7) for

κSystScal/Mis , the equivalent to (8.1.1.3-15) for angular rate sensor asymmetry error, and in

which the bias error term has been neglected under the assumption that each rotation sequence

will be executed rapidly to prohibit bias error induced build-up in ΔφH
L

:

δωIB
B

  =  κLinScal + κMis + κAsym ΩIBSign  ωIB
B

(18.4.7.2-10)

with

κLinScal  ≡  

κ11 0 0

0 κ22 0

0 0 κ33

          κMis  ≡  

0 κ12 κ13

κ21 0 κ23

κ31 κ32 0
 

                             κAsym  ≡  

κ111 0 0

0 κ222 0

0 0 κ333

(18.4.7.2-11)

ΩIBSign  ≡  

Sign ωIBXB 0 0

0 Sign ωIBYB 0

0 0 Sign ωIBZB

(18.4.7.2-12)
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where

κLinScal  =  Angular rate sensor triad linear scale factor error matrix.

κMis  =  Angular rate sensor triad misalignment error matrix.

κAsym  =  Angular rate sensor triad scale factor asymmetry error matrix.

ωIBiB  =  B Frame component i of ωIB
B

.

At this point in the development we now restrict the angular rotations in each rotation
sequence of the Strapdown Rotation test to be composed of a sequence of rotations about
individual B Frame (sensor assembly) axes (i.e., a sequence of Euler rotations).  Under this
restriction, the angular rate vector for the jth rotation in a given rotation sequence will be:

ωIBi

B
  =  βi uij

B
(18.4.7.2-13)

where

ωIBi

B
  =  Angular rate vector for the ith rotation in the rotation sequence.

uij
B

  = Unit vector along ωIBi

B
 which is now specialized to lie along a particular B Frame

axis ( j = 1, 2 or 3, for ωIBi

B
 along B Frame axis X, Y or Z) for the ith Euler

rotation in the sequence.

βi  =  Signed magnitude of ωIBi

B
 defined as the projection of ωIBi

B
 along uij

B
.

Substituting (18.4.7.2-13) in Equation (18.4.7.2-10) provides:

δωIBi

B
  =  βi κi uij

B
(18.4.7.2-14)

with

κi  ≡  κLinScal + κMis + κAsym Sign βi (18.4.7.2-15)

The CB
L

 term in Equation (18.4.7.2-9) during the ith Euler rotation can be written as:

CB
L

  =  CB i

L
 CB

Bi (18.4.7.2-16)

where

CB i

L
  =  Value for CB

L

 
at the start of the ith Euler rotation.
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CB
Bi  = Direction cosine matrix relating B Frame axes during the ith rotation to B Frame

axes at the start of the ith Euler rotation.

Generalized Equations (3.2.3-2) show that for an Euler rotation, CB
Bi in (18.4.7.2-16) is given

by:

CB
Bi  =  I + sin βi uij

B×  + (1 - cos βi) uij
B×

 2
(18.4.7.2-17)

Substituting (18.4.7.2-14), (18.4.7.2-16), and (18.4.7.2-17) into (18.4.7.2-9) then yields:

ΔφHi

L
  =  - CBi

L
  κi uij

B
  + uij

B
 × κi uij

B
 sin βi + uij

B×
 2

 κi uij
B

 1 - cos βi  

 H
 βi (18.4.7.2-18)

Recognizing that βi dt = dβi, Equation (18.4.7.2-18) can be integrated over the range of

βi = 0 to βi = θi where:

θi  =  Total angle traversal for the ith Euler rotation.

Equating the result to ΔφHi

L

 for Equation (18.4.7.2-8) obtains the generalized expression:

ΔφHi

L
  =  - CBi

L 
  I + uij

B×
 2

 κi uij
B

 θi
 

               - uij
B×

 2
 κi uij

B
 sin θi + uij

B×  κi uij
B

 1 - cos θi  

 H

(18.4.7.2-19)

Equation (18.4.7.2-19) can be simplified when the properties of κi as defined in

(18.4.7.2-15) are taken into account.  Because the ith Euler rotation is about a single B Frame

axis (i.e., uij
B

 is along B Frame X, Y, or Z depending on j = 1, 2 or 3), Equations (18.4.7.2-11)

show that the κLinScal  and κAsym terms in κi uij
B

 of (18.4.7.2-19) simplify to:

κLinScal uij
B

  =  κjj uij
B

 

Sign βi  κAsym uij
B

  =  Sign βi  κjjj uij
B

(18.4.7.2-20)

Since each of these terms is directed along uij
B

, their products with the uij
B×  and uij

B×
 2

 terms in

(18.4.7.2-19) are zero.  Because the ith Euler rotation is about a single B Frame axis, the form

for κMis in (18.4.7.2-11) shows that in (18.4.7.2-19), its product with uij
B

 (in κi uij
B

 ) is
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perpendicular to uij
B

.  Applying generalized Equation (13.1-11) then shows that for this

situation:

uij
B×

 2
 κMis uij

B
  =  - κMis uij

B
(18.4.7.2-21)

Substituting (18.4.7.2-20) and (18.4.7.2-21) with (18.4.7.2-15) into (18.4.7.2-19), then obtains

the simplified form for ΔφHi

L
:

ΔφHi

L
  =  -  CBi

L 
  κLinScal + Sign βi  κAsym  uij

B
 θi

                   + I sin θi + 1 - cos θi  uij
B×   κMis uij

B
 

 H

(18.4.7.2-22)

Substitution of (18.4.7.2-22) into (18.4.7.2-8) provides the desired expression for ΔφH
L

 as a
function of the individual test sequence rotations and angular rate sensor errors:

ΔφH
L

  =  -  CBi

L 
  κLinScal + Sign βi  κAsym  uij

B
 θi∑

i

                       + I sin θi + 1 - cos θi  uij
B×   κMis uij

B
 

 H

(18.4.7.2-23)

Equation (18.4.7.2-23) with (18.4.7.2-11) defines the relationship between the κLinScal ,

κMis, κAsym angular rate sensor error parameters and the ΔφH
L

 term in measurement Equations

(18.4.7-13).  The CB2
L

 term in (18.4.7-13) is obtained by successive application of Equation

(18.4.7.2-16) with (18.4.7.2-17) for each βi, uij
B

 in a given rotation sequence, using CB1
L

 (the CB
L

matrix at the start of the rotation sequence) as the initial value for CBi

L
.

18.4.7.3 MAKING THE STRAPDOWN ROTATION TEST
ACCELERATION MEASUREMENT

The acceleration measurements taken during the Strapdown Rotation test are based on an

averaging process for the Δvm
L

’s in Equation (18.4-1) repeated below:

Δvm
L

  =   ΔvSFm

L
 + gTst uZL

L
 Tm aL  =  

1
Tm

 ΔvAvg
L

(18.4.7.3-1)
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In this section we will develop an algorithm for calculating ΔvAvg
L

 in (18.4.7.3-1) based on

processing direct ΔvSF
L

  L Frame integrated specific force acceleration increment data (i.e.,

transformed integrated B Frame specific force increments).  For situations when direct access to

ΔvSF
L

  is not available, Section 18.4.7.3.1 describes a simpler (though less accurate) method for

calculating aL in (18.4.7.3-1) using INS output N Frame velocity measurements.

One method for calculating ΔvAvg
L

 in (18.4.7.3-1) is by a direct linear averaging of a

sequence of Equation (18.4.7.3-1) Δvm
L

 L Frame integrated total acceleration increments for

each ΔvAvg
L

 component:

Δvj  =  
1
r

 Δvm∑
 m = j

j+r-1

(18.4.7.3-2)

where

Δvm  =  One of the components of Δvm
L

.

j  =  m cycle number for the first Δvm
L

 sample used in the average computation.

Δvj  = Simple linear average of one of the components of Δvm
L

, averaged from m cycle

j to m cycle j + r - 1.

r  =  Number of successive values of Δvm
L

 used to calculate Δvj.

The accuracy of the Δvj average calculated in (18.4.7.3-2) is limited by accelerometer

quantization noise in the ΔvSF
L

  data.  In order to reduce the quantization noise in Δvj, a

succession of Δvj averages can be taken (for successive values of j), and the results then

averaged to obtain the so-called “average of averages”:

ΔvAvg  =  
1
s

 Δvj∑
j = k

k+s-1

(18.4.7.3-3)

where

ΔvAvg  = Refined average for one of the components of Δvm
L

 (the average of averages)

with reduced accelerometer quantization noise compared to each of the

Δvj’s.
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k  = m cycle number for the first Δvm
L

 sample used in the first Δvj for the ΔvAvg

computation.

s  =  Number of successive Δvj’s used in calculating ΔvAvg.

The vector form of (18.4.7.3-2) - (18.4.7.3-3) is:

Δvj
 L

  =  
1
r

 Δvm
L∑

m = j

j+r-1

ΔvAvg
L

  =  
1
s

 Δv j
 L∑

j = k

k+s-1

(18.4.7.3-4)

From Equation (18.4.7.3-4), the total number of m cycles spanning the ΔvAvg
L

 computation is:

w  =  r + s - 1 (18.4.7.3-5)

where

w  =  Total number of successive m cycles required to calculate ΔvAvg
L

.

The need for the -1 term in (18.4.7.3-5) might not be readily apparent.  You can verify its
correctness by a simple numerical test (e.g., for the trivial case of s = 1, w is obviously r which
agrees with (18.4.7.3-5)).

In order to minimize the quantization noise induced error in ΔvAvg
L

 for a specified w value,

we must appropriately balance r and s in Equation (18.4.7.3-5).  The balance is based on

minimizing the mean squared error in ΔvAvg
L

 produced by quantization noise.

An analytical model for quantization noise can be developed by considering how the Δvm

summation in (18.4.7.3-2) is formed as a summing of pulses (admittedly transformed) from
accelerometers.  If each accelerometer output pulse was transformed and summed over the

m = j to m = j + r - 1 time span, the result would be identical to the Δvm summation in

(18.4.7.3-2) over the same time period (allowing for the gravity term in (18.4-1)), including the
effect of pulse quantization error.  Imagine a situation in which the pulse count from the m = j
cycle time happened to begin instantaneously after a pulse was emitted (call it the “start” pulse).
Then the pulse count from this time forward will be a true indication of integrated acceleration
(i.e., velocity change) at any instant that a pulse has been received and counted.  Now consider
that the m = j cycle time pulse count is initiated a small time interval before the “start pulse” in
which the small time interval is less than the local time interval between pulses.  The first pulse
that is counted (i.e., the “start” pulse) will be in error (a quantization error) because it is
registered as a full pulse when in fact the time period for the count was less than a full pulse
period.  The maximum error under this condition occurs when a pulse is received (and counted)
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instantaneously after the m = j time instant, and will equal one pulse.  Thus, the quantization
error introduced at m = j can range in magnitude from zero to one pulse with a mean value of
half a pulse (for a uniform statistical quantization error distribution).  The sign of the
quantization error will be the sign of the instantaneous pulse rate (positive or negative).  The
pulse count from this point forward will add no additional quantization error until the
m = j + r - 1 cycle is reached to halt the count.

If the count is halted at a finite time interval following a pulse occurrence, the pulse count at
m = j + r - 1 will experience an additional quantization error because the integrated acceleration
since the last pulse has not been registered in the count.  The error will be maximum at one
pulse magnitude if the count is halted at the instant prior to receipt of the next pulse.  Thus, the
added quantization error at m = j + r - 1 will be in the range of zero to minus one pulse with a
mean value of minus half a pulse.  The sign of the error in this case will be the negative of the
instantaneous pulse rate at m = j + r - 1.

The previous discussion is the basis for the following quantization error model for the Δvm

pulse count:

δ Δvm∑
m =  j

j+r-1

  =  ζj - ζj+r-1 ζj  =  
εa

2
 Sign(Δvj) + χj (18.4.7.3-6)

where

ζj  =  Quantization error at computer cycle j.

εa  =  Accelerometer output pulse size.

χj  = Random accelerometer quantization error at cycle j having a value between - 
εa

2

and + 
εa

2
 with equal probability (i.e., uniformly distributed).

We assume that Δvm will have the same sign at m = j and m = j + r - 1 for the Strapdown

Rotation test so that (18.4.7.3-6) when combined yields:

δ Δvm∑
m = j

j+r-1

  =  χj - χj+r-1 (18.4.7.3-7)

With (18.4.7.3-7), the error in (18.4.7.3-2) and (18.4.7.3-3) is:

δΔvAvg  =  
1

r s
 χj - χj+r-1∑
j = k

k+s-1
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We now take the expected value of the square of (18.4.7.3-7) based on χj and χj+r-1 being

uncorrelated over the χj range of j = k to j = k + s - 1, and the χj+r-1 range from j = k + r -1 to
j = k + r + s - 2 (which will be verified later):

σΔvAvg

2
  ≡  E δΔvAvg

2
  =  

1

r2 s2
 E χj

2
 + E χj+r-1

2∑
j = k

k+s-1

  =  
2 s σχ

2

r2 s2
  =  

2 σχ
2

r2 s
 

σχ
2

  ≡  E χj
2

  =  E χj+r-1
2

(18.4.7.3-8)

where

σΔvAvg  =  Root-mean-square value of δΔvAvg.

σχ  =  Root-mean-square value of the χj quantization error.

Based on the previous χj definition, the mean value of χj is zero, and from the discussion in

the second and third paragraphs following (15.2.1.2-17), its probability density is 1 / εa over the

χj range from - 
εa

2
 to + 

εa

2
.  Then the χj variance about its mean (i.e., the formal definition for

σχ
2

) is:

σχ
2

  =  
1

εa

 χ2
 dχ

- εa / 2

+ εa / 2

  =  
εa
2

12
(18.4.7.3-9)

With (18.4.7.3-5) and (18.4.7.3-9), Equation (18.4.7.3-8) is equivalently:

σΔvAvg

2
  =  

εa
2

6 r 2 w - r + 1
(18.4.7.3-10)

For a specified w, the condition for minimum σΔvAvg  is found by setting the derivative of

(18.4.7.3-10) to zero, and solving for r (and s using (18.4.7.3-5)).  The result is:

r  =  
2
3

 w + 1 s  =  
1
3

 w + 1 (18.4.7.3-11)
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As is easily verified by substitution, for the (18.4.7.3-11) solution, the χj and χj+r-1 ranges

(defined following (18.4.7.3-7)) do not overlap.  Thus, (18.4.7.3-11) is compatible with an

earlier assumption in (18.4.7.3-8) that χj and χj+r-1 are uncorrelated.

Applying (18.4.7.3-11) in (18.4.7.3-10) then finds σΔvAvg for the optimal r, s settings:

σΔvAvg  =  
9

8 w + 1
 

w
w + 1

 
εa

w
(18.4.7.3-12)

For comparison, the same treatment can be performed for the simple average Δv in Equation
(18.4.7.3-2) (setting r = w) for which we would find:

σΔv  =  
1
6

 
εa

w
(18.4.7.3-13)

where

σΔv  =  Root-mean-square value for Δvj.

The benefit of the average-of-averages approach in this application becomes significant as the
averaging time (the length of w) is increased.  As and example, consider an m cycle rate of 50

Hz and a 20 second ΔvAvg
L

 calculation time allowance, for which w = 50 × 20 = 1000.  T o

maintain r and s at integer values (from (18.4.7.3-11)), let’s set w = 998.  Substituting w = 998

in (18.4.7.3-12) and (18.4.7.3-13) shows that σΔvAvg is one twelfth of σΔv under this

condition.

With (18.4.7.3-11), ΔvAvg
L

 Equations (18.4.7.3-4) become:

Δvj
 L

  =  
3

2 (w+1)
 Δvm

L∑
m = j

j-1+2(w+1)/3

ΔvAvg
L

  =  
3

w+1
 Δv j

 L∑
j = k

k-1+(w+1)/3

(18.4.7.3-14)

Use of (18.4.7.3-14) for ΔvAvg
L

 in Equation (18.4.7.3-1) provides the aL measurements for the

Strapdown Rotation test.

A recursive algorithm at the computer m cycle execution rate can be constructed for ΔvAvg
L

from (18.4.7.3-14) by first defining w and r as a function of s using (18.4.7.3-11):

r  =  2 s w  =  3 s -1 (18.4.7.3-15)
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Substituting (18.4.7.3-15) into (18.4.7.3-14) obtains the simpler form:

Δvj
 L

  =  
1

2 s
 Δvm

L∑
m = j

j+2s-1

ΔvAvg
L

  =  
1
s

 Δv j
 L∑

j = k

k+s-1

(18.4.7.3-16)

The algorithmic form of (18.4.7.3-15) is easily derived from a numerical example illustrating
the summation operations.  Consider the case when s = 4 (for which from (18.4.7.3-15), r = 8
and w = 11), and the following diagrammatic representation:

Δv1 Δv2 Δv3 Δv4 Δv5 Δv6 Δv7 Δv8 0 0 0

0 Δv2 Δv3 Δv4 Δv5 Δv6 Δv7 Δv8 Δv9 0 0

0 0 Δv3 Δv4 Δv5 Δv6 Δv7 Δv8 Δv9 Δv10 0

0 0 0 Δv4 Δv5 Δv6 Δv7 Δv8 Δv9 Δv10 Δv11

Figure 18.4.7.3-1  Diagrammatic Representation Of ΔvAvg
L

 Summing Operations

Each row in Figure 18.4.7.3-1 represents the elements of Δv j
 L

 used in the (18.4.7.3-16)

m = j to j + 2 s - 1 summing operation.  The sum of the row sums is the j = k to k + s - 1

summation operation for ΔvAvg
L

.  The sum of all the elements in the figure is the combined

double summation in (18.4.7.3-16).  Notice that the figure can be divided into three sections: an
upper triangle at the left for the first three columns (i.e., the first s - 1 columns), a rectangle in
the center for columns 4 through 8 (i.e., columns s to 2 s ), and a lower triangle at the right for
columns 9 through 11 (i.e., columns 2 s + 1 to 3 s -1 ).  Based on this observation we can write
the total sum as the sum of the column sums in each section:

∑
 1 - 3

  =  1 × Δv1 + 2 × Δv2 + 3 × Δv3  =  i Δvi∑
i = 1

s-1

∑
4 - 8

  =  4 × Δvi∑
i = 4

8

  =  s Δvi∑
i = s

2s

∑
9 - 11

  =  3 × Δv9 + 2 × Δv10 + 1 × Δv11  =  3 s - i  Δvi∑
i = 2s+1

3s-1 (18.4.7.3-17)

∑
Total

  =  ∑
 1 - 3

 + ∑
4 - 8

 + ∑
9 - 11
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where

∑
 1 - 3

, ∑
4 - 8

, ∑
9 - 11

  =  Sum of terms in columns 1 - 3, 4 - 8, and 9 - 11.

∑
Total

  = Sum of all terms in Figure 18.4.7.3-1 representing the double summation

operation in Equation (18.4.7.3-16).

The m cycle computation algorithm for (18.4.7.3-16) is then easily constructed from

(18.4.7.3-17) including evaluation of aL in (18.4.7.3-1) for the Strapdown Rotation test
measurement:

Initialization:   Sum = 0,   i = 0

Execute For 3 s - 1 cycles in the m loop

If (i < 3 s) Then

i = i + 1

If (i < s) Then

Sum  =  Sum + i Δvi
L

Else If (s ≤ i ≤ 2 s) Then

Sum  =  Sum + s Δvi
L

(18.4.7.3-18)

Else If (2 s < i < 3 s) Then

Sum  =  Sum + 3 s - i  Δvi
L

If (i = 3 s -1) Then

ΔvAvg
L

  =  
1

2 s2
 Sum aL  =  

1
Tm

 ΔvAvg
L

End If

End If

End If

18.4.7.3.1  Alternative Strapdown Rotation Test Measurement Approach

The Strapdown Rotation test acceleration measurement as described in Section 18.4.7.3
implies the existence of special software to execute the associated analytical operations.  For
situations when such software is not available (internal or external to the INS), an alternate
procedure can be utilized for a strapdown INS based on INS free-inertial navigation mode
velocity output measurements.  The alternate procedure uses the change in INS output N Frame
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horizontal velocity over a specified averaging time TAvg (e.g., 10 seconds), transformed to the

L Frame and divided by TAvg, as the measure of aL in Equation (18.4.7.3-1):

aL  =  
1

TAvg
 CN

L
 vEnd

N
 - vStart

N
(18.4.7.3.1-1)

where

vStart
N

, vEnd
N

  =  vN measurements taken at the start and end of the averaging period.

The vStart
N

, vEnd
N

 difference in (18.4.7.3.1-1) is the sum of changes in vN over the averaging

period, or using the beginning of Section 18.4.7.3 nomenclature:

aL  =  
1

r Tm
 Δvm

L∑
m = j

j+r-1

(18.4.7.3.1-2)

If Equation (18.4.7.3.1-2) is compared with the simple linear averaging technique of Section

18.4.7.3 (i.e., Equation (18.4.7.3-2) with (18.4.7.3-1) for aL), it should be clear that they are

equivalent.  Thus, the alternate (18.4.7.3.1-1) approach for calculating aL contains the higher
acceleration quantization error present in (18.4.7.3-2), hence, is not as accurate as the
(18.4.7.3-18) algorithm averaging technique.

18.4.7.4 SENSOR ASSEMBLY MISALIGNMENT CALIBRATION
RELATIVE TO TEST FIXTURE MOUNT

As an adjunct to the Strapdown Rotation test, it is convenient to also calculate the alignment
of the sensor assembly relative to the test fixture mount.  For the test results to be meaningful,
the data is usually taken in rotation tests for which the sensor assembly has been installed in the
INS, and the INS is the test article on the rotation test fixture mount.  The INS mount would
then be a standard mount for INS installation in a user vehicle.  The result of this calculation can
be used to update the associated misalignment calibration coefficients for the strapdown INS
attitude output function (e.g., the J vector in Equation (8.3-2)).  As in Equation (8.3-2), the

alignment calibration matrix is CB
M

 which can be equated to the computed attitude data in the

INS by:

CB
M

  =  CGeo
M

 CL
Geo

 CB
L

(18.4.7.4-1)

where

M  =  Test fixture mount coordinate frame.
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Geo  = Local geographic coordinate frame with Y axis north and Z axis up along the
local plumb-bob vertical.

Ideally, CB
M

 can be calculated from Equation (18.4.7.4-1) for a particular INS based on static

measurements, using CB
L

 and CL
Geo

  data calculated by the INS and a measured value for CGeo
M

 at

the particular mount orientation for which the INS data was evaluated.  In principle, the same

method can be applied to the Strapdown Rotation test, using the computed value for CB
L

 at a

particular measurement position, and CL
Geo

  (a Z axis wander angle Euler transformation matrix)

based on a wander angle calculated from L Frame components of horizontal earth rate (e.g.,
Equations (6.2.1-6) - (6.2.1-7)).  With this approach, the horizontal earth rate components can
be calculated using the Chapter 6, Section 6.1.2 Fine Alignment procedure.  For improved
accuracy, the more time consuming Strapdown Drift test method of Section 18.2.1 might be
used to reduce angular rate sensor random output noise and systematic bias induced error in the
computed horizontal earth rates.  However, the latter earth rate determination process is still
limited in accuracy to the stability of the angular rate sensor bias over the earth rate component

determination period.  To achieve reasonable accuracy in the CGeo
M

  measurement, elaborate

optical techniques can be brought to bear in which the heading (azimuth) orientation of the
mount is determined relative to true north using stellar sightings as the fundamental reference
(e.g., through the traditional hole in the ceiling precision sighting of the North Star).

Fortunately, the vertical orientation of CGeo
M

  is more easily determined using bubble level

devices.

Sounds complicated doesn’t it?  And it really isn’t necessary if the following simpler
formulation is used based on:

CM
MARS

 aSF
M

  =  aSF
MARS

(18.4.7.4-2)

CM
B

  =  CMARS
B

 CM
MARS

(18.4.7.4-3)

where

aSF  = Specific force acceleration during static measurements caused by reaction force
against local plumb-bob gravity.

MARS  =  Mean angular rate sensor axes as described in Section 18.4.3.

The CMARS
B

 matrix in (18.4.7.4-3) is defined by the selected B Frame alignment definition

angle γ of Section 18.4.3.  The aSF
M

  term in (18.4.7.4-2) can be calculated based on:
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aSF
M

  =  CL
M

 aSF
L

 (18.4.7.4-4)

which, with Equation (18.4.7-10) for the Strapdown Rotation test static measurement condition,
is:

aSF
M

  =  - gTst uZL
M

(18.4.7.4-5)

where

uZL
M

  = M Frame components of a unit vector along the L Frame Z axis (i.e., downward

along the local plumb-bob vertical).

gTst  = Plumb-bob gravity magnitude at the Strapdown Rotation test fixture location.

Substituting (18.4.7.4-5) into (18.4.7.4-2) obtains:

CM
MARS

 uZL
M

  =  - 
1

gTst
 aSF

MARS
(18.4.7.4-6)

Section 3.2.1.1 shows how Equation (18.4.7.4-6) can be solved for CM
MARS

 if we evaluate it for

two distinct orientations of the M and MARS Frames.  Because the M and MARS Frames are

fixed relative to one another, the CM
MARS

 matrix is identical for any M or MARS Frame

attitude, and we can write (18.4.7.4-6) at the two distinct orientations as:

CM1
MARS1

 uZL
M1

  =  CM
MARS

 uZL
M1

  =  - 
1

gTst
 aSF

MARS1

 

CM2
MARS2

 uZL
M2

  =  CM
MARS

 uZL
M2

  =  - 
1

gTst
 aSF

MARS2
(18.4.7.4-7)

where

M1, MARS1, M2, MARS2  = M, MARS Frames at measurement orientations 1 and 2.

The solution for CM
MARS

 in (18.4.7.4-7) is provided by Equation (3.2.1.1-8) based on

(3.2.1.1-1) - (3.2.1.1-2) with (3.2.1.1-3), (3.2.1.1-5) and (3.2.1.1-6):

CM
MARS

  =  FMARS FM  -1
(18.4.7.4-8)

with
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FMARS  ≡  - 
1

gTst
 aSF

MARS1
    - 

1
gTst

 aSF
MARS2

    
1

gTst
2

 aSF
MARS1

 × aSF
MARS2

 

FM  ≡  uZL
M1

     uZL
M2

     uZL
M1

 × uZL
M2

(18.4.7.4-9)

As will be explained subsequently, the aSF
MARS

 terms in (18.4.7.4-9) can be computed from

static acceleration measurements taken at the two selected sensor assembly orientations during

the Strapdown Rotation test.  The uZL
M

 terms in (18.4.7.4-9) are readily defined by the

orientation of the sensor mount (M Frame) relative to vertical for the two selected measurement
orientations.  As discussed in Section 3.2.1.1, the FM inverse in (18.4.7.4-8) will be non-

singular if the determinant is non-singular, and the determinant will be non-singular if uZL
M1

 is

not parallel to uZL
M2

.  Ideally, the 1, 2 orientations should be selected so that uZL
M1

 and uZL
M2

 are

perpendicular to each other.  It remains to define the aSF
MARS

 terms as a function of sensor

assembly output derived data.

Equations (18.4.7.4-9) are based on idealized error free values for the aSF
MARS

 terms.  The

error free values can be calculated based on Strapdown Rotation test acceleration measurements,
corrected for rotation test determined errors as defined in (18.4.7.1-1):

  aSF
 B

  =  aSF
B

 + δ aSF
B

  =  I + λLinScal + λMis + λAsym ASFSign  aSF
B

 + λBias (18.4.7.4-10)

where

  aSF
 B

  = Value for aSF
B

 calculated in the Strapdown Rotation test software that contains

sensor errors.  The transformed components of aSF
 B

 (to the L Frame) are what is

used to form the aSF
 L

  measurements taken for the Strapdown Rotation test.

λLinScal , λMis  = Scale factor and misalignment calibration error components of

λLinScal/Mis .

ASFSign  = Diagonal matrix whose elements are unity in magnitude with sign equal to

the sign of the components of aSF
B

 .

λBias  =  Accelerometer triad bias error vector.

The aSF
B

  term in (18.4.7.4-10) can be expressed in terms of the desired aSF
MARS

 term as:
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aSF
B

  =  CMARS
B

 aSF
MARS

(18.4.7.4-11)

The CMARS
B

 matrix in (18.4.7.4-11) can be defined to first order by the rotation angle vector γ
of Section 18.4.3 using generalized Equation (3.2.2.1-8):

CMARS
B

  ≈  I + γ× (18.4.7.4-12)

The λMis matrix in (18.4.7.4-10) can be expressed relative to mean angular rate sensor axes

using the matrix form of the accelerometer misalignment expressions in Equations (18.4.3-5):

λMis  =  μMis - γ× (18.4.7.4-13)

We also make the approximation as in (8.1.1.3-16) that:

ASFSign  ≈  ASFPulsSign (18.4.7.4-14)

where

ASFPulsSign  = Diagonal matrix whose elements are unity in magnitude with sign equal

to the sign of the components of aSFPuls
B

, the uncompensated

accelerometer triad output pulse rate vector.

Substituting (18.4.7.4-11) - (18.4.7.4-14) in (18.4.7.4-10) and dropping γ squared and

products of γ with error terms as second order, then gives:

  aSF
 B

  ≈  I + λLinScal + μMis + λAsym ASFPulsSign  aSF
MARS

 + λBias (18.4.7.4-15)

The aSF
 B

  vector in (18.4.7.4-15) can also be expressed in terms of the Equation (18.4.7-2)
Strapdown Rotation test acceleration measurement vector components as:

aSF
 L

  =  a
 L

 - gTst  uZL
L

aSF
 B

  =  CB
L T

 aSF
 L

 (18.4.7.4-16)

where

  a
 L

  = L Frame total acceleration measurement for the rotation test taken by averaging

transformed accelerometer data plus gravity, defined as aL in Equation (18.4-1).

gTst  =  Plumb-bob gravity magnitude at the test site.

uZL
L

  = Unit vector along the L Frame Z axis (downward along the plumb-bob vertical)

as projected on L Frame axes.
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CB
L

  = Value for CB
L
 computed by the Strapdown Rotation test attitude computation

algorithm as an integration of Equation (18.4.7.2-1) using inertial sensor data
that is compensated with previously determined values for the compensation
coefficients.

Taking the inverse of (18.4.7.4-15) with (18.4.7.4-16) for aSF
 B

  yields the desired expression for

aSF
MARS

:

aSF
MARS

 =  I + λLinScal + μMis + λAsym ASFPulsSign
 -1

 CB
L T

  a
 L

 - gTst uZL
L

 - λBias

(18.4.7.4-17)

With (18.4.7.4-17), the aSF
MARS

 terms in (18.4.7.4-9) become for each of the two selected

measurement orientations:

aSF
MARS1

 =  I + λLinScal + μMis + λAsym ASFPulsSign

1  -1
 CB1

L T
  a1

 L
 - gTst uZL

L
 - λBias

(18.4.7.4-18)

aSF
MARS2

 =  I + λLinScal + μMis + λAsym ASFPulsSign

2  -1
 CB2

L T
  a2

 L
 - gTst uZL

L
 - λBias

where

a1
L

, a2
L

, ASFPulsSign

1
, ASFPulsSign

2
  = Values for a

L
 and ASFPulsSign at test orientations 1

and 2.

λLinScal , μMis, λAsym, λBias  Accelerometer calibration error terms calculated from
Strapdown Rotation test data as in Figures 18.4.4-1 or
18.4.4-2.

Equations (18.4.7.4-8), (18.4.7.4-9) and (18.4.7.4-18) constitute a complete set for

computing CM
MARS

.  Note that no north referenced data is required in these equations.

Once CM
MARS

 is calculated, CM
B

 can be computed with (18.4.7.4-3) based on the definition

for the B Frame relative to the MARS Frame (i.e., CMARS
B

 which is the direction cosine

equivalent of the γ rotation vector).  The J calibration coefficients in (8.3-2) can be extracted

from CM
B

 transpose using direction cosine to rotation vector inversion Equations (3.2.2.2-10) -

(3.2.2.2-12) and (3.2.2.2-15) - (3.2.2.2-17).



STRAPDOWN ROTATION TEST     18-131

In the above development, we have treated CMARS
B

 (and its associated γ vector) as an

independent parameter.  In practice, γ is generally selected so that the B Frame is defined to be
either the MARS Frame or the Sensor assembly mount M Frame.  For the former case (i.e.,

B = MARS), CMARS
B

 is identity and Equation (18.4.7.4-3) reduces to:

For B Frame = MARS Frame

CB
M

  =  CM
MARS T

γ  =  0 (18.4.7.4-19)

J  =  
Rotation Angle

Extraction From
 CB

M
 
With Equations (3.2.2.2-10) - (3.2.2.2-12)

and (3.2.2.2-15) - (3.2.2.2-17)

For the latter case (i.e., B = M), the CM
B

 matrix is identity corresponding to zero for the J

coefficients in Equation (8.3-2).  Then the above process must be inverted to solve for the

CMARS
B

 (and the corresponding γ rotation vector) using identity for CM
B

 in Equation

(18.4.7.4-3):

For B Frame = M Frame

CMARS
B

  =  CM
MARS T

J  =  0 (18.4.7.4-20)

γ  =  
Rotation Angle

Extraction From
 CMARS

B
 
With Equations (3.2.2.2-10) - (3.2.2.2-12)

and (3.2.2.2-15) - (3.2.2.2-17)

As an example of the above procedure, we might set one of the attitudes for CM
MARS

determination having the M Frame Z axis down (i.e., nominally level), with the second attitude
having the M Frame X axis up (i.e., 90 degree pitch up).  For these orientations, it is clear that

uZL
M1

 and uZL
M2

 will be along the M Frame positive Z and negative X axes.  Thus, uZL
M1

 and uZL
M2

will be perpendicular to each other, and the determinant of FM in (18.4.7.4-9) will be
maximized for an optimized inverse calculation in (18.4.7.4-8).  For the previous orientations,

the uZL
M1

, uZL
M2

 vectors in (18.4.7.4-9) are given by:

uZL
M1

  =  
0
0
1

uZL
M2

  =  
-1
0
0

(18.4.7.4-21)

For the 16 and 21 sequence Strapdown Rotation tests, we see from Tables 18.4.1-1 and
18.4.1-2 that the previous conditions apply for the 16 Sequence test at the start of Rotation 1 and
completion of Rotation 7, and for the 21 Sequence test, at the start of Rotation 1 and completion
of Rotation 14 .  Other rotation test positions also satisfy (18.4.7.4-21) (e.g., for the 16
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Sequence test, the start of any of the test sequence rotations for uZL
M1

, and completion of

Rotation 13 for uZL
M2

 ).  Perpendicular uZL
M1

, uZL
M2

 conditions other than (18.4.7.4-21) could also

have been selected from the multitude of available measurements in the rotation tests.  In

practice, it is advantageous to select a particular uZL
M1

, uZL
M2

 orientation pair so that the sensor

assembly mount can be installed on the rotation fixture at these orientations at the exact uZL
M1

,

uZL
M2

 prescribed orientation relative to the vertical (e.g., by shimming and use of a bubble level

aligned to precision machined perpendicular reference flats affixed to the sensor assembly

mount to define the M Frame).  Then the uZL
M1

, uZL
M2

 terms in (18.4.7.4-21) will accurately

represent the orientation of the M Frame when the rotation test fixture is positioned at these
attitudes.
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19     Supplemental Topics

19.0  OVERVIEW

This chapter presents three papers published by the author since the original publication of
Strapdown Analytics in 2000; the first (Section 19.1) describes a unified framework for
strapdown integration algorithm design based on a new concept for velocity/position updating,
the second (Section 19.2) provides an in-depth discussion of strapdown sensor quantization
error modeling, the third (Section 19.3) explores some fundamental questions on precisely what
it is that inertial sensors measure.  Section numbers, equation numbers and references have
been reformatted from the original for compatibility with the general style of this publication.
Mathematical notation is as defined in Section 2.1.  New references cited in the reformatted
papers are provided in the References list at the back of the book.  Nomenclature used in the
Section 19.1 and 19.2 papers is provided at the start of each section (as in the original papers)
rather than in Sections 2.1, 2.2 and the Coordinate-Frame/Parameter indexes.  (An exception is
for Equation (19.1.11-1), an addition to the Section 19.1 paper to illustrate a specific application
to digital computation algorithms.)  Nomenclature for the Section 19.3 paper is provided only
within the text.  The Conclusions sections have been deleted in the Section 19.1 and 19.2 papers
and a Summary section has been added to the Section 19.1 paper.

19.1  A UNIFIED MATHEMATICAL FRAMEWORK
FOR STRAPDOWN ALGORITHM DESIGN

This paper describes a unified two-speed mathematical framework for strapdown inertial
system integration algorithm design that uses a new concept for velocity/position updating.  The
velocity/position equations are structured using a Jordan-like attitude updating approach
(Reference 14); the update equations are designed to provide the exact solution under particular
input conditions, the update inputs are then redefined to provide the correct solution under
general motion.  For the Jordan approach, the attitude update input is the Euler rotation vector
generated by high speed integration of a rotation vector rate equation; for the new
velocity/position updating concept, inputs are velocity/position translation vectors generated by
high speed integration of translation vector rate equations.  Exact differential equations are
derived for the translation vectors that parallel the exact rotation vector rate equation originally
derived by Laning (Reference 15a) and applied by Bortz (Reference 2) in a Jordan-like structure.
The new velocity/position concept coupled with the Jordan/Bortz/Laning attitude updating
approach provides a unified framework for strapdown integration algorithm design.
Continuous form algorithms are developed within the unified framework based on simplified
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forms of the exact rotation/translation vector rate equations.  Algorithm performance
comparisons are presented based on derived analytical error equations under maneuver and
vibration motion.  A discussion is included on algorithm design approaches for digital
integration of the rotation/translation vector rate equations.  Simulation studies are described that
numerically validate the accuracy of the principal analytical results.

This paper was originally published by the author under the Section 19.1 title in the AIAA
Journal Of Guidance, Control, And Dynamics, Vol. 29, No. 2, March-April 2006, pp. 237-249
(Ref. 35b).  Since its publication, further analytical work has enabled simplification of
Equations (15), (16) and (25) in the original paper which appear in this version as Equations
(19.1.5-7), (19.1.5-8) and (19.1.7-8) in place of (15), (16) and (25).  The remainder of the
original published material is unaffected by the simplification.  In addition, an example of digital
algorithms for the velocity/position translation vectors is provided as an extension to Section
19.1.1 based on the development in Sections 7.2.2.2.2 and 7.3.3.2 for sculling/scrolling
computations in the velocity/position update algorithms.

19.1.1  NOMENCLATURE FOR SECTION 19.1

19.1.1.1  SYMBOLOGY

( ), ( ), ( )  = First, second and third time derivatives of ( ).

19.1.1.2  COORDINATE FRAMES

B  = Sensor "body" coordinate frame aligned with strapdown inertial sensor axes.

Bm  = Frame B orientation at computer cycle m, treated as an inertially non-rotating coordinate
frame.

B(t)  = Frame B orientation at time t.

N  = Navigation coordinate frame (inertially non-rotating for this paper)

19.1.1.3  PARAMETERS

a0, a0, a0,   =  Value and derivatives of aSF at tm-1.

aη, aζ  =  Coefficients in F, G inverses.

α  = Integral of ω in Frame B since computer cycle m-1.

α, αx, αy, αz  = Magnitude and B Frame components of α.

aSF, aSFx, aSFy, aSFz  = Specific force acceleration vector (sensed by accelerometers) and
components in the Frame B.
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aSF0  =  Sinusoidal specific force acceleration vibration amplitude.

bη, bζ  =  Coefficients in F, G inverses.

β  =  Vibration frequency parameter Ω Tm.

C  = Short-hand for CB(t)
Bm-1.

χ  = State vector containing φ, η and ζ.

χi  = ith order Picard expansion solution for χ.

ΔC  =  Trigonometric function in algorithm errors under vibration.

Δχi  = ith χ Picard expansion solution component.

δ δφAnalAlgcEr , δ δηAnalAlgcEr   = Error in the analytical estimates for δφAlgcEr, δηAlgcEr.

δΔRSFm

Bm-1  =  Computation error in exact solution for ΔRSFm

Bm-1.

δΔvSFm

Bm-1  =  Computation error in exact solution for ΔvSFm

Bm-1.

δηAlgcEr, δηAlgcErMag  = Error in ηAlgo/c and the error magnitude.

δηAlgo/a, δηAlgo/b, δηAlgo/c  = Errors in ηAlgo/a, ηAlgo/b, ηAlgo/c.

ΔηAlgo/c  =  Sculling portion of ηAlgo/c.

Δηi  =  ith η Picard expansion solution component.

δηPic  = Error in Picard expansion solution for η.

δφAlgcEr, δφAlgcErMag  = Error in φAlgo/c and the error magnitude.

δφAlgo/a, δφAlgo/b, δφAlgo/c  = Errors in φAlgo/a, φAlgo/b, φAlgo/c.

Δφi  = ith φ Picard expansion solution component.

δφm  =  Computation error in exact solution for φm.

δφPic  = Error in Picard expansion solution for φ.

ΔRg  =  Change in position due to gravity since computer cycle m-1.

ΔRSF  = Change in position due to specific force acceleration since computer cycle m-1.
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ΔRSFAlgo/d  = Algorithm computed position change due to specific force acceleration when

using ΔζAlgo/d for scrolling.

ΔRSFmax  = Maximum value of ΔRSF over computer cycle m.

ΔS  =  Trigonometric function in algorithm errors under vibration.

Δvg  = Change in velocity due to gravity since computer cycle m-1.

ΔvSF  = Change in velocity due to specific force acceleration since computer cycle m-1.

ΔvSFmax  = Maximum magnitude of ΔvSF over computer cycle m.

δζAlgo/a, δζAlgo/b, δζAlgo/c  = Errors in ζAlgo/a, ζAlgo/b, ζAlgo/c.

ΔζAlgo/c  =  Scrolling portion of ζAlgo/c.

ΔζAlgo/d  =  Alternative definition for scrolling term.

Δζi  = ith ζ Picard expansion solution component.

δζPic  = Error in Picard expansion solution for ζ.

η  = Velocity translation vector in the B Frame.

ηAlgo/a, ηAlgo/b, ηAlgo/c  = Simplified versions of η for algorithm usage.

ηi  = ith order Picard expansion solution for η.

ηmax  = Maximum magnitude of η over computer cycle m.

ηScull  =  Portion of η due to sculling motion.

F  = Matrix for translating η into ΔvSF.

f1, f2,   = Trigonometric coefficients in unified navigation equations.

g  = Gravitational acceleration.

G  = Matrix for translating ζ into ΔRSF.

g1, g2, g3, g4  =  Coefficient functions in algorithm errors under vibration.

G1, G2  =  Sinusoids at folded generalized vibration frequency ρ′.

H  = Functional operator for χ.

h1, h2  = Coefficients in rotation/translation vector rate equations.

I  = Identity matrix.
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J  =  Function used in G1, G2 folded vibration frequency sinusoids.

K  =  Nearest integer number of generalized ρ frequency cycles in an m cycle.

m  = Computer cycle index.  As a parameter subscript, it indicates the parameter value at
computer cycle m.

M  =  Number of m cycle sums.

ω, ωx, ωy, ωz  = Angular rate vector and components in the B Frame.

ω0, ω0, ω0,   =  Value and derivatives of ω at tm-1.

Ω  =  Vibration frequency.

Ω′  =  Folded frequency of sinusoids at frequency Ω sampled at the m cycle rate.

φ, φ  = Rotation vector equivalent to CB(t)
Bm-1 and its magnitude.

φAlgo/a, φAlgo/b, φAlgo/c  = Simplified versions of φ for algorithm usage.

φCone  =  Portion of φ due to coning motion.

φi  = ith order Picard expansion solution for φ.

φmax  = Maximum magnitude of φ over computer cycle m.

R  = Position vector.

ρ  =  Generalized vibration frequency parameter.

ρ′  =  Folded frequency of sinusoids at frequency ρ sampled at the m cycle rate.

Sα  = Double integral of ω since computer cycle m-1.

Sυ  = Double integral of aSF since computer cycle m-1.

t  = Time.

t0  =  Time t at m = 0.

Tm  = Time interval for m computer update cycle.

τ  = Normalized time since computer cycle m-1 as a fraction of Tm.

θ0  =  Sinusoidal angular vibration amplitude.

ux, uy, uz  =  Unit vectors along x, y, z B Frame axes.

υ, υx, υy, υz  = Integral of aSF in Frame B since computer cycle m-1 and its components.

v  = Velocity vector.
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V, V1, V2, V3  = General vector parameters.

ζ  = Position translation vector in the B Frame.

ζAlgo/a, ζAlgo/b, ζAlgo/c  = Simplified versions of ζ for algorithm usage.

ζi  = ith order Picard expansion solution for ζ.

ζmax  = Maximum magnitude of ζ over computer cycle m.

ζScroll  =  Portion of ζ due to scrolling motion.

19.1.2  INTRODUCTION

Modern day strapdown inertial navigation system integration routines have been formulated
in many applications using a two-speed structure; navigation parameters (attitude, velocity,
position) are updated using basic higher order algorithms, inputs to the basic algorithms are
derived from a high speed digital integration process within the navigation parameter update
time interval.  The basic algorithms account for low frequency large angular amplitude
dynamics; the high frequency routines account for high frequency small angular amplitude
effects (e.g., vibration).  The overall structure is designed such that most of the computations are
executed by the basic updating function with the high speed operation containing comparatively
few calculations per high speed cycle.  The net result is that computer through-put is conserved
because only the high speed computations must be operated at the rate required to accurately
process high frequency angular dynamics; the basic navigation parameter update frequency can
be set based on other less demanding requirements (e.g., to assure that the maximum attitude
change per update cycle is small, thereby protecting small angle approximations in the
processing algorithms).  By formulating the basic algorithms (the dominant navigation solution)
from closed-form analytical expressions that are exact under particular input conditions (e.g.,
constant strapdown angular rate and specific force acceleration), documentation is straight-
forward, validation is precise (by exact comparison with comparable exact solution truth
models), and one set of algorithms can be used generically for all applications.

The two-speed structure for attitude updating was originated by the author in 1966 using a
second order basic updating algorithm with the high speed digital integration function derived
from a first order differential equation (Reference 29).  In 1969, Jordan proposed a two-speed
attitude computation structure in which the form of the basic updating operation was based on
the correct attitude solution under rotation about a fixed (non-rotating) axis (Reference 14).  For
this condition, the algorithm input is the direct integral of angular rate vector components
provided by angular rate sensors.  For general angular motion (in which the axis of rotation is
changing direction), Jordan proposed that the analytical form of the basic algorithm should
remain the same, but that the Euler rotation vector be used for input rather than integrated
angular rate.  The high-speed operation then became an integration of rotation vector rate-of-
change over the attitude update cycle.  The Jordan high-speed integration algorithm for the
rotation vector was based on an approximate first order application of the Goodman/Robinson
theorem (Reference 7a).
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In 1971, Bortz (Reference 2) proposed that the high speed integration operation in the two-
speed attitude updating structure be based on the exact rotation vector rate Equation (3.3.5-14)
originally derived in 1949 by Laning (Reference 15a).  Having the exact rotation vector rate
equation as a base provided a framework for simplified algorithm development and accuracy
evaluation by comparison with the exact form.  The exact Jordan structure coupled with the
integrated Bortz/Laning exact rotation vector rate equation has been the basis for continuing
modern day strapdown attitude algorithm development.

This paper presents a new concept for strapdown velocity and position updating using a
Jordan two-speed attitude computation structure.  In direct analogy to Jordan attitude updating,
the analytical form of the velocity/position algorithms is based on solutions that are exact under
particular input conditions, in this case constant angular rate and specific force acceleration
(Equations (7.2.2.2.1-5) and (7.3.3.1-9)).  For constant angular-rate/specific-force, the
algorithm input is the direct integral of angular-rate/specific-force vector components provided
by angular rate sensors and accelerometers.  The exact constant-input solutions were originally
derived as an expansion of rotation compensation terms present in first order two-speed
algorithms designed for general (non-constant) inputs (Equations (7.2.2.2-22) and (7.3.3-9)-
(7.3.3-11)).  For the new concept, exact general-input velocity/position algorithms are
synthesized using the Jordan approach of having the same analytical form under general input
as the exact constant-input solutions, but with velocity/position translation vectors (analogous to
the rotation vector) replacing the integrated angular-rate/specific-force used under constant input.
The translation vectors are calculated by integrating translation vector rate equations over a
velocity/position update cycle.  Differential equations are derived in the paper for the
velocity/position translation vectors that are exact under general motion (analogous to the Laning
rotation vector rate equation).  The new velocity/position updating concept coupled with the
Jordan/Bortz/Laning attitude updating approach provides a unified mathematical framework for
strapdown integration algorithm design.

Strapdown computation algorithms can be designed within the unified framework using the
exact closed-form equations directly (without approximation) for attitude/velocity/position
updating.  Inputs to the updating algorithms would be high speed numerical integration routines
based on simplified integral versions of the exact rotation/translation vector rate equations.  The
paper provides examples of simplified rotation/translation vector rate equations and associated
performance characteristics under generalized angular-rate/specific-force maneuver and
vibration profiles.  The performance investigations and some of the high speed routines are
based on a Picard expansion solution (Reference 19a) to the exact rotation/translation vector rate
equations, derived here in powers of integrated angular-rate/specific-force.

A general discussion is included in the paper on potential design approaches for digital
algorithms used for high speed integration of the simplified rotation/translation vector rate
equations over the attitude/velocity/position update cycle.  The appendix in Section 19.1.14
provides a description of digital simulation studies conducted to numerically verify the accuracy
of the principal analytical results.
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19.1.3  THE UNIFIED MATHEMATICAL FRAMEWORK BASED
ON CONSTANT ANGULAR-RATE/SPECIFIC-FORCE

The following generalized differential equations describe time rates of change of attitude and
specific force acceleration induced velocity/position in a coordinate Frame Bm-1 representing the
orientation of a generalized rotating coordinate Frame B at time tm-1 (Equations (12.1.4-18)):

CB(t)
Bm-1

  =  CB(t)
Bm-1 ω × ΔvSF

Bm-1
(t)  =  CB(t)

Bm-1 aSF ΔRSF
Bm-1

(t)  =  ΔvSF
B(m-1)

(t) (19.1.3-1)

A generalized structure for updating attitude/velocity/position in a strapdown inertial navigation
system is obtained from the cumulative integral of Equations (19.1.3-1) over strapdown
computer update cycles m, referenced to a non-rotating coordinate Frame N, and including the
effect of gravity:

CB(t)
Bm-1  =  I + CB(t)

Bm-1
 dt

tm - 1

t

CBm

N
  =  CBm-1

N
 CB(tm)

Bm-1

vm
N

  =  vm-1
N

 + Δvg
N

(tm) + CBm-1

N
 ΔvSF

Bm-1(tm)

Δvg
N

(t)  = gN dt
tm - 1

t

          ΔvSF
Bm-1(t)  = ΔvSF

Bm-1
 dt

tm - 1

t (19.1.3-2)

Rm
N

  =  Rm-1
N

 + vm-1
N

 Tm + ΔRg
N

(tm) + CBm-1

N
 ΔRSF

Bm-1(tm)

ΔRg
N

(t)  = Δvg
N

(t) dt
tm - 1

t

          ΔRSF
Bm-1

(t)  = ΔRSF
Bm-1

(t) dt
tm - 1

t

In a strapdown inertial navigation system, the angular rate vector ω is measured by
strapdown angular rate sensors, the specific force acceleration vector aSF is measured by
strapdown accelerometers, the B Frame represents a coordinate frame that maintains alignment
with the rotating strapdown sensors (the "body" frame), and the N Frame represents navigation
coordinates for output reporting.  In many systems, the N Frame is slowly rotated (e.g., to
maintain one axis vertical in the presence of vehicle motion and earth's rotation rate) in which
case Equations (19.1.3-1) - (19.1.3-2) would have additional terms (e.g., Equations (12.1.2-6)).

It is also to be noted that in some systems, the CB
N

 direction cosine matrix is replaced by an

equivalent attitude quaternion (using the quaternion equivalent to CB(tm)
Bm-1  in Equations (19.1.3-1)

- (19.1.3-2) for input - e.g., Section 7.1.2 and its subsections), and position location R is
represented by altitude and angular location over the earth's surface (using the
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CBm-1

N
 ΔRSF

Bm-1(tm) term in Equations (19.1.3-2) for input - e.g., Sections 7.3.1 - 7.3.3).

Equations (19.1.3-1) - (19.1.3-2) and subsequent results in this paper can be easily modified to
incorporate these alternative navigation parameter representations.

The unified approach to navigation parameter updating is based on the Equations (7.1.1.1-3),
(7.1.1.1-14), (7.2.2.2.1-5) and (7.3.3.1-9) closed-form solutions to the Equation (19.1.3-2)
attitude and specific force acceleration integrals under conditions when ω and aSF are constant:

CB(t)
Bm-1  =  I + f1(α) α ×  + f2(α) α × 2

(19.1.3-3)

ΔvSF
Bm-1(t)  =  I + f2(α) α ×  + f3(α) α × 2

 υ (19.1.3-4)

ΔRSF
Bm-1

(t) =  I + 2 f3(α) α ×  + 2 f4(α) α × 2
 Sυ (19.1.3-5)

α  ≡  ω dt
tm - 1

t

υ  ≡  aSF dt
tm - 1

t

Sυ  ≡  υ dt
tm - 1

t

(19.1.3-6)

with

f1(α)  =  
sin α

α
          f2(α)  =  

1 - cos α

α2

f3(α)  =  
1

α2
 1 - f1(α)           f4(α)  =  

1

α2
 

1
2

 - f2(α)

(19.1.3-7)

It should be noted that Equations (19.1.3-3) and (19.1.3-4) are actually valid in a more

general environment; Equation (19.1.3-3) is valid when the direction of ω is fixed even though
its magnitude may be changing (Section 7.1.1.1); Equation (19.1.3-4) is valid under the

previous ω condition and when the ratio of aSF to ω components is constant (Section 7.2.2.2.1).
Constant angular-rate/specific-force is a special case of the previous more general conditions.

19.1.4  THE UNIFIED MATHEMATICAL FRAMEWORK
BASED ON GENERAL MOTION

For the unified updating approach, under general motion conditions the form of Equations

(19.1.3-3) - (19.1.3-7) is maintained, but α, υ and Sυ are replaced by the rotation and

velocity/position translation vectors φ, η and ζ:
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CB(t)
Bm-1  =  I + f1(φ) φ ×  + f2(φ) φ × 2

 

ΔvSF
Bm-1(t)  =  I + f2(φ) φ ×  + f3(φ) φ × 2

 η
 

ΔRSF
Bm-1

(t) =  I + 2 f3(φ) φ ×  + 2 f4(φ) φ × 2
 ζ (19.1.4-1)

f1(φ)  =  
sin φ

φ
  =  1 - 

φ2

3 !
 + 

φ4

5 !
 -           f2(φ)  =  

1 - cos φ

φ2
  =  

1
2 !

 - 
φ2

4 !
 + 

φ4

6 !
 - 

f3(φ)  =  
1

φ2
 1 - f1(φ)   =  

1
3 !

 - 
φ2

5 !
 +      f4(φ)  =  

1

φ2
 

1
2

 - f2(φ)   =  
1

4 !
 - 

φ2

6 !
 + 

The rotation vector φ in (19.1.4-1) is as described by Laning and Jordan (References 15a and

14) as applied in Equation (7.1.1.1-4).  The translation vectors η and ζ are new concepts.  They
are defined implicitly to be vectors that when used as shown in Equations (19.1.4-1), yield the

correct result for ΔvSF
Bm-1(t) and ΔRSF

Bm-1
(t) under general motion.  This is also how the rotation

vector φ can be defined (i.e., the vector which when used as shown in (19.1.4-1), yields the

correct result for CB(t)
Bm-1).  The definition of "the correct result" is that obtained by direct

integration of generalized Equations (19.1.3-1).

19.1.5  DIFFERENTIAL EQUATIONS FOR THE
TRANSLATION AND ROTATION VECTORS

The definitions for the velocity/position translation vectors given in the previous paragraph

can be restated as η and ζ being vectors that equate the derivative of ΔvSF
Bm-1(t), ΔRSF

Bm-1
(t) in

(19.1.4-1) to the ΔvSF
Bm-1

(t), ΔRSF
Bm-1

(t) terms in (19.1.3-1).  Thus, η and ζ can be defined as the
solutions to:

C aSF  =  F η + F η F η  =  G ζ + G ζ (19.1.5-1)

C  =  I + f1 φ ×  + f2 φ × 2

F  =  I + f2 φ ×  + f3 φ × 2

G  =  I + 2 f3 φ ×  + 2 f4 φ × 2

(19.1.5-2)
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in which C is short-hand for CB(t)
Bm-1 and f1 - f4 are as defined in Equations (19.1.4-1).  The η, ζ

rate equations (i.e., η, ζ) are derived directly from (19.1.5-1) - (19.1.5-2).  Solving for η, ζ in
(19.1.5-1) gives:

η  =  F-1 C aSF - F η ζ  =  G-1 F η - G ζ (19.1.5-3)

Analytical expressions for the F, G inverses in (19.1.5-3) can be developed by assuming a

general form for F-1 and G-1 of I - a φ ×  + b φ × 2
, multiplying F and G by the general form,

equating the products to the identity matrix, substituting the identity φ × 3
 = - φ2

 φ × , and
solving for the a, b coefficients.  The result is

F-1  =  I - aη φ×  + bη φ× 2
G-1  =  I - aζ φ×  + bζ φ× 2

(19.1.5-4)

aη  =  
1
2

  bη  =  
1

φ2
 1 - 

φ sin φ

2 1 - cos φ
aζ  =  

f3

2 f2
2
 + f3

2
 φ2

bζ  =  
f3
2
 - f2 f4

f2
2
 + f3

2
 φ2

The derivative terms in (19.1.5-3) are:

F  =  f2 φ×  + f3 φ× 2
+ f2 φ×  + f3 φ×  φ×  + φ×  φ×

 

G  =  2 f3 φ×  + 2 f4 φ× 2
 + 2 f3 φ×  + 2 f4 φ×  φ×  + φ×  φ×

(19.1.5-5)

Using the fi definitions in (19.1.4-1) and fi = 
dfi

dφ
 φ with φ = 

1

φ
 φ  ⋅  ω from Equation (3.3.5-8), the

fi terms in (19.1.5-5) become:

f2 = 
f1 - 2 f2

φ2
 φ  ⋅  ω f3 = 

f2 φ2
 - 3 1 - f1

φ4
 φ  ⋅  ω f4 = - 

1 + f1 - 4 f2

φ4
 φ  ⋅  ω (19.1.5-6)

Substituting (19.1.5-2) and (19.1.5-4) - (19.1.5-5) with (19.1.5-6) into (19.1.5-3) yields

expanded expressions for η, ζ.  The final η, ζ form shown subsequently in Equations
(19.1.5-7) is obtained after a significant amount of matrix/vector algebraic expansion/
manipulation, trigonometric manipulation/compression of coefficients, and application of

Equations (3.1.1-16), (3.1.1-22), (3.2.2-8) and (3.3.5-8).  The rotation vector rate equation φ is

also included in (19.1.5-7) for comparison with η, ζ.  Several derivations for φ are available in
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the literature (e.g., Section 3.3.5 and References 2, 33, and 36a) in addition to Laning's original
derivation in Reference 15a.  Thus,

φ  =  ω + 
1
2

 φ × ω + f5 φ × φ × ω

η  =  aSF + 
1
2

 φ × aSF - φ × η  + f5 φ × φ × aSF - φ × η  + f3 φ × φ  × η

     + 
1
2

 f3 φ × φ × φ  × η - φ  ⋅  η φ × φ  + f6 φ   ⋅  φ × η  φ - f7 φ  ⋅  η φ × φ × φ (19.1.5-7)

ζ  =  η + 
1
6

 φ × η - 2 φ × ζ  + f8 φ × φ × η - 2 φ × ζ  + 2 f4 φ × φ  × ζ 

   - f9 φ × φ × φ  × ζ  - f10 φ2
 φ × η - 2 φ × ζ  + f11 φ  ⋅  φ × ζ  φ

   + f12 φ × φ × φ  × ζ - f13 φ  ⋅  ζ φ × φ × φ

In Equations (19.1.5-7), f3 and f4 are as in (19.1.4-1) and h1, h2, f5 - f13 are given by:

f5  = 
1

φ2
 1 - 

φ sin φ

2 1 - cos φ
f6  =  

1

φ2
 1 - 

1
2

 f1 - f2 f7  =  
1

φ4
  f1 + 2 f5 φ2

 - 1

f8  =  f3 - f2 h1 + f1 h2 f9  =  2 f4 h1 f10  =  
1

φ2
 f1 h1 - f2 1 - h2 φ2

 + 
1
6

f11  =  2 2 f4 h1 - f3 h2 f12  =  
1

φ4
 
2 h1

f3 
 1 - f1

2
  - f2 f2 + f3  φ2

(19.1.5-8)

f13  =  
1

φ2
 
2 h1

f3
 2 f3

2
 f2 + 1  - f2 f4 3 + 2 f2

h1  =  
f3

2 f2
2
 + f3

2
 φ2

h2  =  
f3
2
 - f2 f4

f2
2
 + f3

2
 φ2

Note the similarity in structure in Equations (19.1.5-7) for the φ, η and ζ equations out to

second order in products of φ, η, ζ (i.e., the first line of φ, η and ζ).  The leading inputs to η, ζ

are specific force acceleration aSF and its integral η; for φ the leading input is angular rate ω.  It

can be verified analytically that under constant ω and aSF, Equations (19.1.5-7) reduce exactly to
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φ = ω, η = aSF, ζ = υ (i.e., φ = α, η = υ, ζ = Sυ), hence, Equations (19.1.4-1) reduce exactly to
(19.1.3-3) - (19.1.3-7).  This is the expected result because Equations (19.1.4-1) were
formulated exactly from the (19.1.3-3) - (19.1.3-7) constant angular-rate/specific-force

solutions.  As noted following Equations (19.1.4-1), it is also true that φ and η reduce to ω and

aSF under the more general condition of constant ω direction and constant ratio of aSF to ω

components (of which constant ω, aSF is a particular case); ζ reduces to υ only under constant

ω and aSF.  Thus, other than the leading ω, aSF, υ inputs to φ, η, ζ in (19.1.5-7), the additional

terms (also known as coning for φ, sculling for η, and scrolling for ζ) measure contributions to

φ, η, ζ caused by departures from the previously defined particular angular-rate/specific-force

conditions.  In general, coning, sculling, scrolling effects are small compared to ω, aSF, υ.

The integral of Equations (19.1.5-7) over an m cycle provides φ, η and ζ for Equations
(19.1.4-1) which, with Equations (19.1.3-2), provides the unified structure for attitude, velocity
and position updating:

CBm

N
  =  CBm-1

N
 CBm

Bm-1

vm
N

  =  vm-1
N

 + Δvgm

N
 + CBm-1

N
 ΔvSFm

Bm-1

Rm
N

  =  Rm-1
N

 + vm-1
N

 Tm + ΔRgm

N
 + CBm-1

N
 ΔRSFm

Bm-1

 

CBm

Bm-1  =  I + f1(φm) φm ×  + f2(φm) φm × 2

ΔvSFm

Bm-1  =  I + f2(φm) φm ×  + f3(φm) φm × 2
 ηm

ΔRSFm

Bm-1  =  I + 2 f3(φm) φm ×  + 2 f4(φm) φm × 2
 ζm

φm  =  φ dt
tm - 1

tm

          ηm  =  η dt
tm - 1

tm

          ζm  =  ζ dt
tm - 1

tm

(19.1.5-9)

Equations (19.1.5-7) - (19.1.5-9) constitute a complete set for updating the attitude matrix,
the velocity and the position vectors.  The equations contain no approximations and are exact
under general motion.

Finally, as was noted previously, the Equations (19.1.5-7) with (19.1.5-8) translation vector
rate equations are exact simplified analytically equivalent versions of Reference 35b, Equations

(15) - (16) (based on refined analysis since publication of Reference 35b).  Note that the η, κ

translation vector rates in Equations (19.1.5-7) are functions of aSF
B

 and rotation vector rate φ
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which is a function of inertial angular rate ωIB
B

.  In Reference 40a using dual-quaternion/screw-

vector theory, Wu shows that the velocity translation vector rate is analytically equivalent to

the following further simplified exact version which is a function of aSF
B

 and angular rate ωIB
B

rather than φ:

η  =  aSF
B

 + 
1
2

 φ × aSF - ωIB
B

 × η  + f5 φ × φ × aSF
B

 - ωIB
B

 × η  - φ × ωIB
B

 × η

                + f14 φ  ⋅  η φ × φ × ωIB
B

(19.1.5-10)

with

f14  ≡  
φ + sin φ

2 φ3
 1 - cos φ

 - 
2

φ4

As of this writing, a further simplified version of the exact position translation vector rate
equation in (19.1.5-7) has yet to be found (Ref. 35c).

19.1.6  STRAPDOWN ALGORITHM DESIGN BASED ON
THE UNIFIED MATHEMATICAL FORMULATION

Strapdown system digital integration algorithms can be designed within the unified
framework by using exact Equations (19.1.5-9) as shown (i.e., without approximation) for the
attitude/velocity/position updating function, with high speed digital integration algorithms
designed for the rotation/translation vector inputs.  The similarity in structure between the
Equation (19.1.5-9) attitude, velocity and position update expressions simplifies conversion into
equivalent software instructions.  Approximate forms of Equations (19.1.5-7) - (19.1.5-8)
would be used as the design base for the rotation/translation vector digital integration
algorithms.  Examples of the latter operation are provided subsequently in the paper.

Structuring the algorithms such that they are primarily based on the Equation (19.1.5-9) exact
closed-form solutions significantly simplifies the algorithm software validation process.
Validation generally consists of operating the algorithms with simulated sensor inputs designed
to exercise all algorithm elements; then comparing algorithm outputs with equivalent data
generated from exact truth model dynamic simulators (e.g., Section 11.2).  For properly derived
and programmed algorithms, the comparison will yield identically zero difference, thereby
providing a clear unambiguous algorithm software validation.  Once validated, such algorithms
can be used as a generic set suitable for all strapdown inertial applications.  Associated
algorithm documentation is also simplified because algorithm derivations are classical analytical
formulations and explanations/numerical-error-analysis justification for application dependent
approximations are not required (because there are none).  Modern day strapdown system
computer technology (high throughput, long word length, floating point architecture) allows the
general use of such exact solution algorithms without penalty.
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The dominant portion of the rotation/translation vectors is the simple integral of angular-
rate/specific-force signals.  The additional coning, sculling, scrolling terms are much smaller in
magnitude.  Consequently, associated algorithm design and validation approaches can vary by
designer while still achieving reasonable performance results.  Validation of the
rotation/translation vector digital integration algorithms is achieved in two steps; 1. Verification
that Equation (19.1.5-7) approximations yield expected and acceptable errors under sample
dynamic inputs, and 2. Verification that under prescribed inputs, digital integration algorithms
based on the approximations yield the same numerical results as the equivalent continuous
integration process.  Step 1 is facilitated by using the continuous integration of Equations
(19.1.5-7) - (19.1.5-8) (or its Picard expansion series equivalent - Reference 19a) as an exact
reference solution.  A new Picard series expansion approach is described next for Equations
(19.1.5-7) - (19.1.5-8) in powers angular-rate/specific-force and their integrals.

19.1.7  EQUIVALENT DIFFERENTIAL EQUATIONS
BASED ON PICARD SERIES EXPANSION

Equations (19.1.5-7) are functions of the φ, η, and  ζ parameters being calculated as well as

measured inputs ω and aSF.  For accuracy studies and algorithm development it is convenient to

generate the equivalent version in terms of ω and aSF (and their integrals) only.  In strapdown
applications, the m cycle update time period is selected to be short enough that under maximum

expected angular rates, φ will be small, thereby assuring that the ω, aSF, η leading terms in
Equations (19.1.5-7) will be dominant.  This allows a new Picard iterative approach to be used

in generating a power series equivalent to (19.1.5-7) in terms only of ω, aSF and their integrals.
The Picard approach applied to Equations (19.1.5-7) can be outlined by first defining the state
vector

χ  ≡  φT
, ηT

, ζT T
(19.1.7-1)

We then define the ith Picard expansion solution as

χi  ≡  φi
T

, ηi
T

, ζi
T T

(19.1.7-2)

in which i is the Picard expansion series number and the corresponding order of accuracy in the

Picard expansion solution for χ and its components.  The "order of accuracy" is defined as the

maximum number of products of integrated ω, aSF input parameters α, υ, Sυ (defined in

(19.1.3-6)) appearing in the χi solution.  In defining the accuracy of ordering for this section,

α, υ are each of order one while Sυ is of order two.  In general, the integral of a parameter

increases its ordering by one (e.g., Sυ is the integral of first order parameter υ, hence, is of order

two; α, υ are the integrals of zero order parameters ω, aSF, hence, are of order one).
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Conversely, the derivative of a parameter will decrease its ordering by one.  We then define the
general Picard expansion equivalent to (19.1.5-7) as:

χi  =  Δχj∑
1

i

Δχj  = Δχj dt
tm - 1

t

χi  =  Δχj∑
1

i

(19.1.7-3)

in which Δχi is the change in χi from the i-1 value.  Each Δχi is given by:

Δχi  =  χi - χi-1 (19.1.7-4)

which is the recursive derivative form of the middle term in (19.1.7-3).  The χi term in
(19.1.7-4) is calculated based on Equations (19.1.5-7) which can be represented as:

χ  =  H(χ, ω, aSF) (19.1.7-5)

Using the previous ordering rule for derivatives, χi is calculated from (19.1.7-5) with χi-1 used

for χ in H, and with H only including terms up to order i-1 in α, υ, Sυ products:

χi  =  H χi-1, ω, aSF  
Truncated at i-1

(19.1.7-6)

Hence, (19.1.7-4) is equivalently:

Δχi  =  H χi-1, ω, aSF  
Truncated at i-1

- χi-1 (19.1.7-7)

The Picard solution components to fourth order for Δφi, Δηi and to fifth order for Δζi are
obtained by iterating on Equations (19.1.7-7) and (19.1.7-3) using (19.1.5-7) with (19.1.5-8)

for H.  For compatibility with φ, η fourth order and ζ fifth order Picard expansion accuracy, the

following first order truncated Taylor series φ expansions (i.e., in error by φ2
 and higher

powers) are utilized for the Equation (19.1.5-8) f coefficients appearing in the Picard expansion
components:

f3  ≈  
1
6

          f4  ≈  
1

24
          f5  ≈  

1
12

          f6  ≈  
1
8

          f8  ≈  
1
36

 

f9  ≈  
1

36
          f10  ≈  

1
540

           f11  ≈  
5

108
          f12  ≈  

1
30

(19.1.7-8)

The initial values for χi-1 and χi-1 in (19.1.7-7) (i.e., the i = 1 values) are zero (χi-1 = χ0 = 0 and

χ0 = 0 ) to start the iteration process.

Following the above procedure, Picard component solutions to Equations (19.1.5-7) -
(19.1.5-8) are obtained as:
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Δφ1  =  ω          Δφ1  =  α

Δφ2  =  
1
2

 α × ω

Δφ3  =  
1
2

 Δφ2 × ω + 
1
6

 α × Δφ2

Δφ4  =   
1
2

 Δφ3 × ω + 
1
3

 α × Δφ3  + 
1
6

 Δφ2 × Δφ2 + 
1
36

 α2
 Δφ2

(19.1.7-9)

Δη1  =  aSF          Δη1  =  υ
 

Δη2  =  
1
2

 α × aSF - ω × υ
 

Δη3  =  
1
2

 Δφ2 × aSF - ω × Δη2  + 
1
6

 α × Δη2 - Δφ2 × υ
 

Δη4  =  
1
2

 Δφ3 × aSF - ω × Δη3 + 
1
3

 α × Δη3 - Δφ3 × υ

             + 
1
6

 Δφ2 × Δη2 - Δφ2 × Δη2

             + 
1

18
 5 α × Δφ2  × υ - 4 α × Δφ2 × υ

             - 
5

18
 α  ⋅ Δ η2  α + 

1
36

 α2
 Δη2

(19.1.7-10)

Δζ1  =  0          Δζ1  =  0
 

Δζ2  =  υ          Δζ2  =  Sυ
 

Δζ3  =  Δη2 + 
1
6

 α × υ - 2 ω × Sυ
 

Δζ4  =  Δη3 + 
1
6

 Δφ2 × υ - 2 ω × Δζ3 - Δφ2 × Sυ + α × Δζ3

 

Δζ5  =  Δη4 + 
1
6

 
α × Δζ4 - 2 ω × Δζ4 - Δφ2 × Δζ3

+ Δφ2 × Δζ3 + Δφ3 × υ - Δφ3 × Sυ

               - 
1

12
 α × Δφ2 × Sυ  + 

11
90

 α × Δφ2  × Sυ

               + 
α2

60
 Δζ3 - Δη2  - 

1
6

 α α⋅ Δζ3 - Δη2

(19.1.7-11)
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The Picard expansion equivalent to (19.1.5-7) is then formed from (19.1.7-3) with (19.1.7-2)

and (19.1.7-9) - (19.1.7-11) for Δχj.  It is easily verified that under constant angular-
rate/specific-force (and the more general conditions noted following Equations (19.1.5-8)), that

(19.1.7-2) - (19.1.7-3) and (19.1.7-9) - (19.1.7-11) reduce to φ = Δφ1 = ω,  η = Δη1 = aSF, and

ζ = Δζ2 = υ, the correct exact solution under these conditions.  Thus, under general motion,

Δφi, Δηi, Δζi+1 for i > 1 measure deviations of φ, η, ζ (i.e., coning, sculling, scrolling effects)
from the previously defined conditions.

19.1.8  POTENTIAL CONTINUOUS FORM HIGH SPEED ALGORITHMS

Strapdown computational algorithms are formulated as the discrete numerical integration
equivalent of a continuous differential equation integral.  Within the unified framework,
computational algorithms are formulated as the digital equivalent of integrated simplified
versions of the rotation/translation vector rate equations in (19.1.5-7) or the Picard equivalent
(19.1.7-2) - (19.1.7-3) with (19.1.7-9) - (19.1.7-11).  For the remainder of this paper, the
simplified versions will be denoted as "continuous form algorithm rate equations".  At the
conclusion of the paper we will briefly discuss formulation of algorithms to numerically
perform the equivalent integration of the continuous form rate equations.

The simplest algorithm rate equations (Set a) formed from (19.1.5-7) neglect all but the
leading terms:

φAlgo/a  =  ω ηAlgo/a  =  aSF ζAlgo/a  =  υ  = aSF dt
tm - 1

t

(19.1.8-1)

This algorithm set is based on the assumption that in the rotating sensor frame, ω and aSF can
be approximated as constants.  Under such conditions Equations (19.1.5-7) reduce exactly to
the Equations (19.1.8-1) form.

Under more dynamic conditions we might try a truncated form (Set b) of Equations
(19.1.5-7) - (19.1.5-8) with (19.1.7-8) such as (Reference 22):

φAlgo/b  =  ω + 
1
2

 φAlgo/b × ω
 

ηAlgo/b  =  aSF + 
1
2

 φAlgo/b × aSF - φAlgo/b × ηAlgo/b

 

ζAlgo/b  =  ηAlgo/b + 
1
6

 φAlgo/b × ηAlgo/b - 2 φAlgo/b × ζAlgo/b

(19.1.8-2)
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Based on truncated versions of (19.1.7-9) - (19.1.7-11) with (19.1.7-2) - (19.1.7-3) (the

Picard expansion equivalent to (19.1.5-7) - (19.1.5-8)) we could also try the second order φ, η

solution and third order ζ solution (Set c):

φAlgo/c  =  ω + 
1
2

 α × ω
 

ηAlgo/c  =  aSF + 
1
2

 α × aSF - ω × υ
 

ζAlgo/c  =  ηAlgo/c + 
1
6

 α × υ - 2 ω × Sυ

(19.1.8-3)

The φAlgo/c approximation in (19.1.8-3) was used in Section 7.1.1.1 and References 11, 11a,

14, 28a and 33 for which the second term was defined as "coning".  The second term in ηAlgo/c
has been defined as sculling and was the basis for the high speed portion of two-speed velocity

update algorithms in Section 7.2.2.2 and References 28a and 33.  The second term in ζAlgo/c is
an alternative version of "scrolling" defined for two-speed high-resolution positioning
algorithms (Section 7.3.3).

To go with Equations (19.1.8-3), we might also try a variation on ΔvSF
Bm-1 in Equations

(19.1.5-9) based on Equation (19.1.3-4) (and its angular-rate/specific-force approximations

described following Equation (19.1.3-7)), for the term multiplying η:

ηAlgo/c  =  υ + ΔηAlgo/c          ΔηAlgo/c  ≡  
1
2

 α × aSF - ω × υ  dt
tm - 1

t

ΔvSFAlgo/d

Bm-1   =  I + f2(α) α ×  + f3(α) α × 2
 ηAlgo/c

 

       =  υ + f2(α) I + f3(α) α ×  α × υ  + I + f2(α) α ×  + f3(α) α × 2
 ΔηAlgo/c

 

       ≈  υ + f2(α) I + f3(α) α ×  α × υ  + ΔηAlgo/c

(19.1.8-4)

This is the algorithm developed in Sections 7.2.2.2 and 7.2.2.2-1 which provides the exact

solution for ΔvSF
Bm-1 under the angular-rate/specific-force conditions described following

Equation (19.1.3-7).  The middle term in (19.1.8-4) was defined as "exact" velocity rotation
compensation.
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As in (19.1.8-4), we might also try a version of ΔRSF
Bm-1 in Equations (19.1.5-9) based on the

original Equation (19.1.3-5) approximation of constant angular-rate/specific-force for the term

multiplying ζ:

ζAlgo/c  =  Sυ + ΔζAlgo/c          ΔζAlgo/c  = ηAlgo/c + 
1
6

 α × υ - 2 ω × Sυ  dt
tm - 1

t

(19.1.8-5)

ΔRSFAlgo/d

Bm-1
 =  I + 2 f3(α) α ×  + 2 f4(α) α × 2

 ζAlgo/c

     =  Sυ + 2 f3(α) α ×  + 2 f4(α) α × 2
 Sυ + I + 2 f3(α) α ×  + 2 f4(α) α × 2

 ΔζAlgo/c
 

     ≈  Sυ + 2 f3(α) I + 2 f4(α) α ×  α × Sυ  + ΔζAlgo/c

A variation on (19.1.8-5) is based on the following development:

Sα  ≡  α dt
tm - 1

t

ΔζAlgo/c  =  ΔηAlgo/c + 
1
6

 α × υ - 2 ω × Sυ

     =  ΔηAlgo/c + 
1
6

 α × υ - Sα × aSF - ω × Sυ + 
d
dt

 Sα × υ - α × Sυ (19.1.8-6)

ΔζAlgo/d  ≡  ΔηAlgo/c + 
1
6

 α × υ - Sα × aSF - ω × Sυ  dt
tm - 1

t

ζAlgo/c  =  Sυ + ΔζAlgo/c  =  Sυ + 
1
6

 Sα × υ - α × Sυ  + ΔζAlgo/d

Substitution in (19.1.8-5), approximating 1/6 ≈ f3(α), recognizing α f4(α) to be small

compared to f3(α) so that f3(α) I  ≈  f3(α) I + f4(α) α × , then yields:

ΔRSFAlgo/d

Bm-1
  =  I + 2 f3(α) α ×  + 2 f4(α) α × 2

 Sυ + 
1
6

 Sα × υ - α × Sυ  + ΔζAlgo/d

 

     ≈  Sυ + 2 f3(α) I + 2 f4(α) α ×  α × Sυ  + f3(α) Sα × υ - α × Sυ  + ΔζAlgo/d

(19.1.8-7)
     ≈  Sυ + 2 f3(α) I + f4(α) α ×  α × Sυ
               + f3(α) I + f4(α) α ×  Sα × υ - α × Sυ  + ΔζAlgo/d
 

     =  Sυ + f3(α) I + f4(α) α ×  Sα × υ + α × Sυ  + ΔζAlgo/d
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Note that under constant angular-rate/specific-force, the 
1
6

 Sα × υ - α × Sυ  term in (19.1.8-7)

is identically zero, hence, approximations for this term in (19.1.8-7) have no impact on

ΔRSFAlgo/d

Bm-1
 accuracy under such conditions.  The (19.1.8-7) result is the algorithm developed in

Sections 7.3.3 and 7.3.3.1 that provides the exact solution for ΔRSF
Bm-1 under constant angular-

rate/specific-force.  The middle term in (19.1.8-7) was defined as "exact" position rotation

compensation and ΔζAlgo/d as computed in (19.1.8-6) was defined as the scrolling term for
high-resolution position updating in a dynamic environment.

19.1.9  ALGORITHM ACCURACY ASSESSMENT

The accuracy of the ΔvSF
Bm-1, ΔRSF

Bm-1
 algorithms in (19.1.8-4), (19.1.8-5) and (19.1.8-7) is

limited by the approximations of using α for φ and not including ΔηAlgo/c, ΔζAlgo/c in the
middle rotation compensation terms.  No further discussion of the effect on accuracy is
warranted since the associated error is easily eliminated by using the Equations (19.1.5-9) form
directly.

For the φ, η, ζ continuous form algorithms in (19.1.8-1) - (19.1.8-3), the error can be
calculated as the algorithm output minus the equivalent true output represented by Equations
(19.1.7-2) - (19.1.7-3) and (19.1.7-9) - (19.1.7-11).  Thus, the error in Equations (19.1.8-1)

algorithm set a is approximately the negative of Δφ2, Δη2, Δζ3 in (19.1.7-9) - (19.1.7-11):

δφAlgo/a  ≈  - Δφ2          δηAlgo/a  ≈  - Δη2          δζAlgo/a  ≈  - Δζ3 (19.1.9-1)

As expected, the algorithm rate errors are first order for δφ, δη and second order for δζ (i.e.,

second order errors in δφ, δη and third order errors in δζ).

To assess the accuracy of Equations (19.1.8-2) algorithm rate set b, we develop an order
higher Picard iterative solution for (19.1.8-2) (similar to the approach used to generate
(19.1.7-9) - (19.1.7-11)) and compare the solution with the equivalent of Equations (19.1.7-2) -
(19.1.7-3) and (19.1.7-9) - (19.1.7-11).  The result is:

δφAlgo/b  ≈  - 
1
6

 α × Δφ2

 

δηAlgo/b  ≈  - 
1
6

 α × Δη2 + 2 Δφ2 × υ
 

δζAlgo/b  ≈  δηAlgo/b - 
1
6

 Δφ2 × Sυ + α × Δζ3 - Δη2

(19.1.9-2)
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As expected, the algorithm rate errors are second order in δφ, δη and third order in δζ (i.e., third

order errors in δφ, δη and fourth order errors in δζ).

Because Equations (19.1.8-3) algorithm set c was formed as φ2, η2, ζ3, we expect the error

rate in set c to be approximately the negative of Δφ3, Δη3, Δζ4 in Equations (19.1.7-9) -
(19.1.7-11):

δφAlgo/c  ≈  - Δφ3          δηAlgo/c  ≈  - Δη3          δζAlgo/c  ≈  - Δζ4 (19.1.9-3)

On review, the set c error rates in (19.1.9-3) appear to be second order for δφ, δη and third

order for δζ as expected.  However, upon further analysis it can be demonstrated that based on a

time ordered expansion (in contrast with the α, υ, ζ ordered Picard expansion discussed thus

far), Equations (19.1.9-3) actually have one order smaller errors in δφ, δη than would be

expected.  To demonstrate, we represent the ω, aSF inputs to Equations (19.1.9-3) by the time
ordered Taylor series expansion:

ω  =  ω0 + ω0 t - tm-1  + ω0 
t - tm-1

2

2 !
 + ω0 

t - tm-1
3

3 !
 +

aSF  =  a0 + a0 t - tm-1  + a0 
t - tm-1

2

2 !
 + a0 

t - tm-1
3

3 !
 +

(19.1.9-4)

for which

α  =  ω0 t - tm-1  + ω0 
t - tm-1

2

2 !
 + ω0 

t - tm-1
3

3 !
 + 

υ  =  a0 t - tm-1  + a0 
t - tm-1

2

2 !
 + a0 

t - tm-1
3

3 !
 + 

Sυ  =  a0 
t - tm-1

2

2 !
 + a0 

t - tm-1
3

3 !
 + a0 

t - tm-1
4

4 !
 + 

(19.1.9-5)

Upon substitution of (19.1.9-4) - (19.1.9-5) in (19.1.9-3) we find for particular terms:
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Δφ2  =  
1
4

 ω0 × ω0 t - tm-1
2 + 

Δφ2  =  
1

12
 ω0 × ω0 t - tm-1

3 + 

 

Δη2  =  
1
4

 ω0 × a0 - ω0 × a0  t - tm-1
2 + 

Δη2  =  
1

12
 ω0 × a0 - ω0 × a0  t - tm-1

3 + 

(19.1.9-6)

Because Δφ2, Δφ2 in (19.1.9-6) are second and third order in t - tm-1  powers respectively, we

would expect Δφ3 in (19.1.9-3) to be third order in t - tm-1 .  Similarly for Δη2, Δη2 in

(19.1.9-6) and Δη3 in (19.1.9-3).  However, from (19.1.9-6) we also see that:

Δφ2  =  
3

t - tm-1
 Δφ2 +        Δη2 = 

3
t - tm-1

 Δη2 + (19.1.9-7)

Upon substituting (19.1.9-7) in the (19.1.9-3) Δφ3, Δη3 equations we discover that the third

order t - tm-1  terms cancel so that Δφ3, Δη3 are actually accurate to fourth order.  Thus,

δφAlgo/c and δηAlgo/c in (19.1.9-3) are one order more accurate than originally expected; i.e.,

fourth order in powers of t - tm-1 .  Hence, φAlgo/c and ηAlgo/c in (19.1.8-3) which are first

order in α, υ products, are more accurate in maneuvering environments than might be expected
from first order algorithms.

19.1.10  CONTINUOUS FORM ALGORITHM APPROXIMATION ERRORS

In this section we determine analytical expressions for evaluating the errors remaining in
algorithm sets a, b and c as a function of generalized angular-rate/specific-force input maneuver
and vibration profile characteristics.

19.1.10.1  ALGORITHM ERRORS UNDER MANEUVERS

Maneuver profiles can be characterized in general by the Taylor series expansion forms of
Equations (19.1.9-4).  Under Equation (19.1.9-4) maneuver inputs, Equations (19.1.9-1) -

(19.1.9-2) were used to assess the φ, η, ζ errors in algorithm sets a and b, and Equations

(19.1.9-3) were used to assess the ζ algorithm set c error.  As discussed in the previous section,

the φ, η errors for algorithm set c have higher than expected accuracy based on generalized
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Equation (19.1.9-4) maneuver profile characteristics.  As such, rather than (19.1.9-3), the

following more accurate equations were used for evaluating the φ, η algorithm set c errors under
maneuvering conditions:

δφAlgo/c  =  φAlgo/c - Δφi∑
1

4

  =  - Δφ3 - Δφ4

δηAlgo/c  =  ηAlgo/c - Δηi∑
1

4

  =  - Δη3 - Δη4

(19.1.10.1-1)

To evaluate the φ, η, ζ errors in terms of maneuver profile parameters, substitute (19.1.9-4) -
(19.1.9-5) in (19.1.7-9) - (19.1.7-11), the result into (19.1.9-1) - (19.1.9-3) and (19.1.10.1-1) as

discussed above, and analytically integrate to obtain δφ, δη, δζ.  After much routine algebra, the
final result is:

δφAlgo/am  =  - 
1

12
 ω0 × ω0 Tm

 3
 +   =  - φConem

δφAlgo/bm  =  - 
1

96
 ω0 × ω0 × ω0  Tm

 4
 + (19.1.10.1-2)

δφAlgo/cm  =  - 
1

720
 3 ω0 × ω0  × ω0 - ω0 × ω0  × ω0 + ω0

2 
 ω0 × ω0  Tm

 5
 + 

_______________________________________________________________________________________________________

δηAlgo/am  =  - 
1

12
  ω0 × a0 - ω0 × a0  Tm

 3
 +    =  - ηScullm

δηAlgo/bm  =  - 
1

96
 ω0 × ω0 × a0 - ω0 × a0  + 2 ω0 × ω0  × a0  Tm

 4
 + (19.1.10.1-3)

δηAlgo/cm  =  - 
1

720
 

ω0
2
 I - 3 ω0 ×  ω0 × a0 - ω0 × a0

- ω0 × ω0  × a0 - ω0 × a0 - ω0 × a0  × ω0

+ 2 a0 ⋅ ω0  I - 3 a0 ×  ω0 × ω0

 Tm
 5

 + 

___________________________________________________________________________________

δζAlgo/am  =  - 
1

72
 2 ω0 × a0 - 3 ω0 × a0  Tm

 4
 +   =  - ζScrollm

δζAlgo/bm = - 
1

4320
 ω0 × 13 ω0 × a0  - 21 ω0 × a0  + 36 ω0 × ω0  × a0  Tm

 5
 + 

δζAlgo/cm  =  - 
1

4320
 ω0 × 8 ω0 × a0 - 12 ω0 × a0  - 6 ω0 × ω0  × a0  Tm

5
 + 

(19.1.10.1-4)

From Equations (19.1.10.1-2) - (19.1.10.1-4) we see as expected that algorithm a (which
approximates the coning, sculling, scrolling effects as negligible) is in error by minus the
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coning, sculling, scrolling terms.  The algorithm c error result for φ in Equations (19.1.10.1-2)
matches that derived by a similar method in Reference 11a, providing confidence in results

obtained.  For the φ, η algorithm b versus c errors, it is obvious that the algorithm c solution is
superior because, as discussed previously, its errors are fifth order in Tm versus algorithm b

whose errors are fourth order in Tm.  Note also that the ζ error for algorithm c is smaller than
for algorithm b based on the magnitude of coefficients for like terms.  We can conclude that for
maneuver type profiles characterized by Equations (19.1.9-4), algorithm c is more accurate than
algorithm b.

19.1.10.2  ALGORITHM ERRORS UNDER VIBRATION

For analysis of algorithm errors under vibration, the following sinusoidal model was used to
characterize angular rate/specific-force:

ω  =  θ0 Ω cos Ω t ux + θ0 Ω sin Ω t uy aSF  =  aSF0 sin Ω t uy (19.1.10.2-1)

for which,

α  =  θ0 sin Ω t - sin Ω tm-1  ux + θ0 cos Ω tm-1 - cos Ω t  uy

υ  =  aSF0 
1

Ω
  cos Ω tm-1 - cos Ω t  uy (19.1.10.2-2)

Sυ  =  aSF0 
1

Ω2
 Ω  t - tm-1  cos Ω tm-1 - sin Ω t - sin Ω tm-1  uy

To evaluate the φ, η, ζ errors in terms of the (19.1.10.2-1) - (19.1.10.2-2) vibration profile
parameters, substitute (19.1.10.2-1) - (19.1.10.2-2) in (19.1.7-9) - (19.1.7-11), the result into

(19.1.9-1) - (19.1.9-3), and analytically integrate to obtain δφ, δη, δζ.  After much routine
algebra, the final result is:

δφAlgo/am  =  - 
1
2

 θ0
2
 β - sin β  uz  =  - φConem

δφAlgo/bm  =  
1

24
 θ0

3
 g1 ΔS Ω  

m
 + 3 β - sin β  sin 

β
2

 ΔC Ω  

m
 ux

- 
1

24
 θ0

3
 g1 ΔC Ω  

m
 - 3 β - sin β  sin 

β
2

 ΔS Ω  

m
 uy

(19.1.10.2-3)

δφAlgo/cm  =  
1

24
 θ0

3
 4 g1 ΔS Ω  

m
 ux - 

1
24

 θ0
3
 4 g1 ΔC Ω  

m
 uy
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δηAlgo/am  =  - 
1
2

 θ0 aSF0 
1

Ω
 β - sin β  uz  =  - ηScullm

δηAlgo/bm  =  - 
1

24
 θ0

2
 aSF0 

1

Ω
 g1 ΔS Ω  

m
 + 3 β - sin β  sin 

β
2

 ΔC Ω  

m
 ux

- 
1

24
 θ0

2
 aSF0 

1

Ω
 g1 ΔC Ω  

m
 - 3 β - sin β  sin 

β
2

 ΔS Ω  

m
 uy

(19.1.10.2-4)

δηAlgo/cm  =  
1

24
 θ0

2
 aSF0 

1

Ω
 8 g1 ΔS Ω  

m
 ux - 

1
24

 θ0
2
 aSF0 

1

Ω
 4 g1 ΔC Ω  

m
 uy

___________________________________________________________________

δζAlgo/am = - 
1

12
 θ0 aSF0 

1

Ω2
 g2 + g3 ΔS 2 Ω  

m
 + g4 ΔC 2 Ω  

m
 uz = - ζScrollm (19.1.10.2-5)

for which the following definitions apply:

ΔS ρ  

m
  ≡  

sin ρ tm - sin ρ tm-1

2 sin 
1
2

 ρ Tm

 

ΔC ρ  

m
  ≡  

cos ρ tm - cos ρ tm-1

2 sin 
1
2

 ρ Tm

β  ≡  Ω Tm

g1  ≡  4 sin 
1
2

 β - 3 β - sin β  cos 
1
2

 β

g2  ≡  3 β2
 - 2 1 - cos β + β sin β

g3  ≡  β sin β - 2 1 - cos β
g4  ≡  - 3 sin β + β 2 + cos β

(19.1.10.2-6)

and ρ is a generalized frequency parameter.  As an exercise, the curious reader may wish to

derive equations for δζAlgo/bm and δζAlgo/cm to go with δζAlgo/am in (19.1.10.2-6).  Since

ζAlgo/a is acceptable for almost all applications (based on numerical evaluation of

(19.1.10.2-5)), it is believed that either ζAlgo/b or ζAlgo/c has sufficient accuracy to satisfy
accuracy requirements for the few remaining high precision positioning applications, and that
accuracy differences between the two should be a non-factor.

From Equations (19.1.10.2-3) - (19.1.10.2-5) we see as expected, that algorithm a (which
approximates the coning, sculling, scrolling effects as negligible) is in error by minus the
coning, sculling, scrolling terms.

Algorithms b and c for φ, η and algorithm a for ζ contain ΔS  

m
, ΔC  

m
 terms that need

interpretation.  First, we note that the effect of δφAlgom, δηAlgom, δζAlgom error is to accumulate
into attitude, velocity, position error at the m cycle rate.  For slow maneuvers, the resulting



A UNIFIED MATHEMATICAL FRAMEWORK FOR STRAPDOWN ALGORITHM DESIGN     19-27

errors can be approximated as the sum of δφAlgom, δηAlgom, δζAlgom over a succession of m
cycles (e.g., from m = 1 to M beginning at time t0).  In Equations (19.1.10.2-3) - (19.1.10.2-5),

ΔS  

m
, ΔC  

m
 are the only parameters that change with m, hence, summing δφAlgom, δηAlgom,

δζAlgom is equivalent to summing ΔS  

m
, ΔC  

m
 with appropriate multiplication coefficients used

to evaluate cumulative attitude, velocity, position error.  From the definition of ΔS  

m
, ΔC  

m
 in

(19.1.10.2-6), the sums are:

ΔS ρ  

m∑
1

M

  =  
sin ρ tM - sin ρ t0

2 sin 
1
2

 ρ TM

          ΔC ρ  

m∑
1

M

  =  
cos ρ tM - cos ρ t0

2 sin 
1
2

 ρ TM

(19.1.10.2-7)

Now consider an aliased (folded) frequency parameter ρ′ defined implicitly by

ρ Tm  =  2 K π + ρ′ Tm in which K is the nearest integer number of ρ frequency cycles in an m
cycle.  Substitution finds for Equation (19.1.10.2-7) terms:

ρ tM  =  ρ t0 + ρ M Tm  =  ρ t0 + M 2 K π + ρ′ Tm   =  2 M K π + ρ t0 + ρ′ tm - t0

2 sin 
1
2

 ρ TM  =  2 cos Kπ sin 
1
2

 ρ′ Tm

     =  ρ′ Tm cos Kπ 
sin 

1
2

 ρ′ Tm

1
2

 ρ′ Tm

  =  ρ′ Tm cos Kπ f1 
1
2

 ρ′ Tm

in which f1( ) is the Taylor series defined in Equations (19.1.4-1).  Then (19.1.10.2-7) becomes:

ΔS ρ  

m∑
1

M

  =  G1 t  dt
t0

tM

          ΔC ρ  

m∑
1

M

  =  G2 t  dt
t0

tM

G1 t   =  J(ρ′) cos ρ t0 + M ρ′ t - t0           G2 t   =  - J(ρ′) sin ρ t0 + M ρ′ t - t0

J(ρ′)  =  
1

Tm cos Kπ f1 
1
2

 ρ′ Tm

(19.1.10.2-8)

Equations (19.1.10.2-8) show that summing ΔS  

m
, ΔC  

m
 generates sinusoidal waveforms at the

folding frequency ρ′ that represent the integral of sinusoids of frequency ρ′ and amplitude J(ρ′).
Note that J(ρ′) has no singularities for any ρ′ value over its defining range from - π to + π.  At
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ρ′ = 0, G1 and G2 become constant at J(0) cos ρ t0 and - J(0) sin Ω t0, and the ΔS  

m
, ΔC  

m
 sums

increase linearly with tM, the limit condition for the integral of sinusoids at frequency ρ′ → 0

having an initial phase angle of ρ t0.

The previous exercise can now be used to interpret the ΔS  

m
, ΔC  

m
 terms in Equations

(19.1.10.2-3) - (19.1.10.2-5) as they impact attitude, velocity, position error.  For example,

consider δφAlgo/cm in Equations (19.1.10.2-3).  The process of summing δφAlgo/cm into attitude

error is the Equation (19.1.10.2-8) effect multiplied by the (19.1.10.2-3) coefficient 
1
24

 θ0
3
 4 g1.

Hence, the resulting attitude error is the integral of a sinusoid at folding frequency Ω′ with

amplitude 
1

24
 θ0

3
 4 g1 J(Ω′), or with (19.1.10.2-8) for J(Ω′), the equivalent to the integral of a

sinusoidal angular rate vibration of amplitude 
θ0

3
 g1

6 Tm f1 
1
2

 Ω′ Tm

 at frequency Ω′.  For δηAlgo/cm

in Equations (19.1.10.2-4), the resulting y component velocity error is equivalent to the integral

of a sinusoidal acceleration vibration of amplitude 
θ0

2
 aSF0 g1

6 Ω Tm f1 
1
2

 Ω′ Tm

 and frequency Ω′.

The preceding discussion showed that the effect of vibration on φ, η algorithms b and c is to

generate a sinusoidal error in attitude and velocity at the folding frequency Ω′.  A comparison of

the φ, η algorithm b and c error equations in (19.1.10.2-3) and (19.1.10.2-4) also reveals some

interesting characteristics as a function of the vibration frequency parameter β = Ω Tm.  Both the

b and c algorithm errors contain the g1 term (a function of β), however, the magnitude is 4

times higher for algorithms c (actually 8 times higher for the x component of η error).  On the

other hand, algorithm b errors contain an additional β function 3 β - sin β  sin 
β
2

 not contained

in the algorithm c error.  It can be shown that the combined effect of g1 and 3 β - sin β  sin 
β
2

on algorithm b per axis error magnitude is given by g1
2
 + 3 β - sin β  sin 

β
2

 2

.  Thus, the

ratio of algorithm c to algorithm b error can be analyzed as the ratio of 4  g1  (or 8  g1  ) for the
algorithm c error divided by the previous algorithm b function: c / b error ratio =
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4  g1  / g1
2
 + 3 β - sin β  sin 

β
2

 2

.  Figure 19.1.10.2-1 shows this ratio as a function of

β / 2 π (which equals 1 when the vibration frequency in Hz equals the m cycle frequency).
Also shown in Figure 19.1.10.2-1 is 2 times the same ratio corresponding to the 8 g1 error

effect for the x component of the η algorithm c error noted earlier.

Figure 19.1.10.2-1 shows that the error in algorithm c is smaller than for algorithm b for
vibration frequencies lower than 0.35  times the m cycle update frequency (and lower than 0.2

times the m cycle update frequency for the 2 × c / b error ratio).  Otherwise, algorithm b errors
are smaller, except for small narrow regions at 1.5, 2.5, 3.5, etc. times the m cycle frequency for

which algorithm c errors are again smaller.  Since φ, η algorithm b and c errors are cyclic with
typically small amplitudes, the previous discussion may be of only academic interest.

Figure 19.1.10.2-1  Algorithm c Vs Algorithm b Error In φ, η Under Vibration

19.1.11  DIGITAL ALGORITHM DEVELOPMENT

Digital algorithms would be used in a strapdown system computer to implement integration
of the rotation and velocity/position translation vector rate equations.  The process is
complicated by the form of input data typically provided by the strapdown angular rate sensors
and accelerometers; increments of integrated angular rate and specific force acceleration over the
time period for input data sampling.  Selection of the input data sampling period is part of the
digital algorithm design process and is based on accuracy considerations in expected dynamic
environments.  In general two methods can be considered:
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1. Divide the m cycle into a number of increments corresponding to the order of digital
algorithm to be used for the digital integration (Reference 22).  Input sensor integrated
increments for these samples and generate an integral solution for the rotation/translation
vectors over the m cycle using the samples.

2.  Perform the rotation/translation vector digital integrations at a higher speed (l cycle rate)
compared to the m cycle rate.  Base the l cycle integration updates on sensor samples
taken at the l cycle rate or at a higher rate within the l cycle.  The number of sensor
samples used for the integration update would correspond to the order of the digital
algorithm being implemented (Sections 7.1.1.1.1, 7.2.2.2.2 and 7.3.3.2 and References
11, 14, 28a, 29 and 33).  The sensor samples used for l cycle updates could be from
current and past l cycles, from higher rate samples within an l cycle, or a combination
thereof.

For Approach 1, the sensor sampling/processing rate is determined by the digital integration
algorithm order and the m rate.  The m rate would be set high enough to generate sufficient
sensor inputs for an accurate navigation solution under high frequency dynamic input

conditions.  For Approach 2, the m rate is designed to maintain a small value of φ under
maximum angular rate conditions, thereby protecting approximations in the continuous form

algorithms (e.g., 100 Hz to maintain φ less than 0.04 rad under a maximum 4 rad/sec angular

rate).  High frequency dynamic inputs (i.e., vibration which is generally of small φ amplitude) is
accurately processed by setting a high enough l cycle rate (e.g., 3 KHz to measure random
vibrations from 20 to 500 Hz).  Thus, Approach 2 benefits from the advantage afforded by a
two-speed algorithm structure when computer through-put limitations are an issue; only the l
rate must increase under high frequency vibration to maintain accurate navigation; the m rate
and its updating operations can be maintained at a lower frequency without impacting accuracy.

Chapter 7 provides examples of two-speed strapdown inertial navigation algorithms that
were designed using Approach 2.  In Sections 7.1.1.1.1, 7.2.2.2.2 and 7.3.3.2 the higher speed
algorithms developed for attitude, velocity and position updating were based on linearly
ramping angular rate and specific force acceleration (as defined by Equations (7.2.2.2.2-6)).
The same methodology use in Sections 7.2.2.2.2 and 7.3.3.2 for velocity/position updating can
be directly applied in the derivation of digital algorithms for calculating the velocity/position

translation vectors (ηm and ζm) for Equations (19.1.5-9).  For example, for the set c continuous
form differential Equations (19.1.8-3), digital algorithms based on the integral of (19.1.8-3)
over a computer m cycle for linearly varying angular rate and specific force derive as:



A UNIFIED MATHEMATICAL FRAMEWORK FOR STRAPDOWN ALGORITHM DESIGN     19-31

Δαl, αl  =  
Integrated Angular Rate Sensor Outputs
From Algorithm Equations (7.1.1.1.1-17)

Δυl, υl  =  
Integrated Accelerometer Outputs
From Algorithm Equations (7.2.2.2.2-14)

δΔηScull  =  
1
2

 α l-1 + 
1
6

 Δαl-1  × Δυ l + υ l-1 + 
1
6

 Δυl-1  × Δα l

ΔSαl  =  αl-1Tl + 
Tl

12
 5 Δαl + Δαl-1 ΔSυl  =  υl-1Tl + 

Tl

12
 5 Δυl + Δυl-1  

ΔδζScrlAl  =  δηScull-1 Tl + 
1
2

 αl-1 - 
1
12

 Δαl - Δαl-1  × ΔSυl - υl-1 Tl

                    + 
1
2

 υl-1 - 
1

12
 Δυl - Δυl-1  × ΔSαl - αl-1 Tl

ΔδζScrlBl  =  
1
3

 Sυl-1 - 
1
8

 Δυl Tl  × Δαl

        + 
1
6

 αl-1 - 
3
4

 Δαl + 
1
4

 Δαl-1  × υl-1 + 
5
12

 Δυl + 
1
12

 Δυl-1  Tl

        + 
1

1440
 Δαl - Δαl-1  × Δυl - Δυl-1  Tl

(19.1.11-1)

ΔδζScrll  =  ΔδζScrlAl + ΔδζScrlBl

υl  =  υl-1 + Δυl         υm  =  υl(tl = tm)        υl  =  0   At  t = tm-1.

Sυl  =  Sυl-1 + ΔSυl        Sυm  =  Sυl(tl = tm)        Sυl  =  0   At  t = tm-1

δηScull  =  δηScull-1 + ΔδηScull δηSculm  =  δηScull(tl = tm)

δηScull  =  0   At  t = tm-1

δζScrll  =  δζScrll-1 + ΔδζScrll δζScrlm  =  δζScrll(tl = tm)

δζScrll  =  0   At  t = tm-1

ηm  =  υm + δηm ζm  =  Sυm + δζScrlm

where

δηScul  =  Sculling portion of the velocity translation vector η produced by other than
the integral of aSF (See Equations (19.1.5-7) or (19.1.8-3)).  This term is
identically the same as the sculling term in Equation (7.2.2.2-2).  It measures

the contribution to η from rectified dynamic angular-rate/specific-force and is
zero (as described in Section 7.2.2.2) under non-rotating B Frame angular-
rate/specific-force vectors with constant angular-rate/specific-force magnitude
ratio.
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δζScrl  =  Scrolling portion of the position translation vector ζ produced by other than
the double integral of aSF (See Equations (19.1.5-7) or (19.1.8-3)).  This
term is analogous (but not identical) to the scrolling term described in

Section 7.3.3.  It measures the contribution to ζ from rectified dynamic
angular-rate/specific-force and is zero under constant B Frame angular-
rate/specific-force (as is the scrolling term of Section 7.3.3).

ΔδηScull  =  Change in δηScull  over an l cycle.

ΔδζScrll  =  Change in δζScrl  over an l cycle.

ΔδζScrlAl  =  Portion of ΔδζScrll  produced by the δηScul  sculling term in the Equations

(19.1.5-7) or (19.1.8-3) η input to ζ.

ΔδζScrlBl  =  Portion of ΔδζScrll  
produced by all but the δηScul  sculling term in the

Equations (19.1.5-7) or (19.1.8-3) η input to ζ.

The remaining terms in Equations (19.1.11-1) are as defined in Chapter 7 and can be located
using the Parameter Index in the back of the book.

19.1.12  SIMULATION TESTING FOR EQUATION VALIDATION

The analytical design process utilized in preparing this paper included several re-derivations
of all analytical results by the author and independently, by Kelly M. Roscoe of Applied
Strapdown Analytics, until both derivations agreed.  Because of the complexity of analytical
results, digital simulation testing was also conducted for added confidence.  The simulation tests
were constructed to provide a numerical accuracy assessment of the key derived equations
compared with reference numerical solutions of higher or equal accuracy.  Tests were designed
to verify exact solution Equations (19.1.5-7) - (19.1.5-9), Picard solution Equations (19.1.7-3)
with (19.1.7-9) - (19.1.7-11), maneuver induced error Equations (19.1.10.1-2) - (19.1.10.1-4),
and vibration induced error Equations (19.1.10.2-3) - (19.1.10.2-5).  The validation process and
results obtained are described in the Section 19.1.14 appendix.

19.1.13  SUMMARY

A unified approach has been described for the design of two-speed attitude/velocity/position
integration algorithms in strapdown inertial systems.  The unified architecture is embodied in
Equations  (19.1.5-7) - (19.1.5-9) and is based on the Jordan/Bortz/Laning attitude updating
structure; the Euler rotation vector is used for attitude updating; translation vectors are used for
velocity/position updating; the rotation/translation vectors are calculated by integrating
rotation/translation vector rate equations over each attitude/velocity/position update cycle.  Picard
expansion equivalents for the exact Equation (19.1.5-7) rotation/translation vector rate equations
are presented in Equations (19.1.7-9) - (19.1.7-11).  Based on (19.1.5-7) or (19.1.7-9) -
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(19.1.7-11), simplified continuous form algorithms are described for strapdown system
application, the most significant being the first order set in Equations (19.1.8-3) that has higher
than expected accuracy in maneuvering environments under low frequency vibrations.  Closed-
form equations are presented in (19.1.10.1-2) - (19.1.10.1-4) and (19.1.10.2-3) - (19.1.10.2-6)
for evaluating the accuracy of the simplified continuous form algorithms under specified
trajectory maneuver and vibration profile characteristics.

19.1.14  APPENDIX TO SECTION 19.1 - EQUATION VALIDATION

This appendix describes the digital simulation tests used to validate exact solution Equations
(19.1.5-7) - (19.1.5-9), Picard solution Equations (19.1.7-3) with (19.1.7-9) - (19.1.7-11),
maneuver induced error Equations (19.1.10.1-2) - (19.1.10.1-4), and vibration induced error
Equations (19.1.10.2-3) - (19.1.10.2-5).  For all tests, integral solutions for the navigation
parameters were generated using a trapezoidal integration algorithm with a 0.1 microsec cycle
time.  Depending on the test, the m cycle time period was set to 0.1 or 0.01 sec (i.e., a 10 Hz or
100 Hz navigation parameter update rate).

19.1.14.1  EXACT SOLUTION VALIDATION

For this test, the exact solution for CBm

Bm-1, ΔvSFm

Bm-1, ΔRSFm

Bm-1 obtained using (19.1.5-7) -

(19.1.5-9) by integrating φ, η, ζ was compared with an exact reference solution generated by

direct integration of CB(t)
Bm-1

, ΔvSF
Bm-1

(t), ΔRSF
Bm-1

(t) in Equations (19.1.3-1).  Sensor inputs were
generated from the following unrealistically severe integrated angular rate and specific force
acceleration profiles:

αx = - 1.1 τ + 0.9 τ2
 - 0.6 τ3

 + 1.1 τ4
 - 0.1 τ5

 + 0.2 sin 2.6 π τ + 0.3 1 - cos 2.6 π τ   rad
 

αy = - 0.5 τ + 1.0 τ2
 + 0.3 τ3

 + 0.7 τ4
 + 0.2 τ5

 - 0.5 sin 2.6 π τ + 0.6 1 - cos 2.6 π τ   rad
 

αz = 0.3 τ - 1.2 τ2
 + 2 τ3

 - 0.9 τ4
 + 0.4 τ5

 + 0.8 sin 2.6 π τ - 0.9 1 - cos 2.6 π τ   rad

(19.1.14.1-1)

υx = 3.5 τ - 2.3 τ2
 + 1.5 τ3

 + 6.1 τ4
 - 2.7 τ5

 - 8 sin 2.6 π τ + 5 1 - cos 2.6 π τ   fps
 

υy = 7.3 τ + 1.5 τ2
 - 2.7 τ3

 - 3.6 τ4
 + 1.9 τ5

 + 4 sin 2.6 π τ + 3 1 - cos 2.6 π τ   fps
 

υz = - 9 τ - 5.6 τ2
 + 4.6 τ3

 + 4.3 τ4
 - 3.5 τ5

 - 7 sin 2.6 π τ - 6 1 - cos 2.6 π τ   fps
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in which τ is normalized time since tm-1 as a fraction of the m cycle time interval (i.e.,

τ ≡ 
t - tm-1

Tm
).  The ω, aSF inputs to the navigation parameter rate equations were calculated as the

difference between successive digital integration cycles of Equations (19.1.14.1-1) divided by
the 0.1 microsec integration cycle time.

From its definition, τ in Equations (19.1.14.1-1) runs from 0 to 1 as t runs from tm-1 to tm.

Note in (19.1.14.1-1) that the maximum values for the α and υ sinusoidal terms are of the same

order of magnitude over an m cycle (i.e., from τ = 0 to τ = 1), and the maximum values for the

α and υ quadratic expansion terms (at τ = 1, i.e.,  t = tm) are of the same order of magnitude as

the sinusoidal term amplitudes.  Thus, from τ = 0 to τ = 1 (i.e., t from tm-1 to tm), all terms for

α and for υ are of the same order of magnitude, hence, contribute noticeably to the composite

navigation parameter results at τ = 1 (i.e., t =  tm).  Note also that all sinusoids go through 1.3

cycles (2.6/2) over an m cycle which is not an integer multiple of the m cycle period.

The exact and reference solutions were generated using an m cycle time period of 0.1 sec (10
Hz).  After one m cycle the reference solution (from Equations (19.1.3-2)) was as follows
(shown rounded):

φm  =  1.34,  2.16,  1.48 T  rad          ΔvSFm

Bm-1  =  -15.7,   -2.93,   -0.426 T  fps

ΔRSFm

Bm-1  =  -0.203,   -0.133,   -1.50 T  ft
(19.1.14.1-2)

In (19.1.14.1-2), φm is the rotation vector equivalent to CBm

Bm-1 generated by integrating CB(t)
Bm-1

 in

Equation (19.1.3-1).  The CBm

Bm-1 to φm conversion formula is given in Section 3.2.2.2.

The maximum magnitudes of the Equations (19.1.14.1-2) parameters during the 0.1 sec
integration period, and the time when the maximum occurred were as follows (shown
rounded):

φmax  =  2.94 rad at 0.1 sec          ΔvSFmax  =  24.9 fps at 0.0559 sec

ΔRSFmax  =  1.52 ft at 0.1 sec
(19.1.14.1-3)

The error in the navigation parameters determined with Equations (19.1.5-7) - (19.1.5-9)
(calculated by subtraction of the integrated Equations (19.1.3-1) reference results) is shown
below as a fraction of the Equation (19.1.14.1-3) magnitudes.
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δφm / φmax  =  0.750 E-13,  0.153 E-11,  -0.257 E-11 T  parts

δΔvSFm

Bm-1 / ΔvSFmax  =  -0.102 E-11,   0.675 E-13,   -0.101 E-11 T  parts (19.1.14.1-4)

δΔRSFm

Bm-1 / ΔRSFmax  =  0.370 E-11,  0.211 E-12,  0.355 E-12 T  parts

The minor error is attributed to computer round-off and/or trapezoidal integration error.  Results
clearly indicate that under extreme angle rotation conditions, the Equations (19.1.5-7) -
(19.1.5-9) continuous form velocity/position algorithms are alternate exact representations of
velocity/position determined by integrating Equations (19.1.3-1).

19.1.14.2  PICARD SOLUTION VALIDATION

For this test, the Picard expansion solution for φ, η, ζ obtained by integrating (19.1.7-3) with

(19.1.7-9) - (19.1.7-11) was compared with an exact reference solution for φ, η, ζ generated by
integrating Equations (19.1.5-7) with (19.1.5-8).  The test included preliminary simulation
verification of the Equations (19.1.7-8) approximations for f under small angle input conditions.
As in the exact solution test, sensor inputs for the Picard test were generated using Equations

(19.1.14.1-1) except that to reduce the magnitude of the rotation vector φ for compatibility with

Picard expansion accuracy assumptions, the α integrated rate input components were set to one

thirtieth of the (19.1.14.1-1) values.  Equations (19.1.14.1-1) were used as shown for the υ
integrated specific force acceleration components.  The ω, aSF inputs to the navigation parameter
rate equations were calculated as the difference between successive digital integration cycles of
Equations (19.1.14.1-1) divided by the 0.1 microsec integration cycle time.

The Picard solution test was initially conducted using an m cycle time period of 0.1 sec (10
Hz).  After one m cycle the reference navigation solution (from the integral of Equations
(19.1.5-7) - (19.1.5-8) - previously shown to be exact) was as follows (shown rounded):

φm  =  0.0264,   0.0690,   0.00674 T  rad        ηm  =  5.26,   11.5,   -23.9 T  fps

ζm  =  0.552,   0.591,   -1.15 T  ft
(19.1.14.2-1)

The maximum magnitude of the Equations (19.1.14.2-1) parameters during the 0.1 sec
integration period and the time when the maximum occurred were as follows (shown rounded):

φmax = 0.0837 rad at 0.0476 sec          ηMax = 27.1 fps at 0.1 sec

ζmax = 1.40 ft at 0.1 sec
(19.1.14.2-2)

The error in the equivalent integrated Picard expansion solution Equations (19.1.7-3) with
(19.1.7-9) - (19.1.7-11) is shown next as a fraction of the Equation (19.1.14.2-1) magnitudes.
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δφPicm / φmax  =  0.294 E-6,  -0.262 E-6,  -0.172 E-6 T  parts

δηPicm / ηmax  =  - 0.199 E-5,   -0.208 E-5,   0.531 E-5 T  parts (19.1.14.2-3)

δζPicm / ζ max =  -0.345 E-5,  -0.279 E-5,  -0.196 E-5 T  parts

The Equation (19.1.14.2-3) results demonstrate that the Picard expansion solution in Equations
(19.1.7-3) with (19.1.7-9) - (19.1.7-11) is an accurate approximation of the integrated Equations
(19.1.5-7) - (19.1.5-8) exact solution.  For the Picard expansion order in (19.1.7-9) -

(19.1.7-11) (fourth order for φ, η and fifth order for ζ) , the normalized error magnitudes

should be on the order of φmax
4

 which, for φmax = 0.101 rad in (19.1.14.2-2), is consistent with
Equation (19.1.14.2-3) results.

To obtain further confidence in the validity of Equations (19.1.7-3) with (19.1.7-9) -
(19.1.7-11), the previous test was repeated with a more representative m cycle time period of
0.01 sec (100 Hz) using the Equations (19.1.14.1-1) input integrated angular-rate/specific-force

profile but with the α components at one three hundredth of the (19.1.14.1-1) values and the υ
components at one tenth the (19.1.14.1-1) values (i.e., 10% of the previous 10 Hz test values).
The maximum magnitudes of the integrated Equation (19.1.5-7) - (19.1.5-8) reference
navigation parameters during the 0.01 sec integration period and the time when the maximum
occurred were as follows (shown rounded):

φmax = 0.00837 rad at 0.00476 sec          ηmax = 2.71 fps at 0.01 sec

ζmax = 0.0140 ft at 0.01 sec
(19.1.14.2-4)

The equivalent to the (19.1.14.2-3) results after one 0.01 sec m cycle was as follows
(normalized by the (19.1.14.2-4) maximum values):

δφPicm / φmax  =  0.305 E-10,  -0.259 E-10,  -0.183 E-10 T  parts

δηPicm / ηmax  =  -0.159 E-8,   -0.232 E-8,   0.506 E-8 T  parts (19.1.14.2-5)

δζPicm / ζmax =  -0.314 E-8,  -0.306 E-8,  -0.212 E-8 T  parts

The (19.1.14.2-5) results clearly indicate that for a 100 Hz algorithm update rate, the
integrated Equations (19.1.7-3) with (19.1.7-9) - (19.1.7-11) Picard solution very closely
matches the exact integrated Equations (19.1.5-7) - (19.1.5-8) reference solution under severe
dynamic conditions.  Furthermore, Equations (19.1.14.2-5) were generated using one tenth the

input magnitude as Equations (19.1.14.2-3) with the η, ζ errors in Equations (19.1.14.2-5) then
becoming (1/10)3 of the errors in Equations (19.1.14.2-3).  This demonstrates that the

normalized Picard expansion errors vary by the third power of φ which is equivalent to the un-

normalized errors being fourth order in powers of φ, η, ζ, the expected result for the Picard
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expansion in Equations (19.1.7-9) - (19.1.7-11).  Interestingly, the normalized φ errors in

(19.1.14.2-5) are (1/10)4 of the errors in Equations (19.1.14.2-3), hence, the un-normalized φ

errors are fifth order in powers of φ (i.e., one order more accurate than what would be expected

from the Picard expansion for φ in (19.1.7-9)).  This unusual result can be traced to the

Equation (19.1.7-8) approximation of f5 ≈ 
1
12

 whose error is in powers of φ2
, not powers of φ.

The effect on the Equation (19.1.7-9) expansion is to eliminate the fourth order error.

19.1.14.3  MANEUVER INDUCED ERROR EQUATION VALIDATION

For this test series, the Equation (19.1.10.1-2) - (19.1.10.1-4) estimates for φ, η, ζ algorithm
error under maneuvers were compared with a reference algorithm error generated directly as the
algorithm solution minus the Picard expansion solution obtained by integrating (19.1.7-3) with
(19.1.7-9) - (19.1.7-11).  Note - Equations (19.1.10.1-2) - (19.1.10.1-4) were derived as the
algorithm solution minus (19.1.7-3) (with (19.1.7-9) - (19.1.7-11)), hence, the Picard solution
is the proper reference for analytical derivation accuracy assessment.  The tests were conducted
using the following angular-rate/specific-force input dynamic maneuver profile:

ωx  =  1.1 + 0.9 t - tm-1  - 0.6 
t - tm-1

2

2 !
 + 1.1 

t - tm-1
3

3 !
 - 0.1 

t - tm-1
4

4 !
   rad/sec

ωy  =  - 0.5 + 1.0 t-tm-1  + 0.3 
t - tm-1

2

2 !
 + 0.7 

t - tm-1
3

3 !
 + 0.2 

t - tm-1
4

4 !
   rad/sec

ωz  =  0.3 - 1.2 t-tm-1  + 2 
t - tm-1

2

2 !
 - 0.9 

t - tm-1
3

3 !
 + 0.4 

t - tm-1
4

4 !
   rad/sec

(19.1.14.3-1)

aSFx  =  3.5 - 2.3 t-tm-1  + 1.5 
t - tm-1

2

2 !
 + 6.1 

t - tm-1
3

3 !
 - 2.7 

t - tm-1
4

4 !
   ft/sec2

aSFy  =  7.3 + 1.5 t-tm-1  - 2.7 
t - tm-1

2

2 !
 - 3.6 

t - tm-1
3

3 !
 + 1.9 

t - tm-1
4

4 !
    ft/sec2

aSFz  =  - 9 - 5.6 t-tm-1  + 4.6 
t - tm-1

2

2 !
 + 4.3 

t - tm-1
3

3 !
 - 3.5 

t - tm-1
4

4 !
   ft/sec2

Note in Equations (19.1.14.3-1) compared to the generic Equations (19.1.9-4) form (and the
input to Equations (19.1.10.1-2) - (19.1.10.1-4)), that the coefficients in (19.1.14.3-1)

multiplying the 
t - tm-1

k

k !
  terms represent the kth derivative of the angular-rate/specific-force

components.  They were selected to be of the same order of magnitude to assure comparable
participation in (19.1.10.1-2) - (19.1.10.1-4) and its "reference" equivalent.
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Using (19.1.14.3-1) and a 0.1 second integration time, the exact integrated Equations
(19.1.5-7) solution parameters and their maximum values at 0.1 seconds were as follows:

φ  =  0.114, -0.0448, 0.0245 T rad          η  =  0.339, 0.737, -0.927 T fps

ζ  =  0.0171, 0.0367, -0.0459 T ft (19.1.14.3-2)

φmax = 0.125 rad at 0.1 sec ηmax = 1.23 fps at 0.1 sec ζmax = 0.0613 ft at 0.1 sec

The algorithm errors under the (19.1.14.3-1) input were calculated at 0.1 sec as the algorithm
solution minus the integrated Equations (19.1.7-3) with (19.1.7-9) - (19.1.7-11) Picard solution.

As an example, for φ, η algorithm c, the Equations (19.1.10.1-2) and (19.1.10.1-3) error vector
component and magnitude results at 0.1 sec were as follows:

δφAlgcEr  =  0.121E-6, -0.944E-7, 0.528E-7 T rad

δηAlgcEr  =  0.598E-6, -0.801E-7, -0.117E-6 T fps (19.1.14.3-3)

δφAlgcErMag = 0.162E-6 rad δηAlgcErMag = 0.614E-6 fps

The Equations (19.1.10.1-2) - (19.1.10.1-3) analytical predictions of the φ, η algorithm c
errors were then calculated and compared to the (19.1.14.3-3) reference model equivalent.  The
results were as follows (normalized by the (19.1.14.3-3) magnitude values):

δ δφAnalAlgcEr  / δφAlgcErMag  =  0.0442,  -0.0490,  0.0304 T  parts
(19.1.14.3-4)

δ δηAnalAlgcEr  / δηAlgcErMag  =  0.159,  0.0823,  0.0811 T  parts

The Equations (19.1.14.3-4) results demonstrate that for the 0.1 sec integration time (equivalent
to m cycle sampling at a 10 Hz cycle rate), Equations (19.1.10.1-2) provides a good analytical

estimate of the φ, η algorithm c errors.

The above test was repeated using the Equations (19.1.14.3-1) input with a 0.01 second
integration time.  Results were as follows:

φmax = 0.0125 rad ηmax = 0.121 fps ζmax = 0.000606 ft

δφAlgcErMag = 0.172E-11 rad δηAlgcErMag = 0.690E-11 fps
(19.1.14.3-5)

δ δφAnalAlgcEr  / δφAlgcErMag  =  0.00441,  -0.00483,  0.00291 T  parts

δ δηAnalAlgcEr  / δηAlgcErMag  =  0.0144,  0.00802,  0.00743 T  parts
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Equations (19.1.14.3-5) show that for the 0.01 sec integration time (equivalent to a 100 Hz m
cycle rate), Equations (19.1.10.1-2) - (19.1.10.1-3) provides a factor of 10 improved accuracy

in estimating φ, η algorithm c error compared to the 0.1 sec m cycle result.  This is consistent
with what is expected when the m cycle rate is increased by a factor of 10 for the same angular-
rate/specific-force input.

The above results are typical for Equations (19.1.10.1-2) - (19.1.10.1-4), providing further
confidence in the validity of these equations for estimating algorithm error.

19.1.14.4  VIBRATION INDUCED ERROR EQUATION VALIDATION

Algorithm error Equations (19.1.10.2-3) - (19.1.10.2-5) were validated using the Equation

(19.1.10.2-1) vibration profile with θ0 = 0.001 rad, aSF0 = 3 gs, and Ω spanning a range of
vibration frequencies less and greater than the m cycle update frequency.  Two sets of tests were
conducted.  For the first, Equations (19.1.10.2-3) - (19.1.10.2-5) analytical predictions were
compared to the equivalent results generated by direct integration of the algorithm rate equations
minus the equivalent integrated Equations (19.1.5-7) exact solution (previously verified).  The
comparison results were similar to those for the Picard accuracy test discussed earlier, providing
confidence in the validity of (19.1.10.2-3) - (19.1.10.2-5).  For the second test series,
(19.1.10.2-3) - (19.1.10.2-5) analytical predictions were compared with the integrated Equation
(19.1.9-1) - (19.1.9-3) equivalent results.  Since Equations (19.1.10.2-3) - (19.1.10.2-5) were
derived from Equations (19.1.9-1) - (19.1.9-3) without approximations, the second test was
expected to provide an exact match of (19.1.10.2-3) - (19.1.10.2-5) with integrated (19.1.9-1) -
(19.1.9-3).  It did within computer round-off error (similar to the exact solution test result
discussed earlier), providing further confidence in Equations (19.1.10.2-3) - (19.1.10.2-5).
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19.2  ANALYTICAL MODELING OF SENSOR QUANTIZATION IN
STRAPDOWN INERTIAL NAVIGATION ERROR EQUATIONS

Although generally not considered a major contributor to system inaccuracy, inertial sensor
quantization error, if not properly modeled, can lead to erroneously large estimates of its impact
on inertial navigation system performance.  This paper describes analytical methods for
modeling inertial sensor quantization in strapdown inertial system error parameter propagation
and measurement equations.  Error propagation equations are derived in classical differential
error state dynamic and discrete difference format.  It is shown how the attitude, velocity and
sensor error parameters in these equations must be modified to enable proper sensor
quantization error modeling as white noise and to account for differences in attitude, velocity,
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position update frequencies.  The discrete difference error equation form is used to develop
values for attitude/velocity measurement noise covariances and for spectral densities of white
quantization noise terms in the differential error propagation equations.  The paper includes a
general discussion of how quantization white noise spectral densities should be computed for
the differential error propagation equations for compatibility with two-speed attitude, velocity
and position updating algorithms.  Validity limits for white noise modeling approximations and
methods for reducing quantization noise are discussed.  Numerical examples are provided.

The material presented in this paper is a composite and extension of material presented in
other sections of this book.  It was originally published by the author under the Section 19.2 title
in the AIAA Journal Of Guidance, Control, And Dynamics, Vol. 25, No. 5, September-October
2002, pp. 833-842 (Ref. 35a).

19.2.1  NOMENCLATURE FOR SECTION 19.2

19.2.1.1  SYMBOLOGY

δ    =  Error in ( ).

( )  =  Value for ( ) calculated in the strapdown system computer error.  The ( ) parameter

without the    is considered the nominal error free value.

E ( )  =  Expected value operator.

19.2.1.2  COORDINATE FRAMES

B  = "Body" coordinate frame aligned with strapdown sensor assembly axes at a general time.

B( )  =  Frame B's orientation (relative to the I Frame) at computer cycle time ( ).

I  =  Inertially non-rotating coordinate frame.

19.2.1.3  PARAMETERS

A  =  Error state dynamic matrix.

αl  =  Integrated angular rate from time l-1 to l.

aSF
B

, aSF
I

  =  Sensor assembly specific force acceleration vector in B and I Frame
coordinates (i.e., total acceleration minus gravity, the acceleration sensed by
accelerometers in the B Frame).

χαl   = Instantaneous angular rate sensor random quantization error at cycle l having a value

between - εα / 2 and + εα / 2 with equal probability (i.e., uniformly distributed).
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χαl , χυm  = Angular rate sensor and accelerometer quantization error vectors at update times l
and m.

χαψvm  = Angular rate sensor pulse quantization error that occurs once each m cycle in both
the attitude and velocity error equations.

δαl  =  Defined by Equation (19.2.8-11).

δα*l  =  δαl exclusive of sensor quantization error.

δαQuant  = Angular rate sensor white noise quantization error associated with the integral of
angular rate sensor outputs.

δ αQuantl   =  Angular rate sensor integrated rate increment quantization error for
computer cycle l.

δαQuantl  =  Quantization error vector contribution to δαl.

δαψQuant, δαψvQuant  =  White quantization noise vector equivalents to ζαψm and χαψvm.

δaQuant  =  Accelerometer output quantization random error vector.

δaRand  = Accelerometer output white noise error vector (the integral is known as random
walk on velocity).

δaSF
B

  =  Accelerometer output error vector in B Frame coordinates.

δ aSF
B

*  =  δaSF
B

 exclusive of accelerometer quantization error.

δ KBias  =  Angular rate sensor output bias error vector.

δ KScal/Mis  =  Angular rate sensor output scale-factor/misalignment error matrix.

δLBias  =  Accelerometer output bias error vector.

δLScal/Mis  =  Accelerometer output scale-factor/misalignment error matrix.

δ ωB
  =  Angular rate sensor output error vector in B Frame coordinates.

δ ωB
*  =  δ ωB

 exclusive of angular rate sensor quantization error.

δ ωQuant  =  Angular rate sensor output quantization random error vector.

δ ωRand  = Angular rate sensor output white noise error vector (the integral is known as
random walk on attitude).

Δψl
I
*, Δψm

I
*  =  Change in ψI

* over an l and m cycle.
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δ R( )
I

  =  δ RI at computer cycle ( ).

δυm  =  Defined by Equation (19.2.8-7).

δυ*m  =  δυm exclusive of sensor quantization error.

δυQuant  = Accelerometer white noise quantization error associated with the integral of
accelerometer outputs.

δυQuantm  =  Quantization error vector contribution to δυm.

δυvQuant, δυvRQuant  = Independent accelerometer white noise quantization noise vectors

equivalent to δαψQuant and δαψvQuant for the angular rate sensors.

δ vI*  = Revised form of δ vI that neglects the instantaneous CB
I

 δυQuant part of the δ vI

quantization error.  From Equation (19.2.7-13), δ vI* still contains accelerometer
quantization error input under applied angular rates.

δ v( )
I

, δ v( )
I

*  =  δ vI, δ vI* at computer cycle ( ).

Δtl, Δtm, Δtn  = Time intervals for the l, m, n attitude, velocity, position computer update
cycles.

εα  =  Angular rate sensor output pulse size.

ευ  =  Accelerometer output pulse size.

fl, fm, fn  =  Frequencies for the l, m, n attitude, velocity, position computer update
cycles.

gI  =  Earth’s mass attraction gravity vector projected on I Frame axes.

GP  =  Process noise dynamic coupling matrix.

I  =  Identity matrix.

j  = Computer cycle time index for low speed portion of two-speed attitude updating algorithm.

l  = General computer cycle time index, computer cycle time index for single speed attitude
updating algorithm, computer cycle time index for high speed portion of two-speed attitude
updating algorithm.

m, n  =  Computer cycle time indices for velocity and position updating.

nP  =  Vector of independent white process noise components.

ωB
  =  Sensor assembly angular rate vector relative to non-rotating inertial space as projected on

B Frame axes (i.e., the angular rate sensed by strapdown angular rate sensors).
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φBj-1  =  Misalignment error angle vector associated with CB
Bj-1

 in Bj-1 Frame coordinates,
considering the Bj-1 Frame to be misaligned relative to the B Frame.

φj
Bj-1

, φl
Bj-1

  =  φBj-1 at computer cycles j and l.

ψI
  = Misalignment error angle vector associated with CB

I
 in I Frame coordinates, considering

the I Frame to be misaligned relative to the B Frame.

ψI
*  =  Revised form of ψI

 that neglects the instantaneous CB
I

 δ αQuant part of the ψI

quantization error.  From Equation (19.2.7-7), ψN
* still contains cumulative angular

rate sensor quantization error effects under applied angular rates.

ψ( )
I

, ψ( )
I

*  =  ψI
, ψI

* at computer cycle ( ).

Qαψ, Qαψv  =  White noise spectral density matrices associated with δαψQuant and δαψvQuant.

QυR, QυvR  =  White noise spectral density matrices associated with δυRQuant and δυvRQuant.

r  =  Ratio of the l cycle attitude update frequency over the m cycle velocity update frequency
(assuming that the l cycle frequency is an integer multiple of the m cycle frequency).

RI  = Position vector from earth’s center to the navigation system projected on I Frame axes.

s  =  Ratio of the m cycle velocity update frequency over the n cycle position update frequency
(assuming that the m cycle frequency is an integer multiple of the n cycle frequency).

uαQuant  = Variance about the mean of the angular rate sensor pulse quantization noise

uncertainty (uαQuant  ≡  E χα
2

  =  εα
2

 / 12 ).

vI  = Velocity (rate of change of the position vector R) relative to non-rotating inertial space
(i.e., the I Frame) as projected on I Frame axes.

VMα, VMυ  = Covariances of the χα and χυ attitude / velocity quantization measurement noise

vectors.

x  =  Error state vector.

ξαl   =  Instantaneous angular rate sensor quantization error at computer cycle l.

ζαψm  =  Cumulative angular rate sensor pulse quantization error over an m cycle

(exclusive of the χαψvm error), and which appears only in the attitude error equation.
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19.2.2  INTRODUCTION

In many strapdown inertial navigation systems, the inertial sensor outputs (from angular rate
sensors and accelerometers) represent integrated samples of the sensor inputs over each system
computer navigation parameter update cycle.  In practice, this is achieved by counting output
pulses from the sensors during each update cycle.  Each sensor pulse represents the occurrence
of a specified increment of integrated sensor input.  One can imagine the attitude and velocity
parameters in the strapdown computer being generated as a repetitive summing operation on the
sensor count samples.  For perfect inertial sensors, the complete integrals (i.e., attitude and
velocity) so generated will be correct, but only to within a pulse, because the instantaneous pulse
output will in general, not occur exactly at the computer sample time instant.  The associated
error effect is called pulse quantization.

Integration algorithms in the strapdown computer process the sensor outputs to continuously
calculate attitude, velocity and position navigation parameters.  Due to errors in the sensor
outputs, the navigation parameters develop error build-up with time.  Error equations associated
with strapdown inertial systems generally describe navigation parameter error propagation
characteristics in response to initial uncertainties and inertial sensor errors.  Typical sensor error
models have included scale factor, misalignment, bias errors, and sensor induced random
output noise, with the random noise modeled as white process noise such that its integral gives
rise to a "random walk" (i.e., random walk on attitude for angular rate sensors and random
walk on velocity for accelerometers).  Sensor quantization represents an additional random error
source that usually has less impact on system inaccuracy than the random walk type noise.  As
such, it is often neglected altogether or included as part of random walk noise.  For incremental
integrating sensors such as described previously, the latter random walk modeling
approximation is incorrect and can lead to erroneously large growth rates in system error
parameter propagation equations.

This paper develops an analytical model for inertial sensor quantization noise and how it can
be properly represented in strapdown inertial system attitude, velocity and position error
equations.  The model is useful for assessing the magnitude of quantization noise induced
system error and if significant, how to include it in system navigation parameter error
propagation and measurement equations.  System error propagation models are developed both
as continuous form differential equations and as discrete difference equations.  For each it is
shown how the attitude, velocity and sensor error parameters must be modified to enable proper
quantization error modeling as white noise for compatibility with standard error state dynamic
equation formatting.

The discrete form system error propagation model is used to develop analytical expressions
for attitude/velocity measurement quantization noise covariances and for spectral densities of
white quantization noise terms in the differential error propagation equations (including
correlations that exist between attitude and velocity errors - from angular rate sensor
quantization noise inputs, and between velocity and position error - from accelerometer
quantization noise inputs).  The discrete difference form also reveals that the continuous form
error propagation equation derivation implicitly assumed equal attitude, velocity and position
parameter update frequencies in the strapdown system computer, and how the continuous form
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error equations should be modified for the general case of different navigation parameter update
frequencies.

A general discussion is provided of how quantization white noise spectral densities should be
computed for compatibility with two-speed attitude, velocity and position updating algorithms.
The paper includes examples illustrating the computation of numerical values for quantization
noise effects and how incorrect modeling can lead to significant mischaracterization of the effect
of quantization noise on system accuracy.  Validity regions are discussed regarding modeling
quantization error as random noise.  Finally, compensation techniques are described for
reducing quantization error if necessary to meet system accuracy requirements.

19.2.3  SENSOR QUANTIZATION ERROR MODEL

An analytical model for quantization error can be developed (as in Section 18.4.7.3) by
considering how integrated sensor output increments are formed as the summing of pulses in
the system computer from the end of navigation parameter update cycle l-1 to the end of cycle l.
Imagine a situation in which the pulse count from the l-1 cycle time happened to begin
instantaneously after a pulse was emitted (call it the “start” pulse).  For an angular rate sensor,
the pulse count from this time forward would be a true indication of integrated angular rate (i.e.,
attitude change) at any instant that a pulse has been received and counted.  Now consider that the
l-1 cycle time pulse count is initiated a small time interval before the “start pulse” in which the
small time interval is less than the local time interval between pulses (See Figure 19.2.3-1).  The

εα
1
2

εα
ξα

χα

Start
Pulse

Last
Pulse

Integrated
Angular Rate

Start Pulse 
Count

Time

Figure 19.2.3-1  Start Of Pulse Count Sampling

first pulse that is counted (i.e., the “start” pulse) will be in error (a quantization error) because it
is registered as a full pulse when in fact the time period for the count was less than a full pulse
period.  The maximum error under this condition occurs when a pulse is received (and counted)
instantaneously after the l-1 time instant, and will equal one pulse.  Thus, the quantization error
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introduced at l-1 can range in magnitude from zero to one pulse with a mean value of half a
pulse (for a uniform statistical quantization error distribution).  The sign of the quantizationerror
will be the sign of the instantaneous pulse rate (positive or negative).  The pulse count from this
point forward will add no additional quantization error until the l cycle is reached to halt the
incremental

If the count is halted at a finite time interval following a pulse occurrence (call it the “end”
pulse), the pulse count at l will experience an additional quantization error because the integrated
angular rate since the end pulse has not been registered in the count  (See Figure 19.2.3-2).   The

count.

εα
1
2

εα
ξα

χα

Next
Pulse

End
Pulse

Integrated
Angular Rate

End Pulse 
Count

Time

Figure 19.2.3-2  End Of Pulse Count Sampling

error will be maximum at one pulse magnitude if the count is halted at the instant prior to
receipt of the next pulse.  Thus, the added quantization error at l will be in the range of zero
tominus one pulse with a mean value of minus half a pulse.  The sign of the error in this case
will be the negative of the instantaneous pulse rate at l.

The previous discussion is the basis for the following angular rate sensor pulse count
quantization error model:

δ αQuantl  =  ξαl 
 - ξαl -1 ξαl  =  

εα
2

 Sign (αl) + χαl (19.2.3-1)

We assume that for the most part, δ αQuantl  will have the same sign at cycle l-1 and l so that
(19.2.3-1) when combined yields:

δ αQuantl  =  χαl  - χαl -1 (19.2.3-2)
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From (19.2.3-2) we see that the cumulative error in the sum of the angular rate sensor
incremental pulse count increments (i.e., the error in the integrated angular rate) is given by:

δ αQuantl∑
l  = 1

L

  =  χαL - χα1 (19.2.3-3)

The χα1 term in (19.2.3-3) can be considered to be an initialization error on the integrated

angular rate; the χαL term is a random error on the integrated rate at cycle time L.  Thus,
(19.2.3-3) shows that quantization noise can be modeled as random noise on the integrated
inertial sensor output signal.

19.2.4  STRAPDOWN SENSOR GENERIC ERROR MODELS

Strapdown inertial sensor errors can be represented by the following vector forms (Section
12.4):

δ ωB
  =  δ KScal/Mis ω

B
 + δ KBias + δ ωRand + δ ωQuant (19.2.4-1)

δaSF
B

  =  δLScal/Mis aSF
B

 + δLBias + δaRand + δaQuant (19.2.4-2)

The δ ωQuant and δaQuant quantization error terms in Equations (19.2.4-1) and (19.2.4-2)
represent random errors on the direct (not integrated) sensor outputs.  The discussion in the
previous section showed that quantization error can be accurately modeled as a white uniform

random error process on each integrated sensor output.  Hence, δ ωQuant and δaQuant represent
the time derivative of the white random quantization error process associated with the integrated
output.  Because a white uniform random process on the integrated sensor outputs is easily

defined mathematically, it is expeditious to substitute for δωQuant and δaQuant (Section 12.5):

δωQuant  =  δαQuant δaQuant  =  δυQuant (19.2.4-3)

19.2.5  STRAPDOWN INERTIAL NAVIGATION DIFFERENTIAL EQUATIONS

In order to analyze how quantization noise is properly modeled in typical strapdown inertial
navigation systems we will study its effect on a representative set of the differential equations
implemented by integration algorithms in the system computer.  To simplify the analysis, the
equations will be written for a non-rotating "inertial" coordinate frame with position location
represented as a position vector (in contrast with more traditional but analytically equivalent
methods in which equations are written in a locally level rotating coordinate frame (e.g., wander
azimuth) and position location is represented by altitude and angular location over the earth's
surface (Sections 4.1 - 4.5).  Error modeling methods to be presented are comparable for either
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coordinate frame approach.  From Section 12.1.4 we write the strapdown navigation equations
as:

CB
I

  =  CB
I

 ωB
  ×  (19.2.5-1)

v
I
  =  CB

I
 aSF

B
 + gI (19.2.5-2)

R
I
  =  vI (19.2.5-3)

19.2.6  STRAPDOWN INERTIAL NAVIGATION DIFFERENTIAL
ERROR PROPAGATION EQUATIONS

The error rate equations associated with Equations (19.2.5-1) - (19.2.5-3) are obtained from
their analytical differential :

δCB
I

  =  δCB
I

 ωB
  ×  + CB

I
 δ ωB

  ×  (19.2.6-1)

δv
I
  =  δCB

I
 aSF

B
 + CB

I
 δ aSF

B
 + δgI (19.2.6-2)

δR
I
  =  δ vI (19.2.6-3)

We assume that through proper software design practices, there will be no significant

orthogonality or normality errors in the system computed value of CB
I

.  Then the error in

computed CB
I

 can be attributed entirely to misalignment which we characterize in traditional
fashion (e.g., Equation (3.5.2-8) with (3.5.2-11):

CB
I

  =  I - ψI×  CB
I

 (19.2.6-4)

Using the definition for δCB
I

 and substituting (19.2.6-4) then finds:

δ CB
I

  ≡  CB
I

 - CB
I

  =  - ψI
 ×  CB

I
 (19.2.6-5)

The derivative of (19.2.6-5) with (19.2.5-1) is:

δCB
I

  =  - ψ
I
×  CB

I
 - ψI×  CB

I
  =  - ψ

I
×  CB

I
 - ψI×  CB

I
 ωB

 ×  (19.2.6-6)

Substituting (19.2.6-5) and (19.2.6-6) in (19.2.6-1) obtains with rearrangement:

ψ
I
×   =  - CB

I
 δ ωB

 ×  CB
I T

   =  - CB
I

 δ ωB
 × (19.2.6-7)
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or equivalently:

ψ
I
  =  - CB

I
 δ ωB

 (19.2.6-8)

Finally, we substitute (19.2.4-1) - (19.2.4-3) for δ ωB
 and δaSF

B
 in (19.2.6-8) and (19.2.6-2),

substitute (19.2.6-5) for δCB
I

 in the revised δv
I
 equation, recognize t h a t

ψI
 ×  CB

I
 aSF

B
  =  ψI

 × aSF
I

  =  - aSF
I

 × ψI
, and with (19.2.6-3), summarize results:

ψ
I
  =  - CB

I
 δ KScal/Mis ω

B
 + δ KBias + δ ωRand + δαQuant  (19.2.6-9)

δv
I
  =  aSF

I
 × ψI

 + CB
I

 δLScal/Mis aSF
B

 + δLBias + δaRand + δυQuant  + δgI (19.2.6-10)

δ R
I
  =  δ vI (19.2.6-11)

Equations (19.2.6-9) - (19.2.6-11) constitute the error form of strapdown inertial Equations
(19.2.5-1) - (19.2.5-3) in which the noise terms (Rand and Quant subscripted) are modeled as
white noise.  A fundamental problem exists with these equations if they are to be used for
classical error state vector formulations; quantization noise terms appear as their derivatives
which is incompatible with standard error state dynamic equation format (i.e., Equation
(15.1-11)):

x  =  A x + GP nP (19.2.6-12)

The following section shows how Equations (19.2.6-9) - (19.2.6-11) can be modified into the
standard Equation (19.2.6-12) format.

19.2.7  ERROR EQUATION REVISIONS TO ENHANCE
QUANTIZATION NOISE MODELING

We begin by revising attitude error Equation (19.2.6-9) as follows (as in Section 12.5):

ψ
I
 + CB

I
 δαQuant  =  - CB

I
 δ KScal/Mis ω

B
 + δ KBias + δ ωRand  (19.2.7-1)

and note that:

CB
I

 δ αQuant  =  
d
dt

 CB
I

 δ αQuant  - CB
I

 δ αQuant (19.2.7-2)

so that (19.2.7-1) is equivalently:
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d
dt

 ψI
 + CB

I
 δ αQuant  = - CB

I
 δ KScal/Mis ωIB

B
 + δ KBias + δ ωRand  + CB

I
 δ αQuant (19.2.7-3)

The form of (19.2.7-3) suggests the definition of revised attitude and angular rate sensor
error parameters:

ψI
*  ≡  ψI

 + CB
I

 δ αQuant (19.2.7-4)

δ ωB
*  ≡  δ KScal/Mis ωIB

B
 + δ KBias + δ ωRand (19.2.7-5)

The converse of Equation (19.2.7-3) will also be useful:

ψI
  =  ψI

* - CB
I

 δ αQuant (19.2.7-6)

Substituting (19.2.7-4) - (19.2.7-5) in (19.2.7-3) with (19.2.5-1) for CB
I

  then yields the final
form:

ψ
I
*  =  - CB

I
 δ ωB

* + CB
I

 ωB
 ×  δ αQuant (19.2.7-7)

The identical procedure is applied to the velocity and accelerometer error terms in Equation
(19.2.6-10), viz.:

δ vI*  ≡  δ vI - CB
I

 δ υ Quant (19.2.7-8)

δ aSF
B

*  ≡  δ LScal/Mis aSF
B

 + δ LBias + δ aRand (19.2.7-9)

δ vI  =  δ vI* + CB
I

 δ υ Quant (19.2.7-10)

The derivative of (19.2.7-8) is:

δ v
I
*  =  δ v

I
 - CB

I
 δ υ Quant - CB

I
 δ υ Quant (19.2.7-11)

In (19.2.7-11) we then substitute (19.2.6-10) for δ v
I
 and (19.2.5-1) for CB

I
, in the result

substitute (19.2.7-6) for ψI
, recognize that a

 SF
I

  ×  CB
I

 δαQuant = CB
I

 CB
I T

 a
 SF
I

  ×  CB
I

 δαQuant

= CB
I

 a
 SF
B

  ×  δαQuant 
and apply the (19.2.7-9) δ aSF

B
* accelerometer error definition.  Lastly, we

substitute (19.2.7-10) for δ vI in the (19.2.6-11) δR
I
 equation, and with (19.2.7-7), summarize

results:
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ψ
I
*  =  - CB

I
 δ ωB

* + CB
I

 ωB
 ×  δ αQuant (19.2.7-12)

δv
I
*  =  aSF

I
 × ψI

* + CB
I

 δaSF
B

* + δgI - CB
I

 a
 SF
B

  ×  δαQuant - CB
I

 ωB
 ×  δυQuant (19.2.7-13)

δ R
I
  =  δvI* + CB

I
 δ υQuant (19.2.7-14)

Equations (19.2.7-12) - (19.2.7-14) with (19.2.7-5), (19.2.7-6), (19.2.7-9) and (19.2.7-10)

constitute a complete consistent set for the new (and old) variables ψI
*, ψI

, δvI*, δvI, δRI .
Propagation Equations (19.2.7-12) - (19.2.7-14) only contain direct white noise terms (i.e., no
white noise derivatives), hence, are compatible with the standard Equation (19.2.6-12) format.
These equations can be used in place of navigation error Equations (19.2.6-9) - (19.2.6-11) for

the ψI
, δvI, δRI error parameters.

It is also important to recognize that although Equations (19.2.7-12) - (19.2.7-14) were
configured to enhance white noise modeling of sensor quantization errors, their derivation never
explicitly assumed that quantization error was white noise.  Consequently, these equations are
general and equally valid for any representation of quantization error which may exist under
particular sensor input situations.  This point will be discussed further at the end of the paper.

When the Equation (19.2.7-6), (19.2.7-10) and (19.2.7-12) - (19.2.7-14) quantization errors
are modeled as white noise, their numerical characterization is classically described in terms of
statistical covariances or white noise spectral densities.  In order to relate the noise values to the
sensor quantization noise model (see previous Sensor Quantization Error Model section) we
will need the equivalent discrete difference form of (19.2.7-12) - (19.2.7-14) as derived in the
next section.

19.2.8  EQUIVALENT DISCRETE DIFFERENCE ERROR EQUATION FORMS

The discrete difference equivalent to differential Equations (19.2.5-1) - (19.2.5-3) at the
attitude, velocity, position updating algorithm computer cycle times is:

CBl

I
  =  CBl -1

I
 CBl

Bl -1 (19.2.8-1)

vm
I

  =  vm-1
I

 + CBm-1

I
 CB

Bm-1 aSF
B

 dt
tm - 1

tm

 + gm
I

 Δtm (19.2.8-2)

Rn
I
  =  Rn-1

I
 + vn-1

I
 Δtn + vI - vn-1

I
 dt

tn-1

tn

(19.2.8-3)
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Figure 19.2.8-1 illustrates the timing relationship between the Equation (19.2.8-1) -
(19.2.8-3) attitude, velocity, position update cycles.

l  Cycle
Attitude
Update

m Cycle
Velocity
Update

n Cycle
Position
Update

Time

Time

Time

Figure 19.2.8-1  Computation Timing Cycle Pulses

Assuming that the computer update rate is fast enough that B Frame orientations between
times m-1 and m are close to one another, the error form (differential) of (19.2.8-1) - (19.2.8-3)
is:

δCBl

I
  =  δCBl -1

I
 CBl

Bl -1 + CBl -1

I
 δCBl

Bl -1 (19.2.8-4)

δvm
I

  =  δvm-1
I

 + δCBm-1

I
 CB

Bm-1 aSF
B

 dt
tm - 1

tm

 + CBm-1

I
 δ CB

Bm-1 aSF
B

 dt
tm - 1

tm

 + δgm
I

 Δtm 

≈  δvm-1
I

 + δCBm-1

I
 aSF

B
 dt

tm - 1

tm

 + CBm-1

I
 δ aSF

B
 dt

tm - 1

tm

 + δgm
I

 Δtm

=  δvm-1
I

 + δCBm-1

I
 υm + CBm-1

I
 δυm + δgm

I
 Δtm

(19.2.8-5)

δRn
I
  =  δRn-1

I
 + δvn-1

I
 Δtn + δ vI - vn-1

I
 dt

tn-1

tn

  ≈  δRn-1
I

 + δvn-1
I

 Δtn (19.2.8-6)

with

υm  ≡  aSF
B

 dt
tm - 1

tm

δυm  =  δ aSF
B

 dt
tm - 1

tm

(19.2.8-7)

Substituting (19.2.6-5) in (19.2.8-4) and (19.2.8-5) finds:
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- ψl
I
 ×  CBl

I
  =  - ψl -1

I
 ×  CBl -1

I
 CBl

Bl -1 + CBl -1

I
 δCBl

Bl -1 

=  - ψl -1
I

 ×  CBl 

I
 + CBl -1

I
 δCBl

Bl -1
(19.2.8-8)

δvm
I

  =  δvm-1
I

 + CBm-1

I
 υm  × ψm-1

I
 + CBm-1

I
 δυm + δgm

I
 Δtm (19.2.8-9)

In traditional fashion (as in Equation (7.2.2.2-4)) we approximate:

CBl

Bl -1  ≈  I + αl × δCBl

Bl -1  =  δ αl × (19.2.8-10)

with

αl  ≡  ωB
 dt

tl -1

tl

δ αl  =  δ ωB
 dt

tl -1

tl

(19.2.8-11)

Multiplying (19.2.8-8) on the right by - CBl 
I T

 and substituting (19.2.8-10) then obtains:

ψl
I

  ×   ≈  ψl -1
I

  ×  - CBl -1

I
 δαl ×  CBl -1

I T
  =  ψl -1

I
 ×  - CBl -1

I
 δαl  × (19.2.8-12)

or

ψl
I
  =  ψl -1

I
 - CBl -1

I
 δαl (19.2.8-13)

Equations (19.2.8-13), (19.2.8-9) and (19.2.8-6) (summarized below) represent discrete
difference equivalents to differential error propagation Equations (19.2.6-9) - (19.2.6-11).

ψl
I
  =  ψl -1

I
 - CBl -1

I
 δαl (19.2.8-14)

δvm
I

  =  δvm-1
I

 + CBm-1

I
 υm  ×  ψm-1

I
 + CBm-1

I
 δυm + δgm

I
 Δtm (19.2.8-15)

δRn
I
  =  δRn-1

I
 + δvn-1

I
 Δtn (19.2.8-16)

Focusing on the angular rate sensor quantization error portion of δαl and δυm we define:

δαl  =  δα*l + δαQuantl δυm  =  δυ*m + δυQuantm (19.2.8-17)

and based on the vector form of the Equation (19.2.3-2) quantization error model for angular
rate sensors and accelerometers:

δ αQuantl  =  χαl  - χαl -1 δ υQuantm  =  χυm  - χυm-1 (19.2.8-18)
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We also define as in (19.2.7-4), (19.2.7-6), (19.2.7-8) and (19.2.7-10):

ψl
I
*  ≡  ψl

I
 + CBl -1

I
 χαl δ vm

I
*  =  δ vm

I
 - CBm -1

I
 χυm (19.2.8-19)

ψl
I
  =  ψl

I
* - CBl -1

I
 χαl δ vm

I
  =  δ vm

I
* + CBm -1

I
 χυm (19.2.8-20)

Substituting (19.2.8-17), (19.2.8-18) and (19.2.8-20) in (19.2.8-14) - (19.2.8-16) yields:

ψl
I
*  =  ψl -1

I
* - CBl -1

I
 δα*l + CBl -1

I
 - CBl -2

I
 χαl -1 (19.2.8-21)

δ vm
I

*  =  δ vm-1
I

* + CBm-1

I
 δυ*m + CBm-1

I
 υm  ×  ψm-1

I
*

               - CBm-1

I
 υm  × CBl = r (m-1)-1

I
 χαm-1  - CBm-1

I
 - CBm -2

I
 χυm -1 + δgm

I
 Δtm

(19.2.8-22)

δRn
I
  =  δRn-1

I
 + δ vn-1

I
* Δtn+ CBm = s (n-1)-1

I
 χυn-1 Δtn (19.2.8-23)

From (19.2.8-1) and (19.2.8-10) we see that:

CBl -1

I
 - CBl -2

I
  =  CBl -2

I
 αl -1 × CBm-1

I
 - CBm-2

I
  =  CBm-2

I
 αm-1 × (19.2.8-24)

Then, recognizing that CBm-1

I
 υm  × CBl = r (m-1)-1

I
 χαm-1  ≈ CBm-1

I
 υm × χαm-1   =

 CBm-1

I
 υm ×  χαm-1 and that CBm = s (n-1)-1

I
 ≈ CBn-1

I
 , Equations (19.2.8-21) - (19.2.8-23)

become the final forms:

ψl
I
*  =  ψl -1

I
* - CBl -1

I
 δα*l + CBl -2

I
 αl -1 ×  χαl -1 (19.2.8-25)

δ vm
I

*  =  δ vm-1
I

*  + CBm-1

I
 δυ*m + CBm-1

I
 υm  × ψm-1

I
* + δgm

I
 Δtm

- CBm-1

I
  υm ×  χαm-1 - CBm -2

I
 αm-1 ×  χυm -1 

(19.2.8-26)

δRn
I
  =  δRn-1

I
 + δ vn-1

I
* Δtn+ CBn -1

I
 χυn-1 Δtn (19.2.8-27)

Equations (19.2.8-25) - (19.2.8-27) with (19.2.8-20) represent discrete equivalents to
continuous form Equations (19.2.7-12) - (19.2.7-14) with (19.2.7-6) and (19.2.7-10).
Equations (19.2.8-25) - (19.2.8-27) are used in the next section to develop revised versions of
(19.2.7-12) - (19.2.7-14) that properly account for quantization noise coupling between error
equations for different navigation parameter update frequencies.



ANALYTICAL MODELING OF SENSOR QUANTIZATION IN STRAPDOWN ERROR EQUATIONS   19-55

19.2.9  REVISIONS TO DIFFERENTIAL ERROR PROPAGATION EQUATIONS
FOR PROPER QUANTIZATION NOISE CORRELATION MODELING

For error state dynamic equation modeling we see from Equations (19.2.7-12) - (19.2.7-14)

that angular rate sensor and accelerometer quantization noise δ αQuant and δυQuant appear in the

ψI
*, δvI* and δRI error propagation continuous form differential equations.  Comparing the

(19.2.8-25) - (19.2.8-27) discrete difference form error propagation equations with (19.2.7-12)

- (19.2.7-14) shows the equivalency between the δ αQuant, δυQuant continuous form

quantization noise parameters and the χα, χυ discrete form parameters.  Note from (19.2.8-25)

- (19.2.8-26) that the α quantization noise terms in the attitude and velocity equations are
correlated when the l and m cycles overlap.  From (19.2.8-26) - (19.2.8-27) we see that a

similar correlation exists for the υ quantization noise terms in the velocity and position error
equations when the m and n cycles overlap.  Proper error state dynamic equation modeling

should include these correlation effects.  First considering the α angular rate sensor quantization
error terms in Equations (19.2.8-25) - (19.2.8-26), we write:

Δψm
I

*  =  Δψl
I
*∑

l = r (m-1)+1

l = r m

  =   + CBl -2

I
 αl -1 ×  χαl -1∑

l = r (m-1)+1

l = r m

                  ≈   + CBl -2

I
 ωl-1

B
 ×  Δtl χαl -1∑

l = r (m-1)+1

l = r m

                  ≈   + CBm

I
 ωm

B
 ×  

1
fl

 
Δtm

Δtm
 χαm-1 + χαl -1∑

l = r (m-1)+2

l = r m

                  =   + 
fm

fl
 CBm

I
 ωm

B
 ×  Δtm χαψvm + ζαψm

(19.2.9-1)

Δδ vm
I

*  ≈   - CBm-1

I
  aSFm

B
 ×  Δtm χαψvm

with

χαψvm  ≡  χαm-1 ζαψm  ≡  χαl -1∑
l = r (m-1)+2

l = r m

(19.2.9-2)

The equivalent to (19.2.9-1) on a differential equation basis is the following:
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ψ
I
*  ≈  

Δψm
I

*

Δtm
  =   + 

fm

fl
 CB

I
 ωB

 ×  δαψvQuant + δαψQuant

(19.2.9-3)

δ v
I
*  ≈  

Δδ vm
I

*

Δtm
  ≈    - CB

I
  aSF

B
 ×  δαψvQuant 

Similar results apply for the υ accelerometer quantization error terms in (19.2.8-26) -
(19.2.8-27) compared with (19.2.7-13) - (19.2.7-14).  We then find for the composite:

ψ
I
*  =  - CB

I
 δ ωB

* + 
fm

fl
 CB

I
 ωB

 ×  δαψvQuant + δαψQuant  (19.2.9-4)

δv
I
*  =  aSF

I
 × ψI

* + CB
I

 δaSF
B

* + δgI - CB
I

 a
 SF
B

  ×  δαψvQuant

                   - 
fn

fm
  CB

I
 ωB

 ×  δυvRQuant + δυvQuant

(19.2.9-5)

δ R
I
  =  δvI* + CB

I
 δυvRQuant (19.2.9-6)

Equations (19.2.9-4) - (19.2.9-6) with (19.2.7-5), (19.2.7-9) and (19.2.8-20) are equivalent
to Equations (19.2.7-12) - (19.2.7-14) with (19.2.7-5), (19.2.7-6), (19.2.7-9) and (19.2.7-10)
for the general case when attitude, velocity and position update frequencies are different.  For the
case when the l and m update frequencies are equal (i.e., r = 1), Equations (19.2.9-1) -

(19.2.9-2) show that from its definition, ζαψm is zero, hence, from its definition, δαψQuant in

(19.2.9-4) is zero.  Similarly, δυvQuant is zero when the m and n update frequencies are equal.
Thus, for equal l, m, and n update frequencies, Equations (19.2.9-4) - (19.2.9-6) reduce to
(19.2.7-12) - (19.2.7-14).  Without realizing it then, the derivation of Equations (19.2.7-12) -
(19.2.7-14) implicitly assumed equal attitude, velocity, position update frequencies which may
or may not be the case.  In Section 16.2.3.1 of the first edition of this book, this point was
missed because the more rigorous intermediate step of deriving equivalent discrete difference
equations was not performed (in this edition Section 6.2.3.1 has been corrected).  For complete
generality, Equations (19.2.9-4) - (19.2.9-6) with (19.2.7-5), (19.2.7-9) and (19.2.8-20) should
replace Equations (19.2.7-12) - (19.2.7-14) (19.2.7-5), (19.2.7-6), (19.2.7-9) and (19.2.7-10)
for proper quantization error modeling as white noise.

19.2.10  SETTING NUMERICAL VALUES FOR QUANTIZATION NOISE TERMS

In this section we will address the problem of assigning numerical values to the Equation
(19.2.9-4) - (19.2.9-6) and (19.2.8-20) sensor quantization error terms for use in measurement
and error state dynamic equation modeling.  For either case, the quantization noise model will
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be based on the χ type sensor quantization noise parameter (see Sensor Quantization Error
Model section) representing a zero mean uniformly distributed quantization error ranging from

- ε/2 to + ε/2 in which ε is the sensor pulse size.  For such a random error characteristic, it is

easily shown that the variance of χ about its zero mean is ε2
/12.  The Equations (19.2.9-4) -

(19.2.9-6) numerical noise models will be based on their Equation (19.2.8-25) - (19.2.8-27)
discrete version equivalents.

For the measurement modeling case, consider situations when an attitude or velocity type
measurement is being made such that the measurement equation(s) include the attitude or

velocity error parameters ψI
 and δvI.  From Equation (19.2.8-20) we see that in terms of the

revised error parameters ψI
* and δvI*, the associated quantization error terms χα and χυ will

appear as measurement noise in the measurement equation (with an associated CB
I

 coefficient).
If we assume that each angular rate sensor has the same pulse size and similarly for the
accelerometers, the covariances of the associated quantization measurement noise matrices are:

VMα  =  E CB
I

 χα  CB
I

 χα
T

  =  CB
I

 E  χα χα
T

 CB
I T

  =  CB
I

 uαQuant I  CB
I T

  =  
εα
2

12
 I 

VMυ  =  
ευ
2

12
 I 

(19.2.10-1)

For error state dynamic equation modeling using (19.2.9-1) - (19.2.9-2) compared with

(19.2.9-3), the white noise spectral density matrices associated with δαψvQuant and δαψQuant can

be easily identified from the average rate of change of the ψI
*, δvI* covariances over an m

cycle.  Recognizing from their definitions that δαψvQuant and δαψQuant are independent from
one another with independent components we find:

Qαψv  ≈  
E Δtm χαψvm  Δtm χαψvm

T

Δtm
  =  E χαm-1 χαm-1

T
 Δtm  =  I 

uαQuant

fm
  =  I 

εα
2

12 fm

Qαψ  ≈  
E Δtm ζαψm  Δtm ζαψm

T

Δtm

          =  E χαl -1∑
l = r (m-1) +2

l = r m

 χαl -1∑
l = r (m-1)+2

l = r m T

 Δtm

          =  I  uαQuant∑
l = r (m-1)+2

l = r m

  =  I r - 1  
uαQuant

fm
  =  I 

fl

fm
 - 1  

εα
2

12 fm

(19.2.10-2)
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Similar results apply for the υ accelerometer quantization error terms in (19.2.9-5) -
(19.2.9-6) when comparing with (19.2.8-26) - (19.2.8-27).  In summary with (19.2.10-1), we
then find for the measurement and process noise terms:

White Process Noise Spectral Densities For Propagation Equations (19.2.9-4) - (19.2.9-6)

Qαψv  =  I 
εα
2

12 fm
Qαψ  =  I 

fl

fm
 - 1  

εα
2

12 fm
(19.2.10-3)

QυvR  =  I 
ευ

2

12 fn
Qυv  =  I 

fm

fn
 - 1  

ευ
2

12 fn
(19.2.10-4)

Measurement Noise Covariances For Equations (19.2.8-20)

VMα  =  
εα
2

12
 I VMυ  =  

ευ
2

12
 I (19.2.10-5)

19.2.11  APPLICATION TO TWO-SPEED COMPUTATION ALGORITHMS

A fine point in the above discussion relates to values assigned to the fl, fm, and fn frequency
terms in Equations (19.2.9-4) - (19.2.9-5) and (19.2.10-3) - (19.2.10-4).  These frequencies
represent the rate at which attitude, velocity and position parameters are updated in the
strapdown system computer.  But what if two-speed algorithms (Chapter 7) are used for
parameter updating ?  For example, let's say that angular rate sensor data is processed by a high
speed algorithm to calculate the change in attitude (in the form of a rotation vector) over a lower
speed attitude update interval, with the rotation vector then used to update attitude at the lower
rate.  Which rate should be used for fl in Equations (19.2.9-4) and (19.2.10-3), the high speed
rate to generate the rotation vector, or the lower speed attitude update rate?  The answer is that
the rotation vector computation frequency should be used for fl .  The rationale is provided
heuristically below.  A rigorous analytical proof is given in the Section 19.2.15 appendix.

The analytical theory behind two-speed attitude updating algorithms is that by computing the
rotation vector at high speed and using it to update attitude at a lower speed, the overall accuracy
is equivalent to what would be obtained by updating attitude at the high speed rate.  The analysis
in this paper was based on updating attitude at a single rate fl.  Equivalent accuracy would be
obtained from a two-speed algorithm if the rotation vector was updated at fl and the rotation
vector was then used to update attitude at a lower rate.  Hence, if an intermediate rotation vector
is being calculated to update the attitude solution, the rotation vector computation rate would be
used for fl.  With a single-speed algorithm, the algorithm input is the integrated angular rate
sensor output over the attitude update cycle period (as in the simplified attitude update algorithm
of this paper).  This is equivalent to approximating the rotation vector calculation for the two-
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speed algorithm as a simple angular rate sensor output integral.  For this case, the attitude
algorithm update rate would be used for fl.

From a different perspective, attitude change can be analytically defined as the sum of two
elements, integrated angular rate plus the effect of coning motion (Equation (7.1.1.1-12) -
(7.1.1.1-13)).  For two-speed attitude updating algorithms, the rotation vector computation at
high speed accounts for both of these effects, with the integrated angular rate portion being the
dominant term.  Based on this interpretation, the previous paragraph can be restated that if
coning is included in the rotation vector calculation, the coning algorithm update rate would be
used for fl.  If coning is not included, the lower speed attitude update rate would be used for fl.

Similar reasoning applies for the fm and fn values used for velocity / position updating.  If
sculling (in the acceleration transformation portion of velocity updating - Equations (7.2.2.2-23)
- (7.2.2.2-24)) or scrolling (for high resolution position updating - Equations (7.3.3-9) -
(7.3.3-10)) terms are being calculated at a higher rate than the basic velocity / position update
frequencies, the sculling update rate would be used for fm and the scrolling rate for fn.
Otherwise fm and fn would be set to the velocity / position update frequencies.

19.2.12  NUMERICAL EXAMPLES

To illustrate the magnitude of system error effects generated by sensor quantization noise let

us analyze a hypothetical situation in which the angular rate sensor pulse size (εα) is 1 arc
second with attitude and velocity updated at 1 KHz (fl, fm).  Using Equations (19.2.10-3), Qαψ

is zero and the amplitude of Qαψv is εα
2

 / 12 fm  = 8.33 E-5 arc sec 2 sec = 1.96 E-15 rad2 sec.

Consider how this white noise spectral density for δαψvQuant affects the ψI
* attitude error in

Equation (19.2.9-4).  Under a 1 rad/sec angular rate (ωB
 in Equation (19.2.9-4)), the amplitude

of the white noise spectral density driving the ψI
* covariance would be

fm

fl

2
  ωB

 

 2
 QαψvAmplitude  =  12 × 12  × 1.96 E-15 rad2 / sec = 2.31 E-8 deg2 / hr.  The

equivalent random walk on attitude coefficient is the square root or 1.52 E-4 deg / rt-hr.  For
comparison, the random walk (on attitude) coefficient for a ring laser gyro (RLG) in a moderate
accuracy aircraft inertial navigation system is 2 E-3 deg / rt-hr.  Thus, for the numerical
example, the quantization noise effect is comfortably less (by a factor of 13) than the RLG

random walk.  Note also from Equation (19.2.9-4) that under zero angular rate (ωB
), the effect

of quantization error on ψI
* attitude error is zero.

Now consider that the analyst fails to recognize that angular rate sensor quantization error
should be modeled as the derivative of white noise (i.e., Equations (19.2.4-1) with (19.2.4-3))

and instead, models δ ωQuant in (19.2.4-1) as white noise (i.e., uses δ ωQuant as white noise in

(19.2.6-9) in place of δαQuant).  This is equivalent to treating δ αQuantl  in (19.2.3-2) as having
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two quantization errors (χαl  and χαl -1 ) with each δ αQuantl  being independent from l cycle to
cycle.  The corresponding random walk on attitude white noise spectral density would be

2 fl εα
2

 / 12 (Note that the effect increases with update frequency in contrast with inverse

frequency sensitivity for the correct Qαψv modeling above).  With the hypothesized 1 arc sec
pulse size and 1 KHz attitude update rate, the mismodeling equates  to 1.67 E2 arc sec2 / sec =
3.92 E-9 rad2 / sec = 4.63 E-2 deg2 / hr.  The corresponding random walk on attitude
coefficient is the square root or 2.15 E-1 deg / rt-hr.  The effect is 108 time larger than the
hypothesized 2 E-3 RLG random walk coefficient, clearly a serious mismodeling situation.

Furthermore, from Equation (19.2.6-9) (with δ ωQuant as white noise replacing δαQuant), the

random walk build-up on attitude error ψI
 is direct and independent of angular rate (ωB

).

Consider the effect of Qαψv (the white noise spectral density of δαψvQuant) on velocity error
Equation (19.2.9-5) under zero angular rate conditions.  Under zero angular rate Equation

(19.2.9-4) shows zero coupling of δαψvQuant into ψ
I
*, hence, zero coupling of δαψvQuant into

δvI* Equation (19.2.9-5) (through the ψI
* term).  Quantization does impact δvI* in Equation

(19.2.9-5) through aSF
B

 coupling.  Under a 1 g specific force acceleration (aSF
B

), the amplitude of

the white noise spectral density driving the δvI* covariance would be

 aSF
B

 

 2
 QαψvAmplitude  =  (32.2 fps)2 × 1.96 E-15 rad2 / sec = 2.03E-12 (fps)2 / sec.  The

equivalent random walk on velocity coefficient is the square root or 1.43 E-6 fps / rt-sec =
8.55E-5 fps / rt-hr, negligible compared to the total velocity error in a moderate performance
aircraft INS which is on the order of 2 fps for the first hour of operation.

Again, consider that the analyst erroneously mismodels quantization error as white noise

(i.e., uses δ ωQuant as white noise in (19.2.6-9) in place of δαQuant).  The resulting attitude error

ψI
 propagates through aSF

B
 into velocity error Equation (19.2.6-10).  Equation (13.6.2-3) shows

that under the hypothesized 1 g specific force environment, the horizontal velocity error variance

response to random walk on attitude is 
1
3

 g2 t3 qωRand in which qωRand is the random walk on

attitude white noise spectral density, g is gravity magnitude and t is time in navigation.  For
quantization error erroneously modeled as qωRand with the value given previously (i.e., 3.92

E-9 rad2 / sec), the resulting velocity variance increase at one hour would be 
1
3

 × 32.22 × 36003

× 3.93E-9 = 6.34E4 (fps)2 or 252 fps on a root-mean-square basis.  This is 2.94E6 times
larger than the correct quantization noise effect, and 126 times larger than the 2 fps moderate
accurate INS total velocity error.
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As a final example under approximately zero angular velocity conditions, let us hypothesize a
quasi-stationary INS initial alignment situation in which a Kalman filter is being used to
estimate system initial heading using the horizontal components of R Equations (19.2.5-1) -
(19.2.5-3) as the measurement.  (The initial alignment process is discussed in detail in Sections
6.1.2, 14.6 and 15.2.1).  Equation (14.2-32) with (6.2.1-5) and (14.6.4.4-2) shows that angular
rate sensor random walk on attitude error produces an estimated heading error at initial

alignment completion given by qωRand / TAlign  / ωe cos Lat  in which qωRand is the
angular rate sensor random walk on attitude white noise spectral density (the spectral density for

each element of δ ωRand in Equation (19.2.4-1)), TAlign is the time in alignment, ωe is earth
rotation rate and Lat is latitude.  The same references also show that angular rate sensor
quantization error produces an error in estimated heading given by

3 qαQuant / TAlign
3

 / ωe cos Lat  in which qαQuant is the amplitude of the Qαψv

quantization white noise spectral density function in (19.2.10-3).  Consider the case when Lat =
45 deg and TAlign = 180 sec.  Using the hypothesized RLG value above for qωRand ((2 E-3)2

deg2 / hr = 3.38 E-13 rad2 / sec), the previous formula yields 8.43 E-4 rad contribution to
heading error (Note: The allowance for initial heading error in a moderate accuracy INS is
typically on the order of 1 E-3 rad).  Using the previously computed Qαψv amplitude for
qαQuant (1.96 E-15 rad2 sec), the heading error formula gives 6.17 E-7 rad heading error due to
angular rate sensor quantization.  Thus, for the hypothesized pulse size, update frequencies and
alignment time, the initial heading error caused by angular rate sensor quantization error is
negligible compared to that caused by random walk on attitude (qωRand).  Note also that if
quantization error was incorrectly modeled as qωRand white noise at 3.92 E-9 rad2 / sec (as
discussed earlier), the qωRand into heading error formula would predict the estimated heading
error to be 9.08 E-2 rad, significantly outside moderate accuracy INS accuracy specifications.

Similar methods can be used to analyze the effect of accelerometer quantization error and
associated mismodeling on initial alignment accuracy.  For heading error analysis, Equation
(14.2-32) with (6.2.1-5) and (14.6.4.4-2) shows that heading error caused by accelerometer

quantization during initial alignment is 20 qυQuant / g2 TAlign
5

 / ωe cos Lat  in which g is

gravity magnitude and qυQuant is the amplitude of the QυvR quantization white noise spectral

density function in (19.2.10-4) (i.e., ευ
2
 / 12 fn  ).  These equations also show that accelerometer

random walk on velocity error produces an estimated heading error of

3 qaRand / g2 TAlign
3

 / ωe cos Lat  in which qaRand is the accelerometer random walk on

velocity white noise spectral density (the spectral density for each element of δ aRand in
Equation (19.2.4-2)).
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19.2.13  VALIDITY LIMITS FOR QUANTIZATION ERROR AS RANDOM NOISE

A fundamental assumption in the characterization of quantization error as random noise is
statistical independence of the error from computation cycle to cycle.  Under most navigation
flight conditions this is a reasonable assumption, however, there are those situations when the
assumption is flawed.  For example, consider the case when the angular rate is constant and low
enough that only a single pulse is emitted from the associated angular rate sensor over several
attitude / velocity update cycles (e.g., during quasi-stationary initial alignment when one of the
angular rate sensor input axes is close to East with no external disturbances).  Under these
conditions angular rate sensor quantization error produces an angular error between pulses that
builds up linearly with time and is reset when each pulse is emitted (i.e., a saw-tooth pattern
with the ramping portion slope equal to the negative of the sensor input - See Figure 19.2.13-1).
(A similar effect would also occur for an accelerometer when its input axis was near level.)  The
pattern repeats between pulses, hence is not random from computer cycle to cycle.  From the
nature of the repeating quantization saw-tooth error pattern, resulting velocity / position errors
would also be cyclic and have no amplitude build-up with time as with random type error
effects.  Therefore, representation of quantization error as random is invalid.  Note, however,
that in terms of error build-up with time, approximating quantization error as random noise for
this case is a conservative estimate of the actual effect (i.e., the actual effect is bounded).  On the
other hand, a cyclic saw-tooth type quantization error (if it exists) must still be analyzed
independently to assess its particular effect on system performance.

True
Attitude

Attitude Computed
With Quantized

Sensor Data

Quantization
Error

Time

Figure 19.2.13-1  Attitude Computed With Quantized Sensor Data Under Constant
Angular Rate

For the static initial alignment scenario discussed above, it is known that when the frequency
of pulses (and the saw-tooth error pattern) generated by angular rate sensor or accelerometer
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pulse quantization becomes low enough, the Kalman filter estimated heading develops
noticeable transient error oscillations that can be large and lengthy enough to prohibit
satisfactory convergence in the allocated alignment time.  The expected performance effect can
be predicted using Equations (19.2.7-12) - (19.2.7-14) for error propagation between Kalman
updates with the quantization error terms in question treated as cyclic saw-tooth patterns.  If the
resulting heading error is unacceptable, it may be possible to reduce the quantization error using
appropriate compensation techniques such as discussed next.

19.2.14  COMPENSATING FOR SENSOR PULSE QUANTIZATION ERROR

Various methods have been used for reducing sensor pulse quantization error in inertial
navigation systems.  Fundamentally, if it is possible, the associated pulse size should be
reduced.  Alternatively, in some sensors, the integrated sensor input since the last pulse output
(i.e., the pulse count "residual") can be measured electronically and used to correct the pulse
count (Section 8.1.3.1).  For such an implementation, the effective pulse size is reduced to the
error in measuring the residual (e.g., 5% of the uncompensated pulse).  A variation on this
approach is to approximate the residual as the uncompensated pulse size multiplied by the ratio
of a high frequency clock count since the last pulse divided by the clock count between the last
and previous pulse (Section 8.1.3.1).  The effective pulse size is thereby reduced by the
reciprocal of the clock count between pulses.  The latter technique is implicitly based on
constant sensor input between pulses and loses its effectiveness when the time between pulses
becomes long and random variations in sensor inputs are present.  Each of the above
approaches require additional electronic elements in the sensor assembly.

A direct approach for overcoming the effect of low frequency pulse quantization error is to
assure that the output pulse rate from the sensors remains reasonably high, even under low
sensor input conditions.  The result is that the random quantization error model assumption
remains valid under all conditions.  This can be accomplished by providing an artificial bias
input to the sensor (if the design permits) or a mechanical bias.  For each method, the bias can
be constant or oscillatory with randomness added if necessary to ensure pulse count to count
randomness.  Means must then be provided for subtracting the bias from the sensor output
before it is used in the navigation computations.  For an oscillating bias, the error in removal
can be included as part of the quantization error model (Reference 31).  An interesting
application of the mechanical method is provided in the case of mechanically dithered ring laser
gyros whereby each gyro block is angularly vibrated at high frequency relative to the sensor
assembly to avoid lock-in (Reference 31).  The resulting gyro dither motion also imparts a
back-reaction-torque into the sensor assembly which sets up a linear vibration of the
accelerometers.  The net result is that all sensors experience oscillatory inputs which generate
randomness in resulting pulse count samples.

19.2.15  APPENDIX TO SECTION 19.2 - ACCURACY EQUIVALENCY
BETWEEN TWO-SPEED AND SINGLE-SPEED ALGORITHMS

This appendix provides a rigorous proof that the response of a two-speed attitude updating
algorithm to angular rate sensor error is the same as that for a single-speed updating algorithm
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operating at the same update rate as the high speed portion of the two-speed algorithm.  By
extension, this appendix also shows that for a two-speed updating algorithm (using low and
high updating frequencies), sensor error effects that are update frequency dependent (such as
quantization error) will be a function of only the high speed updating frequency.

For a two-speed attitude updating algorithm (Sections 7.1 - 7.1.1.1.1), let us define the basic

CB
I

 attitude update to be performed at a j cycle rate with Bj defined as the orientation of the B
Frame at the j cycle time.  Attitude is computed at the j rate as:

CBj

I
  =  CBj-1

I
 CBj

Bj-1 (19.2.15-1)

The CBj

Bj-1 matrix is calculated using a simplified high speed integration algorithm over the j-1 to

j cycle times.  For this analysis we will use the l index to represent the high speed algorithm
updating rate between j-1 and j.

From an analytical standpoint, the form of the high speed integration algorithm is arbitrary so
long as it is analytically correct (i.e., the analytical approximation error is negligible compared to
inaccuracy generated from angular rate sensor input errors).  Because of its simplified derivative
form over small angle rotations, the attitude parameter selected for the high speed integration is

usually a rotation vector, which is then converted to CBj

Bj-1 at the j update time for use in

(19.2.15-1).  For expediency in this analysis, we will assume that the high speed algorithm

integration parameter is a direction cosine matrix so that the integrated result at time j is CBj

Bj-1

directly.  From an error analysis standpoint, it should be clear that either approach provides the

same error effect in the CBj

Bj-1 matrix.  Based on this rationale then, we multiply Equation

(19.2.5-1) on the left by the constant CI
Bj-1 to find for the derivative form of the high speed

update operation:

CB
Bj-1

  =  CB
Bj-1 ωB

  ×  (19.2.15-2)

Beginning with an initial value of identity, integrating (19.2.15-2) from the j-1 to j cycle times

using a high speed integration algorithm, provides CBj

Bj-1 for (19.2.15-1).

We will now analyze the effect of angular rate sensor error on the above described two-speed
attitude updating process compared with the single speed attitude updating concept described in

the body of this paper.  First we address the rotation angle error φBj-1 in CB
Bj-1 caused by angular

rate sensor error.  Following the same procedure that led to (19.2.8-14), we begin as in
(19.2.6-4) and (19.2.6-5):
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CB
Bj-1

  =  I - φBj-1 ×  CB
Bj-1 δCB

Bj-1  =  - φBj-1 ×  CB
Bj-1 (19.2.15-3)

As in (19.2.8-1) a high speed l cycle algorithm will be used to integrate (19.2.15-2):

CBl

Bj-1  =  CBl -1

Bj-1  CBl

Bl -1 (19.2.15-4)

Then, as in (19.2.8-14), the CB
Bj-1 error φBj-1 propagates in (19.2.15-4) from l-1 to l as:

φl
Bj-1

  =  φl -1
Bj-1

 - CBl -1

Bj-1  δαl (19.2.15-5)

The cumulative effect of Equation (19.2.15-5) at cycle j is:

φj
Bj-1

  =  φl
Bj-1

 - φl-1
Bj-1∑

All l From
j-1 to j

  =  - CBl -1

Bj-1  δαl∑
All l From

j-1 to j

(19.2.15-6)

Equation (19.2.15-6) defines the error φj
Bj-1

 in CBj

Bj-1
 caused by angular rate sensor error.

Now let's look and see how it effects the error in CBj

I
 through Equation (19.2.15-1).  The error

in CBj

I
 is the differential of (19.2.15-1) which with (19.2.15-3) at cycle j is:

δCBj

I
  =  δCBj-1

I
 CBj

Bj-1 + CBj-1

I
 δCBj

Bj-1  =  δCBj-1

I
 CBj

Bj-1 - CBj-1

I
 φj

Bj-1×  CBj

Bj-1 (19.2.15-7)

Using (19.2.6-5) in (19.2.15-7) finds the equivalent in terms of the ψj
I
 error in CBj

I
:

- ψj
I

 ×  CBj

I
  =  - ψj-1

I
 ×  CBj-1

I
 CBj

Bj-1 - CBj-1

I
 φj

Bj-1×  CBj

Bj-1

                    =  - ψj-1
I

 ×  CBj

I
 - CBj-1

I
 φj

Bj-1×  CBj

Bj-1
(19.2.15-8)

Multiplying on the right by CI
Bj then obtains:

ψj
I

 ×   =  ψj-1
I

 ×  + CBj-1

I
 φj

Bj-1×  CBj

Bj-1 CI
Bj  =  ψj-1

I
 ×  + CBj-1

I
 φj

Bj-1×  CI
Bj-1

=  ψj-1
I

 ×  + CBj-1

I
 φj

Bj-1
 ×

(19.2.15-9)

or

ψj
I
  =  ψj-1

I
 + CBj-1

I
 φj

Bj-1
(19.2.15-10)
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Substituting (19.2.15-6) for φj
Bj-1

:

ψj
I
  =  ψj-1

I
 - CBj-1

I
 CBl -1

Bj-1  δαl∑
All l From

j-1 to j

  =  ψj-1
I

 - CBl -1

I
 δαl∑

All l From
j-1 to j

(19.2.15-11)

The cumulative effect when j equals some cycle time k is:

ψk
I
  =  ψj

I
 - ψj-1

I∑
All j to
cycle k

  =  - ∑
All j to
cycle k

CBl -1

Bj-1  δαl∑
All l From

j-1 to j

  =  - CBl -1

I
 δαl∑

All l to
cycle k

(19.2.15-12)

Now consider what the ψk
I
 error in CB

I
 would be for a single speed integration algorithm

operating at the high speed l cycle rate.  The answer has already been derived as Equation
(19.2.8-14) for which we can write for the cumulative effect at cycle k:

ψk
I
  =  ψl

I
 - ψl-1

I∑
All l to
cycle k

  =  - CBl -1

I
 δαl∑

All l to
cycle k

(19.2.15-13)

Equations (19.2.15-12) and (19.2.15-13) are identical.  Thus we see that for the two-speed
attitude algorithm, inaccuracy caused by sensor error is identical to that of a single speed
algorithm operating at the two-speed algorithm high speed computation rate (i.e., the l cycle
rate).  This finding can be extrapolated to analytical results in the main body of the paper derived
from (19.2.8-14), e.g., (19.2.9-4) with (19.2.10-3) which have frequency fl dependent
quantization error terms.  Hence, for the two-speed attitude algorithm, Equations (19.2.9-4)
with (19.2.10-3) also  apply with fl  corresponding to the high speed l cycle update frequency,
not the lower speed j cycle update frequency.

19.3  WHAT DO INERTIAL SENSORS MEASURE?

This paper addresses fundamental questions on the definition of parameters measured by
inertial sensors; inertial angular rate measured by gyros and specific force measured by
accelerometers.  Implicit to the definition for these parameters is the existence of an inertial
frame of reference.  Gyros measure angular rate relative to "non-rotating inertial space".  What
is this space and what does non-rotation mean when rotation itself is defined as a relative
angular measurement between two reference spaces?  We have been taught that specific force
measured by accelerometers is "total acceleration minus gravity".  Is gravity an absolute or
relative parameter?  If it is a relative term, relative to what?  What is total acceleration?
Acceleration is defined as the time rate of change of velocity relative to a reference inertial
velocity, and velocity is defined as the time rate of change of position relative to a reference
inertial position.  But what is inertial velocity and position?  "Inertial" implies non-change, but
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non-change relative to what?  These questions are addressed and rigorously answered in the
following sections.

This paper is a composite of three articles, What Do Inertial Sensors Measure?, What Do
Gyros Measure?, and What Do Accelerometers Measure?, originally published by the author in
2005-2006 on the Strapdown Associates, Inc. website - www.strapdownassociates.com.

19.3.1  INTRODUCTION

Inertial navigation systems contain gyros to measure changes in angular orientation and
accelerometers to measure changes in velocity (acceleration).  To properly define angular
orientation and velocity change one must define what the change is relative to.  For gyros and
accelerometers, to what are their outputs referenced?

Consider an observer on the earth who has no concept of earth rotation and perceives the
heavens as rotating around the earth.  He defines "total angular rate": as angular rotation relative
to the earth.  He believes that gyros measure angular rate but not total angular rate.  By
experiment he has found previously that when a gyro is stationary on the earth (i.e., when the
gyro's total angular rate is zero), the gyro output equals the negative of the angular rate of the
heavens.  Defining this as "heavenly rate", he concludes that gyros measure total angular rate
minus heavenly rate.  To find total angular rate, he adds heavenly rate to the gyro output.

The observer's analysis yields useful results, but also introduces some interesting questions.
We now know that on other planets, heavenly rate is different than on planet earth.  Will the
gyro output equal total angular rate (relative to the other planet) minus earth's heavenly rate or
minus the planet's heavenly rate (assuming that the gyro was manufactured on the earth)?  How
does the gyro know the heavenly rate value to subtract from its output?  Today we know that
gyros actually measure angular rate relative to non-rotating inertial space (e.g., the heavens).
Angular rate relative to the earth (or relative to any rotating body) is then calculated as the gyro
output minus the inertial rotation rate of the earth (or body).  The concept of "total angular rate"
is not used today when describing angular motion relative to the earth.  But what is non-rotating
inertial space that the gyro output is referenced to?  Is it really the heavens?  How does a gyro
know about the heavens so that it can provide its output relative to them?  Section 19.3.2
explores these questions in more detail on a scientific basis.

Interestingly, today's definition for acceleration (rate of change of velocity) in the inertial
navigation community has not yet reached the level of sophistication used to describe rotation.
Engineers commonly use the term "total acceleration" to describe acceleration relative to the
earth.  Accelerometers are used to measure acceleration.  From experiment we have learned that
the output from a stationary accelerometer on the earth will equal the negative of earth's gravity
at the acceleration location.  Thus, a common conception is that accelerometers measure total
acceleration minus gravity.  To find total acceleration one must add gravity to the accelerometer
output.  We know of course, that the gravity component to add is the local gravity value at the
accelerometer location whether on the earth or elsewhere.  But how does the accelerometer
know the value of gravity to subtract from its output?  What does the accelerometer really
measure?  Section 19.3.3 explores this question in more depth.
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Regarding gravity and accelerometers, a rather bizarre misunderstanding by the general
public (fostered by public relations people in a well known US government agency) is that the
space within a vehicle orbiting the earth has no gravity (i.e., the so-called "micro-gravity"
environment).  In reality, space surrounding the earth and within vehicles in earth orbit do have
gravity; for low orbit vehicles such as the Space Shuttle, the gravity magnitude is very close to
the gravity value on earth's surface (i.e., 32 feet per second per second).  In fact, it is the gravity
within an earth orbiting spacecraft that produces the centripetal acceleration required to maintain
the satellite orbit around the earth.  How could such a misconception have originated?  Possibly
from the term "micro-g" used by engineers to characterize the environment in space.  Micro-g
means one millionth of a "g".  A g is a unit of acceleration generated by an applied force.  For
example, if a rocket's motor is ignited it will produce a force that accelerates the rocket (i.e., the
rocket's velocity will change at a rate equal to the acceleration generated by the applied rocket
motor force).  One g of applied force acceleration corresponds to a 32 feet per second change in
velocity each second due to applied force.  Ten gs would correspond to 320 feet per second per
second acceleration.  The value for one g unit has been chosen by the scientific community to
equal the value of gravity on the earth's surface, i.e., 32 feet per second per second.  One g of
force acceleration output would also be measured by a stationary accelerometer on the earth's
surface with its input axis up in response to one g of force pushing up on the accelerometer
(through its mount) to balance gravitational acceleration downward that exists on the earth's
surface.  A micro-g is a very small acceleration due to force, and characterizes the acceleration
of a space vehicle with very little externally applied force.  Given the term micro-g, one can
imagine a non-engineer inquiring on the meaning of g in the term micro-g.  Without the above
more complicated explanation, the simple answer might have been "gravity".  Hence, the term
"micro-gravity" to describe the environment in space and the erroneous belief that gravity is
micro small in space.

19.3.2  WHAT DO GYROS MEASURE?

Gyros are used to measure inertial angular rotation.  The term gyro is shorthand for
gyroscope, the name originally given to instruments using the gyroscopic inertial properties of a
spinning mass as the reference for angular rotation measurements.  Today, gyro is the name
given generically to any instrument that measures inertial angular rotation [e.g., MEMS (micro-
machined electro-mechanical systems) gyros that measure angular rate based on the inertial
properties of a vibrating mass, and optical gyros that measure angular rate based on the inertial
properties of light].  But what exactly is inertial angular rotation that gyros measure, and what
exactly is rotation?

19.3.2.1  ANGULAR ROTATION

Consider two line segments (call them segments A and B) emanating from the same
reference point.  If the line segments lie on top of one another we call them “parallel”.  If they
are not parallel, we can define the degree of non-parallelism by a parameter called an “angle”.
For segment B non-parallel to segment A, imagine the angle between A and B being generated
from an initial condition in which B is considered to be superimposed on A.  While holding the
reference point end of segment B stationary, imagine then moving the other end of segment B
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in a plane from its initial to its actual (final) end-point position.  As the end-point of segment B
is moved it traces an arc of a circle between A and the final B location.  The amount of traced
arc is called the “angle” from A to B, measured in radians, and calculated as the linear
displacement of the B end-point along the arc divided by the length of segment B.  Since the

total displacement around a complete circle (i.e., the circumference) equals 2 π times the radius

of the circle (in this case, the length of B), the angle around a complete circle is 2 π radians.

In a three dimensional world the angle between A and B alone is insufficient to completely
define the angular orientation of B relative to A.  What is also needed is the orientation of the
plane used for the rotation.  We can define the plane of rotation by a unit vector nAB
perpendicular to the rotation plane.  The orientation of B relative to A can then be exactly
specified as a rotation around the unit vector nAB through the rotation angle.  “Rotation around
the unit vector” is defined by convention to follow the “right hand rule”: Pointing the thumb of
your right hand in the direction of the unit vector, the rotation is in the direction of your curled
right hand fingers in a plane perpendicular to the unit vector.

Notice that with the previous procedure, the orientation of B relative to A can actually be
generated by two different rotations, a rotation around nAB through a rotation angle (call it
rotation angle 1) or a rotation around minus nAB (i.e., a unit vector in the opposite direction

from nAB) through another rotation angle that equals 2 π minus rotation angle 1.  By

convention, the rotation angle is a positive number less than or equal to π radians with the unit
vector for the rotation then selected accordingly to position B correctly after the rotation.

If we define φAB to be the angle between A and B with nAB the unit vector for rotation

direction, we can mathematically define a “rotation vector” φAB as the product of φAB (a scalar)

with the vector nAB (i.e., as in Section 3.2.2).  With this approach, the orientation of B relative

to A is defined to be a rotation around φAB (using the right hand convention) through an angle

equal to the magnitude of φAB.

19.3.2.2  ANGULAR ROTATION RATE

The rotation vector concept can also be used to describe the angular motion of a physical
body whose orientation in a dynamic environment can be changing as a function of time. To
analyze the body’s orientation time history requires an additional concept, the notion of a
reference “space”  (call it A space) for “viewing” the body’s angular orientation at different
times.  Imagine two images of the body (call it B space) frozen in A space, one image at time
tm-1 and the other at time tm.  An Euler theorem states (in effect) that there exists one unique
rotation vector that will rotate a body from one angular attitude (at time tm-1) to another (at time
tm).  The rotation angle equals the rotation vector length (i.e., its magnitude) and is about an

imaginary axis fixed in the body and parallel to the rotation vector.  Let us denote φAB as the
unique rotation vector for rotating the A space image of body B at time tm-1 into the A space
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image of B at time tm.  (Note that in A space, φAB describes the angular orientation of space B
at time tm compared to its orientation at time tm-1 regardless of the time history of how B
actually rotated from its tm-1 to tm angular attitude.)

We can also say that for the time interval Δt from tm-1 to tm, body B has rotated relative to A

space at an average “angular rate” of φAB / Δt.  Letting Δt “go to zero in the limit”, we can

mathematically define an instantaneous angular rate vector ωAB describing the instantaneous

time rate of B Frame rotation relative to A space; i.e., ωAB  ≡  φAB / Δt in the limit as Δt →0.

For a strapdown inertial navigation system installed in a vehicle, three gyros are used to

measure the components of the vehicle (B space) angular rate vector ωAB.  Through an

integration process in the system computer, the measured ωAB time history is used to
continuously calculate the angular orientation of the vehicle as a function of time.  The gyros are
mounted at fixed orientation relative to the vehicle (“strapdown”) with their input axes mutually

orthogonal.  Each gyro measures the component of ωAB along its input axis (i.e., the

mathematical dot product between ωAB and an imaginary unit vector along the gyro input axis).
The gyros measure vehicle (B space) angular rate relative to reference space A, but what is
reference space A?  For a gyro, there is only one A space; a gyro measures angular rotation
relative to non-rotating inertial space.  What does this mean?  How do we define non-rotating
space without referring to another reference space, and how does a gyro know which space is
not rotating?

19.3.2.3  LOCAL NON-ROTATING INERTIAL SPACE

Consider a virtual (imaginary) space (call it space A) defined by several independent virtual
point masses in a uniform gravity field.  Assume that there are no forces to act on the masses
(i.e., a “force-free” zone).  If the relative velocity between the masses is zero, all masses will
then experience the same velocity change due to gravity, hence, their relative positions will
remain constant.  We could draw lines from mass 1 to mass 2 and from mass 1 to mass 3 and
measure the angle between the lines.  Because the relative position between all the masses is
constant, the angle so measured will also be constant as would angles between any position
lines formed in the same way between these and other point masses.

Let us now consider a duplicate force-free space (call it space B) that overlaps space A, has
the same uniform gravity field as space A, and is defined by a duplicate set of real masses,
initially in the same position location and velocity as the space A virtual masses.  The position
of the space B masses relative to one another will then continue to remain constant (as did the
space A masses).  In addition, the relative position of the space B real masses will also remain
constant relative to the space A virtual masses.  If we draw lines between space B masses and
measure their angular orientation relative to lines between space A masses, they will also be
constant, hence, there will be no angular rate between space B and space A.
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Now, let us suddenly connect the real space B masses together using mass-less rods to form
a rigid body.  Because there was no relative velocity between the masses before they were
connected, there will be no forces transmitted along the rods after they are connected, and the
masses will behave as a group as if the connecting rods didn’t exist.  Thus, the angular
orientation between the space B rigid body masses and lines drawn between space A masses
will continue to remain constant (i.e., no angular rate between rigid body B and space A).

What if we now apply a force on rigid body B.  Then, from Newtonian dynamics we know
that in addition to its gravitational acceleration, rigid body B will develop a linear acceleration
(rate of change of linear velocity) in proportion to the applied force.  It will also develop an
angular acceleration (rate of change of its angular rate) proportional to the resulting applied
torque (the product of the applied force and the perpendicular distance of the line of force to the
body B center of mass).  The angular acceleration will integrate into angular rate that will change
the angular orientation of B from its attitude before the force was applied.  The rigid body
motion so described is the combined effect of accelerations of all the masses in the rigid body in
response to forces transmitted along the connecting rods that maintain fixed positions between
masses in the presence of applied force on a particular portion of the body.  The net result is that
the forces create body B rotation relative to reference space A.  Thus, virtual force free space A
acts as a local angular “inertial reference space” for measuring body B angular rotation created
by applied force.  By definition we denote this as a local non-rotating inertial space.

19.3.2.4  GENERAL NON-ROTATING INERTIAL SPACE

Does the space A local angular inertial reference concept extend to other regions of space
with a different uniform gravity field?  To compare relative inertial angular properties between
remotely located spaces that might be moving relative to one another we can use the concept that
general relative motion consists of two independent elements, relative translation and relative
rotation of one space relative to the other.  By relative translation between spaces, we mean that
every point in one space (that by definition is stationary relative to other points in the same
space) is at the same relative velocity relative to every point in the other space.  Relative rotation
between spaces can be measured by the degree to which line segments fixed in one space
remain parallel to line segments fixed in the other space that are initially drawn parallel.  If over
time, at least two non-parallel line segments in one space remain parallel to the corresponding
set of line segments in the other space, we can say that there is no angular rotation rate between
the two spaces.  By extension then, either space can be used to represent the reference for
measuring angular rotation of any third space.

Distant from space A, consider another space A* in the same uniform gravity field as space
A and defined by a separate set of A* point masses at zero initial velocity relative to one
another.  As in space A, the space A* masses will maintain their relative positions over time
because they all have the same gravitational acceleration in A* space.  In general, at some
arbitrary initial time, there may be relative velocity between spaces A and A*.  Because all space
A masses are at zero relative velocity (and similarly for the space A* masses) all space A*
mass points will have the same velocity relative to any space A mass point.
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In space A, now draw line segments from mass points A1 to A2 (call it segment A12) and
from A3 to A4 (call it segment A34).  Select arbitrary mass points A*1 and A*3 in space A*
and from them, draw lines that are parallel to segments A12 and A34.  In Space A* add a fixed
mass point A*2 onto the line from A*1 to form line segment A*12 between A*1 and A*2 that
is parallel to segment A12.  Similarly, add A*4 onto the line from A*3 to form line segment
A*34 that is parallel to segment A34.  Because all points in space A* are moving at the same
velocity relative to space A points, the two A* line segments will remain parallel to their
counterpart space A line segments as the mass points on the segments move at the same
velocity relative to one another.  Thus there will be zero relative angular rate between spaces A
and A*, and the relative motion between the spaces is classified as pure translation.

Now consider the same A, A* situation, but further generalize to allow that A and A* are in
different uniform gravity fields.  As described earlier, each mass point in space A will remain at
fixed position relative to other mass points in space A (and similarly for the relative position of
space A* mass points), but the relative velocity between space A and A* will now be changing
at a rate equal to the difference between the A and A* gravity fields.  Then every point in space
A* will be changing its velocity by the same amount relative to the space A mass points, and
the A12, A34 and A*12, A*34 line segments will continue to remain parallel.  Thus, for the
more general case when spaces A and A* are in different uniform gravity fields and initially at
different velocities, the rotation rate between A and A* will still be zero.

We can conclude that spaces A and A* are equivalent;  either can be used as a "non-rotating
inertial space" for referencing the angular rotation rate of any third space created by applied
forces.  As such, general non-rotating inertial space can be defined for force generated angular
rotation of a physical body, as any space in the universe defined by three or more virtual masses
in a uniform gravity field, having zero relative velocity between the masses at one point in time,
and having zero force applied to any of the masses.

19.3.2.5  ANGULAR RATE SENSING BY MECHANICAL GYROS

Forces applied to a rigid body generate linear and angular acceleration proportional to the
applied forces.  While the forces are being applied, internal forces are developed between the
body masses proportional to the applied forces, hence proportional to the resulting body linear
and angular acceleration.  Based on measurements of the internal forces, mechanical gyros
mounted within a body measure body angular rate, not angular acceleration.  How do they do
this?  The answer is that within each gyro are proof masses that are driven into linear motion
(i.e., velocity) relative to the gyro case by a motor within the gyro.  Gyro case angular rate
produces reaction forces on the moving proof masses that then form a measurable composite
for generating the gyro angular rate output signal.

The motor drive in a gyro is arranged so that for each generated proof mass velocity in one
direction (relative to the gyro case), an equal but oppositely directed relative velocity is generated
on another proof mass.  Force applied to the proof mass pairs will produce a change in their
velocities in the direction of the applied force (i.e., an acceleration) relative to non-rotating
inertial space.  Conversely, for acceleration of the proof masses relative to inertial space, forces
must be applied to the proof masses to generate the acceleration.  The Section 19.3.2.9 appendix
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derives the relationship between relative proof mass acceleration and proof mass motion relative
to the gyro case, a space that may be rotating relative to "non-rotating inertial space".  Relative to
the gyro case, Equation (19.3.2.9-14) in the appendix shows that for equal mass magnitudes in
a proof mass pair, the difference in forces applied to the proof masses is proportional to:

aSF12u  =  ωIG ⋅ uG  ωIG ⋅ r12  + ω IG ⋅ uG × r12  + 2 ω IG ⋅ uG × v12 (19.3.2.5-1)

in which ωIG is the gyro case angular rate relative to inertial space, ωIG is the time rate of change

of ωIG relative to the gyro case, r12 is the position vector from mass 1 to mass 2 (in the proof
mass pair), v12 is the velocity of proof mass 2 relative to proof mass 1, uG is a unit vector
perpendicular to the plane containing r12 and v12 (or perpendicular to the r12, v12 vectors if they
are collinear), and aSF12u is the component along uG of the normalized difference between
forces applied to masses 1 and 2 (normalized by their mass magnitudes and also known as

specific force).  The ω IG ⋅ 2 uG × v12  term in Equation (19.3.2.5-1) is proportional to the
component of gyro case angular rate around axis uG, which is the term the gyro is to measure.
The measurement is the composite effect of aSF12u forces on all moving proof masses within
the gyro case as registered on a composite force output transducer.  The remaining terms in
Equation (19.3.2.5-1) are error terms that are minimized or eliminated by the gyro construction
(e.g., eliminated by mass symmetry so that similar terms for different mass point pairs are of
the same magnitude but opposite in sign).  The primary method for minimizing the remaining
error terms is to make v12 large.

For a spinning mass gyro, the proof masses comprise a spinning rotor and the proof mass
velocities are the velocities of points on the rotor relative to the spin axis.  The gyro output is
measured torque (the composite of dual oppositely directed proof mass forces) applied to the
rotor to maintain the spin axis aligned to the case in the presence of rotation.  The proof mass
pairs are points on opposite sides of the rotor equidistant from the axis.  Because of rotor
symmetry around the spin axis, the orientation of proof mass pairs and their relative velocity
appears constant relative to the gyro case (relative to the gyro case, previous proof mass pairs
are constantly being replaced by identical pairs at the same velocity).  The result is that the
composite torque being measured provides a continuous measurement of gyro case angular
rate.

For a MEMS type gyro, the proof masses are linearly vibrating elements which makes the
v12 term oscillatory.  For this type of situation, the composite force measurement is also
oscillatory at the vibrating mass frequency, with amplitude proportional to the gyro case angular
rate.  The angular rate measurement is then obtained by demodulating the oscillatory signal.

19.3.2.6  ANGULAR RATE SENSING BY OPTICAL GYROS

Optical gyros (ring laser gyros - RLGs, and fiber optic gyros - FOGs) measure angular rate
using the inertial properties of light.  Both RLGs and FOGs are based on the Sagnac effect
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(derivable from General Relativity) for oppositely directed light beams traversing the same
closed path.  Under angular rotation about an axis perpendicular to a closed light path, relative to
non-rotating inertial space, the apparent closed path length for light traversing the closed path in
the direction of rotation will be longer than for light traversing the same closed path in the
opposite direction.  If the oppositely directed light beams are of the same frequency, the result
will be a net change in phase shift between the two beams for each traversal of the of the closed
path.  The phase shift is proportional to the angular rate, the signal to be measured by the optical
gyro.  Moreover, the angular rate measured is relative to non-rotating inertial space, presumably
of the same type as described previously (an independent analysis by an optical gyro
theoretician would be beneficial to confirm this assumption).

For a FOG, the light beam path is created with a circularly-wound fiber optic coil and the
light source is a super-luminescent diode.  Light from the diode enters a linear segment of fiber
optic material which is spliced onto the fiber optic coil.  The splice causes the light to split into
"clockwise" and "counter-clockwise" beams which then traverse the coil length in opposite
directions.  A second splice at the end (start) of the coil recombines the beams onto an output
linear fiber optic segment that terminates at a photodiode, the device output transducer.  The
phase shift (proportional to the angular rate) in the recombined beams produces a change in light
intensity, the signal measured by the photo diode.  The sensitivity of the FOG (i.e., phase shift
per unit of angular rate) is proportional to the length of the fiber coil (e.g., 400 meters in typical
FOGs).

For an RLG, the closed light beam path is created by reflecting mirrors (3 mirrors for a
triangular closed path and 4 for a square closed path).  The mirrors are mounted to a Zerodur
structure (a thermally stable translucent material) containing tubular space between mirrors (the
"cavity") for the light to pass.  The resulting mirror-closed cavity also serves to house a helium-
neon gas ring laser, the source of the single frequency light beams that traverse the cavity in
"clockwise" and "counter-clockwise" directions.  As with the FOG, for each closed-loop
traversal of the light beams, a phase shift develops in the RLG between the oppositely directed
light beams.  Unlike the FOG, because of its basic construction as a laser, the beams continue to
re-traverse the same path continuously, thereby adding phase shift for each traversal.  Thus for
the RLG, the phase shift between the two light beams develops a rate of change proportional to
the input angular rate, and the phase shift becomes proportional to the integrated angular rate.

Phase shift output from the RLG is obtained by allowing a small fraction of each beam to
escape the cavity and be recombined on a photodiode.  Under input angular rate, the photodiode

outputs a sinusoidal signal with each wave representing a phase change of 2 π radians.  Each
photodiode output cycle represents a corresponding increment of integrated gyro case input
angular rate (e.g., 2 arc sec angular motion per photodiode output cycle).

19.3.2.7  THE EFFECT OF GRAVITY GRADIENT ON GYRO OUTPUT

Mechanical and optical gyros measure angular rate relative to non-rotating inertial space.
General non-rotating inertial space as previously defined included a general uniform gravity
field within the space.  Similarly, our analysis of what gyros measure was also based on the
gyro being in a uniform gravity field.  But what if the gravity field surrounding the gyro is not
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uniform.  Will this affect the gyro output?  The answer depends on the shape of the gravity field
and the type of gyro being used.

19.3.2.7.1  Gravity Field Shape

For most applications, the assumption of gravity field uniformity is a very good
approximation, particularly for applications when the gyro is used at a great distance from
planets.  When near planets, a better approximation is that gravity can be approximated as a
spherical field pointing toward the center of the planet with magnitude inversely proportional to
the square of the distance from the planet's center (i.e., Newton's gravitational law recognizing
that for a spherical body of uniform density, gravity above the body's surface is exactly what it
would be if the mass of the body was concentrated at the center of the body).

19.3.2.7.2  Spinning-Mass Gyros In A Spherical Gravity Field

For a spinning mass gyro, Newtonian physics shows that torque T applied to the spinning
rotor around an axis perpendicular to the spin axis will produce a precessional rate of the rotor
given by

T  =  ΩPrecess HRotor (19.3.2.7.2-1)

in which

HRotor  =  IRotor ωRotor (19.3.2.7.2-2)

in which ΩPrecess is the precessional rate created by the applied torque, HRotor is the rotor
angular momentum, IRotor is the moment of inertia of the rotor about its the spin axis, and

ωRotor is the rotor spin rate.  Equation (19.3.2.7.2-1) is the equivalent of the Equation

(19.3.2.5-1) 2 ω IG ⋅ uG × v12  term for all combined mass points on the rotor (and neglecting
the remaining terms as small or compensatable).  For a strapdown gyro for which T maintains

rotor alignment with the gyro case, ΩPrecess is the component of gyro case angular rate ωIG
along the gyro input axis.  Hence, T is proportional to gyro input axis angular rate.

Equation (19.3.2.7.2-1) applies for a uniform gravity field for which ΩPrecess is angular rate
relative to general non-rotating space as defined earlier (i.e., a non-rotating space in a general
uniform gravity field that may differ from the field surrounding the gyro).  In actuality, uniform
gravity is an approximation.  For a spherical gravity field (like the gravity field surrounding the
earth) the gravity gradient effect across an axially mass symmetric body (like a gyro rotor) will
generate a net torque Tgrav on the body according to the formula (Reference 8, Section 6-4):

Tgrav  =  
3
2

 
g
R

 IAxial - ICross  sin 2θ (19.3.2.7.2-3)
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in which g is gravity magnitude at the body's center of mass, R is the distance of the center of
mass from the center of the earth, IAxial is the moment of inertia of the body about its center of
mass around the axis of symmetry, ICross is the body moment of inertia about its center of

mass around an axis perpendicular to the symmetric axis, θ is the angle between vertical and the
axis of symmetry, and Tgrav is perpendicular to the plane defined by the axis of symmetry and
vertical.  For a solid cylindrical body, the moments of inertia are given by (Reference 21a):

IAxial  =  
1
2

 m r2 ICross  =  
1
12

 m 3 r2 + 4 l2 (19.3.2.7.2-4)

in which m is the body mass, r is the cylinder radius and l is the cylinder length.

Identifying the cylindrical body in (19.3.2.7.2-3) and (19.3.2.7.2-4) as the spinning wheel

gyro rotor (i.e., IAxial = IRotor), ΔΩgrav as the portion of ΩPrecess in Equation (19.3.2.7.2-1)
that would be generated in response to the Tgrav component in T, Equations (19.3.2.7.2-1) and
(19.3.2.7.2-1) – (19.3.2.7.2-4) combined then finds:

ΔΩgrav  =  1 - 
6

3 + 4 
l2

r2

 
ωS

ωRotor

 ωS
ωS  ≡  

g
R

(19.3.2.7.2-5)

To maintain the gyro rotor aligned to the case, an additional torque Tgrav (an error torque) will
be applied within the gyro in opposition to the Equation (19.3.2.7.2-3) gravity gradient torque.
The gyro output signal proportional to the torque (i.e., the inverse of Equation (19.3.2.7.2-1))

will thereby contain an error  equal to the negative of ΔΩgrav in Equation (19.3.2.7.2-5).

Inertial navigation analysts will recognize ωS in Equations (19.3.2.7.2-5) to be the Schuler
frequency (Section 13.2.2) which on the surface of the earth equals one revolution in 84 minutes
or 257 deg/hr.  A typical rotor spin rate for a high performance spinning mass gyro is 24,000

revolutions per minute (Reference 16, Page 102).  Based on these figures, the ωS / ωRotor  ωS
coefficient in Equations (19.3.2.7.2-5) is 0.00013 deg/hr.  For an inertial navigation system
(INS) with 1 nautical mile per hour (nmph) position error build-up rate (typical for an aircraft
INS), the average gyro error contributing to the 1 nmph position drift is 0.01 deg/hr.  As such,
the 0.00013 gravity gradient effect is negligible.  For high precision applications, the gyro output
can be compensated (corrected) for gravity gradient induced error.

19.3.2.7.3  MEMS Gyros In A Spherical Gravity Field

For a MEMS type gyro, gravity gradient produces a differential specific force between the
counter-vibrating linear elements.  Because the vibration distance is small compared to the
distance between vibrating elements, the differential force is approximately constant.  The basic
angular rate measurement signal in a MEMS gyro is modulated at the moving element linear
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vibration frequency.  The gyro output is obtained by demodulating this signal.  The
demodulation process also removes any constant differential specific force component caused
by gravity gradient.  This discussion is somewhat academic because any residual gravity effect
in a MEMS type gyro output would be negligible compared to MEMS gyro accuracy
capabilities.

19.3.2.7.4  Optical Gyros In A Spherical Gravity Field

To the author's knowledge, the effect of gravity gradient across RLGs or FOGs has not been
analyzed.  Presumably it would require the application of General Relativity theory for a
definitive answer.  Based on the preceding analysis for spinning wheel gyros, it might be
surmised that the effect would be negligible for most applications.  However, for high
performance applications when the physical size of the gyros can be quite large (e.g., FOGs in
shipboard INSs), an analysis of the effect is warranted.

19.3.2.8  UNIVERSAL NON-ROTATING INERTIAL SPACE

The general model given earlier for non-rotating inertial space was based on the behavior of a
group of independent virtual mass points with zero relative velocity in a uniform gravity field.
In the section defining angular rotation rate, it was shown that in the absence of applied torques,
the mass points could be connected by rigid mass-less rods with the resulting rigid body then
maintaining the same inertially non-rotating property as the free mass points.  Based on this
concept and Equation (19.3.2.7.2-3) we can now further generalize the definition of non-rotating
inertial space to encompass both and spherical gravity fields.  The method is to define the space
as being force-free and occupied by a virtual rigid body of symmetric mass such that
ICross = IAxial.  With such an arrangement, Equation (19.3.2.7.2-3) shows that the gravity
gradient torque on the virtual body will be zero.  If the angular rate for this body relative to
general non-rotating space (as defined earlier in a uniform gravity field) is initialized to be zero,
the angular rate will thereby remain at zero.  Thus, a virtual mass symmetric rigid body can be
used as a non-rotating inertial reference in uniform and in spherical gravity fields.  Since all
gravity fields near-to or distant from planets or stars can be categorized to a high degree of
accuracy as uniform or spherical (as discussed earlier), this concept is applicable to all universal
applications.

19.3.2.9  APPENDIX TO SECTION 19.3.2 - RELATIVE MOTION BETWEEN
TWO MOVING MASSES ON A TRANSLATING/ROTATING BASE

Consider a point at position vector R0 relative to a stationary reference point in non-rotating
inertial coordinate Frame I.  Also consider a point mass at position r relative to R0 such that

R  =  R0 + r (19.3.2.9-1)

Projecting Equation (19.3.2.9-1) on Frame I axes finds for the components:
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RI  =  R0
I
 + rI (19.3.2.9-2)

We also define another coordinate Frame G in which the end point of vector R0 is stationary,
and whose angular orientation relative to Frame I can be represented by the direction cosine

matrix CG
I

.  Describing the components of r in Frame G, Equation (19.3.2.9-2) becomes

RI  =  R0
I
 + CG

I
 rG

(19.3.2.9-3)

Let coordinate Frame I, the R0 point, and the point mass position R be in the same uniform

gravitational field.  Then the second derivative of RI is the specific force acceleration imposed on
the point mass:

R
I
  =  aSF

I
(19.3.2.9-4)

An equivalent to (19.3.2.9-4) is derived by taking two successive derivatives of (19.3.2.9-3).
The first derivative finds

R
I
  =  R0

I
 + CG

I
 rG + CG

I
 r

G
(19.3.2.9-5)

Equation (3.3.2-9) with Frame G angular rate relative to Frame I defined as ωIG gives:

CG
I

  =  CG
I

 ωIG
G

 ×  (19.3.2.9-6)

We also identify r
G

 in (19.3.2.9-5) as the G Frame components of point mass velocity v relative
to the R0 end point (previously defined to be stationary in Frame G)

r
G

  =  vG (19.3.2.9-7)

With (19.3.2.9-6) and (19.3.2.9-7), (19.3.2.9-5) becomes

 R
I
  =  R0

I
 + CG

I
 ωIG

G
 ×  rG + CG

I
 vG (19.3.2.9-8)

Taking the derivative of (19.3.2.9-8) and substituting (19.3.2.9-6), (19.3.2.9-7) and their
derivatives as appropriate then obtains

R
I
  =  R0

I
 + CG

I
 ωIG

G
 × ωIG

G
 × rG  + CG

I
 ωIG

G
 × rG  + 2 CG

I
 ωIG

G
 × vG  + CG

I
 v

G
(19.3.2.9-9)

Finally, we substitute (19.3.2.9-4) for R
I
 and multiply the result by CI

G
:
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aSF
G

  =  CI
G

 R0
I
 + ωIG

G
 × ωIG

G
 × rG  + ωIG

G
 × rG + 2 ωIG

G
 × vG  + v

G
(19.3.2.9-10)

Now consider two proof masses in Frame G.  Each satisfies Equation (19.3.2.9-10):

aSF1

G
  =  CI

G
 R0

I
 + ωIG

G
 × ωIG

G
 × r1

G
 + ωIG

G
 × r1

G
 + 2 ωIG

G
 × v1

G
 + v1

G

aSF2

G
  =  CI

G
 R0

I
 + ωIG

G
 × ωIG

G
 × r2

G
 + ωIG

G
 × r2

G
 + 2 ωIG

G
 × v2

G
 + v2

G
(19.3.2.9-11)

Then the difference between the specific forces at the two mass points is

aSF12

G
  =  ωIG

G
 × ωIG

G
 × r12

G
 + ωIG

G
 × r12 + 2 ωIG

G
 × v12 + v2

G
 - v1

G
(19.3.2.9-12)

in which aSF12 ≡ aSF2 - aSF1,  v12 ≡ v2 - v1, and r12 ≡ r2 - r1.

For mechanical gyros (spinning mass or MEMS), the G Frame is fixed relative to the gyro

case, and the r1
G

, r2
G

, v1
G

, v2
G

, v2
G

, v1
G

 vectors describe the position and motion of mass points on
a moving element within the gyro that are either in the same plane or collinear.  Let’s define a
unit vector perpendicular to this plane (or line) as uG.  Then aSF12u, the component of aSF12

along uG is

aSF12u  =  uG
G

 ⋅ ωIG
G

 × ωIG
G

 × r12
G

 + ωIG
G

 × r12 + 2 ωIG
G

 × v12 (19.3.2.9-13)

After application of suitable vector product identities and recognizing that the dot product
between two vectors is identical for any coordinate frame in which it is evaluated, we find for
(19.3.2.9-13):

aSF12u  =  ωIG ⋅ uG  ωIG ⋅ r12  + ω IG ⋅ uG × r12  + 2 ω IG ⋅ uG × v12 (19.3.2.9-14)

Equation (19.3.2.9-14) defines the component along uG of the relative specific force between
two mass points on a moving element within the gyro.  The composite effect of (19.3.2.9-14)
for all mass point pairs on the gyro's moving element is the output measurement generated by
the gyro output transducer.

19.3.3  WHAT DO ACCELEROMETERS MEASURE?

Accelerometers measure acceleration, the time rate of change of velocity, or do they?
Consider an accelerometer with its input axis horizontal under horizontal acceleration.  The
output would be the acceleration component along the accelerometer input axis.  Now consider
that the accelerometer orientation is changed so that its input axis is up.  Under horizontal
acceleration or no acceleration at all, the accelerometer output will be plus 1 g (i.e., +32.2 fps2).
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With the input axis down, the accelerometer output would be minus 1 g.  These observations
(and others) have led to the conclusion that an accelerometer does not measure gravity and that it
actually measures the component of "total acceleration minus gravity" along its input axis.  For
the previous example with input axis up, the "total acceleration" along the input axis is zero, the
gravitational component along the input axis is minus 1 g, and the accelerometer output from
the formula is input axis "total acceleration" (zero) minus the negative 1 g gravitational
component, or plus 1 g as stipulated previously.  With input axis down, the correct minus 1 g
accelerometer output is also obtained from the formula.  In free-fall, the "total acceleration"
would be the acceleration of gravity, and the accelerometer output would be zero (from the
formula, total acceleration minus gravity).

But what is the accelerometer actually measuring?  "Total acceleration minus gravity" is not a
satisfying answer because it is based on what the instrument is not measuring.  It also presumes
a definition for "total acceleration" which is generally only vaguely defined if at all.  Also, how
does the accelerometer know what the gravity component is that it is not measuring?  As an
alternative, some have defined the accelerometer output as "non-gravitational" acceleration.  But
what is the non-gravitational acceleration that is being measured?  Acceleration is generally
defined as rate of change in velocity, but which velocity rate is being measured?  Velocity is
defined as rate of change in position, but which position is being measured?  Position is
generally defined as the linear displacement between two points, but which two points?  To
answer these questions we should first define how an accelerometer is mechanized and its
principal of operation.

An accelerometer is designed to measure the force required to maintain a proof mass within
the accelerometer case.  For an elementary linear accelerometer, the proof mass might be
connected to the case with a spring that deflects in proportion to the force applied to the proof
mass.  Spring deflection is sensed by a signal generator and provided as the accelerometer
output.  A more sophisticated accelerometer implementation might use a detector that senses
movement of the proof mass from a nominal position in the case.  The detector provides input
to an electrical circuit that generates a control signal to a transducer.  The transducer generates
force on the proof mass proportional to the transducer input, thereby maintaining the proof
mass at the nominal case position.  For this so-called "force-rebalance" approach, the transducer
input signal is proportional to the force applied to the proof mass and is also provided as the
accelerometer output.

The principal of operation for the accelerometer is based on Newton's second law of motion;
the time rate of change of a body's velocity (its acceleration) is proportional to the force applied
to the body.  The proportionality factor is the reciprocal of the body's mass.  Since the
accelerometer is mechanized to output a signal proportional to force on its proof mass, the
accelerometer output thereby becomes proportional to the rate of change of proof mass velocity
(i.e., proof mass acceleration).  Because the proof mass is constrained by the force transducer to
maintain its position in the accelerometer case, the proof mass acceleration equals the case
acceleration.  Therefore, the accelerometer output becomes proportional to the acceleration of the
accelerometer case (or the base upon which the accelerometer is mounted).  To generate an
equivalent acceleration signal, the accelerometer signal generator output is normalized by its
proof mass magnitude and force transducer scale factor.  The normalized output is sometimes
denoted as "specific force".
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But what exactly does specific force measure?  To directly address this question let us
represent the accelerometer as a generalized free mass that can measure and output its specific
force.  Consider two such free masses in the same uniform gravity field; mass 1 and mass 2.
In the absence of applied forces, the relative velocity (time rate of change of distance) between
the two masses will remain constant (i.e., both will be in "free-fall" and accelerating at the same
gravitational value).  This is a generalization of Newton's first law of motion to include the effect
of uniform gravity and to define relative velocity as being the rate of change of displacement
between two free masses in the same gravity field.  Now consider that a force is applied only to
mass 2.  The relative velocity between masses 1 and 2 will then increase at a rate (acceleration)
equal to the applied force divided by the mass of mass 2.  The mass 2 specific force output will
exactly measure this acceleration.  This is a generalization of Newton's second law of motion to
include the effect of gravity and to identify the acceleration response of the proof mass as being
relative to a non-forced reference (mass 1) contained in the same gravity field.

What if we now stipulate that masses 1 and 2 are in different gravity fields 1 and 2.  If no
forces are applied to either mass, the relative velocity between the two masses will have a time
rate of change equal to the difference between the values of gravity field 1 and gravity field 2.
Under this condition, the specific force measurements for masses 1 and 2 will each be zero.  If
we now apply forces to the masses, an additional relative acceleration will be created between
the two equal to the difference between the specific force measured by masses 1 and 2 (i.e.,
exactly as described in the previous paragraph).  It is also to be noted based on the above
discussion that the relative difference between gravity fields 1 and 2 can be determined by
measuring the relative acceleration between masses 1 and 2 (e.g., by optical means) and
subtracting the difference between the mass 1 and 2 specific force measurements.  It is stated
without proof that the absolute value of a gravity field is immeasurable.

Based on the above discussion, we can postulate the answer to our original question; what do
accelerometers measure?  Accelerometers measure specific force, the time rate of change of
velocity relative to local gravitational space.  Local gravitational space is then defined as the
same space occupied by the accelerometer but which contains a virtual mass with zero applied
specific force (analogous to the generalized case described previously in which mass 2 with
applied force represents the accelerometer, mass 1 without applied force represents the virtual
mass, and both masses 1 and 2 are in the same gravitational field).  Specific force is a basic
absolute quantity that is measured directly by the accelerometer.  If the accelerometer is
mounted to a vehicle that is exposed to force, the accelerometer output will measure the specific
force response of the vehicle (which is the same as that of the accelerometer attached to the
vehicle).  This response will be identical for the same applied specific force no matter what
value of local gravity surrounds the vehicle.  Gravity is a property of space whose value at a
particular location can only be determined relative to the value of gravity at another location.

Using the above observations, let us now define some basic equations relating position,
velocity, acceleration and specific force between two general locations 1 and 2:

v2/1  ≡  
d
dt

 R2/1               a2/1  ≡  
d
dt

 v2/1               a2/1  =  aSF2 + g2 - aSF1 - g1 (19.3.3-1)
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where
R2/1  =  Linear displacement vector of point 2 relative to point 1.

v2/1  =  Velocity vector  of point 2  relative to point 1.

a2/1  =  Acceleration vector of point 2 relative to point 1.

aSF1, aSF2  =  Total specific force vector being applied at points 1 and 2 (measurable by
accelerometers).

g1, g2  =  Gravity vector at points 1 and 2.

Accelerometer triads (three-orthogonal accelerometers) at locations 1 and 2 would directly
measure the components of aSF1 and aSF2.

The above equations satisfy the case described previously in which points 1 and 2 represent
free masses in the same uniform gravity field and only mass 2 is exposed to force.  Then

g2 = g1, aSF1 = 0 and 
d
dt

 v2/1 = aSF2.  Thus, an accelerometer triad at location 2 would measure

proof mass acceleration relative to mass 1 (the local gravitational space reference).

As a more familiar case, consider an accelerometer triad in an inertial navigation system
(INS) used to calculate position relative to earth's center.  For this case, consider point 1 as being
the center of the earth and point 2 as being in the INS.  For simplicity, assume that the earth is
not rotating.  Both the earth and the INS are in the gravity field generated by the universe which
we can approximate as being the same at earth's center and at the INS.  At the INS location there

is an additional gravity field created by the earth itself.  Thus, g1 ≈ gUniverse,

g2 ≈ gUniverse + Δg2Earth,  gUniverse is the gravity field created by the universe (exclusive of the

earth) and Δg2Earth is the additional gravity (relative to gravity at earth's center) created by the

earth at the INS.  We can approximate the total force on the earth as zero so that aSF1 ≈ 0.  Then
the previous equations simplify to:

d
dt

 v2/1  =  aSF2 + Δg2Earth               
d
dt

 R2/1  =  v2/1 (19.3.3-2)

a basic form familiar to most inertial navigation engineers.  Integrating the above equations in
the INS computer using aSF2 measured by the INS accelerometers, provides velocity and

position relative to earth's center.  The Δg2Earth term in Equations (19.3.3-2) would be modeled
in the INS computer based on previously determined values of gravity as a function of position
relative to earth's center.

What if we want the INS (point 2) to measure motion relative to another point 3 fixed to the
earth.  From Equations (19.3.3-1) we can directly write
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d
dt

 v2/3  =  aSF2 - aSF3 + g2 - g3               
d
dt

 R2/3  =  v2/3 (19.3.3-3)

A difficulty with Equations (19.3.3-3) is that the specific force aSF3 at point 3 must be
previously determined and included in the INS computer memory.  In addition, gravity at point
2 must be modeled relative to gravity at point 3.  Available gravity models are always
referenced to earth's center, previously point 1.  By selecting the reference point as the center of
the earth where the specific force aSF1 is approximately zero, both difficulties are avoided.  An

alternative approach is to note that the relative acceleration a3-1 between earth fixed points 1 and

3 is zero for which Equations (19.3.3-1) show that aSF3 + g3 = aSF1 + g1 ≈ g1.  Substituting in
Equations (19.3.3-3) then gives

d
dt

 v2/3  =  aSF2 + g2 - g1  =  aSF2 + Δg2Earth               
d
dt

 R2/3  =  v2/3 (19.3.3-4)

which uses a gravity model referenced to earth's center as in Equations (19.3.3-2), but which
references the INS position and velocity to point 3 rather than point 1.  The identical result could
have been obtained more easily by noting that R2/3 = R2/1 - R1/3, and because R1/3 is constant

(i.e., points 1 and 3 are fixed to the earth), v2/3 ≡ 
d
dt

 R2/3 = 
d
dt

 R2/1 = v2/1.  Substitution in

Equations (19.3.3-2) then provides Equations (19.3.3-4) directly.

Now consider mass 2 to be in free-fall whose position relative to earth's center is to be
calculated (e.g., a satellite).  This is identical to the previous INS cases except the specific force
aSF2 in the satellite would now be zero.  It also implicitly shows how a free-fall satellite

environment can be created artificially; by producing an environment in which aSF2 is zero.
This can be achieved in an airplane for example, by flying a trajectory in which lift, thrust and
side force are controlled so that accelerometers mounted in the aircraft (that measure aSF2) have
an average reading of zero.

Finally, consider the earth and its oceans.  Consider two distant locations at the earth surface
that are fixed relative to the earth.  Because these points are defined to be fixed, the relative
acceleration between them (a2/1) will be zero.  Now consider that the gravity fields at points 1
and 2 have rates of change so that over time, the difference in gravity values (g2 - g1) changes
(this is caused principally by the gravity field created by moon's mass as it changes its position
relative to the earth due to earth's rotation and moon's orbit).  From the derivative of the third of
Equations (19.3.3-1) we see that aSF2 - aSF1 (the difference in specific force between points 1

and 2) will have a rate of change equal to the rate of change in g2 - g1.  The changing specific
force between points 1 and 2 is felt by the oceans at points 1 and 2, thereby  producing relative
movement of the ocean waters between points 1 and 2.  The result is the tidal flows generated
on the earth's surface.
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Subject Index
(Subject Located By Section Number Unless Otherwise Indicated)

Acceleration (defined)
Gravitational,  See Gravity
Measured by accelerometers,  Following Fig.

1-1, Following Eq. (4.2-4), Following Eq.
(4.3-10)

Specific force,  Following Fig. 1-1, 2.1,
Following (4.2-4), 19.3.3

Total,  Following Fig. 1-1, Following Eq.
(4.2-4), 19.3.3

Acceleration transformation
Algorithm validation,  See under Software

validation - Of strapdown inertial
navigation routines

Continuous form,  4.2
Correction for local level rotation,  7.2.2.1
Digital algorithms,  7.2.2, 7.2.2.. 
Effect of inertial sensor error on,  13.2.4
Error characteristics,  13.4.1.2

Accelerometer compensation
By vertical channel control gains,  4.4.1.2.1
For anisoinertia error,  8.1.4, 8.1.4.2
For position updating algorithms,  8.2.3,

8.2.3.1
For quantization error,  8.1.3, 8.1.3. 
For scale-factor non-linearity,  8.1.1.3
For sculling algorithm,  8.2.2.1
For size effect in rotation-compensation/

sculling algorithm,  8.1.4.1.3
For size effect in sculling algorithm,  8.1.4.1.2
For size effect,  8.1.4, 8.1.4.1. 

For velocity updating,  8.2.2, 8.2.2. 
General formulas,  8.1.1.2
In strapdown sensor compensation summary,

Table 8.4-1
Integrated output algorithms,  8.1.2.2
Sensor level,  8.1.1.2.1
System level,  8.1.1.2.1
Updating from strapdown rotation test,  18.4.6

Accelerometer error characteristics,  8.1.1.2, 12.4,
12.5.6

Accelerometer (sensor definition),  Following Fig.
1-1

Accelerometer (simulating), 11.2.1.2, 11.2.2.2,
11.2.3.2. 11.2.4.3.1, 17.3.1

Accelerometer (what it measures), 19.3.3
Aiding,  See Kalman filtering

Algorithms (for INS)
Execution rate selection,  7.4
Response under vibration - See under

Vibration effects analysis
See Coning - Algorithms
See Direction cosine matrix - Update

algorithms
See Positioning - Position update algorithms
See Quaternion - Update algorithms
See Scrolling - Algorithms
See Sculling - Algorithms
See Unified framework for strapdown

algorithm design
See Velocity - Update algorithms
Selection,  7.4
Strapdown inertial navigation algorithm

summary,  7.5, Table 7.5-1
Alignment compensation

For accelerometers,  See Accelerometer
compensation - Integrated output
algorithms, For position updating
algorithms, For sculling algorithm, For
size effect , Updating from strapdown
rotation test

For angular rate sensors,  See Angular rate
sensor compensation - For coning
algorithm, Integrated output algorithms,
For position updating algorithms, For size
effect, Updating from strapdown rotation
test

For sensor assembly
Algorithm,  8.3
Coefficient updating from strapdown

rotation test,  18.4.5, 18.4.6
Altitude

Defined,  4.4, 5.2
From position vector,  4.4.2.3
Initialization,  6.4
Position vector from,  4.4.2.2
Rate equation,  4.4.1.2, 4.4.1.2.1, 7.3
Updating algorithm,  7.3.1

Angular rate sensor compensation
For attitude updating,  8.2.1, 8.2.1. 
For coning algorithm,  8.2.1.1
For position updating algorithms,  8.2.3,

8.2.3.1
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Angular rate sensor compensation (Continued)
For quantization error,  8.1.3, 8.1.3. 
For scale-factor non-linearity,  8.1.1.3
For size effect,  8.1.4.1.1, 8.1.4.1.1.2, 8.1.4.1.4,

8.1.4.1.5
General formulas,  8.1.1.1
In strapdown sensor compensation summary,

Table 8.4-1
Integrated output algorithms,  8.1.2.1
Sensor level,  8.1.1.1.1
System level,  8.1.1.1.1
Updating from strapdown drift test,  18.2.3
Updating from strapdown rotation test,  18.4.6

Angular rate sensor error characteristics,  8.1.1.1,
12.4, 12.5.6

Angular rate sensor (sensor definition),  Following
Fig. 1-4

Angular rate sensor (simulating), 11.2.1.2, 11.2.2.2,
11.2.3.2, 11.2.4.3.1, 17.3.1

Angular rate sensor (what it measures), 19.3.2,
19.3.2. 

Angular rate vector
Body rate (defined),  Following Fig. 1-4
Earth rate (defined),  After Eq. (4.1.1-2)
From Euler angle rates,  3.3.3.1
In general (defined),  2.1
Measured by angular rate sensors,  Following

Fig. 1-4, 2.1
Transport rate,  See under separate listing

Anisoinertia error (in pendulous accelerometers),
8.1.4.2, 10.1.4.1

Attitude
Algorithms (for INS)

Euler angle outputs,  4.1.2
See Coning - Algorithms
See Direction cosine matrix - Update

algorithms (for INS)
See Quaternion - Update algorithms (for

INS)
See Unified frmework for strapdown

algorithm design
Error characteristics,  3.5, 3.5.1, 3.5.2, 3.5.3,

11.2.1.4, 12.2.1
Initialization,  See Initialization - Attitude
Parameters (defined)

Direction cosine matrix,  3.2.1
Euler angles,  3.2.3
Quaternion,  3.2.4, 3.2.4.1
Rotation vector,  3.2.2

Rate equations
Direction cosine matrix,  3.3.2, 4.1
Euler angles,  3.3.3, 3.3.3.2, 3.3.3.3
Quaternion,  3.3.4, 4.1
Rotation vector,  3.3.5, 19.1.5

Average of averages filter, 18.4.7.3

Bias
Accelerometer

Defined,  8.1.1.2
Error compensation,  See Accelerometer

compensation
Angular rate sensor

Defined,  8.1.1.1
Error compensation,  See Angular rate

sensor compensation
Body B Frame coordinates (defined),  2.2
Body rate (defined),  Following Fig. 1-4
Calibration,  See Compensation
CEP (defined),  Following Equation (18.2.1-25)
Coarse leveling,  See Initialization - Attitude -

Quasi-stationary
Compensation

See Accelerometer compensation
See Alignment compensation  - For sensor

assembly
See Angular rate sensor compensation

Coning
Algorithms,  7.1.1.1.1, 19.1.8

Compensation for inertial sensor error,
8.2.1.1

Defined,  7.1.1.1
See Attitude, Algorithms

Continuous alignment test,  18.3.2, 18.3.2. 
Control vector

For continuous form Kalman filter,  15.1.5.3.2
For discrete form Kalman filter,  15.1, 15.1.2,

15.1.2.3, 15.1.2.3.1, 15.2.1, 15.2.1.1
Coordinate frame(s)

Defined,  2.1
Principal frames used in book,  2.2
Used in book,  Coordinate frame index (back

of book - See Table of Contents)
Coriolis effect

For vectors in rotating coordinate frames,
3.3.1, 3.4

In position update algorithms,  7.3.3
In velocity rate equation,  4.3
In velocity update algorithms,  7.2.1

Covariance matrix
Defined,  15.1.2.1
See Covariance simulation programs
See Kalman filtering - Covariance matrix

operations
Covariance simulation programs,  16. 

Covariance operations
Numerical conditioning control,

15.1.2.1.1.4
Propagation timing,  16.2.6.5
Propagation,  16.2.6.1, 16.2.6.2
Resets,  16.2.6.1, 16.2.6.2

Error budget outputs,  16.2.4, 16.2.6.9
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Covariance simulation programs (Continued)
Error models

Acceleration squared error effects,
16.2.3.2

General,  16.2.3
Gravity error models,  16.2.3.3
Inertial sensor errors,  12.5.5
Process noise,  16.2.3.1
Specification of,  16.2.6.7

Error state configuration,  16.2.6.3
Error state control configuration,  16.2.6.4
Estimation configuration,  16.2.6.4
Estimation timing,  16.2.6.6
For delayed control Kalman updates,  16.1.2,

16.1.2. 
For idealized control Kalman updates,  16.1.1,

16.1.1. 
For Kalman filter design,  16.2.7
For optimal Kalman filter performance

evaluation,  16.1.1.3, 16.1.2.1
For suboptimal Kalman filter performance

evaluation,  16.1.1.1, 16.1.1.4, 16.1.2,
16.1.2.2, 16.2, 16.2. 

Initialization,  16.1.1.2, Following Eq.
(16.1.2-28)

Performance outputs,  16.2.5, 16.2.6.10
Program structure,  16.2.6, 16.2.6. 
Sensitivity outputs,  16.2.4, 16.2.6.9
Simplified versions,  16.1.1.4, 16.1.2.2,

16.2.6.2
Trajectory generator interface,  16.2.6.8

Cross-product operator,  3.1.1
Curvature matrix,  5.2.4
Direction cosine matrix

Defined,  3.1
Error characteristics

Generalized,  3.5.1
In navigation parameters,  12.2.1, 12.2.3
Misalignment error from Euler angle

errors,  3.5.3
Misalignment error,  3.5.2

For vector coordinate frame transformation,  3.1
From Euler angles,  3.2.3.1, 4.4.2.1
From quaternion,  3.2.4.2, 7.1.2.4
From rotation vector,  3.2.2.1, 7.1.1.1, 7.1.1.2,

7.2.2.2, 7.3.1
From transformed vector components,  3.2.1.1
General properties,  3.1, 3.2.1
Rate equation

For INS,  4.1, 4.4.1.1, 7.3
Generic,  3.3.2

Update algorithms (for INS),  7.1.1, 7.1.1 , 7.3.1
For body frame rotation,  7.1.1.1, 7.1.1.1.1

Direction cosine matrix - Update algorithms (for
INS) (Continued)

For local level frame rotation,  7.1.1.2,
7.1.1.2.1

Normalization,  7.1.1.3
Orthogonalization,  7.1.1.3
See Coning - Algorithms

Earth coordinates (defined),  2.2
Earth referenced parameters

Altitude,  5.2, See also under separate listing
Curvature matrix,  5.2.4
Ellipticity,  5.1, See also under separate listing
Equatorial radius (numerical value),  Table

5.6-1
Flattening,  5.6
Latitude angle parameters,  5.2.3
Navigation parameters,  5.2, 5.2. 
Parameter summary,  5.6, Table 5.6-1
Polar coordinate angle parameters,  5.2.2
Position vector,  5.2, 5.2.1, See also under

separate listing
Radii of curvature,  5.2.4

Earth rotation rate (numerical value),  Table 5.6-1
Ellipticity

Defined,  5.1
Equivalency with Flattening,  5.6
Numerical value,  Table 5.6-1

Error Analysis
Accelerometer error characteristics,  8.1.1.2
Angular rate sensor error characteristics,

8.1.1.1
General inertial sensor error models,  12.4
See Attitude - Error characteristics
See Covariance simulation programs
See Initial alignment error analysis
See Navigation error analysis
See Vector - Error characteristics

Error state dynamic equation (defined),  15.1
Error state dynamic matrix (defined),  15.1
Error state transition matrix

Continuous form propagation,  15.1.1
Defined,  15.1.1
Discrete form propagation,  15.1.1,

15.1.2.1.1.1
Error state vector

Defined,  15.1
See Kalman filtering - Error state vector

operations
Euler angles

Defined,  3.2.3
From direction cosines,  3.2.3.2, 4.1.2
INS outputs,  4.1.2
Method of Least Work for analyzing,  3.2.3.3
Rate equations,  3.3.3, 3.3.3.2, 3.3.3.3
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Euler’s Theorem,  Following Eq. (3.2.2-13),
Following Eq. (10.2.1-11)

Filtering
In INS vertical channel control,  4.4.1.2.1
In trajectory generators,  17.2.1
See Kalman filtering
To attenuate INS output jitter,  9. 

Fine alignment,  See Initialization - Attitude -
Quasi-stationary

Flattening (earth shape),  Equivalency with
Ellipticity, 5.6

Folding
Impact on initial alignment,  7.4
In position update algorithm,  10.1.3.2.3,

10.1.5, 10.3, 10.4.2, 10.6.1, 10.6.2
In strapdown inertial integration algorithms,

10.1.3
Foreground

Defined,  Preceding Eq. (15.1.2.3-16)
Initialization,  15.2.1.2, Following Eq.

(15.2.2.1-36)
Integrating and controlling,  15.2.1, 15.2.1.1,

Following Eq. (15.2.2.1-34), Following
Eq. (15.2.2.2-14)

Free azimuth coordinates (defined),  4.5
Frequency response analytics

For random inputs,  10.2.2
For sinusoidal inputs,  10.2.1

GEN NAV simulator,  11.2, 11.2.4, 11.2.4. 
Geographic coordinates (defined),  2.2
GPS (Global positioning system)

 In Kalman filter aided INS,  15.2.4
 Simulated using trajectory generator,  17.3.2

Gravity
Field shape,  19.3.2.7.1
From mass attraction,  5.4, 12.1.1, 12.2.4,

16.2.3.3
Numerical coefficients for,  Table 5.6-1

Plumb-bob gravity,  5.4.1
For error analysis,  12.2.4, 16.2.3.3
Linearized,  12.1.1

Gyro,  See Angular rate sensor 

Heading (Euler angle),  3.2.3, 3.2.3. , 4.1.2
Platform,  4.1.2
True,  4.1.2

Inertial coordinates (defined),  2.2
Inertial navigation equations,  See Strapdown

inertial navigation equations
Inertial navigation system (defined)

Gimbaled,  Following Fig. 1-2
Strapdown,  Following Fig. 1-4

Inertial sensor compensation algorithms
See Accelerometer compensation
See Alignment compensation - For sensor assembly

Inertial sensor compensation algorithms (Continued)
See Angular rate sensor compensation

Inertial sensor error characteristics
General inertial sensor error models,  12.4,

12.5.6
See Accelerometer error characteristics
See Angular rate sensor error characteristics
See Covariance simulation programs - Error

models
See Quantization error (on inertial sensor

outputs)
Inertial sensor operations

In an INS, Chapter 1
What inertial sensors measure, 19.3.1
What gyros measure, 19.3.2, 19.3.2. 
What accelerometers measure, 19.3.3

Inertial Space,  19.3.1, 19.3.2.3, 19.3.2.4
Initial alignment error analysis

Correlation with navigation errors,  14.5
For constant inertial sensor errors,  14.3
For ramping accelerometer error,  14.4
For random errors,  14.6, 14.6. 

Inertial sensor noise,  14.6.4. 
Measurement noise,  14.6.3
Summary,  14.6.4.4, 14.6.5, 14.6.5. 

Quasi-stationary error rate equations,  14.2
Initialization

Attitude
Moving base,  15.2.2, 15.2.2. 

Quasi-stationary,  6.1, 6.1. 
Coarse leveling,  6.1.1
Error analysis,  14. 
Fine alignment,  6.1.2, 14.1, 15.2.1,

15.2.1. 
Removal of residual tilt,  6.1.3

For INS in general,  4.6
Kalman filter, See Kalman filtering -

Initialization
Position

Altitude,  6.4
Navigation frame orientation,  6.2, 6.2. 

Under dynamic moving base conditions,
15.2.2, 15.2.2. 

Velocity,  6.3
INS,  See Inertial navigation system
Integrated velocity matching,  15.2.2, 15.2.2. 
Jitter

Acceleration measurement,  9.2
Analytical description,  9.1
Angular rate measurement,  9.2
Filter for,  9.3
Removal from INS output data,  9.4, 9.5
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Kalman filtering
Continuous form Kalman filter,  15.1.5.3,

15.1.5.3. 
Control vector operations,  15.1, 15.1.2,

15.1.2.3, 15.1.2.3.1, 15.1.5.3.2
Covariance matrix operations

In continuous form Kalman filter
Combined propagation/Kalman-

updates,  14.6.1, 15.1.5.3.1
Kalman updates,  15.1.5.3.1
Propagation,  15.1.2.1.1, 15.1.5.3.1

In discrete form Kalman filter
Kalman updates,  15.1.2.1, 15.1.2.1.1
Propagation equation,  15.1.2.1.1,

15.1.2.1.1.3
Initialization,  15.2.1.2
Numerical conditioning control,

15.1.2.1.1.4
Covariance response characteristics

General,  15.1.5.4
General with zero measurement noise,

15.1.5.4.1
Quasi-stationary alignment  14.6, 14.6. 

Design process,  15.1.3
Discrete form Kalman filter configuration,

15.1.2, 15.1.2. ,
Error reduction by external control,  15.1.2.3.1
Error state transition matrix computation,

15.1.2.1.1.1,
Error state vector operations

Continuous form combined propagation/
Kalman-updating,  15.1.5.3.2

Continuous form control resets,  14.6.1,
15.1.5.3.2

Continuous form Kalman updating,
15.1.5.3.2

Continuous form propagation,  14.6.1,
15.1, 15.1.5.3.2

Discrete form control resets,  15.1, 15.1.2,
15.1.2.3, 15.1.2.3.1, 15.2.1, 15.2.1.1

Discrete form Kalman updating,  15.1.2
Discrete form propagation,  15.1.1, 15.1.2,

15.1.2.1.1.3
Examples

Dynamic moving base alignment,  15.2.2,
15.2.2. 

GPS aiding,  15.2.4
Quasi-stationary alignment,  15.2.1,

15.2.1. 
Velocity sensor aiding,  15.2.3

Initialization,  15.2.1.2, Following Eq.
(15.2.2.1-36)

Integrated process noise matrix computation,
15.1.2.1.1.2, 15.1.2.1.1.3

Kalman filtering (Continued)
Kalman gain calculation,  15.1.2.1, 15.2.1. ,

15.1.5.2
Measurement (continuous form),  14.6.1,

15.1.5.3.2
Measurement (discrete form),  15.1, 15.1.2,

15.1.2.2, 15.2.1, 15.2.2.1
Observation equation,  15.1, 15.1.2.2, 15.2.1,

15.2.2.1
Software validation,  15.1.4
Suboptimal Kalman filters

Covariance performance evaluation
16.1.1.1, 16.2, 16.2. 

Defined,  15.1.3
Synchronization,  15.1.2.4
Timing,  15.1.2.4

Latitude
Defined,  4.4.2.1, 5.2
Error equation,  12.2.3
From position direction cosine matrix,  4.4.2.1
From position vector,  4.4.2.3
Latitude angle parameters (general equations

for),  5.2.3
Position vector from,  4.4.2.2
Rate equation,  4.4.3

Local level angular rate,  4.1.1
Local level coordinate frame options,  4.5
Longitude

Defined,  4.4.2.1
Error equation,  12.2.3
From position direction cosine matrix,  4.4.2.1
From position vector,  4.4.2.3
Position vector from,  4.4.2.2
Rate equation,  4.4.3

Mathematical notation (used in book),  2.1
Mathematical symbols (used in book),  Table 2.1-1
Matrix

Covariance,  See Covariance matrix
Curvature,  5.2.4
Direction cosine,  See Direction cosine matrix
Measurement noise,  See Measurement noise

matrix
Measurement,  See Measurement matrix
Process noise,  15.1.2.1.1, 15.1.2.1.1.2,

15.1.2.1.1.3
Process noise density,  See Process noise

density (matrix)
Skew-symmetric (defined),  3.5.1
State dynamic,  See Error state dynamic matrix
State transition,  See Error state transition

matrix
Symmetric (defined),  3.5.1

Matrix inversion lemma,  15.1.5.1
Measurement equation,  15.1, 15.1.2.2
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Measurement matrix
Defined,  15.1
In continuous form Kalman filter,  15.1.5.3.1,

15.1.5.3.2
In discrete form Kalman filter,  15.1.2

Measurement noise matrix
In continuous form Kalman filter,  15.1.5.3.1
In discrete form Kalman filter,  15.1.2.1,

15.1.2.1.1
Measurement noise vector

In continuous form Kalman filter,  15.1.5.3.1
In discrete form Kalman filter,  15.1, 15.1.2.1

Measurement vector (defined),  15.1
Method of Least Work (for Euler angle analysis),

3.2.3.3, 3.3.3.3
Moving base alignment,  15.2.2, 15.2.2. 
Navigation error analysis

Attitude errors defined,  12.2.1
Basic error parameter selection,  12.2.5
Gravity errors,  12.2.4
Of navigation algorithms,  See Simulation

programs - For navigation software
validation

Position errors defined,  12.2.3
Position/velocity/attitude error rate equations,

12.3, 12.3. , 12.5. 
For constant altitude with constant sensor

errors,  13.3
Inertial sensor error models,  12.4
Procedures for developing,  12.3.1
Vibration effects modeling,  12.6

Transport rate errors,  12.2.4
Velocity errors defined,  12.2.2
Vibration effects analysis,  See under separate

listing
Navigation error analytical solutions

General characteristics,  13.2, 13.2. 
High rate spinning about fixed axis,  13.4.1,

13.4.1. 
High rate spinning about rotating axis,  13.4.2
Horizontal channel response,  13.2.2
Horizontal circular trajectory (general),  13.4.3
Horizontal circular trajectory at Schuler

frequency,  13.4.4
Inertial sensor misalignment effect,  13.2.4
Inertial sensor scale-factor error effect,  13.2.4
Long term approximation,  13.2.3, 13.5
Short term with free vertical channel,  13.3.1
Short term with random errors,  13.6.2
Two hours with controlled vertical channel,

13.3.2
Two hours with random errors,  13.6.1
Vertical channel response,  13.2.1

Noise
Process noise error models,  16.2.3.1
Process noise matrix,  15.1.2.1.1, 15.1.2.1.1.2,

15.1.2.1.1.3
Process noise vector (integrated),  15.1.1,

15.1.2.1.1
Process noise vector,  15.1
See Measurement noise matrix
See Measurement noise vector
See Process noise density (matrix)

Normalization
Of direction cosine matrix,  3.5.1, 7.1.1.3,

11.2.1.4
Of Quaternion,  7.1.2.3

Observation equation,  15.1, 15.1.2.2
Orthogonalization (of direction cosine matrix),

3.5.1, 7.1.1.3, 11.2.1.4
Parameters used in book (definitions),  2.5,

Parameter index (back of book - See Table of
Contents)

Pitch (Euler angle),  3.2.3, 3.2.3. , 4.1.2
Platform heading (defined),  4.1.2
Plumb-bob gravity,  See Gravity - Plumb-bob

gravity
Position direction cosine matrix

Defined,  4.4
Error equations,  12.2.3
From latitude, longitude, wander angle,

4.4.2.1
In INS software algorithms,  7.3.1
Latitude, longitude, wander angle from,

4.4.2.1
Rate equation,  4.4.1.1, 4.5, 7.3

Positioning
Error parameters (defined),  12.2.3
Error rate equations,  See Navigation error

analysis - Position/velocity/attitude error
rate equations

Position errors,  See under Navigation error
analysis

Position parameter equivalencies
General, 4.4
Latitude/longitude from position direction

cosines,  4.4.2.1
Latitude/longitude/altitude from position

vector,  4.4.2.3
Position vector from latitude, longitude,

altitude,  4.4.2.2
Position parameters,  4.4, 5.2, 5.2.1, 5.2.2,

5.2.3
Position rate equations

Altitude,  4.4.1.2, 4.4.1.2.1, 7.3
Latitude/longitude,  4.4.3
Position direction cosine matrix,  4.4.1.1,

4.5, 7.3
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Positioning - Position rate equations (Continued)
Position translation vector,  19.1.5

Position update algorithms,  7.3, 7.3. 
Based on trapezoidal integration,  7.3.2
Body frame integration algorithms,

7.3.3.2
Compensation for inertial sensor error,

8.2.3, 8.2.3.1
General,  7.3.1
High resolution,  7.3.3, 7.3.3. 
Initialization,   See Initialization - Position
Position rotation compensation

Exact form,  7.3.3.1
Linearized form,  7.3.3

See Scrolling - Algorithms
See Unified framework for strapdown

algorithm design
Vertical channel control,  4.4.1.2.1

Position translation vector, See Translation vectors
Position vector,  4.3, 4.4.2.3, 5.2, 5.2.1, 12.1,

12.1.3, 12.1.4
Power spectral density

Defined,  10.2.2
Equivalency with process noise density,

Following Eq. (15.1.2.1.1-30)
Process noise density (matrix),  15.1.2.1.1,

15.1.2.1.1.3, 15.1.5.3.1
Equivalency with power spectral density,

Following Eq. (15.1.2.1.1-30)
Process noise error models,  16.2.3.1
Process noise matrix,  15.1.2.1.1, 15.1.2.1.1.2,

15.1.2.1.1.3
Process noise vector (integrated),  15.1.1, 15.1.2.1.1
Process noise vector,  15.1, 15.1.1
Quantization error (on inertial sensor outputs)

Compensation for,  8.1.3, 8.1.3.3
Residual pulse compensation,  8.1.3.1
Turn-around dead-band compensation,

8.1.3.2
Defined,  8.1.1.1, 8.1.1.2, 18.4.7.3, 19.2.3
Error Models, 15.2.1.2, 16.2.3.1, 19.2,

19.2. 
Filtering, 18.4.7.3

Quaternion
Coordinate frame transformations,  3.2.4,

3.2.4.1
Defined,  3.2.4
From direction cosines,  3.2.4.3
From rotation vector,  3.2.4.4
Operations,  3.2.4.1
Rate equation

Generic,  3.3.4
INS,  4.1

Update algorithms (for INS),  7.1.2, 7.1.2. 

Quaternion - Update algorithms (for INS) (Continued)
For body frame rotation,  7.1.2.1
For local level frame rotation,  7.1.2.2
Normalization,  7.1.2.3
See Coning - Algorithms

Radii of curvature,  5.2.4
References used in book,  Back of book (See Table

of Contents)
Repeated Alignment Test,  18.3.1, 18.3.1. 

Roll (Euler angle),  3.2.3, 3.2.3. , 4.1.2
Rotation compensation

Position rotation compensation,  7.3.3, 7.3.3.1
Velocity rotation compensation,  7.2.2.2,

7.2.2.2.1
Rotation vector

Applied to INS updating algorithms, 7.1.1.1,
7.1.1.2, 7.2.2.2, 7.3.1, 19.1.4, 19.1.5

Defined,  3.2.2, 19.1.4
From direction cosines,  3.2.2.2
From quaternion,  3.2.4.5
Rate equation,  3.3.5

Scale factor
Accelerometer

Defined,  8.1.1.2
Error compensation,  See Accelerometer

compensation
Angular rate sensor

Defined,  8.1.1.1
Error compensation,  See Angular rate

sensor compensation
Non-linearity,  8.1.1.3

Schuler, Dr. Maximilian, 13.2.2
Schuler frequency (defined),  13.2.2
Schuler Pump Test,  18.1, 18.1. 
Scrolling

Algorithms,  7.3.3.2, 19.1.5-19.1.13
Compensation for inertial sensor error,

8.2.3.1
Defined,  7.3.3, 19.1.5
See Positioning,Position update algorithms,

High resolution
See Unified framework for strapdown

algorithm design
Sculling

Algorithms,  7.2.2.2.2, 19.1.5-19.1.13
Compensation for inertial sensor error,

8.2.2.1, 8.2.2.2
Defined,  7.2.2.2, 19.1.5
See Unified framework for strapdown

algorithm design
See Velocity, Update algorithms

Senescence error,  15.2.2.1, 15.2.2.2
Simulated strapdown inertial sensor outputs,

11.2.1.2, 11.2.2.2, 11.2.3.2, 11.2.4.3.1, 17.3.1
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Simulation programs
Covariance,  See Covariance simulation

programs
For  navigation software validation,  11. 

GEN NAV,  11.2, 11.2.4, 11.2.4. 
Specialized,  11.1
SPIN-ACCEL,  11.2, 11.2.2, 11.2.2. 

SPIN-CONE,  11.2, 11.2.1, 11.2.1. 

SPIN-ROCK-SIZE,  11.2, 11.2.3, 11.2.3. 

For vibration effects analysis, 10.6, 10.6. 
Trajectory generators,  See under separate

listing
Size effect

Defined,  8.1.4
Error (and compensation for),  8.1.4. 

Skew symmetric form of vector,  3.1.1
Software validation

Of Kalman filters,  15.1.4
Of strapdown inertial navigation routines

Acceleration transformation,  See
SPIN-ACCEL and SPIN-CONE
simulators

Accelerometer size effect,  See
SPIN-ROCK-SIZE simulator

Attitude algorithm errors,  11.2.1.4
Attitude updating,  See SPIN-CONE

simulator
General purpose simulators,  11.2, 11.2. 
Overall,  See GEN NAV simulator
Position updating,  See SPIN-ROCK-SIZE

and GEN NAV simulators
Specialized simulations,  11.1
Summary of routines validated by

simulators,  Table 11.2-1
Specific force (defined),  Following Fig. 1-1, 2.1,

Following Eq. (4.2-4)
SPIN-ACCEL simulator,  11.2, 11.2.2, 112.2.2. 

SPIN-CONE simulator,  11.2, 11.2.1, 11.2.1. 

SPIN-ROCK-SIZE simulator,  11.2, 11.2.3, 11.2.3. 
State dynamic equation,  See Error state dynamic

equation
State dynamic matrix,  See Error state dynamic

matrix
State transition matrix,  See Error state transition

matrix
State vector,  See Error state vector
Strapdown drift test,  18.2, 18.2. 
Strapdown inertial navigation equations

Continuous  form,  4.1. 

Linearized versions,  12.1. 

Strapdown inertial navigation equations (Continued)
Summary (continuous form),  4.7, Table 4.7-1, 12.1
See Unified framework for strapdown algorithm

design
Strapdown inertial sensor compensation

See Accelerometer compensation
See Alignment compensation
See Angular rate sensor compensation
Summary,  8.4, Table 8.4-1
System and sensor components,  8. 

Strapdown rotation test,  18.4, 18.4.1. 
Strapdown sensor B Frame coordinates (defined),

2.2
Surface altitude rate term analysis,  5.5
Testing of strapdown inertial navigation systems,

18. 
Accelerometer error evaluation by,  18.1,

18.1. , 18.4, 18.4. 
Angular rate sensor error evaluation by,

18. 
Angular rate sensor noise evaluation by,  18.3,

18.3. 
See Continuous alignment test
See Repeated alignment test
See Schuler pump test
See Strapdown drift test
See Strapdown rotation test
Sensor assembly misalignment evaluation by,

18.4.5
Tilt residual removal at alignment completion,

6.1.3
Timing error,  See Senescence error
Trajectory generators,  17. 

Aerodynamic effects,  17.1.2.3, 17.1.2.3.1,
17.2.3.2.1

High frequency effects,  17.2.3.2.3
Lever arm effects,  17.2.3.2.2
Trajectory regeneration,  17.2, 17.2. 

Trajectory shaping,  17.1, 17.1. 
End-of-segment data generation,  17.1.3
Quick- look projection,  17.1.2, 17.1.2. 
Segment parameter selection,  17.1.1,

17.1.1. 
Trajectory smoothing,  17.2.1
Use in aided strapdown INS simulations,  17.3,

17.3. 
Use in simulating GPS receiver,  17.3.2
Use in simulating strapdown INS errors,

17.3.1
Wind gust effects,  17.2.3.2.1

Transfer alignment,  See Moving base alignment
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Translation vectors
Applied to INS updating algorithms, 19.1.4-

19.1.13
Defined, 19.1.4

Transport rate
Analytical description,  5.3
Defined,  Following Eq. (4.1.1-5)

True heading (defined),  4.1.2
Unified framework for strapdown algorithm design,

19.1, 19.1. 
Validation (of software),  See Software validation
Vector

Angular rate,  See Angular rate vector
Control,  See Control vector
Coordinate frame transformations of,  3.1,

3.1.1
Defined,  3.1
Dot/cross-product identity,  Eq. (3.1.1-35)
Error characteristics,  3.5.4
Measurement noise,  See Measurement noise

vector
Measurement,  See Measurement vector

(defined)
Position,  4.3, 4.4.2.3, 5.2, 5.2.1, 12.1, 12.1.3,

12.1.4
Process noise (integrated),  15.1.1, 15.1.2.1.1
Process noise,  15.1
Product operators,  3.1.1
Rates of change in rotating coordinates,  3.4
Rotation,  See Rotation vector
State,  See Error state vector
Triple cross-product identity,  Eq. (3.1.1-16)
Useful vector relationships,  13.1

Velocity
Defined, 4.3, 12.1.4
INS outputs,  4.3.1
Rate equation,  4.3, 4.4.1.2, 4.4.1.2.1

Velocity translation vector rate, 19.1.5
Update algorithms,  7.2, 7.2. 

Body frame specific force increment,
7.2.2.2

For Coriolis,  7.2.1
For gravity,  7.2.1
Integrated acceleration,  7.2.2.2.2
See Sculling - Algorithms
Velocity rotation compensation

Exact form,  7.2.2.2.1
Linearized form,  7.2.2.2

See Unified framework for strapdown
algorithm design

Velocity errors, See under Navigation error
analysis

Vertical channel control,  4.4.1.2.1
Velocity matching,  15.2.2, 15.2.2.3
Velocity translation vector, See Translation vectors

Vibration effects analysis,  10. 
Attitude response

INS algorithm response to random system
vibration,  10.4.1

INS algorithm response to sinusoidal
sensor angular vibration,  10.1.1.2,
10.1.1.2.1, 10.1.1.2.2

INS algorithm response to sinusoidal
system vibration,  10.3

To random system vibration,  10.4.1
To sinusoidal angular vibration,  10.1.1,

10.1.1.1
To sinusoidal system vibration,  10.3

Induced folding effects in position algorithms,
10.1.3.2.3

Induced inertial sensor errors,  10.1.4, 10.1.4.1,
10.1.4.2

Inertial sensor dynamic rectification error,
10.1.4, 10.1.4. , 10.1.5, 10.3, 10.4.1

INS dynamic analysis model,  10.5, 10.5. 
INS performance under random system inputs,

10.4, 10.4. 
INS vibration effects simulation program,

10.6, 10.6. 
Position response

INS algorithm response to random system
vibration,  10.4.2

INS algorithm response to sensor linear
vibration,  10.1.3.2, 10.1.3.2. 

INS algorithm response to sinusoidal
system vibration,  10.3

To random system vibration,  10.4.1
To sinusoidal linear vibration,  10.1.3,

10.1.3.1
To sinusoidal system vibration,  10.3

Process noise model, 16.2.3.1
Velocity response

INS algorithm response to random system
vibration,  10.4.1

INS algorithm response to sinusoidal
sensor angular/linear vibration,
10.1.2.2, 10.1.2.2.1, 10.1.2.2.2

INS algorithm response to sinusoidal
system vibration,  10.3

To random system vibration,  10.4.1
To sinusoidal angular/linear vibration,

10.1.2, 10.1.2.1
To sinusoidal system vibration,  10.3

Wander angle
Defined,  4.4.2.1
Error equivalencies,  12.2.3
From direction cosines,  4.4.2.1
In calculating north/east velocity,  4.3.1
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Wander angle (Continued)
In INS attitude/position initialization,  6.2.1,

6.2.2
In true heading determination,  4.1.2
Rate of change,  4.4.3

Wander azimuth coordinates (defined),  4.5
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Coordinate Frame Index

Coordinate
Frame

Preceding
Equation, Figure,

Or Section No.

Coordinate
Frame

Preceding
Equation, Figure,

Or Section No.

A (3.1-1)

A (3.4-1)

A (3.5.3-1)

A (3.5.4-1)

A (12.2.1-15)

A (13.2.4-17)

A Sect. No. 3.2.3

A Sect. No. 3.3.1

A (3.5.2-7)

A1 (3.5.1-7)

A1 (3.5.3-1)

A1 (4.4.2.1-1)

A1 Sect. No. 3.2.3

A2 (3.5.1-7)

A2 (3.5.3-1)

A2 (4.4.2.1-1)

A2 Sect. No. 3.2.3

AC Sect. No. 17.1.2.3

ACVar (17.2.3.2-13)

B (3.1-2)

B (3.4-1)

B (3.5.3-1)

B (3.5.4-1)

B (11.2.2.1-1)

B (11.2.3.1-1)

B (12.2.1-15)

B (12.2.1-25)

B (15.1.2.2-4)

B (18.1.1-2)

B Sect. No. 2.2

B Sect. No. 3.2.3

B Sect. No. 3.3.1

B Sect. No. 8.3

B (3.5.2-14)

B0 (11.2.2.1-2)

B0 (13.2.4-16)

B0 (13.4.1.2-4)

B0 (13.4.3-4)

B1 (3.3.4-1)

B1 (18.4.7-14)

B2 (3.3.4-1)

B2 (18.4.7-14)

BI(m) Sect. No. 7.1.1

BI(m) Sect. No. 7.1.2

BVar (17.2.3.2-12)

D (3.1-21)

D (3.5.2-38)

D (12.2.1-15)

E Fig. 13.5-1

E Sect. No. 2.2

E Sect. No. 4.0

E Sect. No. 5.0

E Sect. No. 6.0

E Sect. No. 11.2.4
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E Sect. No. 15.1.2.2

E1 (12.2.3-32)

E2 (12.2.3-32)

G0 Fig. 13.5-1

Geo (6.1.3-8)

Geo (11.2.4.3.1.1-1)

Geo (12.2.2-17)

Geo (17.1.2.3-9)

Geo (18.4.7.4-1)

Geo Sect. No. 2.2

I (3.3.2-7)

I (3.3.4-16)

I (8.1.4.1-1)

I (11.2.3.1-1)

I Fig. 13.5-1

I Sect. No. 2.2

I Sect. No. 11.2.4

I Sect. No. 12.0

L (11.2.2.1-1)

L (11.2.3.3-1)

L (17.1.1.1-1)

L (18.2.1-1)

L (18.4-1)

L Fig. 11.2.1.1-1

L Sect. No. 2.2

L Sect. No. 8.3

L+ (6.2.2-1)

L0 (11.2.2.1-2)

L1 (6.1.3-1)

L1 (12.2.1-25)

L2 (6.1.3-1)

L2 (12.2.1-25)

LI(n) Sect. No. 7.1.1

LI(n) Sect. No. 7.1.2

LVar (17.2.3.2-15)

M (15.1.2.2-4)

M (18.4.5-1)

M (18.4.7.4-1)

M Sect. No. 8.3

M1 (18.4.5-1)

M1 (18.4.7.4-7)

M2 (18.4.5-1)

M2 (18.4.7.4-7)

MARS (18.4.5-1)

MARS (18.4.7.4-3)

MARS1 (18.4.5-1)

MARS1 (18.4.7.4-7)

MARS2 (18.4.5-1)

MARS2 (18.4.7.4-7)

N (11.2.3.3-5)

N (12.2.3-32)

N (15.1.2.2-1)

N (18.1.1-2)

N Fig. 13.5-1

N Sect. No. 2.2

N+ (6.2.2-1)

N+ (14.1-3)

N+ (14.2-35)

N0 Fig. 13.5-1

N1 (6.1.3-1)

N2 (6.1.3-1)

NE(n) (7.3.1-5)

NED (11.2.4.4-1)

NVar (17.2.3.2-2)

P (13.4.2-1)

⊥ Fig. 13.4.2-1

R Fig. 11.2.1.1-1

REF (4.4.2.2-2)
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UV (9.1-4)

V Sect. No. 17.1.1

V F (17.2.1-6)

V F (17.2.3.2.1-4)

VRF (15.1.2.2-4)

VRF Sect. No. 8.3

V W (17.1.2.3.1-1)

V W Sect. No. 17.1.2.3

V W0 (17.1.2.3.1-1)

V WF (17.2.3.2.1-2)
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Parameter Index

Parameter
Preceding

Equation, Figure,
Or Section No.

Parameter
Preceding

Equation, Figure,
Or Section No.

0 (11.2.4.3.1.1-1)

0 (13.3-13)

0 (15.2.2.1-42)

0 (15.2.2.1-5)

0 (16.1.1.2-1)

0+ (13.3-13)

0.0 S + (18.1.1-21)

0.25 S (18.1.2-6)

0.5 S + (18.1.1-21)

0.5 S - (18.1.1-21)

0.5 S (18.1.2-6)

0.75 S (18.1.2-6)

1 (18.1.1-3)

1 (18.2.2-4)

1 (18.4.5-1)

( )1 (8.2.2.1-21)

1.0 S + (18.1.1-21)

1.0 S - (18.1.1-21)

1.5 S + (18.1.1-21)

1.5 S - (18.1.1-21)

2 (18.1.1-3)

2 (18.2.2-4)

2 (18.4.5-1)

( )2 (8.2.2.1-21)

2x1 (15.2.1-6)

2x2 (15.2.1-6)

2x3 (15.2.1-6)

3 (18.1.1-3)

( )3 (8.2.2.1-21)

A (4.4.1.2.1-7)

A (7.1.1.1.1-7)

A (7.2.2.2.2-6)

A (7.3.3.2-2)

A (8.2.2.1-14)

A (8.2.2.1-18)

A (10.2.1-4)

A (10.4.2-23)

A (11.1-3)

A (11.2.3.1-11)

A (14.6.1-1)

A (15.1.5.1-2)

a (3.2.4-3)

a (3.2.4-8)

a (7.1.2.4-1)

a (10.5.1-12)

a (14.6.2-26)

a Sect. No. 16.1.1.4

A(S) (10.5.1-12)

A(t) (15.1-1)

A(t) (15.1.5.3.1-23)

A(t) (18.3-5)

A(t) (10.1.1.1-2)

A(t) (10.1.2.1-2)

a) - h) (14.6.2-6)



D-2     PARAMETER INDEX

A*(t) (15.1.5.4.1-3)

a1
L

(18.4.5-1)

a1
L

(18.4.7.4-18)

a2
L

(18.4.5-1)

a2
L

(18.4.7.4-18)

Aa (15.2.1.1-3)

aAccl (8.1.4.1-8)

aAccl(t) (10.1.4.2-2)
aAccl0Inpt (10.1.4.1-2)

aAccl0Pend (10.1.4.1-2)

aAccl0x (10.3-14)

aAccl0y (10.1.4.2-2)

aAccl0y (10.3-14)

aAcclInpt(t) (10.1.4.1-2)

aAcclPend(t) (10.1.4.1-2)

Ab (15.2.1.1-3)
AδKBias (13.5-21)

aF (10.5.1-12)

AF(S) (10.5.1-12)

Aγ (t) (18.3-6)

aH1
L

(18.4.7-14)

aH2
L

(18.4.7-14)

aH
L

(18.4.7-12)

AH
N

(13.1-1)

Ai (8.2.2.1-14)

ai (10.2.2-1)

ai, bi, etc. (14.6.2-20)
aIA X (12.6-1)

aL (18.4-1)

aL (18.4.7-1)

a
 L

(18.4.5-1)

a
 L

(18.4.7.4-16)

Algo (10.1.3.2.2-3)

( )Algo (10.1.1.2.2-1)

( )Algo (10.1.2.2.2-1)

Align (14.5-10)

α (3.5.2-10)

α (4.1.2-2)

α (4.3.1-1)

α (4.4.2.1-1)

α (5.3-8)

α (8.1.4.1-10)

α (11.2.1.1-5)

α (11.2.2.2-1)

α (12.2.1-39)

α (12.2.2-21)

α (12.2.3-33)

α (17.1.2.3-13)

α Fig. 13.4.2-1

α(t) (7.1.1.1-9)

α(t) (7.2.2.2-7)

α(t) (10.1.1.2-1)

α(t) (10.1.2.2-1)

α(τ) (7.3.3.1-2)

α0 (13.4.2-22)

α0 (17.1.2.3-25)

α1 (6.1.3-8)

αA1 to  A
A

(3.5.3-34)

αA2 to  A1

A1 (3.5.3-34)

αA to  B
B

(3.5.2-37)

αB to  A2

A2 (3.5.3-34)

αB to  A
A

(3.5.2-26)

αB to  A
A

(3.5.3-34)
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αB to  A
A

(3.5.4-5)

αB to  A
B

(3.5.2-26)

αB to  A
B

(3.5.4-8)

αB to  L
L

(12.2.1-28)

αCnt (8.2.3.1-2)

αCnt (t) (8.2.1.1-5)

αCnt (t) (8.2.2.1-11)

αCntm (8.1.2.1-1)

αCntm (8.1.3.3-6)

αCnt m (17.3.1-1)

αCntRes (l  : m) -1 (8.1.3.3-3)

αCntResl (8.1.3.3-3)

αCntResm (8.1.3.3-3)

αCntX(t) (8.2.2.1-25)

αCntXl (8.2.2.1-37)

αCntY(t) (8.2.2.1-25)

αCntYl (8.2.2.1-37)

αCntZ(t) (8.2.2.1-25)

αCntZl (8.2.2.1-37)

αD to  A
A

(3.5.2-40)

αD to  A
A

(12.2.1-15)

αD to  B
A

(12.2.1-15)

αD to  B
B

(3.5.2-42)

αFlaps (17.1.2.3-25)

αi Sect. No. 18.4.3

αkm (8.1.4.2-4)

αLo-f (8.1.4.1.2-2)

αm (7.3.3.1-5)

αm (8.2.1-1)

αm (8.2.2-2)

αm (8.2.3-1)

αm (10.1.1.2-1)

αm (10.1.2.2-1)

αm (11.2.4.3.2.2-6)

αm (11.2.4.3.2.2-6)

αm (17.3.1-1)

αpm (8.1.4.2-4)

αQuantm (17.3.1-2)

αRandm (17.3.1-1)

αStart (17.1.1.4-4)

αTot (17.2.3.2.1-7)

αVarm (17.2.3.2-17)

αVib (8.1.4.1.2-2)

αWand (17.1.2.3-10)

α′X(t) (8.2.2.1-23)

α′Y(t) (8.2.2.1-23)

α′Z(t) (8.2.2.1-23)

AM*(t) (15.1.5.4.1-3)

AMM(t) (15.1.5.4.1-3)

AN (13.1-1)

aOut (16.2.5-2)

aOut/Meas (16.2.5-14)

aOut/Proc (16.2.5-14)
aOutTr (16.2.5-23)

Aψ0 (13.5-21)

APuls Sign (8.1.1.3-12)

aRMSVibIn (16.2.3.1-25)

aRMSVibIn (16.2.3.2-3)
aRMSVibIn i, j, k (16.2.3.2-3)

aSAX (12.6-1)

aSF (6.1.1-2)

aSF (7.2.2.2-10)

aSF (8.1.1.2-1)
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aSF (8.2.2-2)

aSF (8.2.3-1)

aSF (9.1-1)

aSF (11.2.3.1-7)

aSF (17.2.3.2.3-2)

aSF (18.4.7.4-3)

aSFi
″ (8.1.1.3-11)

aSF(t) (10.1.2-3)

aSF(t) (10.3-3)
aSF(t) (10.1.3-1)

aSF
* (8.1.1.2.1-2)

aSF0 (7.4.1-1)

aSF0 (10.1.3-1)

aSF0y (10.1.2-3)

aSFAvg

V
(17.1.1.2-10)

aSF
B

(4.2-4)

aSF
B

(7.2-1)

aSF
B (11.2.2.1-1)

aSF
B

(11.2.4.3.2.2-1)

aSF
B

(12.1-12)

aSF
B

(12.1.4-10)

aSF
B

(18.3-1)

aSF
 B

(18.4.7.4-10)

aSF
I

(12.1.4-7)

aSFi (8.1.1.3-15)

aSFi (11.2.3.2-1)

aSFi (16.2.3.2-9)

aSFiAC (17.2.3.2.3-19)

aSFiAC (17.2.3.2.3-5)

aSFiAC-l (17.2.3.2.3-31)

aSFiAC-m (17.2.3.2.3-31)

aSFi

B
(11.2.3.1-9)

aSFiB (18.4.7.1-3)

aSFiV (17.1.1.5-7)

aSFk (8.1.4.1-7)

aSFk

I
(8.1.4.1-3)

aSF
L

(4.2-4)

aSF
L

(12.1-12)

aSF
L

(18.4.7-1)

aSFMean

B
(12.6-1)

aSF-Puls i (8.1.1.3-20)

aSF
N

(12.1-12)

aSF+Puls (8.1.1.3-20)

aSF-Puls (8.1.1.3-20)

aSF+Puls i (8.1.1.3-20)

aSFPuls (8.1.1.2-1)

aSFPuls (8.1.2.2-1)

aSFPuls (8.2.2.1-5)

aSFPuls (9.3-1)

ASFPulsSign

1
(18.4.5-1)

ASFPulsSign

1
(18.4.7.4-18)

ASFPulsSign

2
(18.4.5-1)

ASFPulsSign

2
(18.4.7.4-18)

aSFPulsi (8.1.1.3-12)

ASFPulsSign (18.4.5-1)

ASFPulsSign (18.4.7.4-14)

aSFPulsX (8.2.2.1-25)

aSFPulsY (8.2.2.1-25)

aSFPulsZ (8.2.2.1-25)

aSFRef (8.1.4.1-7)
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aSFRef

I
(8.1.4.1-3)

ASFSign (18.4.7.4-10)

aSFTot (8.1.4.1-10)

aSFTot j (16.2.3.2-8)

aSFTotk (16.2.3.2-8)

aSFUV (9.1-4)

aSFx(t) (10.3-3)

aSFXForm

A
(13.2.4-17)

aSFy(t) (10.3-3)

aSFy(t) (10.6.1-21)

aSFy(t) 2 (10.6.1-22)

aSFz(t) (10.3-3)

aSF
′ (8.1.1.2-3)

aSF
′ * (8.1.1.2.1-2)

aSFX
′ (8.2.2.1-23)

aSFY
′ (8.2.2.1-23)

aSFZ
′ (8.2.2.1-23)

ASign (8.1.1.3-15)

ASign
″ (8.1.1.3-11)

@t=( ) (11.2.4.1.1-6)

Avg (16.2.3.2-11)

aVib (12.6-1)
aVib0 (10.6.1-7)

aVib
B

(12.6-9)

aVib
B

(14.2-16)

aVibi (10.4-1)

aVibi (16.2.3.2-9)

AWt (8.1.1.2-7)

AWt (8.2.2.1-5)

AWt (9.3-1)

AWt (12.4-15)

AWt 0 (8.1.1.2-1)

AWtC (12.4-15)
AWt i (8.2.2.1-27)

AWt i- (8.2.2.1-46)

AWt i+ (8.2.2.1-46)

AWt  - (8.1.1.3-20)

AWt  + (8.1.1.3-20)

Ax  ′(t) (18.3-6)

aZL (18.4.7-12)

aZL
1

(18.4.7-14)

aZL
2

(18.4.7-14)

AZN (13.1-1)

B (7.1.1.1.1-7)

B (7.2.2.2.2-6)

B (7.3.3.2-2)

B (8.2.2.1-14)

B (8.2.2.1-18)

B (10.4.2-24)

B (11.1-3)

B (11.2.3.1-11)

B (13.2.1-6)

B (14.6.1-9)

B (15.1.2.1.1.3-28)

B (15.1.5.1-2)

B (16.2.5-2)

b (3.2.4-3)

b (3.2.4-8)

b (7.1.2.4-1)

b (14.6.2-26)

b Sect. No. 16.1.1.4

B(ω) (10.2.1-16)

B0 (3.2.2-15)

BA(ω) (10.5.1-25)
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BA(ω) (10.6.1-25)

BA(ω) (16.2.3.1-22)
BaAcclx (10.3-16)

BaAccly (10.3-16)

BAccl Inpt (10.3-20)

BAcclPend (10.3-20)

BaSF (10.3-20)
BaSFx (10.3-3)

BaSFy (10.3-3)

BaSFz (10.3-3)

Bc (3.2.2-15)

BDen/ϑ1x(Ω) (10.6.1-15)

BDen/ϑ1z(Ω) (10.6.1-15)

BDenA1(ω) (10.5.1-24)

BDeni(ω) (10.2.1-32)

BDenϑ1(ω) (10.5.1-24)

BDenϑ2(ω) (10.5.1-24)

β (3.5.2-17)

β (3.5.3-10)

β (17.1.2.3-13)

β Fig. 13.4.2-1

β  ′(t) (8.2.1.1-9)

β0 Fig. 13.5-1

βA1 to  A
A

(3.5.3-5)

βA2 to  A1

A
(3.5.3-5)

βA2 to  A1

A1 (3.5.3-6)

βAlgo-m z (10.3-20)

βAlgo m (10.1.1.2.2-28)

βA to  B
A

(3.5.2-33)

β Fig. 11.2.1.1-1

βB
(13.4.1.1-4)

βB to  A2

A
(3.5.3-5)

βB to  A2

A2 (3.5.3-6)

βB to  A
A

(3.5.2-26)

βB to  A
A

(3.5.3-5)

βB to  A
A

(3.5.4-10)

βB to  A
A

(12.2.1-15)

βB to  A
B

(3.5.2-26)

βB to  A
B

(3.5.4-10)

βCnt (t) (8.2.1.1-13)

βi (18.4.7.2-13)

βl-1 (7.1.1.1.1-3)

βm (7.1.1.1-13)

βm (8.2.1-1)

βm (10.1.1.2-3)

βm (10.1.1.2.1-14)

βmz/i (10.4.1-3)

βmy (10.6.1-19)

βmz (10.3-5)

βN to  E
N

(12.2.2-4)

βTot (17.2.3.2.1-7)

Bhx (10.3-20)

Bhy (10.3-20)

Bi (8.2.2.1-14)

bi (10.2.2-1)

bi (17.2.1-3)

BNum/ϑ1x(Ω) (10.6.1-15)

BNum/ϑ1z(Ω) (10.6.1-15)

BNumA1(ω) (10.5.1-24)

BNumi(ω) (10.2.1-32)
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BNumϑ1(ω) (10.5.1-24)

BωARSx
(10.3-16)

BωARSy
(10.3-16)

BωIBAccl/Inpt (10.3-20)

BωIBAccl/Pend
(10.3-20)

Bs (3.2.2-15)

Bϑ(ω) (10.5.1-25)

Bϑ(ω) (10.6.1-25)

Bϑ(ω) (16.2.3.1-22)
Bθx (10.3-3)

Bθx/i (10.4.1-1)

Bθy (10.3-3)

Bθy/i (10.4.1-1)

Bθz (10.3-3)

Bθz (10.6.1-13)

Bθz/i (10.4.1-1)

bVibi (10.4-1)

C (3.5.3-7)

C (7.2.2.2.2-6)

C (7.3.3.2-2)

C (8.2.2.1-18)

C (9.1-3)

C (11.1-7)

C (15.1.5.1-2)

C (17.2.3.2.3-10)

C Sect. No. 3.5.1

c (3.2.4-8)

c (7.1.2.4-1)

c (10.5.1-4)

c (15.2.1-33)

c (15.2.1.2-6)

c (15.2.4-2)

C Sect. No. 3.5.1

C  H0 (14.3-11)

C  H1 (14.3-11)

C1 (4.4.1.2.1-3)

C1 (7.2-6)

C1 (12.1-12)

C1 (13.3.2-10)

c1 (10.5.1-3)

C2 (4.4.1.2.1-3)

C2 (7.2-6)

C2 (12.1-12)

C2 (13.3.2-10)

c2 (10.5.1-3)

C3 (4.4.1.2.1-3)

C3 (7.2-6)

C3 (12.1-12)

C3 (13.3.2-11)

C4 (13.3.2-11)

CA1

A
(3.5.3-1)

CA2

A1 (3.5.3-1)

CA
A

(3.5.2-8)

CA
B

(3.1.1-24)

CA
B

(3.2.1-8)

CACEnd

ACStart (17.1.2.3-6)

CAC
V F

 

 m
(17.2.2-8)

CAC
V F

 

 m
(17.2.2-9)

CALG (11.2.1.4-1)

CB(m-1) 

L(n-1) (7.3.3-3)

CB(t)
BI(m-1) (7.1.1.1-2)

CB0

L
(11.2.3.3-1)
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CB
A

(3.1-10)

CB
A

(3.1-12)

CB
A

(3.1.1-24)

CB
A

(3.2.1-8)

CB
A

(3.4-1)

CB
A

(3.5.2-1)

CB
A

(3.5.2-1)

CB
A

(3.5.3-1)

CB
A

(3.5.4-1)

CB
A

(3.5.4-4)

CB
A

(12.2.1-15)

CB
A2 (3.5.3-1)

C
B

B
(3.5.2-15)

CB
B0 (11.2.3.3-1)

CB
B0 (13.4.3-4)

CB
Bi (18.4.7.2-16)

CB
Bm-1 (11.2.4.3.2.2-2)

CB
E

(12.2.1-2)

CB
E

(12.2.1-4)

CB 
I

(3.3.2-7)

CB
I

(8.1.4.1-4)

CB 
I

(11.2.3.1-1)

CB
I

(11.2.4.3.1-1)

CB
I

(11.2.4.3.2.2-1)

CB 
I

(12.1.4-1)

CB
I

(12.2.1-18)

CB
I

(12.2.1-18)

CBI(m)

BI(m-1) (7.1.1-1)

CBI(m)

LI(n) (7.1.1-1)

CBI(m-1)

LI(n-1) (7.1.1-1)

CBi

Ni (13.6.1-4)

CBi

Ni  

 H
(13.6.1-4)

CB 
L

(4.1-2)

CB
L

(6.2.2-1)

CB
L

(7.2-1)

CB
L

(9.1-1)

CB
L

(11.2.1.3-1)

CB
L (11.2.2.1-1)

CB
L

(11.2.3.3-1)

CB
L

(12.1-12)

CB
L

(12.2.1-2)

CB
L

(18.4.7.4-16)

CB
L+

(6.2.2-1)

CB
L1 (6.1.3-1)

CB
L2 (6.1.3-1)

CBi

L
(18.4.7.2-16)

CBOut

L
(15.1.2.3.1-1)

CBm-1

 I
(11.2.4.3.2.2-2)

CB
N

(12.2.1-8)

CB
N

(18.3-1)

CB
N+

(14.1-3)

CB
NED

(11.2.4.4-1)



PARAMETER INDEX     D-9

CB
N

 

 H
(14.2-15)

CB
R

(11.2.1.2-1)

CBRij (11.2.1.2-1)

CB
UV

(9.1-5)

CCnstrnt (17.2.3.2.1-13)

CD (17.1.2.3-24)

CD
A

(3.1-23)

CD
A

(3.2.1-8)

CD
A

(3.5.2-38)

CD
A

(3.5.2-40)

CD
A

(12.2.1-15)

CD
B

(3.1-21)

CD
B

(3.2.1-8)

CD
B

(3.5.2-38)

CD
B

(3.5.2-40)

CD
B

(12.2.1-15)

CDf (17.1.2.3-25)

CDthk (17.1.2.3-25)

CE
I

(12.2.1-19)

CE
I

(12.2.2-10)

CE
N

 

 H
(12.2.4-27)

CE
REF

(4.4.2.2-3)

Cftr11(t) (14.6.2-16)
Cγ Z0 (14.3-11)

Cγ Z1 (14.3-11)

CGeo
N

(6.1.3-8)

CGeo
N1 (6.1.3-8)

χ (16.1.1.3-1)

χ (16.1.2.1-3)

χj (18.4.7.3-6)

χ (16.1.1.3-10)

χ (16.1.2.1-9)

Ci (7.1.1.3-2)

ci (17.2.3.2.3-44)

ci
1

Sect. No. 18.4.3

ci
2

Sect. No. 18.4.3

CI 
A

(3.3.2-7)

CI
E

(12.2.3-28)

Cij (11.2.1.3-2)
CI  J (3.1-7)

CI  J (3.2.1-8)

Cij0 (11.2.2.1-18)

CI
P

(13.4.2-2)

Cj,k (10.1.1.2.2-10)

Cj,k (10.1.2.2.2-11)

CJTR (9.1-14)

CKMBias (12.5.6-3)

CL (17.1.2.3-24)

CL(n-1)

L(m) (7.3.3-3)

CL(n-1)

L(m-1) (7.3.3-3)

CL1

N1 (6.1.3-1)

CLα (17.1.2.3-25)

CLI(n-1)

L(t)
(7.1.1.2-2)

CLI(n-1)

LI(n) (7.1.1-1)

CLm-1

Lm (17.2.3.1-28)

CL
N

(6.1.3-1)

CL
N

(7.2-1)
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CL
N

(11.2.3.3-5)

CL
N

(12.1-12)

CL
N

(12.2.1-2)

CN(t)
NE(n-1) (7.3.1-7)

CN0E(i,j) (13.5-10)

CN1

N2 (6.1.3-1)

CN2

L2 (6.1.3-1)

CN
E

(12.1-12)

CN
E

(12.2.1-2)

CN
E

(12.2.1-8)

CNE(n)

E
(7.3.1-6)

CNE(n)

NE(n-1) (7.3.1-6)

CNE(n-1)

E
(7.3.1-6)

CNINS

E
(15.1.2.2-1)

CNINS

E T
 

 H
(15.1.2.2-7)

CNOut

E
(15.1.2.3.1-1)

CN
E T

 

 H
(15.1.2.2-31)

CN
I

(13.5-3)

CNI(i,j) (13.5-6)

CN
L

(4.1.1-1)

CN
L

(6.1.3-1)

CN
N+

(14.1-3)

Cnt (8.1.3.1-1)

Cnt (8.1.4.1.4-1)

Cntl (8.1.3.1-2)

CntRes (8.1.3.1-1)

CntRes0 (8.1.3.1-1)

CntResAvg (8.1.3.2-1)

CntResl (8.1.3.1-2)

CntResm (8.1.3.1-7)

Coef (15.2.2.1-36)

Coni (16.2.3.2-1)

ConNorm (16.2.3.2-6)

COsc/Mark (15.2.4-16)

cosh (13.2.1-11)

CPI(l,m) (13.4.2-34)

CP
⊥ (13.4.2-13)

CREF (11.2.1.4-1)

CR
L (11.2.1.1-7)

CRLij (11.2.1.1-7)

Crnt (17.2.1-2)
CSdβ (17.1.2.3-25)

CSide (17.1.2.3-24)

CV Fm 

Vm (17.2.1-9)

CVRF
N

 

 H
(15.1.2.2-31)

CWndGst (17.2.3.2.1-9)
cxi (10.2.1-1)

cyi (10.2.1-1)

D (7.2.2.2.2-6)

D (7.3.3.2-2)

D (8.1.1.1.1-21)

D (8.2.2.1-18)

D (9.4-3)

D (11.1-7)

D (17.2.3.2.3-11)

d (3.2.4-8)

d (7.1.2.4-1)

D23 (12.2.3-21)

D2j (5.3-18)

D2j (12.1-28)
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dα (7.1.1.1.1-18)

dα′i (8.1.4.1.1.1-6)

dα +Cnt (8.1.2.1-10)

dα -Cnt (8.1.2.1-10)

dαCnt (8.1.2.1-1)

dαCnt (8.2.1.1-14)

dαCnt (8.2.2.1-34)

dαCnt (8.2.3.1-2)

dαiCnt (8.1.4.1.4-1)

dαi-Cnt (8.1.4.1.4-7)

dαi+Cnt (8.1.4.1.4-7)

dα -Cnt (8.2.1.1-22)

dα +Cnt (8.2.1.1-22)

δαQuantC l : m (8.1.4.1.4-10)

dba (8.1.3.3-6)

dbω (8.1.3.3-6)

d δgMdl (16.2.3.3-1)

dΔRScrlCnt (8.2.3.1-2)

∂aQuant (12.4-15)

∂aQuantC (12.4-15)

ΔRREFn
E

(15.2.2.1-40)

∂GC
N

(12.1.1-13)

∂gPNorth (12.1.1-12)

∂gPUp (12.1.1-12)

∂h (4.4.1.2.1-3)

∂h (12.1-12)

∂l (12.1-28)

∂l Fig. 5.2-1

∂ωQuant (12.4-2)

∂ωQuant (12.4-5)

∂ωQuantC (12.4-5)

∂PjknTrans

'
(16.2.4-15)

δ (15.2.4-3)

Δ (18.4.6-1)

δ( ) (4.4.1.2.1-4)

δ   (12.3.1-5)

δ( ) (14.2-1)

δ( ) (15.2.1-3)

δ(τα - τβ) (15.1.2.1.1-27)

Δ1-2 ( ) (18.2.2-8)

δa′Size (8.1.4.1.1-8)

δa′Size/Xk (8.1.4.1.1.2-2)

δa′Size/Zk (8.1.4.1.1.2-2)

δa′Sizek (8.1.4.1.1-8)

δa′SizeX (8.1.4.1.1.2-2)

δa′SizeY (8.1.4.1.1.1-2)

δa′SizeZ (8.1.4.1.1.2-2)

δaAniso
* (8.1.1.2.1-2)

δaQuant
* (8.1.1.2.1-2)

δaSize
* (8.1.1.2.1-2)

δaAcclAniso(t) (10.1.4.1-2)

δaAcclAniso (10.1.4.1-9)

δaAcclG2(t) (10.1.4.1-2)

δaAcclG2 (10.1.4.1-9)

ΔaSF
N

(13.2.2-18)

δaAniso (8.1.1.2-1)

δaAniso (8.2.2.1-5)

δaAnisok (8.1.4.2-1)

δaBias (8.1.1.2-1)

ΔaH
L

(18.4.7-14)

Δai Sect. No. 18.4.3
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δaSFScal/Mis

B
(13.2.4-6)

ΔaJTR
B

(9.1-12)

ΔaJTR
N

(9.1-12)

δα (12.2.1-40)

δα (12.2.2-24)

δα (14.2-20)

δa″Size (8.1.4.1.2-5)

Δα′ il (8.1.4.1.1.1-6)

Δα′il (8.2.1.1-23)

Δα′im (8.1.4.1.1.1-6)

Δα′ im+ (8.1.4.1.1.1-6)

Δα′ im-1 (8.1.4.1.1.1-6)

Δα′ i(m-1)+ (8.1.4.1.1.1-6)

Δα′m (8.1.3.3-9)

Δα′(l : m) -1 (8.1.3.3-9)

Δα′Qim (8.1.4.1.4-10)

ΔαCnt (l  : m) -1 (8.1.3.3-6)

ΔαCntl (8.1.3.3-6)

ΔαCntl (8.2.2.1-37)

ΔαCntm (8.1.3.3-6)

ΔαCntXl (8.2.2.1-37)

ΔαCntYl (8.2.2.1-37)

ΔαCntZl (8.2.2.1-37)

ΔαiCnt l (8.2.1.1-23)

Δαl (11.2.3.2-10)

δαψQuant (16.2.3.1-6)

δαψVQuant (16.2.3.1-6)

δαQuant (12.5-1)

δαQuant (18.2.1-3)

δαQuant (18.3-5)

δαQuant/ZN j (18.3.1.2-7)

δαQuantCm (8.1.2.1-6)

δαQuantH (14.6.1-8)

δαQuantH
L

(18.2.1-3)

δαQuanti (16.2.3.1-13)

ΔαQuantm (17.3.1-1)

δαQuantNi (15.2.1.1-3)

δαQuantZL (18.2.1-3)

δαQuantZL (18.2.2-1)

δaQuant (8.1.1.2-1)

δaQuant (12.4-15)

δaRand (8.1.1.2-1)

δaRand (12.4-15)

δaRand (18.3-5)

δaRandNi (15.2.1.1-3)

δaSensBias (8.1.1.2.1-2)

δaSFAsymX (12.6-1)

δaSF
B

(18.1.1-2)

δaSF
B

* (12.5-13)

δaSFCnst

B
(18.3-5)

δaSFH0East (18.1.2-9)

δaSFH0

N
(18.1.1-5)

δaSFH0North (18.1.2-9)

δaSFH

N
(13.3.1-3)

δaSF
L

(18.4.7-3)

ΔaSF
N

(12.3.5-23)

δaSF
N

(13.3.1-2)

δaSFOther

B
(13.2.4-24)

δaSFZN (4.4.1.2.1-4)

δaSFZN (13.2.1-16)
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δaSFZN (13.3.1-3)

δASFZN(S) (4.4.1.2.1-13)

δaSize (8.1.1.2-1)

δaSize (8.1.4.1-9)

δaSize (8.2.2.1-5)

δaSizek (9.3-2)

δaSizeLo-f/ω
2 (8.1.4.1.2-5)

δCBComp 

A
(3.5.1-20)

δβAlgo-m z (10.3-20)

δβAlgo m (10.1.1.2.2-6)

δβAlgo m (10.1.1.2.2-28)

Δbi Sect. No. 18.4.3

δc (10.5.1-4)

δCB
A

(3.5.2-1)

δCB
E

(12.2.1-4)

δCBComp

L
(7.1.1.3-14)

Δχ (16.1.1.3-13)

Δχ (16.1.2.1-12)

δCi (7.1.1.3-2)

ΔCntl (8.1.3.1-2)

ΔCntl =(m-1) k - 1 (8.1.3.2-8)

ΔCntl = m k (8.1.3.2-8)

ΔCntm (8.1.3.2-8)

ΔCntm-1 (8.1.3.2-8)

δConAlgi (16.2.3.2-1)

δConAlgNorm (16.2.3.2-6)

δConi (16.2.3.2-1)

ΔvScul-mz (10.3-9)

ΔδaSize (8.1.4.1.1-10)

ΔδFj
V

 (17.1.2.3-32)

δδωARS/Cnst/East 1 (18.2.2-8)

δΔψT1-2 (18.2.2-8)

δΔRH (14.6.1-8)

δΔRH
N

(18.3-5)

δΔRNi (15.2.1.1-3)

ΔδυSizeCm  (8.1.4.1.1-12)

Δδϑj (17.1.2.3.1-12)

δΔυSizeCXm  (8.1.4.1.1.2-5)

δΔυSizeCYm  (8.1.4.1.1.2-5)

δΔυSizeCZm  (8.1.4.1.1.2-5)

δΔRRefH

N
(15.2.1-7)

δΔvScul/Algo-mz (10.3-20)

δΔvScul/Algom (10.1.2.2.2-22)

δΔvScul/Algom (10.1.2.2.2-7)

Δηijl (8.1.4.1.1.1-11)

δFj
V

 (17.1.2.3-29)

δfOsc (15.2.4-15)

δfOsc/Mark (15.2.4-16)

δfOsc/RndCnst (15.2.4-16)

ΔFWndGst (17.2.3.2.1-1)

δγH1East (18.1.2-9)

δγH1North (18.1.2-9)

ΔγHi

N
(13.6.1-4)

δγHi

N
(18.1.1-4)

ΔγN+
(14.2-37)

δγUp0

N
(18.1.1-10)

δγUpi (18.1.1-4)

ΔγZNi (13.6.1-4)

δgMdl
E

(12.2.4-3)
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δgMdl
I

(12.2.4-8)

δgMdl
N

(12.2.4-1)

δgP
E

(12.2.4-3)

δgP
I

(12.2.4-8)

δgP
N

(12.2.4-1)

δh (4.4.1.2.1-4)

δh (12.2.3-5)

δH(S) (4.4.1.2.1-13)

ΔhOsc (11.2.4.1.1-10)

δhPrsr (4.4.1.2.1-4)

δhPrsr (12.3.2-23)

δHPrsr (S) (4.4.1.2.1-13)

δi (16.2.3.2-8)

ΔiδVH
N

(t) (13.6.1-5)

ΔInteg l (8.1.3.1-2)

ΔIωB (11.2.1.2-3)

ΔIωiR (11.2.1.1-6)

ΔΙωR (11.2.1.2-3)

δJc (15.1.2.3-2)

δk (10.5.1-4)

δK0Bias (12.5.6-2)

δKBias (12.4-10)

δKBiasH

G0 (13.5-32)

δKBiasZG0 (13.5-32)

δKScal/Mis (13.2.4-1)

δKG2BiasX (12.6-1)

δKii (13.2.4-1)

δKij (13.2.4-1)

δKMBias (12.5.6-3)

δKMis (12.4-10)

δKOrth (13.2.4-5)

δKScal (12.4-10)

δKScal (13.2.4-5)

δKScal/Mis (12.4-13)

δKScal/Orth (13.2.4-2)

δKTMis (13.2.4-2)

δKTMis (13.2.4-4)

δKTMis× (13.2.4-4)

δL (18.1.1-22)

δl (10.5.1-3)

δLBias (12.4-15)

δlHE

E
(15.1.2.2-13)

ΔlHiF
AC

(17.2.3.2.2-1)

δLMis (12.4-15)

δLOrth (13.2.4-5)

δLScal (12.4-15)

δLScal (13.2.4-5)

δLScal/Mis (12.4-15)

δLScal/Mis (13.2.4-1)

δLScal/Orth (13.2.4-2)

δlStat
VRF

(15.1.2.2-25)

δlStatc

VRF
(15.1.2.3-2)

δLTMis (13.2.4-2)

δLTMis (13.2.4-4)

δLTMis× (13.2.4-4)

δlVib
VRF

(15.1.2.2-25)

δlVRF
VRF

(15.1.2.2-15)

δM0
E

(15.2.2.1-41)

ΔMFuel (17.1.2.3-27)

ΔMJtsn (17.1.2.3-27)

δNorm i (3.5.1-13)
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Δω (10.2.2-1)

δω (12.4-6)

δω*Quant (8.1.1.1.1-2)

δωARS/CnstEast (18.2.2-1)

δωARS/CnstEast (18.3.1.2-9)

δωARS/CnstH
L

(18.2.1-6)

δωARS/CnstH
N

(18.3-21)

δωARS/CnstZL (18.2.1-6)

δωARS/CnstZL (18.2.2-1)

δωARS/CnstZN (18.3-21)

δωBias (8.1.1.1-1)

δωENH

E
(12.3.6.2-13)

δωG2BiasX (12.6-1)

δωIA
A

(3.5.1-31)

δωIB (13.2.4-10)

δωIB (13.4.1.1-4)

δωIB
B

(3.5.1-31)

δωIB
B

(18.1.1-2)

δωIB
B

(18.2.1-3)

δωIB
B

* (12.5-6)

δωIBCnst

B
(18.3-5)

δωIBH00East (18.1.2-9)

δωIBH00

N
(18.1.1-7)

δωIBH00North (18.1.2-9)

δωIBH0East (18.1.2-9)

δωIBH0

N
(18.1.1-7)

δωIBH0North (18.1.2-9)

δωIBH

N
(13.3.1-3)

δωIBi

B
(18.4.7.2-9)

δωIB
N

(13.3.1-2)

δωIBScal/Mis (13.2.4-11)

δωIBScal/Mis

B
(13.2.4-6)

δωIBUp0 (18.1.1-7)

δωIBUp00 (18.1.1-7)

δωIBZN (13.3.1-3)

δωIE/East/Resid j (18.3.1.2-9)

δωIE/East Resid (18.2.2-1)

δωIE/ExpH

N
(18.3-13)

δωIE/ExpH

N
(t) (18.3-13)

δωIE/H/Residj

N
(18.3.1.1-2)

δωIE/H0 (18.3-11)

δωIE/HResid

N
(t) (18.3-13)

δωIEExp

N
(18.3-5)

δωIEH (14.6.1-8)

δωIEH (18.3-6)

δωIEH(t) (18.3-7)

δωIENi (15.2.1.1-3)

δωILH

L
(18.2.1-3)

ΔωJTR
B

(9.1-27)

δωQuant (8.1.1.1-1)

δωRand (8.1.1.1-1)

δωRand (12.4-2)

δωRand (18.3-5)

δωRandH (14.6.1-8)

δωRandH(t) (18.3-6)

δωRandNi (15.2.1.1-3)
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δωSensBias (8.1.1.1.1-2)

δωQuant (12.4-10)

δOrth ij (3.5.1-12)

ΔφHi

L
(18.4.7.2-8)

δφ (12.2.1-28)

δΦAlgo-mz (10.3-20)

δΦAlgom (10.1.1.2.2-5)

δΦAlgom (10.1.1.2.2-28)

ΔφCntrlj (17.1.2.3.1-5)

δφH (18.2.1-18)

ΔφH
L

(18.4.7-14)

δφH
L

(18.2.1-18)

ΔφL
(18.4.7.2-3)

Δφl bndji (17.2.3.2.3-5)

Δφl ibnd
AC

(17.2.3.2.3-6)

ΔΦm (10.1.1.2-1)

ΔPj (17.1.2.3-32)

ΔPKm (15.1.5.3.1-2)

ΔPΦQm (15.1.5.3.1-2)

ΔψH
N

(14.5-5)

ΔψN
(14.5-5)

ΔψOrth
B

(13.2.4-20)

ΔψOther
B

(13.2.4-20)

δψP (12.2.1-28)

ΔψRoll (17.1.1.5-10)

δψT (12.2.1-40)

δψT (18.1.1-22)

ΔψT1-2 (18.2.2-7)

ΔψT2 (18.2.2-8)

ΔψTMis
I

(13.2.4-16)

δψP (18.1.1-19)

ΔψTurn (17.1.1.5-12)

ΔψZN (14.5-5)

ΔPzl (17.2.3.2.3-26)

δq (7.1.2.3-1)

ΔqB
A

(3.3.4-2)

δQuantl (8.1.3.1-6)

δQuantm (8.1.3.1-7)

ΔR (4.4.2.2-1)

δR (12.2.3-8)

δR (13.2-7)

δR0 (13.2.1-11)

δR0 (13.2.1-11)

δaRandH (14.6.1-8)

ΔRAttm 

N
(17.2.3.1-29)

ΔRSFn

N
(15.2.2.3-8)

δRE (12.2.2-14)

δRE (12.2.3-1)

δRForce (13.2.1-3)

δRH0

G0 (13.5-31)

δRH0

N
(13.2.2-7)

δRH0

N
(13.4.3-31)

δRH0

N
(13.2.2-7)

δRH
E

(12.2.4-6)

δRHForce

N
(13.2.2-3)

δRHHmg

N
(13.2.2-7)

δRHLngTrm

N
(13.5-1)

δRHmg (13.2.1-6)
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δRHmgTot (13.2.1-11)

ΔRH
N

(18.3-1)

δRH
N

(13.2-7)

δRHLngTrm

N
(13.2.3-4)

δrI (12.2.3-27)

δRINS/H c

N
(15.1.2.3-2)

ΔRINS
E

(t) (15.2.2.1-5)

ΔRJTR
N

(9.1-5)

ΔRl bnd
AC

(17.2.3.2.3-6)

ΔRl bndji (17.2.3.2.3-5)

ΔRN (6.1.2-1)

δRN (12.2.3-2)

ΔRNX (15.2.1.1-17)

ΔRNY (15.2.1.1-17)

δROTHH

E
(15.1.2.2-14)

ΔRREF
E

(t) (15.2.2.1-5)

ΔRRefH

N
(14.1-1)

ΔRRefH

N
(15.2.1-2)

δΔRRefH

N
(14.2-1)

ΔRRot m (7.3.3-11)

ΔRRot m (8.2.3-1)

δRScrlA l (7.3.3.2-9)

δRScrlBl  (7.3.3.2-9)

ΔRScrlCnt (8.2.3.1-2)

ΔRScrlm (7.3.3-11)

ΔRScrlm (8.2.3-1)

δRSF/Algo (t) (10.4.2-10)

δRSF/Algo i(t) (10.4.2-10)

δRSF/Algo i(t) (10.4.2-9)

δRSF/AlgoM (10.1.3.2.4-1)

ΔRSF/Typm  
B(m-1) (7.4-2)

ΔRSFm (8.2.3-1)

ΔRSFm (10.1.3.1-3)

ΔRSFm  
L

(7.3.3-2)

ΔRTrueH

N
(15.2.1-8)

ΔRTrueH

N
(14.2-2)

ΔRVarm 

NVar
(17.2.3.2-8)

ΔRVibH

N  ♦
(14.2-3)

ΔrVibH (14.6.1-12)

ΔRVibH

N
(15.2.1-9)

ΔRVib
N♦

(18.3-5)

ΔrVibNX (15.2.1.1-9)

ΔrVibNY (15.2.1.1-9)

ΔRvm 

N
(17.2.3.1-28)

δRXGeo (12.2.2-29)

δRXN (12.2.1-45)

δRXN (12.2.3-38)

δRXN (12.2.4-28)

δRYGeo (12.2.2-29)

δRYN (12.2.1-45)

δRYN (12.2.3-38)

δRYN (12.2.4-28)

δRZN (12.2.3-40)

δSculAlgi (16.2.3.2-1)

δSculAlgij (16.2.3.2-3)

δSculAlgik (16.2.3.2-3)

δSculAlgNorm (16.2.3.2-6)

δSculi (16.2.3.2-1)
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δLSFAsymBiasX (12.6-1)

ΔaSF
N

(14.5-2)

ΔSυ/Algol (10.1.3.2.2-3)

ΔT (18.3.2.1-2)

Δτi (13.6.1-19)

δτSen (15.2.2.1-21)

δtf (15.2.4-15)

δϑ (17.1.2.3.1-10)

δθ (12.2.1-28)

ΔθARS/Rnd/Easti (18.3.2.2-1)

ΔθARS/Rnd/H-ki (18.3.2.1-7)

ΔθARS/Rnd/H-ki (18.3.2.1-9)

ΔθARS/Rnd/Hi

N
(18.3.2.1-1)

ΔθJTR
B

(9.1-5)

δuω
B

(13.4.1.1-8)

δuφH
L

(18.2.1-18)

δυ (12.2.2-9)

δυ″SizeC (8.1.4.1.2-5)

 Δυ′il (8.2.2.1-46)

δυ′SizeCm  (8.1.4.1.1-12)

δυ′SizeCXm  (8.1.4.1.1.1-15)

δυ′SizeCYm  (8.1.4.1.1.1-15)

δυ′SizeCZm  (8.1.4.1.1.1-15)

δυ′SizeCX/km  (8.1.4.1.1.2-5)

δυ′SizeCY/km  (8.1.4.1.1.2-5)

δυ′SizeCZ/km  (8.1.4.1.1.2-5)

δυ′SizeC/km  (8.1.4.1.1.2-5)

δυAnisoCkm (8.1.4.2-2)

δυAnisoCm (8.1.2.2-6)

ΔυCntl (8.1.3.3-6)

ΔυCntl (8.2.2.1-37)

ΔυCntm (8.1.3.3-6)

ΔυCntXl (8.2.2.1-37)

ΔυCntYl (8.2.2.1-37)

ΔυCntZl (8.2.2.1-37)

δυForce (13.2.1-3)

δυHForce

N
(13.2.2-3)

δυH
N

(13.2-7)

δυI
(12.2.2-9)

ΔυiCntl (8.2.2.1-46)

Δυil (11.2.3.2-4)

Δυl (10.1.3.2.2-4)

δυN
* (12.5-26)

δυQuant (12.5-1)

δυQuant (18.3-5)

δυQuantCm (8.1.2.2-6)

ΔυQuantm (17.3.1-1)

δυQuantNi (15.2.1.1-3)

δυR (13.2-7)

δυSizeC (8.1.4.1-12)

δυSizeCim  (8.1.4.1.3-7)

δυSizeCm  (8.1.2.2-6)

δυSizeCLo-f/ω
2 (8.1.4.1.2-5)

δυSnsr0

I
(13.4.1.2-20)

δυSnsr
I

(13.4.1.2-3)

δυVQuant (16.2.3.1-11)

δυVRQuant (16.2.3.1-11)

δυQuantH (14.6.1-8)

δuZN
E

(12.2.3-8)

Δv (17.2.3.2.3-1)
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δV (12.2.2-2)

δV (12.2.2-17)

δv (12.2.2-2)

δVA
A

(3.5.4-3)

ΔvAvg (18.4.7.3-3)

ΔvAvg
L

(18.4-1)

δVB
A

(3.5.4-1)

ΔvSFn

N
(15.2.2.3-4)

δV
E

(12.2.2-2)

ΔVFm (17.2.1-3)

δV Geo (12.2.2-17)

δvH (14.6.1-8)

δVH0

N
(13.4.3-28)

δVH0

N
(13.4.3-28)

δvH
E

(12.3.6.1-41)

δVHHmg

N
(13.3.2-10)

ΔδVHi

N
(13.6.1-4)

δvH
N

(18.3-5)

δVHPrt

N
(13.3.2-11)

δVHPrt

N
(13.4.3-22)

Δvj (18.4.7.3-2)

ΔvJTR
N

(9.1-5)

ΔVm (17.1.3-10)

ΔVm (17.2.1-1)

Δvm (18.4.7.3-2)

Δvm
L

(18.4-1)

δV
N

(12.2.2-3)

δv
N

(12.2.2-2)

δvN (12.2.4-9)

δVN* (12.5-26)

δvN* (12.5-13)

δvNi (15.2.1.1-3)

δVRef/Other
E

(15.2.2.1-20)

δVRef/Sen
E

(15.2.2.1-20)

δvRot/Scul-SizeCm  (8.1.4.1-20)

δvRot/Scul-SizeCXm  (8.1.4.1.3-7)

δvRot/Scul-SizeCYm  (8.1.4.1.3-7)

δvRot/Scul-SizeCZm  (8.1.4.1.3-7)

ΔvRot/Sculm  (7.2.2.2-27)

ΔvRot/Sculm  (8.2.2-2)

ΔvRotm (7.2.2.2-25)

ΔvRotm (8.2.2-2)

ΔVS Sect. No. 17.1.1

ΔvScul(t) (7.3.3-4)

ΔvScul(t) (8.2.3-1)

δvScul-SizeCm  (8.1.4.1-15)

δvScul-SizeCXm  (8.1.4.1.2-13)

δvScul-SizeCYm  (8.1.4.1.2-13)

δvScul-SizeCZm  (8.1.4.1.2-13)

ΔvScul/Algo-mz (10.3-20)

ΔvScul/Algom  (10.1.2.2.2-22)

ΔvSculCnt (8.2.3.1-2)

ΔvSculCnt (t) (8.2.2.1-24)

ΔvSculi (10.1.2.2-3)

ΔvSculm (7.2.2.2-25)

ΔvSculm (8.2.2-2)

ΔvSculm (10.1.2.2.1-11)

δvSF/Algo-mx (10.6.1-12)

δvSF/Algo-mz (10.3-20)
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δvSF/Algom (10.1.2.2.2-22)

ΔvSF/Algoi (10.1.3.2.2-3)

δvSF/Algom (10.1.2.2.2-6)

δvSF/Scul/SnsDynx (10.6.3-20)

δvSF/Scul/SnsDynz (10.3-14)

δvSF/SculSnsDyn (10.1.4.2-5)

ΔvSFm

Bm-1 (11.2.4.3.2.2-4)

ΔvSFH

N
(13.3-13)

ΔvSFm 
  I

(11.2.4.3.2.2-1)

ΔvSFm 
   I

(11.2.4.3.2.1-1)

ΔvSF
L

(18.4-1)

ΔvSFm (8.2.2-2)

ΔvSFm

L
 (7.2-4)

ΔvVar (17.2.3.2.1-1)

δVXN (13.6.1-10)

δVYN (13.6.1-10)

δvZN (4.4.1.2.1-4)

δVZN(S) (4.4.1.2.1-13)

ΔvScul
 ′ (t) (8.2.2.1-13)

Δx (14.6.1-4)

Δx (15.1.2.1-1)

Δx (16.1.1-13)

Δx (17.2.3.2.3-1)

Δx*(t) (15.1.5.4.1-5)

Δx** (14.6.4.2-5)

Δx1 (15.1.2.1-5)

Δx2 (15.1.2.1-5)

Δx3 (15.1.2.1-5)

ΔxM(t) (15.1.5.4.1-5)

ΔxOpt (16.1.1.3-21)

Δy (16.1.1-26)

ΔyOpt (16.1.1.3-21)

δζ (3.5.3-20)

δζ1 (3.5.3-25)

δζ2 (3.5.3-25)

δζ3 (3.5.3-25)

Δzl (17.2.3.2.3-25)

∂x'TrnTrans (16.2.4-13)

Δx* (14.6.4-5)

Di (10.2.1-7)

di (17.2.3.2.3-44)

Diag( ) (8.1.1.1.1-14)

( )♦ (14.6.1-1)

DL (9.2-1)

dRH
E

(5.2.4-13)

dRHE
Geo

(5.2.4-29)

dRSEEast (5.2.4-22)

dRSE
Geo

(5.2.4-21)

dRSENorth (5.2.4-23)

ds (16.2.3.3-1)

dϑENEast (5.2.4-23)

dϑENH

E
(5.2.4-4)

dϑENNorth (5.2.4-22)

Dtr ( ) (15.1.5.4.1-4)

Dtr(t) (14.6.2-16)

Dtr(t) (14.6.3-6)

Dtr(t) (14.6.4.1-7)

Dtr(t) (14.6.4.2-17)

Dtr(t) (14.6.5.1-15)

dυ (7.2.2.2.2-15)

dυ +Cnt (8.1.2.2-10)

dυ -Cnt (8.1.2.2-10)
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dυCnt (8.1.2.2-1)

dυCnt (8.2.2.1-34)

dυCnt (8.2.3.1-2)

duUp
E

(5.2.4-4)

duUpE
Geo

(5.2.4-29)

E ( ) (14.6.1-5)

E ( ) (14.6.4-5)

E ( ) (10.2.2-6)

E ( ) (10.4.1-6)

E ( ) (10.4.2-11)

E (3.5.1-1)

E (8.1.1.1.1-21)

E (8.2.2.1-18)

E (11.2.1.4-1)

e (3.2.4-1)

e (3.2.4-7)

e (4.4.2.2-5)

e (5.1-1)

e (5.3-18)

e (11.2.4.1.2-3)

e (12.1-28)

E' (3.5.1-16)
E'SYM (3.5.1-17)

E'SYM (7.1.1.3-11)

E  ( ) (13.6.1-9)

E ( ) (15.1.2.1-4)

E ( ) (15.2.1.1-5)

E ( ) (18.3.1.1-3)

E ( ) (18.3.2.1-4)

E aSF(t)2 (16.2.3.1-22)

E aVib(t)2 (16.2.3.1-22)

E aVib(t)2 (16.2.3.2-7)

E aVib(t)2 (10.6.1-25)

E  δΦAlgo-m z (16.2.3.2-7)

E ΔθARS/Rnd/H-k i

2
(18.3.2.1-7)

E δvSF/Algo-m z (16.2.3.2-7)

E εaRndi

2
(13.6.1-15)

E εωRndi

2
(13.6.1-15)

E ω(t)
2

(16.2.3.1-23)

E ωIEH

N
 

 k
(18.3.1.1-8)

E ΦConz (16.2.3.2-7)

E φH-ki (18.3.2.1-10)

E θ(t)
2

(16.2.3.1-22)

E θARS/Rnd/H-k
2

(18.3.1.1-7)

E θARS/Rnd/H-k j

2
(18.3.1.1-6)

E vSF/Sculz (16.2.3.2-7)

Ei (10.2.1-7)

ej
M

(15.1.2.1.1.3-26)

End (17.1.1.1-1)

End (18.2.1-10)

εa (18.4.7.3-6)

εα (15.2.1.2-18)

εaRndi (13.6.1-4)

εc (10.5.1-18)

εc
N

(15.1.2.3-11)

εcx (10.6.1-15)

εcy (10.6.1-15)

εGeo
(12.2.2-24)

εH
E

(12.3.6.2-1)

εH
Geo

(12.2.2-26)
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εii (7.1.1.3-2)

εij (16.2.6.1-1)

εij (3.5.1-15)

εij (7.1.1.3-4)

εk (10.5.1-18)

εkx (10.6.1-15)

εky (10.6.1-15)

εl (10.5.1-18)

εlx (10.6.1-15)

εly (10.6.1-15)

εN
(12.2.1-12)

εN
(12.2.3-5)

εN
(15.1.2.3-7)

εωRndi (13.6.1-4)

εq (7.1.2.3-4)

ευ (15.2.1.2-18)

εXGeo (12.2.2-28)

εXN (12.2.1-41)

εYGeo (12.2.2-28)

εYN (12.2.1-41)

εZG0 (13.5-31)

εZN (12.2.1-41)

εZN (12.2.3-20)

εZN (12.3.6.2-1)

εZN (18.1.1-23)

ESKSYM (3.5.1-6)

ESKSYM (11.2.1.4-1)
ESKSYMij (11.2.1.4-2)

ESYM (3.5.1-6)

ESYM (7.1.1.3-1)

ESYM (11.2.1.4-1)
ESYM ij (11.2.1.4-2)

ηai, j, kVib (16.2.3.2-3)

ηijm (8.1.4.1.1.1-10)

evc1 (4.4.1.2.1-3)

evc1 (12.1-12)

evc1n (7.2-6)

evc2 (4.4.1.2.1-3)

evc2 (12.1-12)

evc2n (7.2-6)

evc2n (7.3.1-5)

evc3 (4.4.1.2.1-3)

evc3 (12.1-12)

evc3n (7.2-6)

E SθARS/Rnd/ZN j
 2

(18.3.1.1-10)

F (8.2.2.1-18)

F (9.2-1)

F (17.1.2.3-20)

f (3.2.4-1)

f (3.2.4-7)

f( ) (10.4.2-14)

f( ) (15.1-3)

F(h) (12.2.4-2)

F(S) (17.2.3.2.3-34)

f(t) (10.1.4.1-4)

f(t)  (10.1.4.1-5)

f(τ) (10.2.2-12)

f1(ωt) (11.2.2.1-12)

f1(ϑ) (10.1.3.2.3-16)

f1-2 (17.2.2-9)

f2(ωt) (11.2.2.1-12)

f2(ϑ) (10.1.3.2.3-16)

FAero
V WF

(17.2.3.2.1-3)

FAlgn (8.1.1.1-1)

FAlgn (12.4-2)
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FAlgn Off-Diag (8.1.1.1.1-14)

fAtt/Att (16.2.3.1-18)

fAtt/Vel (15.2.1.2-18)

fAtt/Vel (16.2.3.1-21)

FCS
Geo

(5.2.4-28)

FC
Geo

(5.2.4-34)

FC
N

(4.1.1-6)

FC
N

(5.3-18)

FC
N

(5.3-7)

FC
N

(7.3.1-10)

FC
N

(12.1-28)

FCVarm 

N
(17.2.3.2-2)

FDrag (17.1.2.3-22)

fe (12.1-28)

feh (12.1-28)

fh (12.1-28)

Fij (3.5.1-5)

FLift (17.1.2.3-22)

FLP( ) (9.2-1)
fOsc0 (15.2.4-12)

fOsc (15.2.4-14)

fφCntrl (17.2.2-8)

fψCntrl (17.2.2-8)

FScal (8.1.1.1-1)

FScalLin (8.1.1.3-8)

FScalNonLin (8.1.1.3-8)

FSensAlgn (8.1.1.1.1-2)

FSensScal (8.1.1.1.1-2)

FSensScalAsym (8.1.1.3-22)

FSensScalLin (8.1.1.3-8)

FSensScalNonLin (8.1.1.3-8)

FSide (17.1.2.3-22)

fSize (8.1.4.1.1.1-6)

Fst (15.1.5.3.1-6)
fθCntrl (17.2.2-8)

FTotAero
V WF

(17.2.3.2.1-3)

fVel/Pos (15.2.1.2-18)

g (3.2.4-7)

g (12.2.4-2)

g (12.3.5-22)

g (14.2-16)

g (14.5-2)

g (17.1.1.2-8)

g (17.2.3.2.3-1)
g (5.4.1-1)

g( ) (10.4.2-14)

G(ω) (10.2.2-21)

G(ω) (15.1.2.1.1-32)

G(ω) (17.2.3.2.3-33)

Ga/a (16.2.3.1-26)

gAid( ) (15.1-5)

GAlgn (8.1.1.2-1)

GAlgnk

T
(8.1.4.1-7)

GAlgnOff-Diag (8.1.1.2.1-14)

GAlign (8.2.2.1-5)
GαRVarm (17.2.3.2-21)

GαvVarm (17.2.3.2-21)

γ (10.1.3.2.2-25)

γ (11.2.3.1-10)

γ+
N+

(14.2-35)

γc
N

(15.1.2.3-11)

γEastOffset (18.2.1-23)

γEastOffset (18.2.2-1)
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γEastOffset (18.3.1.2-9)

γH (14.6.1-8)

γH0

G0 (13.5-31)

γH0

N
(13.4.3-28)

γHAvg

N
(18.3-24)

γHForce

N
(13.2.2-17)

γH
L

(18.2.1-3)

γH
N

(13.3-6)

γH
N

(14.2-11)

γHOffset

L
(18.2.1-5)

γH (t) (18.3-6)

γijm (8.1.4.1.1.1-3)

γim (8.1.4.1.1.1-3)

γk Fig. 18.4.3-3

γm
V

 (17.2.1-10)

γN (12.2.1-12)

γN (14.2-37)

γN (15.1.2.3-7)

γN* (12.5-6)

γNi (15.2.1.1-3)

γNorthOffset (18.2.1-23)

γNorthOffset (18.2.2-1)

γNorthOffset (18.3.1.2-9)

γN (18.3-5)

γXN Fig. 12.2.1-1

γYN Fig. 12.2.1-1

γZG0 (13.5-31)

γZL (18.2.1-3)

γZN (13.3-8)

γZN (14.2-11)

γZN (18.3.1.2-3)

γZN Fig. 12.2.1-1

γZN0 (13.4.3-15)

γZN0 (14.3-39)

γZN0 (14.4-3)

γZNj (18.3.1.2-6)

gPAvg iV (17.1.1.2-26)

gPAvg

V
(17.1.1.2-10)

GaVib(ω) (10.6.1-25)

GaVib(ω) (16.2.3.1-22)

GDL( ) (9.2-1)

gEPA (11.2.4.3.2.1-4)

gEq (11.2.4.3.2.1-4)

gI (4.3-11)

gI (11.2.4.3.2.1-12)

gI (12.1.4-7)

Gij (3.5.1-5)

gINS( ) (15.1-5)

gk
I

(8.1.4.1-3)

GM (14.6.1-1)

GM (15.1-2)

GM (15.1.5.2-1)

GM(t) (18.3-5)

gm
I

(11.2.4.3.2.1-1)

GMRev (14.6.4.2-1)

GMRev (t) (15.1.5.4.1-25)

gNorth (5.4-3)

gNorth (11.2.4.3.2.1-8)

gNorth (12.1-28)
gNorth

1 - uUpYE

2
(5.4.1-9)
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Gω /a (16.2.3.1-26)

GP (14.6.1-1)

gP (6.1.1-1)

gP (6.1.3-3)
gP (5.4.1-1)

gP (9.1-1)

GP(t) (15.1-1)

GP(t) (15.1.5.3.1-23)

GP(t) (18.3-5)

GP*(t) (15.1.5.4.1-3)
GPa (15.2.1.1-3)

GPa QPDens/a GPa

T
(15.2.1.1-8)

GPb (15.2.1.1-3)

GPb QPDens/b GPb

T
(15.2.1.1-8)

gφ (5.4-1)

gφ (12.1-28)
gφ

sin φ  

S

(5.4-2)

gφ

sin φ  

S

(11.2.4.3.2.1-2)

gφ

sin φ  

S

(12.1-28)

gφ (11.2.4.3.2.1-2)

gP
I

(4.3-16)

gP
I

(12.1.4-8)

GPM(t) (15.1.5.4.1-3)

gP
N

(7.2-1)

gP
N

(12.1-12)

gPNorth (5.4.1-9)

gPNorth (6.1.3-8)

gPNorth (12.1-28)

GPψV (16.2.3.1-8)

GPSAnt (17.3.2-2)
gPUp (5.4.1-9)

gPUp (6.1.3-8)

gPUp (12.1-28)

GpVib(ω) (10.4.1-8)
GPVR (16.2.3.1-11)

gr (5.4-1)

gr (11.2.4.3.2.1-2)

gr (12.1-28)

gRef
I

(8.1.4.1-3)

grS (5.4-2)

grS (12.1-28)

grS (11.2.4.3.2.1-2)

GS/DL( ) (9.4-1)

GScal (8.1.1.2-1)
GScalAsym (8.1.1.3-11)

GScalLin (8.1.1.3-1)

GScalNonLin (8.1.1.3-1)

GSDL( ) (9.4-1)

GSensAlgn (8.1.1.2.1-2)

GSensScal (8.1.1.2.1-2)
GSensScalAsym (8.1.1.3-14)

GSensScalLin (8.1.1.3-2)

GSensScalNonLin (8.1.1.3-2)

gθ (5.4-1)

gθ (11.2.4.3.2.1-2)

gTst (18.4-1)

gTst (18.4.5-1)

gTst (18.4.7.4-16)

gTst (18.4.7.4-5)

gUp (5.4-3)

gUp (5.4.1-9)
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gUp (11.2.4.3.2.1-8)

gUp (12.1-28)

H (4.4.1.1-6)

H (6.1.2-1)

H (6.1.3-9)

H (12.2.4-24)

H (12.3.6.2-1)

H (12.3.6.2-28)

H (13.1-1)

H (13.2.2-3)

H (13.3-13)

H (13.4.2-8)

H (13.4.3-14)

H (14.5-4)

H (14.6.1-1)

H (15.1-2)

H (15.1.2.2-1)

H (15.1.5.2-1)

H (15.2.1.1-11)

H (18.1.1-2)

h (3.2.4-7)

h (4.4.1.2-1)

h (4.4.2.2-2)

h (5.3-18)

h (9.4-2)

h (11.2.4.1.1-2)

h (12.1-12)

h Fig. 5.2-1

H' (16.1.1-28)
( )  

H
(18.4.7-12)

h(φi) (10.4.2-18)

H(R) (12.1.1-12)

H(S) (10.2.1-3)

H(S) (17.2.3.2.3-39)

H(t) (18.3-5)

h0 (11.2.4.1.1-2)
h0x (10.1.4.1-4)

h0y (10.1.4.1-4)

h1 (17.1.1.2-22)

h2 (17.1.1.2-22)
h2ψ (17.1.3-10)

h3 (17.1.2.2-14)
h3ψ (17.1.3-10)

h4 (17.1.2.2-14)
h4ψ (17.1.3-10)

h5 (17.1.2.2-14)
h5ψ (17.1.3-10)

HA(S) (10.5.1-21)

γHOffset

N
(18.3-28)

hAmp1 (11.2.4.1.1-2)

hAmp2 (11.2.4.1.1-2)

HCruise (11.2.4.1.1-8)

HDen(S) (17.2.3.2.3-40)

HDenAi(jω) (10.5.1-23)

HDeni(S) (10.2.1-30)

HDenϑi(jω) (10.5.1-23)

h (11.2.4.1.1-2)

Hi(S) (10.2.1-27)

HM(t) (15.1.5.4.1-3)

hN (4.4.1.2-1)

HNum(S) (17.2.3.2.3-40)

HNumAi(jω) (10.5.1-23)

HNumi(S) (10.2.1-30)

HNumϑi(jω) (10.5.1-23)

HP (13.4.2-1)

H⊥ (13.4.2-8)

hPrsr (4.4.1.2.1-3)
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hPrsr (12.1-12)
hPrsr n (7.2-6)

hREF (4.4.2.2-2)

HRev (14.6.4.2-1)

HRev(t) (15.1.5.4.1-25)

HRW (16.2.3-3)

Hϑ(S) (10.5.1-21)

hTrue (12.3.2-23)

Hx (16.1.1-5)

hx(t) (10.1.4.1-4)

HXP (13.4.2-7)

Hy (16.1.1-5)

hy(t) (10.1.4.1-4)

I (3.1-14)

I (3.1-20)

I (3.3.4-8)

I (3.5.1-1)

I (7.1.1.1-2)

I (7.3.3.1-9)

I (8.1.1.1-1)

I (8.1.1.2-1)

I (11.2.1.4-1)

I (11.2.4.3.2.2-6)

I (13.6.1-15)

I (15.1.2.1.1.3-32)

I (15.1.5.1-3)

I (15.2.1-17)

i (3.2.4-1)

i (3.2.4-7)

i (8.1.4.1.1.1-3)

i (10.1.1.2-1)

i (10.1.2.2-1)

i (10.1.3.2.2-3)

i (10.2.2-1)

i (15.2.4-1)

i (18.1.1-4)

i Rate Sensor Fig. 18.4.3-3

I ' (16.1.1-28)

( )i (18.3.2.1-2)

i, j (16.1.1.4-2)

I2x2 (15.2.1-16)

I2x3 (15.2.1-6)

iB Fig. 18.4.3-3

ICN
I

(13.5-12)

ICNI(i,j) (13.5-17)

IEst (16.1.1-37)

IH (13.1-7)

IH (13.4.3-8)

IH (13.6.1-16)

IH (15.2.1-5)

Im(ω) (10.2.1-14)

iMARS Fig. 18.4.3-3

ImDeni(ω) (10.2.1-32)

ImNumi(ω) (10.2.1-32)

In (17.2.3.2.3-39)

In (17.2.3.2.3-46)

INS (15.1.2.2-1)

INS (17.3.2-3)

Integ (8.1.3.1-1)

Integl (8.1.3.1-2)

( )Intgr (10.1.3.2.3-2)

IωiR (11.2.1.1-5)

IOptEst (16.1.1.3-18)

Ix (16.1.1-16)

Iy (16.1.1-28)

J (3.1-17)

J (8.3-2)
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J (8.3-2)

J (10.5.1-3)

J (15.1.2.1.1.4-5)

J (15.1.2.2-21)

j (3.2.2-12)

j (3.2.4-7)

j (4.4.1.2.1-17)

j (7.1.1.2.1-4)

j (7.2.1-3)

j (7.2.2.1-6)

j (7.3.1-4)

j (10.1.1.2.2-10)

j (10.1.2.2.2-11)

j (10.1.3.2.2-10)

j (10.2.1-7)

j (10.2.2-3)

j (10.4.2-11)

j (13.3.2-8)

j (15.1.2.1.1.3-26)

j (16.2.3.2-3)

j (17.1.2.3-29)

j (18.3.1.2-6)

j (18.4.7.3-2)

j Rate Sensor Fig. 18.4.3-3

J2 (5.4-1)

J2 (11.2.4.3.2.1-2)

J3 (5.4-1)

J3 (11.2.4.3.2.1-2)

jB Fig. 18.4.3-3

JCA (13.4.2-4)

Jii (15.1.2.1.1.4-6)

jMARS Fig. 18.4.3-3

JP (13.4.2-1)

JφR Sect. No. 11.2.1.2

JψR Sect. No. 11.2.1.2

JSA (13.4.2-4)

JθR Sect. No. 11.2.1.2

K (6.1.1-6)

K (7.2.2.2-10)

K (15.1.5.2-1)

k (3.2.4-7)

k (7.4.1-1)

k (8.1.3.1-7)

k (10.1.1.2.2-10)

k (10.1.2.2.2-11)

k (10.1.3.2.3-2)

k (10.5.1-4)

k (15.2.1.2-6)

k (16.2.3.2-3)

k (17.1.1.1-3)

k (18.4.7.3-3)

K' (16.1.1-28)

K* (15.2.1.1-13)

K1 (6.1.2-2)

K1 (18.3-1)

k1 (10.5.1-3)

K2 (6.1.2-2)

K2 (18.3-1)

k2 (10.5.1-3)

K3 (6.1.2-2)

K3 (18.3-1)

K4 (6.1.2-2)

K4 (18.3-1)

KAniso (8.1.4.2-1)

κAsym (18.4.7.2-12)

κii Sect. No. 18.4.3

κij Fig. 18.4.3-3

κij Sect. No. 18.4.3
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κji Fig. 18.4.3-3

κLinScal (18.4.7.2-12)

κMis (18.4.7.2-12)

κSystBias (8.1.1.1.1-5)

κSystScal/Mis (8.1.1.1.1-5)

κSystScalAsym (8.1.1.3-22)

κSystScalLin/Mis (8.1.1.3-8)

κSystScalNonLin (8.1.1.3-8)

kB Fig. 18.4.3-3

KBias (8.1.1.1-7)

KBias (8.2.1.1-2)

KBias (8.2.2.1-5)

KBias (12.4-2)

KBias (12.4-5)

KBiasC (12.4-5)
KδΔR (15.2.1.1-19)

KδωIE (15.2.1.1-19)

Kδv (15.2.1.1-19)

K♦ (14.6.1-1)

K♦ (14.6.1-2)

K♦′(t) (18.3-6)

K♦(t) (18.3-5)

Km
♦ (15.1.5.3.2-10)

KRev
♦ (t) (15.1.5.4.1-26)

KDInd/L (17.1.2.3-25)

KDInd/Sd (17.1.2.3-25)

KFst (15.1.5.3.1-1)

KFuel (17.1.2.3-27)

Kγ (15.2.1.1-19)
Kjki (16.2.3.2-8)

kMARS Fig. 18.4.3-3

KMis (8.1.1.1-7)

KMis (8.2.1.1-2)

KMis (8.2.2.1-5)

KMis (12.4-2)

KMis (12.4-5)

KMisC (12.4-5)
KMisij (8.1.4.1.1.2-1)

KMisij (8.2.1.1-9)

KMisij (8.2.2.1-31)

Kn (15.1.2-13)

Kω
♦′(t) (18.3-7)

KOpt (16.1.1.3-10)

KOpt (16.1.2.1-9)
Kφρl bndji (17.2.3.2.3-5)

KPsConi (16.2.3.2-1)

KResConi (16.2.3.2-6)

KRρl bndji (17.2.3.2.3-5)

L (3.2.2-10)

L (4.4.2.1-1)

L (10.5.1-18)

L (11.2.4.1.1-4)

L (11.2.4.2-1)

L (12.2.3-33)

L (18.1.1-24)

l (4.4.2.1-1)

l (6.1.2-2)

l (6.1.3-8)

l (7.1.1.1.1-3)

l (7.3.3.2-1)

l (8.1.4.1.1.1-6)

l (8.1.4.1.2-3)

l (10.1.3.2.2-3)

l (10.5.1-3)

l (11.2.1.1-6)

l (11.2.3.1-1)
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l (11.2.4.1.1-1)

l (11.2.4.3.2.1-8)

l (12.2.3-33)

l (13.4.2-34)

l (14.1-2)

l (14.5-3)

l (15.1.2.2-3)

l (17.2.3.2.2-1)

l (17.2.3.2.3-24)

l (18.1.1-22)

l (18.3-1)

l bnd (17.2.3.2.3-5)

l Fig. 5.2-1

l k (9.3-2)

L0 (3.2.2-13)

L0 (11.2.4.1.1-1)

l0 (11.2.4.1.1-1)

l0 Fig. 13.5-1

l0
AC

(17.2.3.2.2-1)

l 0
B

(11.2.3.1-9)

L1 (3.2.2-13)

L1 (11.2.4.1.1-1)

L2 (3.2.2-13)

λ (3.2.2-10)

λ (4.4.1.2.1-7)

λ (13.2.1-6)

λ (14.6.2-1)

λ(0) (15.1.5.4-8)

λ(t) (15.1.5.4-2)

λ*(t) (15.1.5.4.1-13)

λAsym (18.4.5-1)

λAsym (18.4.7.1-3)

λAsym (18.4.7.4-18)

λBias (18.4.5-1)

λBias (18.4.7.1-3)

λBias (18.4.7.4-10)

λBias (18.4.7.4-18)

Λi (14.6.2-6)

Λi (14.6.5.1-2)

λi (14.6.2-2)

λi0 (14.6.2-6)

λii Sect. No. 18.4.3

λiii Sect. No. 18.4.3

λij Sect. No. 18.4.3

λLinScal (18.4.5-1)

λLinScal (18.4.7.4-10)

λLinScal (18.4.7.4-18)

λLinScal/Mis (18.4.7.1-3)

λM(t) (15.1.5.4.1-13)

λMis (18.4.7.4-10)

λm
N

(17.2.3.2-2)

λSystBias (8.1.1.2.1-5)

λSystScal/Mis (8.1.1.2.1-5)

λSystScalAsym (8.1.1.3-15)

λSystScalLin/Mis (8.1.1.3-2)

λSystScalNonLin (8.1.1.3-2)

LAmp (11.2.4.1.1-1)

lAmp (11.2.4.1.1-1)

LAniso (10.1.4.1-2)

LBias (8.1.1.2-7)

LBias (8.2.2.1-5)

LBias (12.4-15)

LBias
* (8.2.2.1-5)

LBiasC (12.4-15)

l
 Cnst
B

(15.2.2.1-14)
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l (11.2.4.1.1-1)

lE (15.2.2.1-1)

l
E

(15.2.4-4)

l
 Flex
B

(15.2.2.1-14)

lg (16.2.3.3-1)

LG2 (10.1.4.1-2)

LI (11.2.4.1.1-1)

l i
B

(11.2.3.1-9)

LI (11.2.4.1.1-1)

LINS (18.1.1-24)

l INS/GPS
AC

(17.3.2-3)

l k
I

(8.1.4.1-1)

LMis (8.1.1.2-7)

LMis (8.2.2.1-5)

LMis (12.4-15)

LMisC (12.4-15)
LMis ij (8.1.4.1.1.2-1)

LMis ij (8.2.2.1-31)

LMisk

T
(8.1.4.1.1-5)

lφ Fig. 5.2-1
LPsSculi (16.2.3.2-1)

LREF Fig. 4.4.2.2-1

lREF Fig. 4.4.2.2-1
LResSculi (16.2.3.2-6)

Lx (16.1.1-20)
lXk (8.1.4.1.1.1-1)

lYk (8.1.4.1.1.1-1)

lZk (8.1.4.1.1.1-1)

M (10.1.3.1-4)

M (14.6.4-2)

M (17.1.2.3-26)

M (17.2.3.2.1-1)

M j (15.1.2.1.1.3-26)

m (7.2-4)

m (8.1.4.1.1.1-3)

m (8.2.1-1)

m (8.2.2-2)

m (8.2.3-1)

m (10.1.1.2-1)

m (10.1.2.2-1)

m (10.1.3.1-3)

m (10.5.1-3)

m (11.2.4.3.2.1-1)

m (13.4.2-34)

m (15.1.2.1.1.1-1)

m (15.1.5.3.1-1)

m (16.2.4-2)

m (17.1.3-3)

m (17.2.1-1)

m (17.2.2-4)

m (18.4-1)

m Sect. No. 7.1.1

m Sect. No. 7.1.2

m-1/2 (7.2.1-1)

m-1/2 (17.3.2-11)

M/M (14.6.4.2-2)

M0 (17.1.2.3-27)

mEven (18.1.1-21)

mOdd (18.1.1-21)

μ (5.4-1)

μ (10.1.3.2.2-26)

μ (11.2.4.3.2.1-2)

μaiVib (16.2.3.1-21)

μaiVib (16.2.3.2-13)

μij (18.4.3-4)
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μl bndi (17.2.3.2.3-5)

μm (17.2.1-21)

μMis (18.4.5-1)

μMis (18.4.7.4-18)

μω iVib (16.2.3.1-18)

μωYVib (16.2.3.1-16)

μωZVib (16.2.3.1-16)

n (3.1.1-3)

n (7.2-6)

n (7.2.1-3)

n (7.3.1-2)

n (13.4.2-34)

n (13.6.1-8)

n (14.6.1-12)

n (15.1-2)

n (15.1.2.4-11)

n (15.1.5.2-1)

n (15.2.4-12)

n (18.3.1.1-8)

n (18.3.2.1-10)

n (18.3.2.2-2)

n Sect. No. 7.1.1

n Sect. No. 7.1.2
  n (15.1-2)

n+c (15.1.2.4-11)

n+s (15.1.2.4-11)

n+u (15.1.2.4-11)

n-1+c (15.1.2.4-11)
n-1,m

2
(7.2.2.1-3)

n-1/2 (7.1.1.2.1-2)

n-1/2 (7.3.1-10)
( )n/xM (15.1.5.4.1-4)

n/xM (15.1.5.4.1-4)

nARS/RndH

L
(18.2.1-6)

nARS/RndH

N
(18.3-21)

nARS/RndZL (18.2.1-6)

nARS/RndZN (18.3-21)

nδg (16.2.3.3-1)

Next (17.2.1-2)
nK0Bias (12.5.6-2)

nKMBias (12.5.6-3)

nM (15.1-2)
nM/Rev n (15.1.5.4.1-29)

nM
♦ (14.6.1-1)

nM
♦ (14.6.1-12)

nM 

♦
(t) (18.3-5)

nM 

♦
(t) (15.1.5.3.1-25)

nM 

♦
(t) (15.1.5.4.1-3)

nMRev
♦ (14.6.4.2-1)

nMFstm (15.1.5.3.2-6)

nMn (14.6.1-12)

nMn (15.1.5.3.1-29)

nMRev

♦
(t) (15.1.5.4.1-26)

North (18.2.1-24)

nOsc/Mark (15.2.4-16)

nOsc/RndCnst (15.2.4-16)

nP (14.6.1-1)

nP (18.3-5)

n′P (14.6.1-8)

nP(t) (15.1-1)
nP* (14.6.1-9)

nP*(t) (15.1.5.4.1-3)
nPa (15.2.1.1-3)
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nPb (15.2.1.1-3)

nPi (15.1.2.1.1-25)

nPj (15.1.2.1.1-25)

nPM(t) (15.1.5.4.1-3)

nP
N

(15.2.1.1-4)

nSFiRnd (17.2.3.2.3-19)

nt (15.2.4-15)

nTrans (16.2.4-4)

ν (14.6.1-1)
nVibi (15.2.1.2-6)

nWndGst
Geo

(17.2.3.2.1-9)

NX (15.2.1.1-3)

NY (15.2.1.1-3)

Off Diag ( ) (8.1.1.1.1-14)

Ω (7.4.1-1)

Ω (10.1.1.1-10)

Ω (10.1.3-1)

Ω (10.1.4.1-2)

Ω (10.1.4.2-1)

Ω (10.3-1)

Ω (11.2.3.1-11)

ω (4.4.1.2.1-17)

ω (7.2.2.2-7)

ω (7.3.3.1-4)

ω (8.1.1.1-1)

ω (8.1.4.1-7)

ω (8.2.1-1)

ω (8.2.2-2)

ω (8.2.3-1)

ω (10.2.1-4)

ω (11.2.2.1-12)

ω (12.4-2)

ω (17.2.3.2.3-33)

Ω′ (7.4.1-1)

Ω′ (10.1.3.2.3-2)

ω′ (8.1.1.1-3)

ω′ (8.1.4.1.1-6)

ω′im (8.1.4.1.1.1-4)

ω′im-1 (8.1.4.1.1.1-4)

ω′Q (8.1.4.1.4-9)

ω′X (8.1.4.1.1.1-1)

ω′Y (8.1.4.1.1.1-1)

ω′Z (8.1.4.1.1.1-1)

ω* (8.1.1.1.1-2)

ωAB2 
B2 (3.3.4-11)

ωAB
A

(3.4-6)

ωAB
A

Sect. No. 3.3.1

ωAB
B

(3.3.1-4)

ωAB
B

(3.3.2-3)

ωAB
B

(3.3.4-15)

ωAB
B

(3.4-4)

ωAB 
B
× (3.3.2-4)

ωABXB (3.3.2-4)

ωABYB (3.3.2-4)

ωABZB (3.3.2-4)

ωARS(t) (10.1.4.2-2)

ωARS0x (10.1.4.2-2)

ωB
(11.2.1.2-2)

ωB0B
B

(13.4.1.2-5)

ωB1B2 
B2 (3.3.4-10)

ωBA
B

(3.3.1-3)

ωB
B

(9.1-3)
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ωBI
P

(13.4.2-2)

ωc Fig. 11.2.1.1-1

ωe (4.1.1-4)

ωe (5.4.1-1)

ωe (5.4.1-4)

ωe (6.1.2-2)

ωe (11.2.4.1.1-3)

ωe (12.1-12)

ωe (12.1.4-9)

ωe (12.2.4-21)

ωe (14.5-3)

ωe (18.3-1)

ωe Fig. 13.5-1

ωEAC (17.3.2-8)

ωEB (13.4.3-2)

ωEB
B

(13.4.3-2)

ωe
I

(11.2.4.2-2)

ωEN (9.1-1)

ωEN
E

(5.2.4-1)

ωENH

E
(12.3.6.2-11)

ωENH

E
(5.2.4-3)

ωEN
N

(4.1.1-1)

ωEN
N

(7.2-1)

ωEN
N

(12.1-12)

ωEN 
N

(12.3.3-3)

ωEN
N

(14.5-2)

ωENH

N
(12.3.5-19)

ωh1 (11.2.4.1.1-2)

ωh2 (11.2.4.1.1-2)

ωHi (17.2.3.2.3-18)

ωi′ (10.4.2-9)

ωIA
A

(3.3.2-10)

ωIA
A

(3.5.1-19)

ωIA
A

(3.5.1-20)

ωIA 
A
× (3.3.2-10)

ωIB (9.1-1)

ωIB (13.2.4-9)

ωIB (13.4.1.1-1)

ωIB (13.4.1.2-6)

ωIB(t) (10.1.1-2)

ωIB(t) (10.1.2-3)

ωIB(t) (10.1.3-1)

ωIB0Accl/Inpt (10.1.4.1-2)

ωIB0Accl/Pend (10.1.4.1-2)

ωIBAccl/Inpt(t) (10.1.4.1-2)

ωIBAccl/Pend(t) (10.1.4.1-2)

ωIB
B

(3.3.2-10)

ωIB
B

(3.5.1-19)

ωIB
B

(3.5.1-20)

ωIB
B

(4.1-2)

ωIB
B

(4.1-2)

ωIB
B

(7.1.1.1-4)

ωIB
B

(11.2.3.1-4)

ωIB
B

(12.1-12)

ωIB 
B

(12.1.4-1)

ωIB
B

(18.3-1)

ωIB 
B
× (3.3.2-10)
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ωIB
I

(8.1.4.1-4)

ωIBiB (18.4.7.2-12)

ωIBi

B
(18.4.7.2-13)

ωIB
P

(13.4.2-1)

ωIBXP (13.4.2-4)

ωIBYP (13.4.2-4)

ωIBZP (13.4.2-4)

ωIE/East j (18.3.1.2-8)

ωIE/H-kj (18.3.1.1-8)

ωIE/H i

N
(18.3.2.1-2)

ωIE/H j

N
(18.3.1.1-2)

ωIE (9.1-1)

ωIE
E

(12.2.2-8)

ωIE
E

(12.2.4-16)

ωIEExp

N
(18.3-2)

ωIEH (6.2.1-5)

ωIEH (18.2.1-17)

ωIEH (18.3-28)

ωIEH (18.3.1.2-3)

ωIEH/1 (6.1.3-8)

ωIEH/1

N1 (6.1.3-8)

ωIEH/2

N2 (6.1.3-9)

ωIEH

N
(13.2-3)

ωIEH

N
(13.3-8)

ωIEH

N
(14.1-2)

ωIEH

N
(t) (18.3-14)

ωIE
N

(4.1.1-1)

ωIE
N

(7.2-1)

ωIE
N

(12.1-12)

ωIE
N

(12.2.4-16)

ωIE 
N

(12.3.3-4)

ωIE
N

(14.5-2)

ωIE
N

(18.3-1)

ωIENorth (18.1.2-9)

ωIEUp (18.2.1-3)

ωIEUp (18.3-21)

ωIEZN/1 (6.1.3-9)

ωIL (9.1-1)

ωIL
L

(4.1-2)

ωIL
L

(4.1-2)

ωIL
L

(12.1-12)

ωIN (12.1.2-2)

ωIN H

N
(13.2-5)

ωIN 
N

(12.3.3-4)

ωIN
N

(12.3.7.2-2)

ωIN
N

(14.5-2)

ωiR (11.2.1.1-2)

ωk (8.1.4.2-1)

ωL (11.2.4.1.1-1)

ωl (11.2.4.1.1-1)

ωL/INS-AC (17.3.2-9)

ωLACAvg

AC
(17.1.2.3-7)

ωnl bnd (17.2.3.2.3-5)

ωLo (17.2.3.2.3-18)

ωLo-f (8.1.4.1.2-2)

ωLo-f (8.1.4.1.2-3)
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ω-Puls (8.1.1.3-22)

ω-Pulsi (8.1.1.3-22)

ωn (4.4.1.2.1-10)

ωn (15.2.1.2-7)

ωn (15.2.2.3-5)

ωN/INS-AC (17.3.2-9)

ωNE 
N

(12.3.3-2)

ωNI
N

(12.3.7.2-1)

ωNV (17.1.1.2-17)

ωNV
V

 (17.1.1.2-3)

ωp (8.1.4.2-1)

ωφ (11.2.2.1-5)

ωφ (11.2.2.1-6)

ωPI
P

(13.4.2-2)

ω+Puls (8.1.1.3-22)

ω+Pulsi (8.1.1.3-22)

ωPuls (8.1.1.1-1)

ωPuls (8.1.2.1-1)

ωPuls (8.2.1.1-2)

ωPuls (8.2.2.1-5)

ωPuls (9.3-1)

ωPuls (12.4-2)

ωPuls i (8.1.1.3-22)

ωPulsX (8.2.2.1-25)

ωPulsY (8.2.2.1-25)

ωPulsZ (8.2.2.1-25)

ωR
(11.2.1.2-2)

ωSpin (13.4.2-6)

ωARS0x (10.3-14)

ωARS0y (10.3-14)

ωs Fig. 11.2.1.1-1

ωθ (10.5.1-18)

ωTilt
N

(6.1.2-2)

ωTilt
N

(18.3-1)

ωUV (9.1-4)

ΩVib (8.1.4.1.2-3)

ωVib (8.1.4.1.2-2)

ωVib
B

(12.6-9)

ωVib
B

(14.2-14)

ωVib 
B

(18.2.1-3)

ωVib 
B

(18.3-21)

ωVibi (16.2.3.1-13)

ΩWt i- (8.1.4.1.4-7)

ΩWt i+ (8.1.4.1.4-7)

ΩWt (8.1.1.1-7)

ΩWt (8.2.1.1-2)

ΩWt (8.2.2.1-5)

ΩWt (9.3-1)

ΩWt (12.4-2)

ΩWt (12.4-5)

ΩWt 0 (8.1.1.1-1)

ΩWt C (12.4-5)

ΩWt i (8.1.4.1.4-3)

ΩWt i (8.2.1.1-13)

ΩWt i (8.2.2.1-27)

ΩWti- (8.2.1.1-23)

ΩWt i+ (8.2.1.1-23)

ΩWt - (8.1.1.3-22)

ΩWt + (8.1.1.3-22)

Ωx (10.1.1-2)

Ωx (10.1.2-3)
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ωx (10.5.1-18)

ωXGeo Fig. 4.4.3-1

Ωy (10.1.1-2)

Ωy (10.1.2-3)

ωy (10.6.1-6)

ωYGeo Fig. 4.4.3-1

ωζ (11.2.2.1-5)

ωζ (11.2.2.1-6)

ωZGeo Fig. 4.4.3-1

ω′ * (8.1.1.1.1-2)

ω′X (8.2.2.1-23)

ω′Y (8.2.2.1-23)

ω′Z (8.2.2.1-23)

Out (17.2.3.2.3-38)

P (14.6.1-5)

P (15.1.2.1-4)

P (17.1.2.3-30)

P ′ (14.6.2-13)

P' (16.1.1.1-1)

P ′0 (14.6.2-13)

Pii
'

(16.2.4-11)

Pjk0

'
(16.2.4-8)

P'Meas (16.2.5-16)

PMeas/iim 

'
(16.2.4-9)

P'Proc (16.2.5-16)

PProc/iil
'

(16.2.4-9)

P(+) (15.1.5.3.1-1)

P(-) (15.1.5.2-1)

P(-) (15.1.5.3.1-1)

P(0) (15.1.5.4-9)

P(ψpVibi) (10.4.2-13)

P(pVib0/i) (10.4.2-13)

P(pVib0/i,ψpVibi) (10.4.2-13)

P(t) (15.1.2.1.1-16)

p(t) (10.2.2-1)

p(t) 2 (10.2.2-2)

P(t1) (15.1.2.1.1-16)

P* (14.6.4-5)

P* (14.6.4.2-5)

P* (15.2.1.1-13)

P* (16.1.1-37)

P*(t) (15.1.5.4.1-12)

P** (14.6.4.2-5)

P***0 (14.6.4.3-8)

P**0 (14.6.4.2-7)

P*0 (14.6.4-7)

P*0 (15.2.1.2-2)

PaOut (16.2.5-4)

PaOut/ii (16.2.5-21)

PaOut/Meas (16.2.5-16)
PaOut/Meas/iim (16.2.5-21)

PaOut/Measm (16.2.5-18)

PaOut/Proc (16.2.5-16)
PaOut/Proc/iil (16.2.5-21)

PaOut/Procl (16.2.5-18)

PaSFiAC (17.2.3.2.3-23)

PδΔR/H 0 (15.2.1.2-2)

PδΔRδv/H0 (15.2.1.2-2)

Pδg (16.2.3.3-3)

PδgStdSt (16.2.3.3-6)

Pδω IE/H 0 (15.2.1.2-2)

Pδv/H0 (15.2.1.2-2)

PδvδΔR/H 0 (15.2.1.2-2)

Pγ /H0 (15.2.1.2-2)

Φ (15.1.5.3.1-1)

φ (3.1-3)
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φ (3.2.1.1-10)

φ (3.2.2-1)

φ (3.2.2-1)

φ (3.2.3-1)

φ (3.5.3-26)

φ (4.4.2.1-1)

φ (5.4-1)

φ (7.1.1.1-4)

φ (11.2.2.1-4)

φ (11.2.2.1-4)

φ (11.2.4.3.2.1-2)

φ (12.1-28)

φ (12.2.1-28)

φ (13.4.1.2-6)

φ (13.4.3-3)

φ (17.1.1.2-16)

φ (17.1.1.5-6)

φ Fig. 5.2-1

φ Fig. 13.4.2-1

Φ' (16.1.1-28)

φ(ω) (10.2.1-16)

Φ(t) (10.1.1.1-2)

φ(t) (7.2.2.2-1)

φ(t) (7.2.2.2-1)

Φ(t, t1) (15.1.1-3)

Φ(t, tm-1) (17.2.3.2.3-10)

Φ(ti,tj) (15.1.1-7)

Φ* (15.2.1.1-13)

φ0 (11.2.2.1-18)

φ0 (13.4.2-22)

φ1
L

(18.4.7.2-3)

φA(ω) (10.5.1-25)

ϕaAcclInpt (10.1.4.1-2)

ϕaAcclPend (10.1.4.1-2)

φaAcclx (10.3-16)

ϕaAcclx (10.3-14)

φaAccly (10.3-16)

ϕaAccly (10.1.4.2-2)

ϕaAccly (10.3-14)

φAC/V (17.1.2.3.1-9)

φaAcclInpt (10.3-20)

φaAcclPend (10.3-20)

ϕaSF (10.1.3-1)

φaSF (10.3-20)

φaSFx (10.3-3)

φaSFy (10.3-3)

φaSFz (10.3-3)

φBL (11.2.1.3-2)

φCntrl (17.1.2.3.1-2)

ΦCon (10.1.1.1-13)

ΦCony (10.6.1-13)

ΦConz (10.3-20)

φDenA1(ω) (10.5.1-24)

φDeni(ω) (10.2.1-32)

φDenϑ1(ω) (10.5.1-24)

φDenϑ2(ω) (10.5.1-24)

φ Fig. 11.2.1.1-1

φH (18.2.1-14)

φH (18.2.1-14)

φH1

L
(18.4.7-14)

φH2

L
(18.4.7-14)
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φHiFlevm 

AC
(17.2.3.2.2-2)

φH
L

(18.2.1-12)

φHi

N
(18.3.2.1-3)

ϕhx (10.1.4.1-4)

φhx (10.3-20)

ϕhy (10.1.4.1-4)

φhy (10.3-20)

ϕI
(12.2.1-18)

φi (18.3.2.2-1)

φH-ki (18.3.2.1-10)

φL
(18.4.7-7)

φL
(18.4.7.2-2)

Φλλ(t) (14.6.4.1-4)

Φλλ(t) (15.1.2.1.1.3-12)

Φλλ(t) (15.1.5.4-8)

Φλλ
j

(15.1.2.1.1.3-28)

Φλλm (15.1.2.1.1.3-7)

Φλy(t) (14.6.4.1-4)

Φλy(t) (15.1.2.1.1.3-12)

Φλy(t) (15.1.5.4-8)

Φλy
j

(15.1.2.1.1.3-28)

Φλym (15.1.2.1.1.3-7)

Φm (10.1.1.2-1)

Φm (15.1.2.1.1.3-28)

φm (7.1.1.1-3)

φm (7.1.1.1-3)

φm (7.1.2.1-3)

φm (7.1.2.1-3)

φm (8.2.1-1)

φm
V

 (17.1.3-5)

Φn,n-1+c (15.1.2.4-11)

Φn-1+c,n-1 (15.1.2.4-11)

φNum/ϑ1x(Ω) (10.6.1-15)

φNum/ϑ1z(Ω) (10.6.1-15)

φNumA1(ω) (10.5.1-24)

φNumi(ω) (10.2.1-32)

φNumϑ1(ω) (10.5.1-24)

ϕωARSx (10.1.4.2-2)

ϕωARSx (10.3-14)

φωARSx (10.3-16)

ϕωARSy (10.3-14)

φωARSy (10.3-16)

φωIBAccl/Inpt (10.3-20)

ϕωIBAccl/Inpt (10.1.4.1-2)

ϕωIBAccl/Pend (10.1.4.1-2)

φωIBAccl/Pend (10.3-20)

ϕpp(t,τ) (10.2.2-9)

ϕpp(t,τ) (17.2.3.2.3-32)

φS (17.1.1.2-16)

φSiV (17.1.1.2-26)

φS
V

 Sect. No. 17.1.1

φϑ(ω) (10.5.1-25)

ϕθx (10.1.2-3)

ϕθx (10.1.1-2)

φθx (10.3-3)

φθx/i (10.4.1-1)

ϕaSFy (10.1.2-3)

ϕθy (10.1.1-2)

φθy (10.3-3)
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φθy/i (10.4.1-1)

φθz (10.3-3)

φθz (10.6.1-13)

φθz/i (10.4.1-1)

φVarm (17.2.3.2-14)

φVarm (17.2.3.2-14)

ΦVH k(t,τi) (13.6.1-7)

φX (3.2.2.2-17)

φx (3.2.4-18)

Φxx (16.1.1-5)

Φxy (16.1.1-5)

φY (3.2.2.2-17)

φy (3.2.4-18)

Φyλ(t) (14.6.4.1-4)

Φyλ(t) (15.1.2.1.1.3-12)

Φyλ(t) (15.1.5.4-8)

Φyx (16.1.1-5)

Φyy (16.1.1-5)

Φyy(t) (14.6.4.1-4)

Φyy(t) (15.1.2.1.1.3-12)

Φyy(t) (15.1.5.4-8)

Φyym (15.1.2.1.1.3-7)

φZ (3.2.2.2-17)

φz (3.2.4-18)

pi(t) (10.2.2-1)

Pii (15.1.2.1.1.4-1)
PiiMax (15.1.2.1.1.4-4)

PiiMin (15.1.2.1.1.4-1)

Pij (15.1.2.1.1.4-2)

φAC
(17.1.2.3-7)

pjk (10.1.1.2.2-14)

pjk (10.1.2.2.2-14)

PΩ (14.6.2-16)
PΩ0 (14.6.2-13)

PΩ0 (18.3-9)

PΩαQuant/aRand (14.6.4.2-20)

PΩωRand (14.6.4.3-11)

PΩRVib (14.6.3-9)

PΩSimult (14.6.5.2-1)

PΩSum (14.6.5.2-3)

PΩυQuant (14.6.4.1-10)

POpt (16.1.1.3-16)

POpt (16.1.2.1-15)

pOut(t)
2 (17.2.3.2.3-38)

PRHLngRHLng (13.6.1-30)

PRVib H (14.6.1-12)

PRVib H (15.2.1-27)

PRVib H (15.2.1.1-9)

PSen/Mrk (15.2.2.1-38)

PSen/Mrk/Std (15.2.2.1-38)

ψ (3.2.3-1)

ψ (3.5.3-26)

ψ (10.2.1-4)

ψ0 (11.2.2.1-18)

ψ0
A

(13.2.4-20)

ψ0
I

(13.4.1.2-12)

ψ0
I

(13.5-7)

ψ0
N

(14.5-5)

ψAvgi (13.4.2-41)

ψBiasl (13.4.2-34)

ψBL (11.2.1.3-2)

ψDesired (17.1.1.5-12)

ψE
(12.2.1-4)
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ψFm

V
 (17.2.1-3)

ψGC/StartP (17.1.1.4-3)

ψGC/StartTrue (17.1.1.4-4)

ψH0

N
(14.5-5)

ψH
N

(13.5-1)

ψH
N

(14.3-5)

ψH
N

(14.5-2)

ψI
(13.2.4-8)

ψP/INS (18.1.1-21)

ψm
V

 (17.1.3-10)

ψm
V

 (17.2.1-1)

ψN
* (12.5-26)

ψc
N

(15.1.2.3-2)

ψP (12.2.1-28)

ψP (18.1.1-24)

ψPlatform (4.1.2-2)

ψpVib (10.3-1)

ψpVibi (10.4-3)

ψS/Ml (13.4.2-34)

ψStart (17.1.1.5-12)

ψT (12.2.1-39)

ψT (18.1.1-24)

ψT (18.2.2-1)

ψT (18.2.2-1)

ψT (18.3.1.2-1)

ψT/INS (18.1.1-24)

ψTi (18.3.2.2-1)

ψTj (18.3.1.2-9)

ψTMis
I

(13.2.4-13)

ψTrue (4.1.2-2)

ψXN (12.2.1-44)

ψ Fig. 11.2.1.1-1

ψYN (12.2.1-44)

ψZN (12.2.1-44)

ψZN (14.3-5)

ψZN (14.5-2)

ψZN (18.1.1-22)

ψZN0 (14.5-5)

Pulsl (8.1.3.2-4)

Pulslast (8.1.3.2-1)
PVHVH(t) (13.6.1-9)

PVib (15.2.1.2-10)

pVib(t) (10.3-1)

pVib(t) (10.4-1)
pVib0 (10.3-1)

pVib0/i (10.4-3)

pVibi(t) (10.4-1)

PWndGstim (17.2.3.2.1-11)

PwSFiRnd (17.2.3.2.3-26)

Pz (17.2.3.2.3-21)

Q (15.1.5.3.1-1)

q (17.1.2.3-24)

Q' (16.1.1-34)

Q* (15.2.1.1-13)

q1 (3.3.4-4)

q1 (7.1.2.1-2)
Q1m (15.1.2.1.1.3-35)

q2 (14.6.1-13)

q3 (14.6.1-13)

q4 (14.6.1-13)
qαQuant (14.6.1-12)

qαQuant (15.2.1-17)
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qaRand (14.6.1-12)

qaRand (15.2.1-17)

qaRnd(τ) (13.6.1-20)

qB(t)
BI(m-1) (7.1.2.1-2)

qBI(m)

BI(m-1) (7.1.2-1)

qBI(m)

LI(n) (7.1.2-1)

qBI(m-1)

LI(n-1) (7.1.2-1)

qB
L

(4.1-2)

QδgDens (16.2.3.3-3)

Qij (15.1.2.1.1.4-4)

QIn (17.2.3.2.3-42)

qLI(n-1)

L(t)
(7.1.2.2-2)

qLI(n-1)

LI(n) (7.1.2-1)

Qm (15.1.2.1.1.3-28)

Qn (15.1.2.1.1-10)
qωRand (14.6.1-12)

qωRand (15.2.1-17)

qωRand (18.3-9)

qωRnd(τ) (13.6.1-20)

QP*Dens (15.2.1.1-11)

QP*Dens(t) (15.1.5.4.1-3)

qPDens (15.1.2.1.1-33)
QPDens (14.6.1-6)

QPDens(t) (15.1.5.3.1-23)

QPDens(τβ) (15.1.2.1.1-28)

QPDens/a (15.2.1.1-7)

QPDens/b (15.2.1.1-7)

QPDens/Assoc(t) (15.1.2.1.1.3-32)

qPDensi(τβ) (15.1.2.1.1-27)

qPDensl (16.2.4-9)

QPDens

N
(15.2.1.1-6)

QPM Dens(t) (15.1.5.4.1-3)

qψαVibQuantij (16.2.3.1-18)

QψVαQuant (16.2.3.1-9)

qψVαQuant (16.2.3.1-5)

qVRυQuant (16.2.3.1-5)

QRW (16.1.1.3-16)

QSen/Mrk (15.2.2.1-38)
QSFiRnd (17.2.3.2.3-21)

qTot (17.2.3.2.1-5)
qυQuant (14.6.1-12)

qυQuant (15.2.1-17)

qVαVibQuantij (16.2.3.1-21)

qVib/Dens (15.2.1.2-10)
qVυVibQuantij (16.2.3.1-21)

QWndGstim (17.2.3.2.1-11)

R (4.1.1-5)

R (4.4.2.2-1)

R (5.2.1-2)

R (5.4-1)

R (5.4.1-1)

R (9.1-1)

R (9.4-3)

R (11.2.4.1.2-4)

R (11.2.4.3.2.1-2)

R (12.1-28)

R (12.2.1-45)

R (12.2.3-6)

R (15.1.5.2-1)

R Fig. 5.2-1

r (3.2.4-25)

r (7.2.1-3)

r (7.2.2.1-5)
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r (10.1.3.2.2-3)

r (14.6.1-13)

r (15.1.5.3.1-16)

r (16.2.3.1-11)

r (17.2.3.2.3-31)

r (18.4.7.3-2)

R0 (4.4.2.2-5)

R0 (5.1-1)

R0 (5.4-1)

R0 (11.2.4.1.1-4)

R0 (11.2.4.1.2-3)

R0 (12.1-28)

r0 (7.3.3-5)

r1 (7.3.3-5)

r2 (7.3.3-5)

ra (17.2.1-20)

RAvg (17.1.1.4-6)

rb (17.2.1-20)

R♦ (14.6.1-12)

R♦ (14.6.1-6)

R♦ (15.1.5.3.1-15)

R♦(t) (15.1.5.3.1-23)

RE (4.3-1)

RE (12.1-13)

RE (12.2.3-1)

R
E

(12.2.3-1)

R
E

(15.2.4-4)

Re(ω) (10.2.1-14)

ReDeni(ω) (10.2.1-32)

ReNumi(ω) (10.2.1-32)

REq (5.2.2-2)

REq (5.4.1-2)
RFst m (15.1.5.3.1-6)

RGPSAnt
E

(17.3.2-1)

ρ (10.1.3.2.2-25)

ρ (17.1.2.3-24)

ρ Fig. 13.5-1

ρGPSi (15.2.4-1)

ρH
Geo 

(5.3-4)

ρi (15.2.4-1)

ρi (17.3.2-1)

ρi
E

(15.2.4-4)

ρi
E

(17.3.2-1)

ρl bndi (17.2.3.2.3-5)

ρN
(4.1.1-5)

ρN
(5.3-18)

ρN
(5.5-4)

ρN
(7.3-2)

ρXN Fig. 4.4.3-1

ρYN Fig. 4.4.3-1

ρZN (4.1.1-5)

ρZN (5.3-18)

ρZN (12.1-28)

ρZN Fig. 4.4.3-1

RI (11.2.4.1.2-3)

RI (12.1.4-2)

ri (10.2.1-7)

RINS
E

(15.2.2.1-1)

RINS
E

(17.3.2-3)

Rk
I

(8.1.4.1-1)

rL (5.2.4-37)

rl (5.2.4-37)

rl (5.3-18)
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rl (12.1-28)

rLs (5.2.4-25)

rls (5.2.4-25)
rls (12.1-28)

rMeasm (16.2.4-9)

RN (4.4.1.2-1)

RN (11.2.3.3-8)

Rn (15.1.2.1-13)

RREF (4.4.2.2-1)

RREF
E

(15.2.2.1-1)

RRef
I

(8.1.4.1-1)

RRev
♦ (t) (15.1.5.4.1-25)

RS (4.4.2.2-2)

RS (5.1-1)

RS (5.2.1-2)

RS (11.2.4.3.2.1-2)

RS (12.1-28)

RS
′  (5.1-6)

RS
′ (5.3-18)

RS
E

(5.2.4-6)

RSF(t) (10.1.3.1-1)
RSFM (10.1.3.1-4)

RSi
E

(15.2.4-4)

RSi
E

(17.3.2-1)

RS
N

(4.4.1.2-1)

RSREF (4.4.2.2-2)

RSXE (5.1-1)

RSYE (5.1-1)

RSZE (5.1-1)

RS
′ (11.2.4.1.2-3)

RS
′ (12.1-28)

RVibi (15.2.1.2-6)

RXE (4.4.2.3-4)

RYE (4.4.2.3-8)

RYE (12.1.3-5)

RYI (11.2.4.3.2.1-7)

RYI (12.1.4-14)

RZE (4.4.2.3-4)

S (4.4.1.2.1-13)

S (10.2.1-3)

S (10.5.1-11)

S (14.6.2-6)

S (14.6.5.1-2)

S (17.1.2.3-24)

S (17.2.3.2.3-34)

s (3.2.4-25)

s (10.1.1.2.2-7)

s (10.1.2.2.2-8)

s (18.4.7.3-3)

(S) (17.2.3.2.3-47)

Sα (7.3.3-5)

SαCnt (8.2.3.1-2)

SαCnt m (8.1.2.1-1)

Sαm  (8.2.3-1)

SaOut/IC (16.2.5-14)
SaOut/IC ij (16.2.5-21)

SaOut/Tr ij (16.2.5-26)

Sculi (16.2.3.2-1)

Sculij (16.2.3.2-3)

Sculik (16.2.3.2-3)

SculNorm (16.2.3.2-6)

SDL (9.4-1)

SensErr (15.2.2.1-32)

SI C (16.2.4-2)
SI Ci (16.2.4-5)
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SI Cij (16.2.4-7)

∑
 1 - 3

(18.4.7.3-17)

∑
4 - 8

(18.4.7.3-17)

∑
9 - 11

(18.4.7.3-17)

σaiVib (16.2.3.1-21)

σajVib (16.2.3.2-12)

σakVib (16.2.3.2-12)

σaOut/Tr i (16.2.5-26)

σaOuti (16.2.5-21)

σARS/H/Rnd-k (18.3.1.1-6)

σARS/Rnd (18.2.1-25)

σARS/Rnd (18.2.2-8)

σARS/Rnd/East (18.3.1.2-11)

σARS/Rnd/East (18.3.2.2-2)

σARS/Rnd/Eastn (18.3.2.2-3)

σARS/Rnd/H-k (18.3.2.1-7)

σARS/Rnd/H-k n (18.3.2.1-11)

σARS/Rnd/ZN (18.3.1.1-10)

σaVib (16.2.3.1-21)

σaVib (16.2.3.2-13)

σχ (18.4.7.3-8)

σΔvAvg (18.4.7.3-8)

σΔv (18.4.7.3-13)

σMeasm (16.2.4-9)

σMisci (16.2.4-11)

σω iVib (16.2.3.1-15)

σωVib (16.2.3.1-16)

σPDensl (16.2.4-9)

∑
Total

(18.4.7.3-17)

σWndGstim (17.2.3.2.1-12)

σx' i (16.2.4-6)

σx'j 0 (16.2.4-8)

σx'j nTrans (16.2.4-15)

σx'Tr i (16.2.4-14)

Sijn (16.2.4-1)

sinh (13.2.1-11)
Sjn (16.2.4-1)

(18.3-2)

* (14.6.4-2)

** (14.6.4.2-2)

Start (17.1.1.1-1)

Start (18.2.1-4)

SθARS/ωVib-αQuant/ZN j (18.3.1.1-2)

SθARS/ωVib-αQuantZL (18.2.2-1)

SθARS/ωVib-αQuantZN(t) (18.3-26)

SθARS/Rnd/ZN j (18.3.1.1-2)

SθARS/RndZL (18.2.2-1)

SθARS/RndZN(t) (18.3-26)

STr (16.2.4-4)
STri (16.2.4-13)

STrij (16.2.4-15)

Sυ (7.3.3-5)

SυCnt (8.2.3.1-2)

SυCnt m (8.1.2.2-1)

Sυm (8.2.3-1)

Sυm (10.1.3.1-8)

SVarm 

N
(17.2.3.2-1)

SvREF
E

(tREF) (15.2.2.1-40)

SWndGst
N

(17.2.3.2.3-6)

T (10.1.4.1-5)

T (10.2.2-1)
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T (10.4-2)

T (11.2.2.2-1)

T (18.2.1-10)

t (11.2.1.1-5)

t (11.2.2.1-1)

t (11.2.4.1.1-1)

t (13.2.1-12)

t (14.3-11)

t (15.2.2.1-40)

t (17.1.1.2-17)

t (17.1.1.2-7)

t (17.1.2.3-28)

t (17.2.1-1)

t Fig. 13.5-1

T0 (11.2.4.1.1-7)

t0 (10.1.1.1-2)

t0 (10.1.2.1-2)

t0 (10.1.4.1-5)

TAlign (7.4.1-4)

TAlign (18.2.2-1)

TAlign (18.3.1.1-2)

τ (4.4.1.2.1-10)

τ (7.1.1.1-5)

τ (10.1.1.1-3)

τ (10.2.2-7)

τ (11.2.2.1-1)

τ (13.2.1-12)

τ (17.1.2.2-7)

τ (17.2.3.2.3-32)

τ (18.2.1-4)

τα (15.1.2.1.1-22)

τβ (15.1.2.1.1-22)

τFilt (17.2.1-21)

τi (13.6.1-5)

TFin/Crnt (17.2.1-2)

tGPSi (15.2.4-2)

ϑ (17.1.2.3.1-9)

θ (3.2.3-1)

θ (3.5.3-26)

θ (10.5.1-3)

θ (12.2.1-28)

θ (17.1.2.2-14)

θ (17.2.3.2.3-24)

ϑ(S) (10.5.1-11)

θ(t) (10.1.1-2)

θ(t) (10.3-3)

θ0 (11.2.2.1-18)

θ0x (10.1.1-2)

θ0x (10.1.2-3)

θ0y (10.1.1-2)

θARS/ωVib-αQuant/East j (18.3.1.2-9)

θARS/ωVib-αQuant/H j

N
(18.3.1.1-2)

θARS/ωVib-αQuantEast (18.2.2-1)

θARS/ωVib-αQuantH
N

(t) (18.3-26)

θARS/ωVib-αQuantZL (18.2.2-1)

θARS/Rnd/East j (18.3.1.2-9)

θARS/Rnd/H-k j (18.3.1.1-6)

θARS/Rnd/H j

N
(18.3.1.1-2)

θARS/RndEast (18.2.2-1)

θARS/RndH

N
(t) (18.3-26)

θARS/RndZL (18.2.2-1)

θBL (11.2.1.3-2)

ϑF(S) (10.5.2-12)

θF (10.5.2-3)

θGC/Range (17.1.1.4-5)
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ϑGeo 
(12.2.2-19)

Θi (14.6.5.1-10)

θi (18.4.7.2-18)

θi(t) (10.4.1-1)

θi(t) (14.6.2-15)

θi(t) (14.6.5.1-10)

θ(t) (10.1.2-3)

θ Fig. 11.2.1.1-1

θThrst (17.1.2.3-21)

θVib (8.1.4.1.2-3)

θx(t) (10.3-3)

θxi(t) (10.4.1-1)

θy(t) (10.3-3)

θyi(t) (10.4.1-1)

θz(t) (10.3-3)

θzi(t) (10.4.1-1)

θz or x(t)
2
 (10.6.1-22)

θz or x(t) (10.6.1-21)

ThOsc (11.2.4.1.1-10)

Thrsh - (8.1.3.2-1)

Thrsh+ (8.1.3.2-1)

Thrst (17.1.2.3-20)

Thrst (17.1.2.3-28)

ti (18.3.2.1-1)

Tl (7.1.1.1.1-10)

Tl (7.2.2.2.2-9)

Tl (7.3.3.2-6)

Tl (7.4.1-1)

Tl (10.1.3.2.2-7)

Tl (17.2.3.2.3-24)

tl (7.3.3.2-1)

tl (11.2.3.2-4)

tl-1 (7.3.3.2-1)

tl-1 (11.2.3.2-4)

Tm (7.1.1.2.1-6)

Tm (7.2.1-1)

Tm (7.2.2.1-5)

Tm (8.1.2.1-6)

Tm (8.1.4.1-16)

Tm (8.1.4.1.2-3)

Tm (10.1.1.2.1-6)

Tm (10.1.3.1-8)

Tm (11.2.4.3.2.1-1)

Tm (15.1.2.1.1.1-9)

Tm (15.1.2.1.1.3-23)

Tm (15.1.5.3.1-15)

Tm (17.1.3-3)

Tm (17.2.1-1)

Tm (17.2.2-4)

Tm (18.4-1)

tM (10.1.3.2.2-39)

tm (11.2.4.3.2.2-1)

tm (17.1.3-3)

tm-1 (8.1.4.1-10)

tm-1 (11.2.4.3.2.2-1)

Tn (7.1.1.2.1-4)

Tn (7.2-6)

Tn (7.3.1-5)

Tn (14.6.1-12)

Tn (15.1.2.1.1.3-38)

Tn (15.1.5.3.1-18)

Tn (15.2.1-18)
TOsc0 (15.2.4-12)

Tr (3.2.4.3-3)

tRECi (15.2.4-2)

tREF (15.2.2.1-40)



D-48     PARAMETER INDEX

TS Sect. No. 17.1.1

TS/GC (17.1.1.4-6)

tStart (18.2.1-4)

t' (10.2.2-11)

U (3.2.1.1-2)

u (10.2.2-5)

u (12.3.6.2-15)

u* (3.2.4-14)

u1 (3.5.1-10)

u1A
B

(3.1.1-30)

u1A
B

(3.2.1-8)

u1B
A

(3.2.1-8)

u1L
B

(4.1-7)

u2 (3.5.1-10)

u2A
B

(3.1.1-30)

u2A
B

(3.2.1-8)

u2B
A

(3.2.1-8)

u2L
B

(4.1-7)

u3 (3.5.1-10)

u3A
B

(3.1.1-30)

u3A
B

(3.2.1-8)

u3B
A

(3.2.1-8)

u3L
B

(4.1-7)

ua (7.2.2.2-10)

uc (16.1.1-5)
uca (15.2.1.1-16)

ucb (15.2.1.1-16)

uc
♦ (14.6.1-2)

uc
♦(t) (15.1.5.3.2-4)

ucFst (15.1.5.3.2-1)

ucn (15.1-4)

ucOpt (16.1.1.3-4)

ucOpt (16.1.2.1-3)
ucOutn (15.1.2-28)

uEast
E

(5.2.4-10)

uEast
I

(11.2.4.2-2)

uEast
L

(18.2.1-23)

uEast
N

(14.2-34)

uEast
N

(14.5-12)

uEast
N

(18.1.1-12)

uEast
N

(18.3-28)

uEast
N

(18.3.1.2-3)

uγ
B

(11.2.3.1-10)

uGC
N

(13.3-1)

uGen
N

(13.1-9)

ui (3.5.1-13)

ui (3.5.1-12)

ui
B

(11.2.3.2-1)

uij
B

(18.4.7.2-13)

uJA
B

(3.3.2-1)

uk (8.1.4.1-8)

uk (9.3-2)

uMAX (3.2.2.2-18)

uNorth Fig. 5.2-1

uNorth
E

(5.2.4-9)

uNorth
E

(12.1-36)

uNorth
I

(11.2.4.2-2)

uNorth
L

(18.2.1-17)
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uNorth
N

(14.2-33)

uNorth
N

(18.1.1-12)

uNorth
N1 (6.1.3-8)

uω (7.2.2.2-7)

uω (7.3.3.1-2)

uω
B

(13.4.1.1-1)

uω
B

(13.4.1.2-7)

uω
B

(13.4.3-2)

uω
B

(13.4.3-3)

uω
B0 (13.4.1.2-17)
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